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ABSTRACT OF THE DISSERTATION

Measurement Error and Causal Inference: Implications in the analysis

of mobile-health data

by

Ruohui Chen

Doctor of Philosophy in Biostatistics

University of California San Diego, 2023

Professor Loki Natarajan, Co Chair

Professor Lin Liu, Co Chair

Wearable devices have been gaining popularity in biomedical studies and clin-

ical trials. In recent years, wearable devices have become more common in the

study design stage and for data collection purposes. Wearable devices, such as ac-

celerometers and Fitbit, have not only made collecting data for participants much

easier than before but also can capture subjects’ activities along with other impor-

tant biometrics more objectively than surveys and other traditional data-collecting

methods. However, despite the potential benefit of using those technology-based

trackers to collect data and potentially boost wearers’ activity levels, very little is

known about how individuals use these trackers on a daily basis or how tracker use

relates to increasing physical activity or changing sedentary behaviors. Additional

research is needed to understand how best to utilize trackers in interventions to

support self-monitoring and effectively change behaviors. Furthermore, statistical

methods for correcting estimates from activity measures that contained measure-

xv



ment error, and investigating causal inference between lifestyle interventions and

activity level have not been fully exploited. There is a need for novel statistical

approaches to answer the above questions in both randomized control trials and

observational studies.

The goal of this dissertation is to develop appropriate and innovative statistical

methods to answer the questions fore-mentioned, while trying to close the gap

between available dense continuous mobile health data and appropriate statistical

methods.

The dissertation consists of three main chapters. In chapter one, we used

minute-level activity data collected from Fitbit trackers in a randomized controlled

trial of breast cancer survivors to examine physical activity levels and adherence to

Fitbit use. We examined patterns of activity level and Fitbit use for both the 12-

week intervention period and the 2-year follow-up period and compared patterns

between the intervention group and the control group. We found that within the

first 3-month intervention period, the Exercise group has a higher average of MVPA

and adherence to Fitbit use than the Wellness group, but the trend of MVPA and

adherence to Fitbit use are no differences between the two groups. Besides that,

both the Exercise and Wellness group showed a dropping trend of MVPA and

adherence to Fitbit use in the follow-up period, but the Exercise group has a much

slower dropping trend than the Wellness group.

Realizing the amount of measurement errors and extreme values contained in

the activity data captured by those wearable devices in chapter one, and moti-

vated by the existence of measurement errors in sedentary behavior assessment

arising from different sources poses serious challenges for conducting statistical

analysis and obtaining unbiased estimates, especially without validation data [1],

in chapter two, we proposed to use structure models consisting of Linear Mixed

Effect Models and Generalized Linear Models to obtain unbiased estimates of the

relationship between exposures subject to measurement errors and outcome of in-

terest, after appropriately accounting for the errors in devices’ measurement. In

the motivating example of chapter two, we found that without accounting for er-

rors in the measurements, we may end up inappropriately exaggerating the effect

xvi



of sedentary time on subjects’ BMI and disseminating invalid health guidance to

the population.

To investigate causal inference between lifestyle interventions and activity level

while addressing the extreme values of the measurements from the wearable de-

vices, in chapter three, we proposed a double robust estimator to extend the tradi-

tional Mann Whitney Wilcoxon Rank Sum Test (MWWRST) for causal inference

in observational studies. The proposed estimator not only addresses the limita-

tions of existing alternatives for more robust and reliable inference when applying

the MWWRST to observational study data, but also performs well for small sam-

ple sizes. Meanwhile, The results from the real weight-loss trial showed that in

addition to the doubly robust properties, the proposed estimator also effectively

addressed outliers and extreme values.
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Chapter 1

Fitbit Use and Activity Levels

Two Years Post Interventions:

Secondary Analysis of a

Randomized Controlled Trial

1.1 Introduction

Technology-based activity trackers are increasingly used in research to promote

behavior change. These trackers permit self-monitoring of many exercise related

variables for wearers, such as sitting time, sit-stand transitions, steps, walking dis-

tance, moderate to vigorous physical activity (MVPA), sleep duration, and heart

rate. Compared to traditional self-report surveys, self-monitoring activity trackers

have several advantages, such as minimizing recall bias, automatic recordings of

activity, providing much richer and denser data for inference[2]. Previous stud-

ies have shown that physical activity can decrease cancer recurrence, mortality,

and improve quality of life, but many breast cancer survivors decrease their activ-

ity levels as much as 50% from pre- to post diagnosis and for several months to

years following diagnosis [3]. A large proportion of those breast cancer survivors

do not meet the activity guidelines of 150 minutes moderate-to-vigorous activity

1



per week or the equivalent of 30 minutes of daily activity proposed by the World

Health Organization [4].Activity trackers can be used to investigate how physical

activities are accumulated for subjects in a daily basis, so that subjects can self-

monitoring their daily activity level and change current behavior if necessary. Even

when subjects meet physical activity guidelines, sitting for prolonged periods can

still compromise metabolic health. Previous studies have shown that prolonged

sedentary time, mostly consist of screen-based leisure activities (e.g., television

watching), screen-based work activities (e.g., computer use for work purposes) and

time spend on transportation, can cause negative effects on metabolic health, and

that breaking up sedentary time, such as increase sit-stand transitions, can be ben-

eficial [5]. Multiple studies carried by Sheri J Hartman, Andrea Z LaCroix, Loki

Natarajan, etc mentioned that given many older adults spend the majority of their

waking hours sitting and many other challenges for them to do MVPA, decreasing

sitting time and increasing the number of sit-to-stand transitions can bring much

health benefits [2, 6]. In studies examining the sedentary-mortality relationship

among subjects with diabetes found that for every 60min/day increase in seden-

tary behavior, independent of moderate-to-vigorous physical activity (MVPA) and

other covariates, subjects with diabetes had a 13% increased risk of all-cause mor-

tality [7]. Recent studies investigating relationship between sedentary time and

disease incidence, mortality, and hospitalization in adults also showed that pro-

longed sedentary time was independently associated with deleterious health out-

comes regardless of physical activity [8].

Previous research on physical activity and health has concentrated largely on

quantifying the amount of time spent in activities involving high levels of energy

expenditure, such as moderate-vigorous-physical activity, while neglecting sub-

stantial contribution of sedentary behaviours and light physical activities to the

overall energy expenditure[9, 10]. It is our contention that sedentary behavior

is not simply the absence of moderate-to-vigorous physical activity, but rather is

a unique set of behaviors, with unique environmental determinants and a range

of potentially-unique health consequences. Sedentary behavior serves a distinct

role for the population health, as it may influence obesity and other metabolic

2



precursors of major chronic diseases (type 2 diabetes, cardiovascular disease, and

breast and colon cancer). It is important to understand how emerging intervention

modalities such as technology-based trackers can be used to help people increase

their physical activity, and reduce sedentary behaviors.

For the first chapter of this dissertation, we used minute-level activity data

collected from Fitbit trackers in a randomized controlled trial of breast cancer

survivors to examine physical activity level and adherence of Fitbit use. We ex-

amined patterns of activity level and Fitbit use for both the 12-week intervention

period and the 2 year follow-up period and compared patterns between intervention

group and control group, by using Generalized Additive Mixed Model (GAMM)

and Linear Mixed Effect Model.

1.2 Study cohort

Subjects in this study were enrolled in a randomized controlled trial (RCT) of

a 12-week physical activity intervention. All subjects were female breast cancer

survivors, in the age range of 21 to 85 years old, who were diagnosed less than 5

years before study enrollment and had completed chemotherapy or radiation treat-

ment. The RCT has a total of 87 subjects, and we were focusing on the 75 subjects

who consented to a 2-year follow-up. During the first 3-month intervention period,

37 subjects in the intervention group received intervention phone calls, at week 2,

and week 6 and automatic emails every 3 days for data synchronizing throughout

the 12-week intervention period. Starting right after the 12-week intervention, in-

tervention subjects received a 2-year follow-up period. The control (or wellness)

group has 38 subjects that were followed for 2 years. Subjects in the wellness group

still received the intervention emails every 3 days and were offered the phone calls

at week 2 and week 6, however, few people choose to complete the calls at the

designated times.

3



Table 1.1: Baseline Characteristics for Participants
Chracteristics (N) Exercise (N=37) Waitlist (N=38) All (N=75)

Age in years, mean(SD) 58.2(11.5) 56.2(9.1) 57.2(10.4)

Married status, n(%) 27(72.9) 27(71.1) 54(72.0)

BMI, kg/m2, mean (SD) 26.7(6.4) 27.7(6.4) 27.2(6.4)

Education, n(%)

Some college or less 11(29.7) 9(23.7) 20(26.7)

College graduate 15(40.6) 20(52.6) 35(46.7)

Master or higher 11(29.7) 9(23.7) 20(26.6)

Ethnicity, n(%)

Not Hispanic/Latino 30(81.1) 33(86.8) 63(84.0)

Hispanic/Latino 7(18.9) 5(13.2) 12(16.0)

Race, n(%)

White 30(80.1) 31(81.6) 61(81.3)

NonWhite 7(18.9) 7(18.4) 14(18.7)

Cancer stage, n(%)

Stage 1 22(59.5) 22(57.9) 44(58.7)

Stage 2 11(29.7) 13(34.2) 24(32.0)

Stage 3 4(10.8) 3(7.9) 7(9.3)

Received chemotherapy, n(%) 21(56.7) 20(52.6) 41(54.7)

Time since surgery, months, mean(SD) 31.4(17.0) 30.6(16.0) 30.9(16.4)

1.3 Methods

1.3.1 Outcome measures

We used Fitbit-measured MVPA (moderate to vigorous physical activity) to

measure subject’s activity level [11, 12]. Daily MVPA is the total MVPA minutes

in a day.

Daily adherence of wearing the Fitbit was defined as wearing the Fitbit for

more than 10 hours or logging at least some activity (more than 1 min of MVPA).

In order to study the trend of adherence for each subject over time, we transformed

this binary daily adherence to a continuous percentage weekly rolling average ad-

herence. The weekly rolling average adherence of wearing the fitbit was calculated

by the percent of days in a rolling weekly period that the participant logged a valid

day of wear (more than 10 hours of wear or more than 1 min MVPA).

1.3.2 Statistical analysis

Twelve patients who did not consent for 2-year follow-up study were excluded

from the analysis and we compared patient characteristics between them and those

who were included in the analysis. Patient baseline characteristics were also com-

pared between the exercise and wellness groups. For exercise group, we specified
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knots at week 2, and week 6 to emphasize the time points when subjects receive

intervention phone calls, and specified knot at week 12 to emphasize the end of the

intervention period when using GAMM for trend comparison between the exercise

and wellness group. Since wellness group didn’t have the intervention period, we

did not specify any knots for the first 3-month of the follow-up period in wellness

group.

Mean weekly rolling average of adherence, mean daily MVPA and

mean change from 3-month to follow-up period

For comparing the change in mean outcomes between two intervention groups

at different periods, the model set up is

E[Y ] = β0 + β1 ∗Group+ β2 ∗ Period+ β3 ∗Group ∗ Period+ b0 + b1 ∗ Period

where b0 and b1 are random effects, β1 indicates the mean outcomes difference

between the exercise group and the wellness group at first 3-month period, with

wellness group serve as reference for group variable and first 3-month period serve

as reference for period variable. β1+β3 indicates mean outcomes difference between

the two groups at 2-year follow-up period. β2 indicates mean outcomes difference

between first 3-month and 2-year followup for the wellness group. β2 + β3 indi-

cates mean outcomes difference between first 3-month and 2-year followup for the

exercise group. We used t-test statistics from the regression to get the p-value for

each combination of covariates. For example, for p-value of β1+β3, the t-statistics

would be β̂1+β̂3√
var(β1)+var(β3)+2×cov(β1,β3)

, the p-value would be 2×(1−P (T ≤ tscore)),

with df = number of observations - number parameters.

The p-values of group comparisons along with estimated mean and standard

error of average adherence and MVPA using the LME was shown in table 3 in the

results section.

Trend comparison of weekly rolling average of adherence and daily

MVPA between two intervention groups for the overall study period,

the initial 3-month period, and the 2-year follow-up period

A Generalized additive mixed effects model (GAMM) was used to compare

trend of adherence and MVPA between the Exercise and Wellness group. The
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basic model set up is

g(y) = β0 + β1 ∗Group+ s(Time) + s(Time) ∗Group,

in which β0 is the fixed intercept, β1 is the coefficient for ’Group’, s(Time) is the

smooth term for ’Time’, and s(Time) ∗ Group is the interaction term between

’Time’ and ’Group’. Time is treated as a continuous variable.

For the goodness of fit of the chosen models, we used the model’s deviance

explained for both the MVPA and weekly rolling average of adherence, and the

adjusted R-square to assess percentage of variances that are explained. We also

used the minimized Generalized Cross Validation score (GCV) of the GAMM fitted

for smoothness selection.

In general, the GAMMs without a specified number of knots will have relatively

small smoothing parameters allowing for more curvatures. On the other hand,

the GAMMs with specified knots will have relatively large smoothing parameters

corresponding straight line estimates.

To select the best fitting model, in terms of the interaction term between time

and group and knots specification in GAMM, we conducted model comparisons us-

ing analysis of variance (ANOVA) and model’s Akaike Information Criteria (AIC).

Graph of the best fit was used to display the trends of adherence and MVPA over

the study period.

When the non-linear term (smooth term) in the GAMM was not significant,

and graphical patterns of weekly rolling average adherence and MVPA showed

linear trend, we used linear random effects model (LME) as a sensitivity analysis,

to examine if the simpler LME and GAMM gave consistent results. The LME

model set up is

E[Y ] = β0 + β1 ∗ Time+ β2 ∗Group+ β3 ∗ Time ∗Group+ b0 + b1 ∗ Time,

in which b0 is the random intercept for each subject, b1 is the random slope for

each subject.

Trend Comparison of weekly rolling average of adherence and daily

MVPA between 3-month and 2-year follow up in the exercise group
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To compare the weekly rolling average of adherence and daily MVPA within the

exercise group between the 3-month active intervention period and the follow-up

period, we used the linear random effects model with a random slope to estimate

the slope of weekly rolling average of adherence and the slope of daily MVPA

during the 3-month intervention and during 2-year follow up period for each indi-

vidual. Then we used paired Wilcoxon rank sum test to compare the slope between

3-month and 2-year follow up period.

Since this is a randomized trial study, and the covariates between the two arms

are balanced, thus the final models we use are unadjusted for potential covariates.

We also examined the models with adjustment for potential covariates and there

are no significant covariates, indicating no covariates were significantly different

between the two arms at baseline.

1.4 Results

Patient characteristics

All the subjects in the original study were female breast cancer survivors, in

the age between 21 and 85 years old, were diagnosed with less than 5 years before

study enrollment, and had completed chemotherapy or radiation treatment. For

75 subjects who consented and were included in this analysis, their demographics

were shown as table 1.1. As we can see from the table, there was no significant

difference between the exercise and wellness groups.

We also did not observe any significant difference in baseline characteristics

between subjects who were included in the study and those who were excluded

from the study.

