
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Ecological Outcomes of Cannabis Legalization: A multidisciplinary study of cannabis land 
use change, its social drivers, and environmental outcomes

Permalink
https://escholarship.org/uc/item/5nd164p2

Author
Parker-Shames, Phoebe

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nd164p2
https://escholarship.org
http://www.cdlib.org/


  

Ecological Outcomes of Cannabis Legalization: A multidisciplinary study of cannabis land use 

change, its social drivers, and environmental outcomes 

 

By 

 

Phoebe Parker-Shames 

 

A dissertation submitted in partial satisfaction of the  

 

requirements for the degree of  

 

Doctor of Philosophy 

 

in 

 

Environmental Science, Policy, and Management 

 

in the 

 

Graduate Division 

 

of the 

 

University of California, Berkeley 

 

Committee in charge: 

 

Professor Justin Brashares, Chair 

Professor Van Butsic 

Professor Mary Power 

 

Summer 2022 

 

  



  

 

 

 



 1 

Abstract 

 

Ecological Outcomes of Cannabis Legalization: A multidisciplinary study of cannabis land use 

change, its social drivers, and environmental outcomes 

 

by 

 

Phoebe Parker-Shames 

 

Doctor of Philosophy in Environmental Science, Policy, and Management 

 

University of California, Berkeley 

 

Professor Justin Brashares, Chair 

 

Recent state-level legalizations of recreational cannabis across the US have created a large-scale 

policy experiment that could alter land use patterns and shape wildlife communities. Cannabis 

legalization provides a rare opportunity to study the consequences of land use change in a rural 

agriculture frontier. This dissertation explores the ecological outcomes of cannabis legalization 

by approaching cannabis landscapes as social-ecological systems and combining multiple 

disciplinary approaches. My research takes an interdisciplinary approach to quantifying land use 

change and contributes to our context-specific understanding of wildlife responses to human 

development. Ultimately, this research provides results that are timely and may be useful for 

policy, management, and land use decision-making.  

 

I begin with an introduction on cannabis landscapes as social-ecological systems. I outline a brief 

history of cannabis farming in the western US, as well as an explanation of my focus on small-

scale legacy cannabis farming. Then, in Chapter 1, I produce baseline distribution data on 

cannabis land use in southern Oregon, and examine the overlap with sensitive ecological 

features. This chapter addresses the questions: How is cannabis production distributed? Where 

might we be concerned about its environmental impact? In Chapter 2, I use cannabis farmer 

interviews to generate model covariates which contextualize the cannabis land use data from the 

first chapter. Here, I ask: What drives cannabis land use over time? What is the socio-ecological 

context for these drivers? In Chapter 3, I use wildlife camera data to examine the outcomes of 

cannabis land use for animals on and surrounding cannabis farms. This chapter focuses on the 

question: How do wildlife respond to cannabis farming? In Chapter 4, I detail the methodology 

for field experiments that address specific mechanisms of wildlife response to cannabis 

cultivation, asking: What is the role of light and noise disturbance in multi-taxa wildlife response 

to cannabis? Finally, I conclude with a summary of the broad implications of this work, as well 

as future research and policy recommendations. 
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Introduction 
 

Land use change is one of the greatest threats to wildlife worldwide—globally, it can remove and 

alter habitat, or disrupt wildlife interactions (Driscoll et al., 2013; Ellis et al., 2013; Foley et al., 

2005; Turner et al., 2001a). A major challenge for conservation involves navigating the negative 

environmental repercussions of land use change alongside the needs for human agriculture and 

development (Foley et al., 2011; Kremen & Merenlender, 2018). This means that studying land 

use change fundamentally engages the role of humans within ecological systems and processes 

(Crespin & Simonetti, 2019; Kremen & Merenlender, 2018). Research has increasingly focused 

on human impacts on surrounding ecosystems, revealing complex interactions and consequences 

(e.g., Alberti et al., 2020; Brashares, 2010; Estes et al., 2011; Prugh et al., 2009; Suraci et al., 

2021). However, mechanistic understanding, universal rules, or consistent predictions are 

difficult to define, and more context-based research is needed, especially in systems early in the 

process of land use transition. 

 

Cannabis agriculture (i.e., marijuana, Cannabis indica, or C. sativa cultivation) provides an ideal 

opportunity to study ecological outcomes of land use change in a rural and rapidly changing 

landscape. To understand why, it is important to start with the recent history of cannabis 

cultivation in the western US. For decades, cannabis was grown illegally in rural areas of 

California, Oregon, and Washington as part of the back-to-the-land movement (Corva, 2014). 

These were remote areas that allowed counter-culture communities to reinvent themselves, but 

which also happened to host some of the nation’s highest biodiversity (e.g., D. Olson et al., 

2012). The industry remained surreptitious and small-scale for many years, while ongoing law 

enforcement and the US “war on drugs” tried unsuccessfully to eliminate the practice (Corva, 

2014). Then, the ground shifted with recreational legalization. Oregon passed recreational Adult 

Use cannabis legalization in the fall of 2015, and California followed suit a year later, riding a 

wave of recreational legalization measures that eventually passed across 19 states in the US. 

Very rapidly, this policy change initiated land use development for cannabis (see Chapters 1 and 

2), first in areas with a history of cultivation, and later, into new regions. This shift in 

development was accompanied by subtle shifts in motives and philosophy behind cannabis 

cultivation – as one of the farmers I interviewed for Chapter 2 put it, “The quest for the all-

mighty dollar got in the way of the spiritual cycle of the plant.” Along with these rapid changes 

came calls of concern for potential environmental impacts (Carah et al., 2015) (see Chapters 3 

and 4). However, the illicit history of cannabis meant that there was very little existing research 

on cannabis-environment interactions, and many gaps in baseline data (Carah et al., 2015; Short 

Gianotti et al., 2017). 

 

To address this brewing conservation crisis, I focused my dissertation on the ecological 

outcomes of cannabis legalization. I was specifically interested in studying private land cannabis 

development in rural areas with a history of pre-legalization cultivation (so-called “legacy” 

areas) (Dillis, Biber, et al., 2021). In these regions, legalization has spurred major private land 

development for cannabis (both licit and illicit) alongside high biodiversity and few other crop-

based agricultural land uses. The focus on small-scale outdoor private land cannabis cultivation 

sets my dissertation apart from other studies which have focused on public land production (e.g., 

Wengert et al., 2021), indoor cultivation (e.g., Mills, 2012), or large scale cannabis development 

in emerging regions (e.g., Dillis, Biber, et al., 2021). Each style of cultivation has its own 
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ecological risks and social, economic, and ecological tradeoffs (Wartenberg et al., 2021). 

However, private-land outdoor cannabis production in rural legacy regions provides the best 

opportunity to study land use consequences for wildlife communities within a social-ecological 

context. 

 

I approach legacy cannabis landscapes as an intertwined social-ecological system (Fig. 1). The 

history and context of cannabis, described in part above, influences the development of cannabis 

as land use drivers (Meyfroidt, 2015). These drivers in turn shape the ways in which the 

associated cannabis land use change affects local ecosystems. The ecological impacts can feed 

back into the land use drivers by way of social attitudes towards nature, or changes in regulation 

and enforcement. All these interactions are influenced by the shift in overarching policy brought 

by recreational legalization. Each of my chapters addresses different components in this system, 

going from a broad to fine scale. 

 

 
Figure 1. Conceptual diagram of socio-ecological cannabis systems. 

 

My first chapter generates baseline descriptive data on cannabis land use and examines its broad 

scale overlap with wildlife habitat in southern Oregon (Ch1 in Fig. 1). I use publicly available 

satellite imagery to characterize the development patterns of outdoor and greenhouse cannabis 

land use in Josephine County, Oregon, during the first year of recreational legalization. I then 

examine the overlap of cannabis production with potentially sensitive ecological features, 

including predator distributions and salmonid habitat. This broad overview provides a baseline to 

understand patterns of cannabis development relative to all available private lands. It also 

identifies areas where overlap may create potential for wildlife impacts (recognizing that this 

broad scale overlap may not necessarily translate to overlap at a local scale, see Chapter 3). 

 

My second chapter adds depth and context to the baseline data provided in the first chapter, by 

examining the drivers of cannabis land use change before and after legalization (Ch2 in Fig. 1). I 

use interview data with cannabis farmers to generate social and ecological covariates for models 
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of cannabis land use and land use change. I interpret model results using the themes from the 

interviews and discuss possible conservation implications. 

 

The third chapter moves to a finer spatial scale, investigating how the overlap presented in 

Chapter 1 affects wildlife on and surrounding cannabis farms in southern Oregon (Ch3 in Fig. 1). 

I use wildlife cameras to monitor animal space use and space use intensity as a function of 

distance to cannabis farms. I also identify general patterns of response by functional groups. 

 

Finally, the fourth chapter (Ch4 in Fig. 1) presents a research design to investigate potential 

mechanisms for the wildlife responses observed in Chapter 3. I detail the methods for field 

experiments that measure the effects of light and noise on multi-taxa wildlife responses, 

mimicking conditions on active cannabis farms in a controlled setting. I present example data 

from field trials conducted in northern California. 

 

Taken together, these chapters present multiple approaches to understanding the ecological 

outcomes of cannabis legalization. More generally, research on cannabis agriculture can provide 

insights on the intersections between rapid changes in human land use and wildlife communities, 

especially at rural-wildland interfaces. By taking a multi-scalar approach to understanding a 

unique industry at a critical moment in time, I hope this dissertation sheds light on land use 

change processes to help promote human-wildlife coexistence in an ever-changing world. 
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Chapter 1 

 

The spatial overlap of small-scale cannabis farms with aquatic and 

terrestrial biodiversity 
 

This chapter has been previously published (Parker‐Shames et al., 2022) and is included here 

with permission from co-authors 

 

Phoebe Parker-Shames, Christopher Choi, Van Butsic, David Green, Brent Barry, Katie 

Moriarty, Taal Levi, Justin S. Brashares 

 

Abstract 
 

The rapid expansion of cannabis agriculture in the Western United States provides a rare 

opportunity to study how an abrupt change in land-use policy affects local biodiversity. There is 

broad speculation that cannabis production on private land is expanding and having negative 

effects on aquatic and terrestrial ecosystems, yet there exists little empirical data to evaluate this 

concern. In this study, we mapped and characterized outdoor cannabis production during the first 

season of legal recreational production (2016) in a large legacy cannabis-producing region of 

Southern Oregon, Josephine County. We descriptively compared cannabis farms to all available 

private parcels based on proximity to rivers/streams and undeveloped land, and their overlap 

with carnivore richness. Using publicly available satellite imagery, we found approximately 1.34 

km2 (331 acres) of cannabis cultivation within Josephine County during the first season of legal 

recreational production. Most cannabis production areas were small (median size 414 m2), 

spatially clustered at all observed scales, and recently established (67% were not visible in 2013-

2014 pre-legalization). When compared with all available private parcels, cannabis was 

preferentially located in forested areas and in undeveloped land, and slightly closer to rivers. 

Within riparian areas, farms were slightly closer to rivers with predicted occurrence of coho 

salmon (Oncorhynchus kisutch). While projected carnivore richness was similar between 

cannabis and all private parcels, projected fisher (Pekania pennanti) occupancy was more than 

five times higher on cannabis farms, with a median occupancy of 0.69 (IQR 0.24-0.87). Our 

results establish a baseline for cannabis landcover at the time of early recreational legalization 

and rapid expansion, and can be used to predict future patterns or ecological consequences of 

cannabis development in other production areas. Understanding the potential ecological impact 

of cannabis is increasingly important as legalization expands, and may also offer insights into 

other rural land use change frontiers. 

 

Introduction 
 

Land use change is one of the oldest and most pervasive threats to global biodiversity (Ellis et 

al., 2013; Foley et al., 2005), yet it often occurs over time spans that obscure pattern (Turner, 

2005; Turner et al., 2001b), or in tandem with multiple development drivers that are difficult to 

disentangle (Meyfroidt, 2015; Turner, 2005). An exception to this is when abrupt changes in law 

or regulation accelerate development, creating what is known as a “policy-induced rapid land use 

change frontier” (le Polain de Waroux et al., 2018). The acceleration of development at these 
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frontiers enables researchers to assess how land-use change affects biodiversity or ecosystem 

function over short time periods (Turner, 2005). One such unique opportunity to study land use 

change frontiers has emerged recently in the western United States of America (U.S.) with the 

legalization of cannabis production and use (Butsic et al., 2018). 

 

Over the past decade, 17 states and the District of Columbia in the U.S. have legalized 

recreational cannabis, or marijuana (Cannabis sativa or C. indica), and the rate of recreational 

legalization has increased over that time. This policy change has initiated rapid development of 

cannabis cultivation, particularly in areas with a history of illicit or medical cannabis farming 

(Butsic et al., 2018; Butsic & Brenner, 2016). Note that because of the complex policy 

background of cannabis and its quasi-legal status (Short Gianotti et al., 2017), this expansion 

occurs across types of cultivation including licensed and unlicensed producers. As with any 

development frontier, the rapid expansion of recreational cannabis is likely to come with 

ecological costs. Indeed, cannabis production has sparked considerable conservation concern for 

its potential effects on water, land, and wildlife (Carah et al., 2015; LaChance, 2019; Wartenberg 

et al., 2021). These effects may occur in part through (1) water withdrawals that lower freshwater 

availability (Bauer et al., 2015; Dillis et al., 2020; Zipper et al., 2019), (2) road construction or 

use of pesticides that lower freshwater quality (Carah et al., 2015; Portugal & Hwan, 2020), (3) 

clearing or fencing of undeveloped land that removes or degrades wildlife habitat (Butsic et al., 

2018; Butsic & Brenner, 2016; I. Wang et al., 2017; Wengert et al., 2021), (4) toxicants or 

poaching that directly kill animals and pose particular risk to terrestrial carnivores like the fisher 

(Pekania pennanti) (Gabriel et al., 2012, 2015; Rich, McMillin, et al., 2020; Thompson et al., 

2014), and (5) human disturbance (from increased human presence, use of security or grow 

lights, or noise from generators and equipment) that alters animal behavioral cues (Parker-

Shames et al., 2020; Rich, Baker, et al., 2020; Rich, Ferguson, et al., 2020) (see Chapters 3 and 

4). These five impact pathways likely vary depending on surrounding context, production 

practices, and license status, but provide a general guideline for potential ecological effects 

(Wartenberg et al., 2021). 

 

Much of the existing research on ecological effects of cannabis has focused on illicit production 

on public lands (e.g., Carah et al., 2015; Gabriel et al., 2012; Levy, 2014). However, private land 

production is quickly becoming a dominant source of cannabis in the western U.S. while illegal 

public land production in the region either appears to be declining (Klassen & Anthony, 2019), 

shifting, or possibly increasing in some areas with increased enforcement (Wengert et al., 2021). 

Private land cannabis cultivation appears to generally follow one of two development trajectories 

(Dillis, Biber, et al., 2021). The first pathway consists of many, smaller farms in rural areas with 

a history of illicit or medical cultivation (i.e., “the legacy pathway”). The second path is 

dominated by fewer, larger farms in new areas more conducive to large-scale, industrial farming 

(i.e., “the industrial pathway”). Note that although the legacy pathway is characterized by 

historical growing practices, this form of production can also expand with emerging 

development frontiers. Research on these development trajectories in California suggests that, 

although both trajectories are expanding, the legacy pathway may require policy intervention if it 

is to fully transition to, and persist in, the legal industry (Bodwitch et al., 2019; Dillis, Biber, et 

al., 2021). Proponents often argue that smaller-scale styles of farming are more sustainable 

(Bodwitch et al., 2019), sometimes drawing parallels to industries such as craft vineyards (e.g., 

Hilty & Merenlender, 2004; Kremen & Merenlender, 2018). However, these farms are also often 



 6 

located in more rural, biodiverse watersheds close to protected wilderness and managed 

timberlands that could be at environmental risk from expanding development (Butsic et al., 

2018; Carah et al., 2015). As land managers and policymakers decide where to prioritize 

cannabis farming, there is a growing need to contextualize the potential effects of the legacy 

pathway in ecologically sensitive regions.  

 

In Josephine County, Oregon, the co-occurrence of cannabis agriculture within the highly 

biodiverse Klamath-Siskiyou Ecoregion has created a natural experiment to examine how the 

post-legalization expansion of small-scale, private land farms might affect freshwater and 

terrestrial biodiversity. In this study we ask: what was the development pattern of cannabis land 

use in Josephine County during the first year of recreational legalization, and how might 

cannabis production overlap with sensitive ecological features?  

 

To address these questions, our objectives were to: (1) map and characterize the spatial 

configuration of cannabis farms in Josephine County, Oregon in an early stage of cannabis 

legalization, and (2) examine the proximity of cannabis production to undeveloped land cover, 

freshwater, sensitive fish species (e.g. coho salmon (Oncorhynchus kisutch), Chinook salmon 

(Oncorhynchus tshawytscha), and Steelhead (Oncorhynchus mykiss)), and terrestrial carnivore 

richness (e.g. fishers (Pekania pennanti), coastal marten (Martes caurina humboldtensis), ringtail 

(Bassariscus astutus), cougar (Puma concolor), bobcat (Lynx rufus), gray fox (Urocyon 

cinereoargenteus), and coyote (Canis latrans)). We anticipated that due to the cultural 

dominance of historical growing practices, cannabis production in this region would be 

comprised of relatively small-scale farms representative of the legacy industry pathway (Dillis, 

Biber, et al., 2021), but most farms would be new since legalization. Based on research from 

California pre-legalization (Butsic et al., 2018; Butsic & Brenner, 2016), we expected that 

cannabis in our study area would also be clustered at the subwatershed level. Concerning 

proximity to ecologically sensitive areas, we expected that cannabis agriculture would be located 

in more undeveloped lands, closer to freshwater streams or rivers, and closer to sensitive fish 

species compared with the surrounding context of all private land parcels. The proposed 

mechanisms behind these predictions are summarized in Table 1 and draw on the five 

hypothesized pathways of effect for cannabis on the surrounding environment listed earlier 

(Wartenberg et al., 2021). Finally, we quantified spatial overlap of cannabis farms with projected 

terrestrial carnivore distributions. We focused on carnivores because previous studies have 

described this group as particularly sensitive to cannabis cultivation (Carah et al., 2015; Gabriel 

et al., 2015; Parker-Shames et al., 2020; Rich, Baker, et al., 2020; Rich, Ferguson, et al., 2020; 

Rich, McMillin, et al., 2020; Thompson et al., 2014), and because this group includes species of 

regional conservation concern, such as the fisher.  
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Table 1. Summary of layers used for spatial analyses. Related pathways refers to the five hypothesized 

ecological effects of cannabis that could potentially affect the given layer (see text): 1) water 

availability from withdrawals, 2) water quality from contamination, 3) loss or degradation of habitat 

from clearing/fencing, 4) direct animal mortality from toxicants or poaching, and 5) behavioral shifts 

from human disturbance. 

Layer Used for Related pathways Source Year Resolution 

Digital 

Elevation 

Model (DEM) 

elevation Loss/ degradation of 

habitat (3) 

Oregon 

Department of 

Forestry 

2008 10 m 

Land cover developed/ 

undeveloped 
classification 

Loss/ degradation of 

habitat (3) 

NLCD  

(Dewitz, 2019)  

2013 30 m 

Forest 

structure 

canopy cover and 

stand age 

Loss/ degradation of 

habitat (3) 

GNN 

(LEMMA 

Team, 2020)  

2016 30 m 

Carnivore 

richness 

average carnivore 

richness for fisher, 

marten, ringtail, 

cougar, bobcat, 

gray fox, and 

coyote combined 

Loss/ degradation of 

habitat, direct 

mortality, behavioral 

shifts (3-5) 

Barry (2018) 

and Moriarty et 

al., unpublished 

data (Appendix 

S5) 

2016 3x3 km 

grid 

Individual 

carnivore 

distributions 

projected 

probability of 

occupancy for 

fisher, ringtail, 

cougar, bobcat, 

gray fox, and 

coyote individually 

Loss/ degradation of 

habitat, direct 

mortality, behavioral 

shifts (3-5) 

Barry (2018) 

and Moriarty et 

al., unpublished 

data (Appendix 

S5) 

2016 3x3 km 

grid 

Rivers/streams proximity to 

freshwater 

Freshwater availability/ 

quality (1, 2) 

NHD (U.S. 

Geological 

Survey, 2018) 

2018 Vector data  

Fish habitat proximity to coho, 

chinook, and 

steelhead habitat 

Freshwater availability/ 

quality (1, 2) 

OFHD 

(Bowers, 2020)  

2020 Vector data 

 

Methods 
 

Study Area 
 

Our study focused on Josephine County in Southern Oregon (4,250 km2). Josephine county was 

an ideal location to measure cannabis dynamics of legacy areas and to gain broader insights on 
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the ecological outcomes of cannabis legalization. Josephine County had a long history of illicit 

and medical cannabis cultivation, and an active presence in the growing legal industry in Oregon 

(Klassen & Anthony, 2019; V. Smith et al., 2019). In 2014, Oregon became one of the first U.S. 

states to legalize recreational cannabis. Southern Oregon has become known as a prime 

destination for outdoor cannabis production (V. Smith et al., 2019), and Josephine County had 

the highest number of applications for licensed producers relative to population size in the state 

(0.38 per 100 inhabitants) (Oregon Liquor Control Commission, 2019). Widespread cultivation 

of cannabis started in the region during the 1960s (Corva, 2014) and is now viewed as one of the 

county’s main economic drivers (see Chapter 2). 

 

Josephine County is also located in a biodiversity hotspot. The study area is part of the Klamath-

Siskiyou Ecoregion, one of the most biodiverse temperate forest regions, and an area of 

increasing conservation focus (D. Olson et al., 2012; D. M. Olson et al., 2006). The Klamath-

Siskiyou Ecoregion straddles the Oregon-California border and contains several regions 

identified as critical climate change refugia (D. Olson et al., 2012; D. M. Olson et al., 2006). The 

study area contains several protected areas including state and federal protected lands (68.8% of 

the county is state or federal land), and several federally threatened and endangered species 

including northern spotted owl (Strix occidentalis caurina) and coho salmon (Oncorhynchus 

kisutch), and state sensitive species such as fisher (Pekania pennanti).  

 

Mapping cannabis farms 
 

To characterize the spatial distribution of cannabis farming, we hand-digitized cannabis 

production sites across Josephine County using high spatial resolution Google Earth images 

taken after statewide legalization (Example Fig. 1D). We based our methods on those previously 

used to map cannabis production in regions of northern California (Butsic & Brenner, 2016; 

Butsic et al., 2018). We used publicly available satellite imagery for May or July 2016, the first 

year with a full growing season after recreational legalization went into effect in July 2015.  
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Figure 1. Distribution of cannabis in Josephine County. A) Plants per subwatershed. B-C) Cannabis 

hotspots (in red) at two different scales: B) county (excluding public lands) and C) individual 

subwatersheds with at least 30 sites. Hotspots generated using the Getis-Ord Gi* analysis and indicate 

significant clustering. D) Example of what an outdoor garden and greenhouse look like from aerial 

imagery with digitized polygons around the cultivated area and greenhouse. 

 

Next, we characterized the farms themselves. Digitizers counted the number of plants visible in 

outdoor gardens, recorded whether there was a visible fence surrounding each cannabis 

production site, and recorded whether each site was new (i.e., whether it was visible in the 

previous imagery year of 2013 or 2014). To estimate the number of plants produced in 

greenhouses, we used 180 instances where we could count the number of plants through the see-

through top of greenhouses and divided this count by greenhouse area. This yielded an average 

of one plant per 7.23 m2 of greenhouse area, which we then used to estimate greenhouse plant 

counts. See supplement online (Appendix S1) for full mapping procedure. 
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To test the accuracy of image-based data collection, we visited approximately 30 farms between 

2017-2019 to verify and refine our mapping protocol after a pilot mapping process. Because 

systematic ground-verification for all grow sites was not possible, we used a qualitative 

confidence score to represent digitizers relative certainty about each mapped site (based on 

characteristics such as plant size, color, and shape, use of individual planter boxes, etc.). For 

consistency, we thoroughly checked all mapped polygons and associated scoring using the same 

person who conducted on-the-ground site verification (PPS). We used only high confidence sites 

for these analyses, but see supplemental materials for a comparison to the full data set (Appendix 

S2 & S3). Finally, we used only sites with more than four plants for analyses because we were 

focused on the cannabis industry rather than plants grown for personal consumption (Oregon law 

permitted four plants per household for personal use). 

 

Describing the spatial configuration of cannabis farms 
 

To generate a baseline characterization of cannabis production post-legalization, we grouped 

cannabis production in two ways: 1) by the individual digitized polygons (site), and 2) by the 

surrounding/containing parcel (farm). We used 2018 county tax lot information for parcel 

boundaries (parcel lines and zoning are unlikely to be different between years) (Josephine 

County 2018). We characterized cannabis farm size, use of fences, and new production using 

multiple per site and per farm metrics (see Table 2). We joined farm-level data to parcels in 

ArcGIS Pro (Esri Inc, 2020), and we calculated all other summaries using R (R Core Team, 

2020). 

 
Table 2. Summary of mapped cannabis in 2016 Josephine County for outdoor gardens, greenhouses, all 

sites (gardens + greenhouses), and all farms (parcel-level summaries). For farms, percentages are for 

farms containing at least one site that is fenced or new. 

 

 n Plant 

count 

Median 

number of 

plants per 

group 

(IQR*) 

Total 

cultivated 

area in 

km2 

Median area 

in m2 (IQR) 

Fenced 

(%) 

New 

(%) 

        

Outdoor 

Gardens 

2,593 91,922 26 (14-48) 1.20 282 (114-629) 55.5% 58.5% 

Greenhouses 1,317 23,760 14.4 (8.4-

22.5) 

0.14 85.8 (49.8-

134) 

40.7% 73.4% 

All sites  3,910 115,682 21 (12-42) 1.34 163 (73.5-

428) 

50.5% 63.6% 

All farms  2,227 115,682 41.5 (19-61) 1.34 414 (161-811) 59.0% 67.4% 
*Interquartile Range 

 

The distribution and clustering of rural development can change the ways in which land use 

change affects local biodiversity. First, to assess the relationship between scale and spatial 

clustering of cannabis cultivation, we used a Ripley’s K analysis (with an isotropic edge 

correction) on cannabis sites with the ‘spatstat’ package in R (Baddeley et al., 2015; Ripley, 

1977). Then, to identify the location of cannabis clusters, we conducted a Getis Ord Gi* hotspot 

analysis (Ord & Getis, 2010) to test for statistically significant clustering of cannabis farms on 
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private land at the county level and individual subwatershed level (USGS Hydrologic Unit Code 

12) based on methodology from Butsic & Brenner 2016. To conduct the Getis Ord analysis, we 

used the optimized hotspot analysis tool on farm centroids in ArcGIS Pro. For the county-level 

analysis, we excluded public tax lots from the study area. For the individual watershed level 

analysis, the optimized hotspot analysis required at least 30 points per watershed to test for 

statistical significance, so we only used 25 out of 73 watersheds to meet this requirement. 

 

Quantifying spatial metrics of conservation concern 
 

To assess the potential ecological effects of cannabis at the landscape scale, we quantified spatial 

characteristics and proximity of cannabis to landscape features, fish populations, and carnivore 

distributions (Butsic et al., 2018). This proximity doesn’t directly infer effect, but rather whether 

the configuration of cannabis may increase the opportunities for negative environmental 

outcomes. We focused on spatial metrics that might approximate some of the five main 

hypothesized effects of cannabis farming on local environments (Table 1).  

