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Regression analysis of longitudinal data with outcome-
dependent sampling and informative censoring

Weining Shen1, Suyu Liu2, Yong Chen3, Jing Ning2

1Department of Statistics, University of California, Irvine

2Department of Biostatistics, The University of Texas MD Anderson Cancer Center

3Department of Biostatistics and Epidemiology, The University of Pennsylvania

Abstract

We consider regression analysis of longitudinal data in the presence of outcome-dependent 

observation times and informative censoring. Existing approaches commonly require correct 

specification of the joint distribution of the longitudinal measurements, observation time process 

and informative censoring time under the joint modeling framework, and can be computationally 

cumbersome due to the complex form of the likelihood function. In view of these issues, we 

propose a semi-parametric joint regression model and construct a composite likelihood function 

based on a conditional order statistics argument. As a major feature of our proposed methods, the 

aforementioned joint distribution is not required to be specified and the random effect in the 

proposed joint model is treated as a nuisance parameter. Consequently, the derived composite 

likelihood bypasses the need to integrate over the random effect and offers the advantage of easy 

computation. We show that the resulting estimators are consistent and asymptotically normal. We 

use simulation studies to evaluate the finite-sample performance of the proposed method, and 

apply it to a study of weight loss data that motivated our investigation.

Keywords

Biased sampling; composite likelihood; informative censoring; joint modeling; time-varying 
covariate

1. INTRODUCTION

In medical follow-up and observational studies, longitudinal data are typically collected 

together with the duration of the observation window until a terminal event occurs. Two 

sampling issues commonly arise in analyzing the covariate effect on the longitudinal 

outcomes: (a) the longitudinal observation times are correlated with the longitudinal 

outcomes (Robins, 1995; Lipsitz et al., 2002), and (b) the terminal event is associated with 

the outcomes, which results in informative censoring (Wu and Carroll, 1988; Follmann and 

Wu, 1995; Little, 1995). Failure to take these biased sampling issues into account may result 

in misleading analytic results.

Our paper is motivated by a recent study of a web-based weight loss program. Obesity has 

become a worldwide health issue. In 2010, two-thirds of US adults were estimated to be 
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obese or overweight (Wang et al., 2011). Among the available weight loss programs, web-

based programs have gained popularity because of their flexibility and low cost. It is thus of 

an increasing need to evaluate the effectiveness of the web-based program on the weight loss 

over the time. During our motivating web-based weight loss program, a participant was able 

to voluntarily report his/her weight to the system at each login. A preliminary analysis 

revealed two interesting facts. First, there was a significant positive association between 

favorable weight outcomes and higher frequencies of weight entries (p-value < .01). This is 

not surprising because a participant who is making better progress in losing weight may be 

more willing to report his/her progress. Second, the length of participation in the program 

was strongly associated with weight loss. The average weight loss was significantly different 

between participants who dropped out of the study within 6 months and participants who 

stayed in the study longer than 6 months (two-sample t test, p-value < .001). Clearly, these 

two findings suggest that the self-reported weight data have the aforementioned issues of 

outcome-dependent sampling and informative censoring. A standard analysis such as 

generalized estimating equation (GEE) Liang and Zeger (1986) that ignores such biases may 

conclude that the program appears to be more successful than it actually is.

There is an extensive body of literature in regression analysis with outcome-dependent 

sampling and informative censoring. When the observation time is outcome-dependent, a 

common approach is based on likelihoods, where there is a need either to specify the joint 

distribution of the observation time process and repeated measurements (Liu, 2009; Han et 

al., 2007; Liang et al., 2009; Song et al., 2009) or to consider marginal or transition models 

(Lipsitz et al., 2002; Yi et al., 2011). Empirical likeihood approaches have also received 

success, see Zhou et al. (2002); Chan (2013) for examples. See Ding et al. (2017) for a 

review of outcome-dependent sampling design for time-to-event outcomes. Alternatively, the 

estimating equation approach has gained popularity by modeling the marginal mean of the 

response given covariates (Rotnitzky et al., 1998; Scharfstein et al., 1999; Lin et al., 2004; 

Sun et al., 2005, 2007). Some authors have also considered the extension to time-varying 

covariates (Song et al., 2012; Chen et al., 2015). When the censoring is informative, one 

useful approach is to first build a marginal model for the longitudinal or event variable and 

then consider a conditional model (Diggle and Kenward, 1994; Little, 1995). Another 

popular method is joint modeling, in which a shared random effect model is commonly used 

to characterize the relationship between repeated measurements and a time-to-event process 

(Self and Pawitan, 1992; Tsiatis et al., 1995; Wulfsohn and Tsiatis, 1997; Wang and Taylor, 

2001; Liu and Ying, 2007). This idea has been extended to treat recurrent event time 

processes as well (Wang et al., 2001); see Tsiatis and Davidian (2004) for an excellent 

overview.

The main goal of this paper is to provide an alternative to the existing approaches for 

regression analysis of time-varying covariates in the situation in which the observation and 

censoring times are correlated with the longitudinal outcomes. The proposed method enjoys 

two nice properties: (a) it does not require the specification of the observation time process 

and repeated measurement process; and (b) it bypasses the need to model the random effect 

distribution and allows for easy computation as no integration over the random effect is 

needed. The main idea is based on a conditional approach using order statistics and the 

formulation of a composite likelihood function. Similar ideas have been discussed by several 
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authors under different settings (Kalbfleisch, 1978; Liang and Qin, 2000; Chen et al., 2015). 