Mean weekly rolling average and mean MVPA

The mean weekly rolling average adherence and MVPA for both exercise and

wellness group at different periods, and p-values for mean level group comparisons

were shown as Table 1.2. As we can see from Table 1.2, for the overall and first

3-month period, the exercise group had higher average adherence and MVPA than
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the wellness group. However, during the 2-year follow up period, there was no

significant difference in either average adherence or MVPA between the exercise

and wellness groups. In addition, within the exercise and wellness group, the first

3-month period had higher mean adherence and MVPA than the 2-year follow

up period. We also found that the change of mean adherence and mean MVPA

from 3-month to 2-year follow-up period is significantly different between the two

intervention groups, with more decrease in the exercise group.

Figure 1.1: Average adherence

Table 1.2: Estimated Mean and SE for the average adherence and MVPA using
LME
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Figure 1.2: Average MVPA

Overall trend comparison of weekly rolling average of adherence

and daily MVPA between the exercise and wellness groups

We examined GAMM models with different smoothing bases, such as penal-

ized cubic regression spline (CR), cyclic penalized cubic regression (CC), and a

shrinkage version of penalized cubic regression spline (CS), with and without pre-

specified change points. The change points were specified at week 2, week 6, and

week 12 to emphasize intervention phone calls, at week 2, week 6, and the end

of the study measurement visit at week 12. The GAMM with cubic regression

basis and without specified time change points was selected as the best model for

comparing the overall trend of adherence and daily MVPA between exercise and

wellness groups, and has the smallest AIC compare to the other models we fit-

ted. For the weekly rolling average of adherence, the p-value for the interaction

between smooth ‘time’ term and ‘group’ was significant (p-value < 0.001), indi-

cating the overall trend of adherence is significantly different between the exercise

and wellness groups (Figure 1.4). For the daily MVPA, the overall trend was also

significantly different between the exercise and wellness groups (p-value < 0.001,

Figure 1.4). The curvature trend of the daily MVPA in the wellness group during

the final months is mostly caused by a few subjects that maintained a relatively
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high activity level at the end of the study.

Figure 1.3: Overall adherence trend comparison between Exercise and Wellness
group

Figure 1.4: Overall MVPA trend comparison between Exercise and Wellness group

10



Comparison of weekly rolling average of adherence and daily MVPA

during 3-month intervention between the exercise and wellness groups

Similar to the overall trend analysis, we examined GAMMmodels with different

smoothing bases, with and without pre-specified change points. The GAMM with

cubic regression basis was selected as the best model for comparing the 3-month

trend of adherence and daily MVPA between the exercise and wellness groups. For

exercise group, the GAMM was specified with knots at week 2, week 6, and week

12 to emphasize the time point subjects received intervention phone calls and the

end of the measurement visit. For wellness group, no such knots were specified

since few people choose to complete the calls at the designated times. For the

weekly rolling average of adherence, the p-value of the smoothing term for time

was not significant (p-value = 0.12), indicating a linear trend of adherence, and

the p-value for the interaction between smooth ‘time’ term and ‘group’ was also

not significant (p-value = 0.24, Figure 1.4), indicating that the trend of adherence

was not significantly different between the exercise and wellness groups during this

3-month period. For the daily MVPA, we also found a linear trend for both group

(p-value of the smoothing term = 0.15), and the trend of MVPA was also not

significantly different between the exercise and wellness groups over this 3-month

period (p-value = 0.99 for the interaction, Figure 1.4). Under the condition that

smoothing terms in GAMM are not significant in trend of adherence and trend of

MVPA analysis, the LME sensitivity analysis provided consistent results.
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Figure 1.5: Comparison of adherence trend during the first 3-month between the
Exercise and Wellness group

Figure 1.6: Comparison of MVPA trend during the first 3-month between the
Exercise and Wellness group

12



Comparison of weekly rolling average of adherence and daily MVPA

during the 2-year follow up between the exercise and wellness groups

We did not specify time change points in this analysis since there was no clinical

intervention and no prior knowledge about the time change points during the

2-year follow-up period. The GAMM with cubic regression basis and without

specified time change points was selected as the best model for assessing the trend

of adherence and daily MVPA between the exercise and wellness groups. For the

weekly rolling average of adherence, we found that the p-value of the smoothing

term for time was significant (p-value < 0.001), indicating the trend of adherence

is non-linear, and the trend of adherence was significantly different between the

exercise and wellness groups during the 2-year follow up (p-value < 0.001, Figure

1.4). For the daily MVPA, we also found that the trend of MVPA was significantly

non-linear(p-value < 0.001), and the trend of MVPA was significantly different

between the exercise and wellness groups during the 2-year follow up (p-value

< 0.001, Figure 1.4). We can see that the variation in the activity level is much

higher than the variation in the adherence. Even at the end of the follow-up period,

some subjects in the wellness group still maintained a relatively high activity level,

causing the curvature in the wellness group.
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Figure 1.7: Comparison of adherence trend during the 2-year follow up between
the Exercise and Wellness group

Figure 1.8: Comparison of MVPA trend during the 2-year follow up between the
Exercise and Wellness group
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1.5 Dicussion

We found that within the first 3-month intervention period, Exercise group

has higher average of MVPA and adherence of fitbit use than the Wellness group,

but the trend of MVPA and adherence of fitbit use are no difference between the

two groups. Besides that, both the Exercise and Wellness group showed dropping

trend of MVPA and adherence of fitbit use in the follow-up period, but Exercise

group has a much slower dropping trend than the Wellness group. These insights

may enhance our ability to effectively utilize activity trackers to promote behavior

change.
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Chapter 2

Measurement Error LME

2.1 Introduction

Current research suggests that a sedentary lifestyle can increase potential health

risks, such as all-cause mortality rate, cancer risks, and risks for metabolic diseases

[13]. Many health organizations have proposed scientific advisories on sedentary

behavior to encourage people to exercise and minimize their sedentary time. The

World Health Organization 2020 guidelines on physical activity and sedentary be-

havior recommend that adults engage in 75-300 minutes of moderate to vigorous

physical activities (MVPA) weekly, and reduce sedentary time [14]. The Ameri-

can Heart Association also issued recommendations, indicating minimizing seden-

tary behavior can lower cardiovascular morbidity and mortality [15]. However,

compared to physical activity recommendations, guidelines for sedentary behavior

have been non-specific and do not indicate how much sedentary behavior is ”ac-

ceptable” nor do they quantify the amount by which sedentary behavior needs to

be reduced in order to confer health benefits. In order to create specific guide-

lines, we have to address the measurement error inherent in current estimates of

sedentary behavior. There are many sources for such measurement errors, such as

inaccurate calibration of measurement instruments, inaccurate observations, and

recording errors. Those measurement errors can be correlated with the true value

of observations, the explanatory variables, and the response variables, making an

intractable obstacle to obtaining accurate assessment of sedentary behavior, and
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to obtaining valid estimates of associations between these health behaviors and

health outcomes [16, 17, 18].

The existence of measurement errors in sedentary behavior assessment arising

from different sources poses serious challenges for conducting statistical analysis

and obtaining unbiased estimates, especially without validation data [1]. Many

large community-based studies use surrogate tools, such as self-report for activi-

ties during the day, which are subject to recall biases and contain both random

and systemic errors. While a variety of technology-based trackers for measuring

physical activity and sedentary behavior have emerged over the last few decades,

very few ’gold standards’ are established for evaluating the recorded measures.

Failure to model the measurement errors appropriately can not only undermine

the study design, but also lead to invalid conclusions, reduced statistical power,

biased exposure-disease risk estimates, and misclassified risk groups [19, 20, 21,

22, 23].

Statistical methods for modeling measurement errors in dietary assessment have

been intensively studied in the past decades [24, 25]. However, research to account

for measurement errors in sensor-based recording activities, specifically sedentary

behavior, is less studied, especially when there are multiple replicates of recordings

for subjects in studies, as is typically the case for data from wearable sensors. The

few published studies have focused on physical activity using regression calibra-

tion, and functional or Bayesian techniques to evaluate and correct for errors. For

example, Ferrari et al (2007) [26], Nusser et al (2012) [27], and Beyler et al (2013)

[28] proposed a multi-level equation-based modeling process to evaluate different

types of physical activity measures and estimate the validity coefficients and at-

tenuation factors, while accounting for measurement errors. Lim et al (2015) [29]

proposed using regression calibration method to account for measurement errors

in a self-reported physical activity survey in New York city. Agogo et al (2015) [30]

and Jadhav et al (2022) [31] proposed a Bayesian-based method and a function-

based method to model measurement error for physical activity data. Morrell et al.

(2003) [32] proposed a method using the LME model on repeated measurements to

obtain a predicted value to account for errors in the measurements. Our approach
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also exploits repeated measures but our focus is on analytic derivations to prove

the unbiasedness of our proposed estimates. To our knowledge, no studies to date

have evaluated measurement error for sedentary behavior derived from sensors,

with a focus on providing statistical calculations, as well as, real data applications,

of the process for correcting bias caused by measurement errors.

While theoretical approaches for measurement error correction could in prin-

ciple be transported from one setting (e.g., diet) to another (e.g., sensor-based

sedentary behavior), it is necessary to conduct a careful evaluation of the unique

measurement properties of a given device and health behavior, in order to de-

velop rigorous and domain-specific measurement correction tools. In this article,

we conduct such an analysis of sedentary behavior derived from two commonly

used wearable sensors (ActiGraph and activPAL). Leveraging the availability of

multiple replicates measured from both devices for each subject, we propose to use

structure models consisting of Linear Mixed Effect Models and Generalized Linear

Models to obtain unbiased estimates of the relationship between exposures subject

to measurement errors and outcome of interest, after appropriately accounting for

the errors in devices’ measurement. Section 2.2 introduces the sedentary behavior

study that provides the motivation for the current work. Section 2.3 introduces the

structure models to appropriately account for measurement errors and the proof of

measurement error correction process. Section 2.4 implements Monte Carlo sim-

ulation to evaluate the proposed method. In Section 2.5 we apply our proposed

method to the sedentary behavior study. Section 2.6 discusses the contributions

and limitations of the proposed method.

2.2 Motivating Data Example

2.2.1 Study Cohort

Our proposed method and data application were motivated by the Adult Changes

in Thought(ACT) study, which is an ongoing longitudinal cohort study of community-

dwelling older adults that were greater than 65 years old and without evidence of

Alzheimer’s Disease or dementia in Washington State. The ACT study was initi-
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ated in 1994 to investigate risk factors for the development of dementia and has

since provided a unique set of opportunities to additionally study a wide range of

non-cognitive factors of healthy aging. Pertinent to the current study, the ACT ac-

tivity monitor sub-study (ACT-AM) was initiated in 2016, adding a device-based

activity component to capture the spectrum of sedentary and physical activity

patterns [33]. Participants were instructed to wear a hip-worn triaxial ActiGraph

ActiGraph (ActiGraph LLC, Pensacola, FL, USA) which captured 30Hz movement

accelerations in three spatial axes, and a thigh-worn activPAL micro3 (PAL Tech-

nologies, Glasgow, Scotland, UK), which captured postures (e.g., sitting, standing,

moving) [34]. Participants were instructed to wear both devices at the same time

for 7 days. Participants also recorded self-reported sleep logs, in which partici-

pants recorded the time of waking up and going to bed, throughout their device

wear. Ethics approval was obtained from the Kaiser Permanente Washington insti-

tutional review board. All participants provided written informed consent. There

were total 980 subjects included in the data analysis; Table 2.1 provides demo-

graphic summary statistics of the study sample.

2.2.2 Sedentary Behavior Measures

Our data comprised concurrent wear of two devices, namely thigh-worn activ-

PAL and hip-worn ActiGraph. The thigh-worn activPAL has been widely used in

previous studies and is considered a gold standard for measuring postures, specif-

ically sitting. Minutes spent in a sitting or lying posture during waking hours

were summed over the day to provide a daily total sedentary time estimate for

the activPAL [35]. For the ActiGraph monitor, sedentary behavior is commonly

estimated using cut-points; we used the standard cut-point of <100 counts per

minute for capturing participant’s daily total sedentary time [36]. More than 95

% of subjects have at least 5 days of wearing both devices in the study, indicating

the percentage of missing days of wearing devices for participants is very low.

We compared estimates of total daily sedentary time over the wearing period for

each subject from these two devices via boxplots and summary statisics. From Fig

2.1 and Table 2.2, we can see that the daily average sitting time from activPAL is
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Table 2.1: Descriptive Characteristics Of The Study Cohort

Characteristics Subjects Included (n=980)

Age in years, mean(SD) 77.0(6.6)

Male,n(%) 428(44.7)

Race/Ethnicity, n(%)

Hispanic or non-White 100(10.2)

non-Hispanic White 876(89.8)

Education, n(%)

Less than high school 15(1.5)

Completed high school 79(8.1)

Some College 157(16.0)

Completed College 729(74.4)

BMI, n(%)

Underweight (≤ 18.5) 8(0.8)

Normal (18.5 - 24) 357(37.2)

Overweight (25 - 29) 378(39.4)

Obese (≥ 30) 216(22.5)

slightly lower than the same recording from ActiGraph with higher variance. The

longer sitting time measured by the ActiGraph could be caused by measurement

error inherent when using cut-points to delineate (in)activity. Meanwhile, the Pear-

son correlation between measures from activPAL and measures from ActiGraph is

around 0.64 with a p-value less than 0.001, indicating that there is a significant

positive relationship between measures from the two devices.

Fig 2.2.2 is the scatter plot between measures from activPAL and measures

from ActiGraph, the blue line is added as the reference for ’y=x’, representing

the perfect agreement between the two device estimates. Each dot represents a

subject. We can see that the majority of the dots are above the blue reference line,

indicating that most of the measures from activPAL are smaller than the measures

from ActiGraph. Besides the scatter plot, we also used the Bland-Altman plot to
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Figure 2.1: Boxplot of Daily Average Total Sedentary Time (mins) from activPAL
and ActiGraph

Table 2.2: Daily Average Sedentary Time (mins) from activPAL and ActiGraph

Device (mins) Min Median Mean(SD) Max

activPAL 195.2 598.6 598.6(120.5) 1048.3

ActiGraph 356.6 655.9 654.9(97.6) 977.6

investigate the concordance between measures from the two devices [37]. In Fig

2.2.2, the blue dotted line indicates the mean difference measures between the two

devices, and the light blue dashed line indicates the 95% confidence interval for

the difference. From the Bland-Altman plot, we can see that the mean measures

from activPAL are slightly smaller than the mean measures from ActiGraph, while

many of the points are spread over the 95% confidence interval bands, indicating

substantial variability in agreement between the two devices.

In summary, the plots and summary statistics clearly indicate that sedentary

behavior estimates from the two devices are not identical. Importantly, even

though the activPAL is considered to be more accurate for capturing sedentary

behavior compared to the ActiGraph, measures from both devices likely contain
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measurement errors, which are due to inaccurate device calibration, inappropriate

device wearing styles, and recording errors. Näıvely using the measures without

appropriately accounting for the measurement errors can give us biased estimates

and ultimately lead to invalid conclusions. We investigate these issues in the next

sections, and propose using structure models to account for the measurement er-

rors, with the ultimate goal of obtaining unbiased and consistent estimates.