 

To approximate the potential loss of wildlife habitat, we assessed cannabis production in 

developed versus undeveloped lands. We extracted elevation and 2013 land cover at the centroid 

of each farm, and then grouped land cover classes into developed (Developed, Cultivated) and 

undeveloped (Herbaceous, Forest, Shrubland, Wetland) categories (Table 1). The National Land 

Cover Database (NLCD) Cultivated category includes hay, annual crops such as corn, or 

perennial crops such as orchards and vineyards; given the resolution of the NLCD dataset 

compared to average farm size, this is unlikely to include cannabis pre-recreational legalization. 

 

To approximate the potential degradation of forested habitat, we assessed the forest structure on 

farms used for cannabis production (Table 1). To do so, we extracted canopy cover and stand age 

at the centroid of each farm (but see supplement for other metrics; Appendix S4). 

 

To approximate the potential effects on carnivores, we examined the overlap of cannabis with 

projected carnivore richness and individual carnivore species distributions. We extracted the 

average carnivore richness, and individual carnivore occupancy value at the centroid of each 

farm (Table 1). For carnivore richness and individual carnivore distributions, we used projected 

model data for southern Oregon, from Barry (2018) and Moriarty et al., unpublished data (see 

Appendix S5 online for description of occupancy and richness methods). Within our study area, 

the richness layer represents the total number of carnivores expected in a given grid cell for the 

following species: fisher, coastal marten, ringtail, cougar, bobcat, gray fox, and coyote. For 

individual species, we used calculated distribution data from projected occupancy and this 

represented the average probability that a given area would be occupied by that species. Marten 

projected occupancy was almost entirely absent in this region and was not included in individual 

species summaries. 

 

Finally, to approximate the potential effects of freshwater extraction or declines in freshwater 

quality due to cannabis production, we assessed the proximity of cannabis to freshwater rivers or 

streams and fish habitat for potentially sensitive species. For vector data with the proximity 

analysis (Table 1), we calculated the distance from the centroid of each cannabis farm to the 

nearest river and fish habitat in R using the ‘simple features’ package (Pebesma, 2018). For 
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rivers, we used the National Hydrography Database (NHD Plus). We filtered out canals/ditches 

and underground aqueducts (Fcode > 42000) (U.S. Geological Survey 2018). For fish habitat 

data, we used Oregon Fish Habitat Distribution data for coho salmon, fall and spring run 

Chinook salmon, and winter and summer run Steelhead (Bowers, 2020). The fish dataset 

includes any areas used within the past five reproductive cycles for each species. We then 

calculated summaries of proximity and overlap metrics in R. In order to inform the interpretation 

of the fish habitat data, we also extracted the stream order (level of stream branching, starting at 

headwaters) of the nearest stream to each cannabis site, and summarized results in R. 

 

The conservation effect of these metrics for cannabis likely depends on how they compare to the 

potential effect of surrounding land uses and available land for development (i.e., the landscape 

baseline). Therefore, we contextualized the proximity metrics by comparing cannabis farms to all 

private land parcels in the county. We used all private parcels instead of parcels without visible, 

high-confidence cannabis because we were mainly interested in how cannabis production fits 

into the surrounding landscape context of available private lands. See the supplement for a more 

local comparison in which we calculated the proximity and overlap metrics (Table 1) for all 

parcels within a buffer around each cannabis site. For buffer size we used the average home 

range of fishers from southern Oregon (specifically, the range for females of 16.27 km2) (T. 

Smith, 2021) (Appendix S6).  

 

Results 
 

Characterization and spatial configuration of cannabis farms 
 

Outdoor cannabis production across Josephine County in 2016 was generally small-scale but also 

pervasive, and suggested that recreational legalization greatly expanded the industry locally. We 

mapped nearly 4,000 individual gardens and greenhouses on 2,220 different farms, all identified 

as highly likely to be cannabis (Table 2; Fig. 1A; for results from the full dataset see Appendix 

S2 & S3). Most sites (63.6%) were new since legalization (Table 2). Most production was in 

outdoor gardens (66.3%), but a greater proportion of greenhouses were new (73.4 %) (Table 2). 

Farms contained an average of 1.76 individual sites, with a maximum of 14. The average size of 

individual sites and farms was small (outdoor garden median area 282 m2 or 0.07 acres) but 

highly variable in terms of cultivated area and number of plants (Table 2). The average parcel 

size for farms was 0.098 km2 (24.2 acres). 99.6% of detected farms were on private land parcels. 

Out of all private land parcels in the county, 5.7% contained a farm identified as highly likely to 

be cannabis. 

 

Cannabis sites were clustered at multiple spatial scales. The Ripley’s K analysis indicated that 

cannabis sites were clustered at all observed spatial scales (Appendix S7). At the county level, 

the Getis-Ord Hotspot maps identified two regional hotspots (in red) near Williams in the South-

East, and in the Illinois Valley in the South-West (Fig. 1B). The subwatershed analysis indicated 

that even within these larger regional hotspots, there were pockets of more and less intensive 

production (Fig. 1C). Both the county and subwatershed hotspots seem to follow primary roads 

or river networks. 
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Spatial relation of cannabis farms to measurements of conservation concern 
 

Overall, cannabis was produced on more undeveloped and forested parcels compared to all 

available private lands as a whole (Table 3). The most common land cover for individual outdoor 

gardens was shrubland (29%), followed by cultivated (25%), and forest (21%). Greenhouse 

cannabis production occurred in areas already cultivated with other crops (29%), followed by 

shrubland (26%), and forest (22%). At the farm scale, however, where outdoor and greenhouse 

production was combined, forest was the most common land cover type (32%). The 

predominance of cannabis in forest and undeveloped land covers was also supported by the 

Gradient Nearest Neighbor (GNN) data on forest structure. Although the GNN dataset uses a 

broader categorization for forest, it also indicated that cannabis was disproportionately grown in 

forested areas (Table 3). Nevertheless, the forest structure (canopy cover and stand age) of farms 

was similar to that on all available private parcels (Table 3). 

 

 

Cannabis farms occurred in areas with intermediate carnivore richness, similar to all available 

private parcels (Table 2; Fig. 2). However, at the individual species level, cannabis farms 

overlapped with higher projected fisher (median 0.69) and ringtail (0.49) occupancy, and lower 

gray fox occupancy (0.61) (Fig. 2). These differences were consistent across land cover, forest 

Table 3. Characteristics and proximity metrics for cannabis farms and all private land parcels. 

 Cannabis Private Land  

Number of parcels 2,227 41,158 

Elevation (m): median* 1,388 (1,185-1,503) 1,059 (948-1,300) 

Land cover: % undeveloped 68%  43%  

Forest structure: % forested 68% 43% 

Forest structure: median canopy cover 49% (31-65) 52% (35-67) 

Forest structure: median stand age 76 (61-100) 77 (63-98) 

Rivers (m): median distance 94 (47-177) 140 (61-294) 

Coho (m): median distance 538 (229-1,126) 811 (341-1,541) 

Chinook (Fall) (m): median distance 807 (309-1,718) 1,194 (542-2,186) 

Chinook (Spring) (m): median distance 12,147 (3,762-27,819) 2,291 (1,015-7,918) 

Steelhead (Winter) (m): median distance 458 (190-969) 590 (265-1,147) 

Steelhead (Summer) (m): median distance 1,724 (415-18,877)) 683 (297-1,518) 

Carnivore richness: median number of 

species 

2.6 (2.5-2.9) 2.5 (2.4-2.8) 

Bobcat projected occupancy: median 

probability of occupancy 

0.37 (0.32-0.46) 0.36 (0.31-0.45) 

Cougar projected occupancy: median 

probability of occupancy  

0.51 (0.46-0.55) 0.49 (0.44-0.53) 

Ringtail projected occupancy: median 

probability of occupancy  

0.49 (0.30-0.59) 0.24 (0.21-0.40) 

Gray fox projected occupancy: median 

probability of occupancy  

0.61 (0.20-0.92) 0.92 (0.88-0.93) 

Fisher projected occupancy: median 

probability of occupancy  

 

0.69 (0.24-0.87) 0.12 (0.11-0.34) 

* For median results, interquartile range (IQR) given in parentheses. 



 14 

structure, and zoning. However, median fisher occupancy values were larger on high elevation 

(>1,500 m) parcels, and a greater proportion of cannabis farms (25.5%) were at higher elevations 

compared with private (5.3%) parcels. There was no difference in richness between existing or 

new cannabis farms, and no difference at the species level except for gray fox, which had a 

slightly higher median occupancy on existing farms (0.80) compared with new farms (0.60). 

 

 
Figure 2. Projected carnivore richness (estimated number of carnivores present in a cell) and individual 

projected occupancy (average probability that a grid cell would be occupied by the given species) in 

relation to regional cannabis production hotspots. 

 

Cannabis was located slightly closer to rivers compared with all available private parcels, though 

the interquartile range (IQR) intervals overlap (Table 3). There were also a higher proportion of 

cannabis farms located within 15 m (50 ft) of a river or stream, compared to private parcels 

(8.3% vs. 5.9%). However, the proximity of farms to threatened fish species was mixed. For 

example, although there was a large variation in distances and overlap of IQR intervals, on 

average cannabis was nearly 1.5 times closer to coho salmon habitat than all private parcels, yet 
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more than 5 times farther from spring chinook habitat. The variation in proximity to fish habitat 

may be in part due to the proximity of cannabis to smaller streams by order (Appendix S8). 

 

Discussion 
 

This study is one of the first landscape-scale assessments of small-scale outdoor cannabis 

farming and its potential broad-scale ecological effects in a rural biodiversity hotspot. Our results 

suggest two main conclusions. First, private land cannabis farming in Josephine County, Oregon 

in 2016 was common and spatially clustered, expanded post-recreational legalization (67.4% of 

farms were new), and yet only covered a small portion (0.0003%) of the total land area. This 

supports our expectation that cannabis farming in Josephine County would exhibit characteristics 

typical of the legacy development pathway, but that these farms would largely be new post-

legalization. Second, our spatial proximity results highlighted areas of overlap or proximity of 

cannabis farms and sensitive habitats and species. Compared to the surrounding context of all 

available private land parcels, cannabis was more frequently located in forested areas and 

undeveloped land, closer (though perhaps not significantly so) to rivers/streams and coho salmon 

habitat, and in areas of high value as fisher habitat. These results provided mixed support for our 

expectation that cannabis production would be in areas that increase its potential ecological 

impact.  

 

Recent research on public land production in the broader region (Wengert et al., 2021) highlights 

similarities and differences between public and private land production. For example, both seem 

to be located relatively close to rivers and streams, with ~50% canopy cover, and in relatively 

young stands (less than 120 years) (Wengert et al., 2021). However, while we may presume that 

all production on public lands represents new clearing for production, our results indicate that 

32% of farms are on already developed and unforested parcels. Additionally, public lands 

provide critical refuges for many of the region’s carnivores, which may help explain why public 

land production appears to overlap more with carnivore habitat than our results for private land 

production (Wengert et al., 2021). Perhaps most importantly at a landscape scale, farm size and 

total extent appear to be much smaller for legacy pathway private land cannabis mapped in this 

study compared to estimates of public land production practices (Bauer et al., 2015, Wengert et 

al., 2021). 

 

Despite the differences between public and private land cannabis production, private land 

cannabis farming still has characteristics that warrant continued research and planning. Our 

results suggest that legacy pathway cannabis farming could be compatible and comparable with 

existing rural land use in Josephine County. In order to ensure this continues to be the case, 

however, further attention should be given to conservation outreach, policies to support small-

scale farming, and attention to land use practices on farms, particularly those that may affect 

carnivores and coho salmon. As the industry continues to expand, policymakers and 

conservationists need to clarify landscape level strategies to ensure a sustainable future. 

 

Care should be taken when interpreting these results, since cannabis agriculture takes many 

forms and often exhibits regional differences in production practices that may influence its 

ecological impact (Wartenberg et al., 2021). Our study, by nature of our mapping approach, 

evaluated outdoor production on private lands. We were unable to quantify whether the farms we 
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mapped were illegal or licensed medically or recreationally, nor how many farms we may have 

missed by farmers effectively concealing their crop. Given our mapped sites included 2,227 

farms in 2016 compared to the 43 recreationally licensed locations in 2016 (Oregon Liquor 

Control Commission Public Records Request 2020), it is likely that most of the farms we 

georeferenced were not licensed. If this is the case, the lack of effort to conceal crops is notable. 

We suspect because cannabis was pervasive (6% of private parcels), that enforcement would not 

have been feasible (Corva, 2014). Therefore, we were confident that our study accurately 

quantified the distribution of private-land cannabis production because of the visibility of both 

licensed and unlicensed farms from aerial imagery. Further, our data likely does not capture all 

of the cannabis being grown in Josephine County as we were unable to quantify concealed farms 

on public land or indoor cannabis production. Instead, our study offers critical insights into the 

ecological consequences of the growing industry in legacy production regions. 

 

Potential ecological effects of outdoor cannabis 
 

The overall cultivated area of private land cannabis agriculture at the landscape scale in 

Josephine County in 2016 appears to be similar to small-scale rural development already 

occurring regionally. For example, in a county of 4,250 km2 (~1 million acres), the total cannabis 

cultivation area was only 1.34 km2 (331 acres; or up to 1.57 km2, 388 acres including all 

confidence levels, see Appendix S2). This small size is similar to other agricultural production in 

the county: in 2017, Josephine County produced 2.98 km2 (733 acres) of grapes and 0.48 km2 

(118 acres) of vegetables (USDA Census of Agriculture, 2017). Cannabis in Josephine County 

was also considerably smaller in scale than other legacy cannabis-producing regions in Northern 

California in 2016, where averages ranged from 53-119 plants per site, compared with the 

median of 21 found in our study (Butsic et al. 2018). While we do not have comparative research 

on the ecological effects of other agriculture in the study area, small-scale agriculture in rural 

areas often creates a landscape mosaic that supports species richness (Kremen & Merenlender, 

2018; Mendenhall et al., 2014). The ability of small-scale cannabis farming to function like 

agriculture in other working lands systems, however, requires a deeper understanding of land use 

practices associated with cannabis production. Specifically, to be ecologically sustainable, small-

scale private land cannabis farms would need to create a significantly smaller ecological 

footprint than public land cannabis (Levy, 2014; Carah et al., 2015).  

 

Although the area of cultivation for cannabis in Josephine County was small, this study did not 

evaluate the edge effects of cannabis cultivation, nor take into account other forms of disturbance 

associated with the sites, such as clearing beyond the cultivated area, road construction, or water 

storage development. Therefore, the actual overlap and potential ecological effect from cannabis 

farming in the region is likely to be larger than what was documented in this study. Our 

understanding of these broad scale impacts would be enhanced in future studies that may be able 

to assess the fine scale response of wildlife on and surrounding cannabis farms. 

  

While our study does not address direct effects of cannabis production, we did identify spatial 

relations of cannabis development that could pose unique risks to terrestrial and freshwater 

ecosystems. We found that cannabis production was clustered in its distribution, which is 

consistent with research from northern California (Butsic & Brenner, 2016; Butsic et al., 2018). 

This clustering could be an ecological concern if cannabis is occurring disproportionately in 
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sensitive ecological areas. Similarly, the proliferation of fences associated with cannabis (59% of 

mapped farms had a visible fence) could be a concern for habitat fragmentation as the industry 

expands (McInturff et al., 2020). The overlap results indicate that cannabis may be grown 

disproportionately in forests and at higher elevations, which suggests cannabis could be 

associated with greater land clearing than other development on private parcels. However, the 

forests where cannabis was grown did not appear to be denser or older than comparable parcels. 

 

Our results indicate a large overlap of cannabis farms with areas of high projected fisher 

occupancy. This overlap was greater on cannabis farms than private land generally, but could be 

due to a higher proportion of cannabis farms located at higher elevations (>1,500 m). However, 

elevation alone doesn’t explain this overlap. Fisher occupancy was projected to be higher on 

cannabis farms than the areas immediately surrounding them (Appendix S4). This suggests that 

even at fine scales, farms are appearing in areas of potential for high quality habitat for fisher. 

What this overlap may mean for fisher populations is unclear, given the lack of research on the 

impacts of private land cannabis production. Private land cannabis has not been documented to 

have the same negative effects on fishers as public land production, and in particular pesticide 

and toxicant use appears to be lower on private land farms, according to self-reported farmer 

surveys (Wilson et al., 2019). However, anecdotal reports and local news stories raise concerns 

for these private land farms as well, and many grower organizations have emphasized a need for 

stronger environmental norms among farmers. Given the remaining uncertainty, these results 

emphasize the potential need for conservation attention to private land farms as well. 

 

Surprisingly, the individual species differences did not add up to differences in overall carnivore 

richness, which was relatively consistent across the study area. This raises the possibility that the 

differences in carnivore distributions might be driven by competitive interactions (Green et al., 

2018), though finer scale research would be needed to disentangle the drivers of these species 

distribution patterns in relation to cannabis production. 

 

Regarding potential interactions between cannabis production and freshwater ecosystems, the 

picture was also somewhat mixed. There were a number of farms (8.3%) within 15 m (50 ft) of 

rivers and streams, but this was not surprising given the high density of rivers and streams in the 

study area. On average, most farms were only slightly closer to rivers and streams than the 

surrounding context of all private land parcels. Cannabis was located on average 273 m closer to 

coho salmon habitat than private parcels overall, 387 m closer to fall run chinook, and 132 m 

closer to winter run steelhead, though the IQR intervals overlap. This proximity to freshwater in 

Josephine County was also generally closer than observed in other legacy cannabis regions 

(Butsic et al., 2018). For example, the proportion of sites in Josephine County within 500 m of 

coho habitat (47.7%) was more than twice the proportion in northern California (17.9%) (Butsic 

et al., 2018). Butsic et al. (2018) used intrinsic potential data rather than direct fish population 

data, which may overestimate fish populations (Sheer et al., 2009), so this difference could be 

even more extreme. Coho salmon spawn in smaller upstream tributaries that may be particularly 

susceptible to drought or water withdrawals (Bauer et al., 2015; Brown et al., 1994). This 

proximity to coho may be explained by the large number of cannabis sites in proximity to small, 

headwater streams (Appendix S8), which could further indicate potential threat to other species 

that depend on these habitats, such as headwaters-dwelling amphibians. Therefore, this proximity 
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to fish habitat could be an ecological concern if farms are drawing water from small rivers or 

shallow wells during the dry season (Zipper et al., 2019). 

 

Whether or not metrics summarizing the proximity of farms and sensitive habitats result in actual 

ecological harm largely depends on the individual land use practices occurring on cannabis 

farms. There is a rich history of different approaches to cultivating cannabis (Corva, 2014; 

Wilson et al., 2019), which could lead to variation in how cannabis affects ecosystems. 

Unfortunately, we still do not have a complete picture of cannabis land use practices, nor their 

mechanisms underlying their ecological effects. So far, available published research suggests 

that much of small-scale private land cannabis production may not be as ecologically damaging 

as previously believed (Bodwitch et al., 2019; Parker-Shames et al., 2020; Wartenberg et al., 

2021), though a consensus has not been reached, and effects may vary over time. Given our 

current knowledge, therefore, the snapshot of private land cannabis in 2016 in Josephine County 

does not on its own indicate widespread ecological effects. There could however be an increased 

concern for local biodiversity if cannabis development expands in size or intensity while 

remaining in the same spatial configuration—located in forested vegetation, and in proximity to 

a few key sensitive carnivore and fish species. Certainly, the large number of new farms in the 

first year of legalization (67.4%) suggest a rapidly expanding industry. This concern suggests a 

need to consider development pathways and future trajectories that sustain conservation values.  

 

Conclusions 
 

This study presents a baseline understanding of cannabis production post-legalization in a legacy 

production region. The ecological metrics and maps presented here could be useful tools to begin 

prioritizing conservation and development tradeoffs in a complex and rapidly changing industry. 

Landscape-scale cannabis management for conservation is increasingly urgent, particularly as 

cannabis legalization expands to more states, and federal legalization is being considered. 

Additionally, cannabis agriculture may offer important insights for other emerging development 

patterns that occur over longer time spans, or policy-induced rapid land use change frontiers in 

other regions. For example, development patterns of cannabis have similarities with small scale 

slash and burn agriculture in parts of South America (le Polain de Waroux et al., 2018), or 

wealthy exurban development at wildland-urban interfaces in regions of southern California 

(Radeloff et al., 2005; J. A. Smith et al., 2019). Ultimately, policy shifts around cannabis and 

their resulting development impacts offer an exciting opportunity to study rapid land use change 

and its potential consequences for biodiversity. 
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Supplement to Chapter 1: 
 

Appendix S1. Mapping protocol (available online) 

Appendix S2. Summary of the full dataset 

Appendix S3. Summary of full dataset filtered for all confidence levels excluding less than 4 

plants 

Appendix S4. Additional comparison metrics. 

Appendix S5. Description of occupancy models and richness calculations (available online) 

Appendix S6. Buffer comparison. 

Appendix S7. Results for Ripley’s K analysis of spatial clustering 

Appendix S8. Summary of sites by stream order 

 
Appendix S1. Protocol for mapping and hand-digitizing cannabis farms using Google Earth images 

pdf available on publication website: https://doi.org/10.1111/csp2.602 

 
Appendix S2. Summary of the full dataset (all confidence levels and any number of plants) of mapped 

cannabis in 2016 Josephine County for outdoor gardens, greenhouses, and all sites (gardens + 

greenhouses). 

 n Plant 

count 

Median 

number of 

plants per 

group 

(IQR*) 

Total 

cultivated 

area in 

km2 

Median area 

in m2 (IQR) 

Fenced 

(%) 

New 

(%) 

        

Outdoor 

Gardens 

3,959 118,465 20 (9-42) 1.365 150.8 (43.3-

451.3) 

56 58 

Greenhouses 2,357 33,709 9.3 (4-18) 0.20 55.1 (24.7-

106.9) 

39.2 59.4 

All sites  6,310 152,174 15 (6.3-30.9) 1.57 89.9 (32.5-

266.6) 

49.7 58.5 

*Interquartile Range 

 

 
Appendix S3. Summary of all confidence levels excluding less than 4 plants for mapped cannabis in 

2016 Josephine County for outdoor gardens, greenhouses, and all sites (gardens + greenhouses). 

 

 n Plant 

count 

Median 

number of 

plants per 

group 

(IQR*) 

Total 

cultivated 

area in 

km2 

Median area 

in m2 (IQR) 

Fenced 

(%) 

New 

(%) 

        

Outdoor 

Gardens 

3,558 117,038 23 (12-46) 1.356 181.7 (61.5-

511.5) 

56.6 56.3 

Greenhouses 1,806 32,136 13.3 (7.3-

22.1) 

0.19 79.2 (43.5-

131.6) 

38.5 63 

All sites  5,364 149,174 18 (10-35.5) 1.55 117 (51-314) 50.5 58.5 
*Interquartile Range 

 

https://doi.org/10.1111/csp2.602
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Appendix S4. Additional metrics for cannabis farms, all private land parcels, and all parcels within a 

16.27 km2 (Pacific fisher home range size) buffer around cannabis sites. Results given with median and 

interquartile range (IQR). 

 Cannabis Private Land  Buffer 

Forest quality: basal area of live 

trees (m2/ha) 

17.8 (10.9-28.8) 18.7 (12.0-29.9) 19.2 (12.3-30.9) 

Forest quality: basal area of 

conifers (m2/ha) 

6.7 (2.4-17.1) 7.1 (2.9-16.9) 7.5 (3.1-18.3) 

Forest quality: biomass of trees 

(kg/ha) 

78,900 (44,200-

131,600) 

81,400 (50,200-

135,000) 

84,300 (51,000-

140,000) 

Forest quality: biomass of 

conifers (kg/ha) 

30,000 (9,300-87,900) 31,900 (11,100-

87,500) 

33,500 (11,500-

92,400) 

Forest quality: volume of live 

trees (m3/ha) 

135 (77-230) 141 (87-235) 145 (88-243) 

Forest quality: volume of 

conifers (m3/ha) 

52 (16-154) 56 (19-152) 58 (20-159) 

Forest quality: stand height (m) 11.4 (8.7-17.0)  11.8 (9.2-16.5) 12.0 (9.2-17.1) 

Median slope (degrees):  2.5 (1.1-6.69) 2.79 (0-6.0) 2.3 (0.93-5.97) 

Median distance to nearest GAP 

I or II protected area (km) 

3.3 (1.5-5.2) 3.4 (1.5-5.4) 3.6 (2.0-5.3) 

 
Appendix S5. Description of occupancy models and richness calculations 

Document available on publication website: https://doi.org/10.1111/csp2.602 

 

Appendix S6. Proximity metrics for all parcels within a 16.27 km2 (female fisher home range size) 

buffer around cannabis sites. 

 Buffer 

Number of parcels 40,942 

Elevation (m): median* 1,068 (950-1,323) 

Land cover: % undeveloped 44%  

Forest structure: % forested 44% 

Forest structure: median canopy cover 52% (35-68) 

Forest structure: median stand age 78 (63-100) 

Rivers (m): median distance 138 (60-290) 

Coho (m): median distance 813 (340-1,544) 

Chinook (Fall) (m): median distance 1,200 (539-2,200) 

Chinook (Spring) (m): median distance 2,319 (1,015-8,074) 

Steelhead (Winter) (m): median distance 591 (265-1,152) 

Steelhead (Summer) (m): median distance 687 (296-1,538) 

Predator richness: median number of species 2.5 (2.4-2.8) 

Bobcat projected occupancy: median probability of occupancy 0.36 (0.32-0.46) 

Cougar projected occupancy: median probability of occupancy  0.49 (0.44-0.53) 

Ringtail projected occupancy: median probability of occupancy  0.24 (0.21-0.40) 

Gray fox projected occupancy: median probability of 

occupancy  

0.92 (0.88-0.93) 

Fisher projected occupancy: median probability of occupancy  0.12 (0.11-0.34) 

* For median results, interquartile range (IQR) given in parentheses. 

 

https://doi.org/10.1111/csp2.602
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Appendix S7. Results of K-test with isotropic edge correction indicating spatial clustering of cannabis 

sites at all observable scales. The dotted red line shows a random Poisson distribution of sites, and the 

black lines show the observed distribution of sites. When the observed distribution has a greater K(r) 

value (is above) the expected line at a given scale (indicated on the x axis) then the distribution is 

clustered; if it is below the line it indicates over-dispersion. 

 
Appendix S8. Stream order for nearest river or stream for each cannabis site. Lower numbers indicate 

smaller, headwater streams and increase in size with branching tributaries. 

