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Abstract

Loop Condensation in Quantum Dimer Models

by

Christopher Mott Herdman

Doctor of Philosophy in Physics

University of California, Berkeley

K. Birgitta Whaley, Co-Chair

Ashvin Vishwanath, Co-Chair

Topologically ordered phases of matter are quantum liquids with a non-local quantum order.
Because of their unique properties due to the non-local quantum entanglement present in
these phases, topological phases have been proposed as the basis of a physically fault-tolerant
quantum computer. The formation of such topological order is well understood in terms of
the mechanism of loop condensation in systems with loop-like degrees of freedom. Certain
quantum dimer models posses topologically ordered dimer liquid ground states and can be
mapped to loop models. In this dissertation we present a study of the geometric properties
of the loop condensates of quantum dimer models and related models using classical Monte
Carlo as well as ground state quantum Monte Carlo calculations. Additionally, we present
an approach for the robust experimental generation of a topologically ordered phase in a
system of neutral atoms trapped in an optical lattice.
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Preface

The structure of this dissertation is the following:

• Chapter 1 is a brief review of the relevant background of topological phases, quantum
computation, loop condensation, and quantum dimer models.

• Chapter 2 is an overview the the numerical methods used here, in particular classical
and quantum Monte Carlo methods. This chapter describes in detail the path integral
ground state quantum Monte Carlo code for locally constrained systems that was
developed by the author.

• Chapter 3 is a study of loop condensation in the triangular lattice quantum dimer
model. Sections 3.1-3.6 is a discussion of classical Monte Carlo calculations of dimer
wave functions that was published as reference 49. Section 3.7 presents quantum Monte
Carlo calculations that have not appeared elsewhere.

• Chapter 4 presents a classical Monte Carlo study of loop condensed states on the square
lattice.

• Chapter 5 presents a quantum Monte Carlo study of the quantum 3-dimer model on
the triangular lattice.

• Much of chapter 6 appeared in reference 50 and was done in collaboration with co-
authors. Section 6.3 is a greatly expanded version of what appeared in reference 50
and is primarily this author’s work.
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Chapter 1

Introduction

This chapter gives an overview of the background for quantum computa-
tion, topological phases, loop condensation, and quantum dimer models,
as relevant to the rest of this dissertation.

1.1 Quantum Computation

Certain classes of problems can not be e�ciently solved by any known algorithm that can run
on a traditional computer. A famous example of such a problem is the prime factorization of
large numbers: the best known classical algorithms require a computation time that grows
exponentially with the number of digits in the number. This computational ine�ciency is
taken advantage of by many encryption schemes used for internet security. However, in the
past few decades, several algorithms that take advantage of the law of quantum mechan-
ics have been formulated which would allow for the e�cient solution of such “unsolvable”
problems [113, 93].

The potential power of quantum algorithms has sparked great interest in building a quan-
tum computer, and much progress has been made towards that goal. The standard paradigm
of quantum computation relies on the storage and manipulation of quantum information in
localized quantum bits (qubits). The quantum information stored in ordinary qubits frag-
ile, as interactions with the surrounding environment tend to lead to decoherence and loss
of the quantum information. The standard approach to building a fault-tolerant quantum
computer is to run quantum software that corrects errors as they occur; however, running
error correction algorithms in addition to the desired computational algorithm requires extra
quantum computational resources that, at the present time, are exceedingly scarce [98, 99].

An alternative approach to designing a fault-tolerant quantum computer is to design it to
be physically robust, such that no error-correcting algorithms are required. This idea can be
viewed as a quantum analog of the robustness of classical computers, where information is
stored and processed somewhat non-locally in a robust phase of matter a such that it is not
sensitive to noise and thermal fluctuations. While classical information can be robustly stored
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in conventionally-ordered phases of matter (such in one of two ferromagnetic states of an Ising
model), the quantum coherence of a many-body system in a conventional, symmetry broken
phase of matter would be fragile, as local noise could couple to the local order parameter
and cause decoherence.

The solution, originally proposed by Alexi Kitaev and Michael Freedman, is to store and
manipulate quantum information non-locally in a quantum liquid state with no-local order-
ing [64, 42, 43]. To store and process quantum information, such a liquid state must have a
degenerate ground state (analogous to a classical magnetic bit) and an energy gap to excita-
tions which may cause errors. Topologically-ordered phases of matter fit these requirements,
and Freedman and Kitaev proposed storing and manipulating quantum information in the
many-body state of a topological phase [23, 90].

1.2 Topologically ordered phases of matter

Topologically ordered phases of matter are 2+1 dimensional quantum liquids with a non-
local quantum order [132, 90]. Unlike conventionally ordered phases, a topological phase
has no broken ordinary symmetry, and therefore no characteristic local order parameter
which arises from a broken symmetry. Despite this lack of symmetry breaking, topologically
ordered ground states have a degeneracy on surfaces of non-trivial topology, which is due to
a non-local quantum entanglement; this contrasts with a conventional liquid ground state,
which would be expected to be unique.

There are several features of these phases that make them of particular interest for
quantum information processing:

• They are quantum liquids with vanishing local correlation functions and no conven-
tional broken symmetry

• The ground state has a robust degeneracy

• There is a finite energy gap to excitations

• The low energy excitations are anyonic quasiparticles with fractional statistics

We will now discuss how topological order, and consequently these properties, arise in sys-
tems with loop-like degrees of freedom.

Loop operators in topological phases

Consider a quantum system with a set of loop operators {L↵
` } that commute with the

Hamiltonian:
n

L↵
`

o

:
h

L↵
` , H

i

= 0,8↵, `.
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Figure 1.1: Schematic energy spectrum of a model with a topologically ordered ground
state. W is a loop operator which connects degenerate ground states, and S

�

is an open
string operator that creates quasiparticle excitations.

Here, ↵ labels the type of loop operator and ` defines a closed spatial loop. The symmetries
of a liquid phase suggests that the action of these operators depend only on the topological
properties of the loops, not their microscopic details; therefore, their action is the same for
two loops that are related by isotopy. For contractable loops, these operators commute, and
on the sphere there is a single non-degenerate ground state:

h

L↵
` , L�

`0

i

= 0, (`, `0) 2 {contractable loops} .

However, on a torus (or surfaces of higher genus), there are loop operators W↵
1,2, that are

associated with non-contractible loops, c
1,2 that wind around one of axes of the torus; in

general these loop operators may not commute:
h

W ↵
1

, W �
2

i

6= 0, for some (↵, �) .

In the simplest cases, this distinction is traced to to the intersection number of the loops,
I(`, `0): if ` or `0 is contractable, then I(`, `0) is even, but I(c

1

, c
2

) is odd.
If |�a

0

i is a ground state on the torus and is an eigenstate of W↵
1

with eigenvalue wa
1

, then
|�a

0

i is not an eigenvalue of W �
2

, and therefore W �
2

|�a
0

i is another orthogonal ground state
(note that since [W �

2

, H] = 0, W �
2

|�a
0

i is also a ground state). We see then that the existence
of non-commuting winding loop operators that commute with the Hamiltonian leads to a
ground state degeneracy (see figure 1.1). The degeneracy of this ground state subspace is
determined by the algebra that is represented by {W ↵

1,2}.

String operators

Associated with every closed loop operator L↵
` is an open string operator S↵

�

i,j

which com-
mutes with the Hamiltonian everywhere except at the endpoints of �i.j, (i, j). On a surface ⌃
with a boundary @⌃, for certain choices of boundary conditions, the boundary Hamiltonian
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Hb will commute with all S↵
�

i,j

such that if �i,j terminates on the boundary, then S↵
�

i,j

|�a
0

i
remains a ground state. If ⌃ has multiple disconnected boundaries, {@⌃a}, then string oper-
ators starting and ending with di↵erent boundaries will not commute with non-contractible
loop operators, and there will be a ground state degeneracy.

If �i.j terminates in the bulk, then [S↵
�

i,j

, H] 6= 0 and S↵
�

i,j

will create quasiparticle
excitations at (i, j). A closed loop operator can then be viewed as virtually creating a pair
of quasiparticles, transporting one around the loop and annihilating them. If ` encloses the
endpoint i of �i,j, then L�

` can be viewed as braiding a quasiparticle around the particle
at i. For bosons or fermions, an exchange generates a statistical phase of ±1, so a braid,
which is a double exchange, is the identity. If [S↵

�

i,j

, L�
` ] 6= 0, then this braiding operation is

not the identity, and there is some statistical phase associated with the braiding operation.
Consequently, the quasiparticles have fractional statistics, and the quasiparticles are called
“anyons”. If a braiding operation simply generates a statistical phase then di↵erent braiding
operations will commute; in certain models braiding operations don’t commute, and the
quasiparticles will then have non-Abelian statistics.

Types of topological phases

Topological phases my be classified according to the types anyonic of quasiparticles present
in the low energy spectrum [90]. Such anyonic quasiparticles have a well defined behavior
when two anyons undergo fusion or are braided (see figure 1.2), and these properties can be
used to classify the nature of the topological order. If all braiding operations commute, then
the braiding statistics and the topological phase are classified as Abelian; if some braiding
operations don’t commute, then the phase is said to have non-Abelian topological order.
Additionally, the ground state degeneracy on a torus is determined by the types of anyonic
quasiparticles present in the spectrum; in the simplest cases, the degeneracy of the ground
state on a torus is equal to the number of quasiparticle types (including the vacuum).

The simplest type of topological order, which will be the focus of the rest of this dis-
sertation is so-called Z

2

topological order [64]. This topological order is described by the
deconfined phase of a discrete Z

2

gauge theory [69]. In a model with a Z
2

topologically
ordered ground state, there are two basic types of quasiparticles, the electric e-type particles
and magnetic m-type particles (“electric” and “magnetic” refer to the electric and magnetic
charges in the gauge theory). Both e and m particles independently act as bosons under
exchange and braiding, however, a mutual braiding operation, where an e is braided around
and m (or vice-versa) generates a statistical phase of �1. Thus the self statistics of these
particles are bosonic, but their mutual statistics are fractional; they are thus relative Abelian
anyons. There are four fundamental topological charges in this case: {1, e,m, em}, where 1
is the trivial (vacuum) charge and em is a bound state of an e and m. Consequently, there
is a four-fold ground state degeneracy of a Z

2

topological phase.
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Figure 1.2: Illustration of the worldlines anyonic quasiparticles undergoing fusion and braid-
ing processes in a topologically ordered phase.

Low energy Hilbert space

So far we have only discussed the abstract properties of the loop algebra which underlies a
topological phase. To understand a microscopic model which possess topological order, we
consider a microscopic Hilbert space which may represent this loop algebra. In the simplest
models, the Hilbert space has degrees of freedom that live on the links of the lattice and
comprises closed loop coverings of the lattice. Here the ground state is a fluctuating loop
gas and the operators L↵

` create or measure loops in the loop gas. To generate phases with
non-Abelian statistics, we must generalize the loop Hilbert space to a string-net Hilbert
space in which the links may have more than two labels, and with fusion rules which define
how labels can meet at the vertices [78].

Topological quantum computation

The model of topological quantum computation proposed by Kitaev and Freedman takes
advantage of these features of topologically ordered phases [64, 42]. The degeneracy of the
ground state allows for quantum information to be stored in the ground state subspace.
The liquid nature of the ground states ensure that the splitting of this degeneracy by local
perturbations is exponentially small in the system size. Logical operations are performed
by the action of loop operators, which act to braid anyons around non-contractable loops
in the system. The action of these braids only depends on the homotopy class of the loop
formed, not the fine details of the path of the braid, and therefore logical operations are
robust to local deformations of the path. Errors due to perturbations which cause virtual
tunneling between ground states are exponentially suppressed due to the finite energy gap
to the creation of quasiparticles, and the non-local nature of the loop operators that cause
the transitions.
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Characterization of topological order

Given the lack of a local order parameter that signifies topological order, detecting topolog-
ical order in a state (analytically, numerically or experimentally) is challenging. One may
indirectly demonstrate the existence of topological order by detecting each of the features
enumerated above: a lack of broken symmetry, a robust & finite degeneracy, a finite energy
gap, and anyonic quasiparticles. A more direct measure exists in the entanglement entropy:
topological ordered phases have a universal constant subleading term in the bipartite en-
tanglement entropy [65, 79]. This constant, known as the topological entanglement entropy,
gives a signature not only of the existence of topological order, but the type of topological
order present. While entanglement entropy is generally di�cult to calculate numerically,
recently computational methods have been developed that allow for computing topological
entanglement entropy in complex non-soluble lattice models [56, 45, 82].

1.3 Loop Condensation

Quantum models with loop-like degrees of freedom may posses a variety of phases, including
ordered loop crystalline phases as well as disordered, fluctuating loop gas phases. The
formation of fluctuating loops on all length scales is known as loop condensation; a loop
condensate is a scale-invariant, dense loop phase with loops fluctuating on all length scales.
The presence of large fluctuating loops may generate the non-local entanglement present in
a topological phase, and consequently, loop condensation is a mechanism for the generation
of topological order [32, 30, 78, 39]. Here we will discuss the properties of loop condensates.

Classical loop models

Here we consider a classical loop model, where the configuration space consists of closed
loop coverings of a lattice (figure 1.3). Such a loop covering may be fully-packed, with every
vertex of the lattice touched by a loop, or dilute, with some vertices that are not touched
by any loop. Such a model may have disordered loop phases as well as ordered loop phases
that break some of the symmetries of the lattice.

Defining the loop density on a link l of the lattice to be nl, we can consider the loop
density-density correlation function,

C (~r) = hnlnl0i � hnli hnl0i ,
where ~r is the displacement between links l and l0. In an ordered phase, C(~r) will detect
the symmetry breaking of the loop density, and remain finite. In a disordered loop phase,
C(~r) will decay to zero as |~r| !1. We can distinguish two types of disordered loop gases:
critical loop gases where C(~r) decays as a power law,

C (~r) ⇠ r�⌫ (1.1)
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and disordered loop gases with exponentially decaying correlations,

C (~r) ⇠ exp
⇣

�r

⇠

⌘

,

where r = |~r|.
To fully describe a loop configuration, we must consider the loop distribution P (s),

the probability a loop has length s. In a short-looped phase, this distribution will decay
exponentially,

P (s) ⇠ exp

✓

� s

s
0

◆

,

where s
0

is the characteristic loop length. In a dilute loop phase with vanishing loop density,
C (r) will also decay exponentially. However, in a dense disordered loop phase, if there are
loops on all length scales, the loop distribution can be scale-invariant and therefore decay as
a power law:

P (s) ⇠ s�⌧ . (1.2)

This is what we will refer to as a scale-invariant loop liquid, independent of the nature of
the density-density correlations.

In a scale-invariant loop liquid, the scaling of the length of a loop with it’s radius R(`)
determines the fractal dimension Df of the loops:

s (`) ⇠ R (`)D
f .

These geometric exponents may be related by a scaling relation to the two-loop correlation
function G

2

(r) which determines that probability that two points separated by a distance r lie
on the same loop [107]. Since G

2

(r) is fundamentally a non-local correlation function (since’s
determined the existence of single loop connecting the points), this power law may hold even
in the absence of local correlations. Consequently, even in loop models with exponentially
decaying density-density correlations, there may be a geometric critical exponent describing
the fractal behavior of the loop gas, was well as the loop distribution function. The exponent
x

2

that governs the power-law decay G
2

(r) ⇠ r�2x2 determines the geometric exponents ⌧
and Df [107, 75]:

Df = 2� x
2

, ⌧ = 1 +
2

2� x
2

.

The novel behavior of quantum loop liquids arises in phases with scale-invariant loop
distributions. The existence of fluctuating loops on all lengths scales in a quantum loop
model generates the non-local quantum entanglement that is present in a topologically or-
dered phase. A loop condensed phase is a quantum loop model with a scale-invariant loop
distribution. Therefore, we will study the geometric exponents of loop condensates, as char-
acteristic feature of these models.
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Quantum Loop Models

The simplest example of a topological phase is described by a quantum loop gas [30, 32, 39,
64]. Consider a loop algebra with the elements {Lx

` , L
z
¯`
}:

Lx
` L

z
¯` = (�1)I(`,¯`) Lz

¯`L
x
` (1.3)

where I(`, ¯̀) is the intersection number of ` and ¯̀. For contractible loops, I(`, ¯̀) is even, so
[Lx

` , L
z
¯`
] = 0. However, two non-contractible loops on the torus may have an odd intersection

number:

W x
1

W z
2

= �W z
2

W x
1

, W x
2

W z
1

= �W z
1

W x
2

(1.4)
h

W x
1

, W x
2

i

= 0,
h

W z
1

, W z
2

i

= 0

where W x.z
1,2 are loop operators that are associated with loops that wind around one of the

non-trivial cycles of the torus, c
1

, c
2

. This algebra can be implemented in a Hilbert space of
closed loop coverings of a lattice (see figure 1.3).

Here we consider a Hilbert space on a lattice, where the degrees of freedom are unoriented
loop segments that live on the links of the lattice; each link is an Ising degree of freedom,
occupied or unoccupied by a loop segment (or dimer). The Hilbert space comprises closed,
non-intersecting loop coverings of the lattice. Defining the dimer creation/annihilation op-
erators as d+

l and d�l on a link l, we define the loop operator Lx
` as a product over the links

in `

Lx
` ⌘

Y

l2`

�

d+

l + d�l
�

.

Therefore Lx
` creates the loop ` when acting on the vacuum, and considering |;i to be the

empty lattice, a state |{`i}i comprising a set of loops {`i} if formed from |;i by applying a
product of Lx

` operators:
�

�

�

{`i}
E

=
Y

`2{`
i

}

Lx
`

�

�

�

;
E

.

We define ¯̀ to live on the links of the dual lattice and define Lz
¯`

as

Lz
¯` ⌘

Y

l?¯`

2

✓

nd
l �

1

2

◆

,

where nd
l = d+

l d�l is the dimer number operator. Loop configurations |{`i}i are eigenstates of
Lz

¯`
with eigenvalues ±1, and Lz

¯`
measures the parity of the number of loops which intersect

¯̀. Subsequently, Lx
` and Lz

¯`
satisfy the algebra defined by (1.3).
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Figure 1.3: An examples of a loop covering of the square lattice

To form a liquid state, we can consider an equal-superposition of all loop coverings of a
lattice in a given winding parity sector:

�

�

�

 p1,p2

E

=
X

{`
i

}2(p1,p2)

�

�

�

{`i}
E

. (1.5)

In (1.5), (p
1

, p
2

) defines the parity of the loop winding numbers along the two cycles of the
torus. If {| p1,p2i} are liquid states for which all correlation functions decay exponentially,
then we can imagine that these states can not be distinguished by a local order parameter,
since, no local operator can be sensitive to the winding number.