The inference proceeds by solving the maximization of the composite likelihood function, 

which is in a much simpler form compared with the functions used in the aforementioned 

methods (e.g., joint modeling). The resulting estimators are shown to be consistent and 

asymptotically normally distributed. The rest of this paper is organized as follows. We 

describe the methodology and present the asymptotic results in Section 2. We report 

simulation results in Section 3, and discuss an application to the weight loss program data 

analysis in Section 4. We provide proofs and technical details in the Appendix.

2. METHOD

We consider a longitudinal study with n subjects. For subject i, let Yi(t) be his/her response 

at time t and Xi(t) be a p-dimensional vector of time-varying covariates such as the usage of 

the weight loss program up to time t in our motivating example. We observe longitudinal 

outcomes at time points ti1 < ti2 < … < tiKi for subject i, where Ki is the total number of 

observations. Define the number of observations of subject i by Ni(t) = ∑ j = 1
Ki 1l(ti j ≤ t) up to 

time t, where 1l is the indicator function. The observation times can be viewed as 

realizations from an underlying counting process Ni
∗(t), which is censored at the end of 

follow-up. More specifically, let Ni
∗(t) = Ni(t ∧ Ci), where Ci is an informative censoring 

time, and a ∧ b = min(a, b). The process Yi(t) is observed when Ci > t and dNi(t) = 1, in 

which the derivative is taken with respect to the counting measure. For simplicity, denote yij 

= Yi(tij), Nij = Ni(tij), and xij = Xi(tij) = (xij1, …, xijp)T for j = 1, …, Ki and i = 1, …, n.

The parameters of interest are the effects of the time-varying covariates Xi(t) on the response 

variable Yi(t). We extend the semiparametric proportional likelihood ratio model (Luo and 

Tsai, 2012) to a random effect model by allowing for a subject-specific effect ξi. 

Specifically, the density of Yij given the covariate xij and random effect ξi is

f (yi j | xi j, ξi) = exp(αi j + yi jxi j
T β) f 0(yi j/ξi), (2.1)

where f0(·) is an unspecified baseline density function with covariates xij = 0, β is the 

parameter of interest that quantifies the subject-specific effects of the time-varying 

covariates, and αij is the normalizing constant, which is defined as

αi j = − log exp(yxi j
T β) f 0(y/ξi)dy .

The conditional density of the observed Yij given Ci ≥ tij, dNi j
∗ = 1, covariates xij and the 

random effect ξi is

f yi j |dNi j* = 1, xi j, ξi, Ci > ti j =
f (yi j | xi j, ξi)Pr(dNi j* = 1 | yi j, xi j, ξi, Ci ≥ ti j)

Pr(dNi j* = 1, Ci ≥ ti j | xi j, ξi)
,
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where the denominator Pr(dNi j
∗ = 1, Ci ≥ ti j ∣ xi j, ξi) can be calculated as 

∫ f (y ∣ xi j, ξi)Pr(dNi j
∗ = 1, Ci ≥ ti j ∣ y, xi j, ξi)dy. In general, valid inference on the covariate 

effect β requires correct specification of the joint distribution of the observation time process 

and informative censoring and Pr(dNi j
∗ = 1, Ci ≥ ti j ∣ yi j, xi j, ξi) and the distribution of the 

random effect g(ξi). These specifications are subject to potential model misspecification, 

which may lead to biased inference (Neuhaus et al., 1992).

Here, we propose an alternative method that does not require the specification of the 

observation time process, the informative censoring and the random effect’s distribution. 

Our strategy is to identify the observed conditional density that is a functional form of the 

density of interest, fij(yij | xij, ξi). The following assumptions are needed.

(A1) For each subject i, assume that responses yi1, yi2, …, yiKi are independent given 

their covariates and the unobserved random effect ξi.

(A2) Conditional on X(·) and ξ, C is independent of (N(·), Y(·)).

(A3) We assume that the probability of observing the response given the response 

variable, the covariates and the random effect is

Pr(dNi j* = 1| yi j, xi j, ξi) = a1(yi j)a2(xi j)a3(ξi), (2.2)

where a1(·), a2(·) and a3(·) are completely unspecified nonnegative functions.

Assumption (A1) is standard in the literature. Assumption (A2) is commonly used in the 

literature to handle informative censoring; see Section 2 of Wang et al. (2001) for an 

example. Under (A2), the censoring time is allowed to depend on the latent variable, and 

such a conditional independence assumption substantially relaxes the usual non-informative 

censoring assumption. Although (A3) specifies a structure through three unspecified 

functions for the sampling mechanism, it is generally enough to handle the situation with 

outcome-dependent sampling. For example, when a2(·) = a3(·) = 1, it implies that the 

probability of observing the response at a particular time point depends on the response only. 

This is common in practice, e.g., publication bias in meta-analyses, where the probability of 

a study being published or not depends on the p-value (significant or not) from that study. 

When a1(·) = a2(·) = 1, it implies that the probability of observing the response at a particular 

time point depends on the subject-specific random effect only.

