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Tutorial 

Prismatic 2.0 – Simulation software for scanning and high resolution 
transmission electron microscopy (STEM and HRTEM) 

Luis Rangel DaCosta a,b,*, Hamish G. Brown a, Philipp M. Pelz a,b, Alexander Rakowski a, 
Natolya Barber a, Peter O’Donovan c, Patrick McBean c,d, Lewys Jones c,d, Jim Ciston a, M. 
C. Scott a,b, Colin Ophus a,* 
a National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA 
b Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA 
c School of Physics, Trinity College Dublin, Dublin 2, Ireland 
d Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Dublin 2, Ireland   
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A B S T R A C T   

Scanning transmission electron microscopy (STEM), where a converged electron probe is scanned over a sam-
ple’s surface and an imaging, diffraction, or spectroscopic signal is measured as a function of probe position, is an 
extremely powerful tool for materials characterization. The widespread adoption of hardware aberration 
correction, direct electron detectors, and computational imaging methods have made STEM one of the most 
important tools for atomic-resolution materials science. Many of these imaging methods rely on accurate imaging 
and diffraction simulations in order to interpret experimental results. However, STEM simulations have tradi-
tionally required large calculation times, as modeling the electron scattering requires a separate simulation for 
each of the typically millions of probe positions. We have created the Prismatic simulation code for fast 
simulation of STEM experiments with support for multi-CPU and multi-GPU (graphics processing unit) systems, 
using both the conventional multislice and our recently-introduced PRISM method. In this paper, we introduce 
Prismatic version 2.0, which adds many new algorithmic improvements, an updated graphical user interface 
(GUI), post-processing of simulation data, and additional operating modes such as plane-wave TEM. We review 
various aspects of the simulation methods and codes in detail and provide various simulation examples. 
Prismatic 2.0 is freely available both as an open-source package that can be run using a C++ or Python 
command line interface, or GUI, as well within a Docker container environment.   

1. Introduction 

Transmission electron microscopy (TEM) is heavily used in both 
materials science and biological studies of materials on the nanoscale, 
due to its high spatial resolution and the flexibility of operating modes 
(Egerton et al., 2005). TEM experiments can be performed using plane 
wave illumination, where users can either record the far field intensity 
as a diffraction pattern (Williams et al., 2009) or by forming an image of 
the electron wave after it has been transmitted through the sample, often 
referred to as high-resolution transmission electron microscopy 
(HRTEM) (Buseck et al., 1989). Alternatively, the electron beam can be 
focused into a small spot and scanned over the sample surface, which is 
referred to as scanning transmission electron microscopy (STEM) (Pen-
nycook and Nellist, 2011). The introduction of spherical aberration 

correctors in the past few decades enable the formation of a finer probe 
in STEM (Batson et al., 2002) and point-spread function in HRTEM 
(Haider et al., 1998). Aberration-corrected TEM and STEM have greatly 
facilitated many atomic resolution experiments, including imaging 
single-layer graphene sheets (Gass et al., 2008; Robertson and Warner, 
2013), elemental mapping (Kothleitner et al., 2014), atomic electron 
tomography (Yang et al., 2017), vibrational spectroscopy (Venkatraman 
et al., 2019), observation of polar skyrmions (Das et al., 2019), and 
many others. 

With the widespread adoption of charge-coupled device cameras 
(Krivanek and Mooney, 1993), and later direct electron detectors 
(MacLaren et al., 2020), both STEM and TEM are now fully digital sci-
ences. Augmenting STEM and TEM experiments with modern data sci-
ence methods holds enormous promise for future experimentation 
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(Spurgeon et al., 2020). One of the most data-intensive families of STEM 
experiments is the use of fast direct electron detectors to collect thou-
sands or even millions of 2D images of the diffracted probes over a 2D 
grid of probe positions, often referred to as a four dimensional-STEM 
(4D-STEM) dataset (Ophus, 2019). One of the key ingredients for 
developing and implementing new computational methods is the ability 
to perform forward simulations of the various STEM and TEM experi-
mental methods (LeBeau et al., 2008; Zhang et al., 2020). HRTEM 
simulations and STEM simulations for the 2D, 3D, or 4D experiments 
described above are typically performed using the multislice method 
(Cowley and Moodie, 1957; Kazuo and Natsu, 1977). However, these 
simulations have traditionally required very long compute times, due to 
the fact that a separate multislice simulation must be performed for each 
new probe position (Kirkland, 2020). 

In a previous study, Ophus (2017) introduced a new algorithm, 
named plane-wave reciprocal-space interpolated scattering matrix 
(PRISM) for simulation of STEM experiments. The PRISM algorithm 
involves calculating and storing a compact scattering matrix operator 
which can be rapidly applied to each of the probe wavefunctions to 
model their propagation through the sample. This algorithm can 
potentially increase the speed of STEM image simulations by multiple 
orders of magnitude. The PRISM algorithm was first implemented into 
the original Prismatic simulation code by Pryor et al. (2017). Since 
then, PRISM has been adapted for double-channeling STEM-EELS 
simulation by Brown et al. (2019); it has been separately implemented 
for image simulation by Brown et al. (2020) and Madsen and Susi 
(2021). 

Prismatic is intended for use as a fully-featured TEM/STEM 
simulation software for electron microscopy, for diverse use cases such 
as experimental validation, database generation, or teaching. It also 
serves as the reference implementation for the aforementioned PRISM 
algorithm. Prismatic is an open-source and cross-platform software 
package that can be easily installed, easily used, and that comes with a 
GUI. The software is primarily written in C++ with CUDA modules for 
GPU acceleration to take advantage of available computing and HPC 
resources and is readily integrated into other scientific open-source 
software for microscopy applications such as py4DSTEM (Savitzky 
et al., 2021). 

In this paper, we present Prismatic version 2.0, a software pack-
age for image and diffraction space simulations of electron scattering for 
both STEM and HRTEM. Prismatic v2.0 has many new basic features, 
such as performing HRTEM simulations, increased support for arbitrary 
aberrations, support for arbitrary STEM scan patterns, focal series sim-
ulations, and enhanced support for generalized input and output. We 
have also added several improvements to enhance the accuracy and 
speed of simulations, including a new approach for the correct sub- 
slicing of 3D atomic potentials with sub-pixel shifting, a refocusing 

approach to the scattering matrix calculation for PRISM simulations that 
increases accuracy for thicker samples and delocalized probes, and 
various post-processing methods for coherence or shot-noise limitations. 
We have added many upgrades to the code, including new pipelines for 
compiling, a unit-testing suite, an overhauled GUI system (previewed in 
Fig. 1), and pre-compiled Docker containers for ready-to-use in-
stallations of the command-line and pyprismatic interfaces. In this 
paper, we explain these methods and additions in detail, as well as 
demonstrate several new applications for Prismatic and some uses of 
the Python bindings in pyprismatic. 

2. Theory 

2.1. The multislice method 

We describe the electron beam using a complex wavefunction ψ(x, y, 
z), where 〈x, y, z〉 are the real space coordinate system. When consid-
ering only forward scattering, we can reduce the problem to the evo-
lution of a 2D wavefunction ψ(r) along the optical axis z, where r = 〈x, 
y〉. This evolution is described by the paraxial Schrödinger equation for 
fast electrons (Van Dyck, 1985) 

∂ψ(r)
∂z

=
iλ
4π∇

2ψ(r) + iσV(r)ψ(r), (1)  

where i is the imaginary constant and V(r) is the electrostatic potential, 
usually corresponding to the sample. The relativistically-corrected 
electron-matter interaction constant σ is given by 

σ =
2πγmeqeλ

h2 , (2)  

where γ, me, qe, λ, and h are the relativistic correction factor, the electron 
mass, the electron charge, the relativistically corrected electron wave-
length, and the Planck constant respectively. 

