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ABSTRACT OF THE DISSERTATION 

 

Mechanistic and data-driven  

antibody response modeling strategies 

 

by 

 

Cyrillus Tan 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2024 

Professor Aaron S. Meyer, Chair 

 

Antibodies are essential to adaptive immunity and therapeutic development. IgG antibodies 

coordinate immune effector responses by selectively binding to target antigens and interacting with 

various effector cells via Fcγ receptors. In this study, I explore two computational strategies for 

modeling antibody responses. First, I extend and employ a mechanistic model to analyze mixed 

Fc IgG binding measurements. This multivalent binding model efficiently predicts interactions 

between mixtures of multiple multivalent ligands and multiple cell surface receptors. Applied to 

experimental data, this model quantitatively matches mixed FcγR binding measurements, refines 

affinity estimates, and predicts antibody-mediated immune effector cell responses. Notably, it 

highlights IgG2’s binding capabilities to FcγRI, contrary to previous nonbinding estimations. 

Second, I adopt a data-driven approach using tensor-based methods to deconvolute systems 

serology data. Given the complexity of recent biological research characterized by measurements 
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in multiple degrees of variation, I provide an overview of applying tensor methods to high-

throughput biological datasets. Applied these principles to HIV- and SARS-CoV-2- infected 

patients’ serum sample data, tensor methods reveal consistent patterns and outperform traditional 

methods in data reduction and prediction accuracy, emphasizing their efficacy in identifying 

immune functional responses and disease status. Overall, this study demonstrates how mechanistic 

and data-driven approaches can be effectively applied to analyze antibody-mediated immunity, 

showcasing their distinct roles in computational biology. 
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Chapter 1 

Introduction 

 

The unexamined life is not worth living. 

Socrates  

 

 

1.1 Background 

Antibodies are essential components of adaptive immunity and versatile platforms for 

therapeutic development. They coordinate immune effector responses by selectively binding to 

target antigens with their antigen-binding (Fab) regions and interacting with various immune 

effector cells via their fragment-crystallizable (Fc) regions1. To comprehensively understand an 

antibody’s role in promoting immunity, it is crucial to evaluate both its antigen-binding capabilities 

and its Fc properties. This study aims to develop computational tools to model antibody responses 

by integrating these aspects. 

The diversity among antibody Fc regions is substantial, encompassing different antibody 

types, subclasses, and glycosylation patterns. Immunoglobulin G (IgG), the most abundant and 

therapeutically capable antibody, directs effector responses by binding to Fcγ receptors (FcγRs) 

through its Fc region. FcγR activation begins with the engagement of several antibodies on an 

antigen target, forming an immune complex (IC). The response triggered by this IC is determined 

by the specific Fc regions and Fc receptors involved, each differing in signaling effects and 
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expression patterns2. Given that physiological antibody responses are typically polyclonal, 

consisting of a mixture of antibodies with diverse antigen specificities and Fc regions, analyzing 

the effects of Fc mixtures is crucial for a comprehensive understanding of antibody-mediated 

immunology. 

While pieces of Fc receptor pathways have been well characterized3,4, the diversity of Fc 

regions and Fc receptors and their complexity of binding interactions pose a significant challenge 

in analyzing antibody Fc mixtures. Fully understanding these interactions requires evaluating the 

collective impact of all possible interactions and accounting for multiple and mixed ligands, 

multiple receptors, and multivalent binding formed by ICs. To analyze the experimental 

measurements of mixed Fc antibodies, I propose to extend and employ a mechanistic binding 

model. This model aims to provide an integrated view, allowing us to identify gaps in our current 

understanding. 

Recent technological advancements in systems serology promise to broaden our 

understanding of antibody-mediated protection5. This multiplex Fc assay aims to profile the 

humoral immune response by jointly quantifying sample serum antibodies’ antigen-binding and 

Fc biophysical properties in parallel. These measurements have proven highly predictive of 

effector cell-elicited responses and overall antibody-elicited immune protection. However, 

analyzing systems serology data presents significant challenges. I propose representing the data as 

a three-dimensional tensor to separate the antigen and receptor-level variations. This tensor can be 

effectively analyzed using tensor decomposition, a data-driven, unsupervised dimensionality 

reduction method6. 
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Figure 1.1. Structure of this dissertation 
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Mechanistic and data-driven models are based on different epistemic philosophies and are 

employed for molecular and individual-level data. Each has distinct uses in studying antibody 

responses and independently derives unique insights. In this dissertation, I present both 

approaches, aiming to provide a more comprehensive picture of antibody-mediated immunity. 

 

1.2 Overview of this dissertation 

In this dissertation, I employ two distinct computational approaches to dissect the effects 

of antibody Fc mixtures: a bottom-up mechanistic approach analyzing molecular-level 

experiments and a top-down data-driven approach scrutinizing individual-level measurements. 

The structure of this dissertation is illustrated in Fig. 1.1. 

The first approach, detailed in Chapters 2 and 3, involves developing a biophysical model 

to analyze mixed Fc IgG binding measurements in controlled experiments. This begins with 

advancing computational ligand-receptor binding modeling capabilities. Multivalent cell surface 

receptor binding is common in biology, with significant functional and therapeutic implications. 

In Chapter 2, I extend a general mechanistic multivalent binding model to accommodate a large 

number of interactions between multiple ligands and receptors. The model enables large-scale 

predictions of mixture binding and the binding space of a ligand, offering an efficient framework 

for analyzing multivalent binding. 

In Chapter 3, I apply this binding model to experimental measurements of FcγR binding 

to mixed Fc ICs. I find that the binding of these mixtures aligns along a continuum between pure 

cases and quantitatively matches my model, except for several low-affinity interactions primarily 

involving IgG2. The model can provide refined estimates of these affinities. Finally, I demonstrate 

that the model can also predict effector cell-elicited platelet depletion in humanized mice. This 
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chapter establishes an in vitro to in vivo quantitative framework for modeling mixed IgG Fc-

effector cell regulation. 

The second approach, outlined in Chapters 4 and 5, applies a tensor-based, data-driven 

machine learning method to deconvolute systems serology measurements. In Chapter 4, I review 

the application of tensor methods in biological studies and explore their optimal applications. 

Tensor methods can find wide applications in current biological studies with the rise of multiplex 

and high-throughput assays, which profile cell responses across various experimental parameters. 

I review how tensor-based analyses and decompositions can preserve multivariate experimental 

structures, arguing that tensor methods are poised to become integral to the biomedical data 

sciences toolkit. 

In Chapter 5, I employ tensor methods to analyze systems serology measurements. Using 

measurements from studies of HIV- and SARS-CoV-2-infected subjects as exemplars, tensor 

methods outperform standard methods like principal component analysis in data reduction while 

maintaining equivalent prediction of immune functional responses and disease status. Model 

interpretation improves through effective data reduction, separation of Fc and antigen-binding 

effects, and recognition of consistent patterns across individual measurements. Thus, tensor 

methods are effective strategies for data exploration in systems serology. 

Finally, in Chapter 6, I provide a high-level overview of the relative merits of mechanistic 

and statistical approaches and summarize their roles in computational biology studies beyond 

antibody response modeling. 
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Chapter 2 

A general model of multivalent binding with ligands of heterotypic 

subunits and multiple surface receptors 

 

What I cannot create, I do not understand. 

Richard Feynman  

 

 

2.1 Introduction 

Binding to extracellular ligands is among the most fundamental and universal activities of 

a cell. Many important biological activities, and cell-to-cell communication in particular, are based 

on recognizing extracellular molecules via specific surface receptors. For example, multivalent 

ligands are common extracellular factors in the immune system7, and computational models have 

been applied to study IgE-FcεRI8, MHC-T cell receptor9, and IgG-FcγR interactions10. However, 

these models are specific to their biological applications, limited to a single homogenous ligand 

and receptor11, or fail to scale with valency12. 

Multivalent binding to various receptors on a cell can be accounted for by the kinetics of 

individual association reactions between each monomer-receptor pair. However, when the 

complexes contain multiple ligand monomers of either the same or different kinds, and when there 

is a mixture of complexes with either the same or different valencies, the system becomes 

complicated: different binding orders of units on a complex create a combinatorically large amount 
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of possible reactions, and the competition among different kinds of ligands and complexes impedes 

intuitive understanding. In this case, enumerating all binding configurations and reactions becomes 

impractical. 

In this chapter, we extend a simple two-step, multivalent binding model to cases involving 

multiple receptors and ligand subunits9,11,13–15. By harnessing the power of combinatorics via 

applying the multinomial theorem and focusing on macrostates, we can predict the amount of 

binding for each ligand and receptor at equilibrium. We derive macroscopic quantities for both 

specifically arranged and randomly assorted complexes and demonstrate how this model enables 

large-scale predictions on mixture binding and the binding space of a ligand.  

Our model provides both generality and computational efficiency, allowing large-scale 

predictions such as characterizing synergism using a mixture of ligands and depicting the general 

binding behavior of a compound. The compactness and elegance of the formulae enable both 

analytical and numerical analyses, in turn allowing for the construction of higher-level 

computational tools. We expect this binding model will be widely applicable to many biological 

contexts. 

 

2.2 Preliminaries 

Vector and matrix notation 

In this chapter, we denote a vector in boldface letter and its entry in the same letter but with 

subscript and not in boldface, e.g. 𝐂 = [𝐶$, 𝐶%, … , 𝐶&]. The sum of elements for a vector is denoted 

as |𝐂| = ∑ 𝐶'&
'($ . 

For any matrix (𝐴')) of size 𝑚 × 𝑛, we denote the vector formed by its 𝑖-th row as 𝐀𝐢• =

[𝐴'$, 𝐴'%, ⋯ , 𝐴'&], and the vector formed by its 𝑗-th column as 𝐀•𝐣 = [𝐴$) , 𝐴%) , ⋯ , 𝐴-)]. The row 
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sums of matrix (𝐴')), therefore, can be written as |𝐀𝟏•|, |𝐀𝟐•|, ⋯, |𝐀𝐦•|, and column sums |𝐀•𝟏|, 

|𝐀•𝟐|, ⋯, |𝐀•𝐧|. 

In this chapter, multinomial coefficients such as 𝑛 choose 𝑘$, 𝑘%, ⋯ , 𝑘& will be written as 

9
𝑛
𝐤; = <

𝑛
𝑘$ 𝑘% ⋯ 𝑘&

> =
𝑛!

𝑘$! 𝑘%!⋯𝑘&!
. 

The implicit assumption here is that |𝐤| = 𝑛, and each 𝑘' ∈ ℕ. 

Some useful theorems in combinatorics 

From the binomial theorem, we know that 

C<
𝑓
𝑖>

0

'(1

𝛷' = (1 + 𝛷)0 . 

Differentiating both sides by 𝛷, we get 

C𝑖
0

'(1

<
𝑓
𝑖 >𝛷

' = 𝑓𝛷(1 + 𝛷)02$. 

We can derive similar property from the multinomial theorem. Assume the elements of a 

nonnegative integer vector 𝐪 add up to 𝑓, or |𝐪| = 𝑓. Given another nonnegative vector 𝛗 with 

sum of elements |𝛗|, we have 

C <
𝑓
𝐪>

|𝐪|(0

I𝜑'5!
'

= |𝛗|0 . 

Differentiate both sides by 𝜑- where 𝜑- can be any entry of 𝛗, we have 

C <
𝑓
𝐪>

|𝐪|(0

𝑞-I𝜑'5!
'

= 𝜑-𝑓|𝛗|02$. 

We can multiply two independent multinomial theorem equations together, too. Let 𝐮 and 

𝐯 be two nonnegative integer vectors, 𝐚 and 𝐛 be two nonnegative vectors, and |𝐮| = 𝑚, |𝐯| = 𝑛, 

we have 
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C 9
𝑚
𝐮;

|𝐮|(-
|𝐯|(&

9
𝑛
𝐯;I𝑎'

8!

'

I𝑏)
9"

)

= |𝐚|-|𝐛|&. 

Throughout this chapter, we consolidate multiple summation symbols into one. In this case, 

we use ∑|𝐮|(-,|𝐯|(&  as a shorthand for ∑ ∑|𝐯|(&|𝐮|(- . From the combinatorics property, we can 

derive the sum of a linear combination of two exponents from each multinomial term as 

C 9
𝑚
𝐮;

|𝐮|(-
|𝐯|(&

9
𝑛
𝐯; 9𝑘$𝑢; + 𝑘%𝑣5TUUUVUUUW;

linear combination
	

I𝑎'
8!

'

I𝑏)
9"

)

	

= 𝑘$𝑎;𝑚|𝐚|-2$|𝐛|& + 𝑘%Y𝐚|-𝑏5𝑛Y𝐛|&2$	

= Z
𝑘$𝑚𝑎;
|𝐚| +

𝑘%𝑛𝑏5
|𝐛| [ |𝐚|-|𝐛|&, 

where 𝑘$ and 𝑘% can be any constant. 

We can extend this to the product of 𝑁 multinomial equations. Let 𝐪𝟏, ⋯ , 𝐪𝐍 be 𝑁 

nonnegative integer vectors, each with |𝐪𝐢| = 𝜃', and 𝛙𝟏, ⋯ ,𝛙𝐍 be 𝑁 nonnegative vectors. The 

sum of any linear combination of exponent terms ∑ 𝑘>> 𝑞?#@#, where 𝑘>’s can be any constant, and 

each 𝑞?#@# is the 𝑡>-th element of 𝐪𝐬𝐫, can be calculated as 

C `C𝑘>
>

𝑞?#@#a
|𝐪𝟏|(B&

…
|𝐪𝐍|(B(

I<
𝜃'
𝐪𝐢
>

D

'($

bI𝜓')
5!"

)

d = eC
𝑘>𝜃?#𝜓?#@#
|𝛙𝐬𝐫|>

fI|𝛙𝐢|B!
D

'($

. 
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Figure 2.1 General setup of the model.  
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2.3 Model setup 

Parameters and notations 

In this chapter, we investigate the binding between multivalent ligand complexes and a cell 

expressing various surface receptors. As shown in Fig. 2.1, we consider 𝑁E types of distinct 

monomer ligands, namely 𝐿$, 𝐿%, ..., 𝐿D), and 𝑁K types of distinct receptors expressed on a cell, 

namely 𝑅$, 𝑅%, ..., 𝑅D*. The monovalent binding association constant between 𝐿' and 𝑅) is defined 

as 𝐾L,'). A ligand complex consists of one or several monomer ligands, and each of them can bind 

to a receptor independently. Its construction can be described by a vector 𝛉 = [𝜃$, 𝜃%, . . . , 𝜃D)], 

where each entry 𝜃' represents how many 𝐿' this complex contains. The sum of elements of vector 

𝛉, |𝛉|, is 𝑓, the valency of this complex. 

The binding configuration at equilibrium between an individual complex and a cell 

expressing various receptors can be described as a matrix (𝑞')) with 𝑁E rows and (𝑁K + 1) 

columns. For example, the complex bound as shown on the top left corner in Fig. 2.1 can be 

described as the matrix below it. 𝑞') represents the number of 𝐿' to 𝑅) binding, and 𝑞'1, the entry 

on the 0-th column, is the number of unbound 𝐿' on that complex in this configuration. This matrix 

can be unrolled into a vector form 𝐪 = [𝑞$1, 𝑞$$, . . . , 𝑞$D* , 𝑞%1, . . . , 𝑞%D* , 𝑞N1, . . . , 𝑞D)D*] of length 

𝑁E(𝑁K + 1). Note that this binding configuration matrix (𝑞')) only records how many 𝐿'-to-𝑅) 

pairs are formed, regardless of which exact ligand on the complex binds. For example, in Fig. 2.1, 

swapping the two 𝐿%’s binding to 𝑅%’s will give us the same configuration matrix. Therefore, we 

will need to account for this combinatorial factor when applying the law of mass action. 

We know from the conservation of mass that for this complex, 𝜃' = 𝑞'1 + 𝑞'$ + 𝑞'% +⋯+

𝑞'D* = |𝐪𝐢•| must hold for all 𝑖’s. Mathematically, vector 𝛉 is the row sums of matrix (𝑞')). The 
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corresponding 𝛉 of a binding configuration 𝐪, 𝛉(𝐪), written in the format of a function of 𝐪, can 

be determined by this relationship. Also, the sum of elements in 𝐪, |𝐪| = 𝑓, will be the valency. 

The concentration of complexes in the solution is 𝐿1 (not to be confused with 𝐿', the name of 

ligands, when 𝑖 = 1,2,⋯ ,𝑁E). It is the concentration of all ligands at the equilibrium state. It is 

approximately the same as the initial ligand concentration if the amount of ligands is much greater 

than that of the receptors and binding event does not significantly deplete the ligand concentration. 

On the receptor side, 𝑅FGF,' is the total number of 𝑅' expressed on the cell surface. This usually can 

be measured experimentally. 𝑅HI,' is the number of unbound 𝑅' on a cell at the equilibrium state 

during the ligand complex-receptor interaction, and usually must be calculated from 𝑅FGF,' as we 

will explain later. 

The binding of a ligand complex, a large molecule, is complicated. To simplify the matter, 

we will need to make some key thermodynamic assumptions. In this model, we make two 

assumptions on the binding dynamics: 

1. The initial binding of 𝐿' on a free (unbound) complex to a surface receptor 𝑅) has the 

same affinity (association constant, 𝐾L,')) as that of a monomer ligand 𝐿'; 

2. In order for the detailed balance to hold, the association constant of any subsequent 

binding event on the surface of a cell after the initial interaction must be proportional to 

their corresponding monovalent affinity. We assume the subsequent binding affinity in 

multivalent interactions between 𝐿' and 𝑅) to be 𝐾O∗𝐾L,'). 

𝐾O∗ is a term coined as the crosslinking constant. It captures the difference between free and 

multivalent ligand-receptor binding, including but not limited to steric effects and local receptor 

clustering16. In practice this term is often fit to apply this model to a specific biological context. 
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We create two last variables that will help to simplify our equations. For all 𝑖 in {1,2, . . . , 𝑁E}, we 

define 𝜓') = 𝑅HI,)𝐾L,')𝐾O∗ and 𝜑') = 𝑅HI,)𝐾L,')𝐾O∗𝐶' where 𝑗 = {1,2, . . . , 𝑁K}, and we define 𝜓'1 =

1, 𝜑'1 = 𝐶'. Therefore, 𝜑') = 𝜓')𝐶' holds for all 𝑖 and 𝑗. Then we define the sum of this new 

matrix (𝜑')) as ∑ ∑ 𝜑')
D*
)($

D)
'($ = 𝛷, and ∑ ∑ 𝜑')

D*
)(1

D)
'($ = 𝛷 +∑ 𝐶'

D)
'($ = 1 + 𝛷. The rationale of 

these definitions will become clear in future sections. 

The amount of a specific binding configuration 

With the definitions of our model we can now derive the amount of complexes bound with 

the configuration described as 𝐪 on a cell at equilibrium, 𝑣𝐪. We know that the composition of any 

complex can be described by a vector 𝛉 of length 𝑁E, where each entry 𝜃' represents the number 

of monomers 𝐿' within the complex. We can enumerate all possible binding configurations of 𝛉 

complex by filling the matrix (𝑞')) with any nonnegative integer values so long as its row sums 

equal 𝛉. Conversely, for a certain binding configuration, 𝐪, the construction of the complex 

involved must be its row sum, 𝛉(𝐪), and the concentration of this complex is 𝐿1𝐶𝛉(𝐪). If the 

corresponding complex 𝛉(𝐪) does not exist in the solution, we set 𝐶𝛉(𝐪) = 0. Since 𝛉(𝐪) is defined 

only by the ligand concentration at equilibrium, it will remain 𝐿1𝐶𝛉(𝐪). 

Initial binding 

We start with the initial binding reaction of a complex, 𝐿'-to-𝑅). As shown in Fig. 2.2, the 

reactants are the free complexes and the free receptors 𝑅) (in this case 𝑅%), and the product are the 

𝐿'-to-𝑅) (in this case 𝐿%-𝑅%) monovalently bound complexes 𝐪(𝟏). We denote the amount of this 

new complex as 𝑣𝐪(𝟏). The concentration of free complexes is 𝐿1𝐶𝛉(𝐪(𝟏)). The equilibrium constant 

for this reaction is 𝐾L,'). Therefore, we have 

𝑣𝐪(𝟏) = 𝐿1𝐶𝛉(𝐪(𝟏))𝑅HI,)𝐾L,') . 
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Figure 2.2 The scheme of cell-complex binding step by step.  