Chen et al. (2015) developed a pairwise likelihood to handle outcome-dependent sampling 

for longitudinal data. The fundamental step in the construction of the pairwise likelihood in 

Chen et al. (2015) is to consider two observations from a pair of independent subjects. 

However, the two observations in such a pair are not comparable due to the informative 

censoring; hence the pairwise likelihood requires proper adjustment. To bypass the challenge 

of dealing with incomparable pairs, we consider two observations from the same individual: 

say the jth and kth observations of individual i. Under assumptions (A2) and (A3), the 

conditional density of observing responses at the jth and kth time points for individual i, (yij, 
yik), given their order statistic (y(1), y(2)), covariates xij and xik, and random effect ξi is
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f (yi j, yik | y(1), y(2), dNi j* = 1, dNik* = 1, xi j, xik, ξi, Ci ≥ ti j, Ci ≥ tik)

=
f (yi j, yik |dNi j* = 1, dNik* = 1, xi j, xik, ξi)

f (yi j |dNi j* = 1, dNik* = 1, xi j, xik, ξi) + f (yik, yi j |dNi j* = 1, dNik* = 1, xi j, xik, ξi)

=
f (yi j |dNi j* = 1, xi j, ξi) f (yik |dNik* = 1, xik, ξi)

f (yi j |dNi j* = 1, xi j, ξi) f (yik |dNik* = 1, xik, ξi) + f (yi j |dNik* = 1, xik, ξi) f (yik |dNi j* = 1, xi j, ξi)

.

(2.3)

By (A3) and Bayes formula,

f (yi j |dNi j* = 1, xi j, ξi) =
Pr(dNi j* = 1| yi j, xi j, ξi) f (yi j | xi j, ξi)

Pr(dNi j* = 1| xi j, ξi)
=

a1(yi j)a2(xi j)a3(ξi) f (yi j | xi j, ξi)
Pr(dNi j* = 1| xi j, ξi)

Hence equation (2.3) can be further simplified by canceling out the common factors a1(·), 

a2(·), a3(·) and Pr(dNi(·) = 1 | xi(·), ξi),

f (yi j, yik | y(1), y(2), dNi j* = 1, dNik* = 1, xi j, xik, ξi)

=
f (yi j | xi j, ξi) f (yik | xik, ξi)

f (yi j | xi j, ξi) f (yik | xik, ξi) + f (yi j | xik, ξi) f (yik | xi j, ξi)
.

(2.4)

Equation (2.4) implies that the conditional density of the observed data (biased sample) 

given the order statistic is a function of the density functions of the target population. By 

model (2.1), equation (2.4) becomes

f (yi j, yik | y(1), y(2), dNi j* = 1, dNik* = 1, xi j, xik, ξi)

=
exp yi jxi j

T β + yikxik
T β

exp yi jxi j
T β + yikxik

T β + exp yi jxik
T β + yikxi j

T β
.

(2.5)

The above conditional density does not involve the random effect ξi. Thus, the specification 

of g(ξi) and integration over the random effect are not required. In addition, both baseline 

density function f0(·|ξi) and the normalizing constants (αij, αik) are eliminated by the above 

conditioning procedure. Therefore, the specification of the baseline density function is not 

needed either.

Equation (2.5) represents the contribution of one pair of observations (j, k) from the ith 

individual to the proposed likelihood. We can consider all possible pairs of observations 

from the same individual and derive their contributions according to equation (2.5). By 

taking the product of all possible conditional densities while leaving out their correlation, we 

obtain a composite likelihood function as follows,
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Lp(β) =
i = 1

n

i < k

exp yi jxi j
T β + yikxik

T β

exp yi jxi j
T β + yikxik

T β + exp yi jxik
T β + yikxi j

T β

=
i = 1

n

j < k
1 + exp −(yi j − yik)(xi j − xik)T β −1 .

(2.6)

We will show that the covariate effects β can be consistently estimated by maximizing 

Lp(β), or equivalently maximizing the following log-likelihood function in the counting 

process notation, without estimating the nonparametric component f0(·) and specifying the 

distribution assumption for the unobservable latent variable ξi,

logLp(β) = 1
2 i = 1

n

0
τ

0
τ −log 1 + exp −(Yi(s) − Yi(t))(Xi(s) − Xi(t))

T β dNi(s)dNi(t) .

It is worth mentioning that our construction of the likelihood in (2.5) and (2.6) is different 

from that by Chen et al. (2015). Their paper considered the comparison of outcomes from 

different individuals, Yij and Yi′j′. In contrast, we are comparing the outcomes from the 

same individual, Yij and Yij′, which allows our method to take care of the informative 

censoring.

By using the asymptotic results of the proposed composite likelihood (Lindsay, 1988; Cox 

and Reid, 2004), we show in the following statements that the resulting estimating equation 

produces consistent and asymptotically normally distributed estimators. The proof is 

provided in the Appendix.

Theorem 1. Under the conditions (a)–(c) listed in the Appendix, the maximizer of log Lp(β), 

denoted by β, converges to the true β0 with probability tending to one as n → ∞. Moreover, 

β is asymptotically normal with mean β0 and covariance matrix V = Σ1
−1Σ2Σ1

−1, where

1
= − E ∂2

∂ β∂ βT Ai(β); β0 ,
2

= cov ∂
∂ β Ai(β); β0 , and

Ai(β) = −
j < k

log 1 + exp −(yi j − yik)(xi j − xik)T β .

