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Recent theoretical studies inspired by experiments on the Kitaev magnet α-RuCl3 highlight the nontrivial
impact of phonons on the thermal Hall conductivity of chiral topological phases. Here, we introduce mixed
mesoscopic-macroscopic devices that allow refined thermal-transport probes of non-Abelian spin liquids
with Ising topological order. These devices feature a quantum-coherent region with quantized or negligible
phonon conductance, flanked by macroscopic lobes that facilitate efficient thermalization between chiral
Majorana edge modes and bulk phonons. We show that our devices enable (i) accurate determination of the
quantized thermal Hall conductivity, (ii) identification of non-Abelian Ising anyons via the temperature
dependence of the thermal conductance, and, most interestingly, (iii) single-anyon detection through heat-
based anyon interferometry. Analogous results apply broadly to phonon-coupled chiral topological orders.

DOI: 10.1103/PhysRevX.12.011034 Subject Areas: Condensed Matter Physics

I. INTRODUCTION

Topologically ordered phases of matter possess a wide
range of exotic properties including long-range entangle-
ment, topological ground-state degeneracy, and anyonic
quasiparticle excitations. Perhaps most notably, the non-
trivial fusion and braiding rules of non-Abelian anyons
offer a route to intrinsically fault-tolerant quantum com-
putation [1,2]. Spin-orbit-coupled Mott insulators [3] have
recently generated a great deal of interest as potential
platforms to realize topologically ordered quantum spin
liquids (QSLs). This excitement was largely spurred by a
series of seminal works [4–6] that proposed an approximate
realization of Kitaev’s honeycomb model [7]—an exactly
solvable lattice model that captures both Abelian and non-
Abelian QSL phases—in insulating 4d and 5d honeycomb
magnets. Following these proposals, numerous honeycomb
materials have been put forward as candidate Kitaev spin
liquids [8–11]. Among these “Kitaev materials,” α-RuCl3
[12–20] displays particularly tantalizing behavior at low

temperatures: In-plane magnetic fields suppress zigzag spin
order [21–30], possibly giving way to the non-AbelianQSL
from the Kitaev honeycomb model [7]. Strikingly, recent
experiments [31–33] report a half-integer-quantized ther-
mal Hall conductivity at intermediate fields of approxi-
mately 10 T, which is consistent with the emergence of a
chiral Majorana edge mode [34] hosted by the non-Abelian
Kitaev spin liquid (see also Refs. [35,36] for related thermal
transport experiments).
In general, thermal transport is one of the most promising

experimental techniques for identifying topologically
ordered chiral QSLs. Contrary to conventional probes of
magnetic systems such as neutron scattering, quantized
responses in thermal transport directly reflect the universal
properties of a given topological order. For example, the
quantized thermal Hall conductivity [37] is proportional to
the edge theory’s chiral central charge [38]—fractional
values of which indicate non-Abelian topological orders.
Quantized thermal transport correspondingly plays an
analogous role to quantized electrical transport, which is
a fundamental signature of electronic topological orders
such as fractional quantum Hall states.
There is, however, a key conceptual difference between

thermal and electronic transport: The chiral edge modes of
QSLs are not the only heat carriers in the system. In fact,
for most realistic materials, the quantized thermal Hall
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conductivity resulting from the chiral edge modes, κxy, is
expected to be much smaller than the longitudinal thermal
conductivity due to bulk acoustic phonons, κxx. For
α-RuCl3, the ratio of the two conductivities has been
experimentally found [31–33] to be κxy=κxx ∼ 10−3 at the
relevant temperatures between 3 and 6 K. Given that bulk
phonons not only produce large κxx but also couple to the
chiral edge modes, one may naïvely expect that chiral edge
transport is sufficiently disturbed that quantized κxy is no
longer observable. Surprisingly, however, Refs. [39,40]
show that the experimentally measured thermal Hall
conductivity remains (approximately) quantized in the
conventional rectangular geometry [31–33], provided the
sample is sufficiently large that the edge can effectively
thermalize with the bulk. In fact, according to these works,
the observation of quantized thermal transport relies on a
sufficiently large edge-bulk coupling, as the thermal leads
and sensors are expected to couple predominantly to lattice
vibrations (i.e., bulk phonons) rather than the chiral
edge modes.
Another, more recent, thread of research is concerned

with employing anyonic edge interferometry to probe
topological orders in chiral QSLs. By utilizing point
contacts at which edge anyons may tunnel between
counterpropagating edges, this approach allows for a direct
observation of anyonic statistics as well as detection of
individual bulk anyons. For fractional quantum Hall states,
anyonic edge interferometry has an extensive theoretical
literature [41–49] and has been demonstrated in recent
electrical transport experiments [50–52]. Adapting electri-
cal anyon interferometry techniques to chiral QSLs, how-
ever, is nontrivial, because the edge and bulk anyons of
such insulating systems do not carry electric charge. During
the past year, alternative schemes have been proposed to
perform anyon interferometry in QSLs by exploiting
conversion between charged and neutral edge modes at a
superconducting interface [53] or by means of time-domain
measurements using ancillary spins [54] (see Refs. [55–57]
for other routes to detecting individual bulk anyons or
chiral edge modes in QSLs). Though the possibility of heat-
based anyon interferometry has also been noted [58],
practical implementation of the idea raises an important
conceptual challenge:Onemust reconcile anyon braiding by
edge tunneling—a process relying on phase coherence—
with conventional thermometry that requires large-scale
thermalization and couples principally to bulk phonons.
In this paper, we show that thermal transport is indeed a

feasible route to realizing anyonic edge interferometry in a
chiral QSL, as one can exploit edge-bulk thermalization
while also harvesting phase-coherent edge transport in a
single device. To this end, we consider the unconventional
device geometry shown in Fig. 1, which consists of a
mesoscopic central region flanked by two macroscopic
lobes. Crucially, phase-coherent edge tunneling processes
inside the mesoscopic region, where coupling to phonons

has a negligible effect by construction, directly influence
phonon thermodynamics in the macroscopic lobes. One can
thereby accurately extract universal characteristics of the
underlying QSL within the framework of currently avail-
able thermal transport experiments. In the simplest setup,
wherein the upper and lower edges of the mesoscopic
region decouple [Fig. 1(a)], our device enables refined
measurement of the chiral central charge that is manifest in
the dominant longitudinal thermal conductance rather than
a subdominant thermal Hall conductivity. Adding a single

FIG. 1. Device geometry for extracting universal characteristics
of the non-Abelian Kitaev spin liquid through conventional
thermal transport in the presence of phonons. Two macroscopic
lobes are bridged by a central mesoscopic region; heat current J
flows from the right lobe (heated at the outer edge to temperature
T þ δT) to the left lobe (cooled at the outer edge to T − δT). The
two lobes facilitate edge-phonon thermalization, while the central
region acts as a bottleneck for bulk phonon transport and, thus,
emphasizes chiral edge transport. The central region contains
(a) zero, (b) one, or (c) two pinch points at which the edge
separation becomes comparable to the bulk correlation length—
allowing edge anyons to tunnel between the two chiral edge
modes. These tunneling processes can be detected by measuring
the longitudinal thermal conductance κ of the device, directly
obtained as the ratio of the heat current J and the temperature
difference 2δT between the hot and the cold leads. If the phonon
thermal conductance of the central region is sufficiently small,
this measurement reveals the following universal spin liquid
characteristics. (a) In the absence of any pinch points, the thermal
conductance κ is directly proportional to the chiral central charge
c ¼ 1

2
, whose half-integer value readily confirms the presence of

non-Abelian anyons. (b) For a single pinch point, the dominant
low-temperature correction to the thermal conductance, Δκ,
follows a nontrivial power law with universal exponent 7=4 as
a function of the temperature T, which reflects the tunneling of
non-Abelian Ising anyons. (c) For two pinch points, the correc-
tion Δκ acquires an interference term fðnψ ; nσÞ that is sensitive to
the number of fermions (nψ ) and Ising anyons (nσ) between the
two pinch points and thereby enables detection of individual bulk
anyons.
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constriction in the mesoscopic region [Fig. 1(b)] allows
energy to backscatter between the upper and lower edges
via anyon tunneling; remarkably, the temperature depend-
ence of the resulting backscattered heat current reveals
fingerprints of the anyonic quasiparticles hosted by the
QSL. Finally, and most interestingly, adding a second
constriction [Fig. 1(c)] defines an experimentally viable
thermal anyon interferometer that solves the conceptual
challenge noted above: Individual anyons localized in the
central region can be sensitively detected, together with
their braiding statistics, by measuring the thermal conduct-
ance of the device or the phonon temperature profile within
either lobe. For concreteness, we focus on the non-Abelian
Kitaev spin liquid [7]; the universal characteristics acces-
sible by measuring the thermal conductance are then shown
in Fig. 1. We also emphasize, however, that much of our
results apply broadly to phonon-coupled chiral topological
orders.
The rest of this paper is organized as follows. In Sec. II,

we study large-scale thermal transport in the device
geometry in Fig. 1 and demonstrate how macroscopic
temperatures and heat currents within the two lobes reflect
mesoscopic edge processes in the central region. In the
framework of this calculation, the edge processes are
accounted for by a single dimensionless parameter β. In
Sec. III, we concentrate on the edge processes themselves
in the presence of one [Fig. 1(b)] or two [Fig. 1(c)] point
contacts. While the introduction of a single pinch point is
sufficient to reveal Ising-anyon tunneling via a universal
temperature dependence of β, the double-pinch geometry
allows for interference effects to imprint signatures of
anyon braiding on the large-scale thermal transport. In
Sec. IV, we discuss the experimental conditions necessary
to observe the signatures we identify and the challenges one
might face in implementing the proposed thermal interfer-
ometry scheme. Finally, we close the paper with a brief
summary and outlook in Sec. V.

II. THERMAL TRANSPORT

We consider the low-temperature thermal transport of a
phonon-coupled chiral spin liquid in the device geometry in
Fig. 1. In this geometry, two large lobes of radius R are
connected by a narrow channel in a small central region of
radius r0 ≪ R (see Fig. 2). The narrow channel between the
two lobes features a pinch region with one [Fig. 2(a)] or two
[Fig. 2(b)] pinch points at which energy may tunnel
between the counterpropagating top and bottom edges of
the channel. We assume that each lobe is an annular section
with opening angle 2ϑ0, outer radius R, and inner radius r0.
While this assumption does not affect the main results of
our work, it considerably simplifies the solution of our
heat-transport equations.
Importantly, heat in our system is carried by two

disparate degrees of freedom: the chiral edge mode and
bulk acoustic phonons. Given that the thermal coupling

between these two degrees of freedom is expected to be
very small at low temperatures [39], we cannot assume that
they are in thermal equilibrium at any given position along
the edge of the system. Therefore, we consider two separate
temperatures, corresponding to the edge mode (Te) and the
bulk phonons (Tb).
Thermal transport can be set up by attaching the outer

edges of the right and left lobes to hot and cold leads,
respectively, and probed by measuring (i) temperatures
close to the central region (i.e., far from the leads) or (ii) the
total heat current between the two leads [59]. Importantly,
while the quantum effects of interest (see Fig. 1) rely on
thermal tunneling between otherwise isolated chiral edge
modes, the thermal leads and the temperature probes are
expected to couple to the bulk phonons instead. Thus, an
optimal detection of the quantum effects through thermal
transport requires significant edge-bulk thermalization in
the two lobes but negligible edge-bulk thermalization in the
central region. Since the thermalization between the edge
mode and the bulk phonons is known [39] to be significant

FIG. 2. Thermal transport within a phonon-coupled chiral spin
liquid in the device geometry of Fig. 1. All temperatures shown
here, including those of the hot and cold leads (�δT), are small
relative temperatures with respect to an average overall temper-
ature T0 that corresponds to T in Fig. 1. There are distinct relative
temperatures for the edge mode (Te) and the bulk phonons (Tb).
Each lobe is an annular section with opening angle 2ϑ0, outer
radius R, and inner radius r0. The central channel carries a bulk
heat current Jb driven by the different mean bulk temperatures T̄�

b

at its two ends, as well as chiral edge heat currents J�e determined
by the local edge temperatures T�

e . For each edge, the tunneling
heat current Jþ→−

e;tun associated with the pinch point(s) changes the
edge heat current from J�e;in to J

�
e;out ¼ J�e;in ∓ Jþ→−

e;tun . While these
notations are shown for the single-pinch case (a), they readily
generalize to the double-pinch case (b), where the tunneling heat
current Jþ→−

e;tun has contributions from both pinch points and is
sensitive to bulk anyons “a” in between them.
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at length scales exceeding a characteristic edge-bulk
thermalization length l, this scenario is realized if the
central region is mesoscopic, r0 ≪ l, while the two lobes
are macroscopic, R ≫ l.