Nearest Stream Order Number of Sites 

1 1552 

2 668 

3 573 

4 457 
5 296 

6 309 

7 35 

8 18 

 

 

  



 22 

Chapter 2 

 

Where money grows on trees: a socio-ecological assessment of cannabis 

land use change 
 

 

Abstract 
 

Integrating social or cultural data into ecological models is critical for understanding complex 

social-ecological systems. In this study, we used an interdisciplinary approach to identify, assess, 

and contextualize possible drivers of cannabis land use and development shortly after adult use 

of cannabis was legalized in Josephine County, Oregon. First, we interviewed 14 cannabis 

farmers about their relationship with the land, their land use decision making process, and 

reflections on the local industry. Second, we identified recurring responses in farmer interviews 

that highlighted perceived social and geographic drivers of cannabis land use. Finally, we 

quantified these drivers as spatial covariates and evaluated their value as predictors of cannabis 

land use in three models: 1) Logistic regression of cannabis land use post legalization (2016); 2) 

Logistic regression of cannabis development from pre- to post-legalization (2013/2014 to 2016); 

and 3) Linear regression of existing farm plant count change from pre- to post-legalization. We 

assessed the relationship of covariates with the model output and contextualized their patterns 

using the interview data. We found that most of the interview-derived covariates were 

significantly associated with cannabis distribution and development, including parcel size, 

human footprint, distance to nearest cannabis farm, density of local cannabis production, 

clearable land cover, farm zoning, elevation, roughness, and distance to rivers. These results 

provide useful insights into the dynamics of a rapid land use change frontier, as well as its 

potential environmental repercussions. The contextualized understanding of cannabis land use 

drivers may serve to mitigate environmental harm or predict changes occurring in other rural 

cannabis systems. 

 

Introduction 
 

“Money actually does grow on trees out here, and that’s a blessing.” - Josephine County 

cannabis farmer, 2019 

 

The recent boom in outdoor cannabis farming has created a rapid development frontier in the 19 

US states that have legalized cannabis production (Butsic et al., 2018). For decades, outdoor 

cannabis was grown illegally, often in rural, remote areas, but with state-level legalization, 

production in those same “legacy” regions has rapidly expanded (Dillis, Biber, et al., 2021). In 

some of these rural, legacy-production regions, cannabis production on private lands can 

transform development patterns at a regional scale (see Chapter 1) (Butsic et al., 2017, 2018). 

This development frontier can foster new cultural, economic and demographic dynamics 

(Polson, 2015; Polson & Bodwitch, 2021). Importantly, these new patterns of land use also incite 

concerns for ecological impact related to habitat fragmentation or degradation, potential effects 

on freshwater quality/availability, and direct or indirect effects on wildlife populations 

(Wartenberg et al. 2021). To understand, reduce, or mitigate these potential impacts, it is 
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important to identify the social and ecological factors that drive cannabis development on private 

lands across space and time. For example, understanding why farmers choose to cultivate at 

particular sites may help lawmakers craft and prioritize appropriate regulations for licensed 

cannabis. Additionally, spatial distribution and socio-cultural drivers are important for 

understanding where risks of environmental impact or human-wildlife conflict may arise, and for 

predicting the future trajectory of the cannabis industry. However, there remain many challenges 

to understanding drivers of cannabis development in these complex systems. 

 

Outdoor cannabis production in legacy regions is unique from other forms of traditional 

agriculture and functions as a closely tied social-ecological system. In these small-scale cannabis 

systems, the history of illicit farming lays a foundation for production practices that are vastly 

different from crops that did not have to be concealed, or that were grown following standardized 

agricultural practices across an industry (Corva, 2014). Given the continued barriers to bringing 

legacy farmers into legalized cannabis systems and the existence and persistence of illegal 

markets, historical context is likely to influence current growing patterns, even as they move into 

licit markets and expand on private lands (Bodwitch et al., 2019, 2021). In addition to historical 

practices that initiated the industry, there are other factors that likely influence whether, where, 

and how cannabis is produced, including federal, state, and local regulation and enforcement, 

social acceptance of cannabis within a region, access to education and communication of 

production practices among growing communities, short- and long-term economic tradeoffs, and 

others. These factors will influence the spatial distribution and predominant production practices 

of cannabis over time, which could shift the proximity of cannabis to terrestrial and aquatic 

wildlife habitats, or alter cannabis impacts on the local environment. These perceived or actual 

environmental impacts from cannabis can feed back into cannabis land use via shifts in attitudes 

that could lead to voluntary changes of production practices, increased enforcement, regulatory 

changes, or shifts in community acceptance for local production (for an example of local 

environmentally-based cannabis policy advocacy, see Hall 2022). 

 

Previous attempts to assess the drivers of cannabis land use or predict the current or future 

distribution of cannabis production have relied heavily on biophysical and bioclimatic models, 

using variables such as slope, forest land cover, distance to streams, aspect, canopy cover, and 

precipitation (Butsic et al., 2017, 2018; Wengert et al., 2021). These models have demonstrated 

that compared to other forms of farming, cannabis is generally less influenced or predicted by 

biophysical variables (Butsic et al., 2017). This is unsurprising, however, given that social and 

cultural variables are likely to profoundly shape the spatial distribution of cannabis production. 

For example, depending on the production style, a cannabis farmer might forgo a less 

biophysically ideal production area in order to stay concealed, or to grow near hospitable 

neighbors or close to other cannabis farmers with whom they can share labor or knowledge. 

Thus, social variables may be relatively more predictive of cannabis industry dynamics than 

biophysical variables. Ultimately, bridging social and ecological knowledge may be key to 

understanding the spatial dynamics of cannabis land use. 

 

Integrating a more complete social-ecological context into models of land use presents multiple 

challenges. First, it requires an in-depth understanding of the system to be modeled. In the case 

of cannabis agriculture, its illicit history is an impediment to research. Federal restrictions on 

research funding to study an illicit crop have meant that there are few studies to draw on for 
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characterizing patterns or trends in cannabis production, particularly on private lands (Short 

Gianotti et al., 2017). Given the lack of formal research on the fledgling recreational cannabis 

industry, those who understand the industry best are likely those engaged in it directly. Thus, 

interviews of cannabis farmers may be a particularly valuable approach for identifying and 

understanding potential drivers of cannabis land use. Interviews come with weaknesses, 

however; small or biased interview pools may fail to uncover the most important drivers of 

cannabis land use, or farmers themselves may be unable or unwilling to articulate the drivers that 

are most relevant to their landscape-scale decision-making. 

 

The second major challenge to integrating social and ecological understandings into land use 

models is that some potential drivers may not readily lend themselves to quantitative analysis. 

The transformation of qualitative knowledge into quantitative data is an inherent challenge for 

many interdisciplinary studies that attempt to merge opposing ontologies. For example, 

translating attitudes or perceptions into numerical data is a longstanding dilemma in quantitative 

social science where doing so risks losing context and being misunderstood (Stockemer, 2019). 

Nonetheless, integrating environmental modeling with social, economic and political drivers will 

enhance our understanding of system dynamics (Bloemraad, 2007; Kurz, 2021; Siegel et al., 

2022; Wilkinson, 2021). 

 

In this study, our goal was to identify, assess, and contextualize potential drivers of private land 

cannabis farming in Josephine County, Oregon, between pre- and post-recreational legalization 

(2013/2014 and 2016), using both sociological and environmental variables. We used cannabis 

farmer interviews to generate a list of sociological and ecological covariates for models of 

cannabis land use early in the process of recreational legalization. Our method for addressing 

issues around the translatability of qualitative to quantitative data was to mitigate risk of 

misinterpretation by only looking at drivers conducive to quantitative modeling, while those that 

were less conducive were used to help interpret the results. We supported our driver selection 

with insights from existing cannabis literature, and experience living in Josephine County for 

two years during data collection. Our objectives were to: 

1. Use cannabis farmer interviews to identify potential drivers of cannabis land use and land 

use change. Identify which potential drivers were most conducive to quantitative 

modeling, and which were not. 

2. Using the quantifiable variables, model drivers of cannabis land use in an early stage of 

recreational legalization. Model drivers of cannabis land use change pre- and post-

legalization. 

3. Interpret and contextualize modeling results using the cannabis farmer interviews, 

particularly the qualitative data that were less amenable to modeling. 

Finally, we discuss the environmental and policy implications of cannabis land use change based 

on cannabis farmer environmental concerns and knowledge. 

 

Methods 
 

Study Area 
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Figure 1. Map of the study area in Josephine County, Oregon, with mapped watersheds shaded by the 

increase in number of plants for each watershed from 2013/2014 to 2016. Dashed line shows the 

approximate split in available imagery for the pre-legalization timepoint. 

 

To understand cannabis land use drivers within the context of a rapid policy shift, we focused 

our study on Josephine County in Southern Oregon (4,250 km2) (Fig. 1). Josephine County is an 

ideal location to study cannabis because of the crop’s importance in the local economy with few 

other major competing non-timber agricultural commodities, as well as its rural location that 
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typifies legacy cannabis production systems. Josephine County has a long history of illicit and 

medical cannabis cultivation, and has an active presence in the growing legal industry in Oregon 

(see Chapter 1) (Smith et al., 2019). In addition to being an ideal example of cannabis farming in 

this region, there were two logistical reasons for selecting Josephine County as a study site. First, 

recent efforts to map cannabis farming and expansion in the region during the first season of 

recreational cannabis production provided ground-verified data on spatial trends. Second, one of 

the authors (PPS) grew up in the region, and thus had existing access to cannabis farming 

communities in the area. This enabled us to conduct interviews with both permitted and illicit 

producers, which required significant time to build the trust needed to conduct this study. 

 

Methodological Framework 
 

Our research approach integrated qualitative and quantitative socio-ecological data. We started 

with the interpretation of qualitative interview data, then translated findings into major themes 

and quantified potential drivers, for use in land use models (Fig. 2). This meant our process was 

partially iterative in that interview results influenced the design of the model methods (Fig. 2). In 

this section, we present an overview of our methodology, but have included the description of 

model drivers as a result instead of a method, since it is a key finding from the interview data. 

 

 
Figure 2. Conceptual framework for our methodological process. White boxes represent methods, light 

gray boxes represent results, and dark gray represents interpretation or discussion. Note that the results 

from the interview data feed into both the methods for the modeling approach and its interpretation. 

 

Interviews 
 

In order to both generate a list of potential land use drivers, and to interpret and contextualize 

model results, we conducted semi-structured, in-depth interviews with 14 cannabis farmers in 

Josephine County in 2019. Farmers had to be over the age of 21, but could be engaged in any 

type of cannabis production on private land, whether licensed or unlicensed. Interviews were 

conducted by the same researcher (PPS) for consistency, while living in Josephine County over a 

two year period. We interviewed farmers about drivers of cannabis land use, farming practices, 

influences on production methods, and farmer connection with the land. Although some farmers 

were also producing cannabis under a hemp license, we focused our questions on the cannabis 
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industry because the hemp industry in Josephine County largely emerged after 2018, which is 

after the mapped data were collected. (Here, we use the word hemp to refer to industrial hemp 

which is a low THC variety of cannabis. In our study system, hemp plants are generally grown 

for CBD, and are similar to recreational cannabis plants.)  

 

We initially used known contacts in formal and informal cannabis producer networks, invited 

voluntary participation, and thereafter used a snowball recruitment method. We continued 

interviews until we reached saturation (no new major themes emerged), at which point we 

considered the number of farmers interviewed to be sufficient. Because of the difficulties in 

attaining a representative sample of all cannabis farmers in the region, these interviews were 

viewed as generative rather than representative of all producers in the area. 

 

Interviews were recorded with permission, alongside hand written notes. Most interviews took 

place on the cannabis farm, or another location selected by the farmer, and often included a tour 

of the farm. Interviews typically lasted 2 hours, but ranged between 1 - 8 hrs, depending on the 

time constraints and preferences of the interviewee. All interviews were conducted under UC 

Berkeley Human Subjects Protocol CPHS# 2018-11-11619. We summarized interviews, grouped 

main themes or concepts, and transcribed quotes that represented the key emerging themes. We 

did not conduct a formal coding process because our purpose was largely generative. We then 

used these summaries to identify potential quantitative variables (predictors) for our land use 

models.  
 

Cannabis Models 
 

Cannabis Data 
 

To model drivers of cannabis land use and change over time, we used hand-digitized cannabis 

production sites across Josephine County using Google Earth Images. See Chapter 1 for detailed 

mapping methods. We used high confidence sites on private land with no restrictions on the 

number of plants for our models. Note that these mapped sites included both licensed and 

unlicensed cannabis on private land parcels, though we were unable to distinguish license status 

of a given parcel. 

 

To assess change over time, we mapped an additional year of cannabis production prior to 

recreational legalization. For these maps, we followed the same basic protocol Chapter 1, using 

high spatial resolution Google Earth imagery to record location of outdoor gardens and 

greenhouses. Depending on the available year of imagery in Google Earth, we used either 2013 

or 2014 data. The split in available imagery ran North-South through Wilderville, OR, splitting 

regional hotspots (see Chapter 1) such that the Illinois Valley was mapped in 2013, and Grants 

Pass and Williams were mapped in 2014 (Fig. 1). For the remap, we retained the 2016 mapped 

sites and updated, removed, or added cannabis polygons as we digitized to maintain consistency 

across years. For watersheds that did not contain cannabis in 2016 (n = 27), they were unlikely to 

have cannabis in 2013/2014, so we remapped only a subset (n = 7) to confirm the validity of this 

assumption, and then assumed that the rest were also empty. 
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We summarized cannabis production data to the parcel level and recorded the number of 

cannabis sites (individual outdoor gardens or greenhouses), total cultivated area, and number of 

plants per parcel. We then filtered our data to include only private land parcels. 

 

Land Use Models 

 

For models of cannabis land use on private land, we used the post-legalization (2016) cannabis 

data aggregated to the parcel level, and filtered to private ownership. We modeled the presence 

or absence of cannabis on a given private parcel using a logistic regression with the ‘glm’ 

function in R (R Core Team, 2021). We selected the variables for all models based on the 

interview data (see Results and Table 1). The following model represents the covariate 

relationships with the distribution of cannabis land use in 2016. 

 

Cpresence = B0 + B1 x Areaparcel + B2 x HFP + B3 x Distcann + B4 x Densitycann + B5 x Clearable + 

B6 x ZoningFarm+  B7 x Elevationmax + B8 x Roughnessmax + B9 x Distrivers+ B10 x Aspectsouth 

 

Where the response variable Cpresence is binary for cannabis presence, Areaparcel is the area of each 

private land parcel log-transformed to reduce skew, and HFP is the average Human Footprint 

value extracted for each parcel, Distcann is the non-zero nearest distance to the next cannabis farm 

in 2016 with a square-root transformation to reduce skew. Densitycann is the density of cannabis 

sites within a 1 km radius buffer in 2016 with a square-root transformation to reduce skew. 

Clearable is a binary variable for whether or not the parcel’s predominant 2013 land cover is 

easily cleared, and ZoningFarm is a binary variable for whether or not the parcel is zoned for 

agriculture. Elevationmax is the maximum elevation of a parcel. Roughnessmax is the maximum 

roughness of a parcel with a square-root transformation to reduce skew. Distrivers is the distance 

to nearest river or stream, and Aspectsouth is a binary variable for whether the majority of the 

parcel has a southern aspect (between 225 and 135 degrees). 

 

We assessed the models using P-values, and generated predictive graphs for each covariate 

relationship using the ‘predict’ function in base R, holding all other covariates at their mean 

value. We calculated pseudo r-squared values for the models using the ‘r.squaredGLMM’ 

function from the package MuMIn in R (Bartoń, 2022). 

 

Land Use Change Models 

 

For models of cannabis land use change, we used the post-legalization (2016) cannabis parcel 

data as above, with the addition of the pre-legalization (2013 or 2014) data. We used two 

different models to capture different aspects of land use change. First, we modeled new farm 

expansion. We excluded all parcels with farms present pre-legalization, so as to only capture new 

farms post-legalization. We used the following logistic regression model to examine the 

relationship between each covariate and the development of a new cannabis farm: 

 

Cdevelopment = B0 + B1 x Areaparcel + B2 x HFP + B3 x Distcann + B4 x Densitycann + B5 x Clearable 

+ B6 x ZoningFarm+  B7 x Elevationmax + B8 x Roughnessmax + B9 x Distrivers + B10 x Aspectsouth + 

B11 x Year 
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Where Cdevelopment is a binary variable representing whether or not the parcel developed cannabis 

in 2016. All model variables are the same as in the single year model except that Distcann and  

Densitycann both use the 2013/2014 cannabis data, and Clearable uses 2011 land use. Year is the 

image year (either 2013 or 2014) that the pre-legalization data was mapped. Note that Year is 

also a spatial grouping because roughly half the county was mapped in each time point, with 

2013 encompassing the Illinois Valley and Selma, and 2014 covering Williams and Grants Pass. 

 

Our second land use change model examined only the farms present pre-legalization 

(2013/2014), modeling the change in number of plants to post-legalization (2016). We used the 

following gaussian regression model to assess the relationship between each covariate and the 

number of cannabis plants gained or lost over recreational legalization. 

 

Cchange = B0 + B1 x Areaparcel + B2 x HFP + B3 x Distcann + B4 x Densitycann + B5 x Clearable + 

B6 x ZoningFarm+  B7 x Elevationmax + B8 x Roughnessmax + B9 x Distrivers + B11 x Year 

 

Where Cchange is the change in plant number from pre to post legalization, and all variables are 

the same as in the land use change model for new farms above. 

 

We assessed the models using estimated P-values, and generated predictive graphs for each 

covariate relationship using the ‘predict’ function in R holding all other covariates at their mean 

value. We calculated pseudo r-squared values for the models using the ‘r.squaredGLMM’ 

function from the package MuMIn in R. 

 

Results 
 

Interviews 
 

We interviewed 14 self-identified cannabis farmers from 10 different farms in Josephine County, 

Oregon, in 2019. All interview subjects were over the age of 21, and the majority were white and 

male. These cannabis farmers were engaged in a variety of markets, including personal 

production, medical marijuana, licensed recreational cannabis, legal hemp, illegal black market 

cannabis, and combinations of the above. All farmers interviewed had been producing for at least 

three years, although we interviewed a mix of legacy producers (some of whom have been 

producing for 50+ years) and farmers who had started more recently. All farmers identified as 

small or medium scale producers, and several were also part of formal cannabis advocacy and 

grower best-practice organizations.  
 

After 14 interviews, we reached a saturation point whereby no new themes were emerging in 

farmer responses, though this seemed likely due to similarities among farmers, rather than an 

indication that we had exhaustively summarized the perspectives of all cannabis farmers in the 

region. Below we describe some of the emerging themes from the interviews as they relate to 

land use drivers and the context for interpreting model results. We then relate each theme to a 

hypothesized driver of cannabis land use and land use change (Table 1), or indicate where an 

emerging theme did not readily translate to a quantifiable driver. 
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Table 1. Hypothesized drivers of cannabis land use and/or land use change generated from 

interviews of cannabis farmers. See interview results for more detailed justifications. 

Potential Driver Spatial Proxy and 

hypothesized 

direction (-/+) 

Justification  Source or method 

Proximity to other 

cannabis farms 

Distance to next nearest 

cannabis farm (-) 

Nearby support of other 

cannabis farmers desired  

Calculated for this study 

based on 2013/2014 and 

2016 cannabis data 

Supportive 

community 

attitudes 

Density of farms within 

1 km radius (+) 

Neighborhood acceptance 

critical for long term success 

Calculated for this study 

based on 2013/2014 and 

2016 cannabis data 

Ruralness Human Footprint (-) Remoteness desired for 

general connection to rural 

spaces 

 

2009 Human Footprint 

(Venter et al., 2016) 

Zoning Whether or not a parcel 

is zoned for farming (+) 

 

Farm zoned parcels preferred County taxlots (Josephine 

County 2018) 

Distance from law 

enforcement 

Distance from Grants 

Pass Sheriff's office (-) 

Reduced enforcement pressure 

(for both licensed and 

unlicensed farmers) 

 

Straight line distance 

from Grants Pass (using 

Sheriff's Office as point 

location) 

Parcel size Parcel area (m2) (+) Larger parcels more desired 

for buffer space and privacy 

 

County taxlots (Josephine 

County 2018) 

Easily cleared or 

open land cover 

Open land covers for 

2011 or 2013 (+) 

Open area to develop farm on, 

reduced labor for clearing land 

desired when selecting parcel 

 

NLCD 2011 and 2013 

(Dewitz, 2019) 

Elevation Maximum elevation (-) Intermediate elevation 

preferred for optimal growing 

conditions, maximum likely to 

be limiting factor 

 

DEM 10m 

Roughness Maximum roughness (-) Available flat land preferred to 

reduce terracing labor 

 

Derived from DEM 10m 

Access to sunlight South-facing aspect (+) Cannabis plants will grow 

better with access to sunlight, 

which is enhanced on south-

facing slopes 

 

Derived from DEM 10m 

Proximity to water Distance to rivers and 

streams (-) 

Water needed for irrigation, 

assuming proximity 

incorporates use for both 

licensed and unlicensed 

farmers 

NHDplus (U.S. 

Geological Survey, 2018) 
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Major Themes and Spatial Drivers 
 

Below, we describe the major themes that emerged from cannabis farmer interviews. The first 

four (Connection to Community, Environmental Stewardship, Regulation, and Parcel Qualities) 

were translated into model covariates, while the final two (Economics, and Future of the 

Industry) were not used for model covariates but rather provide context for the results. 

 

Connection to Community 

 

“There’s always a human side to the equation I consider when making land use decisions.” 

 

One of the most common factors mentioned in farmer interviews was the importance of 

community, both in terms of their connection to other cannabis farmers as well as to their 

surrounding neighbors. For example, in the quote above, the farmer was describing how his 

relationship with his neighbors instilled a sense of both community and responsibility that 

translated into on-the-ground decisions he made on his farm, such as when or how to use grow 

lights. The interviewed farmers explained that having a good relationship with neighbors was 

critical for surviving in the industry, regardless of whether they were licensed or not. In addition, 

they described that best growing practices were often communicated through social networks, 

both online and in person, and so they often relied on other cannabis farmers for advice or 

assistance. Interviewed farmers explained that cultural norms dictated practices, which in 

Josephine County are often influenced by legacy production styles and attitudes. Some farmers 

also mentioned the advantage of being able to help each other with labor when living close to 

other farmers. 

 

In translating this theme into quantitative variables for potential land use drivers, we focused on 

farmer reliance on other local cannabis producers. We quantified proximity to other cannabis 

farms by calculating the smallest non-zero distance from each parcel to the nearest cannabis farm 

both pre- and post-legalization, using the ‘st_nn’ function from the nngeo package for R 

(Dorman, 2022). This package calculates the k-nearest neighbor distance between features. We 

calculated a large number (k = 17) of neighbor distances for each parcel, then selected the 

minimum distance excluding all zero values. 

 

We also attempted to estimate neighborhood tolerance for cannabis farming. To do so, we used 

the density of cannabis within a 1 km radius around each parcel both pre- and post-legalization 

as our spatial proxy. Cannabis production in Josephine County is clustered at multiple spatial 

scales (Chapter 1) and so any distance threshold that represents a localized area might be 

appropriate, but we chose 1 km because this generally encompasses a local neighborhood. Using 

the sf package in R, we generated buffers around parcel centroids, intersected them with 

centroids of cannabis sites, and then converted the count to density by dividing by buffer area. 

 

Environmental Stewardship 
 

“It’s the big corporations that are f**king this land. We’re taking care of it.” 
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All farmers interviewed expressed personal values related to environmental stewardship. In the 

context of the quote above, the farmer was comparing his impact from cannabis farming to 

nearby clearcut logging, and explaining his deep conviction that his style of land use was 

environmentally sustainable compared to larger industrial and extractive land uses. In the 

opening quote from the introduction, “Money actually does grow on trees out here, and that’s a 

blessing,” a different farmer expressed similar sentiments, connecting his farming to both nature 

and livelihood/profit, while expressing gratitude that the place itself, Josephine County, enabled 

that relationship. Many of the interviewed farmers explained that their motivations for growing 

cannabis stemmed from a desire to connect with the land or nature, although only a few had been 

farmers before cultivating cannabis. Interviewees often mentioned that the ruralness of Josephine 

County was an attraction because of its biodiversity. Many farmers reported personal 

connections with and fondness for the wildlife on their production sites. Many also expressed 

concerns about ecological damage from the cannabis industry. For example, farmers highlighted 

concerns about pesticide or rodenticide use, trash/plastic waste, animals caught in netting, water 

pollution (and associated algae blooms), excessive water withdrawals, waterway diversion, 

imported soils, clearcuts, and paving. Multiple farmers raised concerns that the state or county 

regulatory process did not support environmental stewardship, and some expressed concerns that 

following regulations made it more difficult to practice what they saw as sustainable or 

regenerative farming practices such as intercropping, or crop rotation. The interviewed farmers 

generally considered themselves as having less impactful growing practices than other cannabis 

producers in the region, while farmer descriptions and farm visits both demonstrated a wide 

variety of production practices across all farms. Farmers mentioned the need for more crop 

research, information-sharing, and stronger norms around acceptable environmental practices. 
 

While this theme did not translate easily into quantifiable spatial proxies, we focused on farmers’ 

expressed desire to grow in remote areas because of the opportunity to work the land in 

proximity to wild flora and fauna. We quantified this ruralness using the Human Footprint layer, 

which combines data on the built environment, population density, night-time lights, crop and 

pasture lands, roads and railways, and navigable waterways to create an index of direct and 

indirect human pressures at a 1 km2 resolution. We extracted the mean human impact value for 

each parcel using the exactextractr package in R (Baston, 2021). 
 

Regulation 
 

“Some regulations dictate what we do, but it’s a case-by-case basis.” 
 

There was a wide range of responses regarding the importance of regulation for farmer decision-

making. In the quote above, the farmer explained how some aspects of regulation (such as the 

track and trace systems) were more impactful to his daily farm management decisions than 

others as he navigated the licensed industry. Most farmers did not perceive that enforcement 

influenced their land use decisions, although the farmers navigating the licensed recreational 

market said that regulations were often their first consideration. One unlicensed farmer compared 

law enforcement to wildfire risk, explaining both as factors that were constant background risks 

but ultimately outside of his control. There was widespread confusion and frustration with the 

regulations around recreational cannabis. Multiple farmers said that they started growing hemp, 

or had considered growing hemp, to avoid the legal hurdles of recreational cannabis. Others 
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raised questions about what the new recreational market would mean for medical producers. 

Some interviewees mentioned that a rural location made things easier from an enforcement 

perspective, particularly in avoiding the Grants Pass area (the county seat and law enforcement 

center). Even those who were attempting to navigate the legal industry expressed that it was 

useful to be less closely monitored because of the difficulty in complying with all regulations, 

the time needed to demonstrate compliance, or fear that they may be breaking rules without 

knowing it. 

 

To translate the preference for distance from law enforcement into a spatial driver, we estimated 

this both with ruralness (see Environmental Stewardship above) as well as the straight line 

distance from the Grants Pass Sheriff's office to each parcel using the sf package in R (Pebesma, 

2018). However, because these measurements were significantly correlated, we ultimately 

dropped distance to law enforcement as a variable in our models. 

 

There were also a number of regulatory designations that cannabis farmers discussed as 

important when considering where to grow. Water rights and zoning were some of the most 

frequently mentioned. Water rights were considered critical for legal production but specifics of 

parcel-level rights were often hard to acquire or interpret. Water rights were not generally 

discussed by unlicensed farmers, but water access, storage, and application were all considered 

critical. Because of the mixed response to regulated water use, we assessed water access as part 

of Parcel Qualities below, rather than in Regulation. 

 

The shifting policies in Josephine County around zoning restrictions, particularly for Rural 

Residential zones, led farmers to identify exclusive farm zoned parcels (EF) as the safest and 

highest quality lands for cannabis production. One farmer also mentioned Farm Resource (FR) 

zoned properties. To translate this into a land use driver, we created a binary variable that 

assigned a ‘1’ to each parcel that was zoned for either EF (Exclusive Farm) or FR (Farm 

Resource) zones and a 0 for those that did not. Zoning information was provided by Josephine 

County (Josephine County 2018). 
 