The covariance matrix V can be empirically estimated by Σ1
−1Σ2Σ1

−1, where

Σ1 = − 1
n i = 1

n ∂2

∂ β∂ βT Ai(β)
β = β

, and Σ2 = 1
n i = 1

n ∂
∂ β Ai(β)

⊗ 2
β = β

.

It is worth mentioning that the constructed likelihood function in (2.6) cannot be directly 

used for estimating the regression effects of constant covariates. The reason is that the 
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parameter β is associated with the product (xij − xik)Tβ. Suppose the l-th covariate in x is a 

constant, then xijl = xikl for every j, k, which makes βl not estimable since the product is 

always 0. Inference for constant covariate effects may require additional modeling 

assumption such as the distribution of random effects and the observation time process.

3. SIMULATION

We evaluate the numerical performance of the proposed method via simulation studies. We 

compare the proposed estimator with estimators obtained from three existing methods: the 

GEE method, joint modeling (JM) of longitudinal outcomes and informative censoring, and 

the pairwise-likelihood (PL) method (Chen et al., 2015), in which the authors did not 

consider informative censoring.

We consider a cohort of 200 study subjects and generate three time-varying covariates for 

each subject,

X = (X1, X2, X3)T, X1 ∼ N(.5 + .5 t, 0.04), X2 = t, X3 = t2, (3.1)

where t is the time after the study enrollment and takes values in a set of grid points {0.1, 

0.2, …, 9.9, 10}.

In the first scenario, we generate responses Yij from a normal distribution, with mean 

Xi
T β + ξi and variance .09, where the true value of β is (1, 2, −.1), and ξi~N(0, σ1

2) are i.i.d. 

random effects with two noise levels σ1 = .2 and σ1 = .4. The probability of observing 

response Y = yij is generated from a logistic model,

logit Pr(dNi j = 1| yi j; γ) = γ0 + γ1yi j + γ2yi j
2 , (3.2)

where γ = (γ0, γ1, γ2)T controls the level of association between the sampling probability 

and covariates. Specifically, we let γ take three sets of different values that correspond to 

different levels of association: (1) independence (“indep”), where γ = (2, 0, 0)T, (2) weak 

association (“weak”), where γ = (.1, 2, −.2)T, and (3) strong association (“strong”), where γ 
= (−1.5, 4.5, 1)T. The censoring time C is generated from a normal distribution N(7 + 5ξ2, .

52).

The GEE and JM methods are implemented in R Console using “geepack” and “JM” 

packages. We summarize the results based on 1000 replications in Table 1. For each method, 

we present its estimation bias (Bias), estimated standard error (SE), empirical standard error 

(SD) and coverage probability (CP %) of the 95% confidence interval. The proposed method 

provides desired estimation accuracy and yields reasonable CP for the 95% confidence 

intervals for all simulation settings. Since both the GEE method and PL method ignore the 

informative censoring, they work poorly under the simulation setting. For example, when σ1 

= .4, the CPs of the PL method range from 0 to 25%, far below the nominal value of 95%. 

The joint model implemented in the R package can appropriately handle the informative 

censoring, but cannot deal with the outcome-dependent sampling. When assuming 

“independent” sampling, JM works well as expected; its CPs are close to 95% and its 
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standard errors are smaller than those of the proposed method since the distribution 

information of the informative censoring is used in the likelihood function under the JM. 

The proposed method shows great advantages when the sampling is outcome-dependent. For 

example, when σ1 = 0.2 and a “weak” association between the outcome and sampling exists, 

the proposed method can still provide a small estimation bias, and its CPs for all parameters 

are greater than 94%. However, the CPs for all other methods are much lower than those 

obtained from the proposed method, and the bias can be as high as 0.8. When there is 

“strong” association between the sampling and the outcome, this advantage for the proposed 

method can be even more obvious.

We also assess the performance of the proposed method with other distributed outcomes 

such as the exponential distribution. We let X1~N(.5 + .5 t, 0.01) and generate X2 and X3 in 

the same way as in the previous simulation. We generate responses Yij from an exponential 

distribution with mean (Xi
T β + ξi)

−1
, where β = (2, .5, .1)T, and the random effects ξi are 

generated i.i.d from a uniform distribution on (−σ2, σ2) with two different noise levels σ2 = .

1 and .5. The probability of observing Y follows a logistic model as in (3.2), where γ is 

chosen from three sets of values: (1) independence, where γ = (2, 0, 0)T, (2) weak 

association, γ = (.3, 1, 0)T, and (3) strong association, γ = (−1, 10, 2)T.

We generate the censoring time from a normal distribution C ~ N(8 + 4ξ2, .42). Note that 

among the four aforementioned methods, only our proposed method and the GEE method do 

not need to specify the distribution of the longitudinal outcomes. Hence for this scenario, we 

only evaluate the proposed method and the GEE method on 1000 replicated data sets; the 

results are listed in Table 2. The 95% confidence intervals produced by the proposed method 

have coverage probabilities between 93.3% and 95.2%, indicating accurate estimation under 

all scenarios although the standard error tends to be underestimated. In contrast, βGEE has a 

larger bias, even when γ is independent (e.g., when σ2 = .5). When there is a strong 

association between the sampling and the outcomes, the coverage probability of GEE is 

always below 40%.