The winding numbers can be changed by ±2 by a local operation which cuts and re-
connected two non-contractable loops, however the parity of the winding number remains
invariant under all such local operations. Therefore, the four states labeled by  ±,± are not
only eigenstates of all Lz

¯`
, but also are +1 eigenstates of Lx

` for contractable loops ¯̀:

Lz
¯`

�

�

�

 ±,±

E

=
�

�

�

 ±,±

E

, for contractable loops ¯̀

Lx
`

�

�

�

 ±,±

E

=
�

�

�

 ±,±

E

, for contractable loops `

For non-contractable loops, Lx
` may change the winding parity, so the operators W x

1,2

will connect the states | p1,p2i which are eigenstates of W z
1,2. Therefore we can see that the

action of {W x,z
1,2 } on {| p1,p2i} satisfies the algebra given in (1.4):

W x
1

�

�

�

 
++

E

=
�

�

�

 �+

E

W z
2

�

�

�

 �+

E

= �
�

�

�

 �+

E

We have shown now how a ground state degeneracy can arise in a loop gas. If the non-
contractible loop operators {W x,z

1,2 } commute with the Hamiltonian and {| p1,p2i} are energy
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Figure 1.4: Illustration of the 4-body interactions in the toric code on the square lattice

eigenstates, then they will be degenerate. The robustness of this degeneracy depends on
the liquid nature of these states: since {| p1,p2i} are only distinguished by the non-local
winding parity, we don’t expect that a local perturbation can break this degeneracy in the
thermodynamic limit.

Kitaev’s Toric Code

The cannonical model with a quantum loop gas ground state is the toric code [64]:

H
TC

= ��e

X

v

Av � �m

X

p

Bp,

Av ⌘
Y

j2v

�z
j , Bp ⌘

Y

j2p

�x
j .

Here, {�j} are spin-1/2 degrees of freedom that are located on the links of a square lattice on
a torus. v and p label the vertices and plaquettes of the lattice (see figure 1.4). The ground
state, | 

TC

i, is an eigenstate of all Av, i.e. Av| TC

i = +| 
TC

i for all v. These eigenstates
of the vertex operators Av have 0, 2 or 4 down spins touching each vertex. The ground
state subspace can be interpreted in terms of a closed loop model by choosing a reference
configuration |Ri in the �z basis (from the subspace of +1 eigenstates of all Av) that is
defined as the empty loop state. For example, we may choose |Ri to be the spin polarized
state, |{8�z

j = +1}i. Any other configuration in the Av = +1 subspace can be reached by
applying a product of closed loop operators:

|Ai =
Q

`2{`
A

}
R

Lx
` |Ri, Lx

` ⌘
Q

j2` �x
j , (1.6)

where ` is a closed loop along the links and {`A}R a closed loop covering of the square lattice.
Since [Av, Lx

` ] = 0,8v, |Ai is in the Av = +1 subspace for all {`A}. In this way, the closed
loop covering defining |Ai is {`A}R.
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In general {`A}R may comprise both contractible loops and non-contractible loops that
wind around the torus. The winding sector (w

1

, w
2

)A is defined by the number of windings in
{`A}R about the two axes of the torus. Though the the plaquette term Bp causes fluctuations
in these loop coverings, the parity of the winding number is conserved. The operator

W z
1,2 ⌘

Y

j2c̃1,2

�z
j (1.7)

measures the parity of the winding sector and commutes with H
TC

, where c̃
1,2 are loops

that pass through the faces of the plaquettes and wind about one of the axes of the torus.
Therefore, the ground state subspace is divided into four topological sectors that are defined
by the parity of these two winding numbers.

The ground state | 
TC

i is an equal superposition of all loop coverings in a given topologi-
cal sector, and has fluctuating loops on all length scales. This quantum loop gas has no local
order, but does possess topological order and is described by the deconfined phase of Z

2

gauge
theory [64]. By considering the limit �e ! 1, perturbations can drive transitions within
the closed loop subspace [124]. For example addition of a magnetic field H 0 = �h

P

j �z
j will

drive a transition to a spin polarized phase: for h > |hc| the ground state is a dilute loop
crystal, and for h < � |hc| the ground state is a fully packed loop crystal. These transitions
do not involve spontaneous symmetry breaking; we can alternately consider the e↵ect of
adding a loop interaction such as H 0 = J

P

hi,ji �
z
i �

z
j which favors a rotational symmetry

broken loop crystal for J � �m. We note that loop crystals need neither be dilute nor
involve short loops; however, we may choose |Ri to reflect the broken symmetries of the
crystal phase, such that the resulting loop configuration will involve only short loops.

1.4 Quantum dimer models

In a hard-core dimer model, the degrees of freedom are dimers that live on the links of a lattice
(see figure 1.5), and the hard-core constraint forbids more than a single dimer from touching
each vertex [87]. Classical dimer models have be studied in statistical mechanics for decades
and are known to display unusual disordered phases [5, 66, 29, 6]. Quantum dimer models
(QDMs) were first presented in the context of spin-liquids [66, 29, 6]. Anderson proposed
the idea of a resonating valence bond (RVB) liquid as a possible quantum liquid state in a
frustrated magnet. In a RVB state, spin singlets are formed between nearby spins on the
lattice and these singlets resonate around the lattice [6]. In the simplest model of a RVB
state, the singlets are taken to be only between nearest-neighbors on the lattice; if one makes
the further simplification that these valence bond coverings of the lattice are orthogonal, this
reduces to a hard-core quantum dimer Hilbert space. While no naturally occurring material
is known to be described by a quantum dimer model, because of their novel properties, there
have been several proposals to experimentally engineer QDMs. In particular, certain spin
and related Bose-Hubbard models map to QDMs when there is a large local energy penalty
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which acts as the dimer constraint [9, 40]. Additionally, Josephson-Junction arrays have
been proposed as experimental system where a QDM may be engineered [1, 52].

The quantum dimer model was first introduced on the square lattice by Rokhsar and
Kivelson [106]. The Hilbert space of the QDM comprises fully-packed, non-colliding dimer
coverings of a lattice, where all dimerizations are by definition orthogonal. The only way to
rearrange dimers in a fully-packed dimerization without violating the hard-core constraint
is to flip dimers around a closed loop on the links of the lattice, where the links in the loop
are alternately occupied and unoccupied by dimers. Consequently, the minimal quantum
dynamics give a resonance between the two orientations of dimers around a “flippable”
plaquette. On a square lattice this corresponds to to parallel dimers on a square plaquette;
on the triangular lattice a flippable plaquette is a length 4 rhombus lattice containing two
parallel dimers (see figure 1.5).

The canonical QDM Hamiltonian on the square lattice [106] is:

H
RK

⌘
X

⇤
�t

⇣

| ih | + h.c.
⌘

+ v
⇣

| ih | + | ih |
⌘

,

where the sum is over all square plaquettes and | i and | i represent the two possible
flippable dimer configurations around a plaquette. The t term gives the dimers kinetic
energy, and the v term represents an interaction between parallel dimers. In this work we
will only consider t > 0. The QDM Hamiltonian was generalized to the triangular lattice,
by Moessner and Sondhi [106, 89], where the minimal flippable loop is a rhombus:

H
RK

⌘
X

p

�t
⇣

| ih | + h.c.
⌘

+ v
⇣

| ih | + | ih |
⌘

. (1.8)

In (1.8), the sum is over all rhombus plaquettes labeled by p (including di↵erent orientations
in the case of the triangular lattice).

These local plaquette flip dynamics are not ergodic over all dimer configurations, and con-
sequently split the Hilbert space into topological sectors that are defined by quasi-ergodicity
of the local dynamics. We may define topological sectors by considering a loop c through
the faces of plaquettes that winds around one of the directions of the torus. On the square
lattice, we may label the links that cross c alternately as A and B; a plaquette flip (or
any other local rearrangement) conserves NA � NB, where NA,B are the number of links of
each type occupied by a dimer. Therefore, on the square, as well as other bipartite lattices,
there is an extensive number of topological sectors labeled by NA � NB for each of the two
directions of the torus. However, on the triangular lattice, plaquette flips conserve merely
the parity of the total number of dimers crossing c; on a torus, there are 4 such parity sec-
tors, two for each of the directions around the lattice. There also exist a finite number of
symmetry related “staggered” configurations with no flippable plaquettes, which are frozen
under plaquette flip dynamics; it is believed that plaquette flips are ergodic in each parity
sector excluding these staggered configurations [89].
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Figure 1.5: Examples of dimerizations of the square and triangular lattices. The thick green
dimers are the physical degrees of freedom. The fully-packed, hard-core constraint requires
that exactly one dimer touches each vertex of the lattice.

At the point v = t, the so-called RK point, the exact zero energy ground state of H
RK

is
the equal superposition of all dimerizations:

|RKi =
X

C

|Ci (1.9)

where the sum in equation (4.1) is taken over all dimer configurations C in a topological
sector [106]. Consequently, the ground state at the RK point has an extensive degeneracy
on the bipartite lattices but a finite degeneracy on non-bipartite lattices.

Since the norm of |RKi is equal to the partition function of the corresponding classical
dimer model, expectation values of diagonal observables are identical to those of the classical
dimer model. Dimer-dimer correlation functions of the square lattice classical dimer model
decay as a power law, however, on the triangular lattice, dimer-dimer correlation functions
are known to decay exponentially [31, 53]. Additionally, imaginary-time correlation functions
of equation (4.1) can be related to dynamic correlation functions of a Monte Carlo simulation
of the classical dimer model [48, 47, 20]. On the square lattice, such a calculation shows
that the RK point is gapless, whereas on the triangular lattice H

RK

has a finite gap [57].
Therefore, the bipartiteness of the lattice determines the nature of the liquid state at the RK
point: on bipartite lattices this is a gapless critical dimer liquid, whereas on non-bipartite
lattices the RK point is a gapped dimer liquid.

The bipartite (or non-bipartite) nature of the lattice also determines the ground state
phase diagram surrounding the RK point. For both the square and triangular lattices, there
are staggered states with no flippable plaquettes that are frozen under plaquette flips and
therefore are zero energy eigenstates of H

RK

. For v > t these staggered states are the
ground state, and both the square and triangular lattice QDMs in staggered crystalline
phases. For |v| >> t and v/t < 0, states with the maximum number of flippable plaquettes
are favored. On the square lattice, there are only 4 such states that have a columnar
ordering; consequently there is a columnar ordered crystalline phase for v/t < vs

c < 1. On
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(a) (b)

Figure 1.6: Reference dimer configurations that are representative of dimer crystals in the
triangular lattice QDM. The thick red dimers represent the reference configurations, R

0

. (a)
A columnar configuration that defines Rcol. (b) In the

p
12 ⇥ p12 phase dimers resonate

in 12 site hexagons, colored red in this figure. The thick red dimers show the reference
configuration Rp

12

.

the triangular lattice, there are 12 symmetry related columnar configurations (see figure
1.6) have the maximum number of flippable plaquettes, Nl/6, where Nl is the number of
links in the lattice. Additionally, any configuration reached by translating dimers along any
number of rows of a columnar configuration and by rotating all dimers in any number of
columns of a columnar configuration, generates another maximally flippable dimerization[89].
References 89 and 103 show that quantum fluctuations favor the columnar order, and that
for v/t . �0.75, H

RK

has a columnar dimer crystalline ground state. The staggered and
columnar phases break both translational and rotational symmetries of the lattice.

In addition to these static dimer crystals, the QDMs posses resonating dimer crystals that
break translational symmetries but retain some of the rotational symmetries of the lattice.
On the square lattice, the plaquette phase has parallel dimers that resonate on the face of
plaquettes [77, 121]; there is recently evidence that the plaquette and columnar order overlap
in part of the phase diagram of the square QDM [102]. On the triangular lattice there is a
resonating dimer crystal phase with a 12-site unit cell (see figure 1.6) termed the

p
12⇥p12

phase [89, 104, 103]. In this phase, dimers resonate within 24 link hexagons, and most
translational symmetries are broken. However this phase retains a ⇡/3 rotational symmetry
of the lattice. Ralko et. al. showed that the dimer correlation functions are qualitatively
reproduced by a wave function that is an equal superposition of all dimerizations within the
hexagons [104, 84].

On the square lattice the resonating plaquette phase has been shown to persist up to
the RK point [102, 77], and consequently the RK point is an isolated critical liquid point.
However, on the triangular lattice, quantum Monte Carlo calculations by Moessner and
Sondhi [89] and Ralko et. al. [103] demonstrate that the dimer liquid phase extends beyond
the RK point for a finite range of v/t for v < t and possesses Z

2

topological order. While
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the QDM has been related to Z
2

gauge theory in the literature, no exact mapping from the
deconfined phase of a Z

2

gauge theory to the dimer liquid is known [88, 84].
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Chapter 2

Numerical Methods

This chapter presents a review the the numerical methods used in the
remainder of this dissertation. Section 2.1 gives an overview of classi-
cal Monte Carlo methods, including Monte Carlo sampling of quantum
dimer wave functions with local and directed loop updates, results of
which are presented in later chapters. Section 2.2 gives an introduction
to quantum Monte Carlo methods as well as the details of the path inte-
gral ground state quantum Monte Carlo code developed by the author.

2.1 Classical Monte Carlo Sampling

To compute the thermal average of an observable O in a classical lattice model, one needs
to compute the sum

hOi =
1

Z

X

↵

O↵e��E
↵ , Z =

X

↵

e��E
↵ (2.1)

where ↵ labels the classical configuration, � is the inverse temperature, and Z is the partition
function. Since the size of the classical configuration space grows exponentially with the
number of degrees of freedom in the system (and therefore exponential in the square of the
linear dimension of a 2D lattice model), performing the sum quickly becomes infeasible with
increasing system size.

Similarly, to compute the expectation value of a diagonal operator Ô in a known wave-
function in a lattice system  one needs to compute

D

 | Ô |  
E

=
1

Z

X

↵

O↵ | (↵)|2 , Z =
X

↵

| (↵)|2 (2.2)

Again, since the Hilbert space grows exponentially with the number of degrees of freedom,
direct computation of this sum can only be performed for relatively small lattice systems.
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As we are often interested in the behavior of the system in the thermodynamic limit, a
method whose computational resources scale more slowly (i.e. polynomially) with system
size is preferred.

Since e��E
↵/Z and | (↵)|2/Z are non-negative, we can treat them as a probability distri-

bution, ⇧(↵). To e�ciently compute expectation values, we may choose a statical sample of
configurations {↵}

⇧(↵)

, where the probability of choosing a configuration ↵ is proportional
to ⇧(↵). Accordingly, expectation values can be estimated by computing

hOi
MC

=
X

{↵}⇧(↵)

O↵ (2.3)

For a su�ciently large statistical sample {↵}
⇧(↵)

with Nc configurations, we expect that the
error in the statistical estimator hOi

MC

to decay as 1/
p

Nc.
To generate the statistical sample {↵}

⇧(↵)

, we may use a Markov chain Monte Carlo
method, where one generates configurations in the sample sequentially [13, 83]. The sta-
tistical sample of configuration generated is therefore an ordered set of configurations:
{. . . ,↵i�1

,↵i,↵i+1

. . . }. Here a subsequent configuration will be generated from the pre-
vious configuration by attempting an appropriate update to part of the configuration. We
will define one Monte Carlo update as N

MC

attempted updates to the system such after
NMC updates, updates have been attempted on most of the system. Since generally sequen-
tial configurations will be correlated, for computational e�ciency, we often choose not to
measure observables of every configuration, but only a subset of configurations separated
by an interval nmeas; the frequency of making the measurements is tuned for computational
e�ciency based on the the autocorrelation time tac of the relevant observables.

From a given configuration ↵, we define the transition rate to a configuration � to be
�↵�.To ensure the statistical sampling remains in equilibrium with a probability distribution
given by ⇧(↵), total balance must be satisfied:

X

�

�↵�⇧ (↵) =
X

�

��↵⇧ (�) (2.4)

The most convenient way to ensure total balance is to enforce detailed balance:

�↵�⇧ (↵) = ��↵⇧ (�) (2.5)

Additionally, the set of updates used to generate subsequent configurations must be ergodic
in the relevant configuration space to ensure all configurations can be reached by the Markov
chain.

In particular, we use a Metropolis walk to generate such a Markov chain. The Metropolis
Monte Carlo method is as follows:

1. Given a configuration ↵i, choose a new configuration � with probability W↵
i

�
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2. Compute the acceptance probability:

Pacc = min

✓

W�↵
i

W↵
i

�

⇧ (�)

⇧ (↵i)
, 1

◆

(2.6)

3. Choose a random number 0  r < 1

• If r < Pacc, accept the transition and set ↵i+1

= �

• If r � Pacc, reject the transition and set ↵i+1

= ↵i

4. If there have been n
meas

updates since last measurement, measure observables of con-
figuration ↵i+1

5. Repeat

Monte Carlo sampling of dimer model wave functions with local
updates

The simplest approach to Monte Carlo sampling of a dimer model wave function is to use local
plaquette flip updates. Since plaquette flips are believed to be ergodic in each topological
sector, we may generate subsequent dimer configurations by attempting a local plaquette
flip. The simplest algorithm which satisfies detailed balance is

• Choose a plaquette p at random

• If p if flippable, flip the plaquette with probability P
acc

= | (↵0)|2/| (↵)|2

• Measure observables every n
meas

updates

In the hard-core dimer model, the maximum number of flippable plaquettes on the triangular
lattice is Np/6, and therefore the acceptance rate is always less than 1/6 (at the RK point
hNfpi ⇡ 0.09). We might wish to artificially improve the acceptance rate; one can do this by
creating a table of flippable plaquettes, and updating this table after each update, since a
plaquette flip only a↵ects the neighboring plaquettes in the table. This approach guarantees
that a flippable plaquette is always selected and therefore the acceptance rate can now
approach unity. To maintain detailed balance the acceptance rate is changed to

P
acc

=
Nfp

N 0
fp

| (↵0)|2
| (↵)|2 (2.7)

However there is some computational overhead in maintaining this list of flippable plaquettes.
We find generally that the simple algorithm runs faster for the same statistical errors, despite
the lower acceptance rate.
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Directed-loop Monte Carlo sampling of dimer model wave functions

While local updates are e�cient in a gapped liquid phase such as the RK point of the
triangular lattice QDM, in a gapless phase such as the RK point of the square lattice QDM,
the local update algorithm will have an autocorrelation time that diverges polynomially in
the system size. Additionally, is systems where there are a lot of potential energy minima,
a local update algorithm may get stuck near one minima and thus lose ergodicity. In these
situations, a non-local update algorithm is necessary.