The two operators on the right-hand side of Eq. (1) do not commute 
so a widely utilized numerical approach to its solution is a split-step 
method first derived by Cowley and Moodie (1957). For small changes 
in z, Eq. (1) can be solved in two steps, taking first only the ∇2 term and 
then the V term into account. First, we divide up the sample into a series 
of N slices, Vn(r), which are 2D arrays that integrate the electrostatic 
potential contained in a given slice of thickness Δz, given by 

Vn(r) =
∫ z+Δz/2

z− Δz/2
V(r)dz. (3)  

The solution to Eq. (1) taking into consideration just V on the right-hand 
side is 

Fig. 1. Updated Prismatic 2.0 GUI. Previews of interactive tabs are shown in center panel.  
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ψ(r) = T(r)ψ0(r) = eiσVn(r)ψ0(r), (4)  

where ψ0(r) is the input wavefunction and T(r) is referred to as the 
transmission function. This is equivalent to the so-called “phase object” 
approximation which holds for samples thin enough to ignore the effects 
of thickness. For the next part of the split-step solution, where we as-
sume Vn(r) = 0, the operator ∇2 can be efficiently applied in Fourier 
space (Kazuo and Natsu, 1977; Kirkland, 2020), giving 

ψ(r) = ℱ̂
− 1
k→r

{
eiλΔz|k|2 ℱ̂ r→k[ψ0(r)]

}
(5)  

The term eiλΔz|k|2 , referred to as the propagation operator, uses the 2D 
reciprocal space coordinates k = (kx, ky), and the forward and inverse 2D 

Fourier transform operations denoted by ℱ̂ r→k and ℱ̂
− 1
k→r respectively. 

Eqs. (4) and (5) are alternately applied to calculate the final wave-
function after interacting with the sample, 

ψ(r) =
∏N

n=1
{ℱ̂

− 1
k→r[e

iλΔz|k|2{ℱ̂ r→k[eiσVn(r)]}]}ψ0(r), (6)  

which is typically referred to as the exit wave. This numerical solution is 
called the “multislice method” (Cowley and Moodie, 1957). It requires N 
transmission operations and N − 1 propagation operations, and is the 
most common simulation algorithm for modeling TEM experiments 
(Kirkland, 2020). 

Alternatively the operator-product in Eq. (6) can be encapsulated as 
single matrix equation (Sturkey, 1962) 

ψ(r) = 𝒮r,k ψ̂ 0(k), (7)  

where we have opted to start with the probe in reciprocal space on the 
right hand side with the exit-surface wave function on the left hand side 
being in real space. The concept of the scattering matrix is common in 
quantum mechanics for calculating scattering behavior of electrons and 
other charged particles (Weinberg, 1995) and is typically purely in 
reciprocal space. For our purposes it will be more convenient to use the 
reciprocal space to real space formulation in Eq. (7) since the STEM 
probe is compact in reciprocal space and the PRISM algorithm will 
involve cropping the exit wave in real space. The rows or columns of 𝒮
can be changed from real to reciprocal space or vice versa with the 

operation of the appropriate ℱ̂ r→k or ℱ̂
− 1
k→r applied either to the left or 

right side of 𝒮. 

2.2. Calculation of projected potentials 

The calculation of the atomic scattering potential Vn(r) is one of the 
most crucial aspects of scattering simulations. The discretization of the 
scattering potential limits the accuracy and total amount of information 
that can be transmitted and propagated; any artifacts created in the 
calculation of Vn(r) can lead to nonphysical behavior in the elastic 
scattering calculations. Many implementations of the scattering poten-
tial utilize the isolated atom approach, where the total potential is the 
sum of potentials of independent, isolated atoms such that 

Vn(r) =
∑

Vi(r) (8)  

where i is the index of each atom. The isolated atom approach, since 
each atom of a given species is independent and equivalent, can take 
advantage of a precomputed look-up table. Generally, this approach is 
computationally cheap and simple to implement, and correctly accounts 
for the dominant aspect of nuclear scattering but inherently does not 
capture bonding effects. Analytical scattering potentials do not exist for 
elements other than hydrogen; the rest of the atomic species are typi-
cally parameterized based on single atom scattering factors determined 
through Hartree–Fock calculations, like in the parameterization by 
Kirkland (2020) 

V(r) = 2π2a0qe

∑

i

ai

r
exp(− 2πr

̅̅̅̅
bi

√
)

+2π5/2a0qe

∑

i
cid

− 3/2
i exp(− π2r2

/

di)
(9)  

where a0 is the Bohr radius and ai, bi, ci, and di are fitted parameters. This 
parameterization can also be integrated analytically along the beam 
direction so that the contribution of an atom to its two-dimensional slice 
can be calculated directly 

Vz(r) = 4π2a0e
∑

i
aiK0(2πr

̅̅̅̅
bi

√
)

+2π2a0e
∑

i

ci

di
exp(− π2r2

/

di)
(10)  

where K0 is the modified Bessel function. 
However, 2D scattering potential calculations cannot perfectly cap-

ture the 3D scattering of real atoms, since atoms must first be assigned to 
discrete projected potential slices before integration – an explicitly 3D 
integration of the potential into the different potential slices can more 
accurately capture this 3D scattering (Lobato and Van Dyck, 2015). 
Simple isolated atom implementations are also often pixel-limited in the 
planar directions, such that the atomic center can only exist on discrete 
pixels. This can fail to capture the subtlety of the real positions of atoms, 
especially when considering thermal vibration effects. Sub-pixel accu-
racy, however, can be costly to implement and hard to achieve. One 
possible strategy is to forgo the use of a look-up table and instead 
integrate each atom directly on sub-pixel grids, which can become 
prohibitive for especially large cells. Alternatively, one could apply 
some sort of sub-pixel shift in the transverse direction, which can 
introduce artifacts into the scattering potential if implemented poorly. 
Alternative 3D integration methods for computing atomic potentials 
have been given by Lobato and Van Dyck (2015) and Madsen and Susi 
(2021). Atomic potentials can also be directly evaluated electron den-
sities as calculated using Density Functional Theory calculations, as by 
Madsen and Susi (2021). 

2.3. The plane-wave reciprocal-space interpolated scattering-matrix 
(PRISM) algorithm for STEM simulation 

In a conventional multislice simulation, each STEM probe position 
requires independent evaluation of the propagation through the po-
tential as described by Eqs. (5) and (6). Introduced in Ophus et al. 
(2016a) and implemented in Pryor et al. (2017), Brown et al. (2020), 
Madsen and Susi (2021), the PRISM algorithm is a STEM simulation 
technique for which scaling of the compute time with the number of 
probe positions is generally more favorable. In PRISM, instead of 
directly forming the incident probe wavefunction and propagating the 
wavefunction through the projected potential via the multislice algo-
rithm, we instead calculate and store the 𝒮-matrix in Eq. (7) for a basis 
set of incident plane waves. The 𝒮-matrix can be reused for any number 
of STEM probes once it has been calculated, and thus, we can trade the 
upfront computation of S for the much greater acceleration in the output 
calculation stage. Further speed ups for a modest loss of simulation ac-
curacy can be achieved through coarsening of the input plane-wave 
basis (by only calculating every fth plane wave from the original simu-
lation grid; f is known as the PRISM interpolation factor) and 
reciprocal-space interpolation of the output wave function (achieved by 
real-space cropping of the output wave to a square region measuring 1/f 
of the simulation grid). The reciprocal-space interpolation grants the 
user a large amount of control of the speed and accuracy of the simu-
lation, which could otherwise only be done in the multislice algorithm 
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by tuning the resolution of the projected potential or resampling of the 
diffraction patterns. For a more in-depth discussion of the PRISM algo-
rithm, we refer readers to Ophus et al. (2016a), or the recent updates to 
PRISM given by Brown et al. (2019) and Pelz et al. (2021). 

3. Methods 

3.1. Numerical calculation of 3D potentials 

We address the issues sometimes encountered with projection of the 
atomic potentials into single 2D slices by implementing 3D potential 
integration with sub-pixel accuracy of the atomic positions by use of a 
pre-calculated look-up table, which is sampled more finely than the 
multislice slice sampling in the propagation direction, alongside sub- 
pixel accuracy Fourier shifting of the potentials in the plane perpen-
dicular to propagation. Our implementation is designed to improve 
upon simple 2D integration in a manner that is robust in various simu-
lation conditions, is easy to understand and tune, and does not sacrifice a 
significant amount of computation. We first calculate the atomic po-
tential for each unique species in the system on a local pixel grid R = (xr, 
yr, zr), using the three-dimensional parameterization described in Eq. 
(9), where xr, yr are coordinates in the plane perpendicular to 

propagation and at the same resolution as the final potential field, and zr 
is the coordinate along the propagation axis at some integer sub-
sampling Nz of the final slice thickness t. Eq. (9) is evaluated out to 
maximum radius rmax, which along with the real space potential sam-
plings rx, ry, and t/Nz determine the dimensions of the grid R. The 
minimal coordinate of the atomic potential is R = (rx, ry, 0) which avoids 
the discontinuity otherwise present at R = 0. To prevent sharp steps in 
the potential at the extremities of rmax, we subtract the value of V(r) at 
the smallest extent of the atom in any of xr, yr, and zr and then clamp any 
negative values to zero such that 

Vlookup(r) = max[V(r) − V(rmin), 0.0], (11)  

where 

rmin = min [max (xr),max (yr),max (zr)] (12) 

This procedure is sketched in Fig. 2(a). The potential for each unique 
species is then stored in a look-up table after a 2D Fourier transform in x 
and y such that 

Vlookup(k, z) = ℱ̂ r→k{Vlookup(r)} (13)  

since the subpixel shifts will be applied in Fourier space. 