We assume the initial binding event has the same affinity as monomer binding, 𝐾L,'), while 

subsequent binding has an association constant scaled by 𝐾O∗, the crosslinking constant. Each 

binding configuration scheme above can be described by the 𝐪 right below, if we ignore the 

statistical factors. 𝛉(𝐪) is the construction of the complex and can be implied from 𝐪. 
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While the binding configuration of 𝐪(𝟏) can be described by 𝐪𝐚, the total amount of 

complexes that bind as described as 𝐪𝐚 may not be the same as 𝑣𝐪(𝟏), since 𝐪𝐚 does not consider 

the number of ways this binding 𝐿' can be chosen. An equivalent explanation is that, 𝐪(𝟏) is only 

one possible microstate to achieve the 𝐪𝐚 configuration, and we need to count the total number of 

possible microstates for 𝐪𝐚. Accounting for this statistical factor, we have 

𝑣𝐪𝐚 = 𝑣𝐪(𝟏) <
𝜃'
1> = 𝑣𝐪(𝟏) o

𝜃'
𝐪𝐚,𝐢•

p, 

𝑣𝐪𝐚 = 𝐿1𝐶𝛉(𝐪𝐚)𝑅HI,)𝐾L,') o
𝜃'
𝐪𝐚,𝐢•

p, 

since 𝛉(𝐪(𝟏)) = 𝛉(𝐪𝐚). 𝐪𝐚,𝐢• is a vector formed by the 𝑖-th row of 𝐪𝐚. For example, in Fig. 2.2, 

𝐪𝐚,𝟐• = [2,0,1,0]. Conceptually, 9 B!
𝐪𝐚,𝐢•

; can be understood as the number of ways to split 𝜃' 𝐿'’s 

into 𝑞'1 of unbound, 𝑞'$ of 𝑅$-bound, 𝑞'% of 𝑅%-bound, ..., and 𝑞'D* of 𝑅D*-bound units. In the 

initial binding reaction, only 𝑞'1 and 𝑞') will be nonzero, with 𝑞'1 = 𝜃' − 1 and 𝑞') = 1, so it is 

effectively the same as rB!$ s. However, the multinomial coefficient expression can be generalized 

to subsequent binding steps. 

Subsequent binding 

For a subsequent binding between 𝐿' and 𝑅) (𝑖 and 𝑗 are not necessarily the same as in 

initial binding), we have the reactants as a bound complex, 𝐪(𝟏), and a free receptor 𝑅) (in the case 

shown by Fig. 2.2, 𝑅%), while the product is another bound complex, 𝐪(𝟐). The equilibrium constant 

is 𝐾O∗𝐾L,'), then 

𝑣𝐪(𝟐) = 𝑣𝐪(𝟏)𝑅HI,)𝐾O
∗𝐾L,') . 
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To account for the statistical factors of 𝑣𝐪𝐛, we have 𝑣𝐪𝐛 = 𝑣𝐪(𝟐) 9
B!
𝐪𝐛,𝐢•

;. For example, in 

Fig. 2.2, 𝐪𝐛,𝟐• = [1,0,2,0]. Putting these together, we have 

𝑣𝐪𝐛 = 𝑣𝐪𝐚𝑅HI,)𝐾O
∗𝐾L,')

9 B!
𝐪𝐛,𝐢•

;

9 B!
𝐪𝐚,𝐢•

;
. 

By recursion, we can solve 𝑣𝐪 for any 𝐪 from these equations. It is 

𝑣𝐪 =
𝐿1𝐶𝛉(𝐪)
𝐾O∗

I (
(D),D*)

(',))(($,$)

𝑅HI,)𝐾O∗𝐾L,'))5!"I<
𝜃'
𝐪𝐢•
>

D)

'($

	

=
𝐿1𝐶𝛉(𝐪)
𝐾O∗

I 𝜓')
5!"

(D),D*)

(',))(($,$)

I<
𝜃'
𝐪𝐢•
>

D)

'($

	

=
𝐿1𝐶𝛉(𝐪)
𝐾O∗

I 𝜓')
5!"

(D),D*)

(',))(($,1)

I<
𝜃'
𝐪𝐢•
>

D)

'($

 

if we define 𝜓') = 𝑅HI,)𝐾O∗𝐾L,') for 𝑗 = 1,2,⋯ ,𝑁K and 𝜓'1 = 1 for all 𝑖. ∏(D),D*)
(',))(($,1)  is a shorthand 

for ∏ ∏D*
)(1

D)
'($ . In the next section, we will use this formula repeatedly. 

Notice that this equation is only for surface-bound complexes, not suitable for calculating 

the concentration of unbound 𝐪, when every nonzero values are on its 0-th column. The 

concentration of unbound ligands should always be 𝐿1𝐶𝛉(𝐪). However, for algebraic convenience, 

we allow such definition but only to subtract them later, and will name it 𝑣1,HI which equals 

𝐿1𝐶𝛉(𝐪)/𝐾O∗. 

 

2.4 Macroscopic equilibrium predictions 

From here we will investigate the macroscopic properties of binding, such as the total 

amount of ligand bound and receptor bound on a cell surface at equilibrium. We consider two 
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different ways complexes in the solution can be formed. First, complexes may come in a specific 

arrangement. In this case, the structure and exact concentration for each complex are designed and 

known. Alternatively, ligand monomers of known proportion can congregate into complexes with 

a fixed valency 𝑓. Through random assortment, any combination of 𝑓 monomer ligands can form 

a complex, and their concentration will follow a multinomial distribution. We will explore these 

two cases separately. 

Complexes formed in a specific arrangement 

When complexes are specifically arranged, the structure and proportion of each kind are 

well-defined. To formulate this mathematically, we assume that we have various kinds of 

complexes, and each of them can be described by a vector 𝛉 of length 𝑁E, with each entry 𝜃' as 

the number of 𝐿' in this complex. The valency of each complex may be different, and for complex 

𝛉 its valency is |𝛉|. The proportion of 𝛉 among all complexes is defined as 𝐶𝛉, and the 

concentration of each 𝛉 complex will be 𝐿1𝐶𝛉. For example, if we create a mixture of 20% of 

bivalent 𝐿$ and 80% of bispecific 𝐿$ − 𝐿%, then 𝛉𝟏 = [2,0], 𝛉𝟐 = [1,1], 𝐶𝛉𝟏 = 20%, and 𝐶𝛉𝟐 =

80%. If the mixture solution has a total concentration of 10 nM, then the concentration of 𝛉𝟏 is 

2 nM, and the concentration of 𝛉𝟐 is 8 nM. 

We further conceptualize that 𝛩 is a set of all existing 𝛉’s. By this setting, we should have 

∑ 𝐶𝛉𝛉∈V = 1. These complexes will bind in various configurations which can all be described as a 

𝐪. We define 𝑄 as a set of all possible 𝐪’s, and we borrow the notation 𝐪 ⊆ 𝛉 to indicate any 

binding configuration 𝐪 that can be achieved by complex 𝛉. This is equivalent to |𝐪𝐢•| = 𝜃' for all 

𝑖, or 𝛉 is the row sum of (𝑞')). 

Solve the amount of free receptors 
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A remaining problem in the model setup is that in practice, only 𝑅FGF,), the total receptor 

expressions of each kind of a cell, can be experimentally measured, while the amount of free 

receptors at equilibrium, 𝑅HI,), though being used extensively, is unknown. To find 𝑅HI,), we first 

need to derive the amount of bound receptors of each kind, 𝑅WGXYZ,), then use conservation of mass 

to solve 𝑅HI,) numerically. 

To calculate the amount of bound receptor 𝑅WGXYZ,&, we can simply add up all entries in 

the 𝑛-th column for every 𝐪’s: 

𝑅WGXYZ,& =C|
𝐪∈[

𝐪•𝐧|𝑣𝐪 = C|
𝐪∈[

𝐪•𝐧|
𝐿1𝐶𝛉(𝐪)
𝐾O∗

I 𝜓')
5!"

(D),D*)

(',))(($,1)

I<
𝜃'
𝐪𝐢•
>

D)

'($

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

C|
𝐪⊆𝛉

𝐪•𝐧| I 𝜓')
5!"

(D),D*)

(',))(($,1)

I<
𝜃'
𝐪𝐢•
>

D)

'($

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

~
𝜓$&
|𝛙𝟏•|

𝜃$ +⋯+
𝜓D)&
|𝛙𝐍𝐋•|

𝜃D)�I|𝛙𝐢•|B!
D)

'($

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

�C
𝜓'&
|𝛙𝐢•|

D)

'($

𝜃'�I|
D)

'($

𝛙𝐢•|B! , 

where |𝐪•𝐧| = ∑ 𝑞-&
D)
-($ , and |𝛙𝐢•| = ∑ 𝜓')

D*
)(1 . 

By the conservation of mass, we have 

𝑅FGF,& = 𝑅HI,& + 𝑅WGXYZ,& = 𝑅HI,& +
𝐿1
𝐾O∗

C𝐶𝛉
𝛉∈V

�C
𝜓'&
|𝛙𝐢•|

D)

'($

𝜃'�I|
D)

'($

𝛙𝐢•|B! . 

In this equation, 𝑅FGF,& are known, and any |𝛙𝐢•| is a function of every 𝑅HI,), 𝑗 =

1,2,⋯ ,𝑁K, so all 𝑅HI,) need to be solved together. This system of equations usually does not have 

a closed form and must be solved numerically. When implementing, we suggest taking the 
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logarithm of both sides of these equations so the exponents can be eliminated and the range is 

restricted to positive numbers. 

As a side note, the total amount of bound receptors regardless of kind is 

𝑅WGXYZ = C𝑅WGXYZ,&

D*

&($

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

C~
𝜓$&
|𝛙𝟏•|

𝜃$ +⋯+
𝜓D)&
|𝛙𝐍𝐋•|

𝜃D)�
D*

&($

I|
D)

'($

𝛙𝐢•|B!

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

~<1 −
𝜓$1
|𝛙𝟏•|

> 𝜃$ +⋯+ o1 −
𝜓D)1
|𝛙𝐍𝐋•|

p 𝜃D)�I|
D)

'($

𝛙𝐢•|B!

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

�|𝛉| −C
𝜃'
|𝛙𝐢•|

D)

'($

�I|
D)

'($

𝛙𝐢•|B! . 

The amount of bound ligand complexes 

Our model makes many macroscopic predictions readily accessible. For example, the 

amount of ligand bound at equilibrium is a useful quantity when measuring the overall quantity of 

tagged ligand. To compute this number, we can add up all 𝑣𝐪 except the 𝐪’s that only have nonzero 

values on the 0-th column, 𝑣1,HI. Consequently, the model prediction of bound ligand at 

equilibrium is 

𝐿WGXYZ =C𝑣𝐪
𝐪∈[

− 𝑣1,HI =C
𝐿1𝐶𝛉(𝐪)
𝐾O∗𝐪∈[

I 𝜓')5!"
(D),D*)

(',))(($,1)

I<
𝜃'
𝐪𝐢•
>

D)

'($

−
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

�C I 𝜓')5!"
(D),D*)

(',))(($,1)𝐪⊆𝛉

I<
𝜃'
𝐪𝐢•
>

D)

'($

− 1�

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

�|𝛙𝟏•|B&|𝛙𝟐•|B4 … |𝛙𝐍𝐋•|
B() − 1� =

𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

�I|
D)

'($

𝛙𝐢•|B! − 1� 

when |𝛙𝐢•| = ∑ 𝜓')
D*
)(1 , and the predicted amount of bound complex 𝛉 (complex of each kind) is 
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𝐿WGXYZ,𝛉 =
𝐿1𝐶𝛉
𝐾O∗

�I|
D)

'($

𝛙𝐢•|B! − 1� 

The amount of fully bound ligands 

In multivalent complexes like bispecific antibodies, drug activity may require that all 

subunits be bound to their respective targets17. The predicted amount of ligand full-valently bound 

can be calculated as 

𝑣]X^^,HI =C C
𝐿1𝐶𝛉
𝐾O∗5&5,…,5()5(1𝛉∈V

I 𝜓')
5!"

(D),D*)

(',))(($,$)

o
𝜃$
𝐪𝟏•∗

p…o
𝜃D)
𝐪𝐍𝐋•
∗ p =

𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

IbC𝜓')

D*

)($

d

B!D)

'($

=
𝐿1
𝐾O∗
C𝐶𝛉
𝛉∈V

I(|𝛙𝐢•| − 1)B!
D)

'($

, 

with 𝐪𝐢•∗ = (𝑞'$, … , 𝑞'D*), the 𝐪𝐢• vector without 𝑞'1. In this equation, the multinomial coefficient 

9B!𝐪𝐢•∗ ; describes the number of ways one can allocate 𝜃' receptors to any position in the 𝑖-th row of 

the (𝑞')) matrix except the 0-th row which stands for unbound. 

In fact, the predicted amount of any specific-valently bound ligands can be derived in such 

manner. For example, the amount of ligands that bind monovalently can be calculated as 

𝑣$,HI =C
𝐿1𝐶𝛉
𝐾O∗𝛉∈V

CC𝜓')
5!"

D*

)($

D)

'($

<
𝜃'
1> = C

𝐿1𝐶𝛉
𝐾O∗𝛉∈V

C|
D)

'($

𝛙𝐢•|𝜃' . 

This can be used for estimating the amount of multimerized ligands, 𝐿_X^F` = 𝐿WGXYZ −

𝑣$,HI, and multimerized receptors, 𝑅_X^F` = 𝑅WGXYZ − 𝑣$,HI. 

Complexes formed through random assortment 

Another common mode of forming multivalent complexes in biology, such as in the 

formation of antibody-antigen complexes10, is the stochastic assembly of monomer units to a 
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common scaffold. Instead of a specific arrangement, we provide binding compounds of a fixed 

valency 𝑓 and a mixture of monomer ligands, and complexes can form through random assortment. 

The concentration of these complexes, therefore, will follow a multinomial distribution. 

To formulate this mathematically, we denote the proportion of 𝐿' as 𝐶', and ∑ 𝐶'
D)
'($ = 1. 

For example, say we have 40% 𝐿$ and 60% 𝐿% in the solution to form dimers (𝑓 = 2), then 𝐶$ =

40%, 𝐶% = 60%. As complex formation follows a binomial distribution, there will be 16% 

bivalent 𝐿$, 36% bivalent 𝐿%, and 48% 𝐿$ − 𝐿% complex. In general, the probability of complexes 

formed as described by 𝛉 in random assortment is 

𝐶𝛉 = <
𝑓
𝛉>𝐶$

B&𝐶%
B4 …𝐶D)

B() = <
𝑓
𝛉>I𝐶'

B!

D)

'($

. 

Since ∑ 𝐶'
D)
'($ = 1, we know that 

C𝐶𝛉
𝛉∈V

=C <
𝑓
𝛉>

𝛉∈V

I𝐶'
B!

D)

'($

= (𝐶$ + 𝐶% +⋯+ 𝐶D))
0 = 1. 

Plugging this relationship between 𝐶𝛉 and 𝐶' into 𝑣𝐪 we previously derived for the amount 

of a specific binding configuration, we have 

𝑣𝐪 =
𝐿1
𝐾O∗
<
𝑓

𝛉(𝐪)>I𝐶'
B!(𝐪)

D)

'($

I 𝜓')
5!"

(D),D*)

(',))(($,$)

I<
𝜃'(𝐪)
𝐪𝐢•

>
D)

'($

=
𝐿1
𝐾O∗
<
𝑓
𝐪> I 𝐶'

5!"
(D),D*)

(',))(($,1)

I 𝜓')
5!"

(D),D*)

(',))(($,$)

=
𝐿1
𝐾O∗
<
𝑓
𝐪> I 𝜑')

5!"
(D),D*)

(',))(($,1)

, 

where 𝜑') = 𝑅HI,)𝐾L,')𝐾O∗𝐶' and 𝜑'1 = 𝐶'. 

Solve the amount of free receptors 

Similar to the specific arrangement case, we still need to solve 𝑅HI,& numerically from 

𝑅FGF,&. We first derive the amount of bound receptors of each kind at equilibrium as 
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Then by the conservation of mass, we can numerically solve 𝑅HI,& as 

𝑅FGF,& = 𝑅HI,& + 𝑅WGXYZ,& = 𝑅HI,& +
𝐿1𝑓
𝐾O∗

|𝛗•𝐧|(1 + 𝛷)02$. 

Again, since 𝛷 = ∑ |D*
)($ 𝛗•𝐣| is a function of every 𝑅HI,&, all 𝑅HI,& need to be solved 

together. 

The amount of 𝑘-valently bound complexes 

For randomly assorted complexes, we first derive the amount of ligands that bind 𝑘-

valently. As we will show, it has a useful expression that can used to find many other quantities 

conveniently. First, let’s break 𝐪 into two separate vectors, 𝐪 = (𝐪•𝟎, 𝐪•𝐱). We define the vector 

formed by the 0-th column of 𝐪 which stand for unbound as 𝐪•𝟎, and the one formed by the other 

elements as 𝐪•𝐱. By the model setup, |𝐪| = 𝑓, |𝐪•𝐱| = 𝑘, and |𝐪•𝟎| = 𝑓 − 𝑘. We then have 
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The amount of total bound ligands and receptors 

Many macroscopic properties can be derived from 𝑣c,HI. For example, the amount of total 

bound ligands is simply the sum of ligands bound monovalently to fully, and can be simplified to 

𝐿WGXYZ =C𝑣c,HI

0

c($

=C𝑣c,HI

0
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Similarly, the total bound receptors should be 

𝑅WGXYZ = C𝑘
0

c($
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𝑓𝛷(1 + 𝛷)02$. 

As we show here, these quantities all have elegant closed form solutions, and they are only 

dependent on 𝛷, a single value that incorporate all information about receptor amounts, monomer 

ligand compositions, and binding affinities. 𝛷 was previously defined as 𝛷 = ∑ ∑ 𝜑')
D*
)($

D)
'($ =

∑ ∑ 𝑅HI,)
D*
)($

D)
'($ 𝐾L,')𝐾O∗𝐶'. 

The number of cross-linked receptors 
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In some biological contexts such as T cell receptor-MHC9 or antibody-Fc receptor10  

interactions, signal transduction is driven by receptor cross-linking due to multivalent binding. The 

amount of total cross-linked receptors can be derived from 𝑣c,HI as 

𝑅_X^F` =C𝑘
0

c(%

𝑣c,HI = 𝑅WGXYZ − 𝑣$,HI =
𝐿1
𝐾O∗
𝑓𝛷(1 + 𝛷)02$ −

𝐿1
𝐾O∗
<
𝑓
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To find the number of crosslinked receptors of a specific kind, 𝑅&, requires extra 

consideration. Similar to how 𝑣c,HI was found, we break 𝐪 into three separate vectors, 𝐪 =

(𝐪•𝟎, 𝐪•𝐧, 𝐪•𝐱). 𝐪•𝟎 is the vector formed by the 0-th column of 𝐪, 𝐪•𝐧 is the vector formed by the 

𝑛-th column of 𝐪, and 𝐪•𝐱 contains all others. If the complex is 𝑠-valently bound, then |𝐪•𝟎| = 𝑓 −

𝑠. We further assume that |𝐪•𝐧| = 𝑡, then |𝐪•𝐱| = 𝑠 − 𝑡. By this setup, we have 
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This formula can useful when investigating the role of each receptor in a pathway that 

requires multimerized binding. 

Of course, the macroscopic predictions provided in this section cannot exhaust many 

biological quantities one may wish to study, but with the ideas demonstrated here, the readers can 

derive their own formulae as needed. 

Numerical implementation notes 

In this model, most predictions can be calculated directly by closed form formulae after 

𝑅HI,&’s have been solved. For solving 𝑅HI,&’s numerically, we have not found issues with deriving 

numerical solutions generally, except at extreme affinities (e.g., less than 1 pM 𝐾e) combined with 

very high valency (e.g., greater than 64), where floating point errors can cause problems with the 

termination conditions of the root-finding operation. We have learned through experience that one 

need not set bounds on the root-finding, as the function is monotonic with a single root. While we 

use auto-differentiation of the model through the Python package Jax or Julia package 

ForwardDiff.jl during root-finding (both packages available on GitHub), one can use numerical 
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differencing with identical results. Root-finding of 𝑅HI,& is by far the slowest part of the 

calculations. 

Ligand concentration handling 

Our model requires the total concentration of ligands at equilibrium, 𝐿1. There are at least 

four approaches one could take to rectify some measurement of ligand concentration with the 

model: (1) First, one could apply an assumption of no ligand depletion. This is an extreme 

assumption in many cases but can be applicable in in vitro experiments where it is known that the 

ligand amount is many orders of magnitude greater than that of the receptors. (2) Alternatively, 

one might know the concentration of ligand in solution after some or all of any ligand depletion 

has occurred. (3) If one has an estimate of the absolute number of receptors and ligand units before 

binding, 𝐿1 can be solved numerically by conservation of mass along with 𝑅HI,&’s. We have 

𝐿`Y`F𝑉 = 𝐿1𝑉 + 𝐿WGXYZ, 

𝐿`Y`F,𝛉𝑉 = 𝐿1𝐶𝛉𝑉 + 𝐿WGXYZ,𝛉, 

where 𝑉 is the effective volume of the ligand solution, 𝐿`Y`F is the total initial ligand concentration, 

and 𝐿`Y`F,𝛉 is the initial concentration of complex 𝛉. 𝐿WGXYZ and 𝐿WGXYZ,𝛉 may be found at the 

previously derived 𝐿WGXYZ and 𝐿WGXYZ,𝛉, depending on the occasion. (4) Finally, certain aspects of 

the system may not be sensitive to ligand concentration as an input parameter, or one could treat 

concentration as an unknown. 

 

2.5 Application examples 

In previous sections, we have shown how all macroscopic predictions made in this chapter 

can be written in closed form formulae. Therefore, some computationally expensive analyses are 
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enabled by the efficiency of our model. Here, we provide two examples to demonstrate the utility 

of large-scale predictions made possible by this model. 

Mixture binding prediction 

Leveraging a synergistic effect among two or more drugs is of great interest in 

pharmaceutical development. A challenge in investigating synergy is to identify its underlying 

source. Most biological pathways follow a similar pattern: when the drug binds to certain surface 

receptors of a cell, a downstream pathway in the cell is initiated, leading to some actions. Therefore 

in general, synergism can come from either the initial binding events themselves or downstream 

signal transduction interactions. Binding-level synergy means that merely using a combination of 

ligands boosts the amount of binding to the important receptors and thus intensifies the overall 

effect. Downstream effect synergy indicates that the benefit of using mixtures arises from other 

cellular regulatory mechanisms two ligands can bring about. The binding model we propose here 

can help to investigate this issue by offering accurate predictions for the binding of multivalent 

complex mixtures. 