The directed-loop algorithm [123, 109] generates non-local updates in a dimer model by
creating a pair of defects (a doubly occupied vertex and an unoccupied vertex) that violate
the fully-packed, hard-core dimer constraint. One of these defects undergoes a directed
random walk and, when the two defects coincide once again, this generates a new allowable
dimerization, where the dimers have been flipped along the path of the path of the defect [109,
122]. To maintain detailed balance, the probabilities of choosing each direction on a given
step of the random walk must satisfy the directed-loop equations [123].

Consider a step in the loop-update where the loop has entered a vertex v from link l.
We define the probability of choosing link l0 to exit the vertex as Pl,l0 ⌘ tl,l0/wl, where wl is
the weight of the configuration with the dimer on link l. Detailed balance and probability
conservation require

X

l0

tl,l0 = wl, tl,l0 = tl0,l (2.8)

For a given set of weights {wl}, this leads to a set of directed-loop equations.
The simplest case of the directed-loop algorithm is for the RK wave function. The RK

algorithm is a follows:

• Remove a random dimer from link l
0

, creating two unoccupied vertices at v
0

& ṽ
0

• Randomly choose a new link l
1

at v
0

to place a dimer

• Move to vertex v
1

connected to l
1

and remove the dimer from the previously occupied
link

• Repeat until the loop closes back at ṽ
0

At the RK point, this algorithm requires no ”bouncing” or rejection so the the loop with
always close without needed to retrace the previous path, generating a new configuration.
In general we must generalize this algorithm to allow for di↵erent weights for placing dimers
on di↵erent links, and thus must allow for bouncing. Here we consider sampling the square
of the wavefuction �↵(l) = ↵�N

fp . There are three possible weights for a dimer to occupy a
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link {w
0

, w
1

, w
2

}, corresponding to a link with 0, 1 or 2 parallel dimers. The choice w
2

= 1,
so w

2

= w2

1

= ↵4 gives the following directed-loop equations:

1 = (6� n
1

� n
2

) t
02

+ n
1

t
12

+ (n
2

� 1) t
22

+ tb
2

(2.9)

↵2 = (6� n
1

� n
2

) t
01

+ n
2

t
12

+ (n
1

� 1) t
11

+ tb
1

(2.10)

↵4 = n
1

t
01

+ n
2

t
02

+ (6� n
1

� n
2

) t
00

+ tb
0

. (2.11)

In (2.9-2.11), tpq is the weight for a transition between links with p and q parallel dimers, np

is the number of links with p parallel dimers at vertex v, and tbp is rate to ”bounce” back from
a link with p parallel dimers. Since these equations are underdetermined, we can choose a
solution to (2.9-2.11) for which the bounce probabilities vanish at the RK point (↵ = 1):

t
00

= t
01

= t
02

= ↵4

5

, t
12

= ↵2

5

, tb
0

= 0, (2.12)

t
11

=

8

<

:

↵2

⇣

↵2n1�(1�↵2)n2+6(1�↵2)�1

⌘

5(n1�1)

n
1

> 1

0 n
1

 1
, (2.13)

t
22

=

(

↵4n2�↵2(1�↵2)n1+6(1�↵4)�1

5(n2�1)

n
2

> 1

0 n
2

 1
, (2.14)

tb
1

=

(

↵2(1�↵2)(5�n2)

5

n
1

= 1
0 n

1

6= 1
, (2.15)

tb
2

=

(

1� ↵2

5

⇣

5↵2 + (1� ↵2)n
1

⌘

n
2

= 1

0 n
2

6= 1
. (2.16)

We have compared the directed loop algorithm using this solution to (2.9-2.11) to the local
update algorithm and is su�ciently e�cient in the regimes studied.

2.2 Quantum Monte Carlo

2.2.1 Introduction

The approach of quantum Monte Carlo (QMC) methods [21, 22, 119, 62] is to statistically
sample the partition function

Z = Tr e�� ˆH

where Ĥ is the quantum Hamiltonian, and � is the inverse temperature. For � ! 1, we
will be sampling the quantum ground state; ground state expectation values:

hÔiGS = lim
�!1

1

Z
Tr

⇣

Ôe�� ˆH
⌘
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can be extracted in the limit � !1.
The three general approaches to calculating ground state properties via QMC depend on

the boundary conditions imposed on the imaginary time path integral:

• Periodic: Finite temperature worldline QMC (FTQMC) [21]

• Open: Green’s Function QMC [125], Di↵usion QMC [120, 120], Reptation QMC [10]

• Fixed: Path Integral Ground State QMC (PIGS) [110]

All of these methods can be formulated by dividing the path integral into a finite time step
�⌧ and then evaluating an approximate short time propagator e��⌧H between configurations
at each time step [118, 119]. This leads to finite time-step error usually of order (�⌧)2; when
a small �⌧ is used to reduce finite time step errors, this often leads to slow convergence from
the low acceptance rates of local updates. The disadvantages of finite time-step methods can
be avoided in discrete quantum systems, where continuous-time versions of all of the above
methods are available [28, 62, 108, 100].

2.2.2 Continuous-time finite temperature world-line QMC

We will follow the approach of Prokof’ev, Svistunov, and Tupitsyn [100]. For a discrete
Hamiltonian Ĥ = V̂ + T̂ where V̂ is the diagonal potential energy operator, and T̂ is the o↵
diagonal kinetic energy operator, we can choose a basis set {↵} of the eigenstates of V̂ :

V̂ |↵i = V↵|↵i.

Here we consider the kinetic energy to be a sum of local operators Q̂s, with negative matrix
elements in the basis {↵}:

T̂ =
X

s

Q̂s, Q̂s|↵i = �q�↵ (s) |�i.

The imaginary-time propagator in the interaction picture, �̂ (⌧) ⌘ e⌧ ˆV e�⌧ ˆH , obeys the fol-
lowing di↵erential equation:

@

@⌧
�̂ (⌧) = �T̂ (⌧) �̂ (⌧) (2.17)

Repeated integration of (2.17) results in the formal expression for �̂ (⌧):
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�̂ (⌧) = 1�
Z ⌧

0

d⌧ T̂ (⌧) + · · · + (�1)m
Z ⌧

0

d⌧m · · ·
Z ⌧2

0

d⌧
1

T̂ (⌧m) · · · T̂ (⌧
1

) + . . .

�↵� ⌘ �↵� +
X

s

Z �

0

d⌧q�↵ (s) e⌧V
↵� + . . .

· · · +
X

s1...s
m

Z �

0

d⌧m · · ·
Z ⌧2

0

d⌧
1

q↵⌫ (s) e⌧
m

V
↵⌫ · · · q�� (s) e⌧1V

�� + . . . (2.18)

(V↵� ⌘ V↵ � V�)

To evaluate thermodynamics properties, we want to statistically sample:

Z = Tr e�� ˆH =
X

↵

h↵|e�� ˆH |↵i

=
X

↵

h↵|e�� ˆV �̂|↵i =
X

↵

e��V
↵�↵↵

Accordingly, expectation values of operators Ô can be sampled from:

hÔi =
1

Z
Tr

⇣

Ôe�� ˆH
⌘

=
1

Z

X

↵

h↵|
⇣

Ôe�� ˆV �̂
⌘

|↵i

=
1

Z

X

↵,�

O↵�e
��V

���↵

Additionally, we can take advantage of the imaginary time translation invariance. We can

define the imaginary-time dependent expectation value
D

Ô (⌧)
E

:

D

Ô (⌧)
E

⌘ 1

Z
Tr

⇣

e�(��⌧)

ˆHÔe�⌧ ˆH
⌘

=
1

Z

X

↵,�,�

e�(��⌧)V
↵�↵� (� � ⌧) O��e

�⌧V
���↵ (⌧)

The imaginary-time averaged estimator of the thermodynamic estimator is then:

D

Ô
E

�
⌘ 1

�

Z �

0

d⌧
D

Ô (⌧)
E

.
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For operators Ô that are diagonal in the {↵} we have:

hÔi� =
1

Z

X

↵

1

�

Z �

0

d⌧O (⌧) e��V
↵�↵↵.

This requires being able to statistically sample �↵↵, the diagonal propagator in the potential
energy basis. At finite temperature we want to sample the sum:

X

↵

e��V
↵�↵↵ =

X

↵

e��V
↵ + . . .

· · · +
X

↵

X

s1...s
m

Z �

0

d⌧m · · ·
Z ⌧2

0

d⌧
1

e�(��⌧
m

)V
↵q↵⌫ (s) e��⌧

m

V
⌫ · · · e��⌧2V

�q�↵ (s) e⌧1V
↵ + . . .

(2.19)

(�⌧m ⌘ ⌧m � ⌧m�1

)

Looking at (2.19), we see that an arbitrary term in the sum contains m di↵erent q↵�’s,
which correspond to m di↵erent o↵-diagonal matrix elements of Ĥ. An individual term can
be represented by a path integral of length � with m ”kinks” corresponding to local virtual
transitions between the two states connected by the matrix element Q̂↵�. We can statistically
sample this series by appropriately sampling imaginary time paths with di↵erent numbers,
types, and locations of kinks such that their statistical weight is given by the appropriate
term in (2.19).

Now consider taking the expectation value of one of the kinetic energy operators:

D
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E

�
= � 1

Z
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�

X

↵,�,�

Z �
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X

↵

X
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Z �
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d⌧
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e�(��⌧
r
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↵q↵⌫ (r) e��⌧2V

�q�↵ (s
1

) e⌧1V
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· · ·� 1
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�

X

↵

X

s1...s
m

Z �

0

d⌧m · · ·
Z �

0

d⌧r · · ·
Z ⌧2

0

d⌧
1

e�(��⌧
m

)V
↵ · · · e�(⌧

n

�⌧
r

)V
⌫q⌫� (r) · · · e⌧1V

↵ + . . . (2.20)

We can see that (2.20) is proportional to the expectation value of the diagonal expectation
value �Q(r) (⌧) which is equal to 1(0) if there is (not) a kink of type Q̂ (r) at time ⌧ . Therefore
the total kinetic energy can be measured as [62]:

D

T̂
E

�
= � 1

�
hnkinksi�
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2.2.3 Path Integral Ground State Monte Carlo

To calculate ground state properties, clearly we could take the limit of � ! 1 and follow
the method of the previous section. Because finite temperature QMC methods have pe-
riodic boundary conditions in imaginary time, on systems with periodic spatial boundary
conditions, the closed world lines of particles have well defined imaginary time winding num-
bers. For example, by following a particle along it’s imaginary time path, we can count the
number of times it winds around one axis of a torus. The partition function will include
imaginary time paths from all winding sectors, and therefore one must adequately sample
from all winding sectors [46]. However, changing the winding sector generally requires a non-
local update to a particle’s word-line, since the topology of the world line must be changed.
While non-local updating methods such as the worm and directed loop algorithms are avail-
able for a wide range of models [127], no such methods are known for systems with hard
local constraints such as quantum dimer models [92].

However, zero temperature QMC methods do not have periodic boundary conditions in
imaginary-time, and therefore there is no imaginary-time winding number. Local updates
then may be ergodic, since there are no winding sectors that require non-local updates to
access. Consequently, for QDMs, we will use a zero temperature path integral ground state
method (PIGS) [110] which statistically samples ground state expectation values. Previous
QMC studies of quantum dimer models in the literature have used other zero temperature
methods, in particular Green’s function QMC [103, 104, 105], di↵usion QMC [120, 120], and
reptation QMC [121].

For any wave function | T i =
P

↵ c↵|↵i that is not orthogonal to | 
0

i, h T | 
0

i 6= 0 we
can reach reach the ground state by propagating | ti in imaginary time:

| 
0

i / lim
⌧!1

e�⌧ ˆH | T i
To compute ground state properties, if we can sample e�⌧ ˆH | ti for large ⌧ , then we can
calculate mixed estimates of operators by sampling:

hÔiM =
h T |Ô| 

0

i
h T | 

0

i = lim
⌧!1

h T |Ôe�⌧ ˆH | T i
h T |e�⌧ ˆH | T i

h T |e�⌧ ˆH | T i = h T |e�⌧ ˆV �̂ (⌧) | T i
=

X

↵�

c⇤↵c�e
�⌧ ˆV

↵�↵� (⌧) (2.21)

h T |Ôe�⌧ ˆH | T i = h T |Ôe�⌧ ˆV �̂ (⌧) | T i
=

X

↵�

c⇤↵c�e
�⌧ ˆV

↵O (↵) �↵� (⌧) (2.22)
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To sample ground state expectation values directly, we would like to sample:

hÔiGS =
h 

0

|Ô| 
0

i
h 

0

| 
0

i
Defining the imaginary time propagation of | (⌧)i and h (⌧) | as

| (⌧)i ⌘ e�⌧ ˆH | i = e�⌧ ˆV �̂ (⌧) | i
h (⌧) | ⌘ h |e⌧ ˆH = h |e⌧ ˆV

⇣

e(�⌧)

ˆV e�(�⌧)

ˆH
⌘

= h |e⌧ ˆV �̂ (�⌧) ,

we can approximate the ground state via propagating the trial wave function in imaginary
time:

h 
0

| / lim
⌧!�1

h T (⌧) |. (2.23)

Therefore to approximate the ground state observables we want to take matrix elements:

hÔiGS = lim
⌧
R

!1
lim

⌧
L

!�1

h T |e⌧
L

ˆV �̂ (�⌧L) Ôe�⌧
R

ˆV �̂ (⌧R) | T i
h T |e⌧

L

ˆV �̂ (�⌧L) e�⌧
R

ˆV �̂ (⌧R) | T i
We can sample this expectation value by taking a single imaginary time path 0  ⌧  �

with ⌧R = ⌧ and ⌧L = ⌧ � �. In this case h T (⌧L) | is propagated backwards in imaginary
time to ⌧ . If we sample observables at the center of the path ⌧ = �/2, we have:

hÔiGS = lim
�!1

P

↵,�,� c⇤↵e��/2V
↵�↵� (�/2) O (�) e��/2V

���� (�/2) c�
P

↵,�,� c⇤↵e��/2V
↵�↵� (�/2) e��/2V

���� (�/2) c�
(2.24)

To compute the sums in (2.21), (2.22), and (2.24) we need to be able to statistically sample
�↵� (⌧), the o↵-diagonal matrix elements of the imaginary-time propagator.

2.2.4 Monte Carlo Updates for Sampling �↵�

For clarity, in what follows, I refer to the path of the entire system in configuration space,
not paths of individual particles. This choice is to accommodate models with complex
interactions, such that a single kink may change change the state of multiple particles. A
segment is defined as an imaginary time interval between two neighboring kinks (i.e. there are
no kinks within a segment). As such, a segment has a constant, well defined potential energy.
We define ”interacting kinks” as kinks that involves spins that interact in the Hamiltonian.
To sample (2.19) we will use several types of updates:

(i) Create or annihilate kink-antikink pairs (Q
0

, Q†
0

) within an interval containing kinks
interacting with Q

0

(see figure 2.1)
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(ii) Displace single a kink Q
0

along path between nearest kinks of type Q
0

, Q†
0

(see figure
2.2)

(iii) Insert or remove single kinks at the ends of the path

These updates are illustrated in figures (2.1-2.2 ) To collect statistics, we will attempt a
number of updates Nmeas between each measurement which we define as one MC step. The
next sections describe in detail the implementations of these updates.

Creation and annihilation of kink-pairs

Consider two paths (+,-) related by the creation of a kink pair, with statistical weights
A�, A

+

. Path (+) is related to (-) by the addition of the kink pair (Q
0

(⌧a), Q
†
0

(⌧b)) (see
figure 2.1). Following reference 100, detailed balance between these two paths is given by:

A�P c
att

W (⌧a, ⌧b) P c
acc

d⌧ad⌧b = dA
+

P a
att

P a
acc

(2.25)

Here P a
att

, P c
att

are the probability of attempting the creation and annihilation updates on
this path segment, W (⌧a, ⌧b) is the probability density of choosing {⌧a, ⌧b} and P a

acc

, P c
acc

are
the probabilities of accepting the updates. From (2.19) we have:

dA
+

A�
= d⌧ad⌧b |q|2 e�(⌧

i+1�⌧
a

)�V

i

 

j�1

Y

k=i+1

e�(⌧
k+1�⌧

i

k)�V

i

!

e�(⌧
b

�⌧
j

)�V

j (2.26)

Again following reference 100, we define R (⌧a, ⌧b):

R (⌧a, ⌧b) =
P a

att

P c
att

|q|2 e�(⌧
i+1�⌧

a

)�V

i

 

j�1

Y

k=i+1

e�(⌧
k+1�⌧

i

k)�V

i

!

e�(⌧
b

�⌧
j

)�V

j (2.27)

We can satisfy detailed balance by choosing:

P c
acc

= min

✓

R (⌧a, ⌧b)

W (⌧a, ⌧b)
, 1

◆

P a
acc

= min

✓

W (⌧a, ⌧b)

R (⌧a, ⌧b)
, 1

◆

The updating procedure is as follows

1. Choose a segment at random.

2. Choose a kink pair {Q
0

, Q†
0

} to create at random.
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Figure 2.1: Illustration creation and annihilation updates. Top panel: initial configuration.
Middle panel: configuration after creation of Q

0

(⌧a), Q
†
0

(⌧b). Bottom panel: configuration
after annihilation of QL(⌧L), QR(⌧R) from top. Each configuration shows the world-lines of
two neighboring spins.
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Figure 2.2: Illustration of displacement updates. Two configurations related by displacing
Q

0

from ⌧a to ⌧b. Each configuration shows the worldlines of two neighboring spins.