A. Heat-transport equations

We now describe a general set of hydrodynamic equa-
tions governing the heat transport and the temperature
distribution of our phonon-coupled chiral spin liquid. For a
start, we assume that the system has an average overall
temperature T0 and that the temperatures T� shown in
Fig. 2 are small variations with respect to this overall
temperature. In this regime, we can readily linearize all of
our equations in the temperature variations T�. Also, we
can use the inversion symmetry around the center of the
system to establish the general relation T− ¼ −Tþ, where
Tþ
b;eðr;ϑÞ [T−

b;eðr; ϑÞ] correspond to the right (left) lobe,
while Tþ

e;in (T−
e;in) and Tþ

e;out (T
−
e;out) correspond to the top

(bottom) edges in the central region.
We first describe the macroscopic thermal transport in

the two lobes by employing the hydrodynamic equations
introduced in Ref. [39]. Inversion symmetry permits us to
focus on the right lobe alone. The bulk and edge temper-
atures Tb;eðr; ϑÞ≡ Tþ

b;eðr; ϑÞ are specified in polar coor-
dinates ðr;ϑÞ, with r0 < r < R and jϑj < ϑ0. Importantly,
the bulk temperature Tbðr; ϑÞ is defined within the entire
lobe, while the edge temperature Teðr; ϑÞ is defined only
along the edge. We note that similar hydrodynamic
equations are also considered in Ref. [40] but without
making a distinction between bulk and edge temperatures.
The thermal transport within the lobe comprises three

different kinds of thermal currents [39]. First, if we assume
that the acoustic phonons are diffusive, there is a bulk
heat-current density (heat current per unit length) propor-
tional to the negative gradient of the bulk temperature,
jb ¼ −κb∇Tb, where the coefficient κb ≡ κxx is the longi-
tudinal thermal conductivity due to the phonons [60].
Second, the chiral edge mode carries a counterclockwise
heat current Je ¼ ðπc=12ÞðT0 þ TeÞ2 [61] along the edge,
where c is the chiral central charge of the edge conformal
field theory (CFT). At linear order in the relative edge
temperature Te, this edge heat current is given by
Je ¼ J0 þ κeTe, where J0 ¼ πcT2

0=12 is a constant edge
current, while κe ¼ πcT0=6 is the quantized thermal Hall
conductivity [31–33] associated with the chiral edge mode
[62]. Third, there is a heat-current density (heat current per
unit length) from the bulk phonons to the edge mode,
which is driven by the temperature difference between
these two degrees of freedom. At linear order, this
exchange heat-current density must take the general form
jb→e ¼ λðTb − TeÞ, where λ is the linearized thermal
coupling between the edge and the bulk. Importantly, λ
is strongly suppressed at low temperatures and is argued in
Ref. [39] to vanish as λ ∝ T6.

The equations governing the temperatures are then
obtained by assuming a stationary state and imposing
the conservation of energy. First of all, the divergence of
the bulk heat-current density must vanish, ∇ · jb ¼ 0,
which translates into a Laplace equation for the bulk
temperature, ∇2Tb ¼ 0. Using polar coordinates, this
Laplace equation then takes the separable form

∂2Tbðr; ϑÞ
ð∂ ln rÞ2 þ ∂2Tbðr; ϑÞ

∂ϑ2 ¼ 0: ð1Þ

Next, along the upper and lower edges (ϑ ¼ �ϑ0), the
normal component of the bulk heat-current density must
match the exchange heat-current density, n̂⊥ · jb ¼ jb→e,
where n̂⊥ is the unit vector pointing in the “outward”
direction perpendicular to the edge. In polar coordinates,
the resulting equations can be written as

−
κb
r
∂Tbðr; ϑ ¼ �ϑ0Þ

∂ϑ ¼ �λ½Tbðr;�ϑ0Þ − Teðr;�ϑ0Þ�:
ð2Þ

In contrast, along the outer edge (r ¼ R), the presence of
the lead invalidates the above constraint and imposes a
fixed bulk temperature instead:

TbðR;ϑÞ ¼ δT: ð3Þ

Finally, along all three edges, the spatial variation of the
edge heat current must match the exchange heat-current
density, ∇kJe ¼ jb→e, where ∇k is the derivative along the
edge in the counterclockwise direction. In polar coordi-
nates, the resulting equations read

κe
R
∂TeðR;ϑÞ

∂ϑ ¼ λ½TbðR;ϑÞ − TeðR; ϑÞ�;

κe
∂Teðr;�ϑ0Þ

∂r ¼ ∓ λ½Tbðr;�ϑ0Þ − Teðr;�ϑ0Þ�: ð4Þ

Thus, the characteristic edge-bulk thermalization length
scale is found to be l ¼ κe=λ. We emphasize again that
Eqs. (1)–(4) are directly taken from Ref. [39] and adapted
to our unconventional device geometry.
We next describe the mesoscopic thermal transport

between the two lobes through the central region. Since
the edge-bulk thermalization is negligible in the narrow
channel, it is not necessary to describe the full spatial
dependence of the bulk temperature. Instead, we use a more
coarse-grained picture (see Fig. 2) and assume a general
phenomenological relation Jb ¼ κcðT̄þ

b − T̄−
b Þ, where Jb is

the bulk heat current, carried by the phonons, through the
narrow channel, T̄þ

b (T̄−
b ) is the mean bulk temperature at

the right (left) end of the channel, and κc is the thermal
conductance [63] of the channel. Importantly, this relation
does not assume that the phonons are diffusive in the
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central region. We note, however, that, in the specific case
of diffusive phonons, the channel conductance is expected
to be κc ∼ κbW=L, where W and L are the width and the
length of the channel, respectively. If the channel is narrow
enough (W ≪ L), the conductance κc is then much smaller
than the conductivity κb.
Matching the bulk heat currents and the bulk temper-

atures between the two lobes and the narrow channel, we
then immediately find Jb ¼∓ r0

Rþϑ0
−ϑ0 dϑr̂ · j�b ðr0; ϑÞ and

T̄�
b ¼ ð2ϑ0Þ−1

Rþϑ0
−ϑ0 dϑT�

b ðr0; ϑÞ, where r̂ is the radial unit
vector. Thus, the relation between the heat current and the
mean temperature difference becomes

κbr0

Z þϑ0

−ϑ0
dϑ

∂T�
b ðr ¼ r0; ϑÞ

∂r
¼ � κc

2ϑ0

Z þϑ0

−ϑ0
dϑ½Tþ

b ðr0; ϑÞ − T−
b ðr0; ϑÞ�:

However, this relation is too coarse grained and does not
enable a unique solution for Eqs. (1)–(4). Therefore, we
generalize this relation by imposing it on the integrands
themselves rather than the integrals. Using the inversion
symmetry of the system and remembering the notation
Tbðr; ϑÞ≡ Tþ

b ðr; ϑÞ ¼ −T−
b ðr; ϑÞ, the equation governing

the bulk temperature along the interface (r ¼ r0) of each
lobe and the central region is then

∂Tbðr ¼ r0; ϑÞ
∂ ln r ¼ αTbðr0; ϑÞ; ð5Þ

where α ¼ κc=ðκbϑ0Þ is a dimensionless ratio of the
channel conductance to the lobe conductance. We empha-
size that this generalized relation is equivalent to the
original coarse-grained one if the temperature variations
are sufficiently small along the interface (which is expected
for small enough r0 and/or ϑ0).
Because of the negligible edge-bulk thermalization in the

central region, the edge temperatures along the narrow
channel can change only as a result of thermal tunneling
between the counterpropagating top and bottom edges at
the pinch points. Thus, if we consider the entire pinch
region with one or two pinch points (see Fig. 2) as a single
unit, the only relevant edge temperatures and heat currents
are the incoming (T�

e;in and J�e;in) and the outgoing (T�
e;out

and J�e;out) ones [64]. Given that there is no quantum
coherence between the two incoming edges, we assume
that, for each edge, the tunneling heat current to the other
edge, Je;tunðTÞ, is fully determined by the absolute
incoming temperature T ¼ T0 þ Te;in of the given edge.
At linear order in the relative temperatures T�

e;in, the net
tunneling current from the top edge to the bottom edge
(see Fig. 2) is then Jþ→−

e;tun ¼ κe;tun½Tþ
e;in − T−

e;in�, where
κe;tun ¼ ðdJe;tun=dTÞjT¼T0

is a tunneling thermal conduct-
ance [63]. Since the incoming and outgoing heat currents

are related to each other as J�e;out ¼ J�e;in ∓ Jþ→−
e;tun and to

the incoming and outgoing temperatures according to
J�e;in ¼ J0þ κeT�

e;in and J�e;out ¼ J0 þ κeT�
e;out, respectively,

the incoming and outgoing temperatures are related by

T�
e;out ¼ T�

e;in ∓ β½Tþ
e;in − T−

e;in�;

where β ¼ κe;tun=κe is a dimensionless parameter satisfy-
ing 0 < β < 1. Physically, β is the fraction of excess
energy in the hotter edge that tunnels to the colder edge in
the entire pinch region. As we explore in Sec. III, this
quantity depends on the number of pinch points in the
pinch region and, if there are two pinch points, on the total
anyon content in between them (see Fig. 2). Finally, with
the identifications T�

e;in ¼ T�
e ðr0; ϑ0Þ≡�Teðr0; ϑ0Þ and

T�
e;out ¼ T∓

e ðr0;−ϑ0Þ≡ ∓ Teðr0;−ϑ0Þ, the equation gov-
erning the edge temperatures at the interface (r ¼ r0) of
each lobe and the central region reads

Teðr0;−ϑ0Þ ¼ ð2β − 1ÞTeðr0; ϑ0Þ: ð6Þ

Importantly, Eqs. (5) and (6) are exclusively for the bulk
and edge temperatures of a single lobe, and they are
affected by the rest of the system only through the
parameters α and β. Together with Eqs. (1)–(4), they
uniquely determine the temperature profile of the
given lobe.

B. Perturbative solution

Now we solve Eqs. (1)–(6) for the temperature profile of
each lobe by employing the perturbative approach intro-
duced in Ref. [39]. As we later find, this perturbative
approach is convergent in our device geometry whenever
κe ≪ κbϑ0. To start with, we write the bulk and edge

temperatures in series expansions as Tb;e ¼
P∞

n¼0 T
ðnÞ
b;e,

where Tð0Þ
b;e are the unperturbed solutions in the absence of

edge-bulk coupling (λ ¼ 0), while TðnÞ
b;e with n > 0 are

perturbative corrections due to finite λ. The unperturbed
solutions are given by

Tð0Þ
b ðr; ϑÞ ¼ δT½1þ α lnðr=r0Þ�

1þ α lnðR=r0Þ
;

Tð0Þ
e ðr; ϑÞ ¼ 0; ð7Þ

where the edge temperature vanishes because the hot and
cold leads are assumed to couple exclusively to the bulk
phonons. The perturbative corrections are then found by
means of an iterative procedure. For each iteration step
n > 0, we first obtain the edge temperature by solving the
ordinary differential equations [see Eq. (4)]
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∂TðnÞ
e ðR;ϑÞ
∂ϑ ¼R

l
½Tðn−1Þ

b ðR;ϑÞ−TðnÞ
e ðR;ϑÞ�;

∂TðnÞ
e ðr;�ϑ0Þ

∂r ¼∓ 1

l
½Tðn−1Þ

b ðr;�ϑ0Þ−TðnÞ
e ðr;�ϑ0Þ�; ð8Þ

together with the boundary condition [see Eq. (6)]

TðnÞ
e ðr0;−ϑ0Þ ¼ ð2β − 1ÞTðnÞ

e ðr0; ϑ0Þ: ð9Þ

Next, we find the bulk temperature by solving Laplace’s
equation within the lobe [see Eq. (1)]:

∂2TðnÞ
b ðr; ϑÞ

ð∂ ln rÞ2 þ ∂2TðnÞ
b ðr;ϑÞ
∂ϑ2 ¼ 0; ð10Þ

together with Neumann boundary conditions along the
upper and lower edges at ϑ ¼ �ϑ0 [see Eq. (2)]:

∂TðnÞ
b ðr;ϑ ¼ �ϑ0Þ

∂ϑ
¼∓ λr

κb
½Tðn−1Þ

b ðr;�ϑ0Þ − TðnÞ
e ðr;�ϑ0Þ�; ð11Þ

Dirichlet boundary conditions along the outer edge at r ¼
R [see Eq. (3)]:

TðnÞ
b ðR;ϑÞ ¼ 0; ð12Þ

and homogeneous boundary conditions along the interface
with the central region at r ¼ r0 [see Eq. (5)]:

∂TðnÞ
b ðr ¼ r0; ϑÞ
∂ ln r ¼ αTðnÞ

b ðr0; ϑÞ: ð13Þ

The iterative procedure is convergent if the perturbative

corrections TðnÞ
b;e are progressively smaller.