In Fig. 2.3, we provide an example of mixture binding predictions (Fig. 2.3a). We 

investigate a mixture of three types of ligand complexes, bivalent 𝐿$ (𝛉𝟏 = [2,0]), bispecific 𝐿$ −

𝐿% (𝛉𝟐 = [1,1]), and monovalent 𝐿$ (𝛉𝟑 = [1,0]). The crosslinking constant is set to be 𝐾O∗ =

102$% cell ⋅ M, similar to previous results10. We predict the amount of binding of this mixture to a 

cell expressing three types of receptors, with 𝐑𝐭𝐨𝐭 = [2.5 × 10h, 3 × 10h, 2 × 10N] cell2$. The 

affinity constants of 𝐿$ to these three receptors are 𝐊𝐚,𝟏• = [1 × 10i, 1 × 10j, 6 × 10j] M2$, and 

of 𝐿%, 𝐊𝐚,𝟐• = [3 × 10j, 1 × 10k, 1 × 10l] M2$. Here, we investigate the changing concentration 

of 𝛉𝟏 and 𝛉𝟐, while holding the amount of 𝛉𝟑 constant at 0.2 nM. Fig. 2.3 shows the predicted 



28 

total ligand bound (Fig. 2.3b) and 𝑅N bound (Fig. 2.3c) for only 𝛉𝟏 or 𝛉𝟐 with concentration from 

0 to 0.8 nM, and their mixtures in every possible composition with total concentration 0.8 nM. 

Mixture binding prediction can help us identify the source of synergy. To connect model 

predictions to experimental measurements, ligand binding might be measured by fluorescently-

tagged ligands, while the number of bound receptors of a specific type might associate with an 

indirect measurement such as cellular response. After making a series of measurements for 

different compositions of mixtures, we can fit the 100% of one complex cases (numbers on the 

two ends on the plot) first and then compare the mixture measurements to the predictions. 

Determining whether the downstream effect contributes to the observed synergy (or antagonism) 

can be framed as a hypothesis testing problem: 

𝐇𝟎: The synergism of the mixture can be explained solely by binding. 

The uncertainty of mixture binding prediction comes from measurement errors of receptor 

abundance and binding affinities. Usually, the receptor expression of a cell population has an 

empirical distribution which can be measured. The confidence intervals in Fig. 2.3 were drawn 

with the assumption that receptor expression fluctuates up and down by 10% (coinciding with log-

normally distributed amounts). Also, due to the measurement technique, the binding affinities may 

be over- or underestimated18. The confidence interval of mixture prediction can be determined by 

the model with all these considered, and a 𝑝-value can be derived. 
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Figure 2.3. Prediction on mixture binding of 𝜽𝟏 = [𝟐, 𝟎], 𝜽𝟐 = [𝟏, 𝟏], and 𝜽𝟑 = [𝟏, 𝟎].  

(a) A schematic of the binding scenario;  

(b) The predicted total ligand binding;  

(c) The amount of bound 𝑅N at equilibrium.  

Shaded areas in (b), (c) are simulated confidence intervals by varying the receptor levels 

up and down by 10%. The points on (b) represent possible experimental results, arbitrarily drawn 

for demonstration. In case a (purple circles), since most data points are inside the confidence 

interval, we can assume the measurement error can explain these variations. In case b (orange 

crosses), however, the synergism of these complexes is beyond the binding level. 
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We arbitrarily drew some possible experimental results on Fig. 2.3b for demonstration. If 

most mixture measurements fall within the confidence interval of the predictions (such as case a 

annotated by the purple circles in Fig. 2.3b), the synergy will very likely come from binding only. 

However, if the measurements are obviously beyond the confidence interval (case b, the orange 

crosses), it is reasonable to suspect a synergistic (or antagonistic) effect beyond binding alone. 

With the flexibility of the binding model, this method can also be extended to a mixture of more 

than two compounds. 

Binding space of a ligand 

When a dose of ligand (drug, hormone, cytokine, etc.) is released into the circulation 

system of an individual due to either physiological response or exogenous administration, the 

compound will spread and bind to many cell populations to varying extents. An essential question 

in pharmacology is how much a compound will bind to their intended target populations compared 

to off-target ones. This question is important for understanding basic biology as well as developing 

new therapeutics. For example, hormones and cytokines are important signaling molecules, and 

having a quantitative prediction of on- and off-target binding can help us understand their 

mechanism greatly. For drug development, binding prediction can guide optimization to improve 

specificity toward the intended targets. A cell population can be defined by the receptors they 

express. Therefore, given the parameters of the dose and the receptor profile of each cell 

population, our model can make all the predictions discussed previously. 

From the perspective of this binding model, there is nothing special about any specific cell 

population. If the local concentration is constant everywhere, our model can map any cell with a 

certain receptor expression to the amount of binding induced by this dose. If the biological activity 
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of this compound on a cell is related to the quantity of binding to a certain ligand or receptor, the 

effect of this dose can be written as a function 𝑓, with 

𝐑𝐭𝐨𝐭 ∈ ℝm
D* ↦ 𝑓(𝐑𝐭𝐨𝐭) ∈ ℝm, 

where 𝐑𝐭𝐨𝐭 is a vector of nonnegative entries that describes the cell’s expression of 𝑁K receptors, 

and 𝑓(𝐑𝐭𝐨𝐭) is the amount of binding. Here, we define the binding behavior of this dose (or any 

compound) as its binding space. 

In Fig. 2.4, we plot the binding space of a bivalent 𝐿$ ligand 𝛉 = [2,0] with concentration 

1 nM. The binding affinities are the same as described in the last subsection. In this binding space, 

we consider three receptors, 𝑅$, 𝑅%, and 𝑅N. We plot how the amount of binding relates to the cell 

expression profile, 𝐑𝐭𝐨𝐭. Here, the amount of 𝑅$ and 𝑅% varies with the two axes, while 𝑅N is held 

constant at 2.0 × 10N cell2$. In this plot, each point represents a cell with a distinct expression 

profile, as some examples drawn on Fig. 2.4a. Then we use colors and contour lines to show the 

amount of binding. From these two plots, we can see that although both ligand binding and 𝑅% 

binding increase with more receptors, ligand binding is more sensitive to 𝑅$ amounts, and 𝑅% 

binding 𝑅% amounts. To consider any specific cell population, one only needs to determine where 

its expression profile falls on the plot and read the predictions from the contour line. For example, 

on Fig. 2.4b, the red cell population will have about 𝑒j.% = 181 bound ligands per cell. The number 

of contour lines a population ride on can also show intrapopulation variation. In this case, we 

expect the variation in ligand binding to fall between 𝑒h.N = 74 and 𝑒l.1 = 403. 
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Figure 2.4. The binding space of 𝟏 𝐧𝐌 𝛉 = [𝟐, 𝟎].  

(a) A schematic diagram of the ligand and four examples of receptor-expressing cells represented 

by the coordinate;  

(b) The amount of total ligand bound;  

(c) Receptor 𝑅% bound predictions.  

The x- and y-axis show the expression of 𝑅$ and 𝑅%, while the expression of 𝑅N is a 

constant, 2.0 × 10N cell2$, and not shown. Any cell population can be drawn on the binding space. 

For example, the red ellipse on (b) represents a cell population with receptor expression of roughly 

𝐑𝐭𝐨𝐭 = [1.0,10.0,2.0] × 10N cell2$. We can alternatively project points of experimental single cell 

expression data onto a binding space, as shown on (c) (the points were generated arbitrarily 

assuming a population of log-normally distributed 𝑅$ and 𝑅% expression for demonstration 

purpose. 
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The binding space can provide ample information about the compound. It is an intrinsic 

property of a ligand given its concentration and other ligand it mixes with, independent of any 

specific cell. The biological process of drug diffusion to a certain cell is analogous to sampling a 

point from this binding space. Its gradient indicates in which direction the binding level increases 

the fastest, as well as to which receptor amount it is the most sensitive. An inactive antagonist that 

introduces binding competition with the ligand can distort its binding space, and we can visualize 

it by the change of shape in the contour lines. This plot can also intuitively demonstrate 

intrapopulation binding variance and interpopulation cell specificity of the compound. With the 

development of high-throughput single-cell methods such as flow cytometry, the expression 

profiles of a collection of cells can be identified en masse, and we can overlap their results onto a 

binding space plot (as in Fig. 2.4c). This shows the promise of applying our model to single-cell 

data. Although we can only visualize two receptors in a plot, binding space applies to any 𝑁K types 

of receptors. Theoretically, the concept of the binding space of a ligand is only complete when all 

relevant surface receptors are considered. 

 

2.6 Discussion 

In this chapter, I propose a mechanistic multivalent binding model that accounts for the 

interaction among multiple receptors and a mixture of ligand complexes formed by binding 

monomers. The flexible framework allows a mixture of both homogeneous and heterogeneous 

ligand complexes, even when they don’t have the same valency. I first derive the amount of ligand 

of a specific binding configuration at equilibrium through the law of mass action. Using this 

formula, I make macroscopic predictions by applying the multinomial theorem strategically. Our 

predictions cover cases where complexes are formed by specific arrangement or random 
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assortment. Finally, I provide two practical examples of how this model can help with biological 

research. 

Compared with previous approaches, the model here is a uniquely scalable and elegant 

approach to multivalent binding when considering multivalent complexes of heterogeneous 

monomer composition and/or multiple receptors. Scalability to higher valency complexes is 

essential as rule-based computational models can become impractical due to a combinatorial 

explosion of binding states. By contrast, our model can make a large number of predictions easily, 

enabling mixture synergy analysis and binding space calculations across individual cells. The 

mathematical elegance of the model welcomes analytical studies and incorporating it into higher-

level computational frameworks. For example, we apply auto-differentiation to ensure accuracy in 

the root-finding operation when solving for unbound receptor. We have similarly used auto-

differentiation to solve for the gradients of the model with respect to input quantities when fitting 

it to data points. One could even feasibly derive analytical forms of the gradients. This enables one 

to build more complex computational models on top of this binding framework, such as inferring 

the composition of multivalent complexes in solution from indirect high-throughput assays. While 

differentiation of differential equation models is possible through adjoint state methods, solving 

can be sensitive to the parameters of the system, is much less efficient, and requires trade-offs in 

accuracy for performance. 

The assumptions made in this model may compromise its accuracy in some cases. Our 

setup has a single crosslinking constant, 𝐾O∗, to reflect the multivalency effect. In practice, this 

model has worked well in predicting experimental binding results10,19,20. However, the steric 

effects of a multivalent ligand can be more complicated and context-dependent. The complication 

of multivalency effect comes from the geometry of ligand complexes that introduced steric effect 
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as well as the distribution of receptors on the cell surface. For instance, the length of the hinge 

region is needed to estimate the radius of area a molecule can reach21. Receptor clustering can be 

play a big role in the behavior of ligand binding as well22. Accounting for these effects requires 

more in-depth studies than just measuring the monomer binding kinetics. Some other 

computational approaches investigate steric effects more meticulously, but inevitably introduce 

some added complexity. For example, previous work has conducted a case-by-case exploration of 

how ligands bind when distributed randomly or ordered, arranged as a lattice, ring, or chain to give 

a better hindrance factor estimation16. When the actual situation is not known, our model can serve 

as an adequate starting point. 

Although this model is very general purpose, it mainly focuses on the binding dynamics 

on a cell surface, similar to the previous work on which it is based11,13,14. For ligands discordant 

with the two-step binding process shown in Fig. 2.2, other model constructions might be necessary. 

For example, some previous work focuses on scaffold proteins as intracellular multivalent 

complexes23, but these often lack independence between the individual monomer binding events. 

In this case, various alternative computational models have been developed24–26. 

Surface receptor binding is a universal event in biology. A prevalent question calls for a 

general solution. I expect this model to be successfully applied to many contexts. Previously, we 

have used a simpler version of the random assortment model to accurately predict IgG antibody-

FcγR interactions10, and also applied it to fit epithelial cell adhesion molecule binding data19,20. 

We are also working on applying the model to IL-2 immunocomplexes27, for optimization of high-

valency cytokines with specific cell targeting, design of cytokine-antibody bispecific antibody 

fusions, and as a factorization kernel in dimensionality reduction of systems serology data5,28. With 

the arise of multispecific drugs in the recent decade29, I expect this model to apply even more 
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widely, exhibit its full competence and facilitate both basic scientific research and new therapy 

development. 

Data and software availability 

A Python package of this model and the code for the plots can be found at 

https://github.com/meyer-lab/valentBind/. I also provide a Julia package of the model at 

https://github.com/meyer-lab/polyBindingModel.jl/. 
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Chapter 3 

Mixed IgG Fc immune complexes exhibit blended binding profiles and 

refine FcR affinity estimates 

 

Don’t let the perfect be the enemy of the good.  

 

 

3.1 Introduction 

Antibodies are both a core component of adaptive immunity and a versatile platform for 

developing therapies. An antibody’s role in promoting immunity is defined by its selectivity 

toward a target antigen, as determined by its variable region, and its ability to elicit effector cell 

responses, defined by the composition of its constant, fragment crystallizable (Fc) region. 

Antibodies of the IgG type direct effector responses by binding to Fcγ receptors (FcγRs) via their 

Fc region. FcγR activation is initiated through IgG-mediated clustering, which in turn is caused by 

the engagement of several antibodies on an antigen target, forming an immune complex (IC). 

Depending upon the receptors included, this interaction may promote or prevent an effector 

response. This clustering mechanism ensures that more than one IgG is present whenever effector 

responses occur. 

The immune response triggered by an IgG IC consisting of a specific Fc form, including 

subclass or glycosylation, is defined by its binding to specific FcγRs, each of which differs in 

signaling effect and expression patterns2. Consequently, accurate estimates of IgG Fc-FcγR 
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affinities are essential to understanding their effect. Most existing FcγR affinity measurements 

have been performed by surface plasmon resonance (SPR) using monovalent IgG30,31. SPR 

accurately assesses protein-protein binding kinetics, but many antibody-Fc receptor interactions 

are weak enough to fall outside the assay’s quantitative range when assessed in monovalent form. 

Clustering leads to avidity effects, wherein even weak interactions can cooperatively lead to strong 

binding19. Indeed, avidity is widely employed in natural and engineered systems to promote 

binding through low-affinity interactions32. Therefore, direct measurement of IC binding might 

more accurately quantify IgG Fc properties, particularly for low-affinity interactions. Measuring 

Fc binding as multivalent ICs additionally resembles the relevant in vivo context of effector 

responses33. 

Physiological antibody responses universally involve Fc mixtures. For instance, during the 

course of infection, the composition of IgG subclasses shifts dynamically to different subclasses 

due to class switching34. Even when recombinantly manufacturing monoclonal therapeutic 

antibody preparations, heterogeneity exists in the glycosylation forms derived, and this glycan 

heterogeneity likely exists during endogenous antibody production as well35,36. With mixtures of 

antibodies of varied Fc composition but identical antigen binding, there might be an additive 

combination of effects, or a minor species (e.g., glycosylation variant) might present an outsized 

effect promoting or preventing effector responses. Therefore, knowledge of how these different 

forms influence the behavior of one another would allow one to modulate immune responses by 

adjusting subclass composition. With respect to therapeutic monoclonal antibody preparations, this 

would help guide the evaluation of biosimilars by determining whether glycosylation forms 

present at small fractions influence overall therapeutic efficacy37. 
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After binding to Fc receptors, effector cell-elicited responses to IgG include several 

different functionally distinct mechanisms, including antibody-dependent cell cytotoxicity 

(ADCC) and phagocytosis (ADCP). Effector responses are coordinately regulated by the cell types 

present within a tissue38,39, the FcγRs expressed on those effector cells40, the Fc regions present 

within an immune complex2, and properties of antigen engagement41,42. Regulation at the Fc 

receptor and cell population level is a challenge to engineering antibodies with desirable cell-

killing functions, as well as understanding both productive and pathogenic immune responses. 

Furthermore, it has become clear that, in addition to NK cells, tissue-resident macrophages and 

bone marrow-derived monocytes participate in cytotoxic antibody-dependent target cell clearance. 

In contrast to NK cells (expressing only one activating FcγR, FcγRIIIA), these myeloid cell subsets 

express a broader set of activating FcγRs and the inhibitory FcγRIIB40. Thus, mixed IC may trigger 

all or specific subsets of activating/inhibitory FcγRs, resulting in further complexity. Despite the 

presence of and capacity to bind to multiple activating FcγRs on myeloid effector cells, our 

previous studies have demonstrated that individual IgG subclasses, such as mIgG2a/c, may 

mediate their activity through select activating FcγRs, indicating that there may be specialization 

in FcγR signaling33. 

Our team recently demonstrated that a model of IC-FcγR binding accurately captured and 

could predict in vitro binding across various IgG isotypes10. Further, it could accurately predict 

antibody-elicited tumor cell killing in mice across antibodies of varied isotype, glycosylation 

status, and FcγR knockouts10. Directly quantifying and predicting cell clearance makes it possible 

to accurately anticipate and optimize for antibody-mediated therapeutic effects. However, it is still 

unclear whether such a modeling strategy can accurately predict the response of human immune 
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cells, particularly given the divergent properties between the murine and human receptors43–45, and 

whether this modeling strategy can extend to ICs of mixed composition.  

Here, we examined the binding properties of ICs with mixed IgG Fc composition. We 

quantified the binding of these ICs to each individual FcγR and observed that mixed-composition 

ICs resulted in a continuum of binding responses. A multivalent binding model extended to hetero-

valent immune complex mixtures captured binding overall. However, surprisingly, it did not match 

certain low-affinity interactions46. Investigating the source of this discrepancy allowed us to 

improve the estimates of these interactions’ affinities. We additionally demonstrate that the 

binding model can be used to both predict in vivo effector responses in humanized mice and infer 

the cell types responsible for these responses. Thus, while antibody effector responses operate 

through a complex milieu of antibody species, Fc receptors, and cell types, IC profiling paired 

with modeling provides a framework to reason about the role of each molecular and cellular 

element. 

 

3.2 Profiling the binding effects of mixed-composition immune complexes 

To determine the effect of having multiple Fc forms present within an immune complex 

(IC), we developed a controlled and simplified in vitro system. Like in previous work, we 

employed a panel of CHO cell lines expressing one of six individual human FcγRs10 (Fig. 3.1a). 

ICs were formed by immobilizing anti-2,4,6-trinitrophenol (TNP) human IgG on conjugates of 

TNP and bovine serum albumin (TNP-BSA) with an average valency of 4 or 33. IgG binding was 

then quantified after incubation with the cells, using a constant IC concentration of 1 nM (Fig. 

3.S1). In contrast to our previous work using a single IgG isotype, we assembled ICs from mixtures 

of each IgG isotype pair10. For each pair of IgGs, ICs were formed with a spectrum of six 
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compositions of the IgG pair, including 100%/0%, 90%/10%, and 67%/33% mixtures. 

Combinations of 6 FcγRs, 2 valencies, 6 IgG pairs, and 6 IgG compositions resulted in 432 distinct 

experimental conditions. One-way ANOVA showed that more than 70% variance in the data was 

between experimental conditions rather than within them, indicating that more than 70% of the 

variance could be explained by biological differences (Tbl. 3.S1). This suggests that, within each 

condition, measurements were consistent. 

Inspection of the resulting binding data revealed several expected patterns. Among the 

conditions with only one IgG present, the measured binding showed a strong, positive correlation 

with the documented IgG-FcγR interaction affinities (Fig. 3.1b). The higher valency ICs 

universally showed greater binding signal compared to their matching lower-valency counterparts, 

and there is an obvious negative trend between documented affinities and the ratio between the 

33-valent and 4-valent complex binding (Fig. 3.1c). This trend is expected since, although 

complexes of both valencies can bind densely with high-affinity units, only high-valent complexes 

compensate for low affinity through avidity19. Therefore, while high-affinity complexes result in 

greater binding, low-affinity complexes have greater intervalency binding ratios. Finally, mixtures 

spanning 100% of one IgG isotype to another generally showed a monotonic shift with 

composition (Fig. 3.S1). These patterns, along with their reproducibility (Tbl. 3.S1), gave us 

confidence in the quality of the binding measurements. 
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Figure 3.1. Profiling the binding effects of mixed-composition immune complexes.  

(a) Schematic of the immune complex (IC) binding experiment. Individual or mixtures of IgG 

subclasses are immobilized as multivalent TNP complexes. The binding of these complexes to 

CHO cells expressing a single type of Fc receptor is then quantified.  

(b) Measured binding in relative fluorescence units (RFU) versus the previously reported affinity 

of each interaction. Only single subclass conditions are plotted. Each condition has 3–5 technical 

replicates. Error bars represent the interquartile range of the measurements.  

(c) The ratio of median binding quantified between valency 33 and 4, versus the reported affinity 

of the interaction. ρ represents the Spearman correlation coefficient. Significance testing was 

performed using the t-statistic under the null hypothesis that ρ = 0.  

(d) IgG1-IgG2 mixture binding to FcγRI shows appreciable binding, even though IgG2-FcγRI is 

documented to be non-binding. The RFU level was normalized to match the FcγRI expression to 

the FcγRIIIA-158F expression (shown in e) on CHO cells.  

