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Bao Liu

UCSD CSE Dept.

9500 Gilman Dr.
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Abstract

Finding maximum instantaneous power consumption helps estimation of worst-case supply voltage drop and

lifetime of a VLSI system. We observe signal correlations represented by logic inversions, and present a maximum

subgraph two-coloring formulation for the problem. We show the problem is NP-hard, and the complexity comes

from the presence of reconvergent fanouts besides inputs signal correlations. We further develop an efficient

algorithm for general VLSI designs of practical sizes. Our experimental results on the ISCAS’89 benchmark show

our subgraph coloring algorithm achieves 4.31% less standard deviation of maximum instantaneous power estimate

than the greedy transition assignment algorithm in [12]; and a 2.82% standard deviation of maximum instantaneous

power estimate with 2-3 orders of runtime speedups compared with pattern-dependent simulation techniques.

1 Introduction

Continuous VLSI process technology advancement integrates millions of gates on a single chip and introduces

increasing power consumption[8]. Average power consumption causes chip heating effect and is responsible for

battery life; worst case instantaneous power consumption relates to supply voltage drop and affects lifetime of

devices and reliability of a VLSI system[9]. Estimation techniques are needed for both average and worst case

instantaneous power consumption.

Several approaches have been proposed on maximum instantaneous power (MIP, i.e., worst case power con-

sumption in a clock cycle) estimation. Applying the theory of extreme order statistics and maximum likelihood

estimation reduces the number of input patterns for MIP simulation with given accuracy and confidence[13]. Cal-

culating all possible signal transitions in a clock cycle helps in building a maximum envelope currents waveform

for each net and providing a MIP upper bound of a netlist[6]. Integer linear programming finds MIP of a small

simple gate netlist; MIP of a larger design can be bounded by sum of MIP estimates of each partition[5]. Relaxing

integer variables enables continuous optimization and provides a MIP upper bound[11]. A weighted maximum-

satisfiability formulation enables a branch-and-bound method in solving the problem[2]. A more scalable greedy

algorithm assigns signal transitions to nets in decreasing order of net capacitance, with each assignment followed

by a justification procedure, which includes backtracing and implication of typical ATPG (Automatic Test Pat-

tern Generation) algorithms[12]. A genetic algorithm assigns signal transitions to nets in decreasing order of net

capacitance times maximum possible signal toggling number of the net in a clock cycle[4].

We observe signal correlations introduced by possible logic inversions across each cell instance, and formulate

the problem as maximum subgraph two-coloring. We show that the problem is NP-hard, and the complexity

comes from the presence of reconvergent fanouts besides input signal correlations. We further develop an efficient

algorithm for general designs of practical sizes. Our experimental results on the ISCAS’89 benchmark show our

subgraph coloring algorithm achieves 4.31% less standard deviation of maximum instantaneous power estimate

than the greedy transtion assignment algorithm in [12]; and a 2.82% standard deviation of maximum instantaneous

power estimate with 2-3 orders of runtime speedups compared with pattern-dependent simulation techniques.

The rest of this paper is organized as follows. We expand our analysis from a simple gate to general netlists in

section 2. Our experimental results on the ISCAS’89 benchmark are presented in section 3 before we conclude in

section 4.
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Figure 1: A simple gate consumes maximum instantaneous power when all inputs and outputs take simultaneous

transitions.

2 Analysis, Formulation and Algorithm

2.1 Signal Transition Based Power Consumption

Power consumption of a CMOS design consists of four parts: (1) dynamic power which charges capacitive loads,

(2) glitch power from additional transitions of a signal before settling to a steady state (which is sensitive to input

signal propagation delays), (3) short-circuit power from instantaneous short circuit between the power and ground

lines during a signal transition (which grows with a slow signal transition), and (4) static leakage power.