To understand how the thermal transport may be
sensitive to edge tunneling processes in the central region,
we seek the β-dependent components of the leading-order

corrections Tð1Þ
b;e to the bulk and edge temperatures. For

simplicity, we assume that the characteristic edge-bulk
thermalization length l ¼ κe=λ is much larger than the
central region, l ≫ r0, but much smaller than the
lobe width l ≪ Rϑ0 ≲ R. In this regime, the edge temper-
ature fully thermalizes to δT along the outer edge of the
lobe but retains a dependence on β close to the central
region. By solving Eqs. (8) and (9) with n ¼ 1 (see the
Appendix A), the edge temperatures along the upper

and lower edges take the forms Tð1Þ
e ðr; ϑ0Þ ¼ T̃ð1Þ

e ðr;ϑ0Þ
and Tð1Þ

e ðr;−ϑ0Þ ¼ T̃ð1Þ
e ðr;−ϑ0Þ þ βT̂ð1Þ

e ðr;−ϑ0Þ, where

T̃ð1Þ
e ðr;�ϑ0Þ are independent of β, while

T̂ð1Þ
e ðr;−ϑ0Þ ¼

2δTf1þ α½lnðl=r0Þ − γ�ge−r=l
1þ α lnðR=r0Þ

ð14Þ

with γ ≈ 0.577 the Euler-Mascheroni constant. The sol-
ution of Eqs. (10)–(13) for the bulk temperature can then

be written as Tð1Þ
b ðr; ϑÞ ¼ T̃ð1Þ

b ðr; ϑÞ þ βT̂ð1Þ
b ðr; ϑÞ, where

T̃ð1Þ
b ðr;ϑÞ and T̂ð1Þ

b ðr; ϑÞ are independent of β. Assuming
that the temperature probe couples to the bulk phonons,
the sensitivity of a local temperature measurement to
tunneling processes in the central region is characterized

by T̂ð1Þ
b ðr; ϑÞ ¼ ∂Tð1Þ

b ðr; ϑÞ=∂β. For simplicity, we focus
on the angular average of this temperature sensitivity,

hT̂ð1Þ
b ðrÞi≡ ð2ϑ0Þ−1

Rþϑ0
−ϑ0 dϑT̂ð1Þ

b ðr; ϑÞ, which provides a
lower bound on the maximal temperature sensitivity at
a given radius r within the lobe. In Appendix A, we solve
Eqs. (10)–(13) with n ¼ 1 to derive approximate expres-
sions for this average temperature sensitivity in the limits
of large and small α ¼ κc=ðκbϑ0Þ:

hT̂ð1Þ
b ðrÞi ¼ ∂hTð1Þ

b ðrÞi
∂β ≈

8>>><
>>>:

2

π2
½lnðl=r0Þ − γ� κeδT

κbϑ0
sin

�
π lnðR=lÞ
lnðR=r0Þ

�
sin

�
π lnðR=rÞ
lnðR=r0Þ

�
ðα ≫ 1Þ;

8 lnðR=r0Þ
π2

κeδT
κbϑ0

sin

�
π lnðR=lÞ
2 lnðR=r0Þ

�
sin

�
π lnðR=rÞ
2 lnðR=r0Þ

�
ðα ≪ 1Þ:

ð15Þ

From the dependence of hT̂ð1Þ
b ðrÞi on the radius r, we

conclude that the temperature sensitivity is maximized at
r ∼

ffiffiffiffiffiffiffiffi
Rr0

p
for α ≫ 1 and at r ∼ r0 for α ≪ 1. In both limits,

the maximal temperature sensitivity is on the order of
κeδT=ðκbϑ0Þ. This result shows that the iterative procedure
is convergent for κe ≪ κbϑ0 and that, given fixed κe and κb,
the temperature sensitivity is significantly enhanced for

ϑ0 ≪ 1. In this limit, the angular average hT̂ð1Þ
b ðrÞi also

provides an accurate lower boundon themaximal temperature
sensitivity (corresponding to ϑ ¼ −ϑ0) at the given radius r.
Thus, we find that, by appropriately tailoring the geometry of
the sample, one may significantly enhance the visibility of
corrections to the thermal transport which are, in turn,
sensitive to edge tunneling processes in the central region.
In addition to local temperature measurements, these

edge tunneling processes can also be detected by measuring
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the total heat current between the hot and the cold
leads [59]. Evaluating this heat current at the interface
of the right lobe and the central region, it is given by
J ¼ κe½Tþ

e;in − T−
e;out� þ Jb, where the two terms correspond

to the edges and the bulk of the narrow channel (see Fig. 2),
respectively. In terms of the bulk and edge temperatures
Tb;e of the lobe at the interface, the total heat current then
becomes

J ¼ κe½Teðr0; ϑ0Þ − Teðr0;−ϑ0Þ� þ 2κchTbðr0Þi: ð16Þ

Finally, up to the leading-order perturbative corrections

Tð1Þ
b;e, the sensitivity of the heat current to tunneling

processes in the central region is

∂J
∂β ¼ −κeT̂

ð1Þ
e ðr0;−ϑ0Þ þ 2κchT̂ð1Þ

b ðr0Þi: ð17Þ

For α ≪ 1, the first term, from Eq. (14), is approximately
−2κeδT, while the second term, according to Eq. (15), is
positive and on the order of ακeδT ≪ κeδT. Therefore, we
obtain that the heat-current sensitivity in this limit is
∂J=∂β ≈ −2κeδT. Approaching α ∼ 1, the negative first
term slightly decreases in magnitude, while the positive
second term increases to the same order of magnitude
(κeδT) as the first term. Given that ∂J=∂β must be negative
on physical grounds (since stronger tunneling means
smaller energy transfer between the two lobes), we then
deduce that the heat-current sensitivity must be suppressed
for α ≫ 1, even though the approximate expression for

hT̂ð1Þ
b ðr0Þi in Eq. (15) is not accurate enough (simply zero)

in this limit. We emphasize that this result is further
confirmed by the simple heat-resistor picture introduced
in the next subsection.

C. Heat-resistor picture

To understand the thermal transport in a less rigorous but
more intuitive manner, we now consider the effective heat-
resistor network shown in Fig. 3(a). Each heat resistor
represents a heat-carrying component of our phonon-
coupled chiral spin liquid and is analogous to an electrical

resistor. In this analogy, temperature (heat current) then
corresponds to voltage (electrical current). We note that the
simple heat-resistor picture is complementary to the per-
turbative approach in the previous subsection and, as a
result of its one-dimensional nature, is expected to be most
reliable for ϑ0 ≪ 1.
The heat-resistor network in Fig. 3(a) accounts for the

entire system between the hot and cold leads. In terms of
bulk phonon transport, the heat resistance of the central
region is κ−1c , while each section of either lobe between
radii r1 and r2 > r1 corresponds to heat resistance

ρðr1; r2Þ ¼
Z

r2

r1

dr
2κbrϑ0

¼ lnðr2=r1Þ
2κbϑ0

: ð18Þ

For radii r > l in either lobe, the edge mode thermalizes
well with the bulk phonons, and, assuming κe ≲ κbϑ0, its
effect on the thermal transport can be neglected. In contrast,
within the central region and for radii r < l in either lobe,
the edge modes are thermally decoupled from the bulk
phonons. Therefore, they facilitate direct thermal coupling
between radius r ¼ l in the right lobe and radius r ¼ l in
the left lobe. If the corresponding temperatures in the two
respective lobes are T�ðlÞ, the top and bottom edges (see
Fig. 2) then carry a net heat current Jþe;in − J−e;out ¼ ð1 −
βÞκe½TþðlÞ − T−ðlÞ� from the right lobe to the left lobe.
Hence, the two edges can be represented with an effective
heat resistance ½ð1 − βÞκe�−1 between radii r ¼ l in the
two lobes.
To analyze the heat-resistor network in Fig. 3(a), we first

exploit the inversion symmetry around the center of the
system to obtain the reduced heat-resistor network in
Fig. 3(b). This network contains only the right half of
the system between the right lead fixed at temperature δT
and the center fixed at temperature 0. It is then clear that the
temperature most sensitive to the tunneling parameter β is
TðlÞ at radius r ¼ l within the lobe. From Fig. 3(b), this
temperature is given by

TðlÞ ¼ δT½ρðl; RÞ�−1
2ð1 − βÞκe þ ½ρðlÞ�−1 þ ½ρðl; RÞ�−1 ; ð19Þ

FIG. 3. (a) Effective heat-resistor network of the phonon-coupled chiral spin liquid. Each resistor represents a heat-carrying
component of the system, with the resistors in the upper (lower) row accounting for the edge mode (bulk phonons). The right and left
leads are fixed at temperatures δT and −δT, respectively. (b) Reduced heat-resistor network representing the right half of the system. The
right lead is fixed at temperature δT, while the center of the system is fixed at temperature 0.
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while the corresponding temperature sensitivity becomes

∂TðlÞ
∂β ¼ 2κeδT½ρðl; RÞ�−1

f2ð1 − βÞκe þ ½ρðlÞ�−1 þ ½ρðl; RÞ�−1g2 ; ð20Þ

where ρðlÞ ¼ ð2κcÞ−1 þ ρðr0;lÞ. Taking κe ≪ κbϑ0,
which corresponds to the perturbative approach in the
previous subsection, the temperature sensitivities for large
and small α ¼ κc=ðκbϑ0Þ are then found to be

∂TðlÞ
∂β ≈

8>><
>>:

κeδT lnðR=lÞ½lnðl=r0Þ�2
κbϑ0½lnðR=r0Þ�2

ðα ≫ 1Þ;

κeδT lnðR=lÞ
κbϑ0

ðα ≪ 1Þ:
ð21Þ

Remarkably, Eqs. (15) and (21), obtained from the pertur-
bative approach and the heat-resistor picture, respectively,
give the same order of magnitude [κeδT=ðκbϑ0Þ] for the
temperature sensitivity and the same qualitative depend-
ence on the edge-bulk thermalization length l. In particu-
lar, ∂TðlÞ=∂β vanishes for both l → R and l → r0 in the
α ≫ 1 limit, whereas it vanishes for l → R but is maximal
for l → r0 in the α ≪ 1 limit. By analyzing the general
result in Eq. (20), we can further deduce that the temper-
ature sensitivity is maximized if ½ρðlÞ�−1 is very small
while ½ρðl; RÞ�−1 is similar to κe, which translates into
κc ≪ κe ∼ κbϑ0. In this case, the temperature sensitivity
reaches the largest order of magnitude that is theoretically
possible: ∂TðlÞ=∂β ∼ δT.
The heat-resistor network in Fig. 3(b) can also be used to

compute the total heat current leaving the right lead:
J ¼ ½ρðl; RÞ�−1½TðRÞ − TðlÞ�. The sensitivity of the heat
current to the tunneling parameter β is then

∂J
∂β ¼ −½ρðl; RÞ�−1 ∂TðlÞ∂β ; ð22Þ

and, in the limit of κe ≪ κbϑ0, we readily obtain

∂J
∂β ≈

(
− 2κeδT½lnðl=r0Þ�2

½lnðR=r0Þ�2 ðα ≫ 1Þ;
−2κeδT ðα ≪ 1Þ:

ð23Þ

Once again, these results are consistent with those of the
perturbative approach. Also, from Eqs. (20) and (22), we
find that the magnitude of the heat-current sensitivity is
generally maximized when κe and ½ρðlÞ�−1 are both much
smaller than ½ρðl; RÞ�−1, which precisely corresponds to the
second case of Eq. (23). In this limit characterized by κe ≪
κbϑ0 and κc ≪ κbϑ0, the heat current itself takes a simple
form: J ≈ 2δT½κc þ ð1 − βÞκe�. Therefore, if the thermal
conductance κc of the central region is known or negligibly
small, measuring the thermal conductance of the entire
device [κ ¼ J=ð2δTÞ] in the absence of any pinch points
(β ¼ 0) can be used to directly extract the edge thermal Hall

conductivity κe and, hence, the chiral central charge of the
corresponding edge CFT.