Figure 2.2: Total Sedentary Time estimates between activPAL and ActiGraph

Figure 2.3: Total Sedentary Time Difference between activPAL and ActiGraph
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2.3 Structure Models

2.3.1 Model Setup

We first establish terminology and the models. Let n denote the number of

subjects, and assume every subject has the same number of replicates J . Consider

our measurement error and outcome models as below:

Wij =
m∑
s=1

γ0sAis + γ1Xi + Uij (2.1)

Yi = β0 + βxXi +

p∑
c=1

βcCic + ϵi (2.2)

where Wij denotes observed sedentary behavior measures for subject i from a de-

vice, with j represents repeated measures. Ais denotes a covariate that is without

measurement error and informative for the measures of Wij for subject i and there

are a total of m−1 such covariates, with Ai1 equals 1 for all subjects to include an

intercept in the model. Cic denotes a covariate without measurement error that

is correlated with an outcome measure Yi, p denotes the number of such covari-

ates for subject i. Meanwhile Xi represents the centered true measures without

measurement error with Xi ∼ N(0, σ2
x), ϵi ∼ N(0, σ2

ϵ ). We introduce some matrix

notations next to simplify the analytic derivations to follow.

LetX =
(
X1, X2, ..., Xn

)T
1×n

, Y =
(
Y1, Y2, ..., Yn

)T
1×n

, and ϵ =
(
ϵ1, ϵ2, ..., ϵn

)T
1×n

.

LetUi denote a vector of the errors Uij for subject i andU denote a vector ofUi

and, thenUi =
(
Ui1, Ui2, ..., UiJ

)T
1×J

∼ N(0,Σu) andU =
(
U1,U2, ...,Un

)T
1×nJ

∼
N(0,Σ), where

Σ =



Σu

Σu

.

.

Σu


nJ×nJ
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with

Σu =


σ2
u ρσ2

u...

σ2
u...

σ2
u...


J×J

,

where ρ denotes the error correlation between replicates within each subject for

the device. Note we are assuming error correlations are exchangeable which is

reasonable in our case, since the measures are collected in close proximity, e.g.,

daily over 7 days.

LetC denote a matrix of Cic so thatC =



C1

C2

.

.

Cn


n×p

, whereCi = (Ci1, ..., Cip)1×p

indicates a vector of covariates without measurement errors for subject i; and let βc

denote a vector of parameters βc that is the coefficient for each covariate without

measurement error βc =
(
β1, β2, ..., βp

)T
1×p

.

Let A denote a matrix that

A =



Ã11

.

Ã1J

· · ·
Ã21

.

Ã2J

· · ·
...

· · ·
Ãn1

.

ÃnJ


nJ×m

where Ãij = (Ai1, Ai2, ..., Aim) with the first column being constant 1 to incorpo-
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rate intercept. Let γ0 denote a vector

γ0 =
(
γ01, γ02, ..., γ0m

)T
1×m

,

and W denote a vector of the replicates Wij for subject i

W =
(
W11, ..,W1J ,W21, ..,W2J , ..,Wn1, ..,WnJ

)T
1×nJ

We also define Zi = 1J×1, a vector of length J of 1s, and Z is a matrix of Zi

Z =



Z1

Z2

.

.

Zn


nJ×n

Then we can re-write the measurement error model (2.1) and outcome model

(2.2) as

W = Aγ0 +Zγ1X +U (2.3)

Y = β01n×1 + βxX +Cβc + ϵ (2.4)

Therefore, γ1X ∼ N(0, γ2
1σ

2
xIn), where In is a n × n identity matrix. For

notational brevity, let G = V ar(γ1X) = γ2
1σ

2
xIn. Then, using standard linear

mixed effects (LME) model theory [38], we can estimate γ0 in the measurement

error model by γ̂0 = (ATV −1A)−1ATV −1W , where V represents the variance

for W given A with V = ZGZT + Σ. We can then estimate the Best Linear

Unbiased Predictors (BLUP) from the measurement error model (2.3), γ̂1X =

GZTV −1(W − Aγ̂0).

2.3.2 Measurement Error Correction and Unbiasedness

It is well-known that näıvely plugging in a replicate value, e.g., Wij or the

average across replicates as a substitute for the true measures will usually give
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biased estimates of βx [20]. We will demonstrate this point for our application

in a later section, here we prove that using the BLUP (from the LME model)

in the outcome model gives us unbiased estimators for βx when the outcome is

continuous. In a subsequent section, we also evaluate the performance of the

proposed method for both continuous and binary outcomes for different sample

sizes through simulations.

Let H = InJ − A(ATV −1A)−1ATV −1, where InJ is a nJ × nJ identity

matrix. Note that H is idempotent since H2 = H , and that V −1H = HTV −1.

We also have HAγ0 = 0, where 0 is a nJ × 1 matrix (vector), and therefore

HW = H(Zγ1X + U). Therefore, the estimated γ̂1X = GZTV −1HW =

GZTV −1H(Zγ1X +U ).

The joint distribution of Y and γ1X is multivariate normal, assuming inde-

pendence between X and C, we can write:

[
Y

γ̂1X

]
=

[
β01n×1 βxIn C In 0

0 GZTV −1HZγ1 0 0 GZTV −1H

]


1

X

βc

ϵ

U


.

V ar(γ̂1X) = V ar(GZTV −1H)(Zγ1X +U))

= GZTV −1H [V ar(Zγ1X +U)]HT (V −1)TZGT

= GZTV −1HV HTV −1ZGT

= GZTHTV −1ZGT
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Cov(Y , γ̂1X) = Cov(β01n×1 + βxX +Cβc + ϵ,GZTV −1H(Zγ1X +U))

= Cov(βxX,GZTV −1HZγ1X)

= βxCov(X, γ1X)(GZTV −1HZ)T

= βxγ1V ar(X)ZTHT (V −1)TZGT

=
βx

γ1
V ar(γ1X)ZTHTV −1ZGT

=
βx

γ1
GZTHTV −1ZGT

Then by the properties of multivariate normal distribution, we have:

E(Y |γ̂1X,C) = E(Y |C) + Cov(Y , γ̂1X)[V ar(γ̂1X)]−1(γ̂1X − E(γ̂1X))

= β01n×1 +Cβc +
βx

γ1
γ̂1X

= (1n×1, X̂,C)


β0

βx

βc


Let D denote the design matrix, which is D = (1n×1, X̂,C). By the ordinary

least square estimation, we have:

β̂ =


β0

βx

βc

 = (DTD)−1DTY

Then we show that (DTD)−1DTY is an unbiased estimator for β0, βx and

βc:

E(β̂) = (DTD)−1DTE(Y |γ̂1X,C)

= (DTD)−1DTDβ̂

= β̂
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Therefore using the BLUP of γ1X, instead of näıvely observed measures which

contain errors, gives us unbiased estimates for parameters in the outcome model.

However, the above proof holds if and only if C is independent of X, namely that

the error-free covariates are independent of the true measures for each subject. We

explored situations when C and X are correlated for both continuous and binary

outcomes Y through simulations in the next section.

2.4 Simulation

2.4.1 Simulation Model Setup

Recapitulating the earlier notation, let Yi represent a clinical outcome of interest

for subject i, Ci denote a covariate measured without error, and Wij represent

observed sedentary behavior measures from a device, where j indexes replicate

measures (e.g., j = 1, 2, · · · 7 if the device is worn daily for 1 week). Xi represents

the true centered average sedentary time for subject i over the measurement period

(e.g., 1 week). For demonstration purposes, we consider a regression model of the

clinical outcome Yi on covariate Xi through a link function f(y). We specify the

following measurement error model for the covariate measured with error,

Wij = γ0 + γ1Xi + Uij; (2.5)

and we specify an outcome model for the centered true average measure given the

covariate Ci:

f(Yi) = β0 + βxXi + βcCi + ϵi. (2.6)

The equations (2.5) and (2.6) are simplified cases of (2.1) and (2.2) with no co-

variates Ai and a single covariate Ci when we consider a linear regression of a

continuous outcome Yi. The goal of the analysis is to estimate βx, the effect of

covariate X with measurement error.

Let Wi = (Wi1,Wi2, · · · ,WiJ)
T and Ui = (Ui1, Ui2, · · · , UiJ)

T be vectors rep-
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resenting the J replicates for subject i, we assume

Ui ∼ N(0,Σu), ϵi ∼ N(0, σ2
ϵ ),

Wi | Xi ∼ N(γ0 + γ1Xi,Ω),

Ω = γ2
1σ

2
xIJ×J +Σu, Σu =


σ2
u ρσ2

u ...

σ2
u ...

σ2
u ...


J×J

.

X and C will be generated as follows:(
X

C

)
= N(

(
µx

µc

)
,Σxc), Σxc =

(
σ2
x, ρxcσxσc

ρxcσxσc, σ2
c

)
.

In the above model set-up, ρ denotes the error correlations between replicates

within each subject for the device, ρxc represents the correlation between the latent

variable X and variable without measurement error C, N() indicates the normal

distribution and IJ×J is a J × J identity matrix. We also note that for simplicity

we assume that the number of replicates J is the same across subjects; our methods

will be easily generalized to the unbalanced case.

We conducted a series of simulations to examine the performance of the pro-

posed method for accounting for measurement error in continuous and binary out-

come models, and compared the proposed method to the näıve method that uses

the error-prone measures without adjusting measurement errors. All simulations

were performed with a Monte Carlo sample of 1000. We examined the performance

of these methods in estimating β0, βx and βc. The performance metrics include

mean estimates of the coefficient, estimated asymptotic and empirical standard er-

rors, relative bias and coverage probability of 95% confidence interval . To mimic

the dataset in the ACT-AM study, all parameters in the simulation are set based

on prior analysis. Using data structures as in (2.5) and (2.6) , we showed the simu-

lation results for sample sizes n = 50, 100, 500 for continuous outcome, and sample

sizes n = 100, 200, 500 for binary outcomes; each subject had J=7 replicates of

measures.

We also conducted simulations with missing completely at random for replicates

of each subject, and the results are similar to using complete data.
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2.4.2 Continuous Clinical Outcome

We considered a linear regression for a continuous outcome Yi with f(y) = y,

then

Yi|(Xi, Ci) ∼ N(β0 + βxXi + βcCi, σ
2
ϵ ).

Parameters and generated measures were as follows:

β0 = 10, βx = 2.95, βc = 3,

γ0 = 1, γ1 = 1(W1) or 2(W2), µc = 1, σc = 1,

µx = 0, σx = 2, σϵ = 1, σu = 1,

ρ = 0.1 or 0.3, ρxc = 0 or 0.5

For the correlation between the latent variable X and variable without mea-

surement error C, we explored the cases when ρxc = 0 and ρxc = 0.5, meanwhile

varied the value of attenuation bias γ1, where W1 represents an unbiased case with

measurements with γ1 = 1, and W2 represents measurements with γ1 = 2.

2.4.3 Binary Clinical Outcome

We considered a logistic regression for a binary outcome

Yi|(Xi, Ci) ∼ Bernoulli(Pr), P r =
1

1 + exp(−(β0 + βxXi + βcCi))
.

Parameters in the outcome model (β) were set up as follows, other parameters

were set up the same as in continuous case:

β0 = 0.1, βx = 0.1, βc = 0.1
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2.4.4 Simulation Results

We compared the performance of the method näıvely using the measures con-

taining errors (denoted as W1 and W2 assuming the attenuated bias γ1 =1 and 2)

and the proposed approach using BLUP under 1000 Monte Carlo samples. The

BLUP1 and BLUP2 represent using the Best Linear Unbiased Prediction (BLUP)

from W1 and W2, respectively. Shown in the appendix Table A.1 and Table A.2

are the simulation results for the estimated β0, βx, and βc and standard errors of

these estimates for the continuous and binary outcome models, respectively. For

both continuous and binary outcomes, the standard errors of the estimates (i.e.,

the asymptotic standard errors) from the proposed approach using BLUP were

very similar to their empirical standard errors, and as expected, these standard

errors decreased as the sample size increased. In Fig 2.4. (Appendix Table A.3

and Table A.4), we summarized the relative bias of estimated βx under different

sample sizes while comparing using BLUP1 and BLUP2 to naively using W1 and

W2 for both continuous and binary outcomes with different magnitudes of ρ and

ρxc. As we can see from Fig 2.4., the proposed BLUP method has a much smaller

relative bias than naively using measures containing errors for both continuous and

binary outcomes under different correlations.

When the latent truth X is independent of the covariate C (ρxc = 0), the

estimates of β0, βx and βc from the proposed BLUP approach were close to the

truth for both the continuous and binary outcome cases, even for relatively small

sample size. In contrast, näıvely using measures containing measurement errors

gave us biased estimates for β0 and βx, and the bias increases as the correlation

for replicates within subject ρ and the magnitude of attenuation bias γ1 increases.

The relative bias was given in Fig 2.4. For example, in the continuous outcome

case, when ρ = 0.1 and ρxc = 0, the relative bias of estimated βx is around 0.8% for

rather small sample size n = 50 using BLUP1 and BLUP2 , but is around 3.8% if

näıvely usingW1 and even worse around 50% if näıvely usingW2, which has greater

attenuation bias than W1 (Fig 2.4.a). In the binary outcome case, a similar trend

follows but with a slightly increased relative bias for all methods in comparison;

taking the ρ = 0.1 and ρxc = 0 for binary outcome case for example, the relative

31



Figure 2.4: Relative bias of estimated βx using different methods for continuous
outcome and binary outcome
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bias of estimated βx is around 0.8% and 3.0% for n=100 when using BLUP1 and

BLUP2, in comparison to a much higher 24.4% and 41.2% when näıvely using W1

and W2 (Fig 2.4.b). Of note, in our simulations, we set γ1 = 2 for W2, which

resulted in attenuation of βx when näıve plugging in W2. A different choice of γ1

(e.g., γ < 1) would result in inflation of βx, namely erroneous exaggerated effects

of the exposure-disease associations.

When X is correlated with C (ρxc = 0.5), the proposed structure models using

BLUP were still able to have much less biased estimates of β0 and βx than the

näıve plug-in approach. For example, in continuous outcome case, when ρ = 0.1

and ρxc = 0.5, the relative bias of estimated βx is around 1.0% and 0.5% when

using BLUP1 and BLUP2, which are much lower than 5.3% and 50.9% the relative

bias of estimated βx for n=50 when näıvely using W1 and W2 (Fig 2.4.c). A similar

trend was also observed in binary outcome cases with slightly increased relative

bias.

Besides that, we have also examined the 95% CI coverage probability for using

BLUP1, BLUP2, W1, andW2, and found that for continuous outcome the coverage

of the proposed method using BLUP is much better than using the näıve plug-in

approach (Appendix Fig A.1). On the other hand, for binary outcome, due to the

wide confidence interval of the estimates, coverage probability is similar among all

approaches, but as attenuation bias γ1 contained in the measurements increases,

the coverage drops for the näıve plug-in approach, while the BLUP still maintained

good coverage adjusting the measurement errors.

2.5 Data Analysis

In sedentary behavior studies, research generally focuses on whether an individ-

ual’s activity level or sitting time has an impact on their health. We implemented

our proposed method on data from the ACT Study, to investigate the impacts of

increasing subjects’ daily total sitting time on BMI and obesity status (i.e., BMI

is equal to or greater than 30 kg/m2). We compared our proposed method to the

näıve estimate using the subject level average of the repeated measures from ac-
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tivPAL and ActiGraph without measurement error correction. Participants were

instructed to wear both devices at the same time for 7 days, and analysis results

using BLUP from fitting LME using the activPAL measures and the ActiGraph

measures are quite close.