3. Identify the neighboring kinks of the same type, {QL(⌧L), QR(⌧R)} and count the num-
ber of segments between (⌧a, ⌧b), nseg

4. If {QL(⌧L), QR(⌧R)} form a kink-antikink pair, choose to attempt a creation or annihi-
lation update with equation probability (pc = 1/2), otherwise choose a creation update
(pc = 1):

(a) If a creation update is chosen:

i. Compute the mean potential �̄V of Q
0

in the interval (⌧L, ⌧R):

�̄V ⌘ 1

�T
log

✓

A
+

(⌧L, ⌧R)

A�

◆

=
1

�T

R�1

X

k=L

(⌧k+1

� ⌧k) �Vk, �T ⌘ ⌧R � ⌧L

ii. Given two random numbers r
1

, r
2

2 (0, 1) Choose �⌧ with statistical weight
w (�⌧) =

¯

�V

1�e��̄V�T e� ¯

�V(�⌧) and ⌧a 2 (⌧L, ⌧L + (�T��⌧)) with constant
probability density:

�⌧ =
�1

d̄V
log

�

r
1

⇣

1� e�
¯

�V�T

⌘

�

⌧a = ⌧L + r
2

(�T��⌧)

⌧b = ⌧a + dt
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This generates

W (⌧a, ⌧b) =
1

�T��⌧

�̄V

1� e� ¯

�V�T

e�
¯

�V(�⌧)

iii. Count n0
seg, the number of segments between (⌧a, ⌧b).

iv. Compute R(⌧a, ⌧b) from (2.27), given that the above procedure generates:

P c
att = pc

nseg

Nseg
, P a

att =
1

2

n0
seg

N 0
seg

v. Accept the kink pair creation update with probability:

P c
acc

= min

✓

R (⌧a, ⌧b)

W (⌧a, ⌧b)
, 1

◆

(b) If an annihilation update is chosen:

i. Remove the kink-pair {QL(⌧L), QR(⌧R)}.
ii. Identify the nearest kinks of the same type as QL, {QL0(⌧ 0L), QR0(⌧ 0R)} and

count the number of segments between (⌧L0 , ⌧R0), nseg. We define �T0 =
⌧L0 � ⌧R0

iii. If {QL0(⌧L0), QR0(⌧R0)} form a kink anti-kink pair, pc = 1

2

, otherwise pc = 1.

iv. Compute the mean potential �̄V of QL in the interval (⌧L0 , ⌧R0):

�̄V ⌘ 1

�T0 log

✓

A (⌧R0)

A (⌧L0)

◆

=
1

�T0

R0�1

X

k=L0

(⌧k+1

� ⌧k) �Vk, �T ⌘ ⌧R0 � ⌧L0

v. Compute the probability density of selecting (⌧a, ⌧b) in the reverse creation
process, W (⌧L, ⌧R):

W (⌧L, ⌧R) =
1

(�T0 ��T) (�T0)

�̄V

e� ¯

�V�T

0 � 1
e�

¯

�V�T

vi. Compute R(⌧L, ⌧R):

R (⌧L, ⌧R) =
P a

att

P c
att

A
+

(⌧L, ⌧R)
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vii. Accept the kink-pair annihilation update with probability:

P a
acc

= min

✓

W (⌧L, ⌧R)

R (⌧L, ⌧R)
, 1

◆

(2.28)

Kink Displacement

Consider a configuration with Q
0

at ⌧a and a 2nd configuration with Q
0

shifted to ⌧b as in
figure 2.2. For use below, we define �Vi = V R

i � V L
i where V R,L

i are given by:

V̂ |↵ii = V L
i |↵ii

V̂ Q̂
0

|↵ii = V R
i Q̂

0

|↵ii
and |↵ii is the state in the interval (⌧i, ⌧i+1

) with the kink Q
0

removed. Here we assume the
initial ordering of the kinks is:

. . . Qi(⌧i)Q0

(⌧a)Qi+1

⌧i+1

. . . Qj(⌧j)Qj+1

(⌧j+1

)

and after the displacement:

. . . Qi(⌧i)Qi+1

⌧i+1

. . . Qj(⌧j)Q0

(⌧a)Qj+1

(⌧j+1

)

Detailed balance for such a procedure is given by:

A(⌧a)P
s
att

Wd (⌧b) P ⌧
a

!⌧
b

acc

d⌧ = A(⌧b)P
s
att

Wd (⌧a)P
⌧
b

!⌧
a

acc

d⌧

The kink displacement procedure is as follows:

1. Choose a kink Q
0

at random. This gives P s
att

= 1/Nk.

2. Identify the the nearest non-commuting kinks, {QL(⌧L), QR(⌧R)}
3. Compute the mean potential �̄V of Q

0

in the interval (⌧L, ⌧R):

�̄V ⌘ 1

�T
log

✓

A (⌧R)

A (⌧L)

◆

=
1

�T

R�1

X

k=L

(⌧k+1

� ⌧k) �Vk, �T ⌘ ⌧R � ⌧L (2.29)

4. Choose ⌧b with statistical weight Wd (⌧b) =
¯

�V

e�̄V�T�1

e ¯

�V(⌧
b

�⌧
L

) by selecting a random
number r 2 (0, 1):

�⌧ =
1

�V
log

�

1 + r
�

e�V�T � 1
��

⌧b = ⌧L + �⌧
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5. Compute R(⌧a, ⌧b):

R (⌧a, ⌧b) ⌘ A (⌧b)

A (⌧a)
= e�(⌧

i+1�⌧
a

)�V

i

 

j�1

Y

k=i+1

e�(⌧
k+1�⌧

i

k)�V

i

!

e�(⌧
b

�⌧
j

)�V

j+1 (2.30)

6. Accept the displacement update with probability:

P s
acc

= min
⇣

R (⌧a, ⌧b)⇥ e
¯

�V(⌧
a

�⌧
b

), 1
⌘

(2.31)

2.3 Proof of principle results for the QDM

Since exact diagonalization via the Lanczos method is possible for small lattice systems,
we may compare the QMC results for a L = 4 toroidal triangular lattice with the exact
numerical results; this allows for a proof of principle test of the PIGS QMC algorithm.
Figure 2.3 shows PIGS results for L = 4 and �t = 10 for v/t = 0.8 using the RK state
as the trial wave function. In 2.3a and 2.3b the potential and kinetic energy along the
path are plotted vs. imaginary time. The energies have been averaged over bins of width
�⌧ = 0.01� (note that the kinetic energy estimator is only defined for an imaginary time
bin of finite width, but diagonal quantities such as the potential energy are defined at all
points on the path). The exponential convergence of the energies toward the exact values
over an imaginary time interval of �⌧ t ⇠ 4 is evident. Figure 2.3 shows the expectation
values computed at the center of the path compared to the exact values (here a bin of with
�⌧ = 0.01� is used for the kinetic energy). We see that the fractional errors relative to the
exact values are of the order 10�5 � 10�4, and in all cases is less than the statistical error.
Here the statistical errors are computed by a standard binning method [4]. We note that the
statistical errors of the kinetic energy are a factor of several larger than those for diagonal
quantities.

Figure 2.4 shows the fractional errors relative to exact diagonalization for L = 4, �t = 8
with a RK trial wave function over a range of v/t. The error bars represent the statistical
errors–when these extend o↵ the plot, the errors are smaller than the statistical errors. The
fraction errors are of order 10�3; while not all errors are smaller than the statistical errors,
we expect this due to the finite � which limits the precision of the PIGS ground state results.
We have not found any systematic error other than that due to finite �, which can be reduced
by using longer imaginary time paths.

In addition to using the RK wave function as the trial wave function at the ends of the
imaginary time path, we have also tried using a one-parameter optimized trial wave function
to improve convergence at a given �. We consider a variational wave function that accounts
for the potential energy:  ↵(a) = ↵�N

f

(a), where Nf (a) is the number of flippable plaquettes
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of a configuration a. We use a variational Monte Carlo method to minimize the energy of
 ↵ with respect to ↵ for a given v/t; since this is a one parameter optimization, we have
implemented a binary search to find the energy minimum. In general there appears to be
little benefit from using this simple variation ally optimized wave function as compared to
the equal superposition state. Similar precision is obtained with either trial wave function
for a given �.

(a) potential energy (b) kinetic energy

(c)

Figure 2.3: PIGS results vs. exact diagonalization for L = 4, �t = 10 using an RK trial
wave function. The table displays the expectation values at the center of the path.
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(a) potential energy (b) kinetic energy

Figure 2.4: PIGS fractional errors for L = 4, �t = 8 using an RK trial wave function. The
error bars represent the statistical errors. Error bars that go below the bottom of the plot
represent errors that are smaller than the statistical error. Errors larger than the statistical
error can be reduced by increasing �.
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Chapter 3

Loop condensation in the triangular
lattice quantum dimer model

This chapter presents a study of loop condensation in the triangular
lattice quantum dimer model. Sections 3.1-3.6 present the results of
classical Monte Carlo calculations and appear in reference 49. Section
3.7 presents some PIGS QMC calculations of triangular lattice quantum
dimer model.

3.1 Mapping a dimer model to a loop model

A dimerization of a lattice, |Ci, can be interpreted as a closed loop covering of the lattice
by superimposing it with an arbitrary reference dimerization, |R

0

i (see figure 3.1) [117, 70].
The resulting doubled dimerization, {C : R

0

}, known as the transition graph, has both
a reference and physical dimer touching each vertex; this therefore forms closed loops on
the lattice with the exception of where dimers in |Ci coincide with those of |R

0

i. It is
necessary to choose a convention for the definition of such coinciding dimers. Two possible
interpretations of overlapping dimers are: (a) they are considered to be a loops of length 2,
or (b) they are defined as an empty links of the transition graph. Choosing option (a) means
that the transition graph is a fully packed loop covering of the lattice and the transition
graph {R

0

: R
0

} comprises all length 2 loops. Choosing (b) means that the transition graph
is not fully packed, and that {R

0

: R
0

} is an empty loop covering. In order to make an
analogy with the definitions of loops given in equation (1.6), we will generally choose below
the convention (b), except where noted.

Choosing a reference dimerization |R
0

i translates a dimer configuration into a loop con-
figuration. However, unlike the toric code, there is no reference configuration that retains
all of the lattices symmetries. Therefore we are forced to choose an |R

0

i that breaks trans-
lational and rotational symmetries of the lattice. Certain properties of the resulting loop
model will depend on this choice of a symmetry broken |R

0

i. All other dimerizations can
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Figure 3.1: A transtion graph loop configuration {C : R
0

} formed by superimposing a
physical dimer configuration |Ci (black) with the reference dimerization |Rcoli (red).

be reached from |R
0

i by applying a product of closed loop operators that alternately pass
through the links that are occupied and unoccupied by dimers in |R

0

i:

|Ci =
Y

`2{`
C

}
R0

W`|R0

i, W` ⌘
Y

(r,s)2`

d�r d+

s . (3.1)

In equation (3.1), d+

j (d�j ) are dimer creation (annihilation) operators and (r, s) are a pair of
links in ` that meet at a vertex, that are occupied and unoccupied, respectively, by a dimer
in |R

0

i. The set {`C}R0 is simply the transition graph {C : R
0

}, where we interpret links
that are occupied in both in |Ci and |R

0

i as empty links in {`R0}. We note that the choice
of |R

0

i restricts the possible loop coverings such that if a loop touches a vertex, it must pass
through the link occupied in |R

0

i. This dimer-loop Hilbert space is not equivalent to the
Hilbert space of all loop coverings of the lattice.

The phases of H
RK

may now be re-interpreted as those of a loop model. |RKi is the
equal superposition of all loop coverings that pass through the dimers of |R

0

i, and therefore
is a loop gas. We expect the topological phase adjacent to the RK point to be described by a
scale-invariant loop liquid. Static dimer crystal phases, such as the columnar and staggered
phases, correspond to loop crystals with a narrow distribution of loop lengths; if |R

0

i is
chosen to be a dimer configuration with the corresponding broken symmetry, then the loop
model is in a short looped dilute phase. The loop order in the resonating

p
12⇥p12 phase

is less obvious: if |R
0

i is chosen to be one of the dimerizations with
p

12 ⇥p12 order, the
ideal

p
12⇥p12 state will be a dense, fluctuating short looped phase. This transition loop

description of the dimer model allows us to make a connection to the loop condensation
picture of topological order. A dimer crystal to dimer liquid transition is then described as
a transition from a loop crystal to a scale-invariant loop liquid.
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3.2 The dimer liquid at the RK point

Here we analyze the geometric properties of the loop description of the RK wavefunction,
taking this to be representative of the dimer liquid. This analysis follows a similar approach
as that of Sutherland and Kohmoto & Shapir in their studies of the spin-1/2 RVB wavefunc-
tion on the square lattice [117, 70, 71, 115, 116, 111]. To understand the loop properties of
|RKi, we can refer to the classical O(n) loop model [26, 94, 95]. In this model, which can
be solved exactly on the honeycomb lattice, configurations are closed loop coverings of the
lattice, and the partition function is given by

ZO(n)

=
X

C

KLnN , (3.2)

where C is a closed loop configuration comprising N loops of total length L. In equation
(3.2) , K is the weight per length of loops and n is the loop fugacity. For n  2, there are two
phases separated by a critical line at Kc = [2+

p
2� n]�1/2. Kc separates a dense loop phase

for K > Kc and a dilute phase for K < Kc. The dense phase is characterized by a power
law distribution of loop lengths, P` (s) ⇠ s�p, where P` (s) is the density of loops of length
s [25]. Additionally, there is a large spanning loop `M with fractal dimension Df , whose
length scales with the system size L as s(`M) ⇠ LD

f [107]. These exponents are related by
the scaling dimension x:

Df = 2� x, p = 1 +
2

2� x
(3.3)

Within the dense phase, x is given by

x =
g

2
� 1

2g
(g � 1)2 , n = �2cos (⇡g) (3.4)

for 0 < g  1 where g is the coupling constant of the Coulomb gas description of of the O(n)
model [95]. The O(n) loop model on the triangular lattice has been studied by Knops et.
al., and is known to possess a critical dense phase of the same universality class as that of
the honeycomb lattice [68].

In the O(1) model on the honeycomb lattice, Kc = 1/
p

3, so K = 1 is in the dense
phase. At K = 1, ZO(1)

is an equal weighted sum over all loop configurations with the
critical exponents Df = 7/4 and p = 15/7 [95, 107]. The RK wavefunction can similarly
be described as equal superposition of all transition loop configurations within a topological
sector, for a given choice of |R

0

i, and therefore we can relate the loop configuration at the
RK point to the critical phase of O(1) model.

To calculate the loop properties of |RKi we choose a reference configuration |R
0

i, and
then compute the distribution of loops in the transition graph, PR0

` (C, s) = hR0
` (C, s)/L2

where hR0
` (C, s) is the number of loops of length s in {C : R

0

} and L is the linear dimension
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of the lattice. We have computed the expectation value of PR0
` by Monte Carlo sampling

of |RKi using local plaquette flip updates on triangular lattices of up to L = 192, with
Nl = 3 ⇤ L2 links.
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10−8

10−6

10−4

10−2

100

s/L2

P
`

 

 
|R

col

i
|Rp

12

i
fit

Figure 3.2: Loop distribution P` vs. loop length s at the RK point on a L = 120 triangular
lattice using reference configurations |Rcoli and |Rp

12

i in the (E,E) winding sector. The
line shows the fit to a power law decay.

Here we will consider two choices of reference configurations: |Rcoli, the columnar ref-
erence state shown by the red links in figure 1.6a, and |Rp

12

i, which is the configuration
illustrated by the thick red links in figure 1.6b that is one of the equally weighted configura-
tions of the ideal

p
12⇥p

12 crystal. In figure 3.2, the loop distribution P`(s) is plotted for
these choices of |R

0

i. We see a clear power law over a range of length scales. The best fit
power law p = 2.12 ± 0.01; this is consistent with the theoretical value for the O(1) model,
p = 15/7 ' 2.14 [95, 25], considering the imperfect power law behavoir of P` on lattices of
these sizes. Additionally, we see that P`(s) is independent of the choice of |R

0

i for lengths
longer than about 16. We have computed the distribution of the longest loop `M , P`

M

(s),
and this is plotted in figure 3.3a. To compute Df at the RK point, we analyze the finite size
scaling of `M , shown in figure 3.3 (b). The best fit gives Df = 1.751 ± .001, which agrees
with the known fractal dimension of the O(1) model, Df = 7/4 [95, 107].

We can also characterize the loop liquid in terms of the total loop density, ⇢ = L/LM ,
where LM = L2 is the maximum possible total loop length. The value ⇢ = 1 corresponds
to the maximum loop density, where no dimers reside on links occupied in |R

0

i, while ⇢
strictly vanishes only for |R

0

i. Consequently, in crystalline phases, ⇢ depends on the choice
of |R

0

i. At the RK point, all links are occupied with probability 1/6, and the total loop
length is twice the average number of dimers on links unoccupied in |R

0

i, which is 5/6⇥Nl/6.
Therefore at the RK point, ⇢ = 5/6; this agrees with our numerically computed value of



CHAPTER 3. LOOP CONDENSATION IN THE TRIANGULAR QDM 38

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
x 10−3

s/L2

P
`

M

 

 
|R

col

i
|Rp

12

i

6 12 24 48 96 192
101

102

103

104

hs
(
` M

)
i

L

 

 
|R

c ol

i
�

�Rp
12

↵

(a) (b)

Figure 3.3: (a) Longest loop distribution, P`
M

vs. loop length s(`M) at the RK point using
reference dimerizations |Rcoli and |Rp

12

i, in the (E,E) winding sector on lattice size L = 72.
(b) Finite size scaling of the expectation value of the length of the longest loop s(`M) at the
RK point for |Rcoli and |Rp

12

i, in the (E,E) winding sector of lattice sizes up to L = 192.
Errorbars are smaller than the symbols shown. The line shows the fit to s(`M) / LD

f .

⇢ = 0.83333(3) on a L = 120 lattice, computed for |Rcoli and |Rp
12

i. The RK wavefunction
can be described as a dense loop gas. We note that in this loop gas phase, both the total
density and geometric properties of loops are independent of the choice of |R

0

i.