III. TUNNELING AT POINT CONTACTS

The temperature profiles calculated in the previous
section rely upon the parameter β describing the fraction
of energy that jumps across the point contacts in the narrow
central region. This quantity may be directly calculated by a
perturbative treatment of the quasiparticle tunneling proc-
esses that shuttle between the upper and lower edges. To
this end, we consider the specific case of the Ising
topological order realized in a non-Abelian Kitaev spin
liquid phase [7]. Here, the edge exhibits central charge c ¼
1=2 and hosts a single chiral Majorana fermion γðxÞ
governed by the Hamiltonian H0 ¼ −iv

R
x γ∂xγ, with v

the edge velocity (which we subsequently set to v ¼ 1 in
this section). The bulk supports three kinds of gapped
quasiparticles: trivial bosons (I), Majorana fermions (ψ),
and Ising anyons (σ). The latter two are mutual semions and
satisfy the nontrivial fusion rules σ × σ ¼ I þ ψ ,
σ × ψ ¼ σ, and ψ × ψ ¼ I.
Consider then introducing a pinch into the spin liquid

that brings opposing edges close to one another. At such a
point contact, both fermions and Ising anyons may tunnel
across, as captured by the perturbing Hamiltonian

Htun ¼ −itγγðxtopÞγðxbotÞ þ e−iπ=16tσσðxtopÞσðxbotÞ: ð24Þ

Here, xtop (xbot) is the coordinate of the pinch on the top
(bottom) edge—with x values increasing along the propa-
gation direction—and tγ (tσ) is the tunneling amplitude for
fermions (Ising anyons). The phenomenology of such
tunneling has been studied extensively [65–67], and one
may straightforwardly evaluate the resulting corrections to
thermal transport. In the interest of drawing a distinction
between signatures inherent to quasiparticle tunneling
versus those arising from quasiparticle braiding, we con-
sider both single-pinch and double-pinch geometries
(see Fig. 4).
Mirroring the analysis from Sec. II, we couple the spin

liquid to heating and cooling elements so as to establish a
temperature differential between the opposing ends. We
emphasize, however, that each heating or cooling element
in Fig. 4 corresponds to an entire lobe connected to the
central region (see Fig. 1) and accounts for the actual
thermal lead coupling to the bulk as well as the edge-bulk
thermalization. Thus, these effective heating and cooling
elements directly set the temperatures of the incoming
edges. We can further assume without loss of generality
that the hot end is held at temperature T while the cold end
is held at zero temperature. We may then neglect any heat
current originating from the bottom edge where it couples
to the cooling element.
Since we are interested in the fraction of energy that

continues through the central region, we may calculate the
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heat current along the top edge. Fourier transforming the
free Hamiltonian gives a linear spectrum εðkÞ ¼ k. The
heating element then excites momentum modes whose
population follows from the Fermi-Dirac distribution
nðk; TÞ ¼ ½eεðkÞ=T þ 1�−1. We assume that the heat current
is measured along the top edge shortly after the point
contact (see the probe marker in Fig. 4). The heat current
may be explicitly written as

IðTÞ ¼
Z

Λ

0

dk
2π

εðkÞnðk; TÞjAðkÞj2; ð25Þ

where Λ is a momentum cutoff and AðkÞ is the transmission
amplitude along the top edge. The linearized thermal
conductance of the edge is then given by κ ¼ ∂TIðTÞ.
Since we are dealing with the heat-current component that
continues along the top edge, this conductance corresponds
to κ ¼ κeð1 − βÞ in our earlier notation. Crucially, at the
level of our treatment, temperature appears in the expres-
sion for the current only via the Fermi-Dirac distribution.
That is, we consider only the zero-temperature correlators
within the c ¼ 1

2
CFT when evaluating jAðkÞj. A compa-

rable result for a finite-temperature edge can be found
in Ref. [68].
In the absence of any tunneling, jAðkÞj is, of course,

simply unity, and one readily recovers the quantized result
κ ¼ πT=12 (i.e., just κe). For finite tunneling amplitude
(tγ=σ ≠ 0), one anticipates that energy can escape to the
bottom edge, and so the heat current—and similarly
jAðkÞj—is reduced relative to the unperturbed case. As
we show, jAðkÞj then encodes both universal signatures of
the quasiparticles involved in tunneling as well as infor-
mation about the anyonic content of the bulk.

A. Single-pinch geometry

Consider first a geometry with a single pinch at which
quasiparticle tunneling may occur [Fig. 4(a)]. In this
case, it is convenient to define the coordinates so that
xtop ¼ xbot ¼ 0. This geometry involves no braiding of
edge excitations about bulk quasiparticles, so there are no
interferometric effects. Nonetheless, we may still glean
some signature of the flavors of quasiparticles by universal
corrections to the thermal transport.

1. Fermion tunneling

Fermion tunneling is a quadratic perturbation, so we may
treat its effects exactly by considering the Heisenberg
equations of motion for the fermion fields γtopðx; tÞ and
γbotðx; tÞ on the top and bottom edges, respectively:

i∂tγtopðx; tÞ ¼ −i∂xγtopðx; tÞ þ itγδðxÞγbotð0; tÞ;
i∂tγbotðx; tÞ ¼ −i∂xγbotðx; tÞ − itγδðxÞγtopð0; tÞ: ð26Þ

Integrating over an infinitesimal window enclosing x ¼ 0,
we find

γtopð0þÞ ¼ −
t2γ − 4

t2γ þ 4
γtopð0−Þ þ

4tγ
t2γ þ 4

γbotð0−Þ;

γbotð0þÞ ¼ −
4tγ

t2γ þ 4
γtopð0−Þ −

t2γ − 4

t2γ þ 4
γbotð0−Þ; ð27Þ

where x ¼ 0− (x ¼ 0þ) denotes the position immediately
before (after) the constriction and we suppress the time
dependence for compactness. These expressions encode the
reflection and transmission coefficients at the point contact
for a wave packet with components originating on either
the upper or lower edges. Let us focus on a plane wave with
momentum k that is incident on the constriction from the
top edge. The amplitude for transmission along the top
edge then satisfies

jAðkÞj2 ¼
���� t2γ − 4

t2γ þ 4

����2 ≈ 1 − t2γ : ð28Þ

Since the amplitude is momentum independent, the cor-
rected thermal conductance is simply rescaled downward:

κ ¼ κe

���� t2γ − 4

t2γ þ 4

����2 ≈ κeð1 − t2γÞ; ð29Þ

as one might expect from the fact that fermion tunneling
is a marginal perturbation. With just fermion tunneling,
one can continuously tune from perfect transmission
[jAðkÞj ¼ 1] to perfect reflection [jAðkÞj ¼ 0] at the point
contact by modulating the tunneling strength tγ . Since this
correction introduces no additional temperature depend-
ence to the edge conductance, it may not be a readily

(b)

(a)

FIG. 4. (a) Single-pinch and (b) double-pinch geometries for a
chiral spin liquid heated from the right and cooled from the left.
In the double-pinch geometry, we allow for a bulk quasiparticle of
type “a” inside the enclosed region. We imagine measuring the
heat current immediately after the pinch point(s), at the locations
marked with light gray arrows.
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distinguishable feature in noisy measurements when tγ is
perturbatively small. In the two-pinch interferometer geom-
etry examined later, however, fermion tunneling does
induce nontrivial corrections associated with braiding.

2. Ising-anyon tunneling

We now consider the more relevant tunneling process
that may take place at point contacts in this non-Abelian
spin liquid phase—Ising-anyon tunneling. For a geometry
as shown in Fig. 4(a), the upper and lower edges are treated
as independent chiral edges coupled only through the point
contact. This treatment allows all correlation functions to
be simplified by a cluster decomposition between the two
edges. Such a decomposition is equivalent to considering
the system as a single continuous edge but taking the limit
where the circumference between the upper and lower
edges is taken to infinity. This is essentially the scenario
one has in mind for a setup as in Fig. 1 where the lobes
adjacent to the central region are macroscopic (i.e., much
larger than the coherence and thermalization lengths).
If we measure the temperature on the upper edge shortly

after the point contact, then the relevant Green’s function in
the interaction picture takes the form

GðtÞ ¼ hγtopðδx; tÞγtopð−δx; 0Þi; ð30Þ

where δx > 0 is an arbitrary coordinate so that we are
considering fermions starting on the same side of the
pinches as the hot reservoir and ending on the side of
the cold reservoir. The transmission amplitude AðkÞ then is
related to this Green’s function in momentum space (see
Appendix B), and we thus seek the leading correction to the
Green’s function arising from the Ising-anyon tunneling
Hamiltonian.
At first order in Ising-anyon tunneling, one essentially

has to compute a correlator like hσibothγσγitop, where the
subscripts indicate that the correlators are evaluated on
the top or bottom edge. Both terms must vanish, since the
nontrivial primary fields exhibit vanishing ground-state
expectation values (e.g., h0jσj0i ¼ 0). Put simply, tunnel-
ing a single Ising anyon cannot move a fermion from the
top edge to the bottom edge and so cannot affect the heat
current along the edge.
The first nontrivial correction then comes at second order

in Ising-anyon tunneling:

∼
Z

ds1ds2hγtopðδx; tÞHσðs1ÞHσðs2Þγtopð−δx; 0Þi; ð31Þ

where implicitly one may employ a cluster decomposition.
Here, we adopt the shorthand HσðtÞ ¼ tσσtopð0; tÞσbotð0; tÞ
for the Ising-anyon tunneling Hamiltonian in the interaction
picture. As we show in Appendix B, the leading-order
correction to jAðkÞj2 due to Ising-anyon tunneling diverges
as t2σk−7=4 as k → 0. While the corresponding correction to

the heat current IðTÞ vanishes as T1=4, the correction to the
edge conductance (Δκ ∼ −t2σT−3=4) diverges at temperature
T ¼ 0. This divergence comports with the observation that
Ising-anyon tunneling is a relevant perturbation under
which the system flows to a split bar where all energy is
scattered to the bottom edge at the point contact.
In the interest of treating Ising-anyon tunneling pertur-

batively, we therefore assume that the temperature T is finite
and large enough that the correction to the edge conductance
remains small. The necessary temperature T may still be
small relative to other energy scales (e.g., the bulk gap), but
this assumption ensures that we are not operating the device
in the split bar regime. For the sake of notational brevity, we
define an effective renormalized Ising-anyon tunneling
strength t̃σ ∝ tσT−7=8, where the precise value of the
proportionality constant is given in Appendix B. In terms
of this effective tunneling amplitude, the correction to the
thermal conductance takes on the following simple form:

Δκ ¼ −κet̃2σ ∝ −κet2σT−7=4: ð32Þ

This−7=4 power law is discussed byNilsson andAkhmerov
[68] in the context of electrical conductance measurements
for a topological insulator in proximity with a supercon-
ductor. In both scenarios, this exponent comes from the
scaling dimension of the tunneling operator that corrects the
fermionic edge current. To the best of our knowledge, this
power law is not reproduced by other less exotic phenom-
enology and so provides a unique signature of fractional
quasiparticles tunneling at the point contact in a single-pinch
geometry.

B. Double-pinch geometry

We now turn our attention to the double-pinch geometry
depicted in Fig. 4(b). Here, second-order tunneling proc-
esses can transport an edge excitation all the way around
the enclosed (bulk) region by first tunneling to the bottom
edge via the left constriction and then back to the top edge
via the right constriction. Such processes not only change
the path length traversed by an excitation—which is
imprinted on the dynamical phase acquired—but also braid
the edge anyon around any quasiparticles residing in the
bulk. Interference between the different paths edge anyons
may take then depends on the braiding statistics with the
encircled bulk quasiparticles, in turn affecting the trans-
mission probability jAðkÞj2. This dependence opens the
door for using thermal transport measurements to detect
individual bulk quasiparticles.
Let x1 and x2 be the coordinates of the left and right

pinches, respectively, on the top edge. These pinch points
lie within the length L of the central channel and so have a
separation Δx ¼ x2 − x1 ≤ L. On the bottom edge, we
invert the coordinate system so that x1 and x2 are now
the coordinates of the right and left pinches, respectively.
The tunneling Hamiltonian then becomes
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Htun ¼ −itL;γγtopðx1Þγbotðx2Þ − itR;γγtopðx2Þγbotðx1Þ
þ e−iπ=16tL;σσtopðx1Þσbotðx2Þ
þ e−iπ=16tR;σσtopðx2Þσbotðx1Þ: ð33Þ

Under the assumption that tunneling at either contact has
comparable amplitude (tL ∼ tR), we seek corrections to the
thermal conductance at up to second order in tunneling,
which is sufficient to capture interference effects.