Table 2.3: Estimated βx in Outcome Model (BMI/Obesity) for Total Sedentary
Time.

Outcome BLUPactivPAL BLUPActiGraph activPAL ActiGraph

β̂x (sd) p-value β̂x (sd) p-value β̂x (sd) p-value β̂x (sd) p-value

BMI 0.80(0.09) <0.001 0.77(0.10) <0.001 0.55 (0.10) <0.001 0.36 (0.11) <0.001

Obesity (y/n) 0.41 (0.06) <0.001 0.40 (0.06) <0.001 0.28 (0.05) <0.001 0.23 (0.06) <0.001

Shown in Table 2.3 are the estimates of βx in equation (2.2) with associated

standard error and p-values while controlling other variables that don’t contain

errors, such as age, gender, education level, and ethnicity. BLUPactivPAL and

BLUPActiGraph indicate the proposed method using BLUP from devices activPAL

and ActiGraph, while activPAL and ActiGraph indicate näıvely using measures

contained errors from each device.

In Table 2.3, even though for both methods, the standard errors are small, and

p-values < 0.001, the estimated β̂x in the outcome (BMI) model for total sedentary

time differ substantially between the two approaches. For the proposed approach,

for a 1-hour increase in the total sedentary time,average BMI is expected to in-

crease by 0.80, while holding other covariates constant. However, näıvely using

the activPAL and ActiGraph measures that contained errors gave us a falsely un-

derestimated effect. From the näıve use of the activPAL measures, with 1-hour

increase in the total sedentary time, average BMI is expected to increase by 0.55,

which is about seventy percent of the estimated effect using BLUP. Meanwhile,

from the näıve plug-in approach by the ActiGraph measures, with 1-hour increase

in the total sedentary time, average BMI is expected to increase by 0.36, which

is less than half of the estimated effect after accounting for measurement errors.

Therefore without accounting for errors in the measurements, we may inappropri-

ately underestimate the effect of sedentary time on subjects’ BMI and disseminate
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invalid health guidance to the population.

For the binary obesity status case, we see a similar trend as in continuous BMI.

For a 1-hour increase in the total sedentary time, the odds of being obese will in-

crease by around 50% (exp(0.41) - 1, exp(0.40) -1) using the proposed approach

to account for the measurement errors, however, the odds of being obese will in-

crease by around 32% (exp(0.28) - 1 ) from näıvely using activPAL measures and

26% (exp(0.23) - 1 ) from näıvely using ActiGraph measures. This falsely under-

estimated effect is also likely due to measurement errors, which can cause biased

estimates and ultimately lead to false conclusions. Of note, both devices are also

subject to random errors, and as indicated by our simulations the BLUP method

may correct for both random and systematic biases in either device. Although we

do not know the true βx for the data application, the results are consistent with

our simulations where we observed shrunk estimates from the error-prone W1 and

W2, while the BLUP method was able to adjust the measurement errors and give

unbiased estimates.

2.6 Discussion

With the increasing use of wearable devices based on different technologies,

there is growing interest in ascertaining how to use these rich data sources to ob-

tain unbiased risk estimates and draw valid conclusions in health behavior studies.

Although wearable sensors are likely less error-prone than self-report, however,

they are subject to errors, e.g., device malfunction, or calibration issues. No-

tably, due to different correlation structures between measurements and errors,

and other correlated variables in the model, the direction of impact on risk esti-

mates of näıvely using measures containing errors is difficult to model or predict.

Therefore, instead of estimating the impact of the measurement error, previous

studies had tried to take advantage of the replicated measures to reduce the bias

for estimates of the relationship between exposures subject to measurement errors

and outcome of interest. For example, Rosner and Polk (1983) proposed that the

average of repeated measures of subjects’ blood pressure within a relatively short
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period of time tends to be close to their true blood pressure level. Averaging the

replicates of measures may be a good idea for measurement errors that are ran-

dom. However, when there are systemic correlated errors in the measurements,

which can be caused by inaccurate instruments., simply using the average of the

replicates may still contain a significant amount of measurement errors. Rosner et

al. (1989) proposed two methods, the linear approximation method and the likeli-

hood approximation method, to reduce bias caused by either random or systematic

measurement errors for estimates of relative risk. Nonetheless, these methods re-

quire a separate validation study to be applicable. Morrel et al (2003) proposed

a method using the mixed effects estimates to get a baseline measure closer to

the truth than using a single measurement. However,they did not elucidate the

theoretical advantages of using the BLUP, which when used correctly can be more

robust to bias caused by measurement errors as demonstrated in this paper.

We developed a version of structure models by combining the Linear Mixed

Effect Models and Generalized Linear Models to account for measurement errors,

so that we can obtain unbiased estimations of parameters of interest. We achieved

this by taking advantage of multiple replicates available from daily device wear,

and proposed using the BLUP instead of näıvely using measures directly provided

by the devices. We showed that using BLUP will give unbiased estimates for the

conditional associations between the true exposure, i.e. sedentary time in our ap-

plication, and clinical outcomes, when the true exposure is independent of other

covariates that are measured without errors. Through intensive simulations for

both continuous and binary outcomes, we demonstrated that the proposed method

performed very well and achieved accurate parameter estimates, in scenarios with

more general correlation structures and even for relatively small sample sizes. We

also applied the proposed approach to an existing study and compared the results

with näıve plug-in approach to demonstrate discrepancies between uncorrected

estimates based on device outputs versus the error-corrected BLUP approach pro-

posed herein.

Focusing on sedentary behavior, we compared two commonly used devices for

sedentary time assessment, the activPAL and the ActiGraph. Our data analysis
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(Table 2.3) indicates less attenuation of regression coefficients for the activPAL

versus ActiGraph compared to the proposed BLUP method. While we do not

know the ”truth” in this data analysis application, our results are in line with

health behavior research: the activPAL is a validated tool for posture classification

(e.g., sitting, standing, stepping), and is believed to be less biased for sedentary

behavior estimation than the ActiGraph, which uses thresholds based on energy

expenditure to classify sedentary behavior and thus is prone to systematic biases

[39]. Of note, both devices are also subject to random errors, and as indicated by

our simulations the BLUP method may correct for both random and systematic

biases.

While the proposed LME-based structure models can correct the measurement

errors in the exposure, it is important to note that multiple replicates are needed

for the proposed method to be applicable. Since per best practices, health behavior

researchers already require and collect multiple repeated days of device wear, this

potential drawback, can be accommodated for sedentary behavior research, which

is the focus of our application. Importantly, the LME structures can be straight-

forwardly implemented in different settings through standard statistical software,

such as R and SAS, and generalized to other behaviors such as physical activity

or sleep research.

While our approach sets a rigorous foundation, there is undoubtedly scope

to expand and improve our methods. Although our data analysis study cohort

was relatively complete, for future work, we are interested in expanding this work

to accommodate different missingness mechanisms, such as MAR and MNAR.

Meanwhile, currently we treat measures within a short period of time (7 days) as

replicates of each other, we also aim to extend the current setting to longitudinal

data with different cluster sizes.
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Chapter 3

A Double Robust Estimator for

Mann Whitney Wilcoxon Rank

Sum Test When Applied for

Causal Inference in Observational

Studies

3.1 Introduction

In randomized control trials, the non-parametric Mann-Whitney-Wilcoxon rank

sum test (MWWRST) is widely used as an alternative to the two-sample t-test

when data distributions are highly skewed, especially with outliers. For non-

randomized studies, this rank-based test generally yields invalid results for causal

inference. Although one may remove or winsorize outliers and apply mean-based

methods such as regression, propensity score matching, marginal structure mod-

els, results from such analyses are difficult to interpret as they are subjective and

depend on how the outliers are handled.

Shown in Table 3.1 are sample means and standard deviations of subjects’ ac-

tivity levels at the end of intervention, along with maximum (Max), interquartile
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Table 3.1: Two sample t-test vs. MWWRST for group difference of Weighted Sum
Activity Count of MVPA.

Two sample t-test

Intervention Control p-value(t)

mean(SD) mean(SD)

AC MVPA 3595378

(1652517)

3231656

(1634587)

0.091

Max/IQR 5.53 5.80

MWWRST

Estimate(SE) p-value

δ 0.430(0.035) 0.039

range (IQR) and p-value from the two-sample t-test, to assess intervention effects

for breast cancer survivors in a randomized control weight-loss study (see Section

3.5.2 for study details). There are clearly outliers in both groups based on the com-

mon winsorizing approach, e.g., 3 times of IQR criterion [40]. While the t-test fails

to capture any significant difference, the MWWRST shows a significant difference

in mean rank between the two groups. The outliers in this study have a significant

impact on study findings with important implications for clinical practice.

For non-randomized observational studies, Wu et al.(2014) [41] introduced an

approach for causal inference by incorporating inverse probability weighting (IPW)

into the MWWRST. Their approach addressed limitations of an earlier attempt by

Rosenbaum (2002) [42], in which a constant individual treatment effect τ = y1−y0

between two potential outcomes (y1, y0) is imposed in order to use a randomization

technique for inference. This assumption is not only implausible, but also unveri-

fiable in practice. Mao et al. (2018) [43] and Zhang et al. (2019) [44] extended the

IPW approach of Wu et al. (2014) to develop doubly robust estimators for more

robust inference. However, their doubly robust estimators have major limitations.

In Mao (2018), parametric logistic and linear regression were used for the

propensity score of the IPW and outcome model of the augmented component

of the doubly robust estimator. Since the logistic regression cannot address over-

dispersion [45, 46], it may not be correct for some real studies. The parametric
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linear regression is even more problematic, since it not only fails to address outliers,

which calls for the MWWRST in the first place, but also limits its applications

to normal data. Thus, both parametric models, especially the second one, can

be wrong for most real study data and as such this doubly robust estimator may

even be less robust than the IPW estimator in Wu et al. (2014), which uses a

semiparametric generalized linear model with the logit link, or restricted moment

[47], for the propensity score.

Zhang et al. (2019) presented two doubly robust estimators. One estimator also

posits a parametric outcome model, which like Mao’s approach does not address

outliers, since no reliable estimator of this outcome model can be obtained in the

presence of outliers. The second estimator addresses the limitation of Mao’s para-

metric outcome model by using a semiparametric regression for between-subject

attributes, or generalized probability index model (GPI) as so termed in the pa-

per, since it generalizes the probability index model (PI) developed by Thas et al.

(2012) [48]. A major limitation of their approach is the reliance on bootstrap for

inference. First, applications of bootstrap within the current context are highly

inefficient, since the MWWRST statistic based on a sample size n requires compu-

tational times in the order of O (n2), where n = n1+n2 and nk denotes the sample

size of group k (= 0, 1). For example, in a similar application involving modeling

between-subject attributes for microbiome beta diversity outcomes [49],the run

time for asymptotic inference is about 35 times less compared to a permutation-

based approach with 1,000 permutations. For the simulation set up in their paper,

we find that run time for the their bootstrap inference is generally around 40

times the run time for the proposed doubly robust estimator in this paper with

asymptotic inference. Second, the bootstrap procedure for their doubly robust es-

timators has unknown performance even for large samples, since it is being applied

to quite a complex U-statistics setting with both estimated model parameters for

the propensity score and outcome regression models. As no investigation of large

sample properties was conducted, applications of their doubly robust estimators

raise questions about inference validity when applied to real study data.

In this paper, we develop an approach to address all the aforementioned limita-
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tions by leveraging functional response models (FRM), a class of semiparamatric

regression models for between-subject attributes that include both PI and GPI. In

Section 3.2, we review potential outcomes and causal effects for the MWWRST. In

Section 3.3, we present IPW estimators, outcome regression (mean score imputa-

tion) estimators and doubly robust estimators by combing the IPW and outcome

regression estimators. In Section 3.4, we discuss joint inference for all the three

estimators by leveraging the FRM and U-statistics based generalized estimating

equations. In Section 3.5, we examine performances of the proposed doubly robust

estimator for small and large samples using both simulated and real study data.

We discuss future directions in Section 3.6.

3.2 Causal Effect for Mann-Whitney-Wilcoxon

Rank-sum Test

There are two equivalent forms of the MWWRST [50]. We use the U-statistics

expression, also known as the Mann–Whitney form, for the development below

unless stated otherwise.

Consider two independent groups, indexed by k (= 0, 1), with sample size nk,

and let yikk denote an observed continuous outcome from the ik subject in group

k. The MWWRST is given by:

Mann–Whitney form of MWWRST : δ̂n =
1

n1

1

n0

n1∑
i1=1

n0∑
j0=1

I (yi11 ≤ yj00) . (3.1)

The U-statistic δ̂n is an unbiased estimator of δ̃ = E [I (yi11 ≤ yj00)] [50]. The

MWWRST tests whether the mean rank of yikk is the same between the two

groups, since the null H0 : δ̃ = 1
2
holds true if and only if yikk has the same

mean rank [51]. Only under some assumptions does equal mean rank imply equal

median [52]. This correct interpretation is important, since there is a long-standing

misconception that the MWWRST always compare medians of two distributions.

To apply the concept of potential outcomes to non-randomized studies, consider

a sample of size n, and let zi (= 0, 1) denote an indicator of treatment assignment

42



, or exposure status, and let (yi1, yi0) denote the potential outcomes corresponding

to the two treatment conditions k (= 0, 1). Then, for a randomized controlled trial

(RCT), yik ⊥ zi and we observe one of the potential outcome yi1, denoted as yi11,

or yi0, denoted as yi00, depending on whether the subject is randomized to group

k = 1 or k = 0 (1 ≤ ik ≤ nk, n = n0+n1). As in causal inference about treatment

effects based on comparing the means of yik, we would like to use the following to

indicate treatment effect:

∆ = E [I (yi1 ≤ yi0)] , (3.2)

and then apply the counterfactual consistency assumption to estimate ∆ using the

observed yikk [41]. Unfortunately, such an approach does not work.

First, unlike mean-based models, it is impossible to estimate the rank-based ∆

using observed yikk, because only one of the potential outcomes for each subject is

observed. Second, δ̃ ̸= ∆, which is easily seen by noting the fact that the within-

subject pair (yi1, yi0) generally has smaller variability than the between-subject

pair (yi1, yj0).

Therefore we define causal effects for the MWWRST by:

δ = E [I (yi1 ≤ yj0)] , for any (i, j) ∈ Cn
2 , (3.3)

where Cn
q denotes the set of

(
n
q

)
combinations of q distinct elements (i1, i2, . . . iq)

from the integer set {1, . . . , n}. For RCTs, δ is equal to δ̃ and can be consistently

estimated by δ̂n in (3.1) based on the observed (yi11, yj00) (i1 ∈ Cn1
1 , j0 ∈ Cn0

1 ),

which is a subset of the potential outcomes ( yi1, yj0) ((i, j) ∈ Cn
2 ). For non-RCTs,

δ̂n is no longer a consistent estimator of δ.