3.3 Loop order in dimer crystal phases

Here will consider the loop order in transitions from the dimer liquid at the RK point to
two dimer crystals that are present in phase diagram of the cannonical QDM as defined in
equation (1.8). To analyze these transitions, we will consider a wavefunction that interpolates
between |RKi and a given dimer crystalline order:

| (z)i =
1p
Z

X

C

zN
B |Ci (3.5)

Here we will consider two possible colorings of the triangular lattice where the red links
define links that are favored by the crystalline order, to which we give weight 1, and NB

is the number of occupied black links, which are given a weight z. In equation (3.5), Z ⌘
P

C z2N
B

(C), which is the partition function of a non-interacting classical dimer model where
black links are given a fugacity z2. Additionally, | (z)i is the zero energy ground state of a
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local, stochastic matrix form [7, 20] Hamiltonian that is generalization of H
RK

:

Hz ⌘
X

p

� t
⇣

| ih | + h.c.
⌘

+ t
⇣

z�N
B | ih | + z��N

B | ih |
⌘

(3.6)

where �NB ⌘ NB( )�NB( ). For z = 1, | (z = 1)i is the RK wave function, and and
for z = 0, | (z = 0)i is an ideal dimer crystal as defined by the red links of the lattice.

As described in section 1.4, H
RK

displays two crystalline phases for v < t, in addition
to the dimer liquid phase. These crystal orders are illustrated in figure 1.6: the red links of
panel (a) show one of 12 symmetry related columnar states, and the red links of panel (b)
are favored by the

p
12⇥p

12 resonating crystalline order. We will use these two colorings
to define two wave functions described by equation 3.5: | coliand | p

12

i. We will use |Rcoli
and |Rp

12

i respectively as the reference configurations to define the transition loops. We
have computed the loop distributions for both from Monte Carlo sampling of these wave
functions.

We can relate | (z)i to the O(1) model by considering | coli. In this case, since only the
occupied links in Rcol are colored red, the total loop length L = 2⇤NB, and �Log(z) acts as
an e↵ective loop tension. Accordingly, we can relate z to K in the O(1) model. As discussed
in section 3.2, z = 1 sits in the dense phase, corresponding to the dimer liquid, and for some
zc < 1 we expect to cross a phase transition into the dilute loop phase, corresponding to
the dimer crystal. The relationship is less direct for | p

12

i, where loop segments within the
red hexagons are given unity weight, and only loop segments passing through black links are
given a weight z < 1. However we still expect a transition from the long loop dense phase,
to a short loop phase of finite loop density.

In figure 3.4, the left panels show the total loop density ⇢, and the right panels show
the expectation value of the longest loop length, s(`M) as a function z, for | coli(top) and
| p

12

i(bottom). Here we have rescaled s(`M) by L7/4 where 7/4 is the fractal dimension of
the dimer liquid. In both cases s(`M)/L7/4 remains finite for z close to 1 and vanishes for
small z. Finite size scaling of s(`M) suggests that the corresponding phase transitions occur
at zcol

c ⇡ 0.57 for | coli and z
p

12

c ⇡ 0.53 for | p
12

i. For | coli, ⇢ vanishes in the columnar

phase, whereas ⇢ remains finite in the
p

12 ⇥ p
12 phase of | p

12

i. This distinction is due

to the fact that in the columnar phase, dimers are pinned to |Rcoli, whereas the
p

12⇥p12
phase dimers resonate within the hexagons and are not pinned to |Rp

12

i. The location of
these transitions may be compared with the transition of the honeycomb lattice O(1) model,
where Kc = 1/

p
3 ' 0.58. Figure 3.5a shows the longest loop distributions P`

M

(s) for
| coli (left) and | p

12

i (right) for several values of z. We see that in both cases the broad
distribution, which is a signature of the liquid phase, vanishes below the transition at zc.
The fractal dimension within the dimer liquid phase is plotted in figure 3.5b. Deviations
from Df = 7/4 in the liquid phase near the transition may be due to the limitations of
extrapolating the finite size scaling on lattices of these sizes.

We note that in the crystalline phases, the loop distributions depend on the choice of
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Figure 3.4: Top two panels: The total loop density ⇢, and and longest loop length s(`M) for
| coli. Bottom two panels: The total loop density ⇢, and and longest loop length s(`M) for
| p

12

i. The solid lines are extrapolations to the thermodynamic limit. We have rescaled
s(`M) by L7/4 for data collapse in the liquid phase.

|R
0

i; here we have chosen reference dimerizations which reflect the known ordering in each
phase. In particular, the vanishing of s(`M)/LD

f in the crystalline phases is due to a choice
of |R

0

i that is commensurate with the order. While in static crystals such as the columnar
phase we may expect that any choice of |R

0

i will lead to s(`M) scaling as L0, L1, or L2, in a
resonating dimer crystal such as

p
12⇥p12, this is not in general true. In fact, we find that

for an arbitrary choice of |R
0

i the loop distribution in a resonating crystal phase may appear
to be that of a liquid phase. This is illustrated in figure 3.6 where we have computed P`

M

for
the ideal

p
12⇥p12 state | p

12

(z = 0)i for two di↵erent columnar reference configurations:

|Rcoli (seen in figure 1.6a) and |R̃coli which is related to |Rcoli by translating all dimers one
link horizontally. Figure 3.6 shows that for |Rcoli, P`

M

appears to be a liquid phase, but
for|R̃coli it is sharply peaked at a single length scale. In fact finite size scaling of the length
of `M shows that for |Rcoli, the fractal dimension is that of the liquid phase (Df = 7/4), but
for |R̃coli Df = 1, indicative of the crystal order. This suggests that one may distinguish
a liquid phase by computing Df for all (in this case 12) configurations that are related by
symmetry to |R

0

i, to ensure that a resonating crystalline order is not hidden by the choice
of |R

0

i. However, for any symmetry broken state, if |R
0

i is chosen to be commensurate with
the broken symmetry, the length of `M will be finite.
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Figure 3.5: (a) Longest loop distribution P`
M

of | coli (left) and | p
12

i (right) plotted for
several values of z for a L = 60 lattice. (b) Fractal dimension Df of | coli and | p

12

i in
the dimer liquid phase computed from the finite size scaling of s(`M) with lattice sizes up
to L = 144. The line shows the value at the RK point, Df = 7/4. The accuracy of Df is
limited by the lattice sizes studied.
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12 crystal, | p

12
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0)i computed for two di↵erent columnar reference configurations |Rcoli and |R̃coli. In a
resonating crystal phase, for some choices of |R

0

i, P`
M

may clearly indicate crystalline order
(seen by the peak at a single length scale for the choice |R̃coli) whereas for other choices (e.g.
|Rcoli), the distribution P`

M

may appear to be that of a liquid.



CHAPTER 3. LOOP CONDENSATION IN THE TRIANGULAR QDM 42

3.4 Interacting dimer loop liquid

Section 3.3 discusses the addition of an e↵ective loop tension to the RK dimer liquid. Here
we consider the e↵ects of a translationally invariant dimer interaction by defining a general-
ization of the RK wave function:

|�↵i =
1p
Z

X

C

↵�N
f

(C)|Ci (3.7)

In (3.7), Nf (C) is the number of flippable plaquettes in |Ci. For ↵ = 1, |�↵=1

i ⌘ |RKi;
for ↵ ⌧ 1, configurations with the maximum number of plaquettes are favored. The square
norm of |�↵i is the partition function of an interacting classical dimer model [126]:

h�↵ | �↵i = Zcl =
P

c e��
cl

E
cl

(C) (3.8)

Ecl (C) = �uNf (C) , ↵ = exp
���

cl

u
2

�

. (3.9)

All equal time correlation functions of |�↵i are equal those of the classical model. This
relationship allows us to write down a local RK-like Hamiltonian [7, 20] for which |�↵i is an
exact zero energy ground state:

H↵ ⌘
X

p

�t
⇣

| ih | + h.c.
⌘

+ t
⇣

↵��N
f

/2 | ih | +↵�N
f

/2 | ih |
⌘

, (3.10)

with �Nf ⌘ Nf ( )�Nf ( ) and Nf ( ) (Nf ( )) is the total number of flippable plaque-
ttes on the lattice with p in orientation ( ). Here we see that ↵ = 1 ) u = 0, which is
the non-interacting point of the classical model; consequently H↵=1

= H
RK

at the RK point
(v = t). The interacting classical dimer model has previously been studied using transfer
matrix techniques by Trousselet et al. [126]. For u > 0 (↵ < 1), Ecl is minimized by con-
figurations which have the maximum number of flippable plaquettes, Nl/6. There is a large
number of such configurations, including the 12 symmetry related columnar states and all
configurations related to these by translating rows of dimers (row shifting modes) or rotating
all dimers in a set of columns (column shifting modes). For ↵ = 0, this degeneracy prevents
the formation of local order. However an ”order-by-disorder” mechanism [129] might allow
for fluctuations to favor an ordered state for nonzero ↵. Indeed the results of Ref. [126] are
consistent with a first order phase transition from a liquid phase for ↵ > ↵c to an ordered
phase for ↵ < ↵c, where the row shifting modes favor configurations with dimers aligned in
the same direction.

Local updates do not give access to the global defects that appear as ↵ ! 0. Therefore
we have implemented a directed loop Monte Carlo algorithm [109, 122] to sample |�↵i on
lattice sizes up to L = 128, using |Rcoli as the reference configuration. The dimer model
directed-loop algorithm generates non-local updates by creating a pair of defects that violate
the hard core, fully packed dimer constraint; these defects undergo a directed random walk
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Figure 3.7: (a) Fractal dimension of the largest loop `M of |�↵i computed with a directed
loop algorithm for lattice sizes up to L = 128. The solid line corresponds to Df = 7/4,
the value at the RK point. The dotted line is a guide for the eye; the gap in data is where
the finite size scaling of s(`M) doesn’t converge to a power law for the lattice sizes studied.
(b) Longest loop distribution of |�↵i on a L = 64 lattice, for several values of ↵, computed
using |Rcoli. For very small ↵, P`

M

is peaked at L, consistent with an ordered phase with
all dimers aligned in the same direction.

around the lattice until they coincide and annihilate [109]. The path of these defects forms
a closed loop, along which the dimer configuration is updated. To sample |�↵i, we have
chosen the local weights of each step in the random walk to reflect |�↵i [123], and found
a solution to the directed-loop equations [122]. This algorithm is ergodic in all topological
sectors, and therefore the results presented here are computed over all winding sectors.

Figure 3.7 shows that in the presence of interactions, the dimer liquid persists down to
↵ ⇠ 0.2. For much smaller values of ↵, Df approaches 1, indicative of a symmetry broken
phase. However there is an intermediate regime where the finite size scaling of `M does not
converge to a power law (this is shown by the dotted line in figure 3.7). The longest loop
distribution P`

M

(right panel of figure 3.7) displays a series of peaks in this intermediate
regime, whereas for small ↵, there is only a single peak at s(`M) = L. The small ↵ regime is
consistent with the low temperature phase of Ref. [126] where row shifting modes dominate;
with this choice of reference dimerization row defects are loops of length L winding around
the lattice in the direction of the rows.

To further characterize the appearance of this symmetry breaking order for small ↵, we
define a rotational symmetry breaking order parameter

M2

rot

⌘ 1

2N2

d

X

i,j

�

N i
d �N j

d

�

2

, (3.11)
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where i and j each represent one of the three possible dimer orientations on the triangular
lattice, and N i

d is the number of dimers in a given orientation. Additionally, we define a
columnar order parameter,

M2

col

⌘ 1

N2

d

X

(r,c)

⇣

Nd

h

R(r,c)
col

i

�Nd

h

R̃(r,c)
col

i⌘

2

, (3.12)

where R(r,c)
col is a columnar configuration with rows oriented in direction r and columns in

direction c, and R̃(r,c)
col is obtained by translating all dimers by one lattice spacing in direction

r. Nd [R] is the number of dimers that coincide with the configuration R. In a columnar
ordered phase, the expectation values of both M2

rot

and M2

col

saturate to 1, whereas M2

rot

= 1
and M2

col

= 0 in the rotational symmetry broken ordered phase that is favored by the row
shifting modes.

Figure 3.8 shows the expectation values of these dimer order parameters in the symmetry
broken phases. We see that for small ↵, M2

rot

saturates to 1, whereas M2

col

scales to zero for
larger system sizes (figure 3.8). This corresponds to the rotational symmetry broken phase
where row defects dominate and destroy the columnar order, as discussed in Ref. [126].
However, there is an intermediate regime for larger system sizes where the expectation value
of M2

rot

reaches at plateau at approximately 1/4, and M2

col

is finite and approaching 1/2.
This is consistent with a phase for which column shifting modes dominate, such that two
dimer directions are preferred. The ideal columnar defect configurations saturate the order
parameter

M2

cd

⌘ 1

N2

d

X

(r,r0,c)

⇣

Nd

h

R(r,c)
col

i

+ Nd

h

R(r0,c)
col

i

�Nd

h

R̃(r,c)
col

i

�Nd

h

R̃(r0,c)
col

i⌘

2

(3.13)

to 1, while M2

rot

and M2

col

are 1/4 and 1/2, respectively. In (3.13), the sum is over r 6= r0 6= c.
Figure 3.8 shows that, in the intermediate phase, M2

cd

approaches 1 with decreasing ↵. We
note that while perfect column defects cost zero (classical) energy, adding a horizontal kink
to the column defect costs a finite energy; the increased degeneracy of kinked defects may
favor them over perfect defects for su�ciently large ↵. If kinked column defects proliferate,
they will generate a finite (but non-maximal) expectation value of M2

cd. This suggests that
for ↵ ! 0, global row defects dominate but there is an intermediate regime where kinked
column defects dominate. Both of these transitions appear to be first order as shown by
the discontinuities seen in these order parameters for larger system sizes (see figure 3.8); we
have confirmed this by observing a double peak structure in the histograms of these order
parameters at the transitions. Finite size scaling of these transitions suggests that both
transitions occur at finite ↵ in the thermodynamic limit.

The distinction between these results and what is seen in Ref. [126] is likely due to the
di↵erence in the geometry of the systems studied. We have also studied triangular lattices
with Lx 6= Ly, where Lx,y are the lengths in the two lattice directions. We find that as Ly/Lx
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increases, the width of the intermediate regime decreases. This follows from the discussion
of Ref. [126]: increasing Ly/Lx increases the number of row-shifting modes, and therefore
favors the row defect ordering. Ref. [126] considers lattices with Ly � Lx, so the results of
that work are consistent with ours in this limit.
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Figure 3.8: Expectation values of dimer order parameters M2
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(left), M2

col

(center), M2

cd

(right)
in |�↵i in the symmetry broken phases. For larger values of ↵, all local order parameters
vanish.

3.5 d-isotopic quantum loop gas in the triangular lat-
tice QDM

So far we have only considered transitions out of the O(1) dimer loop liquid to crystalline
phases; we now consider a wavefunction that allows us to explore other loop gases in the
triangular lattice QDM. In reference [40] Freedman et. al. introduced a generalization of
the quantum loop gas of the toric code they termed the d-isotopic loop gas [40]. By giving

Figure 3.9: The decorated triangular lattice from reference [40] used to define | di. Here
the staggered configuration defined by the red links is used as the reference dimerization.
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a weight d to each contractible loop in the ground state wavefunction, the O(1) loop liquid
of the toric code at d = 1 can be driven to loop gas phases for O(n > 1):

| di =
X

C

dNc|Ci. (3.14)

In equation (3.14), Nc is the number of contractible loops in |Ci and the sum over C
is taken over all configurations in the same winding sector. The norm of  d is equal to
classical partition function of the O(n) loop model for n = d2 [41]. Freedman et. al. also
wrote down an RK-like Hamiltonian, Hd for which | di is the exact zero energy ground
state [40]. Every winding sector contains a unique ground state; as such this d-isotopic loop
gas has a large degeneracy. For 1  d  p2, | di is a critical loop liquid and it has been
shown that Hd is gapless. For n > 2, the O (n) model is in a short looped phase [95], and
correspondingly, the d-isotopic loop gas is in a short looped phase for d >

p
2. All diagonal

local correlation functions in | di vanish exponentially; however Troyer et. al. showed
certain that o↵-diagonal correlation functions have a power-law decay [128]. The original
motivation for introducing | di was the search for gapped topological phases beyond the
abelian toric code phase. Subsequent work [128] shows that adding local interactions to Hd

to open a gap drives the loop gas to the toric code phase. Consistent with the disordered
nature of the liquid phase of | di, Troyer et. al. showed that the critical phase of the loop
liquid could be described by the fractal dimension of the long fractal loop [128].

To implement  d in a quantum dimer model we color the triangular lattice according
to reference [40]. Links occupied in a staggered reference configuration |R

0

i are colored
red and links connecting the red links are colored green (see figure 3.9 ). Here we choose
a slightly di↵erent interpretation of the transition loop graph; dimers in |Ci that coincide
with |R

0

i are considered to be minimal, length 2 loops. As such, the loop coverings defined
by the transition graphs are fully packed loop coverings. In this case,  d is described by a
fully packed loop model, which in turn is related to the dense phase of the O(n) model [14].
Consequently, the geometric exponents as defined in section 3.2 are the same in the fully
packed loop model as those of the dense phase of the O(n) model with d2 = n [107, 74].

With this coloring, a local quantum dimer model Hamiltonian, Hd can be defined such
that | di defines the unique, zero energy ground state in each winding sector. To allow
for the transition to the short looped, staggered crystal phase in the limit d ! 1, 4-dimer
dynamics that flip dimers around a length 8 loop are included in Hd to connect the staggered
configurations to other configurations. Additionally, following reference [40], we wish to
define Hd such that it only connects configurations in the same loop winding sector, not in a
parity defined winding sector. This requires removing the plaquette flip terms that can act
as a surgery and connect di↵erent winding sectors–this is done by excluding plaquette flips
in Hd for rhombi that have a green diagonal link. To compensate for a lost ergodicity due to
the removal of these plaquette flip terms, a 3-dimer resonance around a length 6 triangular
loops is also added to Hd [40].
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Figure 3.10: (a) Longest loop distribution P`
M

for | di in the zero winding sector on a
L = 24 lattice for several values of d. (b) Fractal loop dimension of | di, computed from
finite size scaling of s(`M) on lattice sizes up to L = 84.