Parcel Qualities 
 

“Why don’t you just buy land that doesn’t have trees on it to begin with?” 

 

Farmers identified multiple biophysical properties of parcels that factored into decisions about 

where to produce cannabis. In the quote above, the farmer was expressing confusion as to why 

some cannabis producers selected parcels that required a large labor input to clear or terrace land 

to begin farming, when other, more open parcels seemed to him to be a more ideal choice. In 

addition to open/cleared areas with access to sunlight, some of the other factors mentioned 

included relatively flat slopes, and medium elevation zones as helpful qualities for production. 

Several interviewees mentioned that the climate in Josephine County was ideal for cannabis, 

while others expressed the belief that it was primarily grown in the region because of history and 

culture. One farmer mentioned that owning versus renting land for cannabis farming might 

change the relative importance of the physical factors of a parcel that a farmer prioritizes, as 

might living on the property where they are growing, but they weren’t sure how often producers 

rented versus owned their farms. 
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We translated the above biophysical parcel qualities into multiple spatial drivers. First, we 

grouped land cover classes (NLCD 2011 and 2013) into a binary variable based on ease of 

clearing for crops. We included the following classifications in the easy to clear category, based 

on land cover descriptions: Developed Low Intensity, Grassland/Herbaceous, Developed Open 

Space, Pasture/Hay, Barren Land, and Cultivated Crops. In addition to clearing, we created a 

binary variable to describe if the majority aspect of a parcel was southern-facing, to reflect 

parcels with greater sunlight access, using the raster package in R. We also used maximum 

elevation per parcel to capture elevation as a potential limiting factor, using a 10 m DEM and the 

exactextractr package in R (Baston, 2021). We calculated maximum roughness to capture 

potential preference for overall flat parcels using the ‘terrain’ function in the raster package in R 

(Hijmans, 2022). In the raster package, roughness measures the difference between the 

maximum and minimum elevation value of a cell and its surrounding cells. 

 

Farmers discussed parcel size as a potential factor that could influence where to locate a cannabis 

farm. One farmer mentioned that parcels in Josephine County were smaller than in other regions 

where he had farmed cannabis, while other farmers implied that they had looked for larger 

parcels within the county. Multiple farmers discussed the importance of space on the property, 

whether directly for cannabis production (e.g., space for greenhouses, gardens, drying sheds, 

water storage or ponds, etc.), multiple kinds of cannabis production (e.g., space for both a 

licensed and unlicensed garden, or for both recreational or medical cannabis and hemp), or for 

other reasons, for example to provide a treed buffer or space for a fence between the farm and its 

neighbors, to have enough room for setback distances required by regulation, or to accommodate 

other land uses on the same parcel (e.g., vegetable farming, homestead, commercial timber, etc.). 

To translate this into a spatial driver, we used the calculated area of each parcel polygon using 

the sf package in R. 

 

Not all farmers interviewed operated licensed production sites, and many were in a “gray zone” 

of legality, and so for some, proximity to water on a parcel was more important than specific 

water rights. Most farmers mentioned that in 2016, regulations on cannabis farming were not yet 

enforced, and so access to water at that time point might have had more to do with physical 

parcel qualities than legal access. Because of this, we used proximity of farmed parcels to water 

as a spatial driver instead of specific water rights on a given parcel for our model. We used the 

NHDplus flowlines database, filtering to include rivers and streams, as well as artificial paths 

(U.S. Geological Survey, 2018). We then calculated distances using the sf package in R 

(Pebesma, 2018). 

 

While some farmers mentioned that soil quality (for example, PH, or whether the parcel had 

previously been grazed or farmed) mattered to them when selecting a site, most said that existing 

soil was not a primary concern for them, or for most farmers that they knew. Instead, most 

reported that the industry standard was to grow with imported soils in grow bags or boxes. Some 

farmers did report growing in native soil, but that they still had to add amendments to do so. 

Given the mixed comments on soil quality, we did not include this as a potential spatial driver of 

cannabis land use. 
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Economics 

 

“Most people are just looking at the economics… If it weren’t so hard to make a living and 

support a family [by growing sustainably], I think most people would be open to it.” 

 

While all farmers interviewed discussed the difficulties of supporting themselves or their 

families economically in the cannabis industry, none of them specifically mentioned land prices 

as a factor in their decision making, and we did not ultimately include any drivers based on this 

theme. In the quote above, the farmer expressed that it was difficult to make a secure living with 

cannabis farming, which often made it risky to attempt new sustainable techniques. In this case, 

the farmer was also explaining that in their own attempts to grow with lowered environmental 

impacts in mind, it sometimes meant an income tradeoff. Thus, farmers reported that economics 

primarily influenced their decisions on specific land use practices, as well as whether or not to 

enter the licensed market. The farmers did see broader drivers of supply and demand being 

important for the industry as a whole, but for their individual decisions, economics was 

influential in deciding how much to grow, how much to spend on equipment or labor, how to 

balance different types of production (e.g., hemp versus cannabis), or when they might have to 

leave the industry altogether. Most expressed that the industry, both licensed and unlicensed, was 

full of uncertainty, and economic vulnerability. Many expressed concerns that when operating 

under economic uncertainty, farmers were unlikely to take a risk on more sustainable or less 

ecologically-impactful farming practices. 

 

Future of the industry 

 

“Our county has a long history of boom-bust, with the gold and timber. And the west coast in 

general has a boom bust history with oil, gold, and timber. And I see this next boom bust 

economy is this Marijuana industry.” 

 

All interviewed farmers said that the cannabis farming industry had expanded with legalization, 

and expressed concerns or uncertainty for the future of the industry. In the quote above, the 

farmer was looking at their own long history in the cannabis industry and seeing an uncertain 

future, and comparing it to the other major land-based industry cycles in Josephine County. Most 

interviewed farmers compared the cannabis industry to the gold rush, and expressed concern that 

its rapid increase might not be sustained in the long term. Many farmers, both legacy producers 

that associated themselves with hippie culture or renegade counter-culturalists, as well as 

younger farmers that came from more indoor or urban production cultures, described a shift in 

the industry from one that was culturally or spiritually motivated to one that is primarily 

economically driven. They expressed concerns that the industrialization of cannabis with the 

legal market would lead to further ecological harm, while the money involved in the black 

market would encourage other criminal activities (e.g., sex trafficking or labor abuse). 

 

Many farmers expressed a desire for more research and education, particularly around best 

growing practices. Most of those interviewed agreed that there was a general lack of knowledge 

or research-supported farming practices. While few were optimistic about the future, most 

expressed a belief in small-scale farms to produce in a way that was less harmful to the 

environment than conventional agriculture, and for persistence of a “craft cannabis” market. 
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Model results 
 

Cannabis data 

 

For the high-confidence cannabis on private land with no restrictions on the number of plants, we 

identified 1,171 parcels with cannabis pre-recreational legalization (2013/2014), and 2,525 

parcels post-legalization (2016), for a total of 35,512 plants pre-legalization and 116,162 plants 

post-legalization (Fig. 2). In the pre-legalization timepoint, 8,531 private parcels were mapped in 

2013 in the western half of the county (550 of which contained high-confidence cannabis), and 

30,784 private parcels were mapped in 2014 in the eastern half of the county (621 with 

cannabis). Average values for each covariate are listed in Table 2. 

 
Table 2. Average or proportion values of covariates used in the cannabis land use and land use change 

models. 
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 Avg 53,212 10.4 166.5 7.8 1,435.6 21.4 46.9 

34.7% 8.7% 18.6% 
Min 483 1.3 0.0 0.0 870.1 0.3 0.0 

Max 966,343 42.8 5,344.3 32.2 3,459.4 150 980.3 

Sd 94,000 7.9 339.1 6.3 337.6 22.1 114.4 
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Avg 60,000 10.1 160.3 8.0 1,424.2 21.6 49 

37.7% 9.3% 16.5% Min 244 1.3 0.0 0.0 857.8 0.3 0.0 

Max 4,160,000 45.7 14,906.8 32.5 3,492.9 150 1071 

Sd 135,578 7.8 466.8 6.4 330 22.5 113.4 

A
ll

 p
r
iv

a
te

 p
a
r
c
e
ls

 

Avg 29,900 23.1 358.8 3.5 1,190 14.6 105.2 

45.1% 4.0% 24.3% Min 1.5 1.2 0.0 0.0 653.9 0.0 0.0 

Max 9,890,000 46.3 25,884.1 32.8 6,247.6 212.2 1,120.2 

Sd 127,129 13.9 438.3 4.1 340.3 19.4 140.5 
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Cannabis land use post-legalization 
 

For the single year post-legalization (2016) cannabis land use model for private parcels, we 

found that the following hypothesized drivers had a significant relationship (p<0.01) with parcels 

that contained high-confidence cannabis: larger parcels, lower human footprint, lower distance to 

nearest cannabis, higher density of local cannabis, easily cleared land cover, and lower distance 

to rivers (Table 3). All significant drivers performed in the direction we predicted (see Table 1). 

The relationship of human footprint, cannabis density, and distance to rivers were approximately 

linear, but area and distance to nearest cannabis indicated nonlinear relationships and a possible 

threshold effect (Fig. 4). The change in probability attributable to individual covariates was 

generally small (<10%), except for parcel area and density of cannabis (Fig.4). 

 

Table 3. Coefficient estimates for the model of cannabis land use in 2016. Any transformations are 

listed in parentheses. * p< 0.05, ** p<0.01, ***p<0.001. Pseudo r-squared (delta) = 0.16. 

Variable Estimate (SE) 

Intercept -6.159 (0.2686) *** 

Parcel Area (log) 0.3940 (0.02278) *** 

Average Human Footprint -0.03923 (0.003628) *** 

Distance to nearest 2016 cannabis parcel (square-root) -0.06761 (0.004152) *** 

Density of 2016 cannabis within 1-km radius (square-root) 0.4987 (0.02763) *** 

Easily cleared 2013 land cover 0.2104 (0.05309) *** 

Farm zoning -0.1158 (0.08836) 

Maximum Elevation 0.0001630 (0.00008721) * 

Roughness (square-root) -0.001227 (0.01540) 

Distance to rivers -0.0005793 (0.0002248)** 

Southern-facing aspect 0.05558 (0.06095) 

 

  



 

 

 
Figure 4. Prediction graphs of the six significant covariates for cannabis land use in Josephine County, OR. Note that the scale of the y-axis is 

different for each graph in order to illustrate the probability relationship of individual covariates. Error bars show the standard error. 
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Cannabis development on new parcels 

 

For the model of cannabis development onto new parcels post-legalization in 2016 (parcels that 

had no detected cannabis pre-recreational legalization in 2013/2014), we found that the 

following hypothesized drivers had a significant relationship (p<0.01) with parcels that 

developed new cannabis: larger parcels, lower human footprint, lower distance to nearest 

cannabis, higher density of local cannabis, easily cleared land cover, non-farm zoned, lower 

elevation, less rough, lower distance to rivers, and mapped in 2013 (Table 4).  

 

All significant drivers performed in the direction we predicted (see Table 1), except for farm 

zoning, which was negatively associated with the development of new farms, and image year, 

which did not have an associated prediction. Distance to nearest cannabis, local cannabis density, 

parcel elevation, and distance to rivers or streams all had approximately linear relationships with 

the probability of new cannabis development (Fig. 5). Parcel area and roughness on the other 

hand had non-linear relationships with possible threshold effects (Fig.5). The change in 

probability attributable to individual covariates was generally small (<10%), except for parcel 

area and human footprint (Fig.5). 

 

Table 4. Coefficient estimates of the model of new cannabis development from 2013/2014 to 2016. 

Any transformations are listed in parentheses. * p< 0.05, ** p<0.01, ***p<0.001. Pseudo r-squared 

(delta) = 0.084 

Variable Estimate (SE) 

Intercept -5.444 (0.2927) *** 

Parcel Area (log) 0.4206 (0.02690) *** 

Average Human Footprint -0.05424 (0.004483) *** 

Distance to nearest 2016 cannabis parcel (square-root) -0.01266 (0.003213) *** 

Density of 2016 cannabis within 1-km radius (square-root) 0.2950 (0.04473) *** 

Easily cleared 2013 land cover 0.3759 (0.06398) *** 

Farm zoning -02371 (0.1056) ** 

Maximum Elevation -0.0001896 (0.00009273) ** 

Roughness (square-root) -0.07568 (0.01803) *** 

Distance to rivers -0.0008174 (0.0002863)*** 

Southern-facing aspect -0.06056 (0.07648) 

Image year -0.6917 (0.06289) *** 



 

 

Figure 5. Prediction graphs of the ten significant covariates for new cannabis 

development. Note that the scale of the y-axis is different for each graph in 

order to illustrate the probability relationship of individual covariates. Error bars 

show the standard error. 
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Existing pre-legalization cannabis land use trajectory 
 

For the model of cannabis growth or decline, we found that only parcel area, roughness, and 

image year were significantly associated with the change in plant count post-legalization (2016) 

(Table 5). All significant drivers performed in the direction we predicted (see Table 1), except 

image year, which did not have an associated prediction. The relationship of predicted change in 

plant count and parcel roughness was approximately linear, and the relationship with parcel area 

was non-linear with a possible threshold effect (Fig. 6). Parcel area was associated with the 

greatest predicted change in plant count, from a decrease of 25 plants to an increase of 50 (Fig. 

6). 

 

Table 4. Coefficient estimates of the model of existing cannabis change in plant count from 2013/2014 

to 2016. Any transformations are listed in parentheses. * p< 0.05, ** p<0.01, ***p<0.001. Pseudo r-

squared = 0.034 

Variable Estimate (SE) 

Intercept -0.3777 (0.1876) ** 

Parcel Area (log) 6.780 (1.717) *** 

Average Human Footprint -0.02121 (0.2706) 

Distance to nearest 2016 cannabis parcel (square-root) 0.1152 (0.1946) 

Density of 2016 cannabis within 1-km radius (square-root) -3.425 (2.463) 

Easily cleared 2013 land cover 5.643 (3.713)  

Farm zoning -4.101 (5.792) 

Maximum Elevation -0.0008123 (0.006414) 

Roughness (square-root) -2.290 (1.071) ** 

Distance to rivers -0.005536 (0.01417)*** 

Southern-facing aspect -0.1651 (4.015) 

Image year -9.898 (3.451) *** 
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Figure 6. Relationships between predicted change in cannabis plant count on farms and three significant 

covariates from 2013-16. Note that the scale of the y-axis is different for each graph in order to illustrate 

the probability relationship of individual covariates. Error bars show the standard error. 
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Discussion 
 

Rural cannabis land use in the western US has traditionally been a difficult topic for research. In 

this study, we demonstrated the effectiveness of an interdisciplinary approach to identify, assess, 

and contextualize drivers of cannabis land use and development. We combined generative 

cannabis farmer interviews with three models of cannabis land use in Southern Oregon during 

the early period of recreational legalization (2013-2016), to examine the relationship of spatial 

covariates with cannabis distribution, new development post-legalization, and plant density over 

time. The majority of our covariates were significant in at least one model, and combined with 

the context from the farmer interviews, suggest that they are likely reliable predictors of land use 

in this system.  

 

Strength of interdisciplinary approach 
 

Previous studies examining cannabis land use and land use change (Butsic et al., 2017, 2018; 

Wengert et al., 2021) have relied on biophysical covariates. Building on this foundational 

approach for understanding cannabis distributions, the addition of interview data to inform and 

contextualize models adds depth to the interpretation of modeling results, and generates new 

covariates that might otherwise be missed. For example, in Butsic et al. (2017), the authors noted 

strong network effects on the distribution of cannabis production, and postulated that producer 

networks might be important in the development of the industry. The interview data in our 

current study support this interpretation and produce the same finding in an additional legacy 

production region. 

 

Our approach of incorporating social or cultural data into ecological modeling is not unique to 

cannabis production, and is becoming more common in contexts as varied as deforestation 

(Siegel et al., 2022), marine conservation (Österblom et al., 2013), and human-wildlife conflict 

(Wilkinson et al., 2020). One strength of incorporating qualitative data into quantitative models 

is the ability to capture nuances that may be left out or simplified in traditional modeling efforts. 

For example, while we did not identify any economic covariates functioning at the parcel level 

for our models, the interview data helped us recognize that broader economic changes are likely 

to influence changes in regional cannabis production over time. Another example was our use of 

local cannabis density as a proxy for supportive local attitudes towards cannabis farming. The 

interview data allows us to simplify a much larger concept of connection to community with this 

variable, while recognizing that in doing so, we may lose some local nuances – such as locations 

where there is a high neighborhood cannabis density but also strong negative community 

attitudes towards cannabis production. 

 

Environmental Implications 
 

Some of the drivers identified in our study raise concerns that farmers may be actively selecting 

parcels that are in areas of greatest environmental sensitivity. For example, as farmers seek out 

more rural parcels, these are also likely to be ones with greater terrestrial wildlife habitat—in 

fact, as the interviews indicate, this faunal biodiversity is often something farmers appreciate and 

seek on the land in which they live and farm. Similarly, the preference for parcels closer to rivers 

and streams may result in negative impacts on freshwater systems. Previous research has 
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illustrated a potential overlap of cannabis agriculture in Josephine County with terrestrial and 

aquatic biodiversity (see Chapter 1), and our findings here suggest that this overlap is not 

incidental. It is possible that the ecological overlap observed in other rural cannabis-producing 

regions (Butsic et al., 2018; Wengert et al., 2021) could be influenced by similar social/cultural 

drivers. The significance of ruralness and distance to freshwater in the model of new farm 

development further raises concerns that this proximity could increase over time. The emergent 

theme of connection to community, and the strength of its associated drivers for cannabis 

distribution (distance to nearest cannabis farm and local cannabis density) illustrated the network 

reliance of cannabis farmers, which further suggests that development over time is likely to 

occur in areas that are current cannabis hotspots. 

 

The context provided by the interview data suggests that some of the same motivations leading 

farmers to grow in rural areas may also provide opportunities to mitigate potential environmental 

harm. While our sample of farmer perspectives is relatively narrow, they all expressed strong 

environmental stewardship values. Similarly, other studies from California have identified 

commitments to environmental practices among outdoor cannabis farmers (Bodwitch et al., 

2021; Polson & Bodwitch, 2021). These values alone do not mean that private land cannabis 

farming has a low environmental footprint — the farmers themselves even expressed concerns 

over the impacts of the industry. Rather, environmental stewardship values, combined with 

farmer concerns about the lack of education on best management practices for cannabis, implies 

that there is a research, education, and outreach gap for sustainable cannabis farming. This gap is 

one that researchers have repeatedly noted (e.g., Short-Gianotti et al., 2017, Carah et al., 2015, 

Wartenberg et al., 2021). Moreover, in their connection to community, farmers explained that 

they rely heavily on learning from other farmers’ practices. Thus, there may also be opportunities 

to enforce conservation-minded practices via cultural dissemination to receptive farming 

communities. 

 

The Future of the Cannabis industry in Josephine County 
 

Our land use models illustrate a rapidly expanding cannabis farming industry, with a 116% 

increase in parcels with cannabis, and a 227% increase in plant count over 2-3 years from pre- to 

post-recreational legalization county-wide. Despite this rapid increase in cannabis production, 

most interviewed farmers were not optimistic about the future of the industry, with frequent 

comparisons to other “boom-bust” natural resource trajectories. Moreover, many farmers also 

described an industry that was currently unpredictable, difficult to navigate (particularly in the 

licensed recreational system), and unlikely to result in long term financial stability. This 

disconnect between the farmers’ perceptions of the industry compared with its rapid expansion 

could mean that the specific type of producers we interviewed (mostly small-scale private land 

outdoor or mixed-light farmers) were not benefitting from the industry increase that 

accompanied legalization. Other research on small scale cannabis producers from northern 

California supports this interpretation (Bodwitch et al., 2019, 2021). It is also possible that 

landscape-scale industry change does not translate to the scale of an individual farm. If this is the 

case, it might help explain why the model of change in plant count had the fewest significant 

predictors—rather than being a more simplified process, it might instead be that the drivers for 

farms that existed before legalization are highly individualized or localized. 

 



 

 45 

Despite the uncertainty surrounding the trajectory of legacy cannabis farms, the models for new 

cannabis development provide insights into predicting the growth of the industry. While we did 

not project our predictions into the future, due in part to large policy changes that were not 

explicitly addressed in our interviews or models (e.g., 2018 federal hemp legalization, and a 

three year pause on issuing new licenses in Oregon), our results do provide a baseline and 

contextualized understanding that could be used for future predictions. For example, based on 

farmer descriptions for why they may seek out large and rural parcels, it is unlikely that the 

strength of those drivers would decrease over time. On the other hand, farmers’ stated preference 

for farm-zoned parcels, which by contrast ended up as a significant driver in the opposite 

direction for new farm development, might be more likely to change over time as a potential 

driver due to shifts in regulation, enforcement, or social pressures for those renting/selling farm 

zoned parcels. 

 

Limitations 
 

While our results are broadly useful for understanding cannabis landscapes in southern Oregon, 

there are many levels of complexity that are not captured by the models. For example, we treat 

cannabis agriculture as a single entity for these models, while in reality it contains a diversity of 

production styles and regulatory statuses. It is entirely likely that a large-scale licensed hemp 

farmer and a small-scale unlicensed cannabis farmer will reveal different drivers of their land 

use. Similarly, whether a farmer owns their own land or rents it, or whether a farmer lives on site 

or off, could also change the relationship with potential drivers. While we did not have detailed 

information on each cannabis producer at the county level to classify or group production styles, 

this would be an important avenue for future research. 

 

Future research would also benefit from added timepoints, particularly after the 2018 federal 

hemp legalization. In addition, this study was largely confined to a small number of small-scale 

farmers, and thus an expanded interview or focus group data collection process might reveal new 

drivers that would be relevant for other production styles. The relatively low pseudo r-squared 

values for our models suggests that there may be additional drivers functioning in this system, 

which extended interviews could help uncover. Our study focused on private land production, 

but it is important to remember that public land production also occurs in this area (e.g., Wengert 

et al., 2021) and influences not only the local environment, but the public perceptions of 

cannabis in the region. Incorporating the links between public and private industries might 

strengthen our understanding of these systems. Similarly, linking different scales of drivers 

would be a valuable next step. The interview data indicates that the southern Oregon industry is 

tied to regional and national markets (e.g., many Oregon farmers learned growing techniques in 

northern California, or moved to Oregon from other states that are perceived to be less receptive 

to cannabis farming), and that much of the economic decisions are either very fine scale at the 

level of the farm, or broader scale at the level of the state. Within the scale of Josephine County, 

the significant effect of mapped year (Fig. 5) implies that there may also be different dynamics in 

the two halves of the county that were mapped at different timepoints (Fig. 1). Although it did 

not directly emerge in the interviews, while living in Josephine County, PPS observed different 

local approaches to integrating cannabis farmers into the community in Williams as opposed to 

the Illinois Valley. This is an example of a secondary way in which the observations that occur 

during the interview process can assist with model interpretation. Further research on differences 
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in local policies, community standards, or other regional differences might elucidate this pattern. 

Capturing interrelated dynamics such as local to county-wide processes would require a complex 

modeling approach but might lend insights into multi-scalar drivers. 

 

Conclusions 
 

This study demonstrates the strength of an interdisciplinary approach when attempting to 

understand the socio-ecological dynamics of cannabis land use. Future research on cannabis will 

continue to benefit from cross-disciplinary collaboration. Our research may also be of use for 

those making policy or conservation management decisions for cannabis land use and 

conservation. These conservation-relevant decisions should be based in an understanding of land 

use drivers, and as our research demonstrates, discussions with cannabis farmers themselves are 

likely to lend a better understanding of the dynamics underlying land use drivers. We therefore 

recommend policymakers consult with cannabis farmers in the creation or modification of 

regulations, to avoid unintended consequences and achieve intended conservation goals. Finally, 

the interview results indicate that education and outreach may be underused tools for 

conservation with cannabis. Many interviewed farmers expressed a desire to learn more about 

sustainable farming. Education and outreach programs on best management practices for 

reducing environmental impacts of cannabis production, particularly those that provide funding 

for interventions, could take advantage of network-reliant farming communities, and existing 

environmental stewardship values. In the long run, these approaches may provide a useful 

alternative or supplement to enforcement-based efforts that have had mixed effectiveness 

historically (Corva, 2014). 
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Chapter 3 

 

Wildlife response to small scale cannabis farming 
 

 

Abstract 
 

The recent expansion of cannabis agriculture in rural areas of the western United States provides 

an ideal opportunity to study wildlife responses to disturbance at a land use frontier. This study 

examined local wildlife space use at a gradient of distances to active small-scale (<1 acre) 

private-land outdoor cannabis farms. We used data from 149 cameras on and surrounding eight 

cannabis farms in the Klamath-Siskiyou Ecoregion in southern Oregon, collected between 2018–

2019. Using single species occupancy analyses, we assessed how cannabis production influenced 

the occupancy (defined here as space use) and detection (defined here as a combination of 

detectability and space use intensity) of nine wild and one domestic species in our study area. 

We also used multi-species models to assess the responses of 24 different species, by functional 

group: carnivores, omnivores, herbivores, small mammals, ground birds, and domestic animals. 

We found that 8 out of 10 species in single-species models and 13 out of 24 in multi-species 

models responded to the presence of cannabis farms in either the detection or occupancy process, 

though the responses were species-specific. Our results suggest that some omnivore or 

mesopredator species may show a greater flexibility to use spaces near cannabis farms, while 

some herbivores and ground birds may compensate for spatially avoiding cannabis farms by 

using spaces near farms more intensively. These results highlight the complexity of wildlife 

response to disturbance, and the importance of examining response patterns to novel 

disturbances. 

 

Introduction 
 

Understanding wildlife response to disturbance across landscape gradients is a complex 

endeavor. Individual animals can respond to anthropogenic disturbance with a variety of 

different behavioral changes (e.g., altering their space use by avoiding a disturbance, or altering 

space use intensity or adjusting their activity peaks around disturbance sources), but these 

responses are all context dependent (Frid & Dill, 2002; Gaynor et al., 2018). For example, in 

some studies, coyotes demonstrate a space use preference for agricultural areas (e.g., Hinton et 

al., 2015), while in others, they avoid farmland (e.g., Atwood et al., 2004); similarly, at times 

they are labeled as urban exploiters (e.g., Bateman & Fleming, 2012), and at times avoiders (e.g., 

Atwood et al., 2004). These differences are often tied to context-dependent responses and 

differences in landscape configurations (Fidino et al., 2021; Padilla & Sutherland, 2021; Van 

Scoyoc et al., 2022). At a wildlife community level, the complexity of responses increases even 

more. Disturbance may affect some species more than others, or in opposite directions, leading 

to broader contractions or expansions in species assemblages (Mendenhall et al., 2014) and 

interactions (Schmitz et al., 2004; Y. Wang et al., 2017). Changes in species interactions, 

especially if they involve keystone species, can have cascading effects on ecosystem function 

(Estes et al., 2011; Power et al., 1996; Prugh et al., 2009). The context-dependence of these shifts 

means that consistently predicting how wildlife communities will respond to rapid land use 
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change at a local level is very difficult and requires understanding multiple interacting 

mechanisms (Alberti et al., 2020; Padilla & Sutherland, 2021; Power et al., 1996). Nevertheless, 

wildlife community responses to disturbance matter because the context-dependent 

consequences in turn can affect ecosystem health (Alberti et al., 2020), effectiveness of wildlife 

management strategies (Wilkinson et al., 2020), and human-wildlife conflict (Crespin & 

Simonetti, 2019; Wilkinson et al., 2020). Thus, there is a continuing need to examine the effects 

of disturbance on wildlife in order to develop strategies to mitigate the negative effects of land 

use change. 