To evaluate the robustness of the proposed method, we conduct sensitivity analysis for 

which the condition (2.2) in Assumption (A3) is violated. We consider two scenarios for 

generating the probability of observing response Y = yij,

logit Pr(dNi j = 1| yi j, xi j) = − 1 + yi j + x1(t j), (3.3)

and

logit Pr(dNi j = 1| yi j, xi j) = yi j + .2t j + x1(t j) ∗ yi j/3 . (3.4)

Those two scenarios can be viewed as moderate derivations from the “weak” dependence 

situation under (A3). The corresponding results are summarized in “mis-specified 1” and 

“mis-specified 2” panels in Tables 1 and 2, respectively. It can be seen that the coverage of 

the regression coefficients are still quite close to the nominal level for most cases, which 

confirms that the proposed method has some degree of robustness to the violation of (A3).
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We also consider a simulation example that compares the performance of our method with 

that of the partial likelihood (PL) approach (Chen et al. 2015) when the terminal event is 

non-informative. Here, we generate the data in the same way with the first simulation 

scenario (linear case), except where the censoring time is generated independently of the 

random effect following either (i) a “weak” censoring rate from a uniform distribution from 

8 to 10 (average censoring rate is 10%) or (ii) a “strong” censoring rate from an exponential 

distribution C = 4.3+Exp(1/2), with an average censoring rate of 39%. We summarize the 

results in Table 3. As expected, both methods manage to estimate the coefficients 

consistently under all scenarios. PL has better efficiency than our method (SE is smaller by 

an average of 20%) for most cases, although our method is more computationally efficient 

(computational complexity is O(n3) compared with O(n4) for PL).

4. APPLICATION TO WEIGHT LOSS DATA STUDY

We have applied the proposed method to evaluate the effectiveness of the web-based weight 

control program by using the self reported longitudinal weight data. Web-based programs 

have become popular among many weight loss programs because of their flexibility and low 

cost. The effectiveness of such programs has been recently evaluated, and research has 

shown findings of a positive association between weight loss and the use of web-based 

programs (Neve et al., 2011). However, most of the published analyses were based on the 

evaluation of the weight difference, i.e., the difference in a participant’s body weights when 

entering the study compared to that when leaving the study. Inevitably, ignoring the 

information of weight and other predictors in the middle of the study will result in 

misleading interpretations. For example, patients may experience a rebound in weight loss, 

i.e., lose 10 lbs in the first 3 months and then gain 8 lbs back in the next 2 months. An 

examination of the overall weight difference will not be able to reveal such patterns. Hence, 

it is necessary to use weight data over time and study the effect of web-based programs 

during the entire study period.

The main objective of our study was to conduct regression analysis to evaluate the effect of a 

web-based weight loss program and weight trend over time after enrollment in the program. 

We considered data collected from a web-based weight loss program, including records 

collected in 2008 from 5477 participants. Each participant voluntarily reported his/her 

weight and the web system also recorded his/her number of logins to the system up to any 

time t, which can be used as a measure of the usage of the program up to time t. The number 

of self-reported data entries for each participant varied from 2 to 168, with a mean of 6.2. 

The study duration had a mean of 8.2 months and a maximum of 27.6 months. As expected, 

we found that the length of enrollment was strongly associated with weight loss. The 

average weight loss was 3.31 lbs for participants who stayed in the study less than 8 months, 

and 2.00 lbs for participants who stayed longer than 8 months (two-sample t test, p-value < .

001).

We applied the proposed method to the aforementioned data set and considered several time-

varying covariates: the number of logins (login), months in the study (month) and its square 

(month2) up to each time of self-report. The estimated coefficients (Est.), associated 

standard errors (SE) and p-values are summarized in Table 4. We also present the results 
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using the method of Chen et al. (2015) and the GEE method. We found that all three 

covariates had a significant effect on weight. Usage of the web-based program (measured by 

the number of logins) was positively associated with weight loss. We also found that the 

enrollment duration had a positive effect (negative sign of month effect) in helping 

participants lose weight, although there may have been a long-term rebound effect suggested 

by the positive sign of the month2 effect. These results confirm the findings of Chen et al. 

(2015), although our estimated covariate effects were smaller in magnitude than those of the 

other two methods. This is not surprising: both dependent censoring and biased sampling 

tend to over-estimate the covariate effects. In contrast, the results obtained using the method 

of Chen et al. (2015) were based on an independent censoring assumption and the GEE did 

not account for informative censoring or biased sampling.

We also conducted an analysis for the “active” participants who had at least 10 self-reported 

records (790 participants). We included an additional covariate called gap, which we defined 

as the time gap since the last report (equal to 0 if it was the first report). The results, shown 

in Table 5, demonstrate that the estimates are very close among the “general” and “active” 

sub-populations (report records ≥ 2 and ≥ 10). The positive sign of the “gap” confirms the 

conjecture that the patients who are making progress in weight loss are more likely to report 

more frequently than those who are not. This justifies the use of the proposed method on this 

data set because it does not require additional assumptions/modeling on the outcome 

sampling scheme.