Fig. 2. 3D projected potential calculation. (a) Lookup tables Vlookup(r) of the potential for each atom are calculated out to some radius rmin. The potential at this 
radius V(rmin) subtracted so as to remove the abrupt step that would otherwise result at rmin when the potential was placed on the larger array. (b) Representative 
Fourier transform amplitude of atoms shown in (f)–(h). A slice of the x–z plane of the 3D projected potentials of a single Au atom (c) shifted one half slice along the z 
direction, (d) shifted one half pixel along the z direction, and (e) shifted one half pixel along both x and z directions. Circles represent position of atom. (f)–(h) Total 
projected potential of single Au atoms, corresponding to (c)–(e) respectively. (i) Line trace (top) taken from (b), showing the envelope function B(k) applied in 
Fourier space to dampen the large scattering angles and line traces of real space potentials (f)/(g) (red) and (h) (blue). v All images have square root intensity scaling 
to highlight the weakly scattering regions. 
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To achieve sub-pixel positioning of the ith atom, to position (xi, yi), in 
the plane perpendicular to the beam propagation direction we apply a 
Fourier shift to the transformed potential V(k, z) based on the difference 
between the rounded pixel position of the atom round(xi/xy) and its 
ideal fractional xi/rx position 

Vi,shifted(k, z) = V(k, z)⋅B(k)⋅exp(− 2πik⋅rshift) (14)  

where 

rshift = [xi
/

rx − round(xi
/

rx), yi
/

ry − round(yi
/

ry)],

B(k) is a soft bandwidth limit given by 

B(k) = sin2
{

π
2

min
[

max
(

0.95 − 2|k|/kmax

0.95 − 0.75
, 0.0

)

, 1.0
]}

applied to the potential in reciprocal space, and kmax is the maximum 
reciprocal space coordinate of the grid on which the lookup tables is 
constructed. Application of the bandwidth limit B(k) limits oscillations 

in real space. This applied shift moves the atom to the correct place in 
real space without creating significant artifacts in the potential in 
Fourier space (where the propagation calculation occurs) below the 
Nyquist limit. We note that a coarse real space sampling (i.e., large 
values for rx and ry) can inject oscillations into the tails of the potential. 
This can result in unphysical negative values of the scattering potential 
in real space. Vshifted(k, z) is then Fourier transformed back to real space 
upon which it is again bandlimited such that 

Vi(r) = ℱ q→r{Vi,shifted(k, z)}⋅rband (15)  

where 

rband =

⎧
⎪⎨

⎪⎩

1.0, (
xr

max(xr)
)

2
+ (

yr

max(yr)
)

2
≤ 1.0

0.0, otherwise
(16)  

This final potential is then added into the final cell array. Along the 
propagation direction, the superresolution z values of V(r) are simply 
binned to their closest rounding slice. We found that interpolation of the 
potential along the propagation direction caused little to no increase in 
accuracy at the expense of artifact introduction, and thus, was not 
implemented. 

3.2. STEM probe formation 

The most common probe configuration for STEM experiments is 
given by a circular aperture in the condenser plane. The use of fast 
Fourier transforms (FFTs) to implement the multislice solution to Eq. (1) 
and to set up STEM probes enforces periodic boundary conditions which 
results in interference artifacts as the tails of the STEM probe approach 
the edges of the simulation grid. We find that implementing these STEM 
probes in Prismatic by using a soft aperture minimizes these artifacts. 
Fig. 3 shows a comparison between STEM probes defined using hard and 
soft aperture edges. A hard aperture probe is defined by the function 

Ψ0(k) =

⎧
⎨

⎩

1 if |k| ≤ kprobe
0 if |k| > kprobe, (17)  

where kprobe defines the maximum scattering vector included in the 
STEM probe, and is proportional to the maximum scattering angle αprobe 
by the expression αprobe = λ kprobe. The soft aperture probe used in 
Prismatic is defined by 

Ψ0(k) = min

[

max

(
kprobe|k| − |k|2

||k ⊙ Δk||2
+

1
2
, 0

)

, 1

]

,

Ψ0(0) = 1,

(18)  

where Δk are the 2D pixel sizes in Fourier space, ⊙ is the Hadamard 
(element-wise) product, and || ⋅ ||2 is the 2-norm. The term in the de-
nominator of Eq. (18) is equal to the Fourier space pixel size Δk 
multiplied by the Fourier space coordinate k, which depends on the local 
orientation of k if the two pixel sizes are not equal. If these two pixel 
sizes are equal (typical of square simulation cells), Eq. (18) reduces to 

Ψ0(k) = min
[

max
(

kprobe − |k|
Δk

+
1
2
, 0
)

, 1
]

Fig. 3(a) and (b) show an example using hard and soft apertures 
respectively for a multislice simulation, or a full size PRISM simulation. 
These cases are fairly similar, though the rings corresponding to the 
probe tails become inaccurate after the third ring due to interference 
with probe tails on the opposite side of the grid resulting from the 
inherent periodic boundary conditions. 

In most cases this refinement will make only a minor improvement to 
simulation accuracy, but for smaller simulation cells in multislice, or 
smaller cropping boxes in PRISM simulations, using the correct aperture 

Fig. 3. Comparison of hard-aperture and soft-aperture STEM probes. Initial 
STEM probe defined with (a) a hard aperture edge, and (b) a soft aperture edge. 
Initial STEM probes for PRISM with fx = fy = 3, for (c) a hard aperture edge, and 
(d) a soft aperture edge. The soft edge minimizes artifacts resulting from the 
periodic boundary conditions inherent in all STEM simulations, PRISM simu-
lations are colored inside the cropping box in real space. 
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becomes more important. Fig. 3c and d show hard and soft apertures 
respectively for a PRISM f = 3 simulation. In the real space image of the 
STEM probe, the regions outside of the cropping box are shown in a grey 
color scale. The soft aperture produces two accurate probe tail rings, 
while the hard aperture is inaccurate for all probe tails. The hard 
aperture in Fig. 3c even produces an asymmetric center lobe of the STEM 
probe. These examples are at a deliberately lower resolution and smaller 
grid real-space size than for a typical STEM simulation to more clearly 
demonstrate the importance of using an accurate soft aperture function 
for defining the initial STEM probes. To our knowledge, this is a novel 
feature in Prismatic. 

3.3. Anti-aliasing of the transmission and propagation operators 

As both the multislice and PRISM algorithms rely on propagation 
through the calculation of successive discrete FFTs, we must prepare 
arrays and calculations in a way that prevents aliasing artifacts. Aliasing 
artifacts arise when signals of different frequencies become indistin-
guishable from each other due to the discrete sampling of the signals. To 
prevent aliasing of the propagation wave function Ψ, we multiply the 
array with a binary anti-aliasing mask which removes pixels above the 
Nyquist limit (1/2 the extent of the array) from the calculation at each 
propagation and transmission step. This method causes an intensity loss 
of the parts of the wave-function that are scattered to high angles due to 
the anti-aliasing aperture, and may cause some inaccuracies in electrons 
that might multiply-scatter back into low angles. Applying an anti- 
aliasing filter at the Nyquist limit completely prevents highly scattered 
electrons from “wrapping around” the wavefunction and scattering 
through the periodic boundary. An alternative approach for anti-aliasing 
is to apply anti-aliasing filters to both the propagated wave function and 
the projected potential slices at 2/3rds the extent of the arrays (Kirkland, 
2020; Lobato and Van Dyck, 2015). We note for clarity that in our 
implementation, the projected potential is not band-limited. One should 
set the real space sampling of the simulation such that the error con-
verges in the scattered regions of interest such that the application of the 
anti-aliasing aperture does not affect the interpretation of the simulation 
results. 