1. Fermion tunneling

At second order in fermion tunneling, we now anticipate
an order OðtL;γtR;γÞ correction that corresponds to a
fermion encircling the entire bulk region. Since fermions
and Ising anyons are mutual semions, such processes are
sensitive to the parity of the number of Ising anyons in the
bulk. That is, edge fermions that encircle nσ bulk Ising
anyons acquire a braiding phase ð−1Þnσ . Edge fermions
encircling either bulk bosons or bulk fermions, by contrast,
do not acquire any nontrivial braiding phases.
Let us then calculate the transmission amplitude in the

two-pinch geometry. Once again, fermion tunneling may be
treated exactly by considering the equations of motion

i∂tγtopðx; tÞ ¼ −i∂xγtopðx; tÞ þ itL;γδðx − x1Þγbotðx2; tÞ
þ itR;γδðx − x2Þγbotðx1; tÞ;

i∂tγbotðx; tÞ ¼ −i∂xγbotðx; tÞ − itL;γδðx − x2Þγtopðx1; tÞ
− itR;γδðx − x1Þγtopðx2; tÞ: ð34Þ

As before, we consider plane waves propagating
on the edge. Between the constrictions, the fermions
propagate freely, and so we may write γtop=botðx−2 ; tÞ ¼
eikΔxγtop=botðxþ1 ; tÞ for momentum k. Dropping the explicit
time dependence for simplicity, one finds

e−ikΔxγtopðxþ2 Þ
≈ γbotðx−1 ÞðeikΔx tL;γþe−ikΔx tR;γÞ

þ γtopðx−1 Þ
�
1−

t2L;γþ t2R;γ
2

− ð−1Þnσei2kΔx tR;γtL;γ

�
; ð35Þ

where we explicitly include the statistical braiding phase
anticipated for the OðtL;γtR;γÞ term. For a wave packet
incident along the upper edge, the transmission amplitude
follows as

jAðkÞj2 ≈ 1 − jtL;γ þ ð−1Þnσei2kΔx tR;γj2: ð36Þ

The crucial difference from the single-pinch geometry is
that the OðtL;γtR;γÞ braiding term carries a phase depend-
ence on both the bulk anyon content (nσ) as well as the
momentum k. The latter distinction imparts nontrivial
temperature dependence in the thermal transport. In

particular, the corrected thermal conductance of the edge
is now given by

κ ¼ κe½1 − t2L;γ − t2R;γ − 2ð−1Þnσ tL;γtR;γgðΔxπTÞ�: ð37Þ

The dimensionless function gðxÞ describing the depend-
ence of the fermion braiding term on temperature and pinch
separation is

gðΔxπTÞ ¼
1

κe
∂T

Z
∞

0

dk
2π

εðkÞnðk; TÞ cosð2kΔxÞ

¼ 3csch3ð2ΔxπTÞfsinhð4ΔxπTÞ
− ΔxπT½3þ coshð4ΔxπTÞ�g: ð38Þ

At zero temperature gð0Þ ¼ 1, so, for equal tunneling
amplitudes tL;γ ¼ tR;γ and an odd number of Ising anyons
in the bulk, this braiding term may negate the trivial
Oðt2R=L;γÞ terms in Eq. (37). For small but finite temper-

ature, we find that gðxÞ ≈ 1 − 14
5
x2, giving an additional

quadratic temperature dependence to the conductance
correction that may be useful in distinguishing fermion
braiding effects. Going to large temperature or pinch
separation, gðx ≫ 1Þ is exponentially suppressed and
fermion braiding becomes unobservable. Considering the
full T dependence, one finds that the braiding correction
can be tuned through zero by appropriately varying the
temperature; see Fig. 5.
In this analysis, we assume that the separation of the

pinches x2 − x1 is the same on the top and bottom edges.
More generally, 2Δx corresponds to the circumference of
the enclosed region. This dependence on the circumference
provides an additional tuning parameter by which one
might optimize the geometry to maximize the visibility of
corrections to the thermal conductance.

FIG. 5. Dimensionless function gðπΔxTÞ for the fermion
braiding correction to the thermal conductance against temper-
ature T and pinch separation Δx (or braiding path length differ-
ence 2Δx) in a two-pinch geometry. For ΔxT ≫ 1, this correction
is exponentially suppressed; in the opposite limit, gðπΔxTÞ
exhibits a quadratic deviation away from unity.
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2. Ising-anyon tunneling

Next, we include Ising-anyon tunneling in the double-
pinch geometry. To get some effect beyond that found in
the single-pinch geometry, we should consider processes
wherein an Ising anyon braids around the bulk, analogous
to the braiding processes for fermions examined above. In
this scenario, we may envision that a Majorana fermion
incident on the constrictions splinters into two Ising any-
ons, one of which tunnels to the bottom edge. This tunneled
Ising anyon later returns to the top edge by tunneling across
at the other constriction. Such processes take a single Ising
anyon around quasiparticles residing in the bulk. Recall
that taking an Ising anyon around a Majorana fermion
yields a statistical phase factor of −1. Then, for nψ bulk
Majorana fermions contained between the constrictions,
this braiding process yields a phase ð−1Þnψ . If the number
of enclosed bulk Ising anyons nσ is odd, then the braid
nontrivially rotates the many-body wave function—killing
the interference term. Putting these effects together, we
must attach a factor of ð−1Þnψ ½1þ ð−1Þnσ �=2 to corrections
arising from OðtL;σtR;σÞ Ising-anyon braiding processes.
Notice that when nσ is odd the braiding phase becomes
independent of nψ ; this result is indeed required by the
fusion rule σ × ψ ¼ σ.
Based on our earlier analysis, we employ a semiclassical

treatment of the Ising-anyon tunneling in a two-pinch
geometry. Again assuming that the effective tunneling
amplitudes are t̃L=R;σ ∝ tL=R;σT−7=8, we obtain the follow-
ing correction to the thermal conductance:

Δκ¼−κeft̃2L;σþ t̃2R;σþð−1Þnψ ½1þð−1Þnσ �t̃L;σ t̃R;σg: ð39Þ

Unlike the fermion braiding correction, theOðtL;σtR;σÞ term
above is sensitive to both fermions and Ising anyons in the
bulk, allowing for detection of individual bulk quasipar-
ticles of either type.

C. General result

Recall that the conductance κ we derive here is equal to
κeð1 − βÞ, where β is the parameter describing the fraction
of energy which tunnels across the constrictions. Collecting
our two-pinch-geometry results, we obtain

βðΔx;TÞ≈ t2L;γ þ t2R;γ þ2ð−1Þnσ tL;γtR;γgðΔxπTÞ
þT−7=4ft2L;σþ t2R;σþð−1Þnψ ½1þð−1Þnσ �tL;σtR;σg:

ð40Þ

In a single-pinch geometry, this result simplifies further to
βðTÞ ¼ t2γ þ t2σT−7=4. Note that we opt to use tσ rather than
t̃σ in order to emphasize the unique temperature depend-
ence here. In doing so, we absorb some proportionality
constant into the bare tunneling amplitudes, the value of
which is derived in Appendix B. To connect these results to

our earlier analysis of heat exchange between the bulk
phonons and the edge mode, β should be evaluated with
respect to the overall system temperature T0, assuming that
the deviations δT are small.
It is worth noting that the Ising-anyon tunneling terms

should have an additional functional dependence when the
temperature or pinch separation is taken to be very large.
Much as the fermion braiding correction gðxÞ is exponen-
tially suppressed for x ≫ 1, we anticipate the Ising-anyon
tunneling corrections are also exponentially suppressed at
high temperature [68]. Within the temperature range where
interference is feasible, however, Eq. (40) captures the
essential corrections to the thermal transport due to
quasiparticle tunneling in a two-pinch geometry.
While the particular expression for β derived here is for

the case of Ising topological order (c ¼ 1
2
) in a Kitaev spin

liquid, a similar analysis could be carried out for other
chiral topological orders. In general, the expression for β in
a single-pinch geometry always features a temperature
dependence β ∝ T−η, where η ¼ 2–4h is determined by the
conformal dimension h of the most relevant edge operator
in the theory. Similarly, the details of the interference
corrections arising in a multipinch geometry then, of
course, depend on the braiding statistics of the quasipar-
ticles in the particular phase.

IV. DISCUSSION

In the previous two sections, we describe how thermal
transport in the unconventional device geometry in Fig. 1
can be used to probe the anyonic excitations of the non-
Abelian Kitaev spin liquid. Our main focus is anyonic edge
interferometry, using two point contacts, which can detect
individual anyons and directly observe their nontrivial
braiding statistics. In addition, we consider simpler mea-
surements, requiring at most one point contact, for unam-
biguously identifying the underlying spin liquid via both
the quantized thermal Hall conductivity [31–33] extracted
in a more direct way and “smoking-gun” signatures of
Ising-anyon tunneling. Indeed, it is described in Sec. III
how the tunneling parameter β is determined by the edge
tunneling processes in the central region, while it is
explained in Sec. II how β (or a change in β) can be
detected in the bulk thermal transport by measuring the
temperature profile or the thermal conductance of the
device. In this section, we discuss potential challenges in
the experimental observation of these signatures and
provide simple guidelines for implementing our proposal
in realistic candidate materials, such as α-RuCl3.

A. Thermalization length

For effectively probing the quantum-coherent edge
processes inside the central region via bulk thermal trans-
port within the two lobes (see Fig. 2), the thermalization
length l between the edge mode and the bulk phonons must
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satisfy r0 ≪ l ≪ R. On the one hand, if the central region
is larger than the thermalization length (r0 ≫ l), thermal-
ization with bulk phonons may disrupt the quantum
coherence of the edge processes. On the other hand, if
the lobes are smaller than the thermalization length
(R ≪ l), the edge mode is essentially decoupled from
the bulk thermal leads and sensors.
The thermalization length is given by l ¼ κe=λ, where

κe ∝ T is the thermalHall conductivity of the edgemode and
λ is the linearized thermal coupling between the edge mode
and the bulk phonons. Since λ is argued [39] to be propor-
tional to T6, the thermalization length is then expected to
diverge as l ∝ T−5 at low temperatures. Because of this
strong temperature dependence of the thermalization length,
our proposal is applicable only within a reasonable temper-
ature range if the two characteristic sizes r0 and R differ
by orders of magnitude. Nevertheless, for r0 ∼ 1 μm and
R ∼ 1 cm [31], the range of applicability spans almost a
decade in temperature, which is sufficient for observing all
of our proposed signatures, including a reliable extraction of
the universal power law β ∝ T−7=4 that corresponds to Ising-
anyon tunneling.
Importantly, this range of applicability must also corre-

spond to temperatures that are experimentally accessible but
sufficiently small to be consistent with the other constraints
described in the following subsections. However, we remark
that, according to Ref. [39], the dominant low-temperature
mechanism for the edge-bulk coupling λ ∝ T6 relies on the
presence of disorder. Therefore, the range of applicability
may be shifted to lower temperatures if an appropriate
amount of disorder is artificially introduced in thematerial to
reduce the thermalization length without destroying the
underlying spin liquid.

B. Edge coherence length

For observing anyonic edge interferometry in the pres-
ence of thermal fluctuations at the edge, the separation
between the two pinch points, Δx, must not exceed the
thermal edge coherence length ξ ∼ ℏv=ðkBTÞ, where v is
the edge-mode velocity [41]. This constraint is directly
manifest in our result for the fermion tunneling where the
interference term in β [see Eq. (40)] is proportional to the
function g½πkBTΔx=ðℏvÞ� [69] that is exponentially sup-
pressed for large arguments (see Fig. 5). While our
calculation of the Ising-anyon tunneling is based on
zero-temperature correlators and applies only at low tem-
peratures Δx ≪ ξ [70], we nevertheless expect a similar
exponential suppression for the Ising-anyon tunneling in
the high-temperature Δx ≫ ξ limit [68].
Considering α-RuCl3, if we assume that the edge velocity

is controlled by the Kitaev interaction, J ∼ 100 K, we can
estimate the edge velocity as v ∼ Ja=ℏ, where a ∼ 1 nm is
the lattice constant. The edge coherence length is then
given by ξ ∼ Ja=ðkBTÞ, and, for a pinch separation Δx,
the temperature must satisfy kBT ≲ Ja=Δx. Thus, taking

Δx ∼ 100 nm, we find that anyon interferometry must be
performed at temperatures below 1 K. We note that this
constraint may be more stringent if the edge velocity is
instead controlled by the bulk energy gap, which is sug-
gested by Ref. [31] to be Δ ≈ 5 K. Therefore, to minimize
disruptions due to thermal fluctuations at the edge, it is ideal
to keep the pinch separation Δx as small as possible. At the
same time, however, the pinch separationmust also bemuch
larger than the bulk correlation length to avoid finite-size
effects. Based on the exactly solvable Kitaev model, this
correlation length is comparable to the lattice constant if the
bulk gap is a sizable fraction of the Kitaev interaction.
Finally, we emphasize that the edge coherence length is
relevant only for anyon interferometry and does not affect
the simpler measurements using at most one pinch point.