5. DISCUSSION

Achieving sufficiently fast computation and avoiding the issue of non-convergence remain 

challenging problems for the joint modeling approach. In the presence of informative 

censoring and outcome-dependent observation times, multiple integrations and failure of 

convergence of the optimization are commonly encountered in practice. Some existing 

efforts have considered approximation (Sweeting and Thompson, 2011) or Bayesian MCMC 

methods (Faucett and Thomas, 1996; Brown and Ibrahim, 2003), but they only apply to 

specific models. In the simulation examples, the implementation of the JM package in R 

occasionally encountered convergence issues (roughly 2 out of 100 times) when solving the 

optimization using the quasi-Newton method (“BFGS” option in R). Our method did not 

experience any convergence issues. The average running time for a single iteration was 

about 10 seconds for the proposed method, 15 seconds for joint modeling, and 445 seconds 

for the pairwise likelihood on a cluster machine with Dual 2.2GHz Single Core AMD 

operation 252 CPUs, 16GB RAM, and 64-bit CentOS Linux System. This is expected since 

the proposed composite likelihood has a simpler form than the likelihood of joint modeling, 

and provides a more computationally efficient alternative to the pairwise likelihood. The 

robustness of the proposed composite likelihood approach due to the requirement of fewer 

model/distribution assumptions is another advantage.

The idea of conditioning on the order statistics and canceling out the distribution of nuisance 

variables such as the latent variables has been previously used by Kalbfleisch (1978) for 

nonparametric testing and by Liang and Qin (2000) for handling missing data under 

regression analysis. Different from the conditional event used in the literature, we 
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particularly consider a pair of observations from the same subject to handle the informative 

censoring issue.

Our work is motivated by evaluating how a web-based weight loss program affects the 

participant’s weight, and the parameter on which we focus is the effect of the time-varying 

intervention. One limitation of the proposed composite likelihood approach is that the effects 

of constant covariates are not estimable, and it seems that there is no easy way to extend the 

current methodology without making additional modeling assumptions on the distribution of 

the outcomes, random effects, correlation between the informative censoring and the 

outcome, and the observation time process. Hence, we leave this important topic for future 

research. The methodology we have developed is applicable to weight loss program studies 

and other studies that share a similar interest in analyzing the effects of covariates that are 

changing over the study period. Another challenge of our methodology is the model 

specification for the likelihood ratio. Note that the nonparametric components such as 

random effects and the baseline density function of the outcome are not estimated in the 

proposed estimating procedure. Standard diagnostic tools, such as residual-based methods, 

are not applicable and cannot handle informative censoring. Developing rigorous test 

procedures for the modeling assumptions such as a proportional likelihood ratio will be a 

very interesting and important future research direction. Although the sensitivity analysis 

suggests some degree of robustness of our method when assumption (A3) is violated, 

caution should be taken when that assumption is not met. Developing statistical approaches 

for testing this assumption will be of interest for future research.
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APPENDIX

Regularity conditions

We first state a set of regularity conditions needed to establish asymptotic results. For any 

fixed time point t ∈ [0, τ], we assume that z(t) = {Yi(t), Xi(t), Ni(t)}, i = 1, 2, …, n, are 

independent, identically distributed with a joint density function h{z(t); β}, which satisfies 

the conditions ℛ in Chernoff (1954). The set of conditions is listed as follows.

a. There exists a neighborhood 𝒩β0
 of β0 such that for almost all z and every 

β ∈ 𝒩β0
, the following derivatives exist

∂logh z(t); β
∂ β , ∂2logh z(t); β

∂ β∂ βT , ∂3logh z(t); β
∂ β∂ βT ∂ β

.

b. For any β ∈ 𝒩β0
,
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∂h z(t); β
∂ β < H z(t) , ∂2h z(t); β

∂ β∂ βT < H z(t) , ∂3h z(t); β
∂ β∂ βT ∂ β

< H z(t) ,

for some finitely integrable function H and E(H{z(t)}) < M with M independent 

of β and t.

c. We assume the matrices Σ1 and Σ2 defined in Theorem 1 to be positive definite 

and finite.

Assumption (c) is commonly used in the literature, and holds for most situations except 

some extreme cases. For example, we can show that both Σ1 and Σ2 are always non-negative 

definite. The positive definiteness assumption only rules out the extreme situation where the 

likelihood function is flat in β (e.g., the data do not contain adequate information to estimate 

one of regression efficients, and further model check is needed to revise the model).

Proof of Theorem 1

Let β0 be the true value of β. We first show the consistency result. Note that for any δ > 0, 

the intersection of the parameter space of β and the closure of a δ-neighborhood of β0 is 

closed. Therefore log Lp(β) has a local maximum on the intersection. Hence, it suffices to 

show that the maximum of log Lp(β) has a l2-distance less than δ from β0, with the 

probability going to 1. Consider the Taylor expansion of log Lp(β) around β0,

1
n logLp(β) − logLp(β0) = 1

n
∂Lp(β0)

∂ β (β − β0)

+ 1
2

1
n (β − β0)T ∂2Lp(β0)

∂ β∂ βT (β − β0) + n−1op( β − β0 2
2) .