 

Understanding wildlife response to disturbance is particularly important in areas where land use 

change is occurring rapidly. Spaces of rapid development for agriculture are called frontiers, and 

are often spurred by the growth of a new industry, while accompanied by the movement or 

growth of human populations, and transportation structure improvements (Rindfuss et al., 2007). 

Frontiers are naturally spaces of rapid land use change, and often sites where different 

approaches to land use planning and conservation clash (e.g., le Polain de Waroux et al., 2018). 

While frontiers present a novel disturbance scenario, most studies of wildlife response to 

agricultural land use have been concentrated in Asia, South America, and Europe (Ferreira et al., 

2018), and often in areas that have long been dominated by agriculture. Such studies may miss 

some of the immediate responses of wildlife to development that occur over shorter spatial and 

temporal scales (Lark et al., 2020). 

 

Recreational cannabis agriculture represents an ideal opportunity to study wildlife community 

response to disturbance generated by a currently expanding land use frontier. In the US, state-

level legalization of recreational cannabis has initiated a rapid land use frontier for outdoor 

cannabis production (Butsic et al., 2018). This frontier is particularly noticeable in rural areas of 

the western US. Influenced by its illicit history, outdoor cannabis is often grown in remote, 

biodiverse regions with minimal other non-timber agriculture (see Chapter 1) (Corva 2014; 

Butsic and Brenner 2016; Butsic et al. 2018). Regardless of individual legal status, private land 

cannabis farms are typically smaller than those of other commercial crops, and are clustered in 

space, creating a unique land use pattern of small points of development surrounded by less 

developed land (see Chapter 1) (Butsic et al., 2018; Butsic & Brenner, 2016; I. Wang et al., 

2017). This pattern of development locates the cannabis frontier directly at the wilderness 

boundary—a somewhat rare characteristic for agriculture in the United States (see Chapter 1) 

(Butsic et al., 2018). 

 

Previous studies have raised many concerns about the cannabis industry’s potential effect on 

wildlife (Wartenberg et al., 2021; Carah et al., 2015). At a broad scale, cannabis development in 

rural areas overlaps with regions that may be important habitat for wildlife (see Chapter 1) 

(Butsic & Brenner, 2016; Butsic et al., 2018), yet it is unclear whether, where, and to what extent 

this broad scale spatial overlap actually results in negative impacts on animals at a local scale. 

There have been studies suggesting that cannabis production may lead to habitat destruction or 

modification (Wartenberg et al,. 2021; Carah et al., 2015), and wildlife death due to toxicant use 

and poaching (Carah et al., 2015; Gabriel et al., 2012; Levy, 2014). However, most studies on 

direct impacts of cannabis farming have largely been conducted on illegal public land production 

sites (so-called “trespass grows”), as opposed to private land sites. The research conducted to 

date on private land has not encompassed a full landscape gradient around cannabis farms 
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(Parker-Shames et al., 2020). Not only have private land sites likely seen the largest production 

increases due to legalization in recent years (see Chapter 1) (Arcview Market Research, 2016; 

Butsic et al., 2018; Klassen & Anthony, 2019), they are also often characterized by very different 

production practices (and therefore risks to wildlife) than public sites. For example, on many 

private land farms, indirect sources of disturbance to wildlife such as noise and light are more 

common than direct causes of mortality. Private land sites (whether licensed or unlicensed) may 

use high-powered grow lights, drying fans, and visual barrier fencing, which could create 

potential wildlife disturbance (Rich, Baker, et al., 2020; Rich, Ferguson, et al., 2020). Such 

practices are less common on public land. It is possible that as cannabis production expands, 

particularly in the licensed industry, these forms of indirect impact may be more typical of 

cannabis production overall. Indeed, indirect effects of production practices on wildlife space use 

and behavior is a common concern for other agricultural crops (Ferreira et al. 2018), and may 

also interact with direct effects on mortality (Muhly et al., 2011). Therefore, it is critically 

important to study both indirect and direct effects of cannabis on wildlife communities, 

particularly on private lands where research is lacking. 

 

Because outdoor cannabis farming is a land use frontier and therefore often characterized by 

different land use practices and patterns from traditional established farming in the US, it is 

uncertain whether (and which) other agricultural systems provide the best models to predict 

wildlife responses to cannabis development. Wildlife may use, avoid, or display differential 

responses to cannabis development, depending on whether production more resembles small-

scale countryside farming (e.g., Mendenhall et al., 2014), industrial agriculture (e.g., Lark et al., 

2020), or exurban/suburban development (e.g, Fidino et al., 2021). In the case of differential 

responses, it’s also unclear whether cannabis production would have widespread enough effects 

to trigger mesopredator release (Prugh et al., 2009), or generate novel food sources that could be 

exploited by behaviorally adaptable species like omnivores and small mammals (Alberti et al., 

2020). 

 

To address some of the above research gaps, we deployed arrays of wildlife cameras to observe 

animal space use on and surrounding active small-scale cannabis farms on private land, and 

modeled wildlife responses using single- and multi-species occupancy models. In doing so, we 

asked the following questions: How does wildlife space-use change as a function of distance to 

cannabis farms? Are there consistent patterns to wildlife responses along functional groups? 

Specifically, we assessed the following hypotheses: 

 

● H1A: All wildlife species will all avoid cannabis farms, and use the spaces nearby less 

intensively than undeveloped areas. 

○ H1B: Alternatively, individuals may display species-specific responses. 

Specifically, where species tolerate or are attracted to cannabis farms, they will 

instead compensate with lower space use intensity on these sites. 

● H2A: At the community level, each wildlife functional group will avoid cannabis farms, 

and use the spaces nearby less intensively. 

○ H2B: Alternatively, functional groups will have specific space use patterns. For 

example, carnivores will avoid cannabis farms, small mammals will be attracted 

to cannabis farms, and omnivores, herbivores, and ground birds will have mixed 

responses. 
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This research is important because it provides a baseline for understanding potential space use 

effects of private land cannabis production on wildlife in rural areas. Given that there are 

multiple potential pathways of impact, this study may generate hypotheses about mechanisms of 

effect for future study. In addition, it will provide insights into whether localized effects on 

wildlife happening directly at production sites may influence broader surrounding communities 

(Parker-Shames et al., 2020). While this work is specifically focused on rural cannabis farming, 

our approach and methodology may be useful for other studies of wildlife along agricultural 

frontiers or other rapid development landscapes. 

 

Methods 
 

Study Area 
 

We based our study in Josephine County, in southwestern Oregon (42.168, -123.647), in 2018-

2019, three years after statewide recreational legalization took effect. Josephine County was an 

ideal location to capture the start of the cannabis frontier expansion post-legalization in a rural, 

biodiverse legacy production region. Our study area sits within the Klamath-Siskiyou Ecoregion, 

which is one of the most biodiverse temperate forest regions on Earth (D. Olson et al., 2012; D. 

M. Olson et al., 2006). The Klamath-Siskiyou Ecoregion straddles the Oregon-California border 

and contains several areas identified as critical climate change refugia (D. Olson et al., 2012; D. 

M. Olson et al., 2006). Within this ecoregion, Josephine County contains several protected areas 

including state and federal protected lands (68.8% of the county is state or federal land), as well 

as several species of concern, including native salmonids, threatened Humboldt martens (Martes 

caurina humboldtensis), fishers (Pekania pennanti), and spotted owls (Strix occidentalis), all of 

which are hypothesized to be directly or indirectly affected by cannabis agriculture (Butsic et al., 

2018; Carah et al., 2015; Gabriel et al., 2012, 2015; Thompson et al., 2014). 

 

Unlike other forms of traditional agriculture, outdoor cannabis is often grown directly alongside 

or nestled within areas of high biodiversity (see Chapter 2). Southern Oregon, and Josephine 

County in particular, has a long history of illicit and medical cannabis cultivation, as well as an 

active presence in the growing legal industry in Oregon (see Chapter 2) (Klassen & Anthony, 

2019; V. Smith et al., 2019). Southern Oregon became known as a prime destination for outdoor 

cannabis production even before legalization, and Josephine County had the highest number of 

licensed producers relative to population size in the state by 2019 (Oregon Liquor Control 

Commission, 2019; V. Smith et al., 2019). Production in the county accelerated after recreational 

legalization went into effect in 2015 (see Chapters 1 and 2), in a similar pattern to cultivation 

occurring across the border in northern California, with clusters of small farms surrounded by 

undeveloped or less developed rural land (see Chapter 1) (Butsic et al., 2018; Butsic & Brenner, 

2016; V. Smith et al., 2019; I. Wang et al., 2017). 

 

Our study area consisted of farms spread across three sub-watersheds (Slate Creek, Lower Deer 

Creek, and Lower East Fork Illinois River; defined by USGS hydrologic unit code 12) in 

Josephine County (Fig.1). We set cameras at 1,110 m to 2,470 m above sea level. The study area 

included a mix of vegetation types, including open pasture, serpentine meadows, oak woodland, 

and mixed conifer forest. Rainfall in this region varied seasonally and by elevation, with an 
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average of 82.7 cm annually (Borine, 1983). Mean temperatures ranged between 3.9-20.6°C in 

2018–2019 (NOAA https://www.ncdc.noaa.gov/cdo-web/). 

 

 
Figure 1. Map of study area with local population centers identified. The study sites are indicated as 

USGS hydrologic unit code 12 sub watersheds within Josephine County, southern Oregon. All wildlife 

cameras were contained within these three watersheds, and are summarized at this scale to anonymize 

specific farm locations. From the top down, the sub watersheds are: Slate Creek, Lower Deer Creek, and 

Lower East Fork Illinois River. 

 

Wildlife camera surveys 
 

The small-scale, private-land cannabis farms for this study included one licensed recreational 

production site, one medically licensed (though non-compliant) production site, and six 

unlicensed sites. All farms were producing cannabis for sale, though in different markets 

depending on their access to licensed markets. We also had cameras placed in three hemp fields 

https://www.ncdc.noaa.gov/cdo-web/
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next to cannabis farms. We selected these eight cannabis farms because they: (1) were 

representative of the size and style of cultivation predominant in Josephine County in the years 

immediately following recreational legalization in 2015 (see Chapters 1 and 2), (2) were all 

established after recreational legalization except for the medical farm, (3) did not replace other 

plant-based agriculture, (4) granted us permission to set up cameras on site, and (5) were located 

next to a large section of unfarmed land (e.g., BLM, private, timber) that could grant researchers 

access in order to place cameras across a gradient of distance to cannabis farms. Our sampled 

farms were small (typically < 1 acre), had conducted some form of clearing for production space, 

and three had constructed some form of fence or barrier around their crop. Nonetheless, specific 

land use practices and production philosophies differed between farms (e.g., pesticide use, type 

of fencing, presence of dogs, number of people working on the site, attitudes towards 

conservation, etc.). We cannot disclose farm locations, as per our research agreement for access. 

 

Monitored farms were clustered within each watershed: one farm in Slate Creek, five in Lower 

Deer Creek, and two in Lower East Fork Illinois River; however, most farms were also located 

near other nearby cannabis farms that were not directly monitored in this study. We placed un-

baited motion sensitive cameras (Bushnell E3, Bushnell Aggressor, or Moultriecam models) on 

cannabis farms as well as in random locations up to 1.5 km from the monitored farms. This is an 

expansion on previous camera research that only assessed on-site wildlife at these same farms 

(Parker-Shames et al., 2020). We placed cameras approximately 0.5 m off the ground to capture 

animals squirrel-sized and larger. We set cameras to take bursts of 2 photos, with a quiet period 

of 15 seconds. To guide the placement of cameras, we overlaid the area surrounding each 

cannabis farm cluster with a 50 x 50 m grid and then selected a random sample of at least one 

quarter of grid cells (a minimum of 45 stations in each watershed). We selected a 50 x 50 m grid 

size because we wanted to be able to detect fine scale space use responses of wildlife. The 

random sample was stratified by vegetation openness and distance to cannabis farm in all 

watersheds, and additionally by distance to clearcut in the Slate Creek watershed, such that 

cameras were placed in proportion to the landscape attributes and a distance gradient was 

achieved. When a selected site was inaccessible, we selected a new one that also met the same 

stratification criteria. We rotated 15-20 cameras through the sampled grid cells, ensuring each 

camera was deployed for at least one round of two week duration. Because of rotations and field 

constraints, all cannabis sites were not monitored at the same time or for the same length of time 

(one to six rounds, with on-farm cameras monitored the most intensively). Altogether, we 

monitored a total of 149 camera stations for a combined 4,664 trap nights. We then used a team 

of researchers trained to identify species found in the study area to sort photos by hand, grouping 

by species. 

 

Covariates 
 

We calculated spatial and descriptive covariates for each site to use in wildlife occupancy and 

detection models (Table 1). First, we calculated spatial distance covariates. Our main covariate 

of interest was distance to cannabis farms. To calculate distance to cannabis, we combined the 

location data for participating farms in our study with mapped data on Josephine County 

cannabis farms from 2016 aerial imagery (see Chapter 1). Then we calculated the minimum 

distance from each camera to its nearest farm using the package sf (v. 1.0.6; Pebesma, 2018) in 

R. We transformed distance to cannabis using a square root to help fit potential thresholds in 
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wildlife responses. Next, we again used the sf package, this time to calculate the distance from 

each camera to the nearest major paved roadway, which was primarily highway 99 for most 

sites. 

 

For our two raster-based covariates, we used the raster (v. 3.5.15; Hijmans, 2022), and 

exactextractr (v. 0.7.2; Baston, 2021) packages in R. We calculated the proportion of forested 

land cover within a 50 m buffer around each camera, and extracted the elevation in meters at 

each camera site. 

 

We also included some non-spatial covariates. We included a covariate for Julian date of each 

interval, as well as Julian date squared, to capture seasonal peaks. We then included an estimated 

distance at which a camera could still detect an animal (generally lower in dense vegetation and 

higher in open sites), which was measured at camera setup. We also generated activity indices 

for dogs and humans by calculating the number of observations of humans or dogs, respectively, 

at each camera within the last three days, divided by the number of days the camera was active. 

This produced an activity rate where the beginnings or ends of placement rounds were on the 

same relative scale as all other days. 

 

All continuous variables were scaled so that they centered on 0 with a standard deviation of 1 

(though Date2 was not scaled again after squaring Date) and checked for correlations (Pearson’s 

correlation, r<0.6) in R. 

 

Finally, we used additional categorical covariates to account for potential effects of geographic 

region and camera type. We assigned each camera a binary region variable based on which 

USGS Unit 12 watershed it was located in, such that Region1 represents Lower Deer Creek, 

Region2 for Lower East Fork Illinois River, and Region3 for Slate Creek. We created a binary 

variable for camera type. We gave a 0 to camera models that generally performed well in our 

study system (Bushnell Aggressors) and a 1 to camera models that generally seemed to perform 

worse or were older models (Bushnell E3s and Moultriecams). 

 

Table 1. Covariates used for single species and multi-species occupancy models. All continuous 

covariates were scaled and checked to ensure they were not correlated. See text for more details. 

Covariate Source Model process 

Region Generated for this study, representing the 

following watersheds: Lower Deer Creek, 

Lower East Fork Illinois River, and Slate 

Creek 

Occupancy 

Distance to cannabis Mapped data on surrounding cannabis farms 

from 2016 imagery (Parker-Shames et al., 

2022) combined with location data on farms 

participating in this study 

Detection and 

Occupancy 

Elevation 10m DEM (citation) Occupancy 
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Forest Proportion of a 50m buffer around each 

camera that is covered by forested land cover 

(National Land Cover Database 2016) 

Occupancy 

Distance to highways Distance to nearest major paved road 

(citation) 

Occupancy 

Camera type Binary classification generated for this study Detection 

Camera view distance Estimated distance that a camera can detect an 

animal, measured at camera setup 

Detection 

Date and Date2 Julian dates generated for this study Detection 

HAI and DAI Human and Dog activity indices, generated 

for this study (see text for details) 

Detection 

 

 

Analyses 
 

To assess the local space use response of wildlife to cannabis production, we used single-season, 

hierarchical single and multi-species occupancy models. Our approach is a departure from the 

typical use of these models to estimate occupancy in that we knowingly violated multiple 

assumptions of occupancy models: first, because cameras were spaced relatively close together 

compared to the home range of species included in the study, we have likely violated the 

assumption of independent cameras; second, as a result of the aforementioned spacing as well as 

sampling across two years (which was long enough that individuals may move in and out of the 

study area), we likely violated the model’s assumption of geographic and demographic closure 

(Mackenzie et al., 2006). We have done our best to account for these violations in our use of 

regional fixed effects, as well as our narrow interval of replication (see Single species models 

below). However, given our interest was in space use associations and not estimates of 

occupancy, we believe the violations are a minimal issue. This use of occupancy models is not 

particularly unusual, as the use of occupancy modeling to assess space use is becoming more 

common in wildlife response studies, and even traditional uses of occupancy modeling are 

influenced by wildlife space use (Neilson et al., 2018; Nickel et al., 2020). 

 

With the closure assumption violated, the occupancy probability estimate represents the 

likelihood that the animal occupied the site at any point during the study period, while the 

detection probability represents a combination of the probability that the species is detected and 

the intensity of use of the site within its larger range (Burton et al., 2015; Neilson et al., 2018; 

Stewart et al., 2018). This interpretation is common in camera trapping studies (e.g. Nickel et al. 

2020; Suraci et al. 2021), but we proceed while being careful to acknowledge where appropriate 

that any covariate's influence on detection probability is a combination of its effect on detection 

and the intensity with which an animal uses a given space. In addition, we have taken care to 

include variables in the detection process to account for what we anticipate to be the largest 

sources of variation in detectability, so that the other variables should primarily reflect space use 

intensity. We therefore interpret occupancy for the models as space use rather than true 

occupancy (though we still refer to it as “occupancy” for consistency). We operationalize 
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detection as a combination of intensity of use, and camera detectability or error (which we refer 

to as simply “detection”). 

 

Single species models 

 

To examine animals’ space use in relation to distance from cannabis farms, we first conducted 

single species occupancy analyses on nine wild and one domestic species (Table 3) (MacKenzie 

et al., 2002). We summarized species observations on and surrounding cannabis farms and 

created detection histories (i.e., tables where a “1” indicated the species was photographed at a 

given camera station during the respective 24-hr time interval when the camera was active, and a 

“0” that it was not) using the package CamtrapR (CamtrapR v. 2.0.3; Niedballa et al., 2016) in 

program R (R v. 2021-11-08 “Ghost Orchid”; R Core Team 2021) using Rstudio (v. 2021.09.1 + 

372; Rstudio Team, 2021). We used a 24-hr time interval because our focus was on estimating 

space use associations instead of occupancy (see Analyses above), and a short interval reduced 

the likelihood of the same individual animal being detected on neighboring cameras (Latif et al., 

2016; Steenweg et al., 2018). 

 

We modeled the space use probabilities of the most commonly detected species or those of 

particular ecological interest, including: black-tailed deer (Odocoileus hemionus), black bear 

(Ursus americanus), bobcat (Lynx rufus), coyote (Canis latrans), gray fox (Urocyon 

cinereoargenteus), black-tailed jackrabbit (Lepus californicus), striped skunk (Mephitis 

mephitis), California ground squirrel (Otospermophilus beecheyi), tree squirrels (including both 

western gray squirrel Sciurus griseus and Douglas’ squirrel Tamiasciurus douglasii due to 

uncertainties in distinguishing individual species in photographs), and domestic dog (Canis lupus 

familiaris) using the NIMBLE and nimbleEcology packages in Program R (de Valpine et al., 

2017; Goldstein et al., 2020). We selected these species because they had sufficient detections to 

model (Table 3), and because they covered a range of functional groups, including predators and 

mesopredators (bear, coyote, bobcat, gray fox), omnivores (bear, fox, striped skunk), large and 

small prey (deer, jackrabbit, tree squirrel, ground squirrel), and a domestic predator (dog). We 

included dogs as an added check on our modeling approach, as their general distributions and 

associations are already well known in the study system, unlike wildlife species. 

 

We modeled the observed data (ys) as a binary variable where 1 was an observation for a given 

species at camera station s, and 0 was a non-detection. We modeled the observed data for each 

species as a product of both true occurrence (zs; space use) of a given species at a site and our 

probability of actually detecting it (𝑝𝑠), which is also influenced by intensity of use at a given 

site. The model assumes that true occupancy is an outcome of a Bernoulli-distributed random 

variable, denoted zs~ Bern(𝜓s), where 𝜓s is the probability that a given species used site s on any 

day during the survey period. 

 

We assumed that occurrence and detection probabilities varied by species, and that cannabis 

might influence both in different ways. For occupancy, we expected that increasing distance 

from cannabis farms would increase animal space use (i.e., due to avoidance of cannabis farms) 

for all species except domestic dogs, and ground squirrels. We also expected that elevation and 

forested land cover would influence space use based on their importance in other wildlife studies 

(e.g., Reilly et al. 2017). We expected distance to highways to negatively affect space use, and to 
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function as a proxy for other non-cannabis forms of human land use in our study system. While 

we initially wished to include distance from clearcuts as the other major source of human 

disturbance in the study system, it was highly correlated with distance to highways, so we did not 

include it in our models. Finally, we accounted for potential regional differences in the three 

watersheds by including a fixed effect of region. We parameterized regional fixed effects using 

region-specific intercepts as described in the following equations. We previously attempted 

modeling region as a random effect, but the models converged better with the use of fixed 

effects. Therefore, we constructed the occupancy submodel as follows: 

 

𝑙𝑜𝑔𝑖𝑡(𝜓𝑠) =  𝛽1 ×  𝐼(𝑅𝑒𝑔𝑖𝑜𝑛1[𝑠]) +  𝛽2 ×  𝐼(𝑅𝑒𝑔𝑖𝑜𝑛2[𝑠]) + 𝛽3 ×  𝐼(𝑅𝑒𝑔𝑖𝑜𝑛3[𝑠])
+ 𝛽4 ×  𝐶𝑎𝑛𝑛𝑎𝑏𝑖𝑠[𝑠] + 𝛽5 × 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛[𝑠] + 𝛽6 × 𝐹𝑜𝑟𝑒𝑠𝑡[𝑠]
+ 𝛽7 × 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝑠[𝑠] 

 

Where I(RegionX[s]) is an indicator variable equal to 1 if site s is in Region X, and 0 otherwise, 

Cannabis is the square root of distance to cannabis, Elevation is the elevation in meters at the 

camera site, Forest is the proportion of area around each camera site that is forested within a 50 

m buffer, and Highways is the distance from a major paved roadway. All continuous variables 

were scaled. 

 

For detection, we expected that increasing distance from cannabis farms would increase intensity 

of use (e.g., due to temporal avoidance on farms leading to lower activity rates) for all species 

except domestic dogs. Separately from the general influence of cannabis farms themselves, we 

expected increased recent activity rate of dogs and humans to decrease intensity of use for all 

wild species (Nickel et al., 2020; Reilly et al., 2017). We further expected time of the year to 

influence intensity of use, based on seasonal changes in activity patterns (Furnas & McGrann, 

2018). Finally, we expected that the camera model and view distance (how far the camera can 

detect an animal) of each camera setup might influence its ability to detect animals. Therefore, 

we constructed the following model: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑠) =  𝛼0 +  𝛼1 × 𝐶𝑎𝑛𝑛𝑎𝑏𝑖𝑠[𝑠] +  𝛼2 × 𝑇𝑦𝑝𝑒[𝑠] +  𝛼3 × 𝑉𝑖𝑒𝑤[𝑠] +  𝛼4 × 𝐷𝑎𝑡𝑒[𝑠]
+  𝛼5 × 𝐷𝑎𝑡𝑒2[𝑠] +   𝛼6 × 𝐻𝐴𝐼[𝑠] +   𝛼7 × 𝐷𝐴𝐼[𝑠] 

 

Where Cannabis is the square root of distance to cannabis, Type is a binary grouping of camera 

type, View is the estimated distance at which a camera can still detect an animal, Date is the 

julian date, Date2 is the julian date squared, and HAI and DAI are activity indices for humans and 

dogs respectively. All continuous variables were scaled. 

 

We fit our models using a Bayesian Markov-chain Monte Carlo (MCMC) method in R using the 

NIMBLE and nimbleEcology packages (de Valpine et al., 2017; Goldstein et al., 2020). We used 

weakly informative prior distributions for all parameters (Gelman et al., 2008). Occupancy and 

detection parameters were calculated from three chains run for 50,000 iterations, thinned by 1. 

We assessed model convergence by examining trace plots and R-hat values (<1.1) for parameter 

estimates. We considered parameter estimates as meaningful (i.e. the Bayesian analogue of 

“significant”) when their 95% credible interval did not overlap zero. 
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Multi-species models 

 

In addition to individual species responses, we also sought to test how groups of species, and less 

commonly-detected species, responded to cannabis farming. We therefore also ran additional 

multi-species occupancy models (MSOMs) (Devarajan et al., 2020; Iknayan et al., 2014; Zipkin 

et al., 2010). With multi-species occupancy models (MSOMs), detections from more common 

species can lend power to less frequently detected species, and models produce population-level 

mean and deviances for each estimate. 

 

We used the following groupings for our multi-species models: domestic animals, ground birds, 

small mammals, herbivores, omnivores, and carnivores. See Table 2 for MSOM grouping details 

including species, explanation, and predicted response to distance to cannabis in the occupancy 

and detection processes. 

 

Table 2. Species groups for multi-species occupancy models. Includes the grouping name, included 

species, a description of the common features of the group, and hypothesized population-level response 

to increasing distance from cannabis farms. 