3.4. HRTEM simulations 

TEM simulation can be performed using the exact same methods as 
STEM multislice by replacing the incident wave function with a plane 
wave, i.e., 

Ψ0(k) =

⎧
⎨

⎩

1 if k = ktilt
0 otherwise  

where ktilt is the tilt of the beam. Since the S-matrix calculation in the 
PRISM method forms the transmitted STEM probe using a scattered 
plane-wave basis set, the implementation can be readily used for 
HRTEM simulations. In Prismatic, HRTEM simulations are now 
implemented through utilization of the S-matrix infrastructure, with 
added functionality for more granular control of the beam selection for 
propagating sets of plane waves simultaneously with the multislice al-
gorithm. Specific tilt ranges and selections can be controlled both 
through radial and rectangular mask generation, and through use of the 
PRISM interpolation factor (which coarsens the grid of tilts available), 
for example, to test different beam tilts or to model angular coherence. 
HRTEM simulations in Prismatic are focused to the middle of the 
sample cell instead of the entrance surface as implicitly done for STEM 
simulations. In simulation, this is accomplished through application of a 
defocus propagator to each beam in the S-matrix after its standard 
calculation. The final output is formally the 3D complex-valued S-ma-
trix, with unique plane wave tilts along the beam direction, which can be 
saved either as the complex wavefunction or as integrated intensities. 

3.5. Aberrations 

Coherent aberrations of the probe-forming lens in STEM and the 
image-forming lens in HRTEM simulations can be modeled through the 
inclusion of an aberration function χ when calculating the wave function 
in Fourier space such that 

Ψ(kx, ky) = Ψ0(kx, ky)exp[− iχ(kx, ky)] (19)  

where Ψ0 is the unaberrated wavefunction. χ can be expressed through a 
variety of appropriate basis sets (Krivanek, 1994; Thust et al., 1996; 
Uhlemann and Haider, 1998); in Prismatic, which now includes 
functionality to apply arbitrary sets of aberrations, we employ a unitless 
basis set similar to the one described in Ophus et al. (2016b). For ab-
errations with radial order m and azimuthal order n, the aberration 

function χ( k
→
) can be fully described for coherent aberrations as 

χ(kx, ky) =
∑

m

∑

n
(λ⋅|k|)m⋅Cmag

m,n

⋅{cos[n⋅Cang
m,n]⋅cos[n⋅atan2(kx, ky)]

+sin[n⋅Cang
m,n]⋅sin[n⋅atan2(kx, ky)]},

(20)  

where λ is the electron wavelength, Cmag
m,n and Cang

m,n are dimensionless 
coefficients describing the aberration magnitude in rads and azimuthal 
phase of an aberration, and atan2 is the 2-argument arctangent function 
which returns the polar angle of (kx, ky) in the correct quadrant. The 
dimensionless aberration coefficients are related to the convention in 
Ref. (Kirkland, 2011) which have units of length by Cmag

m,n =

Fig. 4. Example aberration phase plates. From top-left to bottom-right, 
spherical aberration, 3-fold astigmatism, axial coma, and an arbitrary mixture 
of aberrations at 300 kV. Borders represent a cutoff of 2 inverse angstroms. 
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2πĈ
mag
m,n /(mλ). With this basis set, it is relatively simple to describe ab-

errations and provide input data in the form of delimited text files. In 
Fig. 4, we showcase aberration phase plates at 300 kV up to 2 inverse 
angstroms, for spherical aberration, 3-fold astigmatism, axial coma, and 
an arbitrary mixture of the above with defocus (C2,0) and 4-fold astig-
matism (C4,4). 

3.6. Refocusing of the scattering matrix 

An inherent limitation of the PRISM algorithm lies within the 
interaction of the propagated probe and the cropping box applied to the 
scattering matrix. As the reciprocal-space sampling of the plane-wave 
basis set coarsens (by increasing the interpolation factor f), the crop-
ping box applied to the propagated plane-waves becomes smaller. At 
high interpolation factors, much of the information carried by the 
propagated wavefunction can become destroyed or otherwise compro-
mised as the beam spreads beyond the edges of the cropping box. The 
strong interaction of the beam at high interpolation factors thus severely 
limits the accuracy of the PRISM method. This becomes a more promi-
nent effect when simulating thick samples, due to the natural broad-
ening of the converged beam as it propagates through the sample, or 

when simulating STEM probes with large defocus values which are 
already large in extent. To overcome this limitation of the PRISM 
method while still retaining the computational speed-up achieved with 
large interpolation factors, we propose scattering matrix refocusing, an 
algorithmic technique which can be used to boost the accuracy of PRISM 
simulations with significant beam spread. 

The scattering matrix S, when calculated by the PRISM algorithm, 
represents a basis of propagated plane waves which are inherently in 
focus at the entrance surface of the sample. To reduce the severity of the 
converged probe interaction with the cropping box once the probe is 
calculated from S, we apply a free-space propagator to each beam within 
S to propagate the exit wave to a plane where the intensity distribution is 
generally known a priori to be more compact, 

Srefocused = S ⊗ P (21)  

where 

P(Δz) = ℱ k→r{exp(− iπλΔz|k|2)} (22)  

and is applied in Fourier space by application of the convolution theo-
rem. Srefocused can then be used to calculate the exit wavefunction 
without any further alterations to the image formation algorithm. Since 

Fig. 5. Simulations demonstrating refocusing of the 𝒮-matrix. (a) STEM probe focused at the entrance surface (top) of the sample, and (b) probe focused at the exit 
surface (bottom). The row cases considered in each row are (1) an empty cell, (2) small sample near top of cell, (3) small sample in middle of cell, (4) small sample at 
bottom of cell, and (5) sample running through entire cell. After 𝒮-matrix is propagated through the full cell, it can be refocused to any plane before intensity is 
calculated. STEM probe intensity column shows the radius containing different fractions of the probe as a function of defocus. Phase of all complex waves is shown 
using a cyclic color scale, similarly to Fig. 4. We note that these simulations are chosen with an arbitrary sample size and beam energy, and this schematic is intended 
to generally depict the behavior of a propagated scattering matrix undergoing refocusing. 
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the propagator in Eq. (22) imparts only a phase shift to each beam, the 
intensity of the exit wavefunction in the diffraction pattern, where STEM 
intensity measurements are recorded, is unaffected. 

One way to interpret the mechanism of matrix refocusing is as 
shifting of the optical plane at which the cropping box is applied. In the 
original PRISM algorithm, the cropping box is applied at the exit surface 
of the sample. With refocusing, the cropping box can instead be thought 
to be applied at the point along the optic axis where the propagated 
probe is most converged – therefore, the probe has minimal opportunity 
to interact with the cropping box and errors that may have otherwise 
been incurred by application of the cropping box itself are reduced. 

The process is illustrated in Fig. 5 where the refocusing procedure is 
applied to beams focused on the entrance, Fig. 5(a), and exit surfaces, 
Fig. 5(b), of different samples. The electrostatic potential V(r) of 
different fictitious samples is shown in the leftmost panel of the figure 
and includes samples with no atoms, atoms at the top surface, an atom 
mid-sample, an atom at the bottom surface and a single column of 
atoms. The simulated complex wavefunction of a STEM probe is plotted 
for each of the samples in the next column. For the vacuum sample the 
converged probe is seen to spread from its crossover point in Fig. 5(a) 
and condense to its crossover point in Fig. 5(b). For the cases where 
single atoms are introduced at the top, middle and bottom of the sample 
we see electron scattering to high angles emanating from the positions of 
these atoms. For the case of a column of atoms we see beam channeling 
behavior characteristic of STEM (Hovden et al., 2012) in Fig. 5(a) where 
the beam couples to the column at its crossover point atop the sample. 
This channeling behavior is diminished for the equivalent panel in Fig. 5 
(b) since the beam is not brought to cross over until the exit surface of 
the sample. The next 3 columns in the figure show how the constituent 
plane waves that form the basis of the 𝒮-matrix interact with the spec-
imen. In simulation we can “refocus” the exit surface wave function to 
any arbitrary plane within the specimen by freespace propagation of the 
exit wave as described previously and a depth section of the exit wave 
propagated to different planes is plotted in the second to last column of 
Fig. 5 for each of the different cases. The final column plots the radially 
integrated intensity of each wavefunction. We aim to find the plane 
where the wave-function is most compact and apply the PRISM cropping 
box after propagating the exit wave to this plane. For all but one of the 
cases in Fig. 5(a) this plane is close to the entrance surface of the 
specimen – i.e. the crossover point of the probe – for the case of the 
column of atoms channeling of the beam down the column means that 
the exit surface of the specimen is the plane where the exit wave function 
is most compact. In Fig. 5 the beam is always more compact toward the 
exit surface of the specimen. These results suggest that the original 
crossover point of the incident STEM probe is generally the plane where 
the beam is most compact after propagation even after interaction with 
the sample except for the case where strong channeling of the beam by a 
column of atoms occurs. This principle can be used to guide selection of 
the optimal plane for 𝒮-matrix refocusing and subsequent cropping. 