Note that as MWWRST is usually called for dealing with outliers, we will con-

sider unbounded continuous or count outcomes for yik. When ties are present, the

null in this case may be expressed as H0 : E (I (yi1 < yj0))+
1
2
E (I (yi1 = yj0)) =

1
2

[41]. Thus, for count outcomes, we redefine fi in (3.4) with I (yi1 ≤ yj0) replaced by

I (yi1 < yj0) +
1
2
I (yi1 = yj0). Without loss of generality, we focus on (unbounded)

continuous yik unless stated otherwise.
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3.3 Doubly Robust Estimator for Mann-Whitney-

Wilcoxon Rank-sum Test

We start with a brief review of IPW estimator for the MWWRST.

3.3.1 Inverse Probability Weighting Estimator

Let p = E (zi). For RCTs, p is a known constant indicating the probability of

treatment assignment (exposure status). Let

fi =
1

2

(
zi (1− zj)

p (1− p)
I (yi1 ≤ yj0) +

zj (1− zi)

p (1− p)
I (yj1 ≤ yi0)

)
, i = (i, j) ∈ Cn

2 .

(3.4)

Although only one of the potential outcomes (yi1, yi0) is observed, fi in the above

is well-defined, since zi (1− zj) = 0 for pairs of subjects who are assigned the

same treatment. For an RCT, δ̂n in (3.1) is a consistent estimator of δ and can be

expressed as:

δ̂n = (n1n0)
−1

n1∑
i1=1

n0∑
j0=1

I (yi11 ≤ yj00) (3.5)

=

1
2

∑
i∈Cn

2

(
zi (1− zj)

p (1− p)
+

zj (1− zi)

p (1− p)

)−1∑
i∈Cn

2

fi


= A−1

n

∑
i∈Cn

2

fi

 .

, where A−1
n =

[
1
2

∑
i∈Cn

2

(
zi(1−zj)

p(1−p)
+

zj(1−zi)

p(1−p)

)]−1

. By the theory of U-statistics [50],

δ = E (fi) ,
√
n

(
n

2

)−1 ∑
i∈Cn

2

(fi − δ) →d N
(
0, σ2

δ

)
,

(
n

2

)−1

An →p 1, (3.6)

where →d (→p) denotes convergence in distribution (probability) and σ2
δ denotes

the asymptotic variance of
√
n
(
n
2

)−1∑
i∈Cn

2
(fi − δ). It follows from the Slutsky’s theorem that δ̂n has the

same asymptotic distribution as
(
n
2

)−1∑
i∈Cn

2
fi.
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For observational studies, zi generally depends on yik, and as a result, δ̂n in (3.5)

is generally a biased estimator of δ. Suppose there exists a vector of confounders,

or covariates, wi, such that yik ⊥ zi | wi (k = 0, 1). Let πi = E (zi | wi), wi =

{wi,wj} and

f IPW
i =

1

2

(
zi (1− zj)

πi (1− πj)
I (yi1 ≤ yj0) +

zj (1− zi)

πj (1− πi)
I (yj1 ≤ yi0)

)
, i = (i, j) ∈ Cn

2 .

(3.7)

Then we have:

E
(
f IPW
i

)
=

1

2
E

[
zi (1− zj)

πi (1− πj)
I (yi1 ≤ yj0) +

zj (1− zi)

πj (1− πi)
I (yj1 ≤ yi0)

]
=

1

2
E

[
I (yi1 ≤ yj0)

πi (1− πj)
E (zi (1− zj) | wi) +

I (yj1 ≤ yi0)

πj (1− πi)
E (zj (1− zi) | wi)

]
= δ.

If πi is known, then as in the case of RCTs δ̂IPW
n below is a consistent and asymp-

totically normal estimator of δ:

δ̂IPW
n =

(
n

2

)−1 ∑
i∈Cn

2

f IPW
i →d δ,

√
n
(
δ̂IPW
n − δ

)
→d N

(
0, σ2

δ

)
, (3.8)

where σ2
δ denotes the asymptotic variance.

In practice, πi is unknown and can be modeled using any parametric [43, 53,

54] or semiparametric GLM with a link for a binary response such as the logit link

[41, 44]. Let πi = π (wi;η) with η indicating an unknown vector of parameters.

We can estimate η using maximum likelihood or estimating equations. Let η̂n

denote such an estimator of η. In this case, δ̂IPW
n in (3.8) will be a function of η̂n,

i.e., δ̂IPW
n (η̂n). By using a Taylor series expansion, we can obtain the asymptotic

variance of δ̂IPW
n (η̂n) that accounts for sampling variability of η̂n for inference

about δ [41, 43, 53, 54].

3.3.2 Outcome Regression Estimator

The IPW in Section 3.3.1 only uses the observed pairs (yi11, yj00) (i1 ∈ Cn1
1 ,

j0 ∈ Cn0
1 ). Alternatively, we can posit a model to relate outcome yik with wi and

impute missing yik.
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This approach was considered by Mao (2018) and Zhang et al. (2019). How-

ever, as noted in Section 3.1, parametric models are at odds with the reason for

employing the MWWRST in the first place. Moreover, in all real study applica-

tions, no reliable estimator can be obtained for such a parametric model because

of outliers.

Zhang et al. (2019) introduced another estimator by positing a semiparametric

generalized probability index (GPI) model:

E (I (yi1 ≤ yj0) | wi) = g (wi;γ) , i = (i, j) ∈ Cn
2 , (3.9)

where γ denotes a vector of parameters. The GPI above is a member of functional

response models (FRM) for between-subject attributes (see Section 3.4 for more

details about FRM). This particular form of FRM has been used in a similar

context to address outliers for linear regression in Chen et al. (2014)[55] and Chen

et al. (2016) [56]. We will refer to the GPI in (3.9) as an FRM in the following

discussion unless stated otherwise. The FRM in (3.9) is much more robust as it

only models the conditional mean of I (yi1 ≤ yj0) given wi. In addition, it allows

us to directly impute missing I (yi1 ≤ yj0) due to unobserved yi1 or yj0.

If γ is known, then under yik ⊥ zi | wi and yjk ⊥ zj | wj, with wi and wj

indicate vectors of covariates for different subject i and j, we can impute missing

I ({yi1 ≤ yj0}) or I ({yj1 ≤ yi0}) with the mean score (MS), g (wi;γ) or g (wic ;γ)

with wi = {wi,wj} and wic = {wj,wi}. For example, under the logit link and

additive linear predictor, we can posit:

g (wi;γ) = expit
(
γ0 + γ⊤

11wi + γ⊤
10wj

)
, g (wic ;γ) = expit

(
γ0 + γ⊤

11wj + γ⊤
10wi

)
.

where expit(·) denotes the inverse of the logit link.

Note that g (wi;γ) is the mean of the semiparametric FRM for between-subject

attributes {I (yi1 ≤ yj0) ,wi} in (3.9), which generally does not have a direct re-

lationship with semiparametric GLM for within-subject attributes {yik,wi}. For

example, if conditioning on wi, yik follows a semiparametric linear regression:

yik = β0 + β⊤
1 wik + ϵik, 1 ≤ i ≤ nk, k = 0, 1.
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then the link function g−1 for the semiparametric FRM in (3.9) is determined by

the distribution of ϵij = ϵi1− ϵj0. For normal-distributed ϵik, ϵij is also normal and

g−1 is the probit link:

g (wi;γ) = Φ(γ0 + γ⊤
11wi + γ⊤

10wj), (3.10)

where Φ (·) denotes the cumulative distribution function (CDF) of the standard

normal N (0, 1). If ϵik follows other distributions such as t or logistic, ϵij will not

have a t or logistic distribution. In practice, we can use differen link functions for

within-subject binary responses for the between-subject FRM in (3.10).

The following fMSI
i based on such mean score imputed (MSI) g (wi;γ) and

g (wic ;γ) for the unobserved I (yi1 ≤ yj0) and I (yj1 ≤ yi0) is well-defined for all(
n
2

)
subject pairs of the combined sample:

fMSI
i =

1

2
[zi (1− zj) I (yi1 ≤ yj0) + (1− zi (1− zj)) g (wi;γ)] (3.11)

+
1

2
[zj (1− zi) I (yj1 ≤ yi0) + (1− zj (1− zi)) g (wic ;γ)] .

Also, we have:

E
(
fMSI
i

)
=

1

2
E [zi (1− zj) I (yi1 ≤ yj0) + (1− zi (1− zj)) g (wi;γ)]

+
1

2
E [zj (1− zi) I (yj1 ≤ yi0) + (1− zj (1− zi)) g (wic ;γ)]

=
1

2
[E {zi (1− zj) [E (I (yi1 ≤ yj0)− g (wi;γ)) | wi]}+ E [g (wi;γ)]]

+
1

2
[E {zj (1− zi) [E (I (yj1 ≤ yi0)− g (wic ;γ)) | wic ]}+ E [g (wic ;γ)]]

= E

[
1

2
E (I (yi1 ≤ yj0) | wi) +

1

2
E (I (yj1 ≤ yi0) | wic)

]
= δ.

Thus by the theory of U-statistics, the estimator δ̂MSI
n based on the mean score

imputed fMSI
i is consistent and asymptotically normal with asymptotic variance

τ 2δ :

δ̂MSI
n =

(
n

2

)−1 ∑
i∈Cn

2

fMSI
i →d δ,

√
n
(
δ̂MSI
n − δ

)
→d N

(
0, τ 2δ

)
.
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If γ is unknown as in most applications, we can estimate γ using U-statistics

based generalized estimating equations for sesmiparametric FRM (see Section 3.4

for details) [44, 53]. As in the case of IPW estimators above, we can also account

for sampling variability in estimated γ̂n in the asymptotic variance of δ̂MSI
n (γ̂n)

[55, 56]. This asymptotic inference addresses the limitation of bootstrap inference

used in estimators proposed by Zhang et al. (2019).

3.3.3 Doubly Robust Estimator

First, we assume η and γ are known and discuss how to construct a doubly

robust estimator of δ by combining the two.

To this end, let

fDR
i =

1

2

[
zi (1− zj)

πi (1− πj)
I (yi1 ≤ yj0) +

(
1− zi (1− zj)

πi (1− πj)

)
gi

]
(3.12)

+
1

2

[
zj (1− zi)

πj (1− πi)
I (yj1 ≤ yi0) +

(
1− zj (1− zi)

πj (1− πi)

)
g
ic

]
,

πi = π (wi;η) , gi = g (wi;γ) , gic = g (wic ;γ) , i = (i, j) ∈ Cn
2 .

The above fDR
i is well-defined for all

(
n
2

)
subject pairs of the combined sasmple.

We now show that E
(
fDR
i

)
= δ if one of the regression models, π (wi;η) and

g (wi;γ), is correctly specified. Since the two terms in fDR
i have the same mean,

it suffices to show this result only for the first term, i.e.,

E (Ii) = E

[
zi (1− zj)

πi (1− πj)
I (yi1 ≤ yj0) +

(
1− zi (1− zj)

πi (1− πj)

)
gi

]
= δ.

1. If E (I (yi1 ≤ yj0) | wi) = g (wi;γ) is correctly specified, then we have:

E (Ii) = E (I (yi1 ≤ yj0)) + E

[
zi(1− zj)− πi (1− πj)

πi (1− πj)
(I (yi1 ≤ yj0)− g (wi;γ))

]
= E (I (yi1 ≤ yj0))

+ E

{
E

[
zi(1− zj)− πi (1− πj)

πi (1− πj)
(I (yi1 ≤ yj0)− g (wi;γ)) | wi, zi, zj

]}
= E (I (yi1 ≤ yj0)) + E

{
zi(1− zj)− πi (1− πj)

πi (1− πj)
[g (wi;γ)− g (wi;γ)]

}
= δ.

48



2. If E (zi | wi) = π (wi;η) is correctly specified, then we have:

E (Ii) = E

[
zi (1− zj)

πi (1− πj)
I (yi1 ≤ yj0) +

(
1− zi (1− zj)

πi (1− πj)

)
g (wi;γ)

]
= E

{
E

[
zi (1− zj)

πi (1− πj)
I (yi1 ≤ yj0)

]
| wi, yi1, yj0

}
+ E

{
E

[(
1− zi (1− zj)

πi (1− πj)

)
g (wi;γ)

]
| wi

}
= E

[
I (yi1 ≤ yj0)

πi (1− πj)
E (zi (1− zj) | wi)

]
+ E

[
g (wi;γ)

(
1− 1

πi (1− πj)
E (zi (1− zj) | wi)

)]
= δ.

Thus, if π (wi;η) or g (wi;γ) is correctly specified, it follows from the theory of

U-statistics that the estimator δ̂DR
n below based on fDR

i in (3.12) is consistent and

asymptotically normal with asymptotic variance ς2δ :

δ̂DR
n =

(
n

2

)−1 ∑
i∈Cn

2

fDR
i →d δ,

√
n
(
δ̂DR
n − δ

)
→d N

(
0, ς2δ

)
.

Since η and γ are both unknown as in most applications, we may again first

estimate η and γ using maximum likelihood (as in Mao, 2018 and Zhang et al,

2019) or U-statistics based generalized estimating equations through semipara-

metric GLM and FRM (as in Wu et al., 2014 and Chen et al., 2016). Given such

estimators, we then compute δ̂DR
n (η̂n, γ̂n) and its asymptotic variance estimates.

When modeling the outcome regression using FRM, the asymptotic variance infer-

ence again addresses the limitation of bootstrap inference in Zhang et al. (2019).

Alternatively, we may utilize the flexibility of FRM to jointly estimate δ, η and γ,

as we discuss next.

3.4 Inference for Functional Response Models

We first provide a brief overview of functional response models (FRM). More

details can be found in Kowalski and Tu (2007) [50] and other citations below.
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Let yi and xi denote some response and a vector of predictors (or covariates)

from the ith subject (1 ≤ i ≤ n). The class of functional response model (FRM)

is defined by:

E
[
f
(
yi1 , . . . , yiq ;θ

)
| xi1 , . . . ,xiq

]
= h

(
xi1 , . . . ,xiq ;θ

)
, (i1, . . . , iq) ∈ Cn

q ,

(3.13)

where f (·) is some function, h (·) some smooth function (e.g., continuous second-

order derivatives), Cn
q denotes the set of

(
n
q

)
combinations of q (≥ 1) distinct ele-

ments (i1, . . . , iq) from the integer set {1, . . . , n} and θ a vector of parameters. For

q = 1, f (yi;θ) = yi and h (xi;θ) = h
(
θ⊤xi

)
, (3.13) reduces to the semiparametric,

or restricted moment, generalized linear models: E (yi | xi1) = h
(
θ⊤xi

)
, 1 ≤ i ≤ n.