P = Pdynamic + Pglitch + Pshortckt + Pstatic

= ∑
i

(0.5CiV
2
ddNi + Pg/tNtoggleNi + Ps/tNi)+ Pstatic

= ∑
i

αiNi + Pstatic (1)

with capacitance Ci, transition number Ni, additional toggling number Ntoggle for each transition, glitch power

for each toggling Pg/t , and short circuit power for each transition Ps/t of a net i, assuming all transitions swing

between supply voltage Vdd and ground voltage 0. Finding maximum α weighted signal transitions gives maximum

instantaneous power consumption.

2.2 Logic Inversion Based Maximum Number of Signal Transitions

Our analysis on finding maximum weighted signal transitions starts with a few observations.

Observation 1 A simple (AND, OR, NOT) gate consumes maximum instantaneous power when all inputs and

output of the gate take simultaneous transitions, i.e., nets with logic inversion take transitions in the opposite

direction with nets without logic inversion (Figure 1).

Observation 2 A simple gate netlist of tree structure consumes maximum instantaneous power when all nets take

simultaneous transitions, without the presence of input signal correlations (Figure 2).

We represent a gate level netlist by a net connectivity graph Gnc = (V,E, I), where V is the set of nets, (u,v)∈ E

if nets u and v are input and output of a gate, respectively, and signal transitions across (u,v) are either inverted

(i(u,v) = 1) or non-inverted (i(u,v) = 0, i(u,v) ∈ I). A simple gate netlist of tree structure with all nets taking

simultaneous transitions can be represented as a two-colorable graph (Figure 2).

2.3 Reconvergent Fanouts

Observation 3 For general structure netlists, the presence of reconvergent fanouts introduces cycles of odd num-

ber of logic inversions, and prevents all nets from taking simultaneous transitions (Figure 3).

At least one net in a cycle of odd number of logic inversions cannot take transition. Setting a net stable may

imply other nets stable: setting a gate input to a controlling value1 brings the gate output to the controlled value of

1A controlling value independently determines the output of a gate, e.g., 0 is the controlling value of a NAND gate, 1 is the controlling

value of a NOR gate.
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Figure 2: A simple gate netlist of tree structure which consumes maximum instantaneous power when all nets take

simultaneous transitions without the presence of input signal correlations (left); and its net connectivity graph Gnc

(right), where solid edges connect two nets with logic inversion i(u,v) = 1; dotted edges connect two nets without

logic inversion i(u,v) = 0; white vertices are nets with rising signal transitions; and dark vertices are nets with falling

signal transitions.

net set to implied stable nets stable net cap weight

b
0

1

a b

b d e h i

2

6
2

c
0

1

a b c f g i j

c

8

1
1

e
0

1

a b e

e h i

3

4
3

f
0

1

c f

f i j

2

4
2

Table 1: Implied stable nets, total capacitance of implied stable nets, and weights of nets in Figure 3. All net

capacitances equal to their fanouts (i.e., all nets have unit capacitance expect net i which has a capacitance of 2).

the gate;2 setting a gate output to a non-controlled value of the gate implies the gate inputs of the non-controlling

value of the gate.3 We define the weight w(v) of a net v as the minimum sum of capacitance of the nets which are

implied stable when net v is stable (for example, Table 1 shows the weights of the nets in Figure 3).

Observation 4 A cycle of odd number of logic inversions consumes maximum instantaneous power when all nets

take simultaneous transitions except the net with the minimum weight in the cycle.

The problem is more complicated in the presence of multiple interweaved cycles. We propose a higher level of

abstraction in solving the problem.

2.4 Fanout Net Connectivity Graph

We abstract a net connectivity graph Gnc into a fanout net connectivity graph G f nc = (V,E, I,W ), where V is

the set of fanout nets (nets with multiple fanouts), an edge (u,v) ∈ E with i(u,v) ∈ I and w(u,v) ∈ W in G f nc if

there is a path path(u,v) in Gnc, logic inversion across edge (u,v) ∈ G f nc equals that across path(u,v) ∈ Gnc, i.e.,

i(u,v) = XOR{i(p,q) |(p,q)∈ path(u,v),(p,q)∈ E ∈ Gnc}, and weight of edge (u,v) ∈ G f nc equals the minimum

net weight on path(u,v) ∈ Gnc, i.e., w(u,v) = MIN {w(p) | p ∈ path(u,v), p ∈ V ∈ Gnc} (for example, the net

connectivity graph Gnc in Figure 3 (right) is abstracted as the fanout net connectivity graph G f nc in Figure 4).