C. Fluctuating bulk anyons

To detect individual bulk anyons through anyonic edge
interferometry, we assume that the bulk anyons are local-
ized at appropriate pinning sites in a stable way. For
example, it is known that spin vacancies in the exactly
solvable Kitaev model bind gauge fluxes [71–73], which
correspond to Ising anyons in the non-Abelian spin liquid.
Ideally, one would be able to control the total anyon content
between the two pinch points in situ and observe the
resulting changes in β by measuring appropriate phonon
temperatures and/or the longitudinal thermal conductance.
However, in the presence of thermally excited bulk anyons,
uncontrolled anyon motion may lead to repeated switches
in the total anyon content during the (presumably long)
timescale of such a measurement, thereby washing out any
interference effect resulting from the anyons localized at
pinning sites.
We first present a sufficient (but not necessary) condition

for observing anyon interferometry in the presence of
thermally excited bulk anyons. In general, for a bulk
energy gap Δ, the density of such thermal anyons is
expected to be ρ ∼ exp½−Δ=ðkBTÞ�. The average number
of thermal anyons in the region between the two pinch
points is then ν ∼ Nρ, where N ¼ A=a2 is the size of the
region in terms of its area A and the lattice constant a. In
turn, if ν ≪ 1, thermal anyons are sufficiently rare that they
cannot be disruptive to anyon interferometry. Thus, our
sufficient condition for observing anyon interferometry
becomes kBT ≪ Δ= lnN, which is only slightly more
stringent than the standard condition kBT ≪ Δ for probing
universal low-energy properties. Indeed, if we assume Δ ≈
5 K for α-RuCl3 [31] and take A ∼ ð100 nmÞ2 as well as
a ∼ 1 nm, we find that the sufficient condition is satisfied
for temperatures below approximately 0.5 K.
However, even if this sufficient condition is not satisfied

and there are many thermal anyons in the region between
the two pinch points, anyon interferometry may still be
observable if the total anyon content fluctuates sufficiently
slowly with respect to the timescale of the measurement.
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While it is challenging to estimate the relevant timescales,
the fluctuation rate is limited by the fact that the total
anyon content can change only if an anyon is created or
annihilated at the edge or if it goes through one of the
pinch points. In turn, for a sufficiently small fluctuation
rate, we anticipate that the measured quantity (e.g., thermal
conductance) exhibits telegraph noise [53], repeatedly
switching between a finite number of allowed values
corresponding to different total anyon contents [see
Eq. (40)] as a function of time.
Finally, we point out that distinct fingerprints of anyon

interference may be statistically observable even if the
measurement is obtained by accumulating signal over a
timescale that is long compared to the timescales of fermion
(nψ ) and Ising anyon (nσ) fluctuations. To start with a
simple problem, we assume that the only fluctuations are in
the fermion parity nψ ¼ f0; 1g, so that the measured
quantity O (e.g., temperature or thermal conductance)
can take only two different instantaneous values: Onψ¼0

and Onψ¼1. A standard stochastic process, the Goldstein-
Kac process [74,75], gives a solvable model for this
problem if the time between two flips is assumed to be
much longer than the time taken in the flipping process
itself such that repeated instantaneous measurements result
in telegraph noise. Taking a flip rate μ, we define the
integrated measurement over a time interval τ to beR
τ
0 OðtÞdt ¼ τŌþ x, where Ō≡ ðO0 þO1Þ=2 is the mean
value. Then, the probability for the integrated measurement
to deviate from the mean value by x is

pðx; τÞ ¼ e−μτ½δðx − χτÞ þ δðxþ χτÞ�

þ e−μτ

2χ

�
μI0ðμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2τ2 − x2

q
=χÞ

þ χI1ðμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2τ2 − x2

p
=χÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2τ2 − x2
p �

θðχτ − jxjÞ; ð41Þ

where χ ¼ jO0 −O1j=2 is the standard deviation, θ is the
Heaviside step function, and I0;1 are modified Bessel
functions of the first kind. This probability distribution
is normalized for each integration time τ and consists of
two parts: The δ-function pieces come from the probability
that the system has not flipped from its initial state, and the
remainder is a smooth function that dominates and
approaches a Gaussian for μτ ≫ 1. Repeating the given
measurement many times and for various integration times
τ, the results can then be fit to Eq. (41) to determine the
underlying value of χ which, in turn, can be compared to
the predictions in Eq. (40).
If there are fluctuations in both nσ and nψ , the model

becomes a four-state Markov process with two distinct
rates μσ and μψ for the two kinds of flips between four
different states labeled by ðnσ; nψÞ. Recognizing that the
measured quantity O takes identical instantaneous values

Oðnσ ;nψ Þ for the topologically equivalent states (1,0) and
(1,1), the variance of an integrated measurement is then

hx2ðτÞi ¼ τ2
��

Oð0;0Þ −Oð0;1Þ
4

�
2

ϕðμψτÞ

þ
�
Oð0;0Þ −Oð0;1Þ

4

�
2

ϕðfμψ þ μσgτÞ

þ
�
Oð0;0Þ þOð0;1Þ − 2Oð1;0Þ

4

�
2

ϕðμστÞ
�
; ð42Þ

where we define the dimensionless function

ϕðxÞ ¼ 1

x
−
1 − e−2x

2x2
: ð43Þ

As in the two-state model, repeated measurements for a
range of integration times τ allow extraction of the
instantaneous valuesOðnσ ;nψ Þ which are directly comparable
with the predictions of Eq. (40). We further note that three
distinct rates μψ , μσ, and μψ þ μσ appear in Eq. (42). The
need for three distinct rates to describe the τ dependence of
the variance hx2ðτÞi can differentiate the noise of combined
fermion and Ising anyon flips from other possible sources
of a single telegraph noise, for which the variance would
simply be

hx2ðτÞi ¼ τ2
�
O0 −O1

2

	
2

ϕðμτÞ: ð44Þ

Note that Eq. (44) is also consistent with integration over
the full probability distribution in Eq. (41).

D. Multilayer samples

In this subsection, we briefly discuss how our results for
a single two-dimensional layer generalize to more realistic
multilayer systems. For sufficiently weak interlayer inter-
actions, each layer remains an independent spin liquid with
its own chiral edge mode and bulk anyons. Therefore, the
edge tunneling processes in the central region are con-
trolled by the individual layers, and we can define a distinct
tunneling parameter βi for each of the n layers labeled by
i ¼ 1;…; n. In contrast, the phonons can move freely
between the different layers and result in a bulk interlayer
thermalization within the two lobes. Thus, using the heat-
resistor picture in Sec. II, we anticipate that the temper-
atures and heat currents in an n-layer system are given by
TnðfβigÞ ¼ T1ðβ̄Þ and JnðfβigÞ ¼ nJ1ðβ̄Þ, respectively,
where β̄ ¼ ð1=nÞPn

i¼1 βi is the mean tunneling coefficient
while T1ðβÞ and J1ðβÞ are the corresponding single-layer
results for tunneling coefficient β.
For the simpler measurements using at most one point

contact, the tunneling parameters are identical in all n
layers. The measured temperatures are then not affected at
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all by the presence of n > 1 layers, while the measured
thermal conductance is simply multiplied by n. Thus, for
extracting the quantized thermal Hall conductivity κe or the
universal power law β ∝ T−7=4 reflecting Ising-anyon
tunneling, it is advantageous to detect the edge tunneling
processes by measuring the thermal conductance of the
device, as multilayer systems can then actually result in a
more accurate measurement. To strengthen this point, we
also recall that, for κe ≪ κbϑ0 and κc ≪ κbϑ0, the thermal
conductance of a single layer takes the simple form κ ¼
J=ð2δTÞ ¼ κc þ ð1 − βÞκe which, if κc is either known or
negligibly small, enables direct extraction of κe in the
absence of any point contacts and β ∝ T−7=4 in the presence
of a single point contact.
For anyonic edge interferometry, however, the distinct

layers are expected to have different tunneling parameters
βi, unless one can simultaneously stabilize the same kind of
anyon in all layers. Thus, we expect that anyon interfer-
ometry is generally more observable in few-layer systems
where different combinations of fβig still result in only a
small number of distinct β̄. In particular, a few-layer system
with a small number of discrete values could still be
modeled with an expanded version of the Markov chain
model in the preceding subsection. However, such few-
layer systems present a number of notable experimental
challenges. First, the system must be thermally isolated, as
significant thermal coupling to, for example, a substrate
may weaken the sensitivity to β̄. Second, it may not be
straightforward to measure the temperature of such a few-
layer system or to detect small (order of κe) changes in the
thermal conductance. Third, a few-layer system is expected
to be more susceptible to crystallographic defects, such as
stacking faults, that may have a detrimental effect on the
underlying spin liquid.

E. Optimal dimensions

Now we synthesize the constraints discussed in the
preceding subsections to understand the optimal dimen-
sions of the device geometry in Fig. 2. We start by
considering the narrow channel in the central region
that has length L ∼ r0 and width W ≪ L. To allow for
anyon tunneling between the two edges, the width of the
channel must be reduced at each pinch point from W to
w ≪ W that is on the order of the bulk correlation length.
Thus, we expect that the ideal pinch width is larger than but
comparable to the lattice constant: w ∼ 10 nm. Conversely,
to avoid anyon tunneling away from the pinch points, the
channel width itself must be much larger than the bulk
correlation length. At the same time, it is advantageous to
keep the channel width as small as possible, because the
main purpose of the channel is to act as a bottleneck for
bulk phonon transport. Also, for anyonic edge interferom-
etry, where two pinch points are separated by Δx, the
perimeter P ∼ Δx þW must be minimized to avoid thermal
edge decoherence (see Sec. IV B), and the area A ∼ ΔxW

must be minimized to avoid thermally excited bulk anyons
(see Sec. IV C). Therefore, we expect that the ideal channel
width is W ∼ Δx ∼ 100 nm. In terms of the channel length
L, there is a trade-off between increasing L to provide a
better bottleneck for bulk phonon transport and making
sure that L is much smaller than the edge-bulk thermal-
ization length l (see Sec. IVA). We anticipate that L ∼
1 μm is generally a good compromise for the measure-
ments proposed in this work.
Turning our attention to the two large lobes, we first

recognize that the inner radius r0 is set by the length of the
channel: r0 ∼ L ∼ 1 μm. The outer radius R should then be
as large as possible to maximize the temperature range
within which r0 ≪ l ≪ R (see Sec. IVA). Based on the
single crystals used in Ref. [31], we expect that R ∼ 1 cm is
a reasonable order of magnitude. Interestingly, the ideal
opening angle 2ϑ0 depends on the specific type of
measurement. If the temperature profile is measured, the
sensitivity to the tunneling parameter β is maximized for
κe ∼ κbϑ0 [see Eq. (20)], which corresponds to a small
opening angle ϑ0 ≪ 1 in the experimental limit of κe ≪ κb
[31–33]. In contrast, if the thermal conductance is mea-
sured, the analogous sensitivity is maximized for κe ≪
κbϑ0 [see Eq. (22)], which means that the opening angle
should be as large as possible: ϑ0 ≲ 1.
For the simpler measurements using at most one pinch

point, it is optimal to measure the thermal conductance in a
multilayer system, as different layers can add constructively
(see Sec. IV D). An accurate extraction of the quantized
thermal Hall conductivity κe or the universal power law
β ∝ T−7=4 also, however, requires the thermal conductance
to have a simple dependence on the tunneling parameter β.
Importantly, in the limit of κe ≪ κbϑ0 and κc ≪ κbϑ0, the
heat transport is dominated by the central channel, and the
thermal conductance of the device is simply κ ¼ κc þ
ð1 − βÞκe per layer. If we further assume that the phonon
mean-free path D is much larger than the channel
length L, the channel width W, and the channel height
H ¼ nd (where n is the number of layers and d ∼ a is
the interlayer separation), the phonons are ballistic
inside the central channel, and the phonon thermal
conductance of the channel is quantized at low temper-
ature to nκc ¼ πpk2BT=ð6ℏÞ, where p is a small integer
corresponding to the number of gapless phonon modes
[76]. The thermal conductance of the entire device (per
layer) is then given by

κ ¼ J
2δT

¼ πk2BT
6ℏ

�
p
n
þ cð1 − βÞ

�
: ð45Þ

More specifically, the quantization of the phonon conduct-
ance nκc requires temperatures below aTD=maxðH;WÞ,
where TD is the Debye temperature. Thus, to maximize the
range of the quantization while keeping the number of
layers as large as possible, the channel height should be
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similar to the channel width: H ∼W ∼ 100 nm. For a ∼
1 nmandTD ∼ 100 K,we then expect that Eq. (45) holds at
temperatures below 1 K.
For α-RuCl3, the ratio of the thermal Hall conductivity κe

and the longitudinal thermal conductivity κb has been
experimentally found [31–33] to be κe=κb ∼ 10−3 at tem-
peratures between 3 and 6 K. Thus, for large opening
angles, ϑ0 ≲ 1, we expect κe ≪ κbϑ0 to be satisfied in the
relevant temperature range. Moreover, since the phonon
mean-free path is estimated [33] to be D ∼ 10 μm at the
same temperatures, the optimal channel dimensions
(H ∼W ∼ 100 nm and L ∼ 1 μm) correspond to ballistic
phonons and a quantized phonon thermal conductance
below 1 K. Finally, due to the small number of gapless
phonon modes (p ¼ 4 according to Ref. [76]) and the large
number of chiral edge modes (n ¼ H=d ∼ 100), the ther-
mal conductance of the device is dominated by the edge
modes, and the thermal conductance per layer [see
Eq. (45)] reduces to

κ ¼ ð1 − βÞκe ¼
πck2BT
6ℏ

ð1 − βÞ: ð46Þ

The thermal conductance κ in the absence of any pinch
points (β ¼ 0) is then directly proportional to the chiral
central charge c ¼ 1

2
, while the universal power law β ∝

T−7=4 can be extracted by measuring the thermal conduct-
ance at a range of temperatures in the presence of a single
pinch point. We note that Eq. (46) is valid even if the
channel height H is much larger than W ∼ 100 nm (but
much smaller than D ∼ 10 μm), because the number of
chiral edge modes, n ¼ H=d, still exceeds the number of
thermally excited phonon modes, p0 ∼ nT=TD.
We further emphasize that the half-integer chiral central

charge c ¼ 1
2
and the universal power law β ∝ T−7=4 can

also be extracted by measuring the thermal conductance in
a single-layer (n ¼ 1) system. From Eq. (45), the thermal
conductance of the device is then proportional to
pþ cð1 − βÞ. Crucially, even if the small integer p is
not known, the measurement of the thermal conductance κ
in the absence of any pinch points (β ¼ 0) reveals the half-
integer value of the chiral central charge if the ratio
6ℏκ=ðπk2BTÞ is found to be half integer rather than integer.
Moreover, since p is a constant at low temperature, it can be
subtracted to confirm the universal power law β ∝ T−7=4 in
the presence of a single pinch point.