Grouping Species Description  Expected response to 

cannabis (occupancy, 

detection) 

Domestic 

animals  

(n = 4) 

Dog (Canis lupus familiaris),  

Cat (Felis catus),  

Chicken (Gallus gallus),  

Horse (Equus caballus) 

Domestic species, 

which are often 

kept on or nearby 

cannabis farms 

(-,-) expected to be associated 

with cannabis for space use and 

intensity of use 

Ground 

birds 

(n = 3) 

California quail (Callipepla 

californica),  

Mountain quail (Oreortyx 

pictus),  

Wild turkey (Meleagris 
gallopavo) 

Commonly detected 

bird species in the 

study area that 

spend a large 

portion of their 

lives on the ground 

(+/-, +) depending on sensitivity 

to disturbance or ability to use 

new resources on farms, may be 

variable in space use response 

to cannabis farming; expected 

to increase intensity of use 

further from cannabis farms 

Small 

mammals 

(n = 5) 

Tree squirrels (Tamiasciurus 

douglasii and Sciurus griseus), 

California ground squirrel 

(Otospermophilus beecheyi), 

Flying squirrel (Glaucomys 

sabrinus),  

Striped rodents (Tamias spp. 

and Callospermophilus 
lateralis),  

All other rodents (Rodentia spp) 

Small (< 1 kg) prey 

species 

(-, +) expected to decrease 

space use farther from cannabis 

farms, due to the use of farms as 

a resource, but expected to 

increase intensity of use farther 

from farms due to behavioral 

shifts around cannabis farms 

Herbivores 

(n = 2) 

Black-tailed deer (Odocoileus 

hemionus), 

Black-tailed jackrabbit (Lepus 
californicus) 

Diet classified from 

Wilman et al., 2014 

using the R package 

traitdata. Classified 

(+/-, +) depending on whether 

they are physically blocked 

from farms due to fencing or 

other infrastructure, may or may 
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as an herbivore if 

greater than 75% of 

diet from plants. 

not increase space use with 

distance to cannabis farms; 

expected to increase intensity of 

use farther from farms 

Omnivores 

(n = 7) 

spotted skunk (Spilogale 

gracilis) 

opossum (Didelphis 

virginiana), 

ringtail (Bassariscus astutus), 

raccoon (Procyon lotor), 

black bear (Ursus americanus), 

striped skunk (Mephitis 

mephitis), 

gray fox (Urocyon 

cinereoargenteus) 

Diet classified from 

Wilman et al., 

2014, if <75% diet 

from plants, and 

also >10% of diet 

from fruit, fish, or 

invertebrates 

(+, -/+) expected to increase 

space use farther from farms; 

depending in part on behavioral 

plasticity or sensitivity to 

disturbance may have varied 

intensity of use response 

Carnivores 

(n = 3) 

puma (Puma concolor), 

bobcat (Lynx rufus), 

coyote (Canis latrans) 

Diet classified from 

Wilman et al., 

2014, if diet from 

plants is 0% and 

also > 50% diet 

from vertebrates 

(+,+) expected to increase space 

use and intensity of use farther 

from farms due to disturbance 

avoidance 

 

To incorporate a multi-species framework, we added an additional component to the single 

species model equations where each species parameter was drawn from a community-level 

distribution for that parameter. This means that for the MSOMs, the species-level occurrence 

(𝛽0, 𝛽1, 𝛽2, …) and detection parameters (𝛼0, 𝛼1, 𝛼2,...) functioned as random effects drawn 

from community level distributions with “hyper-parameters”, where each parameter has a 

community-level  mean (𝜇) and precision (𝜏). To do so, we followed the methods outlined in 

Zipkin et al. (2010). 

 

We fit our models using a Bayesian Markov-chain Monte Carlo (MCMC) method in R using the 

NIMBLE and nimbleEcology packages (de Valpine et al., 2017; Goldstein et al., 2020). We used 

weakly informative prior distributions for all parameters (Gelman et al., 2008). Population and 

species occupancy and detection parameters were calculated from three chains run for 50,000 

iterations, thinned by 1. We assessed model convergence by examining trace plots and R-hat 

values for parameter estimates. 

 

Results 
 

We detected 41 individual non-human species and species groupings (e.g., “bats,” “tree 

squirrels,” etc.) for a total of 19,523 detections. We mainly detected common species such as 

black-tailed deer, jackrabbit, gray fox, turkey, coyote, etc., as well as domestic animals such as 

dogs, cats, and horses. However, we did document a single sighting of a porcupine (Erethizon 

dorsatum) and a fisher, as well as some other more elusive species such as ringtail (Bassariscus 

astutus) and spotted skunk (Spilogale gracilis). We detected humans more frequently than any 

domestic or wild animal, particularly on and surrounding cannabis farms. Overall, the number of 
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wild species detected at least once at each site was relatively evenly spread across the gradient of 

distances to cannabis farms (Fig.2). The species we selected for single species modeling were 

detected relatively frequently and on at least 10% of cameras, aside from bobcats, which were 

detected on 8% of cameras (Table 3). 

 

 
Figure 2. Number of species detected at each camera along the distance gradient from cannabis farms. 

Cameras are identified by region. 

 

Table 3. Detection rates for species used in single-species occupancy models. 

Species 

Sites with at least 

one detection 

Proportion of total 

sites with detections 

Total 

detections 

Deer (O. hemionus) 121 0.86 820 

Tree squirrel (T. douglasii and S. griseus) 93 0.66 474 

Jackrabbit (L. californicus) 35 0.25 377 

Domestic dog  34 0.24 258 

Gray fox (U. cinereoargenteus) 56 0.40 236 

Striped skunk (M. mephitis) 53 0.38 180 

Ground squirrel (O. beecheyi) 17 0.12 103 

Coyote (C. latrans) 24 0.17 96 

Bear (U. americanus) 46 0.33 88 

Bobcat (L. rufus) 11 0.08 16 
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Single species models 
 

For the single species occupancy models, occupancy and detection varied by species (Table 4, 

Fig. 3). Recall that for our models, we are interpreting occupancy as space use, and detection as a 

combination of detectability and space use intensity (see Analyses above) (Nickel et al., 2020; 

Suraci et al., 2021). Five species had a meaningful space use response to cannabis farms (i.e., 

their 95% credible interval for distance to cannabis did not overlap zero). Deer and tree squirrel 

occupancy probability increased with distance from cannabis farms, indicating potential 

avoidance. Domestic dogs, as expected, decreased in predicted occupancy with distance to 

cannabis farms. Interestingly, gray fox and ground squirrel occupancy probability also decreased 

with distance from cannabis farms, indicating that these species may be more likely to be found 

on and around cannabis farms (Fig. 3). 

 

Six species had a meaningful detection response to cannabis farms (Table 4). As expected, 

bobcat and ground squirrel detection probability increased with distance from cannabis farms, 

indicating that they may use areas further from cannabis farms more intensively. For ground 

squirrels, this implies that although they are more likely to be found closer to cannabis farms, 

they may use the spaces farther from farms more intensively. Again as expected, domestic dog 

detection probability decreased with distance from cannabis farms, confirming that they spend 

most of their time on and surrounding cannabis farms. Surprisingly however, deer, jackrabbit, 

and striped skunk detection also decreased with distance from cannabis farms. More frequent 

detections on occupied cannabis farms implies that these species may also be using the space on 

and surrounding cannabis farms more intensively (Fig. 4). 

 

The other model covariates aside from cannabis also varied by species (Table 4). For a majority 

of species, at least one regional intercept was meaningfully associated with occupancy 

probability. Elevation predicted occupancy for coyotes and striped skunks, and forest proportion 

predicted occupancy for jackrabbits, tree squirrels, and ground squirrels. Distance to highways 

was the only occupancy covariate that was not credibly non-zero for any species. As for 

detection, all covariates were meaningful for at least some species. The covariates for 

detectability, camera type and camera view, were credibly non-zero for four species all together. 

There was evidence for seasonal effects, with date and date2 meaningfully predicting detection 

for a majority of species. The activity indices had meaningful, and somewhat surprising results. 

Coyotes, bobcats, and tree squirrel detection was negatively associated with human activity, and 

ground squirrel detection was negatively associated with dog activity. However, coyote, gray 

fox, and jackrabbit detection probabilities were all positively associated with dog activity. 
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Figure 3. Predicted occupancy probabilities of each single species model to the covariate for 

distance from cannabis farms. Probabilities correspond to Region 1 with all other covariates held 

at mean conditions. The gray bars represent the 95% credible interval for the estimated 

probability. Note that, because we plot absolute occupancy probabilities, credible intervals for 

predicted occupancy probabilities incorporate uncertainty in the intercept as well as the 

relationship between distance to cannabis and occupancy (see Table 4 for parameter-specific 

uncertainties). The species with lines in blue (deer, gray fox, ground squirrels, tree squirrels, and 

domestic dogs) all had a credibly non-zero response (their 95% credible interval for mean 

estimate did not overlap zero). Animal silhouettes from phylopic.org. 
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Figure 4. Predicted detection response of each single species model to the covariate for distance 

from cannabis farms, with all other covariates were held at mean conditions. The gray bars 

represent the 95% credible interval for the estimated probability. Note that, because we plot 

absolute occupancy probabilities, credible intervals incorporate uncertainty in the intercept as 

well as the relationship between distance to cannabis and occupancy (see Table 4 for parameter-

specific uncertainties). The species with lines in blue (deer, bobcat, jackrabbit, striped skunk, 

ground squirrel, and domestic dog) all had a credibly non-zero response (their 95% credible 

interval did not overlap zero). Animal silhouettes from phylopic.org. 

 



 

  

 

Table 4. Single species occupancy model results, given as estimate means and standard deviations. Cells bolded and with a star (*) indicate that 

the 95% credible interval for that estimate does not overlap zero. Wild animal species are listed in descending body size order, with domestic 

dogs at the end. 

 Detection Covariates Occupancy Covariates 

Species In
tercep

t 

D
ist. to

 

can
n
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is 

C
am

. T
y
p
e 

C
am

. 

V
iew

 D
ist. 

D
ate 

D
ate
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A

I 

D
A

I 

R
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n
 1

 

R
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n
 2
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n
 3

 

D
ist. to

 

can
n
ab

is 

E
lev

atio
n

 

%
 F

o
rest 

D
ist. to

 

H
ig

h
w

ay
s 

black bear 

(Ursus 

americanus) 

-3.03 

(0.34)* 

-0.03 

(0.16) 

-0.35 

(0.27) 

-0.08 

(0.17) 

1.61 

(0.34)* 

-1.26 

(0.34)* 

0.05 

(0.55) 

-0.22 

(0.34) 

0.62 

(2.5) 

-0.72 

(3.08) 

3.65 

(2.89) 

0.33 

(0.66) 

-0.1 

(0.86) 

-0.11 

(0.59) 

1.09 

(2.22) 

black-tailed 

deer 

(Odocoileus 

hemionus) 

-0.8 

(0.08)* 

-0.19 

(0.05)* 

-0.17 

(0.09) 

0.07 

(0.04) 

0.21 

(0.05)* 

-0.58 

(0.06)* 

-0.01 

(0.03) 

-0.06 

(0.07) 

1.84 

(2.37) 

6.02 

(2.23)* 

-0.99 

(1.26) 

0.87 

(0.44)* 

-0.85 

(0.46) 

-0.06 

(0.31) 

-1.87 

(1.79) 

bobcat 

(Lynx rufus) 

-4.9 

(1.38)* 

1.36 

(0.57)* 

0.17 

(0.64) 

0.38 

(0.34) 

0.16 

(0.34) 

-0.85 

(0.76) 

-6.34 

(3.67)* 

0.44 

(0.36) 

2.15 

(3.82) 

-0.73 

(4.04) 

0.74 

(3.06) 

-1.94 

(1.81) 

-1 

(1.92) 

0.56 

(1.8) 

-1.59 

(2.98) 

coyote 

(Canis 

latrans) 

-1.89 

(0.34)* 

-0.06 

(0.22) 

-0.33 

(0.3) 

0.49 

(0.13)* 

0.91 

(0.27)* 

-1.09 

(0.54)* 

-0.37 

(0.19)* 

0.93 

(0.23)* 

-3.61 

(3.73) 

-3.02 

(2.97) 

-9.18 

(3.02)* 

0.26 

(0.76) 

-4.66 

(1.67)* 

-0.13 

(0.46) 

4.07 

(2.65) 

gray fox 

(Urocyon 

cinereoarge

nteus) 

-2.67 

(0.18)* 

-0.1 

(0.08) 

0.4 

(0.17)* 

0.25 

(0.08)* 

0.04 

(0.09) 

0.08 

(0.11) 

-0.12 

(0.1) 

0.14 

(0.04)* 

1.57 

(1.85) 

-3.8 

(1.92)* 

3.01 

(1.29)* 

-1.28 

(0.38)* 

-0.42 

(0.43) 

-0.32 

(0.26) 

2.47 

(1.66) 

6
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black-tailed 

jackrabbit 

(Lepus 

californicus)  

-1.17 

(0.16)* 

-0.48 

(0.08)* 

0.21 

(0.16) 

0.13 

(0.06)* 

-0.26 

(0.12)* 

-0.55 

(0.18)* 

0.03 

(0.04) 

0.36 

(0.12)* 

-3.29 

(2.51) 

0.77 

(2.47) 

-4.07 

(1.59)* 

-0.21 

(0.49) 

-1.15 

(0.64) 

-1.11 

(0.35)* 

0.49 

(2.13) 

striped 

skunk 

(Mephitis 

mephitis) 

-1.95 

(0.2)* 

-0.44 

(0.1)* 

-0.14 

(0.19) 

-0.06 

(0.1) 

0.28 

(0.13)* 

-0.89 

(0.17)* 

-0.02 

(0.05) 

-0.16 

(0.11) 

-0.26 

(1.94) 

2.47 

(1.9) 

-2.92 

(1.21)* 

0.31 

(0.39) 

-1.64 

(0.61)* 

-0.42 

(0.28) 

-1.33 

(1.62) 

California 

ground 

squirrel 

(Otospermop

hilus 

beecheyi) 

1.31 

(0.39)* 

0.63 

(0.21)* 

-2.65 

(0.34)* 

0.23 

(0.14) 

-0.63 

(0.24)* 

-1.54 

(0.33)* 

-0.21 

(0.15) 

-0.92 

(0.39)* 

-1.1 

(2.65) 

-2.98 

(2.67) 

-3.97 

(1.81)* 

-1.19 

(0.55)* 

-1.09 

(1.02) 

-1.05 

(0.44)* 

1.05 

(2.32) 

tree squirrels 

(Sciurus 

griseus and 

Tamiasciuru

s douglasii) 

-1.84 

(0.12)* 

0 

(0.07) 

-0.04 

(0.11) 

-0.04 

(0.06) 

0.11 

(0.05)* 

0.01 

(0.07) 

-0.63 

(0.33)* 

-0.09 

(0.08) 

0.58 

(2.01) 

1.49 

(2.15) 

1 (1.3) 0.79 

(0.39)* 

-0.62 

(0.43) 

1.28 

(0.3)* 

-0.65 

(1.83) 

dog (Canis 

lupus 

familiaris) 

-2.91 

(0.24)* 

-0.39 

(0.12)* 

0.26 

(0.21) 

0.2 

(0.11) 

-0.07 

(0.12) 

0.01 

(0.14) 

0 

(0.04) 

1.16 

(0.1)* 

-0.03 

(2.18) 

-2.28 

(2.29) 

0.25 

(1.34) 

-0.97 

(0.43)* 

-0.27 

(0.52) 

-0.08 

(0.31) 

1.91 

(1.93) 
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Table 5. Multispecies occupancy model results. Bolded cells with a star (*) indicate that the 95% credible interval for that estimate does not 

overlap zero.  

Species 

Groups 

Occupancy covariates (population) Detection covariates (population) 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt Cann. Type View Date Date2 HAI DAI 

Carnivores 0.84 

(3.87) 

-0.32 

(3.75) 

0.01 

(3.83) 

-0.72 

(2.08) 

-2.29 

(2.89) 

1.63 

(2.53) 

-0.57 

(3.46) 

-3.71 

(2.38) 

0.22 

(1.25) 

0.17 

(1.16) 0.53 (0.8) 

0.25 

(1.16) 

-0.52 

(1.06) 

-1.47 

(2.49) 

0.36 

(1.09) 

Omnivores 
0.1 (1.96) 

-3.19 

(1.85) 

-0.75 

(1.73) 

-0.16 

(0.51) 

-0.47 

(0.59) 

-0.2 

(0.19) 1.3 (1.35) 

-3.08 

(0.54)* 

-0.33 

(0.35) 

0.12 

(0.27) 

0.03 

(0.16) 

0.12 

(0.53) 

-0.64 

(0.44) 

-0.07 

(0.15) 

-0.05 

(0.3) 

Herbivores -1.38 

(3.22) 3.4 (3.28) 

-2.39 

(2.86) 

0.35 

(2.03) 

-0.76 

(1.84) -0.49 (2) 

-1.61 

(2.74) 

-0.85 

(1.73) 

-0.3 

(1.73) 

0.01 

(1.72) 0.1 (1.38) 

-0.02 

(1.81) 

-0.52 

(1.48) 0.01 (1.4) 

0.13 

(1.75) 

Small 

mammals 
0.67 

(2.08) 

-2.79 

(2.49) 

-0.36 

(1.72) 

0.11 

(1.15) 

-0.89 

(0.75) 

0.98 

(1.52) 1.2 (1.89) 

-3.59 

(2.38) 

0.49 

(0.59) 

-0.21 

(1.24) 

-1.79 

(1.76) 

-0.67 

(0.82) 

-1.13 

(1.31) 

-0.23 

(0.74) 

-0.46 

(0.66) 

Ground birds -1.98 

(2.99) 

-0.46 

(3.08) 

-1.24 

(3.31) 

2.22 

(2.14) 

-0.46 

(2.9) 

-0.11 

(1.51) 

-0.08 

(2.91) 

-3.57 

(2.32) 

-1.22 

(1.6) 

0.17 

(1.33) 

0.32 

(1.24) 

0.14 

(0.66) 

0.32 

(1.42) 

0.68 

(1.39) 

-0.52 

(1.66) 

Domestic 

animals 
-2.44 

(2.98) 

-3.85 

(2.86) 

-1.25 

(2.38) 

-0.99 

(1.37) 

-0.68 

(1.48) 

-0.19 

(0.66) 1.91 (2.3) -3.17 (1)* 

-0.83 

(1.18) 0.2 (0.83) 0.3 (0.54) 

0.61 

(0.99) 

-1.18 

(1.75) 

-0.11 

(0.52) 

0.42 

(0.74) 

6
5
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Multi-species models 
 

For the multi-species occupancy models, almost no population-level parameters were meaningful 

(95% credible intervals did not overlap zero) (Table 5; see Appendix 1 for modeled standard 

deviations). No group meaningfully responded to cannabis in either detection or occupancy 

processes. No covariates were meaningful for occupancy or detection at the population level, 

aside from omnivore detection intercept. However, there was more variation at the species level 

(Appendix 2-7). For the species that also had single species model results, the MSOM results 

largely matched, with occasional changes in credibility. For instance, for the deer SSOM, date 

and date2 were not credibly non-zero, but in the MSOM they were, even though the actual 

estimated values were similar in both (Appendix 5). 

 

Despite the lack of population-level associations, some groups did have common responses to 

cannabis at the species level. For example, the occupancy probability for all ground bird species 

was credibly positive, increasing with distance from cannabis farms, which implies possible 

spatial avoidance of cannabis farms (Appendix 3). For all ground bird species and both herbivore 

species, detection probability credibly decreased with increasing distance from cannabis farms, 

which may imply that these groups use areas around farms more intensively (Appendix 5). 

Domestic species largely responded as predicted at the species level: cat and dog occupancy 

decreased with distance to cannabis, and dog and horse detection decreased with distance from 

cannabis (Appendix 2). The other groupings were more mixed. Carnivores largely did not 

respond meaningfully to cannabis in either detection or occupancy (Appendix 7). Omnivores had 

slightly more sensitivity, with three out of seven species responding meaningfully to cannabis in 

either occupancy or detection (fox occupancy probability decreased with distance to cannabis, 

and raccoon and striped skunk detection probability decreased with distance to cannabis) 

(Appendix 6). For small mammals, tree squirrels and ground squirrels had opposite occupancy 

responses, and only ground squirrels had a credibly non-zero detection response (Appendix 4). 

 

Discussion 
 

This study assessed wildlife space use responses to active small-scale outdoor cannabis farms on 

private land. Our work provides a timely baseline for understanding potential wildlife 

community consequences from an emerging land use frontier. Our application of occupancy 

modeling to space use responses has yielded two main conclusions: 1) even at small scales, rural 

cannabis farming can affect local wildlife space use; 2) patterns of animal space use responses 

are species-specific, but there may be common patterns for herbivores, ground birds, and some 

mesopredators in how they use spaces near to cannabis farms. These results have implications 

for the cannabis industry and small farm strategies for conservation. 

 

Overall cannabis farm effects 
 

Eight out of ten species modeled individually had a meaningful response to distance from 

cannabis farms, either in occupancy or detection. Although the population-level means were not 

meaningful, at an individual level, 13 out of 24 of the species included in multi-species models 

had a meaningful response to distance from cannabis farms, either in occupancy or detection. 

Our hypothesis that a majority of species would avoid farms was not supported, since the 
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strength and direction of effects were species-specific. However, the results imply a general 

ability for cannabis farming to affect local wildlife space use. The relationships between 

occupancy and detection probabilities and distance to cannabis also indicate that there could be 

threshold effects relatively close to farms where the slope of the relationship is steeper (Fig. 3; 

Fig.4), though further steps would be needed to confirm this relationship. 

 

These results are in contrast with research from the western US on vineyards and avocado 

production that indicates the ability of some wildlife to use farmed land in seeming preference 

over surrounding land uses (Hilty & Merenlender, 2004; Nogeire et al., 2013). However, these 

other studies were conducted in areas where the agricultural land formed a corridor through more 

human-dominated land covers, which is the inverse of the landscape studied here. Our results are 

similar to studies on agroforestry systems with annual and perennial croplands, where there may 

be differential responses to agricultural land use and potential for filtering responses (Brashares, 

2010; Ferreira et al., 2018). 

 

Compared to the other covariates in the models, distance to cannabis farms meaningfully 

affected more species than any other single covariate other than the intercepts, or Date and 

Date2. It was particularly surprising that wildlife responded to the physical land use of cannabis 

farms even more than human or dog activity, given that in other systems their space use intensity 

often responds more to human activity than human footprint (Nickel et al. 2020), and is often 

negatively affected by the presence of dogs (Reilly et al., 2017). This implies that cannabis farms 

may combine multiple potential sources of disturbance that wildlife may react to, and/or that the 

physical modifications for cannabis farms on their own are enough to trigger wildlife responses. 

More research is needed to disentangle some of the potential mechanistic pathways by which 

cannabis farms may affect wildlife. 

 

Space use patterns 
 

Overall, space use responses to cannabis were species-specific, confirming our alternative 

hypothesis for individual responses. While functional- or diet-group patterns are not as clear in 

this case as in other study systems (e.g., Ferreira et al., 2018; Rich et al., 2016), a few general 

patterns may be emerging, specifically in regard to herbivores/ground birds, and mesopredators. 

Our approach of using an occupancy modeling framework to assess wildlife space use 

associations was useful to identify some of these emerging patterns, because it allowed us to look 

at space use, separately from inferences on space use intensity (although we acknowledge that 

these are more difficult to disentangle from detectability). This is important because it helps 

capture different types of responses: attraction and deterrence, as well as potential behavioral 

shifts in activity patterns (Nickel et al., 2020; Neilson et al., 2018; Burton et al., 2015). For 

example, this helped identify opposing occupancy and detection responses from some herbivore 

and ground bird species. 

 

For medium to large herbivores and ground birds (deer, jackrabbits, California quail, mountain 

quail, and turkey), occupancy (i.e., space use, see Analyses) credibly increased with distance 

from cannabis farms, while detection (i.e., space use intensity and detectability) credibly 

decreased. This is the inverse of our alternative hypothesis that species using cannabis farms 

would decrease their activity intensity near to cannabis and suggests that while these species may 
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generally avoid cannabis farms in space (or, in the case of deer, are often physically blocked 

from accessing them due to fencing), the few areas that they do use, they may use more 

intensively. If this pattern is indeed driven by space use intensity, there are many possible 

explanations— for instance, perhaps these species, in an attempt to avoid cannabis farms, end up 

concentrated in smaller areas. The results for deer are at least partially consistent with other 

studies that indicate they generally have a neutral occupancy response to human presence and 

footprint, but have an increased intensity of use response (Suraci et al., 2021). 

 

Another potential emerging pattern is the possible behavioral flexibility of some 

mesopredator/omnivore species, lending limited support to our alternative hypothesis that 

omnivores would display greater variation in space use responses. While less consistent across 

all omnivores than the pattern with herbivores and ground birds above, gray fox, striped skunk, 

and raccoons all displayed different potential ability to use the space on and nearby cannabis 

farms. Fox occupancy probability decreased with distance to cannabis, implying a potential 

attraction to cannabis farms. Raccoon (as part of the MSOM) and striped skunk detection 

probability decreased with distance to cannabis, implying that they may have a higher space use 

intensity near to cannabis farms. This is consistent with other studies that demonstrate that these 

species are often behaviorally flexible and able to coexist in human-dominated spaces (Suraci et 

al., 2021; Nogeire et al., 2013). This association with mesopredator use of human spaces is also 

often explained via mesopredator release, when larger predators avoid an area of disturbance and 

thereby open a niche for smaller predators (Prugh et al., 2009). What is interesting is that in this 

case, however, our alternative hypothesis that carnivores would avoid farms was not supported, 

and predators largely did not respond to cannabis. Bear and coyote occupancy and detection did 

not respond to cannabis, and although puma did not have enough detections to include in the 

single species models, one was photographed in the middle of one of our study farms. Bobcat 

detection probability did increase with distance from cannabis farm but did not have a 

meaningful occupancy response. In fact, all four of these large predators were photographed at 

least once in the middle of a cannabis farm (Appendix 8). 

 

Also interesting is that there was not a clear pattern of response for small mammal species that 

might be prey for the mesopredators. Unlike our alternative hypothesis that predicted a general 

attraction for all small mammals to cannabis farms, tree squirrels and ground squirrels had 

opposing responses. Tree squirrel occupancy increased with detection from cannabis farms, 

indicating avoidance, while ground squirrel occupancy decreased. For ground squirrels, our 

models suggest that while they are frequently found near cannabis farms, their space use 

intensity may be lower closer to farms. Again, there may be multiple reasons for this, but one 

possibility is that cannabis farms are being developed on ideal ground squirrel habitat, and while 

the squirrels have not yet relocated away from the farms, they are not as active on these sites due 

to the disturbance associated with the farms. Alternatively, cannabis farms may be creating new 

habitat for ground squirrels by clearing vegetation and irrigating the land, and the lower 

detection may simply reflect lower population densities as fewer individuals have discovered the 

new sites. It would be interesting to see whether these patterns change over time. 
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Limitations 
 

This study has many limitations that are important to acknowledge. First, cannabis production 

comes in many forms in different locations, and this study does not represent all of them. This 

study is most applicable for small-scale and mixed light outdoor cannabis cultivation occurring 

on private lands in legacy production regions of the rural Western US. It is very likely that larger 

farms would have a greater impact on wildlife than those included in this study, or that farms 

developed in areas with existing agriculture might have less, or different kinds of effects. 

Because cannabis production is often unique from other forms of agriculture, these types of 

observational studies are valuable and merit repeating in different contexts. 

 

Next, we recognize we are applying occupancy modeling for a purpose that it was not directly 

designed for, and in doing so, we are violating multiple assumptions of the model. The use of 

occupancy modeling to assess space use relationships is increasingly common in wildlife studies 

(Nickel et al., 2020; Suraci et al.. 2021), and we have done our best to account for the violation 

of assumptions in our modeling approach. Ultimately, we have confidence in our results. For 

example, we included domestic dogs because their space use patterns are already well 

understood on the landscape. That the models reflect our understanding of reality on the ground 

for this domestic species gives us confidence in the results for the unknown wild species. 

 

One major limitation of our approach to interpreting detection as a combination of detectability 

and space use intensity is that the two are not entirely separable. We have included covariates 

that we believe address one aspect more than the other, but there could be unaccounted for 

detectability variables that confound our interpretation of space use intensity. More caution 

should therefore be taken when interpreting the detection results compared to the occupancy 

results. Future studies might be able to help disentangle some of these effects by examining 

temporal activity patterns of wildlife (Gaynor et al., 2018) in addition to space use intensity. 

 

Finally, these data are all observational, and therefore cannot address specific mechanisms by 

which cannabis may affect local wildlife. Future studies isolating potential mechanisms of 

deterrence and attraction would help elucidate some of the species-specific behaviors 

documented in this study (see Chapter 4). 

 

Conclusions 
 

The results of our study hold implications for conservation and cannabis. We find evidence for 

on-site overlap between small scale outdoor cannabis farms and local wildlife. The negative 

detection responses of many species to cannabis farms suggests that some animals may be using 

the farms regularly for rest and forage. This emphasizes the importance of best management 

practices on-site for cannabis farms to ensure that this overlap does not result in harm to wildlife. 