Figure 3.10a shows the longest loop distribution for several values of d computed by Monte
Carlo sampling of | di in the triangular lattice quantum dimer model. We see that a liquid
phase persists for d > 1. Figure 3.10a shows that the fractal dimension is a continuously
varying function of d. Thus |�di can describe dimer liquid phases distinct from the Z

2

topologically ordered phase at the RK point.

3.6 O↵-diagonal loop operators in the triangular lat-
tice QDM

O↵-diagonal operators in a quantum dimer model that do not violate the hard-core constraint
are loop operators: two dimer configurations can be connected by flipping dimers along their
transition loops, as given in equation (3.1). In the toric code, such loop operators are related
to the Wilson loop of the underlying Z

2

gauge theory. In, the ground state | 
TC

i, the
expectation value of all loop operators is exactly 1 (a ”zero law”). However the addition of a
magnetic field will cause the loop operators to decay with the length of the loop (a ”perimeter
law”). In a quantum dimer model, the fully-packed constraint means that hW`(s)i < 1 for
all loops, even at the RK point [84]. Moessner, Sondhi and Fradkin suggested that hW`(s)i
will decay as a perimeter law at the RK point due to the extensive entropy of dimerizations
of the lattice [88]. Figure 3.11 shows hW`i

RK

computed for a set of parallelograms of di↵ering
lengths on the triangular lattice by Monte Carlo sampling of |RKi. hW`(s)i is seen to display
a clear perimeter law at the RK point.
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Figure 3.11: Expectation value of o↵-diagonal loop operator W` as a function of loop lenth s
at the RK point, computed for various parallelograms of di↵erent lengths on lattices of size
L = 16, 32. The line shows a fit to an exponential decay, indicating a clear perimeter law
behavior.

3.7 The QDM on the triangular lattice away from the
RK point

Here we will consider the canonical triangular lattice QDM away from the RK point. To study
the ground state away from the RK point, we have performed PIGS QMC calculations as
described above in section 2.2. Prior studies [89, 104, 103] have shown that the topologically
ordered quantum liquid phase extends from the RK point down to v/t ⇡ 0.86, where the
liquid phase gives way to the

p
12 ⇥ p12 resonating dimer crystal, which persists down to

v/t < 0 [84, 105]. We have computed the transition loop distributions of the ground state
as a function of v/t to give insight into the mechanism of loop condensation in this model.

To confirm that a given PIGS calculation has converged to the ground state, we have
repeated each calculation with several values of �; once we see convergence of the relevant
observables within the statistical errors with increasing �, we conclude these agree with the
ground state expectation values within the error bars. Additionally, computing the energies
as a function of imaginary time allows for a qualitative check on convergence. Due to the
local nature of the Monte Carlo updates, all of these calculations are performed within a
single topological sector; while the liquid phase occurs in all sectors, we have chosen the
topological sector which can accommodate the relevant crystalline phase. The gap that is
relevant to the convergence of these calculations is the lowest gap within the topological
sector. As shown by prior studies [104, 105, 57], this gap � is of order 0.1t and vanishes at
the transition. The small size of this gap means that relatively long imaginary time paths
are required to ensure convergence to the ground state, since we require �/2 > 1/� for
convergence. In the small and moderate lattices we have studied the finite size gaps are
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Figure 3.12: Longest loop distribution for L = 12, �t = 32 for several values of v/t using
|Rp

12

i as the reference dimerization. The broad distribution of the RK point persists in the
liquid phase, but sharp feature that are signatures of the symmetry breaking appear in thep

12⇥p
12 phase.

somewhat larger, and therefore the required � grows with lattice size. While a variational
wave function may in principle improve convergence at a given �, we have seen little benefit
for simple one parameter variational wave functions, so all results presented here use the RK
wave function to cap the ends of the imaginary time path. We have performed calculations
up to �t = 64 and found that the energies had converged to within 10�2 by �t = 32 in the
liquid phase; only smaller � were required for the crystalline phase.

Figure 3.12 shows the longest loop distribution for a variety of values v/t, including
regimes both inside liquid and

p
12 ⇥ p

12 phases. The liquid phase clearly displays the
smooth distribution similar to that of the RK point. For v/t = 0.1 and 0.5 which are
inside the

p
12 ⇥ p

12 phase, there are sharp features in s(`M) that are a signature of the
symmetry breaking in the crystal. Additionally, we have performed finite size scaling of
s(`M) over several lattice sizes. The long imaginary times required due to the smallness of
the gap of the liquid phase limit the system sizes accessible to the PIGS QMC algorithm.
Computational resources have limited these studies to lattices sizes of L = 12 and smaller
and these lattice sizes do limit the precision to which we can compute the fractal dimension.
In figure 3.13 the finite size scaling of hs(`M)i is plotted for values of v/t within the liquid
regime. Here we have used |Rcoli as the reference dimerization, since only lattices with L
a multiple of 6 allow for the Rp

12

dimerization. From finite size scaling we have computed
the fractal dimension for v/t = 0.90, 0.95 and 0.99 to be Df = 1.89 ± 0.01, 1.84 ± 0.01,
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Figure 3.13: Finite size scaling of the expectation value of the longest loop length for �t = 32
for several values of v/t in the liquid regime using |Rcoli as the reference dimerization. The
lines represent the best power law fits; from these we compute Df = 1.89±0.01, 1.84±0.01,
and 1.82± 0.01 for v/t = 0.90, 0.95 and 0.99, respectively. However, the lattice sizes studied
are too small for a precise determination of the fractal dimension, as the finite size scaling
has not converged to a pure power law.

and 1.82 ± 0.01 respectively. However, for these small lattice sizes, the finite size scaling of
hs(`M)i has not converged to a true power law; larger lattices sizes must be used to accurately
determine Df . Consequently, we cannot conclusively determine the fractal dimension in the
liquid regime from these calculations.
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Chapter 4

Loop condensed phases on the square
lattice

This chapter presents the results of classical directed-loop Monte Carlo
calculations of loop condensed states on the square lattice. The wave
functions presented here have been well studied in the literature (espe-
cially the RK wave function of the square lattice dimer model and toric
code ground state); here we focus on the loop condensed nature of these
phases, and compute the fractal dimension of the underlying loop gas.

4.1 Loop condensation from local constraints

Lattice models with local geometric constraints can often be mapped to loop models, and
consequently display a variety of loop condensed, quantum liquid phases. On the square
lattice these loop condensed phases include gapped liquid phases with exponentially decaying
loop density correlation functions (such as the toric code ground state [64]) as well as gapless,
critical liquid phases with algebraically decaying loop density correlation functions (e.g. the
RK wave function of the QDM [106]). Here we explicitly discuss the loop condensed nature of
several liquid states in geometrically constrained models on the square lattice; in particular
we compute the fractal dimension of the underlying loop gas, as and examine the fractal
dimension as distinguishing feature of these phases.

Consider a lattice model with Ising degrees of freedom that live of the links of the lattice:
the two states of each link correspond to a link that is occupied or unoccupied by a dimer.
A link l (un)occupied by a dimer is the +1(0) eigenstate of the dimer number operator

nl = d+

l d�l , with d+/�
l the dimer creation and annihilation operators. The simplest local

constraint is to fix the dimer number at each vertex to be a constant n
0

; we define the
configuration space {Cn0} to be the set of configurations with n

0

dimers touching each
vertex (see figure 4.1). On a square lattice there are only two interesting cases: n

0

= 1 (or
n

0

= 3) and n
0

= 2. {C
1

} comprises fully-packed, hard-core dimerizations of the lattice.
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Figure 4.1: Examples of configurations with the local constraints on the square lattice.
Clockwise from upper left: {C

1

}, {C
2

}, {Ce}, {Co}, which have local constraints that restrict
configurations to have a one, two, an even and odd number of dimers touching each vertex,
respectively.

{C
2

} comprises fully-packed, non-intersecting loop configurations with two dimers touching
each vertex.

All fully-packed, hard-core dimerizations in {C
1

} can be mapped to a non-intersecting
closed loop configurations by choosing a reference dimerization R

0

(see figure 4.3). When
a dimerization is superimposed over R

0

, every vertex will be touched by both one physical
dimer and one reference dimer. With the exception of links where a physical dimer coincides
with a reference dimer, the doubled dimerization forms a closed loop covering of the lattice,
where the loops comprise links that alternatingly occupied by physical and reference dimers.
We choose to define links with overlapping physical and reference dimers to be unoccupied
in the loop picture.

The simplest liquid state in these constrained Hilbert spaces is given by the Rokhsar-
Kivelson wave function[106], which is an equal super-position of all configurations obeying
the constraint:

�

�

�

 n0
RK

E

⌘ 1
pNn0

X

C
n0

�

�

�

Cn0

E

. (4.1)

On a surface with trivial topology, the sum in (4.1) is over all configurations C that obey
the given local constraint and Nn0 is the number of such configurations. For n

0

= 1, | 1

RK

i
is the Rokshar-Kivelson state in the quantum dimer model. Diagonal expectation values
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of | n0
RK

i are equal to those of the corresponding classical model [20]. Consequently, the
behaviors of the correlation functions and local order parameters of | n0

RK

i are determined
by the statistical mechanics of the related classical models. Diagonal correlation functions of
| 1

RK

i are determined by the classical dimer model [34, 33, 35, 60, 61], and those of | 2

RK

i by
the classical fully-packed loop model, with a loop fugacity (the statistical weight per loop)
equal to 1 [73, 74, 58] (which maps to the 6-vertex model [11]). For all such constraints
there exists a local RK-like Hamiltonian for which | n0

RK

i is the exact ground state, just as
we have seen in the QDM.

In reference 88, Moessner, Sondhi and Fradkin show that a local dimer number constraint
generates a local U(1) invariance. If we define the operator nv =

P

l2v nl where nl is the
dimer number operator on the link l, then all states | n0i that obey the local constraint, are
invariant under the local gauge transformation:

Gn0
v (↵) ⌘ exp

⇣

i↵ (nv � n
0

)
⌘

, Gn0
v (↵)

�

�

�

 n0

E

=
�

�

�

 n0

E

. (4.2)

This suggests that if |RKi is in a liquid phase, H
RK

is related to a U(1) gauge theory. Indeed,
H

RK

has been shown to map to a U(1) gauge theory for both n
0

= 1 [36, 37] and n
0

= 2 [7].
We now consider relaxing the dimer number constraint to a local dimer parity constraint.

Here {Ce} and {Co} which comprise configurations with a fixed dimer number parity at
each vertex, have an even or odd number of dimers touching each vertex, respectively. The
physical states | e,oi that are formed from superpositions of {|Ce,oi} are invariant under the
gauge transformations

Ge
v ⌘ exp

�±i⇡nv

�

, Ge
v

�

�

�

 e

E

=
�

�

�

 e

E

(4.3)

Go
v ⌘ exp

⇣

±i⇡ (nv + 1)
⌘

, Go
v

�

�

�

 o

E

=
�

�

�

 o

E

. (4.4)

Note that the U(1) symmetry of Gn0
v (↵) has been reduced to a Z

2

symmetry in Ge,o
v [88].

We may define a Hamiltonian that commutes with Ge,o
v

H
TC

= �t
X

p

Y

l2p

dx
l (4.5)

where dx
l ⌘ 1/

p
2(d+

l + d�l ) and d+/�
l . This is the magnetic term of the toric code Hamilto-

nian [64]. In the toric code Hamiltonian the dimer parity constraint is imposed by a local
energy cost at each vertex; here we take that energy cost to be infinite so there is hard
constraint. The ground state of 4.5 is the equal superposition of all configurations in the
given parity sector:

�

�

�

 e/o
TC

E

⌘ 1
pNe/o

X

C
e/o

�

�

�

Ce/o

E

. (4.6)
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In the language of the [88], 4.6 in the even (odd) parity sector corresponds to the even (odd)
Ising Gauge theory [69].

We may understand the relationship between the U(1) gauge theory describing 4.1 with
a local dimer number constraint, and the Z

2

gauge theory that describes 4.6 with a fixed
dimer parity constraint. Since the square lattice is bipartite, the links can be oriented to
point from one sublattice to the other; dimers can be viewed as carrying a flux into or
out of a vertex according to this orientation. The nv = 2 constraint acts as Gauss’s law,
such that there is a flux of +2 and �2 on each vertex of sub-lattice A and B respectively;
correspondingly we can consider there to be a static background charge of ±2 on the two sub
lattices. Now consider if | 2

RK

i is doped with dynamic nv = 0, 4 vertices; these will act as
charge ±2 objects, depending on the sub lattice. Allowing nv = 0, 4 vertices will transform
| 2

RK

i into | e
TC

i, which is the toric code ground state, and therefore is described by a Z
2

gauge theory [64]. This transition from a U(1) gauge theory to a Z
2

gauge theory via the
introduction of charge 2 objects follows the well know prescription of Fradkin and Shenker
who showed that coupling a U(1) gauge field to charge N > 1 matter field can break the U(1)
gauge symmetry down to ZN [38]. The same picture applies in the odd sector, where the
QDM can be viewed as a U(1) gauge theory with ±1 background charges on the sublattices;
here introducing nv = 3 vertices is equivalent to allowing charge 2 matter fields and generates
| o

TC

i which is described by the odd Ising gauge theory. This construction begs the question
of whether other ZN models may live at the RK points of geometrically constrained models
on the square lattice; in particular, doping the QDM with charge ±3 nv = 4 vertices might
lead to a Z

3

liquid phase, purely via geometrical constraints.

4.2 Toric code

As discussed above in section 1.3, the ground state of the toric code, | e
TC

i, may be described
as a loop condensate on the square lattice [64]. This gapped liquid phase has exponentially
decaying spin-spin correlation functions. The ground state subspace is that of closed loop
coverings of the square lattice, with the exception that two loops may meet at a vertex.
Since | e

TC

i is an equal superposition of all loop coverings, we may relate it to the O(1) loop
model, by choosing a resolution of the four-loop vertices. Here we choose an orientation of
the loops, such that loops do not cross at a nv = 4 vertex (see figure 4.1). In figure 4.2,
the finite size scaling of the largest loop of the toric code wave function is plotted. From
this we have extracted the fractal dimension to be Df = 1.7502 ± 0.0002 which agrees with
the known value for the O(1) model, Df = 7/4 [27]. Similarly, we have computed the
fractal dimension for the odd Ising gauge theory described by | o

TC

i, and found that it is
also 7/4. This suggests that the fractal dimension of 7/4 is universal for the Z

2

topological
liquid phases, such as those of the toric code, odd Ising gauge theory, as well as that in the
triangular lattice quantum dimer model.
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Figure 4.2: Finite size scaling of the longest loop in toric code ground state (| e
TC

i). We
find Df = 1.7502 ± 0.0002, consistent with the universality of the fractal dimension of the
gapped Z

2

liquid.

4.3 Square lattice QDM

The ground state of the RK point of the square lattice QDM is a gapless critical dimer liquid,
with power-law decaying dimer-dimer correlations [106]. As described above in section 4.1, a
dimer model may be mapped to a closed loop model by introducing a reference dimerization.
As such we may view the RK point of the square lattice QDM as a loop condensed liquid
phase. There is a well known phenomenological height model description of the square lattice
RK wave function [48, 72, 101]. Here we will give a variant of this height model picture that
makes the meaning of the loop picture more transparent (see figure 4.3):

• First we orient the links such that the arrows point from sub-lattice A to B and choose
a reference plaquette to assign a height of h = 0, as in figure 4.3.

• Heights h(r) may be assigned to all other plaquettes by starting with the reference
plaquette and moving along any path crossing the links, where we assign a �h for each
link, with |�h| = 1.

• If a link crossed with the arrow pointing to the right is occupied by a dimer, �h = +1,
occupied by a reference dimer �h = �1, and vice versa if the link points to the left.

• Flipping parallel dimers on a plaquette will change the local height by ±1.

With this mapping, the transition loops formed from the reference and physical dimerization
act as the contour loops of the height field, as the height only changes when a transition
loop is crossed (see figure 4.3).
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We then propose an e↵ective gaussian action for a coarse grained height field which
captures the local height fluctuations and describes the dimer liquid at the RK point:

S
RK

=

Z

dr2

K

2
|5h|2 + V (r), (4.7)

such that the statistical weight for a given configuration of heights proportional to exp(�S).
In (4.7), K is the sti↵ness and the first term captures the fluctuations of the height field. V (r)
is a locking potential which favors certain ordered height configurations. In this picture, at
the RK point on the square lattice, the locking potential is irrelevant in the renormalization
group sense, and therefore the e↵ective action is gaussian. This gaussian action describes a
rough phase of the height model, where h fluctuates along the lattice, and such a phase can be
shown to have power law correlation functions. Consequently, the height model can capture
the critical correlations of the dimer liquid at the RK point, with an appropriate choice of the
sti↵ness K. We note that this height model description is purely phenomenological–currently
there is no well known microscopic derivation of this action for the QDM. The transition
loops to the reference dimerization take on a special meaning in the height model: they are
the contour loops of the height model, in that the height only changes when a transition
loop is crossed (see figure 4.3). It has been shown by Kondev & Henley that the fractal
dimension of the contour loops of a gaussian height model is universal (independent of the
sti↵ness K) and equal to 3/2 [75].

We have computed the fractal dimension of the transition loops of the square lattice
QDM at the RK point via directed loop Monte Carlo calculations. Figure 4.4 shows the
finite size scaling of the fractal loop, and the best fit power law gives Df = 1.502 + ±0.002.
This acts as a quantitative check on the height model description of the square lattice QDM.
Additionally we note that the fractal dimension of the transition loop distinguishes the
critical liquid RK point of the from the gapped liquid of the triangular QDM, where we saw
the fractal dimension is 7/4.