We formulate the maximum power estimation problem as maximum subgraph two-coloring:

2A controlled value is the gate output value when a controlling value is applied to a gate input, e.g., 1 is the controlled value of a NAND

gate, 0 is the controlled value of a NOR gate.
3Setting a gate output to a controlled value doesn’t imply that the gate inputs are stable: the gate inputs can take simultaneous transitions in

opposite directions.
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Figure 3: Nets in a cycle of odd number of logic inversions cannot take simutaneous transitions (left); its net con-

nectivity graph Gnc cannot be properly colored due to the presence of a cycle of odd number of logic inversions

(right).

Figure 4: Fanout net connectivity graph G f nc of the netlist in Figure 3.

Problem 1 (Maximum Subgraph Two-Coloring) Given a graph G f nc = (V,E, I,W ), find a two-coloring of a

subgraph with maximum sum of weights f : V ′ → {0,1}, where V ′ ⊂V, and

f (u) = f (v) i f (u,v) ∈ E, i(u,v) = 0

f (u) 6= f (v) i f (u,v) ∈ E, i(u,v) = 1 (2)

Theorem 1 Maximum subgraph two-coloring is NP-hard.

Proof. Maximum subgraph two-coloring can be reduced to the following bipartite subgraph problem:

Problem 2 (Bipartite Subgraph) Instance: Graph G = (V,E), positive integer K ≤ |E|, Question: Is there a

subset E ′ in E with |E ′| ≥ K such that G′ = (V,E ′) is bipartite?

which is NP-complete[3]. ⊓⊔
We develop an efficient MIP estimation algorithm (Algorithm 1), which constructs a maximum spanning tree

on a fanout net connectivity graph G f nc, and sets stable the nets with minimum weights on each path in Gnc which

corresponds to a non-tree edge in G f nc. The runtime is dominated by maximum spanning tree construction, which

is O(N logN), where N is the number of fanout nets.

Algorithm 1: MIP estimation algorithm

Input: A netlist represented by a net connectivity graph Gnc = {V,E, I,W} with
nets V , gate connections E , logic inversions I and net capacitive weights W

Output: A two-colorable subgraph with maximum sum of weights

1. Construct fanout net connectivity graph G f nc

2. Construct maximum spanning tree on G f nc

3. For each non-tree edge e in G f nc

Finding corresponding path p in Gnc
Set stable the net with minimum weight on path p

4. Output subgraph of transition-taking nets
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ckt |Gnc| |G f nc| |G f nc|/Gnc| |E f nc|− |V f nc|

s208 124 28 0.226 46

s298 136 34 0.250 67

s344 184 40 0.217 57

s349 185 41 0.222 82

s382 182 14 0.077 10

s386 172 26 0.151 23

s526 217 54 0.249 129

s820 312 39 0.125 73

s832 310 39 0.126 61

s1196 561 151 0.269 469

s1238 540 165 0.306 618

s1488 667 76 0.114 175

s1494 661 76 0.115 209

Table 2: Topological structures of ISCAS’89 benchmark netlists.

2.5 Application to General Netlists

General netlists can be decomposed into simple gate netlists, or, logic inversions can be abstracted at a higher

hierarchy level with certain assertions (e.g., of enabling signals in multiplexers or encoder/decoders), and maxi-

mum instantaneous power can be estimated for each assertion case. We abstract possible logic inversions across

sequential elements, e.g., flip-flops and latches. We include input signal correlations and propagate constant signals

before constructing a fanout net connectivity graph Gnc.