(e) IgG1-IgG4 mixture binding to FcγRIIIA-158F.  
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In (d) and (e), each error bar represents the interquartile range of the three technical 

replicates in the respective condition. 
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We also observed several unexpected trends among the binding measurements. There was 

appreciable binding from IgG2-FcγRI interactions, despite this combination being reported as non-

binding31 (Fig. 3.1d). We also saw an increase in binding along the shift from IgG4 to IgG1 with 

FcγRIIIA-158F, even though these two isotypes are documented to have identical affinities31 (Fig. 

3.1e). These two observations are consistent with previous binding measurements using the same 

TNP-based IC system10. 

To better visualize the binding of these experimental conditions, we performed principal 

component analysis (PCA) on the median measurement of each condition, with each isotype 

mixture and valency as a sample and each receptor as a feature. The first principal component 

(PC1) explains more than 86% of the variance, and the first two components (PC1 and PC2) 

explain 93% (Fig. 3.2a). Inspecting the scores, we found that the 33-valent measurements are more 

broadly distributed, consistent with their greater expected binding (Fig. 3.2b-g). PC1 mostly 

separates IgG3 binding from other isotypes, reflecting that IgG3 has the greatest binding among 

IgG subclasses (Fig. 3.S1). PC2 separated the genotype variants of FcγRIIA and FcγRIIIA and 

associated most strongly with IgG3 and IgG4 (Fig. 3.2h), reflecting that these two subclasses 

showed larger differences in binding with genotype (Fig. 3.S1). 

In all, these data support that TNP-assembled ICs provide a controlled in vitro system in 

which we can profile the effects of mixed IC composition on binding to effector cell populations. 

Quantifying binding using ICs may, in fact, provide more precise quantification of IgG-FcγR 

interaction affinities, particularly for lower affinity pairs, and mixed Fc composition ICs showed 

binding between that of the corresponding single Fc cases. 
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Figure 3.2. Principal component analysis (PCA) visualizes the variance in mixture binding 

measurements and their associated factors.  

(a) Variance explained by each number of components in PCA. Two principal components (PC) 

explained greater than 93% of the measurement variance.  

(b–g) PCA scores for immune complexes of each valency and pair of IgG subclasses.  

(h) PCA loadings. The FcγRI and FcγRIIB-232I points overlap. 
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3.3 A multivalent binding model accurately predicts  

in vitro IgG mixture binding and updates Fc-FcγR affinities 

To model the effects of polyclonal antibody responses, we extended a simple, equilibrium 

binding model that we have previously used to model antibody effector response10,46. Briefly, 

immune complexes are assumed to bind to FcγRs on the cell surface with monovalent binding 

kinetics, and then can engage additional receptors with a propensity proportional to their affinity 

(Fig. 3.3a). Though additional assumptions are not required for modeling ICs of mixed isotype 

composition, this extension leads to a large combinatorial expansion in the number of binding 

configurations. Through some properties of combinatorics, we derived simplified expressions for 

many macroscopic quantities to allow this model to scale to multi-ligand, multi-receptor, and 

multivalent situations46. 

We first used the measured receptor expression (Tbl. 3.S2) and documented affinities31 

with the model and obtained reasonable agreement overall (Fig. 3.3c). While the predicted values 

mostly agreed with the measurements, there were several notable outliers, most prominently an 

underestimate of IgG2-FcγRI binding (Fig. 3.3c, red circle). To improve the measurement fit, we 

reversed the estimation process and used the measured binding to infer the interaction affinities 

via Markov chain Monte Carlo (MCMC) (Fig. 3.3b). We first created a baseline fit quality by 

fitting all but the affinities (e.g., receptor abundance and the crosslinking parameter 𝐾O∗, Fig. 3.3d). 

Although the fit improved, outliers persisted (circled in red in Fig. 3.3d). Therefore, we next 

performed the fitting while allowing the Fc-FcR affinities to vary. Although we only used the 

single-IgG measurements to infer the Fc affinities (Fig. 3.3e), we obtained much more accurate 

predictions for all measurements of both single and mixed IgG compositions (Fig. 3.3f). 
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Figure 3.3. A multivalent binding model accurately accounts for in vitro binding of IgG 

mixtures.  

(a) Schematic for the multivalent binding model.  

(b) Schematic of the process of predicting binding with documented affinities and inferring 

affinities from measurements.  

(c) Measured versus predicted binding by the binding model without fitting. Points also vary in 

the IgG subclass used, which is not indicated.  

(d) Binding model prediction with all parameters but affinities fitted by Markov chain Monte Carlo 

(MCMC).  
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In (c) and (d), the IgG2-FcγRI outliers were circled in red. Since this interaction was 

previously reported as nonbinding, the actual predictions were all 0, but were clipped to a nonzero 

value (1/10 of the next smallest value) to be plotted on the log scale.  

(e) Binding model prediction of all measurements (single and mixed IgG) with affinity inferred 

from the single IgG measurements.  

(f) Binding model prediction of mixture IgG measurements with affinities updated using the single 

IgG measurements.  

In (c–f), error bars represent the interquartile range of 3–5 technical replicates.  

(g, h) Validation of the updated affinities with a separate dataset10 by predicting the binding with 

either documented (g) or updated (h) affinities The error bars represent the interquartile range of 

four technical replicates for each condition.  

(i–l) Predicted binding of IgG4-IgG2 mixture to FcγRI (i, j) and IgG4-IgG3 mixture to FcγRIIB-

232I (k,l), with either documented (i, k) or updated affinities (j, l, solid line and left axis) compared 

with measured binding (j, l, dashed line and right axis). Error bars in (j) and (l) represent the 

interquartile range of 3–5 technical replicates.   
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To further confirm the generality of these updated affinities, we validated these new 

affinity estimates with an independent dataset collected in a previous study10. This previous study 

independently measured the binding of TNP-BSA complexes in vitro with two distinct average 

valencies (4 and 26), but only the binding of single IgG isotypes. We set the Fc affinities to either 

documented or updated values and let MCMC fit the other parameters. The new affinities resulted 

in a vastly improved agreement with the data (Fig. 3.3g/h). 

To illustrate the impact of the affinity changes, we compared the binding predictions with 

two sets of affinities (Fig. 3.S2/S3) to their corresponding measurements (Fig. 3.S1). For FcγRI 

binding to IgG2-IgG4 mixtures, the experiment indicated that there was still notable binding with 

mostly or 100% IgG2, while IgG2-FcγRI was documented as non-binding31. The updated values 

amended the prediction and reflected this interaction, especially for the 33-valent complex (Fig. 

3.3i/j, green circle). For FcγRIIB-232I binding to IgG3-IgG4, the documented affinities indicated 

there should be more binding to IgG4 compared to IgG3, contrary to our observation (Fig. 3.3k). 

The updated affinities instead accurately predicted the binding of all mixtures at both valencies 

(Fig. 3.3l). These examples demonstrate that the affinity adjustments greatly improved agreement 

with the binding measurements. 

As our Fc affinity inference was constructed in a Bayesian fashion, both the prior 

(documented) and the posterior (updated) affinity values are represented as distributions 

accounting for uncertainty. Inspecting these updated distributions (Fig. 3.4a–d; Tbl. 3.S3), we 

noted several trends. The model made the largest adjustments to the Fc affinities of IgG2 (Fig. 

3.4b), followed by IgG4 (Fig. 3.4d). Most IgG1 (Fig. 3.4a) and IgG3 (Fig. 3.4c) affinities remained 

unmodified, except for a slight increase in their FcγRIIB-232I affinities. The most notable update 

occurred to IgG2-FcγRI. Previously reported as nonbinding, FcγRI was revised to be the highest 
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affinity receptor for IgG2, consistent with the receptor’s high affinity to other human IgG 

subclasses. This discrepancy was reflected in the model prediction before affinity fitting, where 

the IgG2-FcγRI binding was the striking outlier (Fig. 3.3d/g). Another significant adjustment 

occurred with IgG3-FcγRIIB-232I. Although FcγRIIB-232I has a low affinity for all IgG 

subclasses, our update led to IgG3 being the strongest-binding subclass (Fig. 3.4c, S2 & S3). More 

subtle differences can be observed from specific model predictions (Fig. 3.S2 & S3). The revised 

affinities showed a similar overall correlation with binding overall (Fig. 3.4e). The intervalency 

binding ratios show a more prominent negative correlation, however, due to the movement of the 

IgG2-FcγRI outlier (Fig. 3.4f). 
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Figure 3.4. Inferred affinities from the binding data.  

(a–d) The prior (documented) distributions of binding affinities (assuming all follow log-normal 

distributions) and posterior (updated) affinities of IgG1 (a), IgG2 (b), IgG3 (c), and IgG4 (d).  

(e) Updated affinities plot against the binding measurements of single IgGs. Error bars represent 

the interquartile range of the 3–5 technical replicates.  

(f) Updated affinities plot against the ratio of median binding between valency 33 and 4 complexes.  

In (e) and (f), ρ represents the Spearman correlation coefficient. Significance testing was 

performed using the t-statistic under the hypothesis that ρ = 0. 
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3.4 Multivalent binding predicts antibody-elicited  

effector responses in humanized mice 

We next sought to link the binding of ICs to their effects on the clearance of antigen targets 

in vivo. To quantify the antibody-driven activity of each effector cell, we first measured the binding 

of each human IgG subclass to immune effector cells collected from the peripheral blood of human 

donors in vitro in IC of two valencies, 4 and 33 (Fig. 3.5a–d). The measurements show that the 

binding amounts of IgG1 and IgG3 were generally about 10-fold higher in magnitude than those 

of IgG2 and IgG4. For the latter two subclasses, their 4-valent complex binding was almost 

negligible. In all cases except IgG2, neutrophils had more binding than classical and nonclassical 

monocytes. 

We predicted the same quantities of IC binding by the multivalent binding model with 

either the previously documented31 or updated affinities (Tbl. 3.S4), and the quantification of FcγR 

abundance40 (Tbl. 3.S6, Fig. 3.5e–h). These estimated binding amounts broadly aligned with the 

measurements (Fig. 3.5i/j). Between the two sets of affinities, the predictions for IgG1 and IgG3 

remained almost identical (Fig. 3.5e/g), while more differences were reflected in IgG2 and IgG4 

(Fig. 3.5f/h), consistent with the affinities changing more for IgG2 and IgG4 (Fig. 3.4a–d). The 

predictions with documented and updated affinities were generally comparable in their 

concordance with the measurements (Fig. 3.5i/j). However, the predicted binding to nonclassical 

and classical monocytes was adjusted to be much higher for 33-valent IgG2 (Fig. 3.5f), better 

matching the measured values (Fig. 3.5b/i/j). Both sets of affinities predicted the binding of IgG4 

to classical monocytes to be much higher than the measurements (Fig. 3.5i/j). These changes 

indicate that the updated affinities better predict IgG IC binding to effector cells, suggesting that 

they may also help improve the estimation of in vivo cell response.  
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Figure 3.5. Predicting IgG effector cell binding with the multivalent binding model.  

(a–d) Measured in vitro binding of IgG1 (a), IgG2 (b), IgG3 (c), and IgG4 (d) IC of either 4- or 

33-valency to selective immune effector cells from human donors, classical (cMO) or nonclassical 

(ncMO) monocytes and neutrophils (Neu).  

(e–h) Model-predicted IgG1 (e), IgG2 (f), IgG3 (g), and IgG4 (h) IC of 4- or 33- valent binding 

on each effector cell type under documented versus updated affinities.  

(i, j) Measured versus predicted effector leukocyte binding under documented (i) or updated (j) 

affinities.  
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The error bars in (a–d) and (i, j) represent the interquartile range of six biological replicates. 
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Figure 3.6. In vivo target cell depletion regression in humanized mice.  

a) Schematic of in vivo platelet depletion regression. To predict the percentage decrease of platelet 

abundance after antibody injection in mice, we combined the binding model predictions with the 

Fc receptor and effector cell type weights, then transformed the sum into depletion percentage with 

an exponential distribution cumulative density function.  

(b–e) Results of regression run using the documented (b, d) and updated (c, e) affinities.  

(b, c) Actual versus predicted depletion of platelets.  

(d, e) Predicted effector cell type effects.  

Error bars indicate the interquartile range from MCMC sampling. 
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Next, we used the multivalent binding model with regression to predict in vivo antibody 

effector cell-driven platelet depletion in humanized mice. In the process of extending our previous 

model, we elected to use the cumulative density function of the exponential distribution as the link 

function in our generalized linear regression model to link the overall cell activity to the amount 

of target (e.g., platelet) depletion (Fig. 3.6a). Since the cell depletion effects have a limited range—

one cannot deplete an antibody target of more than 100% or less than 0%—we must use a non-

linear link function to transform the linear combination. While many functions provide this general 

relationship (such as the hyperbolic tangent function used before10), we realized that the extent of 

target cell depletion can be thought of as a form of survival analysis. In other words, given a certain 

antibody activity, a target cell has a certain probability of being cleared within the given timescale 

of the experiment. Assuming all target cells have an equal propensity of being cleared dictates an 

exponential relationship for the link function47. 

Having refined the cell clearance model, we applied it to a previously-collected dataset 

examining in vivo platelet depletion in humanized mice48. After fitting the cell type weighting, we 

found the model fit the experiments well, especially considering the experiment-to-experiment 

variability due to donor graft variation and other sources of experimental uncertainty (Fig. 3.6b/c). 

The fitting was almost identical when using documented (Fig. 3.6b) or updated (Fig. 3.6c) FcγR 

affinities. 

A benefit of the generalized linear regression model is that it provides an easy interpretation 

of each component. Inspecting the inferred cell type effects, we found that classical monocytes 

were inferred to be the predominant effector cell type (Fig. 3.6d/e). IgG2 had some binding to each 

effector cell type, but no activity was inferred whatsoever (Fig. 3.5f, 6d/e). As the affinity updates 

are most relevant to IgG2, and this isotype had no in vivo effect, it is reasonable that these changes 
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had little effect on agreement with the data (Fig. 3.5f, 6e). While neutrophils, not classical 

monocytes, had the greatest binding, classical monocytes were inferred to exert the greatest impact 

on platelet depletion across isotypes (Fig. 3.5a–d). This demonstrates that the most bound cell type 

does not equate to the most potent effector. One explanation may be that, in these humanized 

models, there are relatively low numbers of human neutrophils upon reconstitution49. The 

regression model can incorporate the molecular level binding estimation and the depletion 

outcome to provide insights into the overall potency of each cell type. Overall, we found that the 

binding model could predict antibody-elicited effector responses in vivo in humanized mice. 

 

3.5 Discussion 

In this chapter, we explored the binding properties of ICs with mixed IgG Fc composition 

and linked their in vitro effects to in vivo effector cell-elicited platelet depletion. To quantify the 

binding of mixed IgG ICs in vitro, we measured every human IgG subclass pair across a range of 

compositions multimerized at two different valencies (Fig. 3.1). Fitting these measurements to a 

model of multivalent interactions using documented affinities for each interaction, our model 

accurately captured the overall binding trends, with some outliers (Fig. 3.3). We uncovered that 

the model discrepancies could be explained by inaccurate estimates of especially low-affinity Fc 

receptor interactions, most prominently involving IgG2. We validated revised affinities within an 

independent dataset and found it greatly improved concordance with the data there as well. Finally, 

we used measurements of binding to effector cell populations to predict in vivo antibody-driven 

depletion of platelets in humanized mice (Fig. 3.5 & 3.6). While the updated affinities did not 

change the agreement of the model with the observed depletion, it did change the interpretation of 

IgG2’s small effect on depletion—rather than not binding to classical monocytes, IgG2 binds 
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strongly when in a larger IC, but platelets might provide insufficient avidity to observe sufficient 

engagement (Fig. 3.6).  

Considering that polysaccharide antigens present during bacterial infections or upon 

vaccination efficiently trigger IgG2 responses50, our data would support the notion that FcγR-

dependent effector functions such as phagocytosis of opsonized bacteria may contribute to 

protective IgG responses in humans more than expected. Conversely, autoreactive IgG2 responses 

observed during many autoimmune diseases may contribute to autoimmune pathology via FcγRs, 

which may warrant to develop therapeutic interventions blocking this pathway also in IgG2-

dominated autoimmune diseases51. Finally, with respect to the use of human IgG2 antibody 

formats as immunomodulatory antibodies for the therapy of cancer, our results would support 

strategies to engineer IgG2 variants with reduced binding to activating FcγRs and optimized 

binding for the inhibitory FcγRIIB, which has been shown to be critical for immunomodulatory 

IgG activity to further improve their therapeutic activity and reduce unwanted side-effects52. 

IgG subclasses and glycan variants are defined by their differing affinity toward each Fc 

receptor31,45,53. Therefore, accurate measurements of each Fc receptor affinity are critical to 

understanding the differences in immune responses to each IgG. Using a mechanistic multivalent 

binding model alongside in vitro binding fluorescence measurements, we were able to derive a 

new set of Fc affinities refined from those measured by SPR. Due to the heightened avidity, 

multivalent ICs were better at detecting low-affinity IgG-Fc receptor interactions (Fig. 3.4b). 

Examining binding through ICs also better simulates the relevant structure of Fc-FcR interactions 

in vivo. Harnessing avidity to overcome the low affinity of interactions is a common theme in 

immunology and its experimental characterization. For instance, tetramers are routinely used for 
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isolating antigen-selective T cells9. Here, we additionally show that these complexes can be used 

alongside quantitative models to infer properties of these systems. 

This framework can be extended to study other aspects of IgG biology such as IgG 

allotypes. Due to a large number of variants and their implication in ADCC, IgG3 allotypes are of 

particular interest, with their immunogenicity directly related to their FcγR affinities54. In 

comparison to SPR, our multivalent strategy may allow us to better distinguish the subtle 

differences in allotype Fc affinities, while the binding model can predict their NK cell responses 

for different IC valencies. IgG polymorphism also presents in forms independent of Fc binding 

affinities, such as half-life and hinge length. Having a computational model that can accurately 

quantify the binding effect may help with separating the affinity-dependent and independent 

factors, guiding optimal biologic designs. 

Our results suggest that, within ICs comprised of several distinct subclasses or 

glycosylation variants, the Fc interaction effects are a blend of the constituent species’ properties. 

This means that ICs’ most extreme binding and effector responses should predominantly arise 

from whichever species is most potent in eliciting binding or a response. It also should provide 

some encouragement that the effector responses elicited from therapeutic antibodies should vary 

roughly in proportion to their relative composition; small contaminants of alternative Fc subclasses 

or glycosylation can only have a substantial effect if those species differ extremely in their 

responses alone. One caveat of this observation is that we only examined mixtures of antibodies 

with differing Fcs but identical antigen binding—polyclonal mixtures of antibodies will have still 

other interaction effects because antigens can form a higher valency complex when they are present 

in combination55. While in this chapter we only demonstrated Fc subclass mixtures, the same 
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lessons likely apply to glycosylation mixtures, both in vitro and in vivo, since different subclasses 

and glycosylation variants exert their effect through divergent affinities toward Fc receptors. 

Fc receptor-mediated effects are central to protection from both endogenously produced 

and therapeutic antibodies. Our work demonstrates that computational methods greatly facilitate 

reasoning about the complex signaling of the Fcγ receptor pathway quantitatively and at both 

cellular and organismal levels. This chapter extends our previous modeling to humanized mice 

and expands its application to the depletion of platelets10. We anticipate that mechanistic models 

of antibody-mediated protection, such as the one here, will continue to grow in their utility for 

studying model systems such as humanized mice. In fact, as other features of antibodies are 

incorporated, such as variation in antigen specificity, it may become possible to connect behavior 

in vitro all the way to protection in human subjects5,56. 

Limitations of the study 

Although the updated affinities performed better in predicting the binding to human 

lymphocytes, there were still discrepancies in the IgG4 predictions (Fig. 3.5d/h/j). The predicted 

binding to classical monocytes was higher than measured, especially with 4-valent complexes. 

This measurement might have been underestimated, as the measurement was close to 0, while the 

33-valent binding was comparable to or higher than those of nonclassical monocytes. IgG4-

neutrophil binding was also underestimated. The most expressed FcγR on neutrophils is FcγRIIIB, 

but IgG4 was previously reported as nonbinding to this receptor. Although they were not included 

in our subclass mixture study, from measurements of single IgG subclass complex binding to 

FcγRIIIB-expressing CHO cells, we inferred that the IgG2 and IgG4 affinities are both much lower 

than 10-5 M-1, supporting the documented nonbinding estimation (Fig. 3.S4; Tbl. 3.S3 & 3.S4). 
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Alternatively, evidence exists that neutrophils also express a low level of FcγRIIIA which has 

adequate binding to IgG457. 

To investigate the in vivo implication of our revised FcγR affinity updates, we elected to 

use humanized mice as a model system. This is both a strength and a limitation of this study. 

Humanized mice serve as an ideal surrogate for understanding human immunity58. However, this 

model system is complicated by graft-to-graft differences, including the level of humanization and 

genetic heterogeneity of human stem cell donors58. The depletion data reflected these 

complications, with high donor-to-donor and mouse-to-mouse variation, limiting our ability to 

observe subtle changes (Fig. 3.6b/c)48. 

 

3.6 Material and Methods 

Experimental Model and Study Participant Details 

Unique reagents generated and key resources used in this chapter can be found in the table 

in the Star Methods section of the published work59. 

Aiming to investigate IC binding to primary human leukocytes, blood was drawn from six 

healthy volunteers with the informed consent of the donor and the local ethical committee. 