3.7. Post-processing 

A crucial aspect of bridging the interpretation gap between “perfect” 
simulated images to those acquired in experiment is to process the 
simulated image in ways that model experimental distortions and noise 
conditions. These corrections are becoming increasingly important 
given the advent of high-throughput workflows using machine learning, 
such as automated analysis (Zhang et al., 2020) and denoising (Vincent 
et al., 2021) with deep neural networks, which require large amounts 
training data with latent space distributions similar (or, ideally, equiv-
alent) to that of the target application data. In this release of Pris-
matic, we have implemented a small series of post-processing routines 
into the pyprismatic package to supplement the standard simulation 
routine so that coherence effects, dosage effects, and aberration effects 
as previously described can be easily applied to simulated data. 

3.8. Coherence effects 

An implicit assumption in image simulation is that electrons emanate 
from an ideal, infinitesimal point source, whereas in reality, imaging 
electrons are emitted from a finite area of the surface of the electron 
emitter with varying energies and thus some degree of quantum partial 
spatial and temporal incoherence. Spatial coherence effects for modern 
electron microscopes, equipped with field emission gun sources such 
that the distribution of incident angles is relatively small, can be 
accounted for through integration of independently propagated wave 
functions by assuming spatial coherence Allen et al. (2004). The 
detected wave function can then be described as 

Ψ(k) =
∫

Ψ0(k)exp[iχ(k + kβ)]p(kβ)dkβ (23)  

where k is the wave-vector nominally in the direction of propagation, p 
(kβ) is a probability density function describing the distribution of 
incident directions, and χ is the aberration function given by Eq. (20) 
which models the aberrations of the post-specimen HRTEM objective 
lens. Including the effects of spatial coherence in HRTEM simulation, 
then, can be easily achieved by simulating a set of tilted plane waves up 
to the spread of incident directions and performing incoherent aver-
aging of their intensities once aberrations effects have been included. 

For STEM simulations, we can apply spatial coherence effects by 
considering finite source-sizes through a convolution model. While the 
precise distribution describing source-size broadening effects can be 
quite complex (as shown when measured through holography (Verbeeck 
et al., 2012)), source-size effects on the detected image can be well 
approximated by the convolution of the final image intensity with a 
blurring kernel such that 

Iblurred(r) = I(r) ⊗ K (24)  

where I is the image intensity and K is a blurring kernel. 
Prismatic has implemented source-size effects for postprocessing 

of STEM images through convolution with standard kernels; kernel 
functions for Gaussian and Cauchy kernels are included, which can 
adequately represent the effects of source-size blurring for most uses 
(Verbeeck et al., 2012). Convolution is performed with unit kernel 
normalization such that the intensity distribution maintains its physical 
definition as a probability density function for detection of scattered 
electron. Source-size blurring by means of convolution can be applied 
independently and in any order with any other incoherent averaging 
procedure, such as the averaging over frozen phonon configurations. 

Chromatic aberration (Cc) is a temporal coherence effect that occurs 
as a result of the non-uniform energy of imaging electrons as emitted by 
the electron gun. Lower energy electrons are deflected more strongly by 
a magnetic lens than higher energy electrons, resulting in an energy- 
dependent focal point of the microscope lenses. Cc becomes the domi-
nant aberration when Cs corrective lenses are introduced and becomes 
more important when low energy beams are used for imaging, as shown 
by the Cc limited resolution 

rchr = Cc
ΔE
E0

β (25)  

where E0 is beam energy, ΔE is energy spread, β is the angle of collec-
tion, and Cc is the chromatic aberration coefficient. Ignoring any issues 
in instrument power supply, the standard deviation of defocus Δz can be 
obtained through the following relationship 

Δz = Cc
ΔE
E0

(26)  

where ΔE is the energy spread in the electron gun (Williams et al., 
2009). Assuming the spread of incident beam energies is small, temporal 
coherence effects can be analogously included as an integration over the 
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distribution of focal planes, as done for incident angles in Eq. (23). Thus, 
chromatic aberration effects can be accounted for in simulated results 
through incoherent averaging of propagated wavefunctions at a series of 
focal planes. 

3.9. Shot noise 

Modern STEM experiments are often noise limited by the maximum 
dose a sample can tolerate (Egerton, 2013). As a series of discrete 
electron scattering events, dose-limited noise profiles are well modeled 
by Poisson distributions. Applying Poisson noise to simulated images 
(which exist as evaluations of quantum-mechanical probabilities) is thus 
one of the most important post-processing steps for comparing simulated 
images and experimental images. 

Prismatic implements Poisson noise application for HRTEM im-
ages with electron dose measured in counts per area; for STEM images, 
dose is applied in counts per probe. For both, intensities are scaled by the 
relevant measure of electron dose and then pixel counts are sampled 
from a Poisson distribution using the scaled intensities as independent 
variances. To avoid degradation of the electron distribution statistics, 
application of Poisson noise is performed as the final step of post- 
processing for any simulated images. 

3.10. Unit tests 

An important aspect of sustainable open-source development is to 
create development resources that invite outside contributions. For 
scientific simulation and analysis software packages, it is also critical to 
ensure that workflows utilizing the package produce accurate, reliable, 
consistent, and reproducible outcomes over the software development 
lifetime. In the most recent release of Prismatic, we have imple-
mented a unit test suite that addresses some of these needs by testing the 

performance of modular sections of the code, ensuring that the new 
functions run accurately with respect to a set of defined behaviors. The 
unit test suite offers developers a simple and convenient development 
space to test new features and ensure that new features do not 
compromise the core functionality of the source code. For example, a 
Prismatic unit test testing data input and output routines might check 
that data are stored and read consistently for all arrays regardless of 
dimensionality or that the 2D vs 3D potential integration methods return 
physically consistent results. A new feature with a well-written unit test 
is much more easily adopted into Prismatic than untested code, and 
provides another route to invite community contribution to our open- 
source package. Prismatic’s test suite was implemented with the 
Boost unit test framework, a light-weight open-source library for inte-
grating unit tests.1 

4. Results and discussion 

The previously described multislice and PRISM algorithms, as well as 
HRTEM simulation, S-matrix refocusing, simulation series, and arbitrary 
probe positions, have been implemented in the newest release of 
Prismatic, alongside utility features such as data importing and an 
updated GUI. Brief discussion of these implementations will follow, to 
serve the ongoing need of documenting open-source scientific software. 
Relevant case studies to the microscopy community will be shown in 
conjunction with each major feature that is discussed. 

Fig. 6. A STEM imaging simulation of a WS2 bilayer, with a twist angle of 7.34◦. (a) Projected potentials of 8 frozen phonon configurations. (b) Output center-of- 
mass measurements, which were used as inputs for (c) the sample’s reconstructed phase using the iterative method described in Savitzky et al. (2021). (d) Slices of 
the output virtual images from annular detectors, with the intensity of each bin normalized. 

1 The Boost library is an open-source, platform-independent C++ library 
aimed at extending the capabilities of the standard template library with 
minimal overhead, see https://www.boost.org 
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4.1. Running a STEM imaging simulation 

One of the primary uses of Prismatic is to perform imaging sim-
ulations for STEM experiments. Fig. 6 shows one such example, simu-
lating the interaction of a STEM probe with a bilayer of WS2 with a twist 
angle of 7.34◦. This simulation was performed using pyprismatic 
with these settings:  
m = pyprismatic.Metadata() 

m.E0 = 200 

m.probeStep = 0.2 

m.algorithm = “p” 
m.interpolationFactor = 2 

m.save3DOutput = True 

m.saveDPC_CoM = True 

m.savePotentialSlices = True 

m.probeSemiangle = 21 

m.potBound = 3.0 

m.numFP = 8  

Fig. 6a shows the projected potentials for 8 different frozen phonon 
configurations, using the 3D integrated atomic potentials. These arrays 
can be saved in the output HDF52 file, for further quantitative analysis. 