For q = 2, f (yi, yj; θ) = I (yi ≤ yj) and h (xi,xj; θ) = E [I (yi ≤ yj)] = θ, (3.13)

reduces to (3.3) for causal effects of the MWWRST. By extending traditional

semiparametric regression models for within-subject attributes to between-subject

attributes, the FRM has been utilized to model between-subject relationships in a

wide range of applications such as social network connectivity [57], Beta-diversity

in microbiome research [49],and a host of popular reliability indices such as Pear-

son and concordance correlation coefficients [53, 54, 58, 59]. Within the current

context, we utilize the FRM to facilitate infernce when applying the doubly ro-

bust estimator to observational study data. We focus on joint inference about

θ =
(
δ,η⊤,γ⊤)⊤ for the doubly robsut estimator δ̂DR

n . Similar FRMs are readily

developed for joint inference about the parameters for the IPW and MSI estima-

tors.
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Consider an FRM of the form:

E (fi | xi) = hi (xi;θ) , i = (i, j) ∈ Cn
2 , (3.14)

fi = (fi1, fi2, fi3)
⊤ , hi = (hi1, hi2, hi3)

⊤ , xi = {xi,xj} ,

fi1 =
1

2
(zi + zj), fi2 =

1

2
[I(yi1 ≤ yj0) + I(yj1 ≤ yi0)] ,

fi3 =
1

2

[
zi(1− zj)

πi(1− πj)
I(yi1 ≤ yj0) +

(
1− zi(1− zj)

πi(1− πj)

)
gi

]
+

1

2

[
zj(1− zi)

πj(1− πi)
I(yj1 ≤ yi0) +

(
1− zj(1− zi)

πj(1− πi)

)
gic

]
,

hi1 (wi;θ) =
1

2
(π (wi;η) + π (wj;η)), hi2 (wi;θ) =

1

2
[g (wi,γ) + g (wic ,γ)] ,

hi3 (wi;θ) = δ, πi = π (wi;η) , πj = π (wj;η) ,

gi = g (wi,γ) , gic =g (wic ,γ) ,

θ =
(
η⊤,γ⊤, δ

)⊤
, η =

(
η0,η

⊤
1

)⊤
, γ =

(
γ0,γ

⊤
11,γ

⊤
10

)⊤
.

Let

Si = fi − hi, Di =
∂

∂θ
hi (θ) , i = (i, j) ∈ Cn

2 .

Vi = V ar (fi | wi) =


Vi1 0 0

0 Vi2 0

0 0 Vi3


1
2

R (α)


Vi1 0 0

0 Vi2 0

0 0 Vi3


1
2

,

Vi1 = V ar (fi1 | wi) , Vi2 = V ar (fi2 | wi) , Vi3 = V ar (fi3 | wi) ,

where Vi1, Vi2 and Vi3 are readily evaluated (see Appendix) and R (α) denotes

a working correlation matrix. Inference about θ is based on class of U-statistics

based generalized estimating equations (UGEE):

Un (θ) =
∑
i∈Cn

2

Un,i =
∑
i∈Cn

2

DiV
−1
i Si = 0. (3.15)

If either π (wi;η) or g (wi,γ) is correctly specified, then we have:

E (Un,i) = E
(
DiV

−1
i Si

)
= E

[
E
(
DiV

−1
i Si | wi

)]
= 0.

Thus the UGEE in (3.15) is unbiased, yielding consistent estimators of θ if ei-

ther π (wi;η) or g (wi,γ) is correctly specified. Further, UGEE estimators θ̂ are
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also asymptotically normal under mild regularity conditions. We summarize the

asymptotic properties in a theorem below for ease of reference.

Theorem 1. Let

vi = E (Un,i | yi1, yi0, zi,wi) , Σ = V ar (vi) , B = E
(
DiV

−1
i D⊤

i

)
, Di =

∂

∂θ
hi.

(3.16)

Then, under mild regularity conditions, we have:

1. θ̂ is consistent.

2. If
√
n (α̂−α) = Op (1), i.e., α̂ is

√
n-consistent [50], θ̂ is asymptotically

normal:
√
n
(
θ̂ − θ

)
→d N

(
0,Σθ = 4B−1ΣB−⊤) . (3.17)

To estimate Σθ, we note that Σ = V ar (vi) = E
(
viv

⊤
i

)
. Thus,

Σ̂ =
1

n

n∑
i=1

v̂iv̂
⊤
i , v̂i =

1

n− 1

n∑
j ̸=i

Un,ij. (3.18)

Also, we estimate B by B̂ =
(
n
2

)−1∑
(i,j)∈Cn

2
D̂iV̂

−1
i D̂⊤

i , where D̂i (V̂i) denotes Di

(Vi) with θ̂ substituting for θ. Thus, a consistent estimate of Σθ is given by:

Σ̂θ = 4B̂−1Σ̂B̂−⊤.

3.5 Application

We illustrate the proposed approach with both simulated and real data. We

start with investigating performance of the doubly robust estimator for small and

large samples by simulation and then present an application to a real weight-loss

trial to improve physical activities for breast cancer survivors. In all examples, we

set a two-sided type I α = 0.05. All analyses are carried out using codes developed

using the R software platform [60].

3.5.1 Simulation Study

In order to investigate causal effect between two treatment groups under con-

founding bias, we generate data from the following setup for the potential outcome,
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confounder and treatment assignment mechanism:

yik = β0 + β1I (zi = k) + β2wi + bi + ϵik, (3.19)

logit(E(zi | wi)) = η0 + η1wi, π (wi; η) =
exp (η0 + η1wi)

1 + exp (η0 + η1wi)
,

ϵik ∼ (χ2
1 − 1)

√
σ2

2
, bi ∼ (χ2

1 − 1)

√
σ2
b

2
,

wi ∼ N(µw, σ
2
w), zi ∼ Bern(π (wi;η)), k = 0, 1, 1 ≤ i ≤ n,

It follows that:

yi1 = β0 + β1 + β2wi + bi + ϵi1

yj0 = β0 + 0 + β2wj + bj + ϵj0

E[I((yi1 − yj0) ≤ 0 | wi)] = P ((ϵi1 + bi)− (ϵj0 + bj) ≤ −β2(wi − wj)− β1 | wi)

= Φ(γ0 + γT
11wi + γT

10wj)

γ0 = − 1√
2(σ2 + σ2

b )
β1, γT

11 = − 1√
2(σ2 + σ2

b )
β2, γT

10 =
1√

2(σ2 + σ2
b )
β2

where Φ (·) is the cumulative distribution function (CDF) of the standard normal

with mean 0 and standard deviation 1, zi = 1 for the treated condition, Bern(πi)

denotes a Bernoulli distribution with mean πi, wi is a baseline covariate connecting

zi and yik, and yik is the potential outcome under the influence of wi, i.e., yi ⊥ zi |
wi. The amount of confounding bias for yi is controlled through η1.

Parameters for the simulation study are set to:

β = (β0, β1, β2)
⊤ = (0, 0, 1), η = (η0, η1) = (1,−1),

σ2 = σ2
b = 1, uw = 1, σ2

w = 0.25.

With a negative η1 and positive β2, the potential outcomes yik have a smaller mean

in the treated group (zi = 1), i.e., δ = E
(
1
2
(I {yi1 ≤ yj0 | wi}

)
+I {yj1 ≤ yi0 | wi}) >

1
2
. The type I error is set to α = 0.05.

Shown in Table 3.2 are estimated θ for the FRM models for the three causal

estimators, δ̂IPW , δ̂MSI and δ̂DR, along with their asymptotic and empirical stan-

dard errors for the different sample sizes under 1,000 Monte Carlo samples. Table

3.2 also includes estimates δ̂MMW from the standard MWWRST in (3.1) based
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on observed outcome yikk, which were set to the observed potential outcome yik

corresponding to the value of zi, i.e., yi11 (yi00) if zi = 1 (0) with n1 =
∑n

i=1 zi and

n0 = n − n1. The estimates of η and standard errors for δ̂IPW and estimates of

γ and standard errors for δ̂MSI were all close to their counterparts for δ̂DR across

all sample sizes. All three causal estimates were quite close to the true δ = 0.5

and the empirical type I errors were close to the nominal α = 0.05. In contrast,

estimates of δ̂MMW exhibited high bias in estimating δ. The asymptotic standard

errors of the causal estimators were nearly identical to their empirical counter-

parts. The DR estimator δ̂DR had the smaller standard errors across all sample

sizes, except for n = 50 in which case the asymptotic standard error of δ̂DR was

slightly larger, demonstrating the higher efficiency of δ̂DR over δ̂IPW and δ̂MSI .

To demonstrate the doubly robust properties of δ̂DR, we mis-specified π (wi;η)

as a constant π (wi;η) = expit(η0) for the IPW component or mis-specified g (wi,γ)

as a constant g (wi,γ) = Φ(γ0) for the MSI component. Let δ̂IPW
DR (δ̂MSI

DR ) denote

the resulting DR estimator with the IPW (MSI) component specified correctly.

Shown in Table 3.3 are the estimated θ for the FRM models for the DR estimator

for the two scenarios, along with asymptotic and empirical standard errors for

different sample sizes under 1,000 Monte Carlo samples. Both DR estimates were

close to the true δ = 0.5 across all sample sizes. The empirical type I errors were

close to the nominal level α = 0.05, albeit exhibiting small upward bias for n = 50.

Table 3.3 also includes estimates from δ̂IPW under mis-specified propensity score

and δ̂MSI under mis-specified outcome model for n = 400 (large sample size used to

reduce sampling variability). As expected, both δ̂IPW and δ̂MSI showed significant

amount of bias.

3.5.2 Data Application

We use data from Reach for Health (RFH) Study, a randomized control weight-

loss trial to improve physical activities for non-diabetic breast cancer survivors con-

ducted at the University of California San Diego, to illustrate how the proposed

approach may be used to address outliers in real studies. By using a randomized

control trial to create confounders, we can see how the proposed approach ad-
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Table 3.2: Comparison of estimates of δ and standard errors (asymptotic vs. em-
pirical) between FRM and traditional MWW approaches for the Simulation Study.
For Double Robust estimator, both IPW and MSI are correctly specified.

η0 η1 γ0 γ11 γ10 δ α

n = 50

δ̂DR
1.087

(0.678/0.746)

-1.071

(0.613/0.678)

0.093

(0.964/1.915)

-0.583

(0.825/1.285)

0.590

(1.127/1.943)

0.493

(0.085/0.080)
0.059

δ̂IPW
1.079

(0.679/0.737)

-1.068

(0.612/0.659)

0.513

(0.086/0.083)
0.055

δ̂MSI
0.101

(0.933/1.884)

-0.582

(0.792/1.117)

0.601

(1.084/1.896)

0.511

(0.084/0.083)
0.063

δ̂MWW
0.562

(0.080/0.110)
0.310

n = 200

δ̂DR
1.010

(0.327/0.334)

-1.009

(0.304/0.314)

0.045

(0.793/0.857)

-0.495

(0.596/0.624)

0.511

(0.741/0.830)

0.497

(0.040/0.040)
0.049

δ̂IPW
1.009

(0.328/0.335)

-1.006

(0.306/0.320)

0.502

(0.041/0.042)
0.048

δ̂MSI
0.046

(0.804/0.862)

-0.495

(0.607/0.648)

0.508

(0.744/0.842)

0.501

(0.041/0.041)
0.051

δ̂MWW
0.558

(0.041/0.040)
0.190

n = 400

δ̂DR
1.004

(0.238/0.248)

-1.007

(0.215/0.223)

0.041

(0.572/0.610)

-0.496

(0.485/0.505)

0.505

(0.559/0.564)

0.499

(0.037/0.037)
0.050

δ̂IPW
1.003

(0.238/0.250)

-1.007

(0.214/0.221)

0.501

(0.039/0.039)
0.050

δ̂MSI
0.039

(0.572/0.611)

-0.501

(0.488/0.512)

0.504

(0.560/0.565)

0.497

(0.038/0.039)
0.052

δ̂MWW
0.559

(0.037/0.038)
0.160

dresses confounding effects in the presence of outliers in real studies without being

confounded by hidden bias [45, 46].

The RFH study has four arms that included a total of 333 participants that

were overweight/obese (BMI≥ 25kg/m2) and diagnosed with stage 1, 2, or 3 breast

cancer within the past 10 years. The four-arms trial used a 2× 2 factorial design

with all participants randomly assigned to weight loss counseling vs. educational

materials and to Metformin vs. placebo, with all interventions conducted over 6

months [61].

For illustration purposes, we combine the two medication groups (Metformin

vs. placebo subjects) within each of the lifestyle intervention groups (weight loss

counseling vs. educational materials) to consider only the effects of the lifestyle

intervention. For the subjects included in this analysis, their demographics are

shown in Table 3.4. The weight loss counseling serves as the group that would re-
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Table 3.3: Comparison estimates and standard errors (asymptotic vs. empirical)
of doubly robust estimator with only one component correctly specified and IPW
(MSI) estimator with incorrectly specified propensity (imputation) function.

η0 η1 γ0 γ11 γ10 δ α

n = 50

δ̂IPW
DR

1.088

(0.698/0.787)

-1.112

(0.675/0.783)

3.148

(0.975/1.963)
- -

0.508

(0.091/0.089)
0.059

δ̂MSI
DR

-0.002

(0.286/0.295)
-

0.106

(0.981/1.924)

-0.580

(0.862/1.227)

0.573

(1.264/2.003)

0.509

(0.088/0.087)
0.064

n = 200

δ̂IPW
DR

1.009

(0.336/0.349)

-1.005

(0.322/0.339)

2.817

(0.815/1.052)
- -

0.502

(0.043/0.044)
0.049

δ̂MSI
DR

-0.005

(0.138/0.142)
-

0.047

(0.822/0.893)

-0.489

(0.646/0.703)

0.507

(0.881/0.972)

0.501

(0.042/0.043)
0.051

n = 400

δ̂IPW
DR

1.003

(0.241/0.253)

-1.006

(0.215/0.227)

2.309

(0.751/0.803)
- -

0.501

(0.040/0.041)
0.050

δ̂MSI
DR

-0.004

(0.100/0.100)
-

0.038

(0.575/0.614)

-0.501

(0.487/0.513)

0.505

(0.563/0.567)

0.497

(0.041/0.041)
0.051

δ̂MSI - -
2.311

(0.763/0.842)
- -

0.563

(0.041/0.043)
0.164

δ̂IPW
-0.003

(0.107/0.114)
- - - -

0.559

(0.041/0.042)
0.131

ceive lifestyle intervention consisting of 12 motivational interview calls from trained

lifestyle coaches, while the educational materials group was given the 2010 US

Dietary Guidelines. The general health score is derived from SF-36, which is a

self-report questionnaire, with total scores ranging from 0 to 100 and with higher

scores corresponding to better health [61, 62].

Assessments of behavioral outcomes were recorded on a daily basis. The pri-

mary interest was to compare subjects’ weighted summation of day-level Moderate

and Vigorous Physical Activity (MVPA) count between the weight loss counsel-

ing and educational materials group during the 6-month intervention period. For

each subject i, the weighted summation day-level MVPA count is calculated by∑
ijk I(Xijk ≥ 1952) × Xijk, where Xijk denotes the activity count for the kth

minute for subject i at day j and 1952 the threshold for counting as one minute

of MVPA.

A common and challenging issue with the activity data is extreme values

recorded by the device for subjects’ activity levels, as shown in Table 3.1. As

discussed in Section 3.1, the common approach of winsorizing outliers induces

subjective opinions and rank-based methods such as the MWWRST objectively

address this issue.

To use data from this RCT to illustrate the proposed approach for its ability to
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Table 3.4: Demographics characteristics by groups.