This would be an opportunity for future research to study the long-term population effects on 

wildlife that share space with cannabis production. It is important to acknowledge that some of 

this wildlife overlap may not be beneficial for farmers, however. Some of the species with higher 

occupancy or detection rates close to farms, such as turkeys, ground squirrels, and deer, may also 

cause crop damage for farmers. Balancing coexistence with livelihoods will be as important for 
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the cannabis industry as it is with any small scale agriculture seeking to minimize local impacts 

(Crespin & Simonetti, 2019). 

 

On the other hand, our results also demonstrate a broad ability for cannabis agriculture to 

influence local wildlife. While the implied indirect effects from cannabis farming on wildlife are, 

by and large, not extreme, it emphasizes the importance of land use planning for cannabis 

development, as even small disturbances in relatively undeveloped rural areas may have an effect 

on local wildlife communities. This is valuable information, as efforts to formulate appropriate 

regulation, best management practices, or wildlife friendly certifications for cannabis are still 

ongoing. More research is needed on this rapidly changing agricultural frontier, but we hope that 

our research here may offer small insights into an ecologically uncertain industry.



 

 

 

Supplement to Chapter 3: 
 
 

Appendix 1. Multi-species occupancy model results for population standard deviations. Cells bolded and with a star (*) indicate that the 95% 

credible interval for that estimate does not overlap zero. 

Groups Occupancy covariates (population) Detection covariates (population) 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

Carnivores 6.17 

(2.69)* 

4.14 

(2.77)* 

7.95 

(1.6)* 

3.03 

(2.37)* 

4.07 

(2.64)* 

4.05 

(2.56)* 

4.97 

(2.64)* 

4.3 

(2.19)* 

1.74 

(1.78)* 

1.49 

(1.66)* 

0.89 

(1.32)* 

1.59 

(1.69)* 

1.29 

(1.54)* 

4.04 

(2.93)* 

4.3 

(2.19)* 

Omnivores 3.36 

(2.36)* 

3.33 

(1.75)* 

3.9 

(1.83)* 

0.91 

(0.61)* 

1.07 

(0.76)* 

0.24 

(0.23)* 

1.56 

(1.27)* 

1.05 

(0.65)* 

0.71 

(0.41)* 

0.45 

(0.34)* 

0.25 

(0.19)* 

1.2 

(0.59)* 

0.92 

(0.49)* 

0.16 

(0.22)* 

1.05 

(0.65)* 

Herbivores 5.18 

(2.56)* 

4.91 

(2.67)* 

4.5 

(2.56)* 

2.86 

(2.45)* 

2.36 

(2.42)* 

2.85 

(2.43)* 

3.66 

(2.67)* 

2.17 

(2.37)* 

2.21 

(2.36)* 

2.2 

(2.36)* 

1.45 

(2.08)* 

2.41 

(2.35)* 

1.65 

(2.18)* 

1.48 

(2.15)* 

2.17 

(2.37)* 

Small 

mammals 2.6 (2.2)* 

4.48 

(2.34)* 

3.03 

(1.82)* 

1.88 

(1.46)* 

0.87 

(1.07)* 

2.83 

(1.92)* 

2.67 

(2.05)* 

5.74 

(1.89)* 

0.85 

(0.83)* 

2.49 

(1.37)* 

3.86 

(1.85)* 

1.43 

(1.06)* 

2.61 

(1.6)* 

0.92 

(1.14)* 

5.74 

(1.89)* 

Ground 

birds 
3.78 

(2.68)* 

4.63 

(2.61)* 

6.23 

(2.13)* 

3.35 

(2.44)* 

5.67 

(2.14)* 

2.18 

(1.95)* 

4.27 

(2.62)* 

4.14 

(2.2)* 

2.56 

(1.99)* 

1.94 

(1.78)* 

1.83 

(1.7)* 

0.66 

(1.07)* 

2.03 

(1.95)* 

1.73 

(2.04)* 

4.14 

(2.2)* 
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Appendix 2. Multi-species occupancy model results for domestic animals. Cells bolded and with a star (*) indicate that the 95% credible 

interval for that estimate does not overlap zero. 

Species Occupancy covariates Detection covariates 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

dog (Canis 

lupus 

familiaris) 
-0.01 

(2.32) 

-2.4 

(2.42) 

0.18 

(1.39) 

-0.97 

(0.41)* 

-0.32 

(0.5) 

-0.11 

(0.26) 

1.99 

(2.03) 

-2.93 

(0.23)* 

-0.4 

(0.12)* 0.27 (0.2) 0.2 (0.1) 

-0.05 

(0.12) 

0.03 

(0.13) 0 (0.04) 

1.15 

(0.1)* 

cat (Felis 

catus) 
-2.05 

(2.63) 

-3.67 

(2.64) 

-1.93 

(1.71) 

-2.27 

(0.8)* 

-0.74 

(0.88) 

-0.37 

(0.45) 2.1 (2.24) 

-3.2 

(0.39)* 

0.06 

(0.21) 

0.24 

(0.27) 

0.03 

(0.15) 

0.15 

(0.15) 

0.61 

(0.17)* 

-0.11 

(0.14) 

0.07 

(0.06) 

chicken 

(Gallus 

gallus) 
-6.23 

(5.4) 

-9.29 

(5.26)* 

-0.27 

(4.27) 

-1.03 

(1.87) 

-1.63 

(2.98) 

-0.18 

(0.91) 

1.09 

(3.01) 

-3.98 

(1.88)* 

-1.13 

(1.32) 

0.75 

(1.08) 

0.57 

(0.77) 

1.52 

(1.28) 

-3.15 

(1.84) 

-0.42 

(1.09) 

-0.13 

(0.31) 

horse (Equus 

caballus) 
-4.56 

(5.05) 

-4.15 

(3.24) 

-3.94 

(4.27) 

0.07 

(1.14) 

-0.33 

(2.39) 

-0.13 

(0.45) 

3.24 

(2.78) 

-3.08 

(0.55)* 

-2.05 

(0.59)* 

-0.43 

(0.4) 

0.43 

(0.21)* 

0.95 

(0.57) 

-2.93 

(1.03)* 

0.05 

(0.16) 

0.63 

(0.31)* 

 

Appendix 3. Multi-species occupancy model results for ground birds. Cells bolded and with a star (*) indicate that the 95% credible interval for 

that estimate does not overlap zero. 

Species Occupancy covariates Detection covariates 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

California quail 

(Callipepla 

californica) 
-4.31 

(4.86) 

1.16 

(4.16) 

-3.55 

(5.43) 

3.96 

(2.86)* 

-2.49 

(3.53) 

-0.37 

(1.34) 

2.66 

(4.07) 

-6.69 

(1.23)* 

-2.52 

(0.81)* 

0.03 

(0.76) 

0.64 

(0.33)* 

0.13 

(0.36) 

1.36 

(1.15) 

0.55 

(0.27) 

0.09 

(0.42) 

mountain quail 

(Oreortyx 

pictus) -2 (3.33) 

-3.94 

(4.06) 

3.99 

(3.35) 

3.29 

(1.94)* 

4.32 

(2.21)* 

-0.63 

(0.8) 

-2.76 

(3.2) 

-4.52 

(0.9)* 

-1.21 

(0.39)* 0.9 (0.52) 

0.76 

(0.2)* 

0.14 

(0.19) 

-0.15 

(0.29) 

1.16 

(2.06) 

-1.88 

(2.8) 

wild turkey 

(Meleagris 

gallopavo)  
-1.37 

(2.52) 

0.88 

(2.52) 

-5.92 

(1.84)* 

0.98 

(0.47)* 

-3.73 

(1.09)* 

0.63 

(0.31)* 

-0.01 

(2.23) 

-2.14 

(0.3)* 

-0.38 

(0.18)* 

-0.37 

(0.31) 

-0.4 

(0.14)* 

0.17 

(0.14) 

-0.1 

(0.19) 

0.56 

(0.24)* 

-0.18 

(0.21) 

7
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Appendix 4. Multi-species occupancy model results for small mammals. Cells bolded and with a star (*) indicate that the 95% 

credible interval for that estimate does not overlap zero. 

Species Occupancy covariates Detection covariates 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

tree squirrels 

(Tamiasciurus 

douglasii and 

Sciurus griseus) 

1.57 

(1.7) 

0.33 

(1.89) 

1.49 

(1.21) 

0.71 

(0.36)* 

-0.71 

(0.35)* 

1.24 

(0.29)* 

0.31 

(1.57) 

-1.83 

(0.12)* 

0.02 

(0.07) 

-0.04 

(0.11) 

-0.03 

(0.06) 

0.11 

(0.05)* 

0.01 

(0.07) 

-0.47 

(0.3) 

-0.11 

(0.08) 

California ground 

squirrel 

(Otospermophilus 

beecheyi) 

0.21 

(1.99) -4 (2.2) 

-2.77 

(1.58) 

-1.06 

(0.53)* 

-0.94 

(0.63) 

-0.97 

(0.4)* 

2.09 

(1.83) 

1.22 

(0.38)* 

0.58 

(0.2)* 

-2.56 

(0.33)* 

0.23 

(0.14) 

-0.6 

(0.24)* 

-1.54 

(0.32)* 

-0.21 

(0.15) 

-0.69 

(0.37)* 

flying squirrel 

(Glaucomys 

sabrinus) 

0.44 

(4.06) 

-2.39 

(4.81) -0.86 (3) 

0.5 

(2.46) 

-0.77 

(1.38) 

3.48 

(3.22) 

2.21 

(3.17) 

-9.22 

(2.11)* 

0.53 

(0.89) 

-0.64 

(1.39) 

-2.65 

(1.61)* -1.04 (1) 

-0.3 

(0.97) 

-0.37 

(1.4) 

-0.7 

(1.13) 

striped rodents 

(Tamias spp. and 

Callospermophilus 

lateralis) 

0.25 

(4.07) 

-7.24 

(4.75) 

0.34 

(1.98) 

-0.01 

(1.86) 

-1.32 

(1.29) 

2.03 

(1.92) 

-0.27 

(3.27) 

-9.3 

(2.73)* 1.01 (1) 

1.16 

(1.27) 

-6.43 

(1.89)* 

-1.88 

(0.9)* 

-4.05 

(1.71)* 

-0.25 

(1.52) 

-0.57 

(1.23) 

all other rodents 

(Rodentia spp) 

0.97 

(1.65) 

-3.45 

(1.79)* 

-0.17 

(1.09) 

0.46 

(0.43) 

-0.8 

(0.38)* 

-0.2 

(0.29) 

2.11 

(1.47) 

-3.86 

(0.34)* 

0.34 

(0.21) 

0.95 

(0.29)* 

-1.31 

(0.27)* 

-0.01 

(0.16) 

-0.2 

(0.19) 

0.12 

(0.31) 

-0.31 

(0.29) 
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Appendix 5. Multi-species occupancy model results for herbivores. Cells bolded and with a star (*) indicate that the 95% credible interval for that 

estimate does not overlap zero. 

Species Occupancy covariates Detection covariates 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

Black-tailed deer 

(Odocoileus 

hemionus) 
 

0.81 

(2.89) 

7.22 

(2.54)* 

-1.65 

(1.38) 

0.9 

(0.44)* 

-0.8 

(0.43) 

-0.13 

(0.32) 

-2.86 

(1.99) 

-0.81 

(0.09)* 

-0.19 

(0.05)* 

-0.16 

(0.09) 

0.07 

(0.04) 

0.21 

(0.05)* 

-0.58 

(0.06)* 

-0.01 

(0.03) 

-0.06 

(0.07) 

Black-tailed 

jackrabbit (Lepus 

californicus) 
-5.04 

(2.74) 2.8 (2.7) 

-5.13 

(1.8)* 

-0.07 

(0.49) 

-0.97 

(0.58) 

-1.05 

(0.35)* 

-1.27 

(2.3) 

-1.12 

(0.15)* 

-0.48 

(0.08)* 

0.18 

(0.16) 

0.13 

(0.06)* 

-0.25 

(0.12)* 

-0.57 

(0.16)* 

0.02 

(0.04) 

0.35 

(0.12)* 

 

Appendix 6. Multi-species occupancy model results for omnivores. Cells bolded and with a star (*) indicate that the 95% credible 

interval for that estimate does not overlap zero. 

Species Occupancy covariates Detection covariates 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

spotted skunk 

(Spilogale 

gracilis) 
1.34 

(3.58) 

-6.76 

(3.56)* 

-0.35 

(2.49) 

-0.26 

(0.92) 

0.27 

(0.99) 

-0.12 

(0.33) 

0.58 

(1.99) 

-4.09 

(1.13)* 

-0.32 

(0.63) 

0.24 

(0.52) 

-0.07 

(0.3) 

-1.11 

(0.61)* 

-0.97 

(0.63) 

-0.08 

(0.26) 

-0.16 

(0.57) 

opossum 

(Didelphis 

virginiana) 
2.51 

(3.53) 

-4.45 

(2.21)* 

-2.54 

(1.93) 

-0.5 

(0.93) 

-0.57 

(0.87) 

-0.29 

(0.31) 

0.83 

(1.61) 

-3.74 

(0.74)* 

0.19 

(0.51) 

0.01 

(0.41) 

0.09 

(0.24) 

0.77 

(0.64) 

-1.22 

(0.61)* 

-0.11 

(0.32) 

-0.24 

(0.6) 

ringtail 

(Bassariscus 

astutus) 
-2.86 

(3.97) 

-5.01 

(2.18)* 

-1.09 

(1.59) 

0.21 

(0.67) 

0.12 

(0.77) 

-0.14 

(0.27) 

1.52 

(1.68) 

-3.22 

(0.73)* 

-0.45 

(0.57) 0.37 (0.5) 

-0.08 

(0.32) 

-0.64 

(0.55) 

-0.78 

(0.55) 

-0.08 

(0.31) 

-0.09 

(0.66) 

raccoon (Procyon 

lotor) 
-3.13 

(3.83) 

-3.44 

(2.36) 

-5.55 

(3.3)* 

0.14 

(0.57) 

-1.13 

(0.95) 

-0.16 

(0.24) 2.6 (2.08) 

-2.98 

(0.42)* 

-1.15 

(0.41)* 

0.07 

(0.28) 

0.13 

(0.18) 

0.04 

(0.29) 0.3 (0.58) 

-0.07 

(0.12) 

0.24 

(0.25) 
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black bear (Ursus 

americanus) 
0.84 

(1.64) 

-1.81 

(1.79) 

2.82 

(2.37) 

0.31 

(0.45) 

-0.24 

(0.51) 

-0.15 

(0.22) 

1.54 

(1.45) 

-3.01 

(0.29)* 

-0.04 

(0.15) 

-0.19 

(0.25) 

-0.02 

(0.14) 

1.47 

(0.29)* 

-1.09 

(0.29)* 

-0.05 

(0.19) 

-0.09 

(0.24) 

striped skunk 

(Mephitis 

mephitis) 
1.18 

(1.66) 

-0.05 

(1.66) 

-1.16 

(1.08) 

-0.06 

(0.32) 

-1.32 

(0.54)* 

-0.28 

(0.19) 

0.59 

(1.41) 

-2.07 

(0.2)* 

-0.42 

(0.1)* 

-0.01 

(0.18) 

-0.02 

(0.09) 

0.3 

(0.12)* 

-0.81 

(0.16)* 

-0.03 

(0.05) 

-0.11 

(0.11) 

gray fox (Urocyon 

cinereoargenteus) 0.8 (1.47) 

-2.73 

(1.54) 

2.13 

(1.06)* 

-0.99 

(0.36)* 

-0.47 

(0.37) 

-0.27 

(0.19) 

1.63 

(1.31) 

-2.63 

(0.18)* 

-0.12 

(0.08) 

0.34 

(0.17)* 

0.21 

(0.08)* 

0.03 

(0.09) 

0.08 

(0.11) 

-0.08 

(0.08) 

0.13 

(0.04)* 

 

Appendix 7. Multi-species occupancy model results for carnivores. Cells bolded and with a star (*) indicate that the 95% credible 

interval for that estimate does not overlap zero. 

Species Occupancy covariates Detection covariates 

 R1 R2 R3 Cann. Elev. Forest Hwys Intcpt. Cann. Type View Date Date2 HAI DAI 

puma (Puma 

concolor) 5.6 (6.62) 

0.97 

(5.43) 

9.15 

(5.62)* 

-1.55 

(2.43) 

-1.68 

(4.4) 

4.46 

(3.69) 

-3.05 

(4.91) 

-6.7 

(1.03)* 

-0.18 

(0.43) 

0.59 

(0.79) 

0.77 

(0.33)* 

-0.19 

(0.39) 

-0.21 

(0.52) 

-0.32 

(1.16) 

-0.06 

(0.31) 

bobcat (Lynx 

rufus) 
4.16 

(6.42) 

0.03 

(5.26) 

3.75 

(6.23) 

-1.43 

(2.4) 

-1.64 

(3.07) 

2.19 

(2.93) 

-2.84 

(4.49) 

-5.29 

(1.25)* 0.91 (0.6) 

0.17 

(0.51) 

0.38 

(0.26) 0.21 (0.3) 

-0.63 

(0.55) 

-5.82 

(5.71) 

0.33 

(0.38) 

coyote (Canis 

latrans) 
-5.27 

(5.65) 

-1.77 

(4.18) 

-12.59 

(5.12)* 

0.22 

(0.84) 

-4.89 

(2.1)* 

0.02 

(0.51) 

3.04 

(3.72) 

-2.04 

(0.33)* 

-0.02 

(0.21) 

-0.21 

(0.3) 

0.5 

(0.12)* 

0.77 

(0.27)* 

-0.77 

(0.48) 

-0.35 

(0.18)* 

0.86 

(0.23)* 
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Appendix 8. Examples of predators photographed on cannabis farms. Clockwise from top left: puma (Puma concolor), black bear (Ursus 
americanus), coyote (Canis latrans), bobcat (Lynx rufus).
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Chapter 4 

 

Designing experimental field trials for multi-species responses to 

anthropogenic light and noise 
 

 

Abstract 

 
Outdoor, mixed light, and greenhouse cannabis production present a particular concern for 

environmental impacts because of their use of bright lights and loud equipment, and history of 

production in biodiverse areas. This paper outlines the methods and study design to monitor 

multi-taxa wildlife response to light and noise disturbance in experimental field trials that mimic 

disturbance from cannabis farms. I detail our study approach and monitoring installation and 

then present preliminary summary data from one season of sampling. These results are presented 

only as an example of the data formats and potential analyses associated with the diversity of 

monitoring methods I employed. More data needs to be collected, sorted, and analyzed before 

conclusions regarding wildlife response to noise and light can be reached, but the methodology 

and preliminary results are promising in that they indicate an pathway to quantify relationships 

and response thresholds across a breadth of taxonomic groups. 

 

Introduction 
 

Understanding the pathways by which wildlife respond to disturbance is critical for mitigating 

the impacts of anthropogenic change (Blickley & Patricelli, 2010; Suraci et al., 2021). It is well 

understood that wildlife respond to human disturbance in complex ways, which can have 

individual, population, and community effects (Frid & Dill, 2002; Gaynor et al., 2018; Suraci et 

al., 2021). To piece apart these complex interactions, it can be useful to isolate particular sources 

of disturbance and their effects on wildlife. 

 

Two sources of disturbance that have been identified as major anthropogenic drivers of wildlife 

behavioral change are light and noise pollution. Artificial light at night is an increasing global 

phenomenon, with the coverage of outdoor areas illuminated by artificial light increasing by 

2.2% per year (Kyba et al., 2017). This global increase in light can have far ranging 

consequences across taxa, including by causing animal disorientation, and by disrupting behavior 

or interactions (Aulsebrook et al., 2020; Longcore & Rich, 2004). Noise pollution has been less 

studied than light pollution, however, the effects of noise on wildlife are also global, and may 

have individual, population, and community level impacts including disrupted reproductive 

signaling or prey vigilance, and added cumulative stress (Aulsebrook et al., 2020; Blickley & 

Patricelli, 2010; Shannon et al., 2016; Shilling et al., 2018). 

 

Controlled experiments provide a powerful tool for exploring causal relationships between 

disturbance sources, such as light and sound, and wildlife responses (Blickley & Patricelli, 2010; 

Suraci et al., 2017). Experiments on noise and light effects are typically focused on individual 

species or taxa, but field experiments in particular offer an opportunity to study interactive 
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effects of noise and light pollution (Blickley & Patricelli, 2010). However, this approach is 

largely under-utilized, due to the logistical challenges of implementing such studies (Blickley & 

Patricelli, 2010). 

 

Here, I describe an experimental approach to studying the separate and interactive effects of 

point source noise and light pollution on multi-taxa wildlife communities. Specifically, my 

approach applies a comprehensive experimental design to understand the effects of noise and 

light pollution commonly associated with cannabis farming. 

 

Recreational cannabis production in the western United States has been increasing rapidly 

following state-level legalization (see Chapters 1 and 2) (Butsic & Brenner, 2016; Butsic et al., 

2018). Influenced by its illicit history, outdoor cannabis is often grown in remote and biodiverse 

regions with minimal other non-timber agriculture (see Chapters 1 and 2) (Corva, 2014; Butsic & 

Brenner 2016; Butsic et al., 2018). In these legacy systems, the proximity of cannabis to 

wilderness areas may lead to unusual disturbance patterns associated with cannabis cultivation 

where relatively small point source disturbances are surrounded by a matrix of more intact 

vegetation (see Chapter 1) (I. Wang et al., 2017). Outdoor and mixed light cannabis farming 

presents a particular concern for environmental impacts because of their use of bright lights and 

loud equipment such as generators and fans (Rich, Baker, et al., 2020; Rich, Ferguson, et al., 

2020). Observational research indicates that cannabis production is likely to affect wildlife space 

use (see Chapter 3). However, current research has not distinguished between sources of 

disturbance on cannabis farms, which is critical for designing appropriate interventions, 

including policy, to mitigate the effect of these disturbances. 

 

In this study, I designed and implemented an experiment to investigate the individual and 

combined effects of light and noise from cannabis farms on local wildlife. I was particularly 

interested in the impact of new developing farms in rural areas. To approach this question, I 

designed a series of experimental field trials that mimic light and sound disturbance from 

outdoor, greenhouse, and mixed light cannabis production, and a monitoring array to measure 

resulting wildlife responses. 

 

The primary goals of this study were to:  

1. Experimentally quantify the impacts on wildlife from a range of simulated light and 

sound disturbances that mimic cannabis production;  

2. Identify thresholds of impact for different wildlife species and taxonomic groups, 

including threatened and endangered species;  

3. Create and test general predictions for community-level and cascading effects of 

disturbances from these impacts. 

 

Due to fieldwork delays caused by the COVID-19 pandemic, data collection and analyses are not 

yet complete. Here, I describe the study design and approach, and plans for future analysis. To 

provide an example of the types of data produced by this study design, I present preliminary data 

and summarize trends from the first experimental season. Considering the large amount of time, 

effort, and resources needed to establish this type of field experiment, this description of the 

approach and potential pitfalls should be useful to others wishing to attempt similar research. 
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Methods 
 

Study Area 
 

Field experimental trials were based at two research reserves in Mendocino County, California 

(Figure 1). I selected reserves that allowed for manipulation of experimental treatments and were 

representative of local cannabis-producing regions. The first reserve, the University of California 

Hopland Research and Extension Center (HREC), is located in southern Mendocino County 

(39°00′N, 123°04′W). The landscape on and surrounding HREC was predominantly 

chaparral/shrubland, oak woodland, and grassland, and the types of cannabis production in the 

region include medium to large-scale mixed light and greenhouse cannabis production facilities 

that were characterized by larger infrastructure, higher powered LED grow lights, and heavy-

duty cooling and drying fans. The second research site was the Angelo Coast Range Reserve 

(ACRR), a protected research reserve maintained by the University of California Natural 

Reserve System in northern Mendocino (39°43’N, 123°39’W). The area on and around ACRR 

was more heavily forested, with Douglas fir (Pseudotsuga menziesii) dominated mixed conifers, 

riparian areas, and interspersed meadows. Cannabis production in northern Mendocino was 

typically smaller scale, more remote, and characterized by generator-powered greenhouse 

lighting, and gas-powered equipment on site. 

 

 
Figure 1. Map of Mendocino County, California (red outline), showing the locations of the two research 

reserves where this study occurred. 
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Study Design 
 

I used a modified before-after-control-impact (BACI) design for field experiments. At each 

reserve, my field team and I established three experimental replicates, for a total of six sites. I 

selected sites that would be suitable for cannabis production in terms of existing clearing, and 

flat ground. Neither HREC nor ACRR cultivate cannabis for research, and because I wanted to 

isolate the effects of light, noise, or light and noise combined, I did not want a site that was 

already an established cannabis farm. Therefore, I selected sites with minimal existing 

infrastructure (within the constraints of access to power, see Treatments below). 

 

My basic approach was to set up treatment infrastructure and monitoring equipment, monitor 

multi-taxa wildlife for a control period, and then alternate (as randomly as possible given 

equipment constraints) between control, light, noise, or combined light and noise periods, 

ensuring that each treatment period was preceded and followed by a control. At each reserve, 

there was always at least one site serving as a control at any given time. To reduce habituation of 

wildlife to treatments, I selected a short interval of two weeks for each control and treatment 

period. For the first season of data collection, I ran experiments from May 2021 to January 2022, 

though not all sites were active until November 2021. Below, I describe the setup for treatments, 

as well as the data collection methods used for each taxonomic group that I monitored in this 

study. 

 

Treatments 

 

For light treatments, at HREC I used a full spectrum LED light that is commonly used in indoor, 

greenhouse, and mixed light production, the California Lightworks SolarSystem 1100 

(https://californialightworks.com/solarsystem/). I set the light at 5’ off the ground, and protected 

it with a corrugated metal shield (Figure 2). During light treatments, the lights were turned on 

and run for 24 hours a day. 

 

For ACRR, I used a white-light LED that would be more typical for small-scale outdoor or 

mixed light cannabis farms. We used a 6000-6500K White 152 Watt Linkable LED Omni Ray 

light bar (https://www.omniraylighting.com/). I placed the light bar in a miniature greenhouse 3’ 

off the ground to protect it and scatter light (Fig. 2). During light treatments, the solar system 

was set to a timer where the lights were active for 8 hours each night. 

 

For noise treatments, I used a portable mp3 player and waterproof speaker, playing at full 

volume continuously alternating between two different white noise tracks: a high powered drying 

fan, and an equipment motor. However, due to frequent equipment failures, sound treatments 

often did not last the full two weeks. 

 

 

https://californialightworks.com/solarsystem/
https://www.omniraylighting.com/
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Figure 2. Central power source and treatment setups. Left: solar panel setup at ACRR with miniature 

greenhouse and small LED light bar. Right: Electrical box setup at HREC with high powered LED array. 

 

To power equipment for each treatment, I relied on two different power sources at HREC and 

ACRR (Fig. 2). At HREC, staff on site were able to trench lines and place power boxes at the 

three sites, such that the amount of electricity needed to power the lights and speakers was not a 

limiting factor. At ACRR, given that it was a more remote location, direct power was not an 

option, so I obtained assistance to install solar systems instead. Although generators might have 

been more representative of the power sources used for cannabis production in the region, I 

wanted to be able to separate the effects of light from the effect of noise from a generator, 

necessitating a quieter power source. 