In this simulation, we have stored the outputs of two common STEM 
imaging modalities using additional “save” parameters. The first output 
is the expectation value of the diffracted STEM probe’s momentum, 
shown in Fig. 6b for the kx and ky directions. The changes in the probe’s 
“center-of-mass” (COM) momentum 〈kCoM(r)〉 as measured in the 
diffraction plane, 
〈

kCoM(r)

〉

=

∫
|ℱ̂ r→kψ(r)|2 k dk
∫
|ℱ̂ r→kψ(r)|2 dk

(27)  

as it is scanned across atomic sites is clearly visible as an initial rise and 
then fall for each site. These signals can be directly measured in a STEM 
experiment, either by segmented detectors (Shibata et al., 2010) or from 
pixelated detectors (Ophus, 2019; Müller-Caspary et al., 2019) as in the 
simulation here. These measurements are usually intended for differ-
ential phase contrast (DPC) measurements. There are various ways to 
reconstruct the phase shift of the sample from these COM-DPC signal 
channels, including the iterative method described in Savitzky et al. 
(2021) and shown in Fig. 6c. 

The second output is for monolithic annular detectors, which are 
commonly used for annular bright field or dark field imaging. For 
maximum flexibility, Prismatic integrates the diffracted probe in-
tensity using virtual detectors shaped in concentric rings. These rings are 
finely sampled (the default bin width is 1 mrad), so that the user can 
generate many different annular detector configurations from a single 
simulation. For example, in this simulation a bright field image can be 
generated by summing the intensity outputs from 0 to 21 mrads. The 
contrast of the different bins are shown as vertical slices in Fig. 6d. 

4.2. Running a 4D-STEM simulation 

Fig. 7 shows 4D-STEM outputs from a simulation of the same WS2 
sample shown in Fig. 6. The projected potentials and probe positions are 
shown in Fig. 7a and b, while the diffracted probe intensities are shown 
in Fig. 7c. These probe positions span 3 atomic sites, and the DPC signal 
at these sites manifests as a shift of the average moment towards these 
sites. Additionally, when some portion of the STEM probe overlaps with 
these sites, a significant number of electrons are scattered outside of the 
initial probe’s angular range. The simulation settings of this example are 

nearly identical to the previous simulation, except for these changes:  
m.probeStep = 0.5 

m.save4DOutput = True 

m.scanWindowX = (0.0, 0.1) 

m.scanWindowY = (0.0, 0.1)  

Note that in Fig. 7a, the potentials have been shifted by half of the 
total cell dimensions in x and y, in order to place the probe positions in 
the center of the figure. No discontinuity is visible at the cell boundaries, 
due to the periodicity of the input cell and the simulation. 

Fig. 7. A 4D-STEM simulation of a WS2 bilayer, with a twist angle of 7.34◦. (a) 
Projected potential, and (b) enlarged projected potential with probe positions 
overlaid. (c) Diffraction space images for the probe positions given in (b). Note 
that 2 separate intensity ranges and color maps were used inside and outside of 
the initial STEM probe angular range. 

2 The data storage format known as “hierarchical data format” version 5 
(HDF5) is aimed at storing large amounts of data for which libraries and APIs 
are freely available see, https://www.hdfgroup.org/solutions/hdf5/. 
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4.3. Running an HRTEM imaging simulation 

Performing HRTEM simulations in pyprismatic is similarly sim-
ple, with notation as follows for a plane wave simulation with complex 
valued output (before integration into intensity):  

m.algorithm = “t” 
m.saveComplexOutputWave = True  

We include example Jupyter notebooks for other imaging scenarios 
in the Prismatic repository. 

4.4. Comparative thermal convergence of potential parameterization 
methods 

The previous version of Prismatic used 2D lookup tables for the 
projected atomic potentials. In this release, we have implemented 3D 
lookup tables for the atomic potentials with subpixel shifting of the 
atomic sites as previously described above. The 3D potential integration 
scheme with subpixel shifting can improve the accuracy of a scattering 
simulation by offering a more realistic representation of a sample in 
terms of its projected potential. This is accomplished through more ac-
curate accounting of atomic positions along the beam direction via 3D 
integration and perpendicular to the beam direction through subpixel 
shifting. Calculation of the projected potential is thus much less sensitive 
to the input simulation parameters such as slice thickness and projected 
potential resolution. In a 2D integration scheme, incorrect setting of 
these parameters can introduce artifacts; for example, atoms can jump 
unstably across slices and from pixel to pixel in the transverse direction 
under thermal perturbations. Here, we examine further how the two 
projected potential integration techniques compare under frozen 
phonon convergence tests. Since these schemes generate fundamentally 
different projected potentials at a given level of resolution, we can 
expect them to display qualitatively different convergence behavior over 
a range of temperature conditions. 

To investigate the comparative convergence behavior of the pro-
jected potential integration schemes with respect to number of frozen 
phonons, we simulated both STEM and HRTEM images of twisted 
bilayer WS2 at a 7.34◦ moiré angle. The convergence of scattering sim-
ulations with respect to the number of frozen phonon configurations for 
two-dimensional materials requires more frozen phonons than for a 
thicker sample because fewer unique atomic configurations can be 

sampled in the beam direction for any given frozen phonon configura-
tion. Some results studying the precise thermal convergence of scat-
tering simulations include those by Aarholt et al. (2020). The moiré cells 
were simulated at 80 kV with a real space potential input resolution of 
0.075 Å, a 2 Å slice thickness, and a sampling factor of 40 for 3D po-
tential integration. 128 unique frozen phonon configurations were 
generated for each simulation, with increasing Debye–Waller factors 
from 0.01 to 0.16 in multiplicative steps of 2 representing five distinct 
temperatures for the sample; results for each frozen phonon were saved 
independently. STEM simulations utilized the PRISM algorithm at an 
interpolation factor of 2 and a probe step size of 25 pm over a 16×
reduced window of the input cell. 

Convergence results are shown in Fig. 8. Convergence was measured 
at each of these five represented temperatures for HAADF STEM with 
detector angles between 60 and 120 mrad; for ABF STEM with detector 
angles between 10 and 30 mrad; and for HRTEM with a single untilted 
plane wave. To measure convergence, we used a k-fold cross-validation 
based scheme. For each number N of frozen phonons averaged, we 
generate 64 unique subsets of N configurations from the set of 128 total 
configurations. We then form the incoherently averaged image for each 
subset, measure the pixel-wise standard deviation of the intensities be-
tween the different subsets, and finally measure the mean over the field- 
of-view of the standard deviations. At no point are results from the 
differing projected potential integration schemes directly compared. 

Here, we note that the convergence rate with respect to frozen 
phonons is largely similar across both simulation modes and tempera-
tures. Overall cross-validation errors for both schemes drop as temper-
ature drops. This is expected, as there is less variance in the overall 
atomic positions of the sample. At higher temperatures, the 3D potential 
with subpixel shifting scheme has comparatively higher cross-validation 
error, which drops below the 2D potential scheme without subpixel 
shifting as the temperature decreases and progressively drops faster. 
Crossover temperatures for cross-validation error between the two 
schemes occur at different points for HAADF STEM as compared to ABF 
STEM and HRTEM. The crossover point ultimately results from the 
difference in convergence behavior between the two schemes and can be 
understood through a sampling argument – it is likely primarily a result 
of the subpixel shifting. Since the 2D potential scheme must place atoms 
on top of discrete pixels, it is essentially sampling a small finite set of 
configurations for each atom, while the 3D potential with subpixel 
shifting samples the true continuous distribution. At high temperatures, 

Fig. 8. Thermal convergence series for simulations of twisted bilayer WS2. Results shown for HAADF-STEM (left), ABF-STEM (middle), and white-atom HRTEM 
(right). Convergence error is measured through cross-validation of sets of frozen phonon configurations (see main text for full description of error measurement). Top 
plots in each column represent five different temperature simulations with convergence error measured for sets of 2 through 64 frozen phonon configurations; labels 
indicate input Debye–Waller factor for RMS displacement of atomic positions. Bottom plots in each column show the trend in convergence error as a function of 
inverse temperature for simulations with 64 frozen phonon configurations. Colors in the top row indicate relative temperature. Solid lines indicate 2D potential 
integration and dashed lines indicate 3D potential integration with subpixel shifting. 
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it is easy for the 2D potential scheme to saturate a statistically significant 
sampling of this finite set, while at low temperatures, it becomes difficult 
to perturb the atom far enough to generate different projected potential 
slices. In contrast, the 3D potential with subpixel shifting scheme can 
appropriately sample its distribution of frozen phonon configurations at 
all temperatures, leading to improved convergence behavior at low 
temperatures and slightly worse convergence at high temperatures. 
Again, we note that the representation of the sample given by the 3D 
potential with subpixel shifting integration scheme is fundamentally 
more physically realistic and consistent against simulation parameters 
than 2D potentials without subpixel shifting. While the new scheme is 
more computationally expensive, the importance of this difference in 
physicality should guide the usage of the technique in simulations, 
especially since, for large scale simulations, the computation of the 
projected potential is still an overall negligible cost as compared to the 
computation of wavefunction propagation. 