4.4 Fully packed loop model

The fully packed loop model is a critical liquid state with algebraically decaying loop-loop
correlation functions [73, 58]. Just as with the RK point of the square lattice QDM, there
is also a phenomenological mapping of this model, which describes the RK wave function
with a 2-dimer constraint at each vertex, | 2

RK

i, to a height model [58, 73] . Similar to the
dimer model case, the loops are oriented and act as the contour loops of the height field.
However, in this case the Gaussian action is augmented by an additional relevant (in the
renormalization group sense) term (which acts as a background charge in the Coulomb gas
description of the height model [73, 58, 95]):

S
FPLM

=

Z

dr2

⇣K

2
|5h|2 + V (r)

⌘

+ SBKGD.
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Figure 4.3: An example of the mapping of the square lattice QDM to a height model.
The green dimers represent the physical dimers and the blue dimers are the background
dimerization. The lower left plaquette is chosen to have h

0

= 0 and all other heights are
determined by following a path from h

0

through the links of the lattice. If a dimer is crossed
with the arrow pointing to the right (left) the height changes by +1 (�1) and vice versa for
a reference dimer. Flipping dimers on a flippable plaquette changes the local eight of the
plaqeutte by ±1. The transition loops formed by alternating green and blue dimers are the
contour loops of the height field.
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Figure 4.4: Finite size scaling of the length of longest loop, sM of the ground state of the
RK point of square lattice QDM (| e

TC

i). The best power law fit gives Df = 1.502 ± 0.002
which is consistent with the fractal dimension of contour loops of a gaussian height model.
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Figure 4.5: Finite size scaling of the length of the longest loop of the fully-pack loop model
that describes the 2-dimer constrained RK wave function, | 2

RK

i. The best power law fit
gives Df = 1.7501 ± 0.0002 which is consistent with the fractal dimension of the e↵ective
height model.

As such the universality of the Df = 3/2 for a pure Gaussian model does not apply. Indeed,
for the fully packed loop model, the height model mapping predicts a fractal dimension of
Df = 7/4; we have confirmed this in figure 4.5 via directed loop Monte Carlo calculations
of | 2

RK

i; we find Df = 1.7501 ± 0.0002. While the fractal dimension does not distinguish
the fully packed loop condensate from the gapped Z

2

loop condensed phase, they are easily
distinguished by the density-density correlation function, C(r); the density-density correla-
tion function displays a power law in the critical fully packed loop model, where it vanishes
exponentially in the gapped liquid phase.
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Chapter 5

A quantum dimer model with a
3-dimer constraint

The chapter presents a preliminary PIGS quantum Monte Carlo study
of a quantum dimer model with a local 3-dimer constraint. We thank
Matthias Troyer for suggesting this model as an application for QMC
calculations.

5.1 Introduction

The 3-dimer model is a variant of the canonical QDM on the triangular lattice with the
hard-core dimer constraint replaced by a local constraint that each vertex is touched by 3
dimers. Unlike the square lattice, on the triangular lattice, the 3-dimer constrained Hilbert
space does not map to the single dimer constraint, and is therefore a distinct Hilbert space,
with distinct ground states. Just with other locally constrained models, we may expect that
unusual liquid ground states may be described by a RK wave function in this Hilbert space.
We discuss below how the RK wave function describes a gapped, topologically ordered liquid
phase with exponentially decaying dimer-dimer correlation functions, just as is the case for
the single dimer constrained QDM on the triangular lattice.

As in the canonical QDM, the minimal dynamics that do not violate the local 3-dimer
constraint are flipping dimers around a rhombus plaquette with two parallel dimers and
two parallel unoccupied links. Therefore, the standard QDM Hamiltonian (Eq. (5.2)) is the
simplest model of quantum dynamics in this Hilbert space; here we will present PIGS QMC
calculations of the ground state of this system which have allowed us to study the phase
diagram of H

3

as a function of v/t.
This 3-dimer model was originally introduced by Balents et al. [9] in the context of a

spin 1/2 Heisenberg antiferromagnet on the Kagomé lattice. They consider the case where
all interactions around each hexagon of the Kagomé lattice are equal strength, such that the
nearest-neighbor interaction is the same as the next and next-next neighbor interactions on
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Figure 5.1: Mapping of the XXZ model on the Kagomé lattice (solid lines) to a dimer model
on the triangular lattice (dashed lines). A spin on a vertex of the Kagomé lattice with
Sz = +1/2 is considered to be a dimer on the link of the triangular lattice. The constraint
Sz7 = 0 in the low energy subspace of the XXZ model becomes a constraint requiring 3
dimers to touch each vertex of the triangular lattice.

the same hexagon:

H
heis

=
X

7

X

(i,j)27
J ~Si · ~Sj.

Additionally, Balents et al. consider the case where the exchange interaction is much stronger
in the z direction than in the x � y plane, the so-called easy axis limit. In this limit, the
Hamiltonian can be written in terms of the total spin on each hexagon ~S7:

H
XXZ

= Jz

X

7
(Sz7)2 + J?

X

7

⇣

(Sx7)2 +
�

Sy
7

�

2 � 3
⌘

, ~S7 ⌘
X

i27
~Si

Isakov et al. [54, 55] used large scale QMC results to study the phase diagram H
XXZ

as a
function of J?/Jz. They found that the ground state is a spin liquid phase for V/t & 20
and undergoes a phase transition to a ferromagnet for smaller values of V/t. Recently, this
phase spin liquid phase was conclusively shown to posses Z

2

topological order via QMC
calculations of the topological entanglement entropy [65, 79, 56].

The spin liquid phase can be understood by considering the limit Jz � J?. For J? = 0,
HXXZ describes a classical model with a highly degenerate ground state, in which every spin
configuration has Sz7 = 0 on every hexagon. This classical ground state subspace can be
mapped to dimerizations of the triangular lattice, as follows if we consider each hexagon to
be a vertex of the triangular lattice (see figure 5.1), then the links of the triangular lattice
pass through the vertices of the Kagomé lattice. We then may interpret a spin on at a
vertex of the Kagomè lattice with Sz = +1/2(�1/2) be a link (un)occupied by a dimer. The
Sz7 = 0 constraint of the spin model translates to a constraint in the dimer model such that
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exactly three dimers touch each vertex. At 2nd order in J?/Jz, the e↵ective Hamiltonian in
the 3-dimer constrained subspace is:

H
e↵

= �t
e↵

X

p

⇣

�

�

�

E

h | + h.c.
⌘

, J
e↵

=
J2

?
Jz

. (5.1)

H
e↵

is simply the kinetic term of the QDM Hamiltonian. We note that the terms in equation
(5.1) are independent of the link at the center of the plaquette; unlike the 1-dimer constraint,
the 3-dimer constraint allows for a flippable plaquette to have a dimer along the center link.

We will now consider the full QDM Hamiltonian in the 3-dimer constrained Hilbert space
by adding the usual potential energy term for parallel dimers:

H
3

= v
X

p

⇣

�

�

�

E

h | +
�

�

�

E

h |
⌘

� t
X

p

⇣

�

�

�

E

h | + h.c.
⌘

, (5.2)

where all the terms in (5.2) are independent of the state of the center link in each plaquette.
At the RK point (v = t) the exact ground state is the equal superposition of all such 3-dimer
coverings within a topological sector. Here, a topological sector is defined by the parity of
the number of dimers which cross a cut along one of the axes of a torus. Balents et al. [9]
show that the 3-dimer constrained RK ground state on the triangular lattice is a gapped
dimer liquid with exponentially decaying dimer-dimer correlation functions. As with the
canonical triangular lattice dimer model, we may expect that this dimer liquid persists away
from the RK point for v/t  1. Indeed, in reference 112, Sheng and Balents performed exact
diagonalization of (5.2) on clusters with up to Nl = 66 links. They find that the dimer liquid
persists down to v/t ⇠ �0.5 where there is a transition to an ordered phase. Here we will
present the results of PIGS QMC calculations of the ground state of (5.2) on lattices with
up to Nl = 768 (L = 16) which confirm that these results hold in the thermodynamic limit.

5.2 Phase diagram

For v < 0 and |v|/t � 1, configurations with the most flippable plaquettes are favored by
(5.2). One such configuration is given in figure 5.2a, and it is evident that it has broken
the rotational and translation symmetry of the lattice. This configuration (along with its
symmetry related configurations) has Nfp = Nl/2. Additionally, any configuration with all
dimers shifted by one link along any line of links with alternating occupied and unoccupied
links maintains Nfp = Nl/2, such as 5.2b. Therefore in the classical limit t = 0, the ground
state is a highly degenerate set of configurations with broken rotation symmetry.

To detect the rotational symmetry breaking we define the order parameter

M2

rot

⌘ 1

2N2

d

X

i,j

�

N i
d �N j

d

�

2

, (5.3)
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(a) (b)

Figure 5.2: Two configurations with the maximum number of flippable plaquettes

where the sum is over the three directions of the triangular lattice. In the maximally flippable,
row ordered configurations like those in figure 5.2, N i

d = Nl/3, N j
d = Nl/6, and Nk

d = 0 for
any choice of i, j, k; consequently M2

rot

= 1/3 in these configurations.
To study the ground state phase diagram way from the RK point (v/t = 1), we have

performed PIGS QMC calculations using the RK wave function as a trial wave function
to cap the imaginary time path. As seen by reference 9 and 112, the energy gap � in
a topological sector is of the order of t at the RK point (c.f. the standard QDM on the
triangular lattice, for which � ⇠ 0.1t), and consequentially only moderate imaginary time
paths are required for ground state convergence. We find that for �t = 8, the energies have
converged to within 10�2.

Figure 5.3 shows the rotational symmetry breaking order parameter plotted as a function
of v/t for several lattice sizes. M2

rot

appears to be vanishing in the liquid regime adjacent
to the RK point (v/t = 1), but the rotational symmetry is broken for v/t . �0.75. This
is consistent with a transition to the classically ordered phase, where M2

rot

= 1/3, and M2

rot

appears to be approaching 1/3 as v/t decreases. The transition appears to be 1st order,
given the discontinuous nature of the transition of M2

rot

an analysis of the histogram of M2

rot

at the transition would provide more definitive evidence of the order of the transition. The
transition is also apparent on looking at the density of flippable plaquettes nfp = Nfp/Np,
as shown in figure 5.4. These results are constant with reference 112 where the transition
was found to be near v/t ⇠ 0.5 for small lattices.

5.3 Future Work

To conclusively determine the order of the phase transition we will perform a detailed analy-
sis of the histogram of the order parameter; a double peak structure in the histogram would
provide conclusive evidence of a first order phase transition. We have here presented only
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Figure 5.3: Rotational symmetry breaking order parameter for �t = 8. The dimer liquid
phase persists down to v/t ⇡ 0.75, where there is a 1st order phase transition to the ordered
phase. M2

rot

saturates to 1/3 for the classical limit v/t ! �1.

Figure 5.4: Number of flippable plaquettes nfp = hNfp/Npi as a function of v/t for �t = 8.
In the classical limit, the ordered phase has Nfp = Np/2
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ground state expectation values computed via QMC. The lowest energy gap in a topological
sector may be computed from imaginary-time correlation functions in PIGS QMC. In par-
ticular this would allow us to compute the gap in both the dimer and vison sectors, which
would determine the nature of the lowest energy excitations [57].
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Chapter 6

Stroboscopic generation of topological
protection

The chapter presents a proposal for the robust experimental generation
of a topologically ordered phase in a system of neutral atoms trapped in
an optical lattice. Much of this chapter appears in reference 50 and was
done in collaboration with co-authors. Section 6.3 is greatly expanded
version of what appears in reference 50 and is primarily this author’s
work.

6.1 Introduction

Among the most exciting aspects of quantum simulation is the possibility of generating
and studying exotic quantum phases such as those possessing topological order that can be
used to robustly store and process quantum information. The Hamiltonians governing these
phases frequently require more-than-2-body interactions that are hard or even impossible
to realize naturally. This di�culty has spurred much theoretical and experimental e↵ort in
the artificial engineering of Hamiltonians, particularly for trapped neutral atoms [80]. Many
proposals have been made for the generation of 2-body Hamiltonians using static emulation
schemes and some experimental realizations have appeared [44, 114]. Specific proposals have
appeared for generating n-body interactions [18], but have focused on static emulation.

We present here an alternative, dynamic emulation approach to systematic generation of
n-body interactions that is based on sequences of control pulses which individually realize 1-
and 2-body operations on internal atomic levels. We show that this stroboscopic realization
of the Hamiltonian can be implemented simultaneously with a dissipative thermalization
protocol to stabilize the system from the e↵ects of imperfect quantum operations and envi-
ronmental noise. In the zero temperature limit, this can be view as replacing algorithmic
error correction in an equivalent quantum circuit model with a dissipative procedure to re-
move errors [81]. The resource requirements for this thermalization protocol are di↵erent
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Figure 6.1: Illustration of the 4-body interactions in the toric code on the square lattice

from those of algorithmic error correction, and may be more accessible to experiment in the
foreseeable future.

We illustrate the approach here with stroboscopic generation of the 4-body toric code
Hamiltonian, which constitutes one of the simplest exactly solvable models with a ground
state topological phase [64]:

HTC
0

= �Je

X

v

Y

j2v

�z
j � Jm

X

p

Y

j2p

�x
j , (6.1)

where �j denotes a Pauli operator on the links of a square lattice and v/p denote the ver-
tex/plaquette of the lattice. The ground state of this model possesses topological order,
and therefore has anyonic quasiparticle excitations and, on a lattice with periodic bound-
ary conditions, an emergent topological degeneracy. Quantum information can be encoded
in this ground state degeneracy and manipulated with controlled creation and braiding of
anyons [64, 90].

In a finite sized system [97, 96, 19], the topological order of the ground state and gap
to excited states protects against decoherence and loss of quantum information due to noise
provided the system is coupled to a low temperature bath. Maintaining equilibrium with
an e↵ective low temperature bath is an essential component of topological protection, as
the bath acts as an entropy sink that removes excitations caused by noise. While it is
known that topological order is destroyed at any finite temperature in the thermodynamic
limit [97, 96], for a finite sized system there will be a finite temperature crossover T ⇤ below
which the system will maintain topological order [19]. Consequently, topological robustness
requires maintaining an e↵ective temperature below T ⇤ via coupling to an e↵ective low
temperature reservoir. Our analysis below will provide a scheme for generating both the
toric code Hamiltonian and such an e↵ective low temperature bath, realizing the topological
protection characteristic of the toric code.

The physical context for our analysis is a set of ⇠ 250 individual 133Cs atoms trapped at
the sites of an addressable simple cubic optical lattice [91]. A lattice spacing of 5 µm [91]
allows essentially perfect addressability [12]. The orbital degrees of freedom are frozen on
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the time scales relevant to our analysis and we need consider only internal atomic degrees
of freedom. Two hyperfine levels (e.g., |F, mF i = |4, 4i, |3, 3i) define a 2-level pseudospin
system. We realize H

TC

in the interaction representation defined by the pseudospin energies.
Auxiliary internal levels are used to realize 1-spin and 2-spin quantum operations, using op-
tical frequency Raman pulses to generate arbitrary single-spin operations and excitation of
one atom to a Rydberg state, e.g., the n ⇡ 80 state, to generate controlled-phase gates,
CPHASE [59]. To achieve thermalization or cooling, the Hamiltonian H

TC

is supplemented
by coupling the primary system spins to an ancillary set of pseudospins that will be dissipa-
tively controlled to simulate a thermal reservoir. Since the pseudospins are localized at the
sites of a cubic lattice, one can choose to either realize H

TC

on a single plane using a surface
code [15] or in a three-dimensional cubic array with toroidal boundary conditions realized
by SWAP operations.

6.2 E↵ective Hamiltonian Evolution

Given the ability to perform both Rydberg-induced CPHASE gates between atoms in neigh-
boring sites and arbitrary 1-body rotations, exp (�i✓�j), on individual atoms, where ✓ is
a variable phase angle, sequences of these operations can be chosen to generate e↵ective
n-body interactions through high-order terms in the Magnus expansion [67], allowing stro-
boscopic simulation of a broad class of Hamiltonians. Consider the operator sequence,
UnUn�1

· · ·U
2

U
1

, where the Uj are the 1- or 2-body gates described above. E↵ective in-
teractions are found through:

H
e↵

(t) ⌘ i~
t

ln(UnUn�1

· · ·U
2

U
1

)

=
X

j

i~
t

ln Uj �
X

j<k

i~
2t

[ ln Uj, ln Uk] + O �||ln U ||3� .

Consider now simulation of the 4-body interactions in HTC

0

. We use the notation Uj(�) ⌘
e�i�⌃

j and define ⌃
1

= �z�y�0�0, ⌃
2

= �0�x�y�0, and ⌃
3

= �0�0�x�z, where �0 is the
identity operator. For simplicity, it is assumed that each Uj(↵) takes a time ⌧ to execute.
We construct the operator sequence,

U
123

(↵, �, �) = U
12

(↵, �)U
3

(�)U †
12

(↵, �)U †
3

(�), (6.2)

where U
12

(↵, �) = U
2

(�)U
1

(↵)U †
2

(�)U †
1

(↵). This sequence acts over a time 10⌧ to generate
the following e↵ective Hamiltonian at a single vertex, v:
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Figure 6.2: Schematic illustration of the stroboscopic generation of 4-body interactions

where [O]v/p denotes the application of the (up to) four-body operator O to the spins meeting
at a vertex v or surrounding a plaquette p; we choose |↵| = |�| = |�| ⌘ �; and Je =
� (1� 3�2) /↵� + O(�6) with � ⌘ ↵2��2 (2~/5⌧). By repeating the operator sequence a
second time with sign reversals ↵ ! �↵ and � ! ��, we cancel the fourth order terms
in �, giving U

123

(�↵, �,��)U
123

(↵, �, �) that acts for a time 20⌧ to generate the e↵ective
Hamiltonian

Hzzzz
e↵

= Je

Y

j2v

�z
j + �

⇥

�0�x�y�0

⇤

v
+ O �

�6

�

. (6.3)

The sequence U
123

(�↵, �,��)U
123

(↵, �, �) is specifically designed to cancel the lowest-order
(�4) perturbation terms without a↵ecting the gap. The remaining �5 term is a 2-body
perturbation to H

TC

. Repeating this sequence with appropriate sign reversals will cancel
these higher order terms. However, the ground state subspace of H

TC

is robust to these
remaining perturbations, as we discuss below. A shorter operator sequence may then be
preferable to reduce gate errors. The plaquette operator, Hxxxx

e↵

, can be generated by cyclic
permutation of the Pauli operators in the above expressions for ⌃

1

, ⌃
2

and ⌃
3

.
Simulation of HTC

0

then requires application of the pulse sequence to all vertices and pla-
quettes conforming to a two dimensional square lattice with periodic boundary conditions.
Vertex and plaquette terms may be applied serially as: exp (�iHxxxx

e↵

t/~) exp (�iHzzzz
e↵

t/~) ⇡
exp�i (Hxxxx

e↵

+ Hzzzz
e↵

) t/~. Because only the perturbation terms fail to commute, the trun-
cation error in the above expression occurs at orders larger than �7. For 18 pseudospins,
representing a 3 ⇥ 3 system with toroidal boundary conditions, a completely serial imple-
mentation yields a stroboscopic cycle time of 720µs using the estimate ⌧ ⇠ 500ns [131] and
the minimal count of one CPHASE and four 1-spin gates to realize all Uj(↵) [134]. This may
be reduced by implementing some operators in parallel.
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6.3 Simulated Thermalization

The pseudospin subspace of the system is an open quantum system that will interact with
the external environment through the controlled quantum operations in the above pulse
sequences and uncontrolled noisy interactions. Unlike a solid state system, for which system-
environment interactions might be expected to lead to thermal equilibration, noise in the
optical lattice system will not generally drive the simulation subspace to a state that is
thermal under the simulated Hamiltonian.