Experiment Details 

Chinese hamster ovary (CHO) cell FcγR expression quantitation  

Human FcγR expression on stably transfected CHO cells was quantified by determining 

the antibody binding capacity (ABC) for antibodies specific to the respective Fcγ receptor (Tbl. 

3.S2)40. Quantum Simply Cellular (QSC) anti-mouse beads (Bangs Laboratories Ltd.) with known 

binding capacities for mouse IgG were used according to manufacturer’s instructions. 

Subsequently, a reference curve was generated by correlating the fluorescence intensity (caused 
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by the respective anti-FcγR antibody) and the number of antibody binding sites of the different 

QSC beads. This reference curve was established in each experiment for all FcγR-specific 

antibodies of interest (PE-conjugated clone 10.1 to detect FcγRI, clone AT10 to detect FcγRIIA/B 

and clone 3G8 to detect FcγRIIIA, all from Biolegend) and used to calculate receptor numbers 

based on fluorescence intensity of FcγR staining on CHO cells. Samples were measured on a 

FACSCantoII flow cytometer and analyzed with FACSDiva software. 

Immune Complex Binding Measurement  

CHO cells stably expressing human FcγRs were used to assess IgG-IC binding to hFcγRs 

as previously described33. Briefly, ICs were generated by coincubation of 10 μg/ml anti-TNP 

human IgG subclasses (clone 7B4, produced in-house) and 5 μg/ml BSA coupled with either an 

average of 4 or 33 TNP molecules (Biosearch Technologies) to mimic low or high valency ICs, 

respectively, for 3 h with gentle shaking at room temperature. To address the impact of distinct 

subclass combinations on binding to hFcγRI, hFcγRIIA-131H/R, FcγRIIB and FcγRIIIA-158F/V, 

human IgG1 through IgG4 subclasses were mixed at specific conditions (100%, 90%, 66%, 33%, 

10% of one subclass filled up to 10 µg/ml with the respective second subclass) before the addition 

of TNP-BSA. CHO cells stably expressing FcγRIIIB NA1 and NA2 variants were generated for 

this study and employed to determine IgG subclass binding for 100% IgG1-4 immune complexes 

of low and high valency. ICs were subsequently incubated with 100,000 FcγR expressing or 

untransfected control CHO cells for 1 h under gentle shaking at 4°C. Bound ICs were detected 

using a PE-conjugated goat anti-human IgG F(ab’)2 fragment at 0.5 µg/ml (Jackson 

ImmunoResearch Laboratories) on a BD FACSCanto II flow cytometer. To calculate the 

fluorescence signal intensity (median fluorescence intensity, MFI) of specific immune complex 

binding, the background fluorescence intensity of anti-human IgG F(ab’)2 stained control cells was 
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subtracted (ΔMFI). The measured IC fluorescence intensities were between 1,000 to 15,000, far 

from the equipment saturation level which occurred at around 260,000. Each experimental 

condition had 3–5 technical replicates. The relative fluorescence unit of each IC binding was 

normalized so that measurements of each day had geometric means of 1.0.  

Alternatively, binding to human primary peripheral blood leukocytes co-expressing 

specific FcγRs was studied. Blood was drawn from healthy volunteers and erythrocytes were lysed 

by the addition of ddH2O for 30 sec at room temperature to obtain total leukocytes. Immune 

complexes were generated as described above and incubated with 200,000 leukocytes. Leukocyte 

subpopulations were identified by staining cell-type-specific surface markers. Fluorescently 

labeled antibodies PE/Cy7-conjugated anti-CD19, PerCP-conjugated anti-CD3, APC-conjugated 

anti-CD33, Brilliant Violet 510 conjugated anti-CD14, FITC-conjugated anti-CD56 and APC/Fire 

750 conjugated anti-CD45 were obtained from Biolegend. Immune complex binding was 

quantified upon staining with PE-conjugated goat anti-human IgG F(ab’)2 fragment at 0.5 µg/ml 

(Jackson ImmunoResearch Laboratories) and data acquisition on a BD FACSCanto II flow 

cytometer. 

The cell identification strategy was as follows: aggregates of cells were excluded by their 

forward light scatter (FSC) characteristics (area vs. height) and dead cells based on staining with 

DAPI. Leukocytes were identified by expression of common leukocyte marker CD45. Among 

those, neutrophils were gated based on high side light scatter (SSC) characteristics and lack of 

surface CD14, and classical monocytes were based on intermediate SSC and expression of CD14. 

Within the CD14-SSClow cells, B and T cells were gated by expression of CD19 or CD3, 

respectively. Staining of CD56 was used to distinguish NK cells. The remaining CD33-expressing 
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cells were gated as nonclassical monocytes. ΔMFI of bound immune complexes was calculated by 

subtracting the background fluorescence intensity of PBS-treated leukocytes. 

Data were analyzed with FlowJo or FACSDiva Flow Cytometry Analysis Software. Six 

(6) biological replicates were measured for each IC valency, IgG subclass, and leukocyte cell type 

combination. All measurements were normalized so that the daily geometric means were 1.0.  

Quantification and Statistical Analysis 

All statistical and computational analyses in this chapter were implemented by Julia v1.8. 

Principal component analysis on mixture binding measurements 

Principal component analysis on the IgG mixture binding measurement was performed 

with the package MultivariateStats.jl. The variance explained by principal component analysis was 

defined as 1 − ‖p2pq‖;
4

‖p‖;
4 , where ‖ ∙ ‖r indicates the Frobenius norm. 

Generalized multi-ligand, multi-receptor multivalent binding model 

To model polyclonal antibody-antigen immune complexes (ICs), I employed a multivalent 

binding model to account for ICs of mixed IgG composition previously developed and detailed46. 

In this case, we define 𝑁E as the number of distinct monomer Fc’s and 𝑁K as the number of FcRs, 

and the association constant of monovalent Fc-FcR binding between Fc 𝑖 and FcR 𝑗 as 𝐾L,'). 

Multivalent binding interactions after the initial interaction are assumed to have an association 

constant of 𝐾O∗𝐾L,'), proportional to their corresponding monovalent affinity. The concentration of 

complexes is 𝐿1, and the complexes consist of random ligand monomer assortments according to 

their relative proportion.  

Immune Complex Binding Analysis  

Fitting the parameters in the binding quantification was performed by Markov chain Monte 

Carlo (MCMC) implemented by Turing.jl60.  
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At first, we plugged the documented values into the binding model for all parameters 

without fitting, thus the geometric means of CHO cell receptor expression (Tbl. 3.S2), documented 

affinities31, nominal valencies (4 and 33), and 𝐾O∗ as 6.31 × 102$Ncell ∙ M10, as estimated in 

previous work (Fig. 3.3c)10. To examine the role of affinity fitting, we used MCMC to fit all 

parameters except (Fig. 3.3d) and including (Fig. 3.3e) affinities. CHO receptor prior distributions 

were inferred from their measured values through maximal likelihood estimation (MLE) in 

Distributions.jl61 for both IgG mixture dataset (Tbl. 3.S2) and validation dataset10 (Tbl. 3.S5). The 

affinity priors were inferred from documented Fc affinities and standard errors following several 

assumptions: (1) each prior follows a log-normal distribution; (2) the mode of the distribution is 

the documented value, and the interquartile range of the distribution is the standard error; (3) if the 

values of mode or standard errors are too small, the mode was clipped to 1 × 10h	M2$, and the 

interquartile range was clipped to 1 × 10j	M2$ to deal with recorded nonbinding cases31,62. The 

priors of the effective valency and crosslinking constant were: 

𝑓h	~	log𝑁(𝜇 = log(4) , 𝜎 = 0.2), 

𝑓NN	~	log𝑁(𝜇 = log(33) , 𝜎 = 0.2), 

𝐾O∗	~	log𝑁(𝜇 = log(6.31 × 102$N) , 𝜎 = 2.0). 

MCMC was initialized with the maximum a posteriori estimation (MAP) optimized by a limited-

memory BFGS algorithm implemented by Optim.jl63, then sampled through a No U-Turn Sampler 

(NUTS) implemented by Turing.jl60. 

In vivo Regression Model 

We extended the in vivo antibody-elicited target cell depletion regression model with both 

cell type weights and FcγR weights (Fig. 3.6a). Depletion, 𝑦, was represented as the percent 

reduction in the number of target cells. 
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To quantify the activity of each effector cell, we first used the multivalent binding model 

to predict the amount of multimerized FcγR of each kind, 𝑅_X^F`,', assuming each IC is 4-valent. 

Then the activity of this cell type is assumed to be a linear combination of these predictions and a 

set of cell type weights, 𝑝', that are set to either +1 or -1 for activating or inhibitory receptors, 

respectively, clipped to 0 if it is negative: 

𝑥& = max	(𝑝$𝑅_X^F`,$ + 𝑝%𝑅_X^F`,% +⋯ , 0). 

To determine how these cell types bring the depletion effect at the organism level, we 

combine their estimated effects, 𝑥&, with a weighted sum, where we introduce another set of 

weights, 𝑤&, that are specific to each cell type. To convert the activities to a limited range of 

depletion (i.e., one cannot have a reduction over 100%), the regression was transformed by an 

exponential linker function (the cumulative density function of exponential distribution) such that 

the predicted effectiveness: 𝑦° = 𝐹Hst(𝑤𝑥) = 1 − exp(−𝑤𝑥) so that limp→v𝐹Hst(𝑋) = 1. 

Together, we defined the estimated depletion as 

𝑦° = 𝐹Hst(𝑤$𝑥$ +𝑤%𝑥% +⋯). 

We did not estimate the amount of each cell type in an individual, nor did we include them 

in the model, because the weights, 𝑤&, are meant to absorb these quantities, while requiring 

effector cell abundance would limit the application of this model to organs where the tissue 

resident cell abundance has been accurately quantified. 

The regression against in vivo effectiveness of IgG treatments was performed via MCMC 

implemented by Turing.jl60. For the multivalent binding model, the ligand concentration was 

assumed to be 1 nM and valency to be 4. The receptor expression level was set to the geometric 

means of the values measured in previous work (Tbl. 3.S6)40. For the receptor weights, 𝑝', we set 

the weight of the only inhibitory receptor, FcγRIIB, as −1.0 and every activating receptor to be 
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+1.0. The predicted cell type effects were estimated by multiplying the cell type weights by their 

predicted activities, the weighted sum of multimerized receptor from the binding model.  

MCMC was initialized with MAP optimized by a limited-memory BFGS algorithm 

implemented by Optim.jl63, then sampled through NUTS implemented by Turing.jl60. 
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Figure 3.S1. Experimental IC mixture binding data.  

Quantification of human IgG subclass pairs TNP-4-BSA and TNP-33-BSA IC binding to 

CHO cells expressing the indicated hFcγRs. Relative fluorescent units (RFU) of different 

multivalent immune complexes consisting of various IgG mixtures binding to different human 

immune cell receptors. Error bars indicate the 3-5 technical replicates from experiments (see 

methods for details). Fluorescent values were normalized so that the daily geometric average 

measurements are 1.  
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Figure 3.S2. Predicted binding of IgG subclass mixtures with documented affinities. 

 Amount of binding for complexes of each IgG subclass pairs binding to each CHO cell 

predicted by the multivalent binding model with the documented affinities. The receptor 

abundances were as geometric means of measurement. 
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Figure 3.S3. Predicted binding of IgG subclass mixtures with updated affinities.  

Amount of binding for complexes of each IgG subclass pairs binding to each CHO cell 

predicted by the multivalent binding model with the updated affinities. The receptor abundances 

were as geometric means of measurement. 
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Figure 3.S4. Inferred affinities of IgG subclasses to FcγRIIIB variants. 

The prior (assume all follow log-normal distributions) and posterior (updated) distributions 

of IgG binding affinities to FcγRIIIB-NA1 (a) and NA2 (b) variants. The binding FcγRIIIB 

affinities were inferred from pure IgG subclass immune complexes of 4 or 33 valencies binding to 

CHO cells stably expressing the NA1 and NA2 variant of FcγRIIIB, respectively. Data represents 

a separately measured dataset from the mixture binding fitting presented in Fig. 3.3 & 4. Immune 

complex binding was assessed in six independent experiments as described in the method section. 

Notice that previously IgG2 and IgG4 are both reported nonbinding to either variant of FcγRIIIB31. 

For better MCMC fitting, the prior distributions for their affinities were inflated to have medians 

104 M-1 and interquartile ranges 105 M-1.  
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Source DF SS MSS F p 

Condition 431 11110.23 25.778 6.00915 5.9926×10-125 

Residuals 1066 4572.88 4.290   

Total 1497 15683.11    

R2 = 0.7084 

Table 3.S1. One-way ANOVA performed on the measurements. 

It indicates that the majority of variance in measurements comes from between conditions. 
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Receptor Geometric mean Inferred distribution 

FcγRI 101494 logN(μ=11.53, σ=0.26) 

FcγRIIA-131H 1006300 logN(μ=13.82, σ=0.27) 

FcγRIIA-131R 190433 logN(μ=12.16, σ=1.46) 

FcγRIIB-232I 75085 logN(μ=11.23, σ=1.40) 

FcγRIIIA-158F 634324 logN(μ=13.36, σ=0.70) 

FcγRIIIA-158V 979452 logN(μ=13.80, σ=0.38) 

 

Table 3.S2. Geometric mean and inferred prior distribution of FcR abundance.  

Antibody binding capacity on CHO cells from measurements used in IgG mixture in vitro 

binding experiment. The geometric means were calculated from primary data published in 

previous work40. logN represents a log-normal distribution. 
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Ka (M-1) IgG1 IgG2 IgG3 IgG4 

FcγRI 5.809~8.635×107 1.189~1.911×106 5.525~8.730×107 3.012~4.770×107 

FcγRIIA-131H 4.780~5.929×106 3.930~4.724×105 8.622~9.621×105 1.625~2.057×105 

FcγRIIA-131R 3.277~3.758×106 1.719~2.339×105 8.521~9.861×105 2.833~3.864×105 

FcγRIIB-232I 2.166~3.053×105 5.931~8.134×104 2.714~3.702×105 1.131~1.504×105 

FcγRIIIA-158F 1.106~1.288×106 2.938~4.405×104 7.243~8.329×106 1.337~1.764×105 

FcγRIIIA-158V 1.913~2.107×106 1.433~1.966×105 0.919~1.073×107 2.509~3.348×105 

FcγRIIIB-NA1* 2.839~4.227×105 1.375~2.635×104 0.891~1.088×106 0.692~1.332×104 

FcγRIIIB-NA2* 3.243~4.474×105 1.886~3.574×104 0.787~1.016×106 1.627~3.138×104 

 

Table 3.S3. Updated Fc affinities’ interquartile ranges from their posterior distributions. 

* FcγRIIIB affinities were inferred from single-subclass immune complexes binding to CHO cells. 

They were fitted separately from the other receptors. See Fig. 3.S4 for distribution details. 
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Ka (M-1) IgG1 IgG2 IgG3 IgG4 

FcγRI 7.140×107 1.496×106 6.998×107 3.835×107 

FcγRIIA-131H 5.314×106 4.306×105 9.128×105 1.808×105 

FcγRIIA-131R 3.503×106 2.005×105 9.178×105 3.291×105 

FcγRIIB-232I 2.549×105 6.911×104 3.157×105 1.305×105 

FcγRIIIA-158F 1.195×106 3.639×104 7.741×106 1.536×105 

FcγRIIIA-158V 2.006×106 1.678×105 9.941×106 2.906×105 

FcγRIIIB-NA1* 3.430×105 1.906×104 9.806×105 9.381×103 

FcγRIIIB-NA2* 3.740×105 2.617×104 8.908×105 2.168×104 

 

Table 3.S4. Updated Fc affinities median values. 

* FcγRIIIB affinities were inferred from single-subclass immune complexes binding to CHO cells. 

They were fitted separately from the other receptors. See Fig. 3.S4 for distribution details. 
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Receptor Geometric mean Inferred distribution 

FcγRI 232872 logN(μ=12.36, σ=0.25) 

FcγRIIA-131H 318819 logN(μ=12.67, σ=0.26) 

FcγRIIA-131R 1605372 logN(μ=14.29, σ=0.14) 

FcγRIIB-232I 394556 logN(μ=12.89, σ=0.45) 

FcγRIIIA-158F 4677645 logN(μ=15.36, σ=0.22) 

FcγRIIIA-158V 3680708 logN(μ=15.12, σ=0.25) 

 

Table 3.S5. Geometric mean and inferred prior distribution of FcR abundance.  

Antibody binding capacity on CHO cells used in the validation binding dataset10. The 

geometric means were calculated from primary data published in previous work40. logN represents 

a log-normal distribution. 
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Receptor Non-classical monocyte Classical monocyte Neutrophil 

FcγRI 6326 84559 1847 

FcγRIIA 82542 96646 158228 

FcγRIIB 7140 5167 2351 

FcγRIIIA 200213 19533 0* 

FcγRIIIB 0* 0* 1299166 

 

Table 3.S6. Geometric means of measured FcγR expression. 

FcγR expression means. the number of quantified binding sites for the respective anti-FcR 

antibodies on effector cells calculated from the primary data published in previous work40. 

* Although one cannot have a geometric mean as 0, these values were consistently measured as 

non-expressed, so we used 0 as the value. 
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Chapter 4 

The structure is the message: preserving experimental context through 

tensor decomposition 

 

With no hindrances, there is no fear;  

Freed from all distortion and delusion,  

Ultimate nirvana is reached. 

Heart Sutra  

 

 

4.1 Introduction 

Multiplex and high-throughput assays now enable the exploration of cell responses in 

unprecedented scale and detail. Consequently, studies of biological systems have increasingly 

focused on profiling biological systems across multiple contexts (Tbl. 4.1). For instance, a panel 

of candidate therapies might be profiled using cell samples derived from multiple organs, with 

several features of their response measured over time (Fig. 4.1a). Identifying how responses are 

shared or distinct across multiple cellular contexts and experimental conditions reveals more about 

the biological mechanism and enhances the generalizability of the results. At the same time, 

measuring cell lines and tissues across multiple parameters generates data with multiple 

dimensions (e.g. cell line, time, experimental conditions), which necessitates reevaluating how we 

represent and analyze such information. 
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Representing multivariate data in a tabular form can sacrifice the ultimate insight that can 

be derived. It is not uncommon that studies with several dimensions are still laid out in rows and 

columns with some dimensions merged. For the example in Fig. 4.1a, when the experiment is 

repeated over time, the columns must expand to combine two experimental parameters, drug and 

time point, such as “alfazumab – 1 hr,” “alfazumab – 3 hr,” “bravociclib – 1 hr,” “bravociclib – 3 

hr”, etc. In this format, one may instinctively apply familiar off-the-shelf statistical approaches, 

such as principal component analysis (PCA), because the data appears to be in matrix form. 

So, what is the problem with this? As communication philosopher Marshall McLuhan 

famously stated64, “The medium is the message.” The choice of data structure influences its 

analysis and the subsequent insights. A tabular form implicitly treats each column and row as 

separated from one another, while merged dimensions diverge from this assumption. For instance, 

“alfazumab – 1 hr” and “alfazumab – 3 hr” share the same treatment, and “alfazumab – 1 hr” and 

“bravociclib – 1 hr” share the same timing; however, “bravociclib – 1 hr” and “alfazumab – 3 hr” 

differ in two distinct ways (Fig. 4.1b). When flattening a multidimensional dataset into a table, we 

compromise this property. 

To devise a more effective approach, the “medium”, or structure, of the experiment must 

be incorporated. The example experiment varies across three degrees of freedom: organ, drug, and 

time; this is best represented by a three-dimensional array or tensor (Fig. 4.1c). A tensor 

representation aligns entries with shared meaning. For instance, when examined from the 

perspective of an organ (e.g., thymus, the green cubes), we find the pharmacokinetics profiles of 

all drugs on this organ; when viewed from a drug (e.g., foxtrotolol, the pink cubes), we find its 

impact on all organs over time (Fig. 4.1c). 
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Ref. Brief description Data modality Contexts 

65 Gene expression in S. cerevisiae 

cultures 

DNA microarray Genes, Time points, 

Conditions 

66 Gene expression in across multiple 

human tissues 

RNA sequencing Individuals, Genes, 

Tissues 

67 Metabolite profiles across cancer cell 

lines in Cancer Cell Line Encyclopedia 

liquid chromatography–

mass spectrometry 

Cell lines, 

Metabolites, Genes 

68 Synovial fibroblasts cytokine secretion 

after exposed to drug perturbations 

Luminex assay Samples, Stimuli, 

Inhibitors 

69 Human Lung Cell Atlas single-cell RNA 

sequencing 

Cell types, 

Individuals, Gene, 

Anatomical 

locations 

70 Metagenome data in Human 

Microbiome Projects 

metagenomic whole 

genome shotgun 

sequencing 

Subjects, Time 

point, Body sites 

71 Protein expression change in human 

mammary epithelial cell after 

perturbation 

reverse phase protein 

array 

Proteins, 

Treatments, Time 

72 Roadmap Epigenomics data from 

ENCODE project73 

various epigenomics 

data 

Cell types, Assays, 

Genomic positions 

74 Height and weight-related traits from 

UK Biobank 

physiological data Individuals, Traits, 

Time points 
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75 Neuron recordings across time and 

trials in rodents and monkeys 

neuronal firing rate Neurons, Trials, 

Time 

 

Table 4.1. Some examples of multivariate biological datasets. 
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Figure 4.1. Basic concepts of tensor-structured data 

(a) A dataset of cells collected from different organs responding to various drug treatments can be 

documented by a table.  