V. SUMMARY AND OUTLOOK

In this paper, we have proposed that anyonic edge
interferometry can be realized in the non-Abelian Kitaev
spin liquid by performing conventional thermal transport
measurements in the unconventional device geometry
depicted in Fig. 1. Individual anyons inside the mesoscopic
central region can be detected by interference patterns of

edge tunneling processes which, in turn, affect the bulk
thermal transport within the two macroscopic lobes due to
edge-phonon coupling.
To corroborate our proposal, we have synthesized two

complementary calculations, each capturing some universal
properties of the system under consideration. On the one
hand, we have considered a set of linearized hydrodynamic
equations [39,40] to describe the large-scale thermal trans-
port mediated by bulk acoustic phonons coupled to a chiral
edge mode. By obtaining a perturbative solution to these
equations and interpreting the results in terms of an
effective heat-resistor network, we have understood how
to optimize the geometry and the probe placement for
maximizing the sensitivity of the thermal conductance or a
locally measured temperature to coherent edge tunneling
processes. On the other hand, we have utilized the CFT
approach [53,54] to investigate the edge tunneling proc-
esses themselves and understand how they can be used to
detect individual anyons or extract universal properties of
the underlying spin liquid. This treatment highlights unique
signatures arising from bare tunneling at a single point
contact and from braiding by tunneling in the presence of
multiple point contacts.
While the main focus of this work has been the detection

of individual anyons through edge interferometry, we
emphasize that the device geometry in Fig. 1 can also
be used to demonstrate the existence of anyons via simpler
measurements that do not rely on anyon braiding. If the
central region has sufficiently small phonon thermal con-
ductance, the heat exchange between the two lobes is
mediated almost exclusively by the chiral edge mode. In the
absence of any point contacts, the thermal conductance κ of
the device is then directly proportional to the chiral central
charge of the edge theory. Hence, the chiral central charge
c ¼ 1

2
, whose half-integer value immediately reveals the

presence of non-Abelian anyons, can be extracted from
the dominant longitudinal thermal conductance rather
than a subdominant thermal Hall conductivity [31–33].
Moreover, in the presence of a single point contact, the
leading-order correction to the thermal conductance fol-
lows a nontrivial power lawΔκ=T ∝ T−7=4 as a function of
the temperature T. The universal exponent 7=4 is innately
tied to the conformal dimension of the non-Abelian Ising
anyons and would be difficult to reproduce from less
exotic physics. Crucially, these noninterferometry mea-
surements are within reach of the currently available
thermal transport experiments [31–33] in existing candi-
date materials like α-RuCl3.
Finally, we point out that our proposed measurements

straightforwardly generalize to all kinds of chiral topologi-
cal orders, including Abelian and non-Abelian chiral spin
liquids, as well as their electronic counterparts such as
fractional quantum Hall states. Even though thermal trans-
port is experimentally more challenging than electrical
transport, it provides complementary information on such
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electronic topological orders, for example, by giving direct
access to the chiral central charge [34].

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [77].
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APPENDIX A: EDGE AND BULK
TEMPERATURES

Here, we elaborate on the perturbative approach from the
main text and provide derivations of the first-order edge and
bulk temperatures in Eqs. (14) and (15). The unperturbed
(zeroth-order) temperatures correspond to vanishing edge-
bulk coupling λ. As we describe in the main text, since the
hot and cold leads couple to the bulk phonons rather than
the edge mode, the zeroth-order edge temperature vanishes:

Tð0Þ
e ðr;ϑÞ ¼ 0. Furthermore, the zeroth-order bulk temper-

ature within the right lobe is imposed by the boundary

conditions to be Tð0Þ
b ðr;ϑÞ ¼ Aþ B lnðr=r0Þ, where A ¼

δT½1þ α lnðR=r0Þ�−1 and B ¼ αA [see Eq. (7)]. We now
seek the first-order perturbative corrections to these edge
and bulk temperatures within the right lobe as a result of
finite edge-bulk coupling λ.

Let us first focus on the first-order correction to the edge
temperature, Tð1Þ

e ðr; ϑÞ. By considering Eqs. (8) and (9)
with n ¼ 1, this first-order correction must satisfy the
ordinary differential equations

∂Tð1Þ
e ðR;ϑÞ
∂ϑ ¼ R

l
½Tð0Þ

b ðR;ϑÞ − Tð1Þ
e ðR; ϑÞ�;

∂Tð1Þ
e ðr;�ϑ0Þ

∂r ¼∓ 1

l
½Tð0Þ

b ðr;�ϑ0Þ − Tð1Þ
e ðr;�ϑ0Þ�; ðA1Þ

along with the corresponding boundary condition

Tð1Þ
e ðr0;−ϑ0Þ ¼ ð2β − 1ÞTð1Þ

e ðr0; ϑ0Þ: ðA2Þ

As described in the main text, we assume that the edge-bulk
thermalization length l is much larger than the central
region (l ≫ r0) but much smaller than the lobe width
(l ≪ Rϑ0 ≲ R). In this regime, the edge temperature
thermalizes well along the outer edge of the right lobe,

and we can thus write Tð1Þ
e ðR;ϑ0Þ ¼ δT. Solving Eq. (A1)

for the top edge of the right lobe (ϑ ¼ ϑ0), the edge
temperature along this edge is then given by

Tð1Þ
e ðr;ϑ0Þ¼AþBlnðr=r0ÞþBer=l½Eið−R=lÞ−Eið−r=lÞ�;

ðA3Þ

where EiðxÞ is the exponential integral function with
asymptotic forms

Eið−xÞ ¼
�
ln xþ γ ðx ≪ 1Þ;
− 1

x e
−x ðx ≫ 1Þ: ðA4Þ

We note that, as a result of edge-bulk thermalization, this
edge temperature is independent of β. Next, if we drop
exponentially small terms from Eq. (A3) and employ
Eq. (A2), the edge temperatures of the top and bottom
edges at the interface with the central region (r ¼ r0) are
found to be

Tð1Þ
e ðr0; ϑ0Þ ¼ Aþ Ber0=l½lnðl=r0Þ − γ�

≈ Aþ B½lnðl=r0Þ − γ�;
Tð1Þ
e ðr0;−ϑ0Þ ≈ ð2β − 1ÞfAþ B½lnðl=r0Þ − γ�g: ðA5Þ

Solving Eq. (A1) for the bottom edge of the right lobe
(ϑ ¼ −ϑ0), the edge temperature along this edge is then

Tð1Þ
e ðr;−ϑ0Þ≈AþB lnðr=r0ÞþBe−r=l½Eiðr0=lÞ−Eiðr=lÞ�

− ½Aþð1−2βÞfAþB½lnðl=r0Þ− γ�g�e−r=l:
ðA6Þ

This edge temperature has both a β-independent and a β-
linear part. Differentiating with respect to β and recalling
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the definitions of A and B, we immediately recover the
result in Eq. (14) of the main text.
Having found the first-order correction to the edge

temperature, we may now consider the corresponding
correction to the bulk (phonon) temperature Tð1Þ

b ðr; ϑÞ.
This first-order correction must satisfy Laplace’s equation
[see Eq. (10)]

∂2Tð1Þ
b ðr; ϑÞ

ð∂ ln rÞ2 þ ∂2Tð1Þ
b ðr; ϑÞ
∂ϑ2 ¼ 0; ðA7Þ

subject to the corresponding boundary conditions [see
Eqs. (11)–(13)]

Tð1Þ
b ðR;ϑÞ ¼ 0;

∂Tð1Þ
b ðr ¼ r0;ϑÞ
∂ ln r ¼ αTð1Þ

b ðr0;ϑÞ;

∂Tð1Þ
b ðr;ϑ ¼ ϑ0Þ

∂ϑ ¼ −
λr
κb

½Tð0Þ
b ðr;ϑ0Þ − Tð1Þ

e ðr;ϑ0Þ�

¼ λr
κb

Ber=l½Eið−R=lÞ− Eið−r=lÞ�;

∂Tð1Þ
b ðr;ϑ ¼ −ϑ0Þ

∂ϑ ¼ λr
κb

½Tð0Þ
b ðr;−ϑ0Þ− Tð1Þ

e ðr;−ϑ0Þ�

¼ −
λr
κb

fBe−r=l½Eiðr0=lÞ− Eiðr=lÞ�

− ½Aþ ð1− 2βÞfAþB½lnðl=r0Þ
− γ�g�e−r=lg: ðA8Þ

Let us briefly recall the origin of these boundary conditions
from the main text. The first boundary condition reflects
that the bulk temperature along the outer edge is fixed due
to contact with the thermal lead and, thus, all corrections to
the bulk temperature must vanish there. The second
boundary condition relates the bulk heat current through
the narrow channel in the central region and the bulk heat
current through the right lobe. The remaining two boundary
conditions enforce that the perpendicular heat current along
the boundary of the bulk is consistent with the edge-bulk
heat exchange which, in turn, depends on the edge temper-
atures previously found.
Given that Laplace’s equation is linear and all inhomo-

geneities come from Tð0Þ
b ðr;�ϑ0Þ and Tð1Þ

e ðr;�ϑ0Þ in the
last two boundary conditions, we may decompose the bulk
temperature into a β-independent and a β-linear compo-

nent: Tð1Þ
b ðr;ϑÞ¼ T̄ð1Þ

b ðr;ϑÞþβT̂ð1Þ
b ðr;ϑÞ, where T̄ð1Þ

b ðr; ϑÞ
and T̂ð1Þ

b ðr;ϑÞ carry no β dependence. Since we are
interested in the sensitivity of the bulk temperature to
tunneling processes in the central region, we focus on the β

derivative T̂ð1Þ
b ðr;ϑÞ ¼ ∂Tð1Þ

b ðr;ϑÞ=∂β. By linearity, this
temperature sensitivity must satisfy the same Laplace
equation

∂2T̂ð1Þ
b ðr; ϑÞ

ð∂ ln rÞ2 þ ∂2T̂ð1Þ
b ðr; ϑÞ
∂ϑ2 ¼ 0; ðA9Þ

but the relevant boundary conditions are now given by

T̂ð1Þ
b ðR;ϑÞ¼ 0;

∂T̂ð1Þ
b ðr¼ r0;ϑÞ
∂ lnr ¼ αT̂ð1Þ

b ðr0;ϑÞ;

∂T̂ð1Þ
b ðr;ϑ¼ϑ0Þ

∂ϑ ¼ 0;

∂T̂ð1Þ
b ðr;ϑ¼−ϑ0Þ

∂ϑ ¼−
2λ

κb
fAþB½lnðl=r0Þ− γ�gre−r=l:

ðA10Þ
Expanding in a basis of orthogonal eigenfunctions, we seek
a separable solution of the general form

T̂ð1Þ
b ðr;ϑÞ ¼

X∞
n¼0

sin ½μn lnðR=rÞ�

× fCn cosh½μnϑ� þ Sn sinh½μnϑ�g; ðA11Þ

where μn is the (nþ 1)th smallest positive ½ðnþ 1
2
Þπ <

μn lnðR=r0Þ < ðnþ 1Þπ� solution of the transcendental
equation

μn ¼ −α tan½μn lnðR=r0Þ�: ðA12Þ
The expression in Eq. (A11) automatically satisfies the first
two boundary conditions (r ¼ r0 and r ¼ R), while it may
satisfy the remaining boundary conditions (ϑ ¼ �ϑ0) for
appropriately chosen coefficients Cn and Sn. To find these
coefficients, we consider the angular derivatives