Intervention (N=166) Control (N=167)

mean (SD) mean (SD)

Age at Enrollment 62.7(7.07) 62.5(7.01)

Age at Diagnosis 60.1(7.08) 60.0(6.80)

Year from Diagnosis

to study enrollment 2.7(2.04) 2.5(1.79)

General Health (SF-36a) 73.6(18.54) 70.0(18.96)

BMI 29.1(5.12) 30.4(5.09)

N(%) N(%)

White 105 (81.4%) 118 (84.9%)

College Education or greater 65 (50.4%) 70 (50.4%)

High Blood Pressure 61 (47.3%) 67 (48.2%)

Received Chemotherapy 67 (51.9%) 73 (52.5%)

Received Radiation Therapy 95 (73.6%) 100 (71.9%)

Smoking Status

Never 66 (51.2%) 82 (59.0%)

Former 62 (48.1%) 55 (39.6%)

Current 1 (0.7%) 2 (1.4%)

Breast Cancer Stage

I 68 (52.7%) 64 (46.0%)

II 41 (31.8%) 49 (35.3%)

III 20 (15.5%) 26 (18.7%)

address confounding bias, we assumed a hypothetical scenario in which the study

intervention was not efficacious and the observed group activity difference was

the result of confounding bias in selecting subjects who were more (less) likely to

exercise for the intervention (control) group. We then selected four covariates, age

at diagnosis, BMI, high cholesterol (a binary with 0 indicating low and 1 indicating

high cholesterol) and general health score (higher indicating better health), as such

confounders. We assigned the lowest 166 values of age at diagnosis, BMI and high

cholesterol, and the highest 166 values of general health score to the intervention

group. The remaining 167 values of the four covariates were assigned to the control

group.

Shown in Table 3.5 are the means (percent) and standard deviations of the

three (one) continuous (binary) covariates. As expected, the intervention group

was healthier compared to the control group with respect to the four covariates, and

thus was more likely to exercise than the control group. Since we only changed val-

ues of the four covariates for the study subjects, the traditional MWWRST yielded

the same test statistic and p-value as shown in Table 3.1. But, the significant dif-

ference of activity level between the groups now was the result of confounding bias

due to the four covariates, rather than the intervention effect.

To address this bias, we applied the proposed doubly robust approach by mod-
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Table 3.5: Demographics characteristics by groups of imbalanced data.

Intervention (N=166) Control (N=167)

mean (SD) mean (SD)

Age at Diagnosis 54.3(3.18) 65.4(4.94)

General Health Score 87.3(8.48) 57.3(13.49)

BMI 25.8(1.70) 33.5(4.49)

N(%) N(%)

High Cholesterol 6 (4.7%) 131 (94.2%)

eling the effects of the confounders through the IPW and MSI components by

modeling the propensity score and outcome regression using the respective semi-

parametric GLM and FRM with the logit link. The estimate of δDR was 0.501 with

standard error = 0.043 and p-value = 0.973. Thus, the doubly robust estimator

successfully addressed the biasing effects of the four confounders and indicated

no treatment difference between the two groups of this hypothetical observational

study.

3.6 Discussion

In this paper, we developed a doubly robust estimator to address the limitations

of existing alternatives for more robust and reliable inference when applying the

MWWRST to observational study data. We investigated the performance of the

proposed method through both simulated and real data. The simulation study

results demonstrated good performances even for samples as small as 50 when one

of the propensity score and outcome regression model is correctly specified. The

results from the real weight-loss trial showed that in addition to the doubly robust

properties, the proposed estimator also effectively addressed outliers.

The proposed estimator is limited to cross-sectional study data. Work is cur-

rently underway to extend this approach to longitudinal cohort studies with missing

data to facilitate causal inference for more complex study data arising in biomed-

ical, clinical, epidemiological and psychosocial research.
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Chapter 4

Conclusions and Future Work

As a bio-statistician with formal training in statistics and computation, I seek

to develop practical and theoretically justified statistical methods, accompanied

by robust software implementations, for the analysis of datasets generated from

modern technologies, such as wearable devices.

Domain scientists are well aware of sources of identification and prior informa-

tion that should ’count’ as evidence in favor of their scientific hypothesis (or as

evidence against their null hypothesis). Yet, a scientist’s hands may be tied when

no existing statistical methods can rigorously account for information they believe

is relevant. As a bio-statistician, I seek to solve this conundrum by modeling the

scientist’s insight, formalizing inferential questions, and developing novel methods

that can answer these questions in both theory and practice. In the dissertation,

I am working towards this goal and trying to close the gap between the available

dense excessive mobile health data and appropriate statistical methods.

In chapter one, we took advantage of a randomized controlled trial (RCT)

of a 12-week physical activity intervention, trying to understand how emerging

intervention modalities can be used to help people increase their physical activity,

and reduce sedentary behaviors.

We used minute-level activity data collected from the Fitbit tracker, examined

patterns of activity level and Fitbit use for both intervention and follow-up period,

and compared patterns between the intervention and control groups, by using

Generalized Additive Mixed Model (GAMM) and Linear Mixed Effect Model. We

60



found that even though adherence to Fitbit use and physical activity level declined

after the 12-week intervention period, the group that received a more active in-

terventional strategy had a more stable trend and a higher level of adherence and

physical activity in the follow-up period. These insights may enhance our ability

to effectively utilize activity trackers to promote behavior change.

In chapter two, we tackled the problems that rise from measurement errors

contained in wearable device recordings. There is a vast literature proposing sta-

tistical methods for adjusting for measurement errors in self-reported behaviors,

such as in dietary intake. However, there is much less research on error correction

for sensor-based device measures, especially sedentary behavior. We addressed

this gap. Exploiting the excessive multiple-day assessments typically collected

when sensor devices are deployed, we proposed a two-stage linear mixed effect

model (LME) based approach to correct bias caused by measurement errors. We

provided theoretical proof of the debiasing process using the Best Linear Unbi-

ased Predictors (BLUP), and used both simulation and real data from a cohort

study to demonstrate the performance of the proposed approach while comparing

to the näıve plug-in approach that directly uses device measures without appro-

priately adjusting measurement errors. Our results indicate that employing our

easy-to-implement BLUP correction method can greatly reduce biases in disease

risk estimates and thus enhance the validity of study findings.

While the proposed LME-based structure models can correct the measurement

errors in the exposure, it is important to note that multiple replicates are needed

for the proposed method to be applicable. Since per best practices, health behavior

researchers already require and collect multiple repeated days of device wear, this

potential drawback, can be accommodated for sedentary behavior research, which

is the focus of our application. Importantly, the LME structures can be straight-

forwardly implemented in different settings through standard statistical software,

such as R and SAS, and generalized to other behaviors such as physical activity

or sleep research.

Overall, Our approach sets a rigorous foundation, there is undoubtedly scope

to expand and improve our methods. Although our data analysis study cohort was
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relatively complete, for future work, we are interested in expanding this work to

accommodate missingness mechanisms. Meanwhile, currently, we treat measures

within a short period of time (7 days) as replicates of each other, we also aim to

extend the current setting to longitudinal data with different cluster sizes.

In chapter three, we proposed a double robust estimator that extended the tra-

ditional Mann-Whitney-Wilcoxon MWW rank sum test (MWWRST) for obser-

vational studies for causal inference. The Mann-Whitney-Wilcoxon MWW rank

sum test (MWWRST) is widely used to compare two treatment groups in ran-

domized control trials when data distributions are highly skewed, especially in

the presence of outliers. However, the MWWRST generally yields invalid results

for causal inference when applied to observational study data. We addressed this

limitation by leveraging functional response models (FRM), a class of semipara-

metric regression models for between-subject attributes. As rank-based tests such

as the MWWRST are defined by between-subject attributes, the FRM provides a

native and effective paradigm to model such attributes to develop doubly robust

estimators. We demonstrated the performances of the proposed approach through

both simulated and real study data. The simulation study results demonstrated

good performances even for samples as small as 50 when one of the propensity

score and outcome regression model is correctly specified. The results from the

real weight-loss trial showed that in addition to the doubly robust properties, the

proposed estimator also effectively addressed outliers.

The proposed double robust estimator is limited to cross-sectional study data.

Work is currently underway to extend this approach to longitudinal cohort studies

with missing data to facilitate causal inference for more complex study data arising

in biomedical, clinical, epidemiological, and psychosocial research.
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Table A.1: Comparisons of estimates of βs under different methods (asymptotic
standard error/empirical standard errors) for continuous outcome simulation study
under different sample size and correlation structures.

ρ = 0.1 and ρxc = 0

β0 (10) βx (2.95) βc (3)

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

BLUP1

10.030

(0.650/ 0.665)

10.026

(0.329/ 0.332)

9.986

(0.204/ 0.226)

2.947

(0.114/ 0.115)

2.952

(0.058/ 0.058)

2.953

(0.036/ 0.039)

3.002

(0.227/ 0.223)

2.996

(0.114/ 0.105)

3.000

(0.070/ 0.064)

W1

10.539

(0.648/ 0.658)

10.641

(0.318/ 0.305)

10.592

(0.198/ 0.212)

2.837

(0.113/ 0.117)

2.828

(0.055/ 0.053)

2.834

(0.034/ 0.035)

3.001

(0.228/ 0.223)

2.996

(0.114/ 0.105)

3.000

(0.070/ 0.063)

BLUP2

9.974

(0.672/ 0.729)

9.981

(0.326/ 0.291)

10.031

(0.204/ 0.181)

2.953

(0.119/ 0.133)

2.956

(0.057/ 0.052)

2.944

(0.036/ 0.033)

3.002

(0.228/ 0.224)

2.998

(0.111/ 0.104)

2.998

(0.070/ 0.070)

W2

8.633

(0.533/ 0.571)

8.719

(0.257/ 0.207)

8.696

(0.161/ 0.146)

1.464

(0.043/ 0.043)

1.460

(0.021/ 0.018)

1.460

(0.013/ 0.012)

3.001

(0.172/ 0.173)

2.998

(0.084/ 0.080)

2.999

(0.053/ 0.047)

ρ = 0.3 and ρxc = 0

BLUP1

10.055

(0.741/ 0.823)

9.967

(0.360/ 0.364)

9.985

(0.228/ 0.241)

2.949

(0.130/ 0.139)

2.952

(0.063/ 0.068)

2.955

(0.040/ 0.042)

2.997

(0.254/ 0.237)

3.002

(0.123/ 0.124)

2.998

(0.077/ 0.078)

W1

10.905

(0.707/ 0.746)

10.816

(0.344/ 0.324)

10.809

(0.218/ 0.220)

2.778

(0.122/ 0.123)

2.782

(0.059/ 0.060)

2.784

(0.038/ 0.037)

2.996

(0.254/ 0.236)

3.003

(0.123/ 0.124)

2.998

(0.077/ 0.078)

BLUP2

9.980

(0.752/ 0.871)

9.974

(0.366/ 0.418)

9.994

(0.228/ 0.260)

2.951

(0.132/ 0.148)

2.955

(0.064/ 0.072)

2.955

(0.040/ 0.045)

2.999

(0.250/ 0.263)

2.997

(0.124/ 0.131)

2.998

(0.078/ 0.083)

W2

8.828

(0.554/ 0.553)

8.747

(0.269/ 0.327)

8.756

(0.169/ 0.182)

1.453

(0.045/ 0.044)

1.452

(0.022/ 0.027)

1.453

(0.014/ 0.015)

2.992

(0.182/ 0.166)

3.001

(0.088/ 0.093)

2.995

(0.055/ 0.058)

ρ = 0.1 and ρxc = 0.5

BLUP1

9.932

(0.619/ 0.686)

10.035

(0.305/ 0.302)

10.029

(0.193/ 0.210)

2.920

(0.132/ 0.150)

2.929

(0.065/ 0.066)

2.942

(0.041/ 0.043)

3.196

(0.259/ 0.296)

3.169

(0.127/ 0.139)

3.162

(0.080/ 0.079)

W1

10.564

(0.594/ 0.611)

10.648

(0.293/ 0.279)

10.637

(0.186/ 0.190)

2.793

(0.126/ 0.132)

2.787

(0.062/ 0.061)

2.790

(0.039/ 0.039)

3.196

(0.259/ 0.296)

3.169

(0.127/ 0.139)

3.162

(0.080/ 0.079)

BLUP2

9.951

(0.620/ 0.695)

10.013

(0.307/ 0.313)

10.027

(0.193/ 0.190)

2.935

(0.134/ 0.122)

2.937

(0.065/ 0.065)

2.944

(0.041/ 0.041)

3.138

(0.259/ 0.263)

3.155

(0.126/ 0.127)

3.158

(0.080/ 0.078)

W2

8.679

(0.496/ 0.459)

8.709

(0.245/ 0.235)

8.713

(0.154/ 0.151)

1.450

(0.048/ 0.045)

1.454

(0.024/ 0.023)

1.454

(0.015/ 0.015)

3.193

(0.196/ 0.215)

3.244

(0.096/ 0.099)

3.242

(0.060/ 0.060)

ρ = 0.3 and ρxc = 0.5

BLUP1

9.976

(0.705/ 0.730)

10.039

(0.337/ 0.351)

10.041

(0.214/ 0.238)

2.922

(0.149/ 0.148)

2.933

(0.072/ 0.075)

2.947

(0.045/ 0.051)

3.238

(0.288/ 0.281)

3.221

(0.140/ 0.144)

3.217

(0.088/ 0.087)

W1

10.870

(0.665/ 0.642)

10.864

(0.319/ 0.315)

10.875

(0.202/ 0.215)

2.725

(0.140/ 0.130)

2.732

(0.067/ 0.068)

2.731

(0.043/ 0.046)

3.238

(0.288/ 0.281)

3.221

(0.139/ 0.144)

3.217

(0.088/ 0.087)

BLUP2

9.989

(0.695/ 0.723)

10.045

(0.338/ 0.350)

10.053

(0.214/ 0.221)

2.931

(0.148/ 0.151)

2.939

(0.072/ 0.075)

2.951

(0.045/ 0.047)

3.213

(0.287/ 0.295)

3.228

(0.139/ 0.134)

3.219

(0.088/ 0.086)

W2

8.797

(0.529/ 0.521)

8.789

(0.257/ 0.256)

8.787

(0.162/ 0.164)

1.445

(0.051/ 0.052)

1.446

(0.025/ 0.025)

1.446

(0.016/ 0.016)

3.258

(0.207/ 0.208)

3.256

(0.101/ 0.104)

3.256

(0.063/ 0.066)
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Figure A.1: 95 % Confidence Interval Coverage Probability of estimated βx using
different methods for continuous outcome and binary outcome
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Table A.2: Comparisons of estimates of βs under different methods (asymptotic
standard error/empirical standard errors) for binary outcome simulation study
under different sample size and correlation structures.