4.5. Comparison of soft and hard probe apertures in STEM diffraction 

The differences in aliasing behavior between soft and hard STEM 
probe apertures can be hard to predict for an actual simulation. It is 
important to remember that aliasing effects may not always arise as 
ringing artifacts in simulations. In Fig. 9, we demonstrate the differences 
in simulation behavior between soft and hard aperture probes for STEM 
diffraction of a SrTiO3 crystal at 80 kV with a 4 mrad probe, for both 
multislice and PRISM simulations. The PRISM simulations were run with 
an interpolation factor of 2. All simulations were run with 3D potentials, 
a 0.1 Å pixel size, and 64 frozen phonons. For the multislice simulations, 
there is no discernible difference in the intensity or contrast of the dif-
fracted disks between the soft apertures. For the PRISM simulations, 
however, there is a significant difference in the contrast (and apparent 
shape) of the disks, and it is seen that the soft aperture PRISM simulation 
much more accurately matches that of the multislice simulation. While 

not every use case or simulation may show such drastic differences, the 
soft aperture probe will overall improve the accuracy of any simulation 
and is more likely to be a crucial component in improving the quality of 
inexpensive simulations, with coarser samplings and smaller input 
simulation cells. 

4.6. Low-dose STEM with source size effects 

The effect of a finite source-size upon the simulated STEM images of 
twisted bilayer WS2 at 100 kV are shown in Fig. 10, panels (a) and (b) for 
the as-simulated HAADF image and the HAADF image convolved with a 
Gaussian kernel with a FWHM of 80 pm, respectively. The effect of 
Poisson noise is demonstrated in Fig. 10 panel (c) for a dose rate of 5000 
counts per probe. 

4.7. Limited coherence effects in STEM simulations 

In Prismatic, it is now easy to account for coherence effects caused 
by chromatic aberration by performing defocus series simulations. As a 
case study, we present convergence results for chromatic aberration 
effects against the number of defocus planes simulated. STEM simula-
tions of twisted bilayer WS2 at a 7.34◦ moiré angle were performed at 
20 kV and 100 kV over a defocus range of ±150 Å and ±30 Å, respec-
tively, with 65 focal planes each, a potential resolution 0.1 Å and a probe 

Fig. 9. STEM diffraction simulation of SrTiO3. Comparative diffraction simu-
lations for STEM diffraction of SrTiO3 at 80 kV and with a 4 mrad probe sem-
iangle for multislice and PRISM simulations with both soft and hard probe 
apertures. Simulation of a 12 × 12 × 16 unit cell block of SrTiO3 with 64 frozen 
phonons; input probe is placed above the center of a Sr site. Color scale is set to 
have equivalent contrast between multislice and PRISM simulations. 

Fig. 10. HAADF-STEM image of twisted bilayer WS2. (a) As-simulated, (b) 
convolved with Gaussian source-size of 80 pm FWHM, and (c) convolved with 
Gaussian source-size of 80 pm FWHM and with applied Poisson noise of 5000 
counts per probe. 
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step size of 20 pm. We note for clarity that each defocus series was 
performed with a single execution of the simulation code, and that 
Prismatic provides new output formats that allow for easy data access 
for such simulation series. 

The PRISM method was used with an interpolation factor of 2; we 
note that PRISM is a doubly advantageous technique for defocus series 
simulations even at an interpolation factor of 1 as the scattering matrix 
can be reused for each defocus value, whereas in multislice, each probe 
for each defocus must be simulated independently. For convergence, we 
measure the pixelwise root-mean-square error of a series of images 
averaged against differing numbers of defocus planes. In computing the 
defocus spread Δz, we used a fixed energy spread for both operating 
voltages; the defocus spreads we used were 50 Å and 10 Å for beam 
energies of 20 kV and 100 kV, respectively. Results for these two simu-
lations are shown in Fig. 11. As expected, the fraction of probe error at 
100 kV in both bright field and HAADF detectors is very low in all cases; 
at 20 kV, where the energy spread is more substantial, the error is more 
significant when including less than four additional defocus planes (five 
planes in total). 

4.8. Limited coherence effects in HRTEM simulations 

With the reuse of the S-matrix infrastructure, in Prismatic, we 

have easy access to tilt-series HRTEM simulations. Tilt series can be used 
to model coherence effects, for example, or experimental procedures like 
precession electron diffraction. Here, we will showcase simulation re-
sults taking advantage of this infrastructure to model spatial coherence 
effects that can arise in HRTEM experiments. We continue with WS2 as a 
model material. This time, to ease the image interpretation, we simulate 
a monolayer WS2 cell that is approximately 317 Å by 183 Å in size. 
Simulations were performed at 300 kV with an input real-space resolu-
tion of 0.075 Å in each direction; eight total simulations were run, each 
with four values of defocus – 2.6 nm, 9.8 nm, 31.4 nm, and 56.9 nm 
relative to the middle of the monolayer – to represent different contrast 
mechanisms and over two ranges of output tilts, ±3 mrad and ±15 mrad. 
For each set of simulated tilts, we perform incoherent averaging of the 
plane-waves with Gaussian weights up to ±3σ to emulate spatial 
coherence effects, where σ is the standard deviation of the beam tilt. We 
similarly include temporal coherence effects by incoherently averaging 
each tilt series over a range focal planes with Gaussian weights for a 
focal spread with 10 Å standard deviation for each simulation. Results 
are shown in Fig. 12 for coherence levels σ of 0.0, 0.3, 1.0, and the 
unrealistically poor 5.0 mrad. As shown, emulating spatial coherence 
effects in this manner captures well the loss of contrast at high defocus. 
For small σ a large input cell is needed to achieve proper sampling of tilts 
as the resolution in Fourier space is inversely proportional to the sample 
size. Therefore, modeling these effects is more computationally inten-
sive, particularly with regards to memory, than a typical HRTEM 
simulation; on a workstation with a 16 core Intel Xeon Gold 6130 pro-
cessor, 250 GB system RAM and a Nvidia Quadro P5000 GPU (16 GB 
RAM), these simulations took approximately 1 min to perform for each 
frozen phonon, as compared to the sub-10 s simulation time for single 
plane-wave imaging. 

4.9. Matrix refocusing of STEM simulations with large defocus 

Focal series experiments are common in studies that involve 3D 
reconstruction, as they provide varying sets of information with respect 
to the sample phase. In order to validate these methods, such as through- 
focal tomography (Hovden et al., 2014), we often need to simulate large 
samples over wide-ranging defocus values. Matrix refocusing gives us an 
opportunity to utilize the computational advantages of the PRISM al-
gorithm to model such large systems under extreme defocus conditions 
without incurring significant error that otherwise arises in the PRISM 
algorithm at large defocus. To demonstrate the utility of S-matrix refo-
cusing, we present three CBED diffraction simulations of a 5 nm diam-
eter Au nanoparticle in vacuum, tilted to an arbitrary off-zone axis. We 
compare the multislice algorithm, the PRISM algorithm with an inter-
polation factor of 2, and the PRISM algorithm with the same interpo-
lation and with refocusing. The simulation was performed at 200 kV 
with a semi-convergence angle of 21 mrad and a real-space atomic po-
tential resolution of 0.1 Å. 