(A.1)

As n → ∞, since β0 is the unique maximum in its neighborhood, we have

1
n

∂Lp(β0)
∂ β 0, 1

n

∂2Lp(β0)

∂ β∂ βT A,

for some negative-definite matrix A. Note that the first term in (A.1) is op(1), and the third 

term is negligible compared to the second term. The second term in (A.1) is negative. Hence 

log Lp(β) < log Lp(β0) with probability 1 for every β that satisfies ‖β − β0‖2 < δ. The 

consistency of β holds.

Next, we show the n1/2-consistency of β. Using the Taylor expansion and the regularity 

conditions, we obtain for some C1 > 0 that,

1
n logLp(β) − logLp(β0) = 1

n

∂logLp(β0)
∂ β (β − β0) + 1

2
1
n (β − β0)T

∂2logLp(β0)

∂ β∂ βT (β − β0) + C1n−1 β − β0 2
3 .
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Since β is consistent for β0, and n−1∂2logLp(β0)

∂ β∂ βT
a . s . − Σ1 by strong law of large numbers, 

then for every ϵ > 0, there exists a sequence of positive numbers cnϵ → 0, such that

β − β0 2 < cnϵ, 1
n

∂2logLp(β0)

∂ β∂ βT + Σ1
2

< cnϵ .

Also, since n−1 log Lp(β) is an empirical average based on i.i.d. observations from each 

study individual, it is of the order of Op(n−1/2) at β0, i.e., there exists Kϵ > C1 such that

1
n

∂logLp(β0)
∂ β 2

< n−1/2Kϵ,

Therefore,

0 ≤ 1
n logLp(β) − logLp(β0) ≤ n−1/2Kϵ β − β0 2 − 1

2(β − β0)T Σ1 (β − β0) + C1cnϵ β − β0 2
2 .

Since Σ1 is positive definite, n1 2 β − β0 2 = Op(1). The root-n consistency holds.

For asymptotic normality result, define

Ri(s, t; β) = exp −(Yi(s) − Yi(t))(Xi(s) − Xi(t))
T β .

Applying the Taylor expansion of ∂ log Lp(β)/∂β at β0, we obtain

0 =
i = 1

n

0

τ

0

τ
−

∂log 1 + Ri(s, t; β)
∂ β dNi(s)dNi(t)

=
i = 1

n

0

τ

0

τ
−

∂log 1 + Ri(s, t; β0)
∂ β dNi(s)dNi(t)

+
i = 1

n

0

τ

0

τ

−
∂2log 1 + Ri(s, t; β0)

∂ β∂ βT dNi(s)dNi(t)

T

(β − β0) + Op(n−1),

where the last term Op(n−1) is due to the fact that β − β0 2
2 = Op(n−1). Therefore, we can 

multiply both sides by n1/2, and obtain

n1/2(β − β0) = An
−1n1/2Bn + Op(n−1/2),

where
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An = − 1
n i = 1

n

0

τ

0

τ

−
∂2log 1 + Ri(s, t; β0)

∂ β∂ βT dNi(s)dNi(t),

Bn = 1
n i = 1

n

0

τ

0

τ
−

∂log 1 + Ri(s, t; β0)
∂ β dNi(s)dNi(t) .

Since An and Bn are both empirical average of functionals based on i.i.d. observations, we 

have An
p Σ1 and n1 2Bn

d
N(0, Σ2) as n → ∞ by the law of large numbers and the CLT. 

This completes the proof.
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Table 2:

Simulation scenario 2, comparing the performance of the proposed estimator β with that of the GEE (βGEE).