(b) When the measurements are performed over multiple time points, the original columns in the 

table can be expanded into multilevel indices, recording both drug and time. This nonetheless 

breaks the assumption that all columns are equally related.  
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(c) Alternatively, the same data can be recorded as a three-dimensional array, with organ, drug, 

and time as three separate degrees of freedom. Here, the pink represents how every cell responds 

to foxtrotolol over time, and the green represents the pharmacokinetic profile of cells from the 

thymus over all treatments. The brown is shared by pink and green.  

(d) Tensors are multidimensional arrays. A dimension of a tensor is a mode. 0, 1, and 2-mode 

arrays are known as scalar, vector, and matrix.  

(e) An example of a rank-one tensor. A subset of the drug response dataset on cells from four 

organs responding to three drugs over two time points and has dimensions 4×3×2, organ by drug 

by time.  

(f) Rank-one tensors are those whose every entry can be written as the product of a few numbers, 

one from each mode-specific vector, from their corresponding coordinates.  

(g) A rank-one tensor can be written as multiple mode-specific factors joined by the vector outer 

product, ⊗.  

(h) Even written as sets of vectors, these rank-one tensors should still be understood as arrays with 

numbers in every entry. Adding two tensors of the same shape is to add their corresponding 

position together. 
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In this chapter, I aim to provide an overview of how tensor methods have been applied and 

benefited systems biology studies, and how they can be deployed for wider research fields. I 

propose that tensor methods should and will become an established part of the basic biomedical 

data sciences toolbox. 

Defining tensors and tensor decomposition 

Tensors are nothing more than multidimensional arrays6,76,77. Zero-, one- and two-

dimensional tensors are scalars, vectors, and matrices, respectively (Fig. 4.1d). To avoid 

conflicting definitions of “dimension” in linear algebra, “mode” or “order” are used—three-

dimensional, three-mode, and third-order tensors are all the same concepts. A matrix has two 

modes—columns and rows—but tensors over three modes do not have mode-specific names. 

When structuring biological data into a tensor, each mode ideally relates to a varied parameter of 

the experiment, such as samples, genes, cell lines, treatments, concentrations, or time points. 

Tensors can be analyzed by tensor decomposition. Before describing this, it is helpful to 

introduce the concept of rank-one tensors, the building block for tensor decomposition. Like with 

matrices, even large data tensors can be decomposed into a series of simple patterns, known as 

rank-one tensors. Unlike the concept of tensor mode, which is directly associated with the data 

dimensionality, the rank of a tensor is a separate and less evident concept that requires examining 

its entries. As an illustrative example, consider a smaller dataset with the response of cells from 

four organs to three drugs over two time points. By stacking the measurements at 1 hr (a 4×3 

matrix) on top of the measurements at 3 hr (another 4×3 matrix), we obtain a 4×3×2 tensor with 

organ, drug, and time modes (Fig. 4.1e). In this contrived example, along the drug mode, every 

vector is a multiple of [2, 1, 3]. This indicates that all eight samples have the same drug-reaction 

profile. The measurements collected at 3 hr mark are double those at 1 hr, suggesting that all 
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measured effects increase to twice the magnitude from 1 hr to 3 hr. The organ factor is [2, 1, 4, 3], 

indicating the ratio of the four organs’ reaction magnitude: cells from the thymus react twice as 

much as cells from the skin, while cells from the pancreas and liver exhibit effects of four and 

three times as cells from the skin, respectively. Every entry in this tensor can be precisely computed 

by multiplying three numbers, each from the organ, drug, and time factor with their positions 

corresponding to its position in the tensor (Fig. 4.1f). To describe this property, we define this 

tensor as the outer product of these three vectors (Fig. 4.1g). Tensors that can be expressed as the 

outer product of a vector set are known as rank-one tensors. The number of vectors within the set 

is the order of this rank-one tensor; therefore, a rank-one tensor can have any number of modes. 

Rank-one tensors exhibit a single pattern association with each mode, enabling straightforward 

interpretation. 

Most tensors are more complex than rank-one tensors. Nonetheless, by expressing them as 

the sum of rank-one tensors (Fig. 4.1h), interpretation becomes significantly easier, since they can 

be understood as the combination of these rank-one individual patterns. Even if we do not represent 

the original tensor exactly, if a small number of patterns can closely approximate the original tensor 

and capture essential information, we can still gain insights into the overall trends. This process of 

breaking down a complex tensor into the sum of a few patterns is known as tensor decomposition 

or tensor factorization. 

 

4.2 A step-by-step guide on tensor decomposition 

Structuring the data into a tensor format 

Organizing a dataset into a tensor requires recognizing the structure defined by the 

experiment. In the example presented in Fig. 4.1c, it is natural to use a three-mode tensor with 



86 

organ, drug, and time modes78. Tensor order can extend beyond three dimensions if, for instance, 

each organ, drug, and time combination was performed across multiple assays (e.g., measurement 

of many genes or proteins). 

Measurements can only be separated into a distinct mode when the mode’s labels relate to 

a common experimental entity across which the data can be grouped accordingly79. For example, 

should multiple technical replicates for each condition be grouped in a separate mode? No, because 

the “Sample 1” replicate of cells from the liver does not signify the same replicate as “Sample 1” 

of cells from the skin. We may either average these replicates during reformatting if their variation 

is not of particular interest, or apply resampling strategies to preserve replicate variances80. 

However, if these samples represent a common set of patients—“Sample 1” is the same for all cell 

types indicating that they came from the same individual—this justifies the inclusion of a 

corresponding mode. Similarly, single-cell measurements from different samples inherently come 

from different cells; therefore, single cells cannot form a distinct tensor mode when attempting to 

parallelize samples. They may only form a tensor mode when multi-omic assays are performed on 

identical cells. As another example, in single-cell analysis, when combining runs from different 

backgrounds, whether the clusters with the same label should be aligned depends on whether each 

cluster label holds the same meaning across backgrounds. If the cluster labels are assigned 

randomly (e.g., in k-means), they are not equivalent between runs, and therefore cannot form a 

separate “Cluster” mode. However, if the clusters can be identified based on cell surface markers 

and “Cluster 1” consistently represents the same cell type, this cell type mode is justified. 

In a tensor format, the items representing positions along a mode are treated separately. 

Therefore, the order of items on a mode is inconsequential to the tensor decomposition. For 

instance, switching the positions of “3 hr” and “12 hr” on the time mode in the tensor in Fig. 4.1c 
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does not affect its decomposition results. For longitudinal measurements where sometimes the 

time points cannot be aligned perfectly, compromises may have to be made. One approach can be 

binning, where similar time points of different samples are grouped into one category. For instance, 

if one individual only has samples at “3 hr”, while another only has “4 hr”, a binned “3-4 hr” 

category may be created to align them. Sometimes, several positions in the tensor may be left 

empty to maintain the data’s logical structure (see “Missing data and imputation” on 

decomposition with missing entries).  

Tensor decomposition can benefit from appropriate data preprocessing, such as centering, 

scaling, and transformation. Centering and scaling operations are always associated with a specific 

mode, so they become more complex when data has multiple modes81. For a three-mode tensor, 

chords are an extension of columns in a matrix, whereas slices are all values associated with a 

specific position along one mode (Fig. 4.2a). For example, chord-wise and slice-wise operations 

across organ mode, respectively, correspond to one type of measurement across all organs, and all 

numbers aligned to one organ. Centering is performed to make the data ratio-scaled, as tensor 

decomposition models assume. This means that a zero value indicates a true zero effect, making 

multiplications meaningful (i.e., doubling the number always equals twice the effect). Scaling is 

used to adjust the scale differences among variables to avoid larger values overshadowing the 

variation of interest, which helps maintain numerical stability during solving. A common 

preprocessing choice is to mean-center across the subject/sample mode and then scale the standard 

deviation to one within other modes. Transformation is another technique that usually applies to 

nonlinear data to ensure the measurements are ratio-scaled before the decomposition. 
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Figure 4.2. Fundamentals of Canonical Polyadic (CP) tensor decomposition 

(a) For a three-dimensional array, a chord is the entries across all labels on one single mode, and 

slices are entries across two modes.  
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(b) CP decomposition approximates a complicated tensor as the sum of a few rank-one tensors. In 

the example here, for a drug response tensor of 7×6×5, organ by drug by time, after being 

decomposed into 3 components, we will have 3 factors for each of the three modes. Organizing 

them into matrices, we will have three factor matrices with shapes 7×3, 6×3, and 5×3 for organ, 

drug, and time, respectively.  

(c) Plotting the number of components against the error. Error is defined as the sum of squared 

differences normalized by the sum of squares of the original tensor. An optimal component number 

may be attained at the elbow point on the plot (in this example, 3 components), or the point at 

which an acceptable error is reached.  

(d) Sizes of reduced data plotted against their reconstruction errors using CP or PCA. CP 

decomposition represents the original dataset more concisely than PCA, whereas the chord-

shuffled and all-number-shuffled versions reduce the advantage of CP, indicating the underlying 

data structure influences data compression.  

(e) Plotting every factor separately to visualize tensor decomposition results. Here, three bar plots 

demonstrate the three mode-specific factors of Component 1. The factors of other components are 

omitted but can be shown similarly.  

(f) Heatmaps to visualize the factor matrices compactly. We can both inspect all factors of a 

component across modes for its interpretation and/or compare factors within a mode to distinguish 

their differences.  

(g) Factors of a discrete variable mode (such as drug mode here) can be visualized with a bar plot.  

(h) Factors of a continuous variable mode (such as time point mode here) can be visualized with a 

line plot.  
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(i) Demonstration of factors’ scale indeterminacy. Scaling the factors coordinately (left), factoring 

the weights to a separate scalar (middle), or negating factors in pairs (right) all yield equivalent 

factorizations, as they all reconstruct to the identical rank-one tensor.  

(j) Organ factor heatmap reordered by hierarchical clustering on the factorization results. Other 

information, like the organs’ biological grouping, can be labeled next to the heatmap to identify 

their association with the factors. 
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Programming 

Language 
Package 

Decomposition methods Constraints 

Implemented Reviewed in this chapter Other methods 

Python TensorLy82 

CP, Tucker, 

PARAFAC2, CMTF, 

CP partial least squares 

Partial Tucker, 

Tensor Train, 

CP/Tucker 

regression 

Nonnegativity, 

Symmetry, 

Regularization 

MATLAB 
Tensor 

Toolbox83 
CP, Tucker  

Symmetry, 

Sparsity, 

Orthogonality 

R 

rTensor84 CP, Tucker 

3-mode tensor 

SVD, multilinear 

PCA 

 

Multiway85 
CP, Tucker, 

PARAFAC2 

Simultaneous 

Component 

Analysis 

Nonnegativity 

 

Table 4.2. Selected tensor decomposition packages and the methods they implement.  

CP: Canonical Polyadic Decomposition (also called PARAFAC or CANDECOMP);  

CMTF: Coupled Matrix-Tensor Factorization;  

SVD: Singular Value Decomposition;  

PCA: Principal Component Analysis.  
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Tucker decomposition here can be higher-order SVD (HOSVD), truncated HOSVD, or higher-

order orthogonal iteration. 
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Performing the decomposition  

The decomposition method I review here is known as canonical polyadic (CP), parallel 

factors (PARAFAC), or canonical decomposition (CANDECOMP). Implementations of this 

method are available in software packages for various programming languages (Tbl. 4.2). 

CP decomposition requires a data tensor and the desired number of components. The 

component number is the number of rank-one tensors used to approximate the original data (Fig. 

4.2b). For each mode, the factors of each component can be regrouped into a factor matrix (Fig. 

4.2b, right), in which the first columns of each matrix represent the first factor, the second columns 

the second factor, and so on. Thus, if we take the outer product of the first columns (Factor 1) in 

the three factor matrices, we will obtain the first decomposed rank-one tensor, Component 1. 

Repeating this process for each component and summing them up, we can reconstruct a tensor that 

approximates the original data (Fig. 4.2b). To summarize, the decomposed factors can be either 

grouped by mode into factor matrices, or by the factor indices into components. The goal of the 

decomposition algorithm is to make the reconstructed tensor match the original one as closely as 

possible.  

The number of components 

With CP decomposition, one must choose the number of components. Too few components 

will miss essential trends, while too many will lead to redundant factors, noise (overfitting), and 

poorer interpretability. 

To quantify how well a decomposition with the chosen number of components fairly 

represents the original data, one can quantify the difference between the reconstructed tensor and 

the original data, or the reconstruction error. This value is calculated as the sum of squared 

differences between these two tensors, usually normalized by the sum of squares of the original 



94 

data (Fig. 4.2c). Smaller errors indicate a better fit. While the error can range from 0 to any positive 

number, a successful fit should result in an error below 1 when normalized. The reconstruction 

error consistently decreases with a greater number of components, with diminishing returns where 

each additional component improves the fit to a lesser degree (Fig. 4.2c). Achieving a perfect fit 

to the data is typically not the goal of tensor decomposition. While this is technically feasible by 

setting the component number equal to the tensor’s theoretical rank6, in practice, this number is 

almost always too high for any practical use. To choose the optimal number of components, one 

may identify where the benefit of adding more components diminishes. This sometimes 

corresponds to the kink (or elbow) point on the error plot. However, such a transition point is not 

always evident. 

The process described above resembles selecting component numbers in PCA but with a 

few distinctions. Tensor decomposition is not a recursive process: the components of a 3-

component decomposition are not necessarily a subset of the 4-component decomposition. On that 

account, one must experiment with every candidate component number to identify an optimal 

choice. Components are also not guaranteed to be ordered86. Therefore, to create an error plot, the 

decomposition must be run for each number of candidate components (Fig. 4.2c).  

The choice of component number directly relates to the data compression efficiency and 

fidelity trade-off (Fig. 4.2d). Since a tensor can be approximated with its factorization results 

which consist of fewer numbers, tensor factorization effectively compresses it. The smaller the 

size of the reduced data, the better the data compression ratio. However, this comes with the cost 

of a worse approximation (i.e. a larger reconstruction error) of the original data. For example, for 

a tensor with 7×6×5=210 values, a 4-component decomposition will compress it down to 
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4×(7+6+5)=72 numbers; if using 3 components, only 3×(7+6+5)=54 numbers, but with a greater 

reconstruction error.  

The reconstruction error also depends on whether the underlying data structure can be well-

approximated by lower ranks. As illustrated in Fig. 4.2d, CP decomposition can represent the drug 

response dataset more concisely than PCA—achieving a smaller representation under the same 

fidelity or comparable reduced sizes with lower error—since its underlying structure can be 

approximated well by the sum of multiple rank-one tensors. However, shuffling the chords in the 

data disrupts this low-rank tensor structure, causing the performance of CP to deteriorate. Further 

shuffling all numbers in the dataset eliminates the underlying low-rank matrix structure, thereby 

degrading even PCA’s performance. 

Another consideration is the inherent noise present in biological measurements. With too 

many components, tensor decomposition starts to fit trivial patterns which are more likely to be 

noise. In principle, we should cease adding more components when the algorithm begins to overfit 

(fit the original data too closely but lose generality), is prone to excessive local minima, or starts 

to violate the properties of CP. These situations may be assessed respectively through imputation 

tests (see “Missing data and imputation”), factor similarity tests (see “Optimization algorithms”), 

or core consistency diagnostics (see “Tucker decomposition”). 

Visualizing and interpreting the results 

After validating the decomposition, the resulting factors can be inspected for biological 

insight. To provide a concrete example, we inspect our decomposition results shown in plots (Fig. 

4.2e–h). 

To visualize the results, one should design plots that describe how each factor is associated 

with the labels along each mode. Therefore, one can have one subplot for each factor (one from 
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each mode) for each component, repeated for all components (Fig. 4.2e). In these plots, the x-axis 

indicates the labels, and the y-axis shows the factor weights. For a more concise visualization, one 

can also plot each factor matrix made from factors from all components as a heatmap with colors 

representing the weights (Fig. 4.2f). To visualize factors within a specific mode, bar plots and point 

plots generally work well for discrete labels such as samples, cell lines, or molecules (Fig. 4.2g), 

while line plots are more suitable for continuous labels such as time or concentration (Fig. 4.2h). 

Overall, visualization should optimally serve the presentation of the insights; there is no fixed rule.  

The initial phase of interpretation involves delineating the meaning of each component 

pattern. This requires reading the plots across all modes. For instance, consider Component 1 (Fig. 

4.2e). Within the organ factor, the largest signal originates from cells collected from the heart, 

followed by smaller weights from cells from the kidney. The same information can also be 

captured from the first column of the organ factor heatmap (Fig. 4.2f, left). Along the drug mode, 

the strongest signals appear on deltatinib in the positive direction and on charlivir in the negative. 

This can be read out from the heatmap (Fig. 4.2f, middle) or the drug factor bar plot (Fig. 4.2g) 

too. The time mode factor, on the other hand, has increasing values over time in Component 1. 

The orange line in the time factor plot best represents this trend (Fig. 4.2h). Putting this information 

together, one concludes that Component 1 mostly delineates a temporally increasing impact of 

deltatinib, positively, and charlivir, negatively, on cells from the heart (then the kidney). In 

practice, one can choose whichever plot best depicts the trend. Following the same logic, we see 

that Component 2 unveils an effect of mostly echoxacin, positively, and alfazumab, negatively, on 

cells collected from the thymus, peaking at 6 hours. Component 3 mostly indicates an effect of 

alfazumab and bravociclib on cells from mostly the heart that persists over time. 
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A specific mathematical intricacy, scale indeterminacy, can hinder clarity (Fig. 4.2i). As 

the effect along each mode is multiplied together, scaling these factors in an opposing way, i.e., 

doubling one factor and halving another within a component, yields equivalent results (Fig. 4.2i, 

left). This indicates that only the relative ratios of weights within a factor are certain, not the 

absolute values. Therefore, we should not compare the absolute weights between factors of 

different components, only the relative composition. To avoid ambiguity, one typically normalizes 

all factors to a defined scale, storing the weighting as a separate scalar (Fig. 4.2i, middle). The 

issue of indeterminacy extends to negative factors: by the same logic, negating two factors 

simultaneously also yields equivalent results (Fig. 4.2i, right). This is sometimes called sign 

indeterminacy87. One approach to avoid ambiguity is to make most modes positive by negating 

the factor vectors in pairs, ensuring that at most only one mode harbors factors with an overall 

negative effect (Fig. 4.2i, right). 

One can also compare across components within a single mode. Within the organ mode, 

for instance, Components 1 and 3 assign similar factors to cells from the heart and kidney, 

unveiling shared localization in drug effect (Fig. 4.2f, left). In the drug mode, each drug has 

different factors, suggesting that they have divergent interaction profiles (Fig. 4.2f, middle, 2g). 

Each time factor also has a distinct trend, ranging from stable (Component 3) to increasing over 

time (Component 1) and peaking (Component 2) (Fig. 4.2h). To better identify similar entries (e.g. 

drugs or organs) on a mode discovered by tensor decomposition, one can also perform hierarchical 

clustering on the factor matrix and reorder the entries accordingly (Fig. 4.2j). This juxtaposes 

entries of similar factor weights, helping to reveal groupings of comparable entries. Additional 

known information, such as cell categories, sample classes, and patient statuses, can also be labeled 
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next to the heatmap to help identify associations between the factors and their known groupings 

(Fig. 4.2j). 

 

4.3 Details and considerations of tensor decomposition 

The previous section presented an overview of employing tensor decomposition. However, 

several details of the procedure may help in certain circumstances. 

Optimization algorithms 

Solving tensor decomposition is, in its essence, an optimization problem. The objective is 

to find a set of factor matrices that, when multiplied, render a reconstructed tensor with minimal 

error (Fig. 4.3a). Common mathematical optimization algorithms, such as gradient descent or the 

Newton-Raphson method, can be employed here88. This “direct optimization” approach offers the 

advantage of versatility, since many optimization methods allow additional constraints, making it 

possible to develop new decomposition schemes. However, its performance relies heavily on the 

chosen method and initialization values, since a substantial number of parameters must be 

simultaneously solved. 

As an alternative approach, we can first notice that the factor matrices exhibit symmetry: 

swapping mode orders does not change the solving. Also, if we know the correct factors of all 

other modes, solving for one mode can be converted into an ordinary least squares problem. Thus, 

we can tackle one mode at a time using least squares while treating the others as constant, then 

repeat this for every mode (Fig. 4.3b). We keep iterating until these factors converge. Over time, 

we can expect a monotonic decrease in the reconstruction error. This approach is called alternating 

least squares (ALS). Besides its efficiency, ALS often benefits from more stable and reproducible 

performance89. 
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Figure 4.3. Technical details on applying CP to biological data 

(a) Solving tensor decomposition is an optimization problem aiming to minimize the 

reconstruction error by adjusting the numbers in the factor matrices.  

(b) Alternating least squares (ALS) is another strategy besides direct optimization. Starting from 

a set of initial values, it optimizes one factor matrix at a time with linear least squares while holding 

the others constant. This process is repeated on each factor matrix until convergence is reached.  

(c) A demonstration of how structuring data into tensor format may create missing values. 

Although the original table on the left does not contain any missing values, since not all drug-time 

pairs are measured, the reformatted three-mode tensor contains missing chords.  

(d) Various proportions of missing data were introduced to the tensor to evaluate how missingness 

impacts reconstruction errors. Each gray point represents one of 40 runs with random missing 
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patterns. The blue points and error bars show the average reconstruction errors and 95% confidence 

intervals, respectively.  