Fig. 11. Convergence series of chromatically-aberrated STEM simulations. 
Results for BF (red) and HAADF (blue) STEM for twisted bilayer WS2 at 20 kV 
(solid) and 100 kV (dashed) with defocus spreads of 50 Å and 10 Å, respec-
tively. Error is measured as the root-mean square error of total probe intensity 
against the fully averaged STEM image. 

Fig. 12. Simulated HRTEM images of monolayer WS2 at 300 kV with limited coherence. Results shown at different contrast maxima (increasing defocus left to right) 
and different levels of coherence (increasing tilt spread top to bottom). Images at a given tilt spread are incoherently averaged with Gaussian weights over tilted plane 
waves ±3σ from the untilted beam. All results are similarly incoherently averaged over a focal spread of 10 Å. 
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Results comparing the accuracy of PRISM with and without refo-
cusing to the results of the multislice algorithm are shown in Fig. 13 for 
two STEM probes propagated through the center and through the edge 
of the nanoparticle over a defocus range of ±250 nm (measured relative 
to the center of the nanoparticle). Starting from the center of the 
nanoparticle, the PRISM algorithm without refocusing begins to accu-
mulate significant amount of error, particularly within the center disk, 
as the applied defocus reaches large values (in this simulation, around 
±100 nm). In contrast, PRISM with refocusing shows much more stable 
behavior through this defocus range within the center disk and accu-
mulates only a small amount of error outside the beam convergence 
angle. At the side of the nanoparticle, both simulations show relatively 
consistent behavior when measuring error in binned virtual detector. 
There is a notable error in both methods at the edge of the center disk, 

which can be mostly attributed to bin assignment and precision artifacts 
when integrating the full pattern to the virtual detector in the simula-
tion. When comparing against the actual 2D CBED pattern before inte-
gration onto the virtual detector, we can clearly see a great discrepancy 
between results using PRISM with and without refocusing. Visual com-
parison of the features within the center disk shows that, at large defoci, 
information and structure are almost completely lost without refocus-
ing, whereas applying refocusing to the scattering matrix maintains 
much more of the information at high defocus values. This may be 
important, for example, in generating CBED images for use in applica-
tions such as machine learning, where visual similarity may be more 
important than integrated measures of intensity. Finally, in spite of the 
results presented here, we note that application of the refocusing tech-
nique is highly specific to certain imaging conditions and samples of 

Fig. 13. Matrix refocusing results for highly defocused STEM of Au nanoparticle. Comparison of error for STEM simulations using the PRISM algorithm with and 
without matrix refocusing at an interpolation factor of 2, as measured against the equivalent multislice simulation. (a) Projected potential for a spherical Au 
nanoparticle with 5 nm diameter, tilted off-axis with center-probe and side-probe positions marked (blue and green, respectively). (b) CBED patterns for multislice 
(left), PRISM (middle), and PRISM with refocusing (right); panels are split between in-focus (left side) and 250 nm overfocused (right side). (c) Heatmaps of absolute 
error of PRISM (left) and PRISM with refocusing (right) as measured against multislice over a range of ±250 nm of defocus and over scattering angles from 0 to 
60 mrad. Top panels in (b) and (c) represent probes propagated through the center of the nanoparticle, while bottom panels represent probes propagated along the 
side of the nanoparticle. We note the horizontal error lines visible in (c) are largely a result of coordinate artifacts that arise when comparing PRISM and multislice 
results; error results presently shown in (c) include slight blurring by a Gaussian kernel for purposes of visual clarity. 
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interest and is not a broadly applicable technique to PRISM simulations 
overall, and that the use of refocusing may be guided by investigating its 
performance on the metrics of interest for one’s own application. 

5. Conclusions 

In this manuscript, we have presented version 2.0 of our Prismatic 
code for simulation of transmission electron microscopy experiments. 
This version has added various features, including 3D potential inte-
gration, HRTEM plane wave simulations, refocusing of the 𝒮-matrix for 
STEM simulations with large probe defocus values, more accurately 
sampled STEM probes, and unit tests for more reliable updates of the 
code. In addition we have also added several post-processing methods, 
including simulation of coherence limits generated by source size and 
energy spread effects, and shot noise calculations using Poisson random 
distributions of electron counts. With these additions, Prismatic is 
more useful to researchers who are performing STEM and TEM 
simulations. 

6. Code availability 

The source code for Prismatic is available at our Github re-
pository. For other downloads, walkthroughs, and information, please 
visit prism-em.com. Simulations ran using pyprismatic to produce 
figures in the manuscript can be found in the source code repositories. 
Other scripts and data used can be made available upon request. For 
purposes of manuscript review, the most current development version of 
the source repository can be found at the author’s development re-
pository. A full updated software release is planned to be timed with 
publication of this manuscript. 
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Verbeeck, J., Béché, A., Van den Broek, W., 2012. A holographic method to measure the 
source size broadening in STEM. Ultramicroscopy. ISSN 03043991. doi:10.1016/j. 
ultramic.2012.05.007.  

Vincent, J.L., Manzorro, R., Mohan, S., Tang, B., Sheth, D.Y., Simoncelli, E.P., 
Matteson, D.S., Fernandez-Granda, C., Crozier, P.A., 2021. Developing and 
Evaluating Deep Neural Network-Based Denoising for Nanoparticle TEM Images 
with Ultra-Low Signal-to-Noise. 

Weinberg, S., 1995. The Quantum Theory of Fields, vol. 2. Cambridge University Press. 
Williams, D.B., Barry Carter, C., 2009. Transmission Electron Microscopy: A Textbook for 

Materials Science, vols. 1–4. ISBN 978-0-387-76500-6. http://www.loc.gov/cat 
dir/enhancements/fy0820/96028435-d.html.  

Yang, Y., Chen, C.-C., Scott, M.C., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F., Theis, W., 
Zhou, J., et al., 2017. Deciphering chemical order/disorder and material properties 
at the single-atom level. Nature 542 (7639), 75–79. 

Zhang, C., Feng, J., Rangel DaCosta, L., Voyles, P.M., 2020. Atomic resolution convergent 
beam electron diffraction analysis using convolutional neural networks. 
Ultramicroscopy 210, 112921. 

L. Rangel DaCosta et al.                                                                                                                                                                                                                       

https://doi.org/10.1039/C3NR00934C
https://doi.org/10.1039/C3NR00934C
https://doi.org/10.1017/S1431927621000477
https://doi.org/10.1017/S1431927621000477
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0175
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0175
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0175
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0180
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0180
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0180
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0185
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0185
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0190
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0190
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0195
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0195
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0195
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0200
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0200
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0205
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0205
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0205
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0210
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0210
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0210
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0215
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0215
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0215
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0215
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0220
http://www.loc.gov/catdir/enhancements/fy0820/96028435-d.html
http://www.loc.gov/catdir/enhancements/fy0820/96028435-d.html
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0230
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0230
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0230
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0235
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0235
http://refhub.elsevier.com/S0968-4328(21)00132-3/sbref0235

	Prismatic 2.0 – Simulation software for scanning and high resolution transmission electron microscopy (STEM and HRTEM)
	1 Introduction
	2 Theory
	2.1 The multislice method
	2.2 Calculation of projected potentials
	2.3 The plane-wave reciprocal-space interpolated scattering-matrix (PRISM) algorithm for STEM simulation

	3 Methods
	3.1 Numerical calculation of 3D potentials
	3.2 STEM probe formation
	3.3 Anti-aliasing of the transmission and propagation operators
	3.4 HRTEM simulations
	3.5 Aberrations
	3.6 Refocusing of the scattering matrix
	3.7 Post-processing
	3.8 Coherence effects
	3.9 Shot noise
	3.10 Unit tests

	4 Results and discussion
	4.1 Running a STEM imaging simulation
	4.2 Running a 4D-STEM simulation
	4.3 Running an HRTEM imaging simulation
	4.4 Comparative thermal convergence of potential parameterization methods
	4.5 Comparison of soft and hard probe apertures in STEM diffraction
	4.6 Low-dose STEM with source size effects
	4.7 Limited coherence effects in STEM simulations
	4.8 Limited coherence effects in HRTEM simulations
	4.9 Matrix refocusing of STEM simulations with large defocus

	5 Conclusions
	6 Code availability
	Declaration of Competing Interest
	Acknowledgements
	References