random effect γ β

β βGEE

Bias SE SD CP Bias SE SD CP

low “indep” β1 .001 .431 .445 93.7 −.003 .085 .084 95.9

σ2 = .1 (2, 0, 0) β2 .001 .146 .146 94.0 .001 .084 .082 96.0

β3 .000 .015 .015 95.0 .000 .012 .012 95.0

“weak” β1 .007 .460 .484 93.6 −.259 .084 .085 14.7

(.3, 1, 0) β2 .003 .159 .162 94.6 −.001 .087 .088 94.0

β3 .000 .017 .017 94.9 .002 .013 .013 93.8

“strong” β1 −.011 .432 .427 95.2 −.212 .066 .066 11.6

(−1, 10, 2) β2 .006 .151 .151 94.7 −.261 .065 .065 1.8

β3 .000 .017 .017 93.8 −.023 .010 .010 33.8

“mis-specified 1” β1 .083 .453 .470 93.6 −.234 .082 .082 20.5

(−1, 10, 2) β2 .006 .154 .153 94.9 .023 .084 .083 94.0

β3 .000 .016 .016 95.3 .001 .012 .012 94.3

“mis-specified 2” β1 −.095 .499 .513 93.0 −.224 .093 .092 32.4

(−1, 10, 2) β2 .027 .166 .167 94.8 .034 .90 .089 94.2

β3 .000 .017 .017 95.2 .001 .013 .012 95.2

high “indep” β1 .004 .42.6 .43.7 94.0 −.087 .088 .087 83.8

σ2 = .5 (2, 0, 0) β2 .002 .142 .142 94.7 .042 .082 .080 92.0

β3 .000 .014 .015 94.8 −.003 .011 .011 93.6

“weak” β1 .004 .451 .471 93.3 −.349 .086 .086 3.3

(.3, 1, 0) β2 .005 .153 .155 94.7 .044 .084 .085 91.5

β3 −.001 .016 .016 94.6 −.002 .012 .012 93.0

“strong” β1 −.008 .423 .416 95.0 −.283 .069 .069 2.7

(−1, 10, 2) β2 .005 .145 .146 94.9 −.229 .064 .064 5.3

β3 .000 .016 .016 94.2 −.025 .009 .009 22.2

“mis-specified 1” β1 .121 .446 .439 94.9 −.318 .085 .084 4.2

(−1, 10, 2) β2 −.006 .149 .143 96.2 .063 .081 .081 86.9

β3 .000 .015 .015 95.5 −.003 .011 .011 94.1

“mis-specified 2” β1 −.06 .494 .485 94.3 −.314 .095 .094 10.8

(−1, 10, 2) β2 .020 .162 .156 95.6 .079 .087 .087 85.1

β3 .000 .016 .016 95.7 −.003 .012 .012 94.2
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Table 3:

Simulation scenario 3, comparing the performance of the proposed estimator β with those of the pairwise-

likelihood (βPL) estimators under non-informative censoring.

censor σ1 γ β

β βPL

Bias SE SD CP Bias SE SD CP

“weak” 0.2 “indep” β1 .004 .214 .216 94.9 .03 .168 .180 92.4

β2 .002 .096 .099 94.6 .020 .095 .101 93.2

β3 .000 .009 .009 94.1 −.002 .008 .009 92.3

“weak” β1 .003 .238 .238 95.0 .033 .187 .196 93.3

β2 .002 .109 .111 94.9 .015 .103 .109 93.1

β3 .000 .010 .010 94.6 −.002 .009 .009 92.2

“strong” β1 .008 .256 .256 94.0 .035 .206 .209 95.3

β2 −.001 .121 .124 93.7 .006 .114 .119 93.5

β3 .000 .011 .011 93.8 −.001 .010 .011 92.4

0.4 “indep” β1 .002 .214 .217 95.0 .044 .123 .133 91.4

β2 .001 .096 .099 94.2 −.006 .084 .091 91.9

β3 .000 .009 .009 94.8 −.002 .007 .008 91.8

“weak” β1 .003 .244 .243 94.5 .044 .145 .151 93.0

β2 .000 .112 .114 94.8 −.019 .095 .101 92.9

β3 .000 .010 .010 94.3 −.001 .008 .009 92.6

“strong” β1 .004 .265 .260 94.6 .051 .168 .172 93.5

β2 .006 .125 .127 94.0 −.041 .114 .121 91.5

β3 −.001 .011 .011 93.5 .000 .010 .011 94.4

“strong” 0.2 “indep” β1 −.011 .243 .251 93.6 .035 .191 .192 94.7

β2 .006 .113 .118 93.3 .014 .114 .122 92.4

β3 .000 .012 .014 91.2 −.001 .014 .016 92.1

“weak” β1 −.005 .278 .289 93.6 .035 .218 .211 95.0

β2 .007 .128 .134 93.5 .012 .125 .131 93.9

β3 .000 .014 .015 90.8 −.001 .015 .016 91.4

“strong” β1 −.007 .313 .313 95.5 .027 .249 .243 94.7

β2 .005 .145 .156 91.8 .005 .141 .148 93.4

β3 .000 .015 .017 89.4 −.000 .017 .018 92.0

0.4 “indep” β1 −.012 .244 .252 94.7 .047 .139 .142 92.7

β2 .007 .113 .118 93.0 −.020 .102 .110 92.0
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censor σ1 γ β

β βPL

Bias SE SD CP Bias SE SD CP

β3 .000 .012 .013 91.7 .001 .013 .015 90.1

“weak” β1 −.010 .285 .287 95.3 .044 .167 .167 93.9

β2 .008 .132 .136 93.2 −.027 .115 .123 91.6

β3 .000 .014 .015 91.4 .001 .015 .016 91.5

“strong” β1 .003 .265 .262 94.5 .056 .201 .204 93.3

β2 .004 .125 .141 93.9 −.041 .140 .151 90.9

β3 −.001 .011 .012 93.5 .000 .017 .019 91.3
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Table 4:

Weight loss data analysis using the proposed method, the method of Chen et al. (2015) and the GEE.

Proposed Chen et al. (2015) GEE

Covariate Est SE p-value Est SE p-value Est SE p-value

Login −.010 .003 < .001 −.049 .007 < .001 −.044 .002 < .001

Month −.190 .061 .002 −.261 .247 .292 −.472 .063 < .001

Month2 .008 .002 < .001 .025 .009 .005 .025 .002 < .001
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Table 5:

Weight loss data analysis using the proposed method

Report records ≥ 2 Report records ≥ 10

Covariate Est SE p-value Est SE p-value

Login −.008 .003 .003 −.008 .003 .003

Month −.252 .066 < .001 −.246 .068 < .001

Month2 .009 .002 < .001 .009 .002 < .001

Gap .180 .026 < .001 .215 .031 < .001
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