(e) Demonstration of the imputation test. Ignoring the preexisting missing data, we arbitrarily 

introduce more missing positions, use the remaining data to fit the decomposition, and then 

compare the reconstructed (i.e. imputed) values with the original values at the positions we 

removed. Plotting against the number of components, the fitting errors should decrease 

monotonically with more components. However, the imputation error will eventually increase with 

excessive components due to overfitting.  

(f) Sparsity in tensor factors. These organ Factors 1 are in the order of increasing sparsity.  

(g) Tensor decomposition factors can be used for response prediction when combined with 

regression. The coefficient of each factor indicates their association with the sample classes.  

(h) For classification, the model may be reduced to using a subset of the factors. 
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Both methods require initial factor values. While a random initialization may be sufficient, 

a more informed estimation can expedite convergence. One such estimation involves using the 

principal components from a flattened version of the original tensor. This approach, known as 

SVD (singular value decomposition) initialization, usually yields more stable results and reduces 

the likelihood of a suboptimal solution (i.e. local minimum). However, neither initialization 

guarantees the best solution.  

When the resulting factors are highly dependent on the starting point of the fitting, it can 

indicate that the optimization problem is ill-formed, suggesting that the chosen number of 

components is too large or that additional constraints would be helpful. The factor similarity test 

exploits this property to determine the appropriate component number75,90. In essence, this test 

quantifies to what extent different starting points change the resulting factors, helping determine 

up to how many components the factorization algorithm remains stable. 

Missing data and imputation 

Missing measurements frequently arise from experimental limitations. These omissions are 

not necessarily a result of oversight; certain measurements may be intentionally missing. This issue 

becomes particularly pronounced with tensors, as complete tensors require all possible 

combinations of all modes. Consequently, missing data can emerge simply from transforming a 

dataset into a tensor, even if the original data appears complete (Fig. 4.3c). For instance, the 

example dataset in Fig. 4.3c does not contain any missing values, but because the impacts of 

deltatinib and echoxacin after 6 hours were not measured, the reformatted tensor contains missing 

chords (Fig. 4.3c, right). 

Tensor decomposition can be performed even with missing values in a tensor. This can be 

achieved either through ignoring the missing positions and only fitting the existing ones in direct 
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optimization, or prefilling them with placeholders in the hope of updating these values iteratively 

through repeated factorization and reconstruction, or employing some form of censoring in 

ALS91,92. Note that zeros in a tensor will still be fit by the tensor decomposition algorithm, unlike 

explicitly missing values, so replacing missing values with zeros is incorrect. While some 

optimization methods can function even with a high proportion of missing values, the resulting 

factors can significantly deviate from those obtained with complete data. The extent of this 

deviation can vary widely depending on the underlying data structure and the specific missingness, 

but generally, a greater portion of missing data leads to larger reconstruction errors (Fig. 4.3d). 

Tensor decomposition also provides an avenue to impute the missing values of a tensor. 

Since a full tensor can be reconstructed from the resulting decomposed factors (Fig. 4.1g, 2b), one 

can use these reconstructed values from tensor decomposition to replace the missing positions, 

effectively imputing them92. Compared with matrices, higher-order tensors benefit from the 

additional information from more shared coordinates. Tensor imputation through decomposition 

is not foolproof; it remains an area of ongoing research. Like matrix completion, it relies on 

inherent assumptions. If the original data cannot be approximated as lower-rank tensors (Fig. 4.2b), 

the imputed values can significantly deviate from their true values. Other factors, such as the 

quantity and distribution of the missing values and the chosen component numbers and 

decomposition method, can also influence the accuracy of imputation. A tensor cannot be missing 

all its values across a slice. Thus, in situations where there are very few non-missing values, it may 

be advantageous to consider discarding one position along a mode. 

One can use imputative performance to assess the reliability of decomposition on a tensor 

or to determine its appropriate number of components. In an imputation test, one intentionally 

introduces additional missing values in the data (Fig. 4.3e, top). Following decomposition, the 
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entire tensor is reconstructed from the factors, and the left-out values are compared against their 

reconstructed versions. A substantial disparity indicated by a high imputation error indicates an 

unsuccessful decomposition, attributable to either an ill-suited dataset or an excessively high 

number of components. While the fitting error monotonically decreases with more components, 

the imputation error often shows an optimum at an intermediate number of components (Fig. 4.3e, 

bottom). 

Constraints on the factors 

The optimization processes reviewed so far only aim to best fit the data. However, their 

results may suffer from low interpretability, overfitting, and instability. Numerical constraints on 

the factors can help with these issues. Although they may impact the goodness of fit, reasonable 

constraints can enhance the model’s ability to reveal meaningful patterns, leading to more 

insightful discoveries. For example, one goal of constraints is to achieve sparsity, where a factor 

has nonzero values in only a few positions and renders others nearly or exactly zeros. This helps 

establish direct associations between factors and their effects66. For instance, in the hypothetical 

organ Factors 1 in Fig. 4.3f, the low-sparsity factor has weights on almost all organs, making 

interpretation more complicated. The high-sparsity version only has weights on the heart and the 

kidney, better indicating that this factor has the greatest association with these two organs. 

Regularization is commonly used to achieve sparsity in factors. 

Nonnegativity is the most commonly used tensor decomposition constraint93. It aligns 

intuitively with the expectation that certain quantities in biology are inherently nonnegative: a cell 

cannot secrete a negative number of molecules, and a gene cannot be expressed at a negative level. 

Nonetheless, enforcing nonnegative factors may limit the tensor factors from modeling negative 

effects in biology, such as an upstream pathway that suppresses molecule secretion or inhibits gene 
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expression. Another rationale for the nonnegativity constraint is to foster sparsity within the factors 

and avoid overfitting. Decompositions allowing negative factor values can yield degenerate 

components, where one component is strongly positive and another is strongly negative, mostly 

canceling each other out86. Enforcing all values in the factor matrices to be nonnegative obviates 

such occurrences, as the impact of any component cannot be counteracted by another. Nonnegative 

factorization often leads to minimal sacrifices in model error, solidifying its application in 

practice75. 

Constraints can also be used to enforce biological knowledge in a decomposition94. For 

instance, in neuroscience, one may postulate minimal crosstalk among different brain regions and 

limit the brain region factors to be a diagonal matrix95. In molecular biology, one may employ 

orthogonalization of the factors to enforce a clean delineation between components and traits96. 

This usually lacks a standardized approach, as biological contexts vary, and may require 

customized solving90. 

Subsequent analysis 

While tensor analysis often serves as an important step for distilling data into significant 

patterns, further analysis beyond the factor plots (Fig. 4.2e–h) is often required to learn what 

component patterns indicate about biology. The factor matrices serve as efficient summaries for 

individual patterns linked to their respective modes. Consequently, each matrix can be isolated for 

a detailed analysis of the variation within a specific mode of interest. For instance, the components 

associated with genes or molecules of particular interest from prior knowledge can be further 

examined to validate their agreement with known mechanisms. 

The decomposed factors can also be used as reduced data to predict responses or sample 

classes when combined with regression. The scale and sign of the weights for each factor indicate 
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its effect on the regressed quantity (Fig. 4.3g). If only a subset of factors contributes to the effect 

of interest or the regression model can achieve comparable accuracy with fewer factors, the 

prediction model may use only a subset of them (Fig. 4.3h). For example, in Fig. 4.3h, prediction 

using only two factors, Factors 1 and 2, performs just as effectively as all factors. 

 

4.4 Advanced tensor methods beyond CP 

In this section, I cover more advanced tensor decomposition methods. For more complex 

biological data, it is particularly crucial to choose a method that best reflects the structure of the 

expected patterns. 

Tucker decomposition: allowing all factors to interact 

In CP decomposition, especially when there are more components, some factors may start 

to look similar within one mode. For example, in Fig. 4.2f, the organ Factors 1 and 3 appear similar. 

This redundancy arises from the inherent constraint of CP decomposition, where factors may only 

interact within the same component (Fig. 4.2b). In other words, because CP does not allow 

interaction between drug Factor 1 and time Factor 3, a repetitive drug factor must be present in 

Component 3 to capture a similar effect on organs. CP permits the existence of two identical factors 

in one mode, as long as their corresponding factors in other modes remain distinct. Therefore, the 

factors along a mode in CP decomposition may not succinctly summarize the trends in this mode.  

Tucker decomposition is a different tensor decomposition model from CP with a more 

flexible construct97,98. It permits varying numbers of factors for each mode, and all factors across 

modes interact. For example, here we perform a (4,3,2)-rank Tucker decomposition on the 7×6×5 

drug response data tensor, in which the organ mode has 4 distinct factors, the drug mode 3, and 

the time mode 2 (Fig. 4.4a). Consequently, there are 4×3×2=24 factor interactions. Each 
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interaction can be understood as a component in CP (Fig. 4.4a, right). The magnitude of each 

interaction is characterized by its corresponding weight, and these 24 weights can be arranged into 

a 4×3×2 core tensor (Fig. 4.4b, left). The outcomes of a Tucker decomposition include a core 

tensor that models the factor interactions and three-factor matrices that represent the principal 

components (the major trends) along those three modes (Fig. 4.4a, middle)6.  
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Figure 4.4. Tensor methods beyond CP: Tucker decomposition, coupling, and partial least 

squares 

(a) Schematic of Tucker decomposition. This (4,3,2)-rank Tucker decomposition on the previous 

7×6×5 drug response tensor allows all distinct 4 organ factors, 3 drug factors, and 2 time factors 
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to interact. The weights of these 24 interactions are organized into a 4×3×2 core tensor. The results 

of a Tucker decomposition are a factor matrix for each mode and this core tensor.  

(b) The core tensor of a Tucker decomposition. It can be visualized by showing the numbers in 

each slice. The significance of an interaction is proportional to its weight squared.  

(c) A superdiagonal 4×4×4 tensor. CP is a special case of Tucker decomposition where the core 

tensor is superdiagonal.  

(d) Schematic of coupled tensor decomposition. Here, two three-mode tensors, A and B, are 

coupled on the organ mode. Therefore, the organ factors are shared, while the drug and time factors 

are private to Tensor A, and gene and treatment factors Tensor B. The dimensionalities of them 

are indicated by the lowercase letters.  

(e) The scaling issue in coupled tensor decomposition. When one of the coupled tensors has values 

with greater total variance, the factorization explains more variance in it if without proper scaling, 

leading to an uneven representation of the two datasets.  

(f) Some other examples of tensor coupling: coupled matrix and tensor factorization (CMTF, left) 

and PARAFAC2 (right).  

(g) Schematics of tensor partial least squares. Partial least squares is performed on two tensors, X 

and Y, with one aligned mode. During solving, the two separated X and Y factors of the aligned 

mode (patient mode in the example case) yield the maximal correlations. Partial least squares 

components are solved sequentially, as the next component is found by repeating the same process 

on the residuals, X’ and Y’, from the last round. Therefore, the components are in decreasing order 

of covariance explained.  

(h) The performance of partial least squares can be evaluated by calculating the fitting errors of X 

and Y and the prediction errors of Y. Both fitting errors should decrease with more components, 
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while the prediction errors (from cross-validation) of Y should initially decrease but eventually 

increase due to overfitting. 
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There are two ways to utilize the Tucker results. The factor matrices, consisting of the 

eigenvectors defined in higher dimensions, can be used as summaries of the modes. They can be 

visualized similarly to Fig. 4.2f. One can also analyze the core tensor to identify the top interactions 

by significance, which is defined as proportional to their weights squared (Fig. 4.4b, right). For 

example, here, ~78% of the variance can be explained by the interactions among Factor 1s of 

organ, drug, and time. 

CP decomposition is equivalent to a specific instance of the Tucker decomposition, 

wherein factors associated with different components are non-interacting, thus the core tensor 

assumes a superdiagonal form, signifying that all off-diagonal positions are zeros (Fig. 4.4c). This 

superdiagonal property has been harnessed to test whether a CP decomposition is correctly 

implemented, known as core consistency diagnostics99. Specifically, after acquiring the CP factor 

matrices, if adding off-superdiagonal interactions to the retrofitted core tensor can improve the 

fitting considerably, the number of components may be inappropriate, or Tucker may be a better 

model than CP for this dataset. 

Tucker decomposition offers a better mode-specific summary and more flexible analysis, 

which opens many possibilities for method development100. Many variants of Tucker 

decomposition, including higher-order SVD (HOSVD), have been applied to biological 

datasets65,101.  

Coupling: sharing factors across multiple tensors 

The integration of (epi-)genomic, transcriptomic, and proteomic data, either in bulk or at 

the single-cell resolution, has provided opportunities for an integrated understanding of cellular 

processes. More broadly, biologists often encounter data fusion challenges when attempting to 
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identify shared patterns among multiple data sources102. The joint analysis of several datasets can 

be formulated as coupling of tensors103. 

Coupling arises when two or more datasets are collected with differing dimensions, but all 

tensors share at least one “coupled” mode (Fig. 4.4d, left). Commonly coupled modes include 

samples or patients that are shared across multiple assays. For instance, there may be another 

dataset on cells from the same groups of organs measured in the previous dataset (Fig. 4.4d, Tensor 

A); this new dataset contains the gene expression of the cells from these organs under various 

treatments (Fig. 4.4d, Tensor B). In this case, the organ mode is shared, while each tensor has other 

uncoupled modes, such as drugs and genes. In a coupled decomposition, a shared mode will have 

a common factor matrix that is used by all tensors that comprise this mode (Fig, 4d, right). In this 

way, this factor matrix succinctly reflects the trends across these two coupled tensors.  

Visualizing and interpreting the results of a coupled tensor factorization operate like with 

CP (Fig. 4.2f). Each tensor is decomposed into a series of rank-one components, and any coupled 

mode will have a single set of factors shared among all the tensors using it (Fig, 4d, middle). All 

other modes will still have their own factor matrices (Fig, 4d, right). In addition to examining 

components within a tensor, one can also compare the uncoupled private modes between two 

tensors to assess their associations. A unique advantage of coupling arises from missing data. If a 

certain tensor has missing entries, other tensors can share information through the coupled factors 

to improve imputation.  

Coupling introduces a new issue. Because factorization minimizes the overall 

reconstruction error, the relative scaling among coupled tensors influences the priority in 

explaining patterns from each dataset. As the total variance of values can differ significantly across 

datasets collected from various assays, the decomposed factors can be dominated by one source if 
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the data is not appropriately scaled. Typically, a range of scaling should be explored, and the 

overall and tensor-specific errors evaluated (Fig. 4.4e). If the factor matrices are used to predict 

some outcomes, the prediction accuracy can also be used to compare various scalings and 

determine an optimal scaling. 

Overall, coupling offers remarkable flexibility for data integration. Although we refer to 

the methods as coupled tensor factorization, matrices (2-way tensors) are also included. For 

example, many applications have used coupled matrix and tensor factorization to jointly analyze 

a tensor and a matrix (Fig. 4.4f, left)28,104. Coupling also expands the applicability of tensor 

methods to more irregularly shaped data, as illustrated by PARAFAC2105. PARAFAC2 is a method 

that decomposes a series of matrices, where one mode is shared while another is unaligned and 

variable in size (Fig. 4.4f, right). This forms a ragged tensor to which CP or Tucker cannot be 

applied. PARAFAC2 projects the variable modes into a latent, uniform shared mode, identifying 

patterns not only on the shared mode but also across these matrices, effectively harnessing the 

benefits of coupling. Tensor coupling is an active field of method development, including 

combining it with other decomposition strategies (such as Tucker or partial least squares). 

Partial least squares: informing decomposition by effects 

Many scientific questions involve identifying how a series of measurements associate with 

a specific phenotype or outcome of interest. For example, one might associate patients’ blood panel 

tensor with their diagnosis. In statistical terms, we have explanatory variables (X) and outcomes 

(Y), and our goal is to reveal only the patterns in X that uniquely associate with Y. This approach 

differs from simply coupling them where the joint variance of both X and Y is considered. Instead, 

the objective is to only capture the trends in X when they exhibit correlation with Y. 
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As mentioned previously, tensor decomposition factors can be combined with linear 

regression models. This two-step approach bears a resemblance to principal component regression: 

first, the data is decomposed using tensor decomposition without considering the effects (Y); then, 

regression is applied to capture correlations between the decomposed factors and their effects. 

However, as the first step is performed without the knowledge of Y, the decomposed X factors are 

not guaranteed to associate with Y. To address these challenges, partial least squares (PLS) 

methods have been developed, in both classification form (PLS discriminant analysis) and 

regression form (PLS regression)106.  

Tensor PLS is designed to uncover relationships between two tensors, X and Y, for 

predictors and responses, wherein one mode is aligned (Fig. 4.4g). For instance, consider tensor X 

representing medical tests on a group of patients over time, while matrix Y (a two-way tensor) 

records their diagnosis. The result of tensor PLS is analogous to performing two separate CPs on 

both X and Y simultaneously with the same number of components. After decomposition, they 

will each have a distinct patient factor matrix. However, PLS decomposes both datasets with the 

goal of maximizing the correlations between these two patient factors (Fig. 4.4g). The factors of 

the other non-aligned modes in X and Y come after obtaining the patient factors, and are defined 

to maximally capture variance within each dataset107. While the intricacies of the solving algorithm 

extend beyond the scope of this review, one helpful property to note is that tensor PLS is solved 

component-by-component. Each additional component is solved upon the residuals of X and Y 

(X’ and Y’) which are the original tensors subtracted by the solved components (Fig. 4.4g), 

meaning that components are ordered by the covariance they explain. Therefore, in a correctly 

performed tensor PLS, the fitting errors of both X and Y should decrease monotonically as more 

components are added (Fig. 4.4h). However, as a supervised learning method, tensor PLS does not 
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always predict unseen samples better with more components due to the risk of overfitting. The 

optimal number of components can be determined through cross-validation, where a portion of the 

samples is left out during fitting to test the model’s performance on them. It is expected that the 

prediction error of Y in cross-validation would initially decrease if the optimal number of 

components is greater than one (which is usually the case if Y is a matrix rather than a vector) and 

then increase after reaching the optimum (Fig. 4.4h). 

Overall, PLS has unique advantages when focused on a particular response. Since it is 

designed to specifically discover those patterns associated with a prediction of interest, PLS can 

predict the effect with fewer components compared with CP. Tensor PLS can be combined with 

Tucker decomposition and coupling in explanatory (X) tensors, and techniques are available to 

handle missing values108. 

 

4.5 Biological insights from tensor-based methods 

Tensor decompositions have applications in virtually all fields of biological data analysis. 

In this section, I summarize several notable examples. 

Applications in bioinformatics 

In bioinformatic studies, multi-omics data may contain tens of thousands of genes and 

millions of genomic positions. Tensor methods can simplify these large datasets generated by high-

throughput techniques into a succinct set of components and do so more efficiently than matrix-

based counterparts. These reduced latent structures group genes based on their common patterns 

revealed by the data, easing the scale of effect prediction.  

Hore et al. illustrated how tensor methods can be applied to condense genes in RNA-seq 

data across multiple tissues into associated factors to reduce the scale of statistical testing and to 
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strengthen their statistical power66. To reveal gene networks, they structured the gene expression 

levels into a gene by individual by tissue tensor. After applying the tensor method, the data was 

reduced into around two hundred components, a great reduction from the tens of thousands of 

genes they originally dealt with. These components grouped the genes by activities and indicated 

in what tissues they were active. Using individual scores as genotypes for genome-wide scanning 

on SNPs, they discovered the components that were significantly associated with trans-expression 

quantitative trait loci (eQTLs) and revealed their specific pathway or epigenomic regulation.   

Using tensor factors to cluster genes in transcriptome is further exemplified by Wang et 

al87. With the increasing scale of multi-tissue datasets, classical clustering methods struggle to 

extract information from multi-way interactions in the transcriptome. To fully extract the three-

way interactions between individuals, genes, and tissues, they applied constrained CP to RNA-seq 

and microarray measurements. Besides being able to run on three-dimensional data where 

traditional methods failed to reveal true patterns in simulated data, this tensor-based clustering 

method was shown to better test for differentially expressed genes with improved statistical power 

compared with single-tissue tests.  

Durham et al.72, on the other hand, applied tensor methods to large epigenome projects 

such as Encyclopedia of DNA Elements (ENCODE)73 and the Roadmap Epigenomics Project109. 

In these massive datasets, many cell type and assay pairs were not measured due to time and 

funding constraints. Therefore, the imputation of these data has been extensively studied110. 

Organizing the ENCODE data into a three-mode tensor, they found that tensor-based imputation 

outperformed alternative approaches, demonstrating that structuring the data in tensor form helps 

model and explain variation across the data.  
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Other tensor methods have been applied to epigenomic data too. For example, a variant of 

Tucker decomposition has been applied to model spatial association within topologically 

associating domains111. The decomposed factors directly link epigenomic state and chromosomal 

topology. Tensor decomposition can be also combined with machine learning methods. For 

example, extending the work of Durham et al., the same group inputted the concatenated tensor 

factors from three different genomic resolutions into a feed-forward deep neural network to predict 

the epigenomic signals, allowing a multi-scale view of the genome112. 

Applications in neuroscience 

Neuroscience is among the earliest fields to employ tensor methods113,114. As 

electroencephalography and functional magnetic resonance imaging data are collected over time, 

any experiment involving more than one electrode and trial is guaranteed to be at least three-

dimensional. Conventionally, the data has been converted into matrices by averaging multiple 

trials, inevitably losing information about trial-to-trial variation. Therefore, tensor methods, 

including both CP and Tucker decomposition, have been attractive to the neural signal processing 

community115. 