If the simulation subspace is described in the interaction picture of the system, physical
couplings to a thermal reservoir may drive the simulation subspace to either a negative or
infinite temperature state, or to a non-thermal state under the simulated Hamiltonian [17].
As a trivial example, consider simulating the Hamiltonian Hsim = 0 in the interaction picture
of a single qubit with a physical energy spitting � between states |0i and |1i. Under Hsim

these states are degenerate, but physical coupling to a zero temperature reservoir drives the
system to |0i, which is non-thermal under Hsim.

Additionally, noise in the above sequence of control gates will add entropy and e↵ectively
heat the system. To estimate the entropy produced by noisy control gates under a simple
a simple model of gate noise, consider a unitary gate U(�) = ei�⌃, where ⌃ is a Hermitian
operator with ⌃2 = . We assume that there is weak noise in the rotation angle � such that
under the action of U✏(�),

⇢
0

! ⇢0(�) ' U(✏)⇢(�)U †(✏),

where ⇢(�) ⌘ U(�)⇢(�)U †(�), and ✏ ⌧ 1 and is normally distributed about 0 with variance
EPG (error per gate). The linear entropy,

Slin ⌘ 2 ln 2(1� Tr ⇢2), (6.4)

is a lower bound on the entropy that is exact for both pure and fully mixed states. To first
order in EPG:

Slin

�

⇢0 (�)
� ' 2 ln 2

"
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⇢ (�)2

�
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n
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�
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0
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0

⌃⇢
0

)
o

#

The maximum increase in entropy occurs when ⇢
0

, and therefore ⇢(�), are pure states. This
gives an estimate for the maximum increase in entropy under U✏(�):

�Smax ' Slin

�

⇢0 (�)
�� S

�

⇢
0

� ' 4 ln 2⇥ EPG (6.5)

Given a system at temperature T for which U✏(�) is applied at a frequency ⌦, the e↵ective
heating rate of the system due to the noisy gate is then �e ⇡ 4 ln 2(EPG)⌦T . Quantum
circuit models are usually supplemented by error correction schemes to e↵ectively remove
entropy from the system. We take a di↵erent approach here, stroboscopically constructing
an e↵ective system-reservoir interaction to control system entropy and produce a thermal
state. We first present the general approach for finite temperature and then a simplification
for ground state cooling.
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Figure 6.3: Schematic illustration of the coupling to a set of dissipative pseudospings

6.3.1 Themalization from non-unitary dynamics

To maintain the simulated system at a thermal steady state we add a ”thermalization”
interaction Hsys�res of the system pseudospins with a set of ancillary pseudospins. Consider
a Hamiltonian with local n-body interactions of the form:

H
0

= �
X

⌫

A⌫

X

n(i)

h⌫
n(i). (6.6)

In Eq. (6.6), h⌫
n(i) is an n-body operator involving a neighborhood of pseudo-spins, n (i),

including spin i, with eigenvalues ±1, ⌫ labels the type of interaction, and A⌫ is a constant.
Additionally we define the pseudospin flip operator ⌃⌫

i such that ⌃⌫
i |h⌫

n(i) = ±1i = |h⌫
n(i) =

⌥1i. When all [h⌫
n(i), h

µ
n(j)] = 0, as is the case for HTC

0

(Eq. (6.1)), we can define the local
excitation creation and translation operators:

E†
i,⌫ =

1

4
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i

�

+ h⌫
n(i)

� �

+ h⌫
n0

(i)

�

Ti,⌫ =
1

4
⌃⌫

i

� � h⌫
n(i)

� �

+ h⌫
n0

(i)

�

. (6.7)

where E†
i,⌫ and Ti,⌫ are (2n� 1)-body interactions; E†

i,⌫ creates a pair of excitations about i
and Ti,⌫ translates an excitation about i. The energy gap for creation of a pair of excitations
of type ⌫ is �⌫ = 4A⌫ .

A route to guaranteeing the thermal equilibration of this system is for it to evolve under
the Lindblad master equation

⇢̇ = �i/~ [H
0

, ⇢] + L [⇢] , (6.8)

where ⇢ is the density matrix and L [⇢] is the superoperator:

L [⇢] =
X

!

�

2c!⇢c†! � c†!c!⇢� ⇢c†!c!

�

, (6.9)
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Figure 6.4: Illustration of local excitation creation and translation operators

and where c!(c†!) are the Lindblad operators. With the following choice:

{c!} = {
r

(1� p⌫)

2
�⇤Ei,⌫ ,

r

p⌫

2
�⇤E†

i,⌫ ,

r

�⇤

4
Ti,⌫ ,

r

�⇤

4
T †

i,⌫} (6.10)

the unique stationary state of the master equation can be shown to be the thermal state
under H

0

[3, 2]. For cooling towards the ground state of H
0

, the Lindblad operators can be
reduced to the n-body terms [24, 76, 130] {p�⇤(Ei,⌫ + Ti,⌫),

p
�⇤(Ei,⌫ + T †

i,⌫)}. It may also
be possible to approximately generate (6.9) with 2-body system-bath interactions [3, 2].

To explicitly demonstrate that the thermal state is indeed the stationary state of (6.8),
we will consider the evolution of the diagonal element h n| ⇢s | ni = Pn. Here | ni, and the
states | n0

i,⌫

i, | n00
i,⌫

i, and | n000
i,⌫

i, which are defined by:

| n0
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are eigenstates of H
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. Under Eq. (6.10), Pn (t) evolves according to:
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A stationary state of (6.11) satisfies detailed balance:
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1� p⌫

p⌫
,

Pn00
i,⌫
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=
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= 1

Ergodicity of the operators {Ei,⌫ , E
†
i,⌫ , Ti,⌫ , T

†
i,⌫} in the Hilbert space ensures [63] that the

unique stationary solution to Eq. (6.11) is Pn (t !1) = e�E
n

/T /Z, where the temperature
T is defined by T = ��⌫/ ln p⌫ , En| ni = H

0

| ni, and Z =
P

n e�E
n

/T .
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Now consider the evolution an o↵-diagonal density matrix element ⇢s
mn ⌘ h m | ⇢ |  mi n

under Eq. (6.10):
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where �nm is the positive constant:
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Clearly, ⇢s
mn = 0 for all m 6= n is a stationary state of Eq. (6.12). The stationary state of both

Eqs. (6.11)& (6.12) is the thermal state ⇢S
th ⌘ P

n e�
E

n

T | nih n|. Additionally, Eq. (6.11)
describes the brownian motion of excitations. The �⇤ term generates incoherent hopping of
isolated local excitations, and consequently �⇤

2

acts as the di↵usion constant. For a given
choice of mobility µ, �⇤ can be chosen such that �⇤ = µT . We not that while in principle
there could a di↵erent temperature for each type of excitation defined by T⌫ = ��⌫/ ln p⌫ ,
this would lead to a non-thermal equilibrium state, so we assume that {pnu} are chosen such
that T⌫ = T for all ⌫.

6.3.2 Generating thermalization from dissipative pseudospins

To generate Lindbland evolution of the form Eq. (6.10), we’ll consider interacting the system
locally with an ancillary pseudospin undergoing strong dissipation. Consider two eigenstates
of H

0

, |�ai, |�bi where |�bi = E†
i,⌫ |�ai. The system will interact locally with an ancillary

pseudospin �i
t

,⌫ via
H int

i
t

,⌫ = gE†
i,⌫�

�
i
t

,⌫ + h.c. (6.13)

where �i
t

,⌫ is undergoing dissipation such that the total density matrix of the system and
ancilla in the interaction representation of H

0

, ⇢, evolves according to the master equation:

⇢̇ = �i/~
⇥

H int
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⇤

+ L [⇢]
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+ h.c. (6.14)
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Taking the basis states of the system+ancilla pseudospin in the system subspace {| ai, | bi}
to be:

|�
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i = | ai| #i,⌫i
|�
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i =
1p
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3

i = | bi| "i,⌫i
⇢̇ decouples into three independently coupled sets of dynamical equations. We see that ⇢
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is decoupled from all other terms and decays according to:
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The second set of coupled equations only involves o↵-diagonal terms:
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The solution to (6.15) is:
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where {Co
i } are constants that depend on the initial conditions and
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for g ⌧ �. By tracing over the ancillary pesudospin, we can solve for the evolution of
o↵diagonal element of the reduced density matrix for the system, ⇢s (t):
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where �⇤ ⌘ 1��
2

� ' 4
�

g
�

�

2

�. Therefore the e↵ective evolution of ⇢s
ab (t) is:
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The final set of independently coupled equations involves the diagonal elements of ⇢:
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The solution to (6.19) is:
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where {Cd
1

, Cd
2

, Cd
3

} are constants that depend on the initial conditions. Tracing over the
ancilla pseudospin, in the limit g � � we arrive at:
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We therefore see that the diagonal elements of ⇢s relax to a thermal population according
to:
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�

⇢s
aa � p

�

⇢̇s
bb (t) '� �⇤

�

⇢s
bb � (1� p)

�

(6.22)

The evolution of Eqs. (6.18)& (6.22) is generated by the Lindblad evolution:
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Similarly, if we couple the system to an ancillary pseudospin that is relaxing to the fully
mixed state, �i
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,⌫ , via:
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the e↵ective Lindblad evolution of the system is:
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with � ' 4
�

g
�

�

2

�. If each system pseudospin is coupled to a thermally relaxing ancillary
pseudospin �i

t

,⌫ and an ancillary pseudospin relaxing to a fully mixed state, �i
m

,⌫ for every
excitation type, in the g ⌧ �, � limit, where no correlations can develop between ancillary
pseudospins, the total Lindblad evolution is given by Eq. (6.10).

In this limit the ancillary pseudospins become an e↵ective low temperature bath with a
cooling rate �

c

⇠ 4g2/� and heating rate determined by gate errors and any environmental
noise. Competition between these rates leads to a minimum reachable temperature for the
system, which can be estimated as T

min

⇠ �/ ln (�
c

/�
e

), where �
e

⇠ EPG ⇥ ⌦, with EPG
and ⌦ the error per gate and frequency of application of the most noisy gate.

We emphasize here that the discussion above only applies to stabilizer-like Hamiltoni-
ans where all the local terms commute; the eigenstates of these Hamiltonians are therefore
eigenstates of the local operators, and excitations are localized. Consequently the local
system-bath coupling described above can directly generate a thermal stationary state un-
der the Lindblad dynamics, as we have shown above. However, a generic Hamiltonian will
have non-commuting terms and thus will not in general have localized excitations. For sys-
tem with translational invariance, we expect excitations to be propagating modes, and thus
it is not clear that such a local-system bath interaction will be able to stabilize a thermal
state [8].
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6.4 Optical Lattice Implementation

The Lindblad master equation, with operators given by Eq. (6.10), generates a unitary
system-reservior interaction but nonunitary reservoir relaxation. Stroboscopic simulation
of H

sr

is performed in a manner analogous to the H
TC

simulation described above. Phase
angles are chosen in the 1- and 2-body gates to generate an e↵ective static interaction
strength g over the time tsr between applications of Hsr, such that gtsr/~ < ⇡/2. Nonunitary
evolution of the reservoir is generated by encoding the reservoir as two levels of a ⇤-system.
The pseudospin states are the ground state |0i and the meta-stable state |1i. State |2i is
chosen to have fast spontaneous emission to |0i, with rate �

20

. This spontaneous emission
is the decoherence mechanism required to generate the nonunitary Lindblad evolution. The
ancillary pseudospin levels can be placed in a thermal state via the following procedure:

1. ⇡-pulse on the |1i ! |2i transition.

2. Wait for decay to ground state, |0i.
3. ⇡-pulse on |0i ! |1i transition.

4. ✓-pulse on the |1i ! |2i transition.

5. Wait for decay, which now yields the final pseudospin state, ⇢ = diag
�

sin2(✓), cos2(✓)
 

,
corresponding to an e↵ective temperature:

T
e↵

= �/ (2 ln (cot ✓)) . (6.24)

The above stroboscopic procedure generates �⇤ ⇡ g2tsr/~2 in Eq. (6.10). The procedure can
be simplified in the limit of cooling towards zero temperature by eliminating steps 3-5, when
it becomes similar to the optical pumping scheme employed in measurement of qubit states
for trapped ions [133]. This thermalization procedure is then repeated and interleaved with
the stroboscopic application of H

0

.
HTC

0

is in the local form of H
0

, with two types of excitations, electric charges and magnetic
vortices, (⌫ = e, m) that reside on vertices and plaquettes, respectively, of the square lattice.
The excitation operators are defined with

he
v =

Y

j2v

�z
j , hm

p =
Y

j2p

�x
j , ⌃e,m

i = �x,z
i . (6.25)

Each link must interact with four ancillary pseudospins in the limit T ⌧ � or � ⌧ g to
allow thermalization to the ground state or the thermal state of HTC

0

, respectively.
The stroboscopic generation of H

TC

outlined above introduces truncation perturbations
in the perturbative expansion, e.g, the second term in Eq. (6.3), which are distinct from
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Figure 6.5: (a) Energy spectrum (in units of Je = Jm) and (b) ground state fidelity vs.
perturbation strength from exact diagonalization of the 18 site toric code with hz = 0.05.

extrinsic errors due to experimental noise and gate inaccuracies. If su�ciently large, such
truncation perturbations could drive the system away from the desired ground state phase.
We now show on a finite sized system accessible to current experiments [91], that the intrinsic
perturbations can be kept su�ciently small. Figure 6.5(a) plots the gap of

HTC
�,h

z

= HTC
0

� hz

X

i

�z
i + �

X

hi,ji

�x
i �y

j

as a function of the strength of the perturbation for a 3⇥3 planar lattice with toroidal bound-
ary conditions . The Zeeman field is added here to fully split the ground state degeneracy
and ensure robust characterization of the eigenstates of H even in the presence of small
additional perturbations. We define the ground state fidelity as

FGS
n = |h 0

n| n (�, hz)i|,
where the | 0

ni are the degenerate ground states of HTC
0

and | n (�, hz)i are the nearly
degenerate ground states of HTC

�,h
z

. Fig. 6.5(b) shows the ground state fidelity as a function
of �. This fidelity determines the robustness of topological operations that will be performed
via loop operators [64] to measure or perform gates on the system. We see that for |�| . 0.4
the features of the topological phase persist, including the approximate four-fold degeneracy
of the ground state and a finite gap to excitations. This corresponds to a maximum value
of � ⇠ 0.4, which constrains the gate operations in the pulse sequences, Eq. (6.2). This
robustness should increase with increasing lattice size, and is consistent with known stability
of HTC

0

to perturbations [124].
Increasing � increases J and therefore the gap of the HTC

0

; however it also increases
�/J , which reduce the gap of HTC

�,h
z

and topological protection for large �. We also note that
J ⇠ 1/NG where NG is the number of sequential gates used to simulate H. For larger lattices,
some degree of parallelization is thus desirable to ensure that the gap does not decrease with
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the lattice size. Choosing � = 0.2, the gap achieved by a completely serial implementation
is � ⇡ 0.6 µK/N

sys

, where N
sys

is the number of system atoms used. With the cooling
sequence serially interleaved, � ⇡ 0.1 µK/N

sys

and �⇤ ⇠ 104 s�1/N
sys

are achievable. For a
minimal system of 18 system atoms, this allows for an e↵ective temperature T

e↵

< � to be
reached with an error rate of EPG ⇠ 10�4 or less.

6.5 Sources of Errors

This scheme is designed to be robust against errors within the pseudospin subspace. The
dominant source of residual error in the implementation discussed here is leakage from the
Rydberg levels due to spontaneous emission and black body radiation. The latter may be
e↵ectively suppressed by working at low temperatures [51], and spontaneous emission is
minimized by utilizing states with larger n. With n . 180, we estimate that spontaneous
emission errors can be reduced to ⇠10�6 per gate, allowing for up to 103 stroboscopic cycles.

6.6 Outlook

Although all of the experimental capabilities relied on for the above scheme are not yet
available in current optical lattice experiments, the required technologies are rapidly devel-
oping [91]. It is possible that the minimal requirements for the generation of toric code
Hamiltonian may be available in the near future. In particular the Weiss group at Penn
State is currently developing the experimental capabilities required, and is planning on im-
plementing this scheme [91]. While the cooling and thermalization procedure is even more
experimentally challenging, it is possible that a simplified scheme using 2-body interactions
may be used instead of the more complicated scheme presented here.

This general approach may be applied to other stabilizer-like Hamiltonians with com-
muting local terms. In particular, the toric code may be generalized to other Hamiltonians
have a non-Abelian topologically ordered ground state [16, 64], including models that are
universal for quantum computation [85, 86]. While the non-Abelian toric code Hamiltonian
has much more complex interactions, they are still 4-body terms that commute; therefore,
in principle this stroboscopic approach described here may be used to generate the non-
Abelian toric code. An robust experimental realization of the non-Abelian toric code could
potentially act as the basis of a universal fault tolerant quantum computer.

An outstanding question is to what extent cooling and thermalization of non-stabilizer-
like Hamiltonians is possible via this approach. In general, we expect translationally invariant
Hamiltonians to have propagating modes, and it is not clear under what conditions purely
local system-bath interactions, which are accessible in this method, can be used to stabilize
the ground state or a thermal state of a general interacting model. We are currently at-
tempting to determine the conditions under which generic Hamiltonians may be thermally
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stabilized [8].
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