 

Monitoring Equipment 

 

At each site, noise and light treatment sources were located at the center, and surrounded by an 

array of monitoring equipment designed to capture attraction, space use, and activity rates of 

specific animal taxa (Figure 3). Below I describe the methods used to sample responses of each 

taxonomic group. 

 

Medium-large mammals 

 

I used an array of wildlife cameras to monitor space use and activity patterns of medium to large 

mammals (body weight > 1 kg) in relation to disturbance treatments. At HREC, I used Reconyx 

Hyperfire 2 cameras (a slightly more expensive model better for open habitats that have lots of 

grass), and at ACRR, I used Bushnell Aggressors (a more affordable option that works well in 

more closed-canopy habitats or shorter grass). At both sites, cameras were set to take photos in 

bursts of 2, with a quiet period of 15 seconds. For cameras set in open, grassy areas where 

misfires were frequent, I lowered camera sensitivity and increased the quiet period to 30 seconds. 
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Figure 3. Diagram from one treatment site (HREC1) demonstrating the distribution of monitoring 

equipment. Each site consists of three transects extending out to 200 m, with the spacing of monitors 

based on taxonomic and equipment considerations (see text). One transect (in this case, the NW transect 

in the upper left) contains a higher density of monitoring equipment closer to the treatment source to test 

for finer scale and distance threshold effects. 

 

 

 

 
Figure 4. Example of wildlife camera photos documenting deer during light treatments. 

 

I used nine cameras per site, with three each at “close”, “medium”, and “far” distances 

respectively, in transects out from the center treatment source (Figure 3). The “close” set 

included one camera directly at the treatment source, facing the light/speaker (e.g, Figure 4), and 

two others 50 m away, forming a triangle. The “medium” set included three cameras at 100 m, 
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and the “far” set included three cameras at 200 m, each adding a larger triangle farther from the 

site center (Figure 3). 

 

Camera photos were manually sorted by species, using a team of trained identifiers. In future 

analyses, these data will be used to assess patterns of wildlife space use and activity. 

 

Small mammals and reptiles 

 

I used drift fence cameras to monitor small mammals and reptiles. This is a relatively new 

technique for capturing responses of species that are otherwise difficult to monitor passively 

(Boynton et al., 2021). Drift fences work by funneling small animals along a low barrier on the 

landscape which intersects a potential pathway where they may travel (e.g., between a water 

source and cover). The barrier, typically a tight mesh fabric (we used landscape fabric), then 

directs the animal from either side of the fence under a camera, which is modified to produce a 

close focal range photo (Figure 5). I used both square box and round bucket designs for drift 

fences, though I do not anticipate the different structures would influence detection rate. For the 

drift fence cameras, I used the Reconyx Hyperfire 2 with a custom focal length of 40 cm. 

 

 
Figure 5. Examples of drift fences. Top: two different drift fence designs. Square construction (left) with 

flap open revealing camera. Bucket construction (right) with completed fence. Bottom: example photos 

from each setup. Square construction (left) and bucket construction (right). 
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Drift fences require more space and labor than camera stations, hence, I only deployed four per 

site at HREC, spaced <10 m, 50 m, 100 m, and 200 m from the center (Fig. 3). Due to bear 

activity and the associated potential for damage to research installations, I only implemented 

drift fences on one site at ACRR, at <10 m, 50 m, and 100 m, for a total of three fences. 

 

To date, drift fence camera photos have not been sorted but will be identified manually by 

species, using a team of trained identifiers. These data will then be used to assess space use 

intensity and activity patterns. However, because reptile detections are most reliable during the 

day when there is ambient heat to set off the camera sensors, they will be excluded from analyses 

of diel activity. 

 

Insects 

 

I used two different methods to assess the response of flying insects to treatments: sticky traps 

and bucket traps (Figure 6). Sticky traps are designed to intercept flying insects, and were 

constructed out of clear acrylic 4” x 6” sheets covered in stikem glue 

(http://www.seabrightlabs.com/stikem.htm). I placed two traps on poles or trees at 3’ and 6’ off 

the ground (labeled A on top and B on bottom). Sticky traps were placed at all camera poles at 

HREC, plus one additional pole at 25 m and 75 m to form a more continuous gradient in one 

direction per site (Figure 3). Due to logistical constraints and bear activity at ACRR, I deployed 

fewer at those sites. ACRR2 and ACRR3 only used sticky traps at the center, and ACRR1 had 

one transect of traps (at 0, 25, 50, 75, and 100 m). 

 

 
Figure 6. Collection methods for flying insect used in this study. Sticky traps at high and low heights 

(left) and bucket traps for collection of insects at light treatments (right). 

 

Sticky traps were collected at the end of each treatment and control round and placed in binders 

using photo sleeves interspersed with foam padding. I used a light box to photograph the sticky 

traps (Figure 7). Insects on photographed traps will be identified to order or species by trained 

assistants and counted. This will provide data on numerical responses of insects to light and 

noise treatments along a distance gradient. 

 

http://www.seabrightlabs.com/stikem.htm
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In addition to being photographed, each sticky trap was assessed using a semi-quantitative 

estimate of insect density. Each trap was overlaid with a 12 x 8 grid, and the number of squares 

that contained insects were counted. This provided a proxy for density of insects by distance and 

treatment. 

 
Figure 7. Example of light box (left) used for photographing insect sticky traps. The sticky traps are 

placed on the pegs next to the scale bar and label, and then moved into the box to be photographed (right). 

Dots, such as the one in the photo on the right, are placed on the side that faces the light for future 

orientation. 

 

In addition to sticky traps, I used bucket traps to capture insects specifically attracted to the light 

treatments at HREC (Figure 6). Bucket traps consist of a plastic bucket filled with a shallow 

layer of antifreeze, with a funnel resting on top of the bucket such that insects can fall into the 

bucket but cannot crawl out. This method primarily captures moths but also includes other insect 

families. Buckets were left overnight at artificial lights, and then in the morning, collected 

samples were rinsed and stored in ethanol. I only deployed bucket traps for 2-4 nights during 

light treatments, and only when the moon phase was less than a quarter full. Due to the extra 

logistic effort needed to deploy bucket traps, I did not use them on every treatment round. I also 

did not use bucket traps at ACRR out of concerns for bear activity, and because I was unable to 

ensure that the traps would be checked each day. Insect samples from the bucket traps will be 

identified by trained entomologists to order or species. 

 

Birds 

 

I deployed an array of acoustic monitors to monitor bird response to treatments. Specifically, I 

used Audiomoths (https://www.openacousticdevices.info/audiomoth) set to record at 32 kHz for 

5 minutes each at sunrise, 30 minutes before sunrise, and 30 minutes after sunrise (Furnas & 

Callas, 2015). To reduce the likelihood of simultaneous detections, I used only four monitors per 

site, one at the center and one each at the end of the three 200 m transects (Figure 3). I used the 

Audiomoth IPX7 Waterproof Cases, and placed audiomoths ~6’ off the ground, or as high as 

field technicians could access at a given site. 

 

I automatically classified bird calls using BirdNET by location and date (Kahl et al., 2021). 

While in future I will explore further quality control and validation measures, for the preliminary 

https://www.openacousticdevices.info/audiomoth
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assessments reported here, I filtered results to only include calls with at least a 99% confidence 

of classification. This provides bird richness and detection rate as a function of treatment type 

and distance to disturbance.  

 

Bats 

 

I installed acoustic monitors to monitor bat attraction or avoidance of point source disturbance. I 

used Wildlife Acoustic Song Meter Mini Bat detectors, which automatically detect and record 

bat calls. I deployed monitors for only 4 nights per each round of sampling because of data 

storage limitations. Due to the extra logistic effort needed to deploy the bat monitors, I did not 

use them on every round, and only deployed them at HREC, though I plan to expand monitoring 

to ACRR in future field seasons. 

 

I used automatic classification to identify bat calls in SonoBat 4 (Arcata, CA, USA; 

www.sonobat.com), using the North American region and the “Western” regional package. I 

used a sound quality cutoff of 0.7. In future I will explore further validation measures. This 

classification provides data on bat species abundance and call intensity by treatment. 

 

Analyses 
 

Descriptive summaries 
 

To produce a summary of the data collected in the first season of field experiment trials, I listed 

the number of rounds completed at each site, as well as the occurrence data that had been sorted 

as of June 2022. For data collected by wildlife cameras and bird acoustic monitors, I summarized 

the species detected, and the average detections per day by treatment and distance. For bat 

acoustic monitors, I summarized the species detected, and average detections per second by 

treatment. For sticky trap densities, I summarized the categorized density estimate by distance 

and treatment. Summaries were calculated in R (R v. 2021-11-08 “Ghost Orchid”; R Core Team 

2021) using Rstudio (v. 2021.09.1 + 372; Rstudio Team 2021). These summaries provide an 

example of the data formats produced by the collection methods used in this study. 

 

Future analyses 
 

Once data from the second season of field trials is collected, and all data is processed, I will 

quantify wildlife response to disturbance treatments in terms of space use and activity patterns 

(Table 1). For data collected along a distance gradient, I will build species- and taxa-level 

general linear mixed models, using detection rates or richness as the response variable 

(depending on the data collection method). To compare results across sites, I will examine the 

magnitude of change from treatment to control periods. I will also consider pairing each 

treatment round to the control rounds on either side of them to control for seasonal changes, and 

possible wildlife habituation. A hypothetical example of results from such data are presented in 

Figure 8. 

 

For bat data, I will begin by using a t-test or a paired t-test to compare detection rates and 

richness with and without treatments. For moths, I will provide a descriptive summary of the 
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insects attracted to the grow lights, and compare how species composition and richness changes 

seasonally. Considering that moths are likely a prey source for bats, I will also assess their 

activity peaks in relationship to each other. 

 

Table 1. Taxonomic groups monitored in the study design, and their predicted responses to treatments. 

Taxonomic group Monitoring source Type of response 

measurement(s) 

Predicted response(s) to 

treatments (light, sound, 

light + sound) 

Medium-large 

mammals 

Wildlife cameras 

(distance gradient) 

Species composition, 

Detection rate, 

Daily activity patterns 

(-,-,-) negative response to 

treatments overall, with 

species-specific responses by 

functional group and 

thresholds based on body 

size; species that do not 

avoid in space will shift diel 

activity peaks 

Small mammals Drift fence (distance 

gradient) 

Species composition 

Detection rate, 

Daily activity patterns 

(-,-,-) negative response to 

treatments overall, but only 

at closest drift fences 

Reptiles  Drift fence (distance 

gradient) 

Species composition, 

Detection rate 

(-,-,-) negative response to 

treatments overall, but only 

at closest drift fences 

Moths Bucket trap (point 

source) 

Species composition, 

Numeric attraction 

(+, N/A, +) positive 

attraction to light source, 

with high richness 

Other flying insects Sticky trap (distance 

gradient) 

Species composition, 

Density, 

Richness 

(+, - , +/-) attraction to light, 

negative response to sound, 

and species-specific 

responses to both combined 

Birds Acoustic monitors 

(distance binary) 

Species composition, 

Detection rate 

(+/-, -, -) species-specific 

responses to light depending 

on diet, negative response to 
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Figure 8. Hypothesized response of taxonomic groups to light and noise trials. In this example, 

taxonomic groups are compared by measuring magnitude of change from control periods by distance and 

treatment. 

 

Results 
 

As stated previously, I summarized results for the first season of data collection to provide an 

example of the types of inference made possible by my study design. These results should be 

viewed as preliminary.  

 

In the first season of field experiments, there was a total of 50 rounds (i.e., 2-week sampling 

periods) across all sites, which includes 35 rounds at HREC and 15 at ACRR (Table 2). There 

were a total of 20 treatment rounds, the majority of which were light treatments (Table 2). 

 

Table 2. Summary of data collected during first season of field trials. For each site, the number of total 

rounds. (2-week sampling periods), and each treatment round is listed. 

Site Total rounds Control Light Sound Light + Sound 

HREC1 19 11 5 2 1 

HREC2 8 5 2 0 1 

HREC3 8 4 3 1 0 

ACRR1 6 4 2 0 0 

ACRR2 5 3 2 0 0 

ACRR3 4 3 1 0 0 
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Medium-large mammals 
 

For wildlife camera data, only one site at HREC was sorted as of June 2022 (HREC1). For that 

site, the rounds that were sorted included 11 total rounds: 6 control, 3 light, 1 sound, and 1 

sound/light combination. There were 9 wild mammal species detected, with black-tailed deer 

(Odocoileus hemionus) being the most frequently detected (Table 3). Preliminary data 

visualizations suggest there may be an effect of treatment by distance on detection rates at close 

distances (Figure 9). 

 

Table 3. Wild mammals detected at HREC1 for the sorted subset, ordered in descending detection rate. 

Species Number of detections Average detections per day 

Black-tailed deer (Odocoileus hemionus) 82 2.50 

Coyote (Canis latrans) 47 0.52 

Gray squirrel (Sciurus griseus) 26 0.87 

Striped skunk (Mephitis mephitis) 21 0.26 

Raccoon (Procyon lotor) 12 0.20 

Turkey (Meleagris gallopavo) 10 0.61 

Bobcat (Lynx rufus) 9 0.14 

Wild pig (Sus scrofa) 4 0.25 

Gray fox (Urocyon cinereoargenteus) 2 0.14 

 

 
Figure 9. Average animal detection rate by distance to treatment source for data from one site at the 

Hopland Research and Extension Center (HREC1). Error bars represent standard errors. 
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Birds 
 

For bird acoustic monitors, data were successfully classified for all six sites, for almost all 

treatment rounds (missing 1 control from HREC2, 1 light from HREC3, and 1 control from 

ACRR1). After filtering species detections by 99% confidence, there were 66 species detected. 

The top ten species by average detection rate are listed in Table 4. Preliminary data 

visualizations seem to indicate that the effect of treatment on detection rate may be site-specific 

(Figure 9), however, there are likely seasonal effects I have not yet accounted for. 

 

Table 4. Top ten most detected species at HREC and ACRR by automatic classification (filtered 

by 99% confidence), arranged in descending order. 

Species Average detections per day 

Acorn Woodpecker 51.87 

Violet-green Swallow 25.00 

Black Phoebe 21.10 

Western Kingbird 14.55 

Western Bluebird 7.29 

Oak Titmouse 6.26 

Pacific-slope Flycatcher 4.35 

California Towhee 4.33 

Golden-crowned Sparrow 4.32 

Chestnut-backed Chickadee 3.98 
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Figure 10. Detection rate of all bird species by treatment and distance for each site. 

 

Bats 
 

For bat acoustic monitors, I had data processed for 17 total rounds at the three HREC sites, for a 

total of 6 control, 7 light, 1 sound, and 2 sound and light rounds. Automatic classification 

identified 14 species (Table 5), though I have not verified the calls. Preliminary visualizations do 

not signal any clear patterns in average call rate by treatment (Figure 11A) but may indicate site-

specific species composition effects of treatment (Figure 11B). 
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Table 5. Bat species detected (as identified by automatic classification) at HREC study sites, arranged 

in descending order of call rate 

Species Average Calls per Second 

Myotis californicus (California myotis) 8.60 

Myotis ciliolabrum (Western small-footed myotis) 8.38 

Myotis yumanensis (Yuma myotis) 8.23 

Corynorhinus townsendii (Townsend’s big-eared bat) 7.73 

Lasiurus blossevillii (Western red bat) 7.40 

Myotis evotis (Long-eared myotis) 7.09 

Parastrellus hesperus (Canyon bat) 6.24 

Eptesicus fuscus (Big brown bat) 6.02 

Myotis thysanodes (Fringed myotis) 5.59 

Antrozous pallidus (Pallid bat) 5.13 

Myotis volans (Long-legged myotis) 4.27 

Lasionycteris noctivagans (Silver-haired bat) 3.22 

Tadarida brasiliensis (Mexican free-tailed bat) 2.73 

Lasiurus cinereus (Hoary bat) 2.50 

 

 
Figure 11. Bat data by call rate (A) and number of species (B), for treatments at each study site at HREC. 
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Insects 
 

For insect sticky traps, only one site at HREC was assessed for semi-quantitative density 

(HREC1). For that site, I had 13 total rounds completed: 8 control, 3 light, 1 sound, and 1 

sound/light combined. For the density proxy (percent of trap covered), values ranged from 5.2% 

to 99.0%. Preliminary data visualizations suggest that light treatments may attract a higher 

density of insects, but that the traps placed higher up (the “A” traps) may have a stronger effect 

than the lower traps (Figure 12A). Patterns are less clear for the other treatments (Figure 12B). 

 

 
Figure 12. Estimated insect density as a function of distance from each treatment at one site at Hopland 
Research and Extension Center (HREC1). A: control and light treatment. B: control and sound, and light 

+ sound treatments. 
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Discussion 
 

The preliminary results of this effort to design and trial a comprehensive study of anthropogenic 

noise and light effects on wildlife are promising. Results to date suggest that this experimental 

design may be sufficiently rigorous, with enough sampling to quantify relationships and 

thresholds for different taxonomic groups in their response to experimental light and noise 

treatments that mimic conditions on cannabis farms. While more data needs to be collected, 

sorted, and analyzed, the study design detailed here may be sufficient for this study’s objectives 

and useful for other researchers interested in community responses to disturbance. 

 

Preliminary visualizations indicate that there will likely be species- and taxa- specific responses 

to each disturbance treatment. These results provide an early indication that I may be able to 

capture fairly fine-scale responses of at least medium-large mammals and flying insects. Current 

results mainly provide insights on response to light treatments, since there were fewer sound and 

combined light/sound trials in the first season of data collection. Considering I have not yet 

implemented more complex modeling to account for seasonal variations or other covariates, it is 

surprising that there is already an indication of mammalian avoidance and flying insect attraction 

to light treatments, providing limited support for hypothesized relationships. 

 

Future analysis of these data will involve more complex Generalized Linear Mixed Model 

(GLMM) approaches, as has been used in other studies on light and noise effects on wildlife 

(Shilling et al., 2018; Suraci et al., 2016, 2017). This will allow me to account for seasonal 

variation or other covariates, examine potential habituation effects over time, and incorporate 

decibel and light intensity measurements at each site. 

 

Limitations 
 

There are several limitations that I will have to address in future analyses of these data. I do not 

know whether wildlife will habituate to the treatment effects, and if so, when that occurs. I do 

not yet see strong signals of habituation in the preliminary data, but more analysis will be 

needed. If I see signs of habituation, I may need to restructure the analyses to pair treatment and 

control periods. 

 

Another major limitation of this study is the small number of replicates. This limitation means 

that natural variation across sites may be large, and it may not be possible to account for it with 

random effects when using all data within a single model. Therefore, I will likely have to run 

separate analyses for each site, which reduces my ability to generalize results. However, I will 

explore analysis options that include comparing the magnitude of difference between control and 

treatment across sites. 

 

Conclusions 
 

This study is the first of its kind to examine the impacts of noise and light from cannabis 

cultivation on wildlife in controlled and replicated field experiments. This research is timely and 

valuable for policymakers, farmers, and the general public. While these preliminary results are 

not yet enough to support management recommendations, the methods described herein may be 
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useful to others who wish to implement similar study designs. To that end, I will list advice 

below to avoid some of the potential pitfalls that I have encountered during study design 

implementation that other researchers should consider when formulating their study plans. 

 

1. Consider options for sourcing power carefully 

 

Speakers and lights require a large energy input. Battery power, such as what has been used for 

motion-triggered speaker trials (e.g. Suraci et al. 2017) is insufficient to power continuous use. 

Therefore, careful consideration should be given to power source options available in each study 

location. Solar power is a useful option for remote locations, but it is important to recognize the 

weight and equipment needed for installation, and the expertise needed for maintenance. It can 

also be less reliable than hard-wired power. 

 

2. Select compatible monitoring methods 

 

Labor costs are considerable on a project with repeated ongoing treatment rounds. To reduce the 

amount of time and energy required for regular data collection, it is useful to coordinate 

monitoring schedules for different taxa or methods, which might involve limiting monitoring 

equipment to those which can be rotated at the same interval. So far, I have found all methods to 

be amenable to the same interval timing, except for the bat acoustic monitors and insect pitfall 

traps which use a shorter interval. 

 

3. Partner with taxonomic experts 

 

Each taxa-specific monitoring approach has its own considerations and pitfalls. Therefore, it is 

important to partner with experts on the specific methodology used, particularly when it comes 

to validating the data. 

 

4. Create realistic budgets 

 

Multi-taxa field experiments take considerable time, effort, and funding (Blickley & Patricelli, 

2010). It is important to be realistic about the number of people needed, cost of equipment, and 

time. This is particularly important considering there may be a pilot period where adjustments 

need to be made, and additional costs incurred. While the main source of delay for this project 

was the COVID-19 pandemic, at the original conception of the study design, I also 

underestimated the number of years implementation would take before data collection could 

begin. 

 

With these considerations in mind, hopefully this and other studies will add to the mechanistic 

understanding of wildlife response to disturbance. 
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Conclusion 
 

This dissertation has explored the ecological outcomes of cannabis legalization at multiple 

spatial scales and via multiple disciplinary lenses. I integrated methods from landscape ecology, 

land system sciences, social methods, wildlife biology, behavioral ecology, and community 

ecology to understand legacy cannabis landscapes, their socio-ecological drivers, and potential 

consequences for wildlife. The results of my research help inform an urgent information gap on 

cannabis agriculture, which can assist with policy, regulation, and land use decision-making. 

 

Chapter 1 laid an important baseline for cannabis land use in southern Oregon. In this chapter, I 

found that while production was relatively small-scale and had a small total cultivated footprint, 

farms were clustered in hotspots that overlapped with species of concern, such as fishers and 

coho salmon. 

 

In Chapter 2, I built off the maps from Chapter 1, using farmer interviews to inform models of 

land use and land use change. I documented a dramatic increase in cannabis production post-

legalization, and found multiple drivers of land use that present potential concerns for ecological 

effects, such as a preference for rural parcels and those closer to rivers. At the same time, 

however, I identified farmer environmental stewardship values that may also provide 

opportunities to mitigate potential environmental harm. 

 

In Chapter 3, I monitored wildlife space use and space use intensity on and surrounding cannabis 

farms, and identified species-specific responses to cultivation. I found that despite their small 

size, cannabis farms influenced the space use responses of most species. 

 

Finally, in Chapter 4, I described the methods for a first-of-its-kind study on the impacts of noise 

and light from cannabis cultivation on wildlife in controlled and replicated field experiments. 

Preliminary data from the first season of data collection hold promise for this approach to detect 

response thresholds of wildlife including insects, rodents, reptiles, bats, birds and larger 

mammals. 

 

Here, I take the liberty to apply personal interpretation to summarize some broad conclusions 

from my work and future research opportunities. 

 

1. There are valid environmental concerns for cannabis agriculture’s ecological impacts 

 

At the outset of this dissertation, I was unsure what I would find. I heard everything from 

“cannabis farming is too green to hurt the environment” to “cannabis will destroy the entire west 

coast.” While the reality is not as extreme as what has been documented on public land 

production sites (e.g., Gabriel et al., 2015), small-scale private land cannabis farming in rural 

areas does seem to have a negative ecological effect on surrounding wildlife, which should be 

expected from almost any new land conversion. This emphasizes the importance of land use 

planning for cannabis development, and on-site mitigation efforts. 

 

There remain many open questions about the effects of cannabis production on wildlife. While 

Chapter 3 looked at responses of wildlife with regard to space use, follow up research on health 
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outcomes or long-term survival of individual animals would be useful. Further species-specific 

studies continue to be valuable to look at population-level impacts for culturally or ecologically 

significant animals, particularly in freshwater systems. There are also still gaps in understanding 

wildlife community-level effects of cannabis farming, such as potential decoupling of predator-

prey relationships. In addition to observational data, there are also avenues for future 

experimental research approaches to study the relationship of cannabis and wildlife. For 

example, specific on-site practices require further research to inform best management practices. 

While Chapter 4 lays out a methodology to approach future research on cannabis-associated light 

and noise, similar studies could be done on a wide range of farming practices that may be unique 

for cannabis, including integrative pest management, water use, plastic use (such as mulch or 

netting), or soil management.  

 

In addition to specific impact studies, broader research that examines tradeoffs between styles of 

cultivation in different landscapes would help policymakers design incentives for modes of 

production that might be least impactful for a given region. For example, while my dissertation 

focused on small-scale farming, it is likely that the effects documented in Chapter 3 are less than 

would be seen on larger industrial farms in similar rural areas. Using concepts such as land 

sparing and land sharing (Kremen, 2015), it might be possible to prioritize areas where cannabis 

farming should be excluded, areas where it should remain small-scale, or areas where it is 

appropriate for larger production facilities based on conservation and sustainable development 

goals. Currently, competition within the cannabis market ties together different modes of 

production. Future research on how these connections function would be useful to predict trends 

in the cannabis industry. For example, the future of small-scale farming in the cannabis industry 

seems to be tenuous at this time, as the interviews from Chapter 2 emphasized (see also Dillis, 

Polson, et al., 2021). Studies on the declines of small-scale cannabis farming may highlight 

policy avenues that could preserve a space for regulated craft cannabis production in expanding 

cannabis markets. 

 

2. Education and outreach may be underused tools for conservation with cannabis 

 

In each stage of this dissertation, whether formally interviewing farmers for Chapter 2, or while 

setting cameras for Chapter 3, I have repeatedly been struck by the lack of outreach targeting 

cannabis farmers. As Chapter 2 results emphasize, there may be an untapped environmental ethic 

of cannabis farmers that could be targeted by conservation efforts. Currently, most conservation 

tools for cannabis emphasize the role of enforcement, but far less effort has been placed on 

engaging cannabis-producing communities themselves.  

 

Further research on the effectiveness of outreach tools with cannabis will be critical for 

designing dynamic conservation interventions. This research could focus on education and 

outreach methods, such as those produced by resource conservation districts; on certification 

programs for best management practices; or on equity programs designed to reduce barriers to 

entry and counter historical marginalization (such as California’s Social Equity Grants for local 

jurisdictions). 
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3. Future conservation interventions should partner with farmers 

 

The illicit history of cannabis sometimes prevents cannabis farmers themselves from being 

included in discussions on regulation (Polson, 2015). During the research for this dissertation, 

and especially during outreach events with the Cannabis Research Center, I have had the 

privilege to interface with people who care about conservation in cannabis landscapes across 

positions, from growers themselves, to those in regulatory or enforcement agencies. Many 

cannabis farmers have innovative ideas for ways to improve cannabis policy and regulation in 

ways that support conservation goals. Moreover, they can also often provide insights into 

unintended consequences of cannabis policy.  

 

Continued research on the effectiveness of cannabis policy and whose voices are included in the 

policymaking process is important, however, it is equally important to connect this research with 

policymakers and regulators. 

 

4. The cannabis industry forms a social-ecological system that mirrors many of the land-based 

conflicts in the western US 

 

It is important to approach cannabis systems in a way that incorporates their social and 

ecological context, as emphasized in Chapter 2. This is an approach that is useful beyond 

cannabis systems as well. By spanning issues of land use and human-wildlife 

conflict/coexistence, the social-ecological cannabis systems reflect many of the conservation 

challenges facing the rural western US and in other parts of the world. Future research could 

directly compare cannabis land use to other agricultural frontiers, or explore cannabis systems as 

a case study for questions on land use prioritization, sustainable agricultural practices, equitable 

policy solutions, and more. It is my deep hope that interdisciplinary cannabis research continues, 

due to both its specific timely significance and broader relevance to conservation science.  
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