ρ = 0.1 and ρxc = 0

β0 (0.1) βx (0.1) βc (0.1)

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

BLUP1

0.108

(0.350/ 0.349)

0.097

(0.260/ 0.274)

0.097

(0.120/ 0.117)

0.099

(0.190/ 0.183)

0.106

(0.160/ 0.167)

0.105

(0.074/ 0.071)

0.105

(0.212/ 0.225)

0.109

(0.147/ 0.150)

0.102

(0.068/ 0.063)

W1

0.083

(0.379/ 0.376)

0.113

(0.246/ 0.258)

0.112

(0.114/ 0.111)

0.124

(0.239/ 0.231)

0.090

(0.136/ 0.141)

0.089

(0.063/ 0.061)

0.105

(0.212/ 0.225)

0.109

(0.147/ 0.150)

0.102

(0.068/ 0.063)

BLUP2

0.109

(0.359/ 0.378)

0.098

(0.261/ 0.278)

0.096

(0.121/ 0.120)

0.103

(0.195/ 0.204)

0.104

(0.159/ 0.165)

0.101

(0.074/ 0.075)

0.105

(0.213/ 0.226)

0.108

(0.149/ 0.151)

0.102

(0.068/ 0.063)

W2

0.030

(0.420/ 0.426)

0.053

(0.297/ 0.315)

0.058

(0.138/ 0.139)

0.059

(0.101/ 0.103)

0.050

(0.072/ 0.071)

0.048

(0.033/ 0.034)

0.106

(0.212/ 0.225)

0.109

(0.147/ 0.149)

0.102

(0.068/ 0.063)

ρ = 0.3 and ρxc = 0

BLUP1

0.103

(0.378/ 0.402)

0.111

(0.262/ 0.278)

0.099

(0.164/ 0.162)

0.098

(0.238/ 0.263)

0.103

(0.164/ 0.180)

0.096

(0.102/ 0.102)

0.107

(0.213/ 0.222)

0.097

(0.147/ 0.149)

0.098

(0.092/ 0.092)

W1

0.120

(0.349/ 0.368)

0.131

(0.243/ 0.256)

0.118

(0.152/ 0.151)

0.071

(0.190/ 0.208)

0.083

(0.132/ 0.145)

0.077

(0.082/ 0.081)

0.107

(0.213/ 0.222)

0.097

(0.147/ 0.149)

0.098

(0.092/ 0.092)

BLUP2

0.104

(0.373/ 0.398)

0.094

(0.262/ 0.265)

0.102

(0.164/ 0.165)

0.093

(0.240/ 0.281)

0.103

(0.165/ 0.169)

0.103

(0.102/ 0.106)

0.107

(0.213/ 0.222)

0.097

(0.147/ 0.151)

0.098

(0.092/ 0.092)

W2

0.060

(0.425/ 0.452)

0.071

(0.295/ 0.308)

0.052

(0.185/ 0.186)

0.043

(0.103/ 0.133)

0.048

(0.071/ 0.074)

0.047

(0.044/ 0.045)

0.107

(0.213/ 0.223)

0.097

(0.147/ 0.149)

0.098

(0.092/ 0.092)

ρ = 0.1 and ρxc = 0.5

BLUP1

0.103

(0.316/ 0.329)

0.097

(0.229/ 0.230)

0.097

(0.143/ 0.146)

0.098

(0.262/ 0.274)

0.095

(0.180/ 0.181)

0.097

(0.112/ 0.115)

0.115

(0.239/ 0.240)

0.115

(0.165/ 0.173)

0.116

(0.104/ 0.110)

W1

0.088

(0.333/ 0.347)

0.112

(0.218/ 0.219)

0.088

(0.137/ 0.139)

0.083

(0.221/ 0.231)

0.081

(0.153/ 0.153)

0.082

(0.096/ 0.098)

0.115

(0.239/ 0.240)

0.115

(0.165/ 0.173)

0.116

(0.104/ 0.110)

BLUP2

0.102

(0.323/ 0.331)

0.099

(0.230/ 0.231)

0.095

(0.144/ 0.149)

0.101

(0.261/ 0.271)

0.096

(0.180/ 0.181)

0.101

(0.113/ 0.117)

0.115

(0.239/ 0.240)

0.115

(0.165/ 0.173)

0.116

(0.104/ 0.110)

W2

0.053

(0.380/ 0.390)

0.060

(0.263/ 0.266)

0.043

(0.164/ 0.164)

0.046

(0.119/ 0.118)

0.046

(0.083/ 0.083)

0.048

(0.052/ 0.052)

0.115

(0.243/ 0.244)

0.115

(0.168/ 0.175)

0.118

(0.105/ 0.113)

ρ = 0.3 and ρxc = 0.5

BLUP1

0.095

(0.318/ 0.351)

0.096

(0.232/ 0.236)

0.099

(0.145/ 0.153)

0.094

(0.266/ 0.284)

0.105

(0.184/ 0.185)

0.097

(0.115/ 0.118)

0.123

(0.237/ 0.254)

0.113

(0.164/ 0.164)

0.114

(0.103/ 0.106)

W1

0.079

(0.313/ 0.312)

0.113

(0.216/ 0.221)

0.109

(0.136/ 0.137)

0.085

(0.225/ 0.279)

0.084

(0.157/ 0.157)

0.078

(0.092/ 0.094)

0.123

(0.237/ 0.254)

0.113

(0.164/ 0.164)

0.114

(0.103/ 0.106)

BLUP2

0.097

(0.320/ 0.359)

0.098

(0.233/ 0.240)

0.096

(0.145/ 0.145)

0.102

(0.269/ 0.291)

0.103

(0.185/ 0.185)

0.095

(0.115/ 0.115)

0.123

(0.237/ 0.254)

0.113

(0.164/ 0.164)

0.115

(0.103/ 0.106)

W2

0.021

(0.372/ 0.377)

0.040

(0.261/ 0.266)

0.051

(0.163/ 0.164)

0.048

(0.118/ 0.118)

0.050

(0.082/ 0.083)

0.048

(0.051/ 0.051)

0.122

(0.243/ 0.259)

0.116

(0.167/ 0.170)

0.115

(0.105/ 0.109)
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Table A.3: Comparisons of relative bias and coverage probability for estimates of βs
under different methods for continuous outcome simulation study under different
sample size and correlation structures.

ρ = 0.1 and ρxc = 0

β0 βx βc

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

relative bias BLUP1 0.30% 0.26% 0.14% 0.10% 0.07% 0.10% 0.06% 0.13% 0

coverage BLUP1 89% 95% 97% 93% 95% 97% 96% 97% 99%

relative bias W1 5.39% 6.41% 5.92% 3.83% 4.14% 3.93% 0.03% 0.13% 0

coverage W1 85% 70% 11% 85% 60% 43% 95% 96% 99%

relative bias BLUP2 0.26% 0.19% 0.31% 0.10% 0.20% 0.20% 0.06% 0.06% 0.06%

coverage BLUP2 95% 94% 97% 94% 96% 96% 93% 97% 99%

relative bias W2 13.67% 12.81% 13.04% 50.37% 50.51% 50.51% 0.03% 0.06% 0.03%

coverage W2 25% 8% 0 0 0 0 97% 95% 99%

ρ = 0.3 and ρxc = 0

relative bias BLUP1 0.55% 0.33% 0.15% 0.03% 0.07% 0.17% 0.10% 0.06% 0.06%

coverage BLUP1 90% 97% 94% 95% 95% 97% 96% 97% 95%

relative bias W1 9.05% 8.16% 8.09% 5.83% 5.69% 5.63% 0.13% 0.10% 0.06%

coverage W1 80% 63% 18% 72% 51% 27% 95% 96% 94%

relative bias BLUP2 0.20% 0.26% 0.06% 0.03% 0.17% 0.17% 0.03% 0.10% 0.06%

coverage BLUP2 92% 94% 95% 96% 97% 95% 96% 97% 96%

relative bias W2 11.72% 12.53% 12.44% 50.75% 50.78% 50.75% 0.27% 0.03% 0.17%

coverage W2 39% 9% 0 0 0 0 93% 96% 98%

ρ = 0.1 and ρxc = 0.5

relative bias BLUP1 0.68% 0.35% 0.29% 1.02% 0.71% 0.27% 6.53% 5.63% 5.40%

coverage BLUP1 95% 93% 94% 93% 93% 95% 86% 85% 79%

relative bias W1 5.64% 6.48% 6.37% 5.32% 5.53% 5.42% 6.53% 5.63% 5.40%

coverage W1 74% 58% 29% 66% 46% 43% 83% 81% 77%

relative bias BLUP2 0.49% 0.13% 0.27% 0.51% 0.44% 0.20% 4.60% 5.17% 5.27%

coverage BLUP2 96% 94% 95% 95% 95% 95% 85% 84% 81%

relative bias W2 13.21% 12.91% 12.87% 50.85% 50.71% 50.71% 6.43% 8.13% 8.07%

coverage W2 20% 19% 0 0 0 0 88% 89% 80%

ρ = 0.3 and ρxc = 0.5

relative bias BLUP1 0.24% 0.39% 0.41% 0.95% 0.58% 0.44% 7.93% 7.37% 7.23%

coverage BLUP1 95% 94% 96% 95% 94% 96% 87% 83% 76%

relative bias W1 8.70% 8.64% 8.75% 7.63% 7.39% 7.42% 7.93% 7.37% 7.23%

coverage W1 69% 61% 31% 63% 50% 45% 86% 80% 76%

relative bias BLUP2 0.11% 0.45% 0.53% 0.64% 0.37% 0.31% 7.10% 7.60% 7.30%

coverage BLUP2 94% 93% 95% 96% 95% 97% 88% 82% 77%

relative bias W2 12.03% 12.11% 12.13% 51.02% 50.98% 50.98% 8.60% 8.53% 8.53%

coverage W2 27% 12% 0 0 0 0 90% 86% 78%
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Table A.4: Comparisons of relative bias and coverage probability for estimates of
βs under different methods for binary outcome simulation study under different
sample size and correlation structures.

ρ = 0.1 and ρxc = 0

β0 βx βc

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

relative bias BLUP1 7.81% 3.00% 3.23% 0.80% 5.69% 5.12% 5.36% 9.33% 1.97%

coverage BLUP1 96% 94% 96% 97% 95% 95% 95% 96% 96%

relative bias W1 17.36% 13.21% 12.40% 24.38% 10.15% 10.50% 5.36% 9.32% 1.97%

coverage W1 96% 94% 95% 97% 94% 96% 95% 95% 96%

relative bias BLUP2 9.00% 2.00% 4.00% 3.00% 4.00% 1.00% 5.36% 8.00% 1.97%

coverage BLUP2 95% 95% 96% 96% 95% 95% 95% 95% 96%

relative bias W2 70.41% 47.41% 41.88% 41.18% 49.85% 52.08% 6.07% 9.04% 2.00%

coverage W2 96% 94% 94% 95% 89% 67% 94% 95% 96%

ρ = 0.3 and ρxc = 0

relative bias BLUP1 3.11% 11.20% 0.87% 2.00% 2.53% 4.54% 7.23% 2.79% 2.30%

coverage BLUP1 95% 94% 95% 94% 94% 96% 96% 97% 96%

relative bias W1 20.10% 31.14% 17.76% 28.97% 17.38% 23.17% 7.26% 2.77% 2.30%

coverage W1 95% 94% 95% 93% 94% 95% 96% 97% 95%

relative bias BLUP2 4.00% 5.93% 1.80% 7.00% 2.54% 3.81% 7.23% 2.78% 2.30%

coverage BLUP2 95% 94% 95% 95% 95% 94% 96% 97% 96%

relative bias W2 39.59% 29.18% 47.61% 56.62% 52.39% 52.59% 6.80% 2.84% 2.40%

coverage W2 95% 94% 94% 89% 86% 77% 95% 97% 96%

ρ = 0.1 and ρxc = 0.5

relative bias BLUP1 3.19% 2.76% 2.58% 2.06% 4.63% 3.38% 15.11% 14.71% 16.25%

coverage BLUP1 94% 96% 95% 95% 95% 95% 96% 96% 94%

relative bias W1 12.48% 11.57% 12.37% 17.39% 18.89% 18.42% 15.11% 14.70% 16.26%

coverage W1 94% 95% 95% 94% 94% 94% 96% 95% 94%

relative bias BLUP2 2.11% 0.25% 4.86% 1.16% 4.26% 1.42% 15.11% 14.71% 16.25%

coverage BLUP2 95% 96% 95% 95% 96% 96% 96% 96% 94%

relative bias W2 47.11% 39.66% 57.32% 53.97% 54.10% 52.02% 9.50% 14.69% 18.13%

coverage W2 95% 95% 94% 93% 90% 82% 96% 96% 94%

ρ = 0.3 and ρxc = 0.5

relative bias BLUP1 5.06% 4.12% 1.07% 6.01% 4.95% 2.68% 22.76% 12.93% 14.07%

coverage BLUP1 96% 95% 95% 96% 96% 95% 96% 96% 96%

relative bias W1 20.62% 13.32% 8.57% 15.04% 15.55% 21.78% 22.81% 12.95% 14.06%

coverage W1 96% 95% 96% 95% 96% 94% 96% 96% 95%

relative bias BLUP2 3.19% 2.61% 3.87% 2.35% 3.93% 5.26% 22.76% 12.93% 14.92%

coverage BLUP2 96% 96% 96% 96% 96% 96% 96% 96% 96%

relative bias W2 78.74% 60.32% 48.57% 52.00% 50.26% 51.84% 22.43% 16.38% 15.08%

coverage W2 96% 95% 94% 94% 90% 81% 95% 95% 94%
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Appendix B

Proof of theorems in Chapter 3

1. Details of inferences in FRM equation (3.14)

It is readily checked Vi1 and Vi2 in (3.14) are as below:

Vi1 = V ar(fi1 | wi) =
1

4
[πi (1− πi) + πj (1− πj)]

Vi2 = V ar(fi2 | wi) =
1

4
[g (wi;γ) (1− g (wi;γ)) + g (wic ;γ) (1− g (wic ;γ))],

To simplify the evaluation of Vi3 in (3.14), let:

πi = πi(1− πj), πj = πj(1− πi)

ri = zi(1− zj), rj = zj(1− zi)

Given:

fi3 =
1

2
[
ri
πi

I(yi1 ≤ yj0) +

(
1− ri

πi

)
g (wi,γ) +

rj
πj

I(yj1 ≤ yi0) +

(
1− rj

πj

)
g (wic ,γ)],
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It follows from the iterated conditional expectation that:

Vi3 = V ar(fi3 | wi) = E[f 2
i3 | wi]− (E[fi3 | wi])

2

=
1

4
(E[

r2i
π2
i

(I(yi1 ≤ yj0)− g(wi, γ))
2|wi] + E[

r2j
π2
j

(I(yj1 ≤ yi0)− g(wic , γ))
2|wi])

=
1

4
E

[
r2i
π2
i

g (wi,γ) (1− g (wi,γ)) +
r2j
π2
j

g (wic ,γ) (1− g (wic ,γ)) |wi

]

=
1

4

[
1

πi(1− πj)
g (wi,γ) (1− g (wi,γ)) +

1

πj(1− πi)
g (wic ,γ) (1− g (wic ,γ))

]
.

2. Proof of Theorem 1.

Without loss of generality, consider the normalized quantity(
n
2

)−1
Un =

(
n
2

)−1∑
i∈Cn

2
DiV

−1
i Si and continue to denote the normalized quan-

tity as Un. By a Taylor series expansion, we have:

√
n
(
θ̂ − θ

)
=

(
− ∂

∂θ
Un

)−⊤

{
√
nUn −

(
∂

∂α
Un

)⊤√
n (α̂−α)}+ op (1) ,

where
∂

∂θ
Un = B⊤ + op (1) ,

∂

∂α
Un = op (1) ,

It follows from properties of multivariate U-statistics (Kowalski and Tu, 2007) that:

√
nUn =

√
n
2

n

n∑
i=1

E (Un,i | yi,xi) + op (1) =
√
n
2

n

n∑
i=1

vi + op (1) .

It follows that

√
n
(
θ̂ − θ

)
= −B−⊤

√
n

n

n∑
i=1

(2vi) + op (1) →d N (0,Σθ) .

,where Σθ is given in (3.17).
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