∂T̂ð1Þ
b ðr;ϑ¼�ϑ0Þ

∂ϑ
¼
X∞
n¼0

μn sin½μn lnðR=rÞ�fSn cosh½μnϑ0��Cn sinh½μnϑ0�g;

ðA13Þ
as well as the orthogonality relations between the radial
eigenfunctions,Z

R

r0

dr
r
sin½μn lnðR=rÞ� sin½μn0 lnðR=rÞ�

¼ δn;n0

2

�
1 −

sin½2μn lnðR=r0Þ�
2μn lnðR=r0Þ

�
lnðR=r0Þ

≡ δn;n0Nn lnðR=r0Þ; ðA14Þ
where Nn are appropriate normalization constants for these
eigenfunctions. By comparing these expressions with the
boundary conditions in Eq. (A10), the coefficients Cn and
Sn are then found to satisfy
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Cn sinh½μnϑ0�
¼ −Sn cosh½μnϑ0�

¼ λfAþ B½lnðl=r0Þ − γ�g
κbμnNn lnðR=r0Þ

Z
R

r0

dr sin½μn lnðR=rÞ�e−r=l

≡ In
μn

: ðA15Þ

Next, we calculate the angular average of the temperature
sensitivity in the first-order approximation:

hT̂ð1Þ
b ðrÞi≡ 1

2ϑ0

Z
ϑ0

−ϑ0
dϑT̂ð1Þ

b ðr; ϑÞ: ðA16Þ

This angular average is a lower bound to the maximal

temperature sensitivity at the given radius, T̂ð1Þ
b ðr;−ϑ0Þ,

which corresponds to the bottom edge (ϑ ¼ −ϑ0), and
becomes an accurate lower bound in the limit of ϑ0 ≪ 1.
Employing the compact notation from Eq. (A15), the
average temperature sensitivity may then be written as

hT̂ð1Þ
b ðrÞi ¼

X∞
n¼0

Cn sinh½μnϑ0� sin½μn lnðR=rÞ�
μnϑ0

¼
X∞
n¼0

In sin½μn lnðR=rÞ�
μ2nϑ0

: ðA17Þ

Since the magnitude of In sin½μn lnðR=rÞ� is bounded from
above, it follows from μn > ðnþ 1

2
Þπ= lnðR=r0Þ that the

summand decays as 1=n2. Thus, the sum in n is convergent,
and we may approximate it by its leading (n ¼ 0) term:

hT̂ð1Þ
b ðrÞi ≈ I0 sin½μ0 lnðR=rÞ�

μ20ϑ0

¼ sin½μ0 lnðR=rÞ�
μ20ϑ0

λfAþ B½lnðl=r0Þ − γ�g
κbN0 lnðR=r0Þ

×
Z

R

r0

dr sin½μ0 lnðR=rÞ�e−r=l: ðA18Þ

Recalling the assumption r0 ≪ l ≪ R, we may then
approximate the integrand as

Z
R

r0

dr sin½μ0 lnðR=rÞ�e−r=l ≈ l sin½μ0 lnðR=lÞ� ðA19Þ

and obtain the following general expression for the average
temperature sensitivity:

hT̂ð1Þ
b ðrÞi ≈ κefAþ B½lnðl=r0Þ − γ�g sin½μ0 lnðR=lÞ� sin½μ0 lnðR=rÞ�

κbϑ0μ
2
0N0 lnðR=r0Þ

: ðA20Þ

Finally, we take the limits of large and small
α ¼ κc=ðκbϑ0Þ. In the first limit (α ≫ 1), the smallest
positive solution of Eq. (A12) is μ0 lnðR=r0Þ ≈ π, and
the normalization constant N0 is approximately 1=2. Since
A ≈ δT½α lnðR=r0Þ�−1 and B ≈ δT½lnðR=r0Þ�−1 ≫ A, the
average temperature sensitivity becomes

hT̂ð1Þ
b ðrÞi ≈ 2

π2
½lnðl=r0Þ − γ� κeδT

κbϑ0
sin

�
π lnðR=lÞ
lnðR=r0Þ

�

× sin

�
π lnðR=rÞ
lnðR=r0Þ

�
: ðA21Þ

In the second limit (α ≪ 1), the smallest positive solution
of Eq. (A12) is μ0 lnðR=r0Þ ≈ π=2, and the normalization
constant N0 is again approximately 1=2. Since A ≈ δT and
B ≈ αδT ≪ A, the average temperature sensitivity reads

hT̂ð1Þ
b ðrÞi≈8 lnðR=r0Þ

π2
κeδT
κbϑ0

sin

�
π lnðR=lÞ
2 lnðR=r0Þ

�
sin

�
π lnðR=rÞ
2 lnðR=r0Þ

�
:

ðA22Þ

These final expressions for large and small α are identical to
those in Eq. (15) in the main text.

APPENDIX B: ISING-ANYON TUNNELING

In this Appendix, we show that the second-order
correction from Ising-anyon tunneling in a single-pinch
geometry diverges at zero temperature and show the
appropriate power scaling for a finite-temperature effective
tunneling coefficient. Throughout this Appendix, we work
in units where v ¼ 1. The appropriate factors of v can be
restored by dimensional analysis.
At second order, the correction to the fermion Green’s

function takes the form

−
Z

∞

−∞
ds1

Z
s1

−∞
ds2hγtopðδx; tÞ½Htunðs1ÞHtunðs2Þ

− hHtunðs1ÞHtunðs2Þi�γtopð−δx; 0Þi; ðB1Þ

where we now adopt the convention that the heat current is
measured at coordinate δx along the top edge and fermions
are thermally excited by the heating due to a bath connected
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on the left edge (in the direction of x ¼ −δx). Since we care
only about the transmission across the constriction, we may
freely take δx → 0þ. Recall that the Ising-anyon tunneling
Hamiltonian for a single pinch takes the form

Htun ¼ tσe−iπ=16σtopð0Þσbotð0Þ; ðB2Þ

where x ¼ 0 is the coordinate of the pinch. Evaluating the
correction to the Green’s function then requires that we
evaluate a correlator which, after cluster decomposition
between the top and bottom edges, takes the form

hσð0; s2Þσð0; s1Þibot½hγðδx; tÞσð0; s2Þσð0; s1Þγð−δx; 0Þitop
− hσð0; s2Þσð0; s1Þitophγðδx; tÞγð−δx; 0Þitop�: ðB3Þ

For brevity, we move the subscripts to the h·i rather than the
fields. Closely related calculations are carried out in detail
in several other works [53,54,68]. In particular, Aasen et al.
[53] consider the first-order Ising-anyon tunneling correc-
tion in a loop interferometer, while Nilsson and Akhmerov
[68] calculate the backscattered component for the same
two-pinch geometry we consider in the main text but
working explicitly with the finite-temperature correlations
for the primary fields.
Let us then see that at zero temperature this expression

diverges. Consider the more general scenario where we
have

hσðy1Þσðy2Þibot½hγðz1Þσðη1Þσðη2Þγðz2Þitop
− hσðη1Þσðη2Þitophγðz1Þγðz2Þitop�: ðB4Þ

This correlator is given explicitly by

1

2y1=812 η1=812 z12

2
64−2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−η1Þðz2−η2Þ
ðz1−η2Þðz2−η1Þ

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−η2Þðz2−η1Þ
ðz1−η1Þðz2−η2Þ

s 3
75: ðB5Þ

In this generic formulation, we can treat both the
single-pinch and double-pinch geometries. For concrete
purposes, though, let us focus our attention on the single-
pinch case, fixing y1;2 ¼ η1;2 ¼ is1;2 ∓ ϵ, z1 ¼ iðt − δxÞ,
and z2 ¼ iδx. Let us also define s1 ¼ s and s2 ¼ s − Δs,
where Δs ≥ 0. Here, ϵ regulates divergences in the corre-
lator. A similar regulator can be taken in the coordinates
z1;2, but it should be taken smaller than ϵ to preserve the
placement of a branch cut in later steps.
Since we are interested in the frequency-space trans-

mission amplitude, let us Fourier transform this expression
and insert our definitions for the coordinates into Eq. (B5).
The expression we must evaluate then becomes

−e−iπ=8t2σ
Z

∞

−∞
dt

Z
∞

−∞
ds

Z
∞

0

dΔs
eiωt

2iðiΔs − 2ϵÞ1=4ðt − 2δxÞ
�
−2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔs þ δx − sþ iϵÞðδxþ s − tþ iϵÞ
ðδx − s − iϵÞðδxþ s − t − Δs − iϵÞ

s
þ � � �

�
; ðB6Þ

where the � � � is the inverse of the second bracketed term and ω ¼ vk. Let us then take δx → 0þ so that the expression
simplifies to

−e−iπ=8t2σ
Z

∞

−∞
dt

Z
∞

−∞
ds

Z
∞

0

dΔs
eiωt

2itðiΔs − 2ϵÞ1=4
�
−2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − Δs − iϵÞðs − tþ iϵÞ
ðsþ iϵÞðs − t − Δs − iϵÞ

s
þ � � �

�
: ðB7Þ

If one then makes a shift of variables s → sþ ðΔs þ tÞ=2, the integrand takes a particularly simple form:

−e−iπ=8t2σ
Z

∞

−∞
dt

Z
∞

−∞
ds

Z
∞

0

dΔs
eiωt

2itðiΔs − 2ϵÞ1=4
�
−2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2

s2 þ b2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

s2 þ a2

s �
; ðB8Þ

where a≡ ϵþ iðt − ΔsÞ=2 and b≡ ϵ − iðtþ ΔsÞ=2. For ϵ > 0, we see that Rea, Reb > 0. Then we may invoke an integral
identity to evaluate the integral with respect to s, giving

−e−iπ=8t2σ
Z

∞

−∞
dt

Z
∞

0

dΔs
eiωt

2itðiΔs − 2ϵÞ1=4 4ðaþ bÞ
�
K

�
a − b
aþ b

	
− E

�
a − b
aþ b

	�
; ðB9Þ

where K and E are the complete elliptic integrals of the first and second kind, respectively. Now substituting the definitions
of a and b, one finds that the expression becomes
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−e−iπ=8t2σ
Z

∞

−∞
dt

Z
∞

0

dΔs
eiωt

2itðiΔs − 2ϵÞ1=4 4ð−iΔs þ 2ϵÞ
�
K
�
−

t
Δs þ 2iϵ

	
− E

�
−

t
Δs þ 2iϵ

	�
: ðB10Þ

Taking ϵ → 0þ, one can then straightforwardly integrate with respect to Δs and obtain

−e−iπ=8t2σ
2π2Γð1

8
Þ

½1þ ð−1Þ1=4�Γð− 3
8
ÞΓð5

8
ÞΓð15

8
Þ
Z

∞

0

dtðeiωt − e−iωtÞt3=4: ðB11Þ

Now integrating with respect to t just gives

8ð−1Þ1=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−7þ 5

ffiffiffi
2

pp
π7=2t2σ

ω7=4Γð− 3
8
Þ2Γð5

8
ÞΓð15

8
Þ : ðB12Þ

The above corresponds to the correction to AðkÞ where
ω ¼ vk. The correction to jAðkÞj2 then is given by

t2σ
ω7=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4þ 3

ffiffiffi
2

pp
π7=2

Γð− 3
8
Þ2Γð5

8
ÞΓð15

8
Þ ≈ −10.8t2σω−7=4: ðB13Þ

Consider then calculating the correction to the thermal
conductance associated with this term. Temporarily
neglecting the constant prefactor, we calculate the heat
current

IσðTÞ ¼ v
Z

∞

0

dk
2π

εðkÞnðk; TÞðvkÞ−7=4

¼ −4ð−1þ 23=4ÞT1=4Γ
�
5

4

	
ζ

�
1

4

	
: ðB14Þ

Then differentiating with respect to temperature, we get the
correction to the conductance

Δκσ ¼ −
ð−1þ 23=4ÞΓð5

4
Þζð1

4
Þ

T3=4

¼ −κe
ð−1þ 23=4ÞΓð5

4
Þζð1

4
Þ

πT7=4 ≈ κe
1.92

T7=4 : ðB15Þ

Restoring the appropriate prefactors from Eq. (B13), this
gives Δκσ ≈ −21t2σκeT−7=4. Indeed, then we recover the
Ising-anyon tunneling correction to thermal transport,
Δκσ ∝ κeT−7=4, as reported in the main text. Given this
result, it is convenient to define a renormalized tunneling
amplitude t̃σ ≡ 4.55tσT−7=8 so that Δκσ ¼ −t̃2σκe.
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