3 Experiments

We implement our algorithm in C and run our experiments on the ISCAS’89 benchmark on a Sun Sparc 20 work-

station. Table 2 gives topological structures of the ISCAS’89 benchmark netlists in our experiments. An average

of 20.0% nets are fanout nets, which shows an average of five-time reduction in problem size by abstracting G f nc

from Gnc. The numbers of cycles of odd number of logic inversions, shown in the last column of Table 1, provide

an indication of complexity for each test case.

We compare with simulation result of an input pattern dependent maximum power estimator in [12], which is

within 5% accurate with 95% confidence through a Monte Carlo technique. As in [12], we assume per-transition

toggling power consumption Pg/tNtoggle and per-transition short-circuit power consumption Ps/t are proportional to

net capacitance Ci, and net capacitance Ci is proportional to net fanout number. Maximum instantaneous power is

given in terms of total fanout number of the transition-taking nets.

Table 3 shows our subgraph coloring algorithm achieves 2-3 orders of speedups and a 2.82% standard deviation

of MIP estimate compared with input-dependent simulation. A maximum speedup of 5190 times is achieved with

a 97.4% accuracy for the s820 design; for the s1238 and s1494 designs, our algorithm achieves even better results

(larger MIP) than the pattern-dependent simulator with 0.2% and 0.7% CPU time, respectively.

The greedy transition assignment algorithm in [12] has a 7.13% standard deviation of MIP estimate. Compared

with the greedy transition assignment algorithm, subgraph coloring achieves 4.31% less standard deviation and an

average of 9.16 times runtime speedup4.

4 Conclusion

Maximum instantaneous power is associated with weighted maximum number of signal transitions. We observe

signal correlations represented by logic inversions in a VLSI netlist, and formulate the problem as maximum sub-

graph two-coloring. We show the problem is NP-hard, which complexity comes from the presence of reconvergent

fanouts besides input signal correlations. We develop an efficient algorithm for general designs of practical sizes,

which runs in O(N logN) time, where N is the number of fanout nets. Resultant signal transitions provide an

estimate on maximum instantaneous power, e.g., through an input-dependent simulator. Our experimental results

on the ISCAS’89 benchmark show our subgraph coloring algorithm achieves 4.31% less standard deviation of

4Runtime of the greedy algorithm is reported on a HP715/50 workstation.
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Subgraph Coloring Greedy[12] Simulation

ckt MIP CPU (sec.) err (%) MIP CPU (sec.) err (%) MIP CPU (sec.) #sim

s208 138 0.04 0.0 135 0.24 -2.2 138 51.8 13590

s298 189 0.05 -3.1 201 0.61 3.1 195 30.7 13410

s344 187 0.10 0.0 185 0.39 -1.1 187 70.7 14790

s349 188 0.07 0.0 180 1.42 -4.3 188 68.6 14790

s382 226 0.07 0.0 266 1.96 17.7 226 42.8 14790

s386 248 0.08 -7.8 268 0.33 -0.4 269 77.6 12630

s526 296 0.15 -0.3 298 0.74 0.3 297 72.4 14790

s820 608 0.03 -2.6 612 4.66 -1.9 624 155.7 14580

s832 625 0.04 -1.3 619 6.83 -2.2 633 169.6 14580

s1196 605 0.70 -4.6 594 10.6 -6.3 634 321.6 16380

s1238 654 0.65 0.8 610 1.63 -6.0 649 311.0 16380

s1488 908 0.90 -1.6 784 4.33 -15.1 923 187.0 12810

s1494 932 1.25 0.6 938 3.46 1.3 926 188.9 12810

Table 3: Comparison of MIP estimation by subgraph coloring, greedy transition assignment[12] and an input-

dependent simulation on ISCAS’89 sequential benchmark test cases.

maximum instantaneous power estimate than the greedy transtion assignment algorithm in [12]; and a 2.82% stan-

dard deviation of maximum instantaneous power estimate with 2-3 orders of runtime speedups compared with

pattern-dependent simulation techniques.
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