Williams et al. presented a clean framework for applying tensor component analysis on 

large-scale neural data across time and trials75. Before running on the actual data, they 

demonstrated that tensor decomposition works well on simulated linear model neural networks 

and nonlinear recurrent neural networks, separating positive and negative cells with almost perfect 

accuracy. With the same simulations, PCA and independent component analysis failed to recover 

the right signal. They then applied the method to their experiments on mice's prefrontal activity 

and primate motor cortex. Nonnegative tensor decomposition was shown to cleanly separate 

neurons that were activated in various periods and associated with specific movements. 
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Applications in systems biology 

Systems biology makes repeated measurements over different times, tissues, or spatial 

structures, so the data are naturally in tensor structure. These measurements may include 

sequencing, flow cytometry, or quantitative cell imaging, requiring solutions for data integration. 

Two specific concerns here are avoiding overfitting, as the datasets are often limited in size, and 

incorporating heterogeneous information. Therefore, nonnegative decomposition, imputation 

tests, coupling, and partial least squares have been used. 

Tensor methods offer unique advantages for the study of systems biology by enabling 

concurrent comparison of multiple contexts and extracting their shared trends. For instance, 

Armingol et al. employed tensor decomposition to study cell-to-cell communication from RNA-

seq data116. Contrary to many previous studies that cannot handle more than two cellular contexts 

simultaneously, by embedding communication matrices117 into a four-mode tensor, they were able 

to characterize variation in cell-to-cell communication across several contexts coordinately. 

The benefit of tensor decomposition in analyzing repeated measurements simultaneously 

can also be extended to compositional data in microbiology. Microbiome studies often take 

multiple samples from the same individual either longitudinally or spatially, but there is a lack of 

methods to account for both biological change and interindividual variability in them. Martino et 

al. took the tensor approach to deconvolute gut microbial sequencing data118. They demonstrated 

that unsupervised tensor decomposition can identify differentially abundant microbes, accounting 

for the high-dimensional, sparse, and compositional nature of microbiome data. 

Tensor partial least squares can also be helpful in systems biology119. Netterfield et al. 

recently applied it in a study of DNA damage response120. They systematically profiled a human 

cell line with the treatment of DNA double-strand break-inducing drugs over time and 
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concentrations, using tensor PLS to directly associate signaling to response, both as three-mode 

tensors, separating the time mode from drug concentrations. This allowed them to identify signals 

with time-dependent correlations with senescence and apoptosis. They also observed that tensor 

PLS required fewer parameters to predict the response than the conventional unfolded version. 

 

4.7 Conclusion 

In this chapter, I review the application of tensor decomposition to biological data analysis. 

The paramount lesson of this chapter is the profound influence of the chosen data representation, 

the “medium,” on our comprehension of the data itself and the analytical approach. The selection 

of data representation should be driven by the natural structure of the underlying data and 

experiment rather than mere mathematical expediency. Approaching this analysis appropriately 

improves on the insights one can derive from the data through better accuracy, more evident 

interpretation, and an enhanced ability to integrate data across studies and scales. While tensor 

methods have gained increased prominence, they have much broader potential yet121. Part of the 

field’s maturation will arise from a broader appreciation and understanding of these techniques. 

Nevertheless, tensor decomposition, in its current form, is not without limitations. First, it 

is still fundamentally linear, so it may fail on datasets of nonlinearity characteristics. This does not 

forbid it from being an adequate baseline model though. Furthermore, the existing solving 

algorithms continue to grapple with numerical issues such as nonuniqueness in factors, instability 

when addressing missing data values, and challenges in hyperparameter tuning. These issues will 

be resolved by new theories and a broader appreciation of these techniques. 
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Chapter 5 

Tensor-structured decomposition improves systems serology analysis 

 

There is a crack, a crack in everything, 

That’s how the light gets in. 

Leonard Cohen  

  

 

5.1 Introduction 

Whether during a natural infection, therapeutic vaccination, or an exogenously 

administered antibody therapy, antibody-mediated protection is a central component of the 

immune system. The unique property of antibodies is conceptually simple—they undergo affinity 

enrichment toward specific antigens—but the mechanisms of resulting protection are mediated 

through a network of interactions122. Therapies are often optimized based upon the titer or 

neutralizing capacity of the antibodies they deliver. However, many of the mechanisms for 

antibody-mediated protection occur through secondary interactions with the immune system via 

an antibody’s fragment-crystallizable (Fc) region. While more challenging to quantify and identify 

as the mechanism of protective immunity, these immune system responses, such as antibody-

dependent cellular cytotoxicity (ADCC)123,124, complement deposition (ADCD)125, cellular 

phagocytosis (ADCP)126, and respiratory burst127 are known to be just as or more important in 

many diseases. 
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A suite of recent technologies promises to broaden our view of antibody-mediated 

protection as the microarray did for gene expression. Systems serology aims to broadly profile the 

humoral immune response by jointly quantifying both the antigen-binding and Fc biophysical 

properties of antibodies in parallel128. In these assays, antibodies are first separated based on their 

binding to a panel of disease-relevant antigens129,130. Next, the binding of the immobilized 

antibodies to a panel of immune receptors is quantified. Other molecular properties of the disease-

specific antibody fraction that affect immune engagement, such as glycosylation, may be 

quantified in parallel in an antigen-specific or -generic manner129–131. By accounting for the two 

necessary events for effector response—antigen binding and immune receptor engagement—these 

measurements have proven to be highly predictive of effector cell-elicited responses and overall 

antibody-elicited immune protection5,132,133. 

Although systems serology provides a major advancement in our ability to analyze the 

antibody-elicited immune response, analysis of these data is often challenging. Standard machine 

learning methods, such as regularized regression, principal components analysis (PCA), and partial 

least squares regression (PLSR) have been effective in identifying highly predictive immune 

correlates of protection132,134. However, identifying specific molecular changes or programs that 

give rise to protection is more difficult. First, because many of the measurements are overlapping 

in the molecules they quantify, or measure co-dependent processes, much of the data is highly 

inter-correlated5,135. Particularly when analyzing polyclonal antibody responses such as those 

which arise in vaccination or natural infection, protection may arise through single or combinations 

of molecular species and features within the antibody response, through either individual or 

combinations of antigens136,137. One successful approach in serology analysis has been to collapse 

molecular features into summary statistics, such as Fc breadth or polyfunctionality, though this 
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requires pre-defined descriptors of these quantities136. Alternatively, patterns of interest can be 

experimentally derived, such as with blocking experiments, but this is labor-intensive and requires 

pre-existing monoclonal antibodies to define each pattern55. Unsupervised approaches that 

explicitly integrate patterns across both antigen and Fc properties will help to mechanistically 

characterize immune protection. 

While systems serology measurements include a variety of different assays to quantify 

humoral response, a common overall structure exists to the data. Most of the measurements 

quantify the extent to which an antibody bridges all pairs of target antigen and receptor panels, 

across a set of individuals128. Binding to target antigen involves the antigen binding fragment (Fab) 

of an antibody, while immune receptor interactions occur through its crystallizable fragment (Fc) 

region. Thus, it is natural to split them up as they entail different regulatory processes. Along with 

the dimension of individuals, these measurements, therefore, can be thought of as a three-

dimensional dataset, where every number in this “cube” of data represents a single measurement 

(Fig. 5.1a/b). Then, separately from these measurements, some properties of the humoral response, 

such as antibody glycosylation, may be assessed but without separation across different 

antigens131,138. With data of three or more dimensions, tensor decompositions, a family of 

unsupervised dimensionality reduction methods for higher-order tensors, provide a generalization 

of matrix decomposition techniques6. These methods are especially effective at data reduction 

when measurements have meaningful multi-dimensional features, such as time-course 

measurements118. Like PCA, tensor decomposition methods, when appropriately matched to the 

structure of data, help to visualize its variation, reduce noise, impute missing values, and reduce 

dimensionality101. 
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Figure 5.1. Systems serology measurements have a consistent multimodal structure. 

(a) General description of the data. Antibodies are first separated based on their binding to a panel 

of disease-relevant antigens. Next, the binding of those immobilized antibodies to a panel of 

immune receptors is quantified. Other molecular properties of the disease-specific antibody 

fraction that affect immune engagement, such as glycosylation, may be quantified in parallel in an 

antigen-specific or -generic manner. These measurements have been shown to predict both disease 

status (see methods) and immune functional properties—ADCD, ADCC, antibody-dependent 

neutrophil phagocytosis (ADNP), and natural killer cell activation measured by IFNγ, CD107a, 

and MIP1β expression. 

(b) Overall structure of the data under the CMTF framework. Antigen-specific measurements can 

be arranged in a three-dimensional tensor wherein one dimension each indicates subject, antigen, 

and receptor. In parallel, non-antigen-resolved measurements such as quantification of glycan 

!"#$%&&&&&!"#$%%'&&&&&!"#$%%%'&&&&&!"#$%%%(
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composition can be arranged in a matrix with each subject along one dimension, and each glycan 

feature along the other. Although the tensor and matrix differ in their dimensionality, they share a 

common subject dimension. 

(c) The data are reduced by identifying additively separable components represented by the outer 

product of vectors along each dimension. The subject dimension is shared across both the tensor 

and matrix reconstruction.  

(d) Venn diagram of the variance explained by each factorization method. Canonical polyadic (CP) 

decomposition can explain the variation present within the tensor on its own101, analogous to 

principal component analysis (PCA) on the glycan matrix. Tensor partial least squares regression 

(tPLS) allows one to explain the shared covariation between the matrix and tensor139,140 . In 

contrast, here, we wish to explain the total variation across both the tensor and matrix141. This is 

accomplished with CMTF (see Materials and Methods). 
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As the structure of systems serology data is well-suited to tensor decomposition, we take 

advantage of this to reap the above benefits. As examples, we analyze two separate studies wherein 

systems serology measurements were shown to predict both functional immune responses and 

disease status within HIV- and SARS-CoV-2-infected subjects132,133. We first adapt a tensor 

decomposition approach—coupled matrix-tensor factorization (CMTF)—to reduce these 

measurements into consistent patterns across subjects, immunologic features, and antigen targets. 

Inspecting these factors reveals interpretable patterns in the humoral response, and these patterns’ 

abundance across subjects predicts subjects’ functional immune responses and infection state. 

Importantly, CMTF greatly improves the interpretability of these predictions compared with 

methods that do not recognize the structure of these data. This approach, therefore, provides a very 

general data-driven strategy for improving systems serology analysis. 

 

5.2 Systems serology measurements can be arranged  

in tensor form for greater dimensionality reduction 

We first sought to determine whether the structure of systems serology measurements 

could inform better data reduction strategies (Fig. 5.1). As an array-based measurement, wherein 

the amount of signal is dependent upon the quantity of both antigen and Fc interactions, we 

surmised that upon arranging measurements according to the antigen or Fc feature assessed we 

might more effectively identify patterns within the data (see detailed justification in methods). We 

started by restructuring the HIV infection serology data132. To integrate the antigen-specific array 

and gp120-exclusive glycan measurements, we used a form of tensor-based dimensionality 

reduction, coupled matrix-tensor factorization (CMTF) (Fig. 5.1b/c). By concatenating both the 

unfolded tensor and matrix during the alternating least squares (ALS) solve for the subject 
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dimension, we achieve the optimal low-rank approximation for both datasets (Fig. 5.1d, see 

methods). This structure is like canonical polyadic (CP) decomposition on a single tensor, or 

principal component analysis (PCA) on a single matrix (Fig. 5.1d). The approximation aims to 

explain the maximal variance across both datasets, in contrast to partial least squares regression in 

matrix or tensor form (tPLS), which would explain only the shared variance (Fig. 5.1d). 

To determine the extent of data reduction possible, we examined the reconstruction error 

upon decomposition with varying numbers of components (Fig. 5.2a). As the datasets were 

formatted into a 3-mode (i.e., axis) 181×22×39 tensor and a 181×25 matrix, we start with a 

structure of 159,823 entries, of which 95,484 or ~60% were filled with measurements (Fig. 5.1b). 

After factorization with 6 components, we are left with four matrices of 181×6, 22×6, 39×6, and 

25×6. Therefore, we reduce the dataset to ~1.7% of the size ((181 + 22 + 39 + 25) × 6 = 1,602 

numbers), while preserving 62% of its variation (Fig. 5.2a). For comparison, Fc array assays where 

these measurements came from with sufficient dynamic range reproduce roughly 80% of the 

variance across replicates129. Therefore, we are capturing the majority but not quite all true 

variation across subjects and measurements.  
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Figure 5.2. CMTF improves data reduction of systems serology measurements. 

(a) Percent variance reconstructed (R2X) versus the number of components used in CMTF 

decomposition. 

(b) CMTF reconstruction error compared with PCA over varying sizes of the resulting 

factorization. The unexplained variance is normalized to the starting variance. Note the log scale 

on the x-axis. CMTF consistently led to a similar variance explained with half the resulting 

factorization size compared with PCA. For example, as indicated by the arrow, to obtain a 

normalized unexplained variance of 0.45, PCA required ~2,048 values, and CMTF needed only 

~1,024 values. 

(c) The overall and matrix- or tensor-specific R2X with varied relative scaling. 
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We compared this to the data reduction possible with PCA with the data organized in a 

flattened matrix form. CMTF consistently led to a similar variance explained with half the resulting 

factorization size compared to PCA (Fig. 5.2b). For example, as indicated by the arrow, CMTF 

led to a normalized unexplained variance of 0.45 at ~1,024 values within the factorization, while 

PCA required ~2,048 to do the same. The difference between PCA and CMTF must arise from the 

latter’s ability to “reuse” antigen patterns across receptors or vice versa. For example, if a 

component includes an increase in FcγRIII binding overall, PCA would still need to represent this 

increase in the loadings for every FcγRIII-antigen measurement. Thus, PCA is not able to “group” 

interaction effects across the two dimensions. The difference cannot arise through relaxing 

orthogonality; CMTF is still “hyper-orthogonal” (i.e., full rank across all tensor modes), and 

linearly dependent components would only reduce the total variance explained6,140. Overall, highly 

effective dimensionality reduction gave us confidence that this structured factorization identifies 

patterns of meaningful variation. 

As CMTF aims to maximize the explained variances across both datasets, their relative 

scale influences the balance of the decomposition (Fig. 5.2c). We standardized the data during 

preprocessing by scaling the matrix so that it contains the same amount of variance as the tensor. 

In this case, CMTF explains ~62% of the tensor and ~40% of the matrix variance (R2X). When 

the matrix is scaled to relatively larger variance, CMTF can achieve ~72% matrix R2X, at the 

expense of the tensor R2X dropping below 35%. Conversely, a smaller matrix does not increase 

the tensor R2X over 65% but causes the matrix R2X to decrease sharply. Our approach of equal 

variance scaling tuned the factorization to the range where it was responsive to both datasets. 
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Figure 5.3. CMTF accurately imputes missing values. 

(a) Percent variance predicted (Q2X) versus the number of components used for imputation of 15 

randomly held-out receptor–antigen pairs. Error bars indicate standard error of the mean from 

repeatedly held-out pairs (N = 20). 

(b) Percent variance predicted (Q2X) versus the number of components used for 15 randomly held-

out individual values. Error bars indicate standard error of the mean from repeatedly held-out 

values (N = 10). 
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5.3 Factorization accurately imputes missing values 

By rearranging the measurements into tensor form, our data structure created an entry for 

every combination of antigen, subject, and Fc property. However, since not every quantity 

represented by these entries was measured in the dataset, this tensor was left with empty positions, 

or missing values. To demonstrate that CMTF was robust with missing values, we benchmarked 

its ability to impute them. 

Missing data is not uncommon to biological research. In an experiment, subject samples 

can be limited or only be available for a small set of measurements, or a subset of measurements 

can be prioritized by investigators based on prior knowledge. Incapable of handling missing 

values, one may have to exclude incomplete measurements. In the HIV serology data, gp120-

specific glycan measurements were available for only half of the subjects. Consequently, models 

using the glycan measurements required a smaller patient cohort, and when they were included the 

prediction performance reduced132. Good imputation performance can not only potentially 

eliminate such tradeoff but also help to infer unknown information. Moreover, factorization 

accurately imputing missing values further supports that this approach identifies biologically 

meaningful and consistent patterns. 

To evaluate the imputation performance of factorization, we first artificially introduced 

additional missing values by randomly removing entire receptor-antigen pairs across all subjects 

(see methods). We then performed CMTF which effectively filled these in and calculated the Q2X 

of the inferred values compared to the left-out data (Fig. 5.3a). Factorization imputed these values 

with similar accuracy to the variance explained within observed measurements up to 6 components 

(Fig. 5.2a), supporting that it can identify meaningful patterns even in the presence of missing 

measurements. As we were effectively leaving out entire columns of data when arranged in 
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flattened matrix form, we could not compare this performance to PCA. Using the average along 

the receptor or antigen dimensions led to Q2X values very close to 0. As a less stringent imputation 

task, we left out batches of individual values and evaluated our ability to impute them. CMTF 

showed similar or slightly better performance when imputing individual values compared to PCA 

(Fig. 5.3b). This provides additional evidence that the patterns identified through factorization are 

a meaningful representation of the data. 

 

5.4 Tensor decomposition accurately predicts  

functional measurements and subject classes 

We next evaluated whether our reduced factors could predict the functional responses of 

immune cells and subject classes. Functional responses included antibody-dependent complement 

deposition (ADCD); cellular cytotoxicity (ADCC); neutrophil phagocytosis (ADNP); and the level 

of natural killer (NK) cell activation represented by the expression of IFNγ, CD107a, and MIP1β. 

Subject classes included whether subjects were able to control their infection and whether they 

were viremic at the time of study collection. 

To predict the functional responses, we applied elastic net to the decomposed factors (see 

methods), and their prediction accuracies were defined as the Pearson correlation between 

measured and predicted values (Fig. 5.4a/c). To predict the subject classes, we applied logistic 

regression (see methods), and accuracy was defined as the percent classified correctly (Fig. 

5.4b/d). To evaluate prediction, we implemented a 10-fold cross-validation strategy. Briefly, in 

each fold we used 90% of the subjects to learn the relationship between the data and the given 

prediction and then evaluated these predictions on the remaining 10%. The average performance 

of each approach was evaluated with every subject eventually held out in one of the 10 folds.   
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Figure 5.4. CMTF-reduced factors accurately predict functional measurements and subject 

classes. 

(a) Accuracy (defined as the Pearson correlation coefficient) of functional response predictions 

with different numbers of components. 

(b) Percent of subject classes predicted accurately with different numbers of components.  

(c) Prediction accuracy for different functional response measurements using six components.  

(d) Fraction predicted correctly for subject viral and controller status using six components. 

(e, f) Model component weights for each function (e) and subject class (f) prediction. 

The shaded area/error bars in (a–d) come from repeating a 10-fold cross-validation (with 

10 differently shuffled folds) 10 times (n = 10), and the error bars in (e, f) come from bootstrapping 

20 times (n = 20). All error bars indicate the standard deviation from repeated resampling. 
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To determine the optimal number of components, we first evaluated the prediction 

accuracies of CMTF with 1 to 14 components (Fig. 5.4a/b). With more components, functional 

response prediction accuracies improved marginally, and mostly plateaued after 6 components. 

Subject class predictions saw a leap from 3 to 4 components, especially for controller-progressor 

classification, and all class prediction accuracies plateaued after 6 components. We therefore 

concluded that 6 components were generally sufficient for good predictions. 

For comparison, we reimplemented the elastic net-based immune functionality and subject 

predictions previously applied to these data (Fig. 5.4c/d, orange crosses)132. We observed similar 

performance to that reported. Differences from reported results could be explained by adjustments 

we made to the cross-validation strategy to prevent over-fitting (see methods). Broadly, we saw 

overall our method performed similarly to the previous method in predicting immune functional 

responses and subject classes (Fig. 5.4c/d, blue circles). While lower at 6 components, our 

prediction accuracy increased slightly for ADCD and ADNP at higher numbers of components 

(Fig. 5.4a). CMTF also had similar prediction accuracy for subject classes with 6 components (Fig. 

5.4d, 5.S1). Importantly, in all cases, randomizing the subjects’ classes completely removed the 

ability to make these predictions (Fig. 5.4c/d, green squares). 

As both functions and subject classes were predicted with linear models, we plotted the 

component weights for these regression results (Fig. 5.4e/f). All the NK activation measurements 

(IFNγ, CD107a, and MIP1β) were highly correlated (Pearson correlation >0.85) and 

unsurprisingly had very similar model weights, while ADCD, ADCC, and ADNP differed more 

(Fig. 5.4e). To quantify the stability of these component-function and component-class 

relationships, we performed bootstrapping by resampling the subjects with replacement, and 

included error bars representing the standard deviation of the model weights (Fig. 5.4e/f). In every 
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case most of the model weights varied little across samples. By contrast, bootstrapping the elastic 

net model of ADCD based on the original measurements themselves, as an example, led to entirely 

different model weights (Fig. 5.S2). We overall concluded that CMTF preserves sufficient 

information to predict these important features. Data reduction enables one to identify patterns that 

are associated with functional responses and subject classes, and component associations 

generalize more robustly upon resampling. 

 

5.5 Factor components represent consistent patterns  

in the HIV humoral immune response 

We plotted the results of our factorization in four factor plots to inspect the composition of 

each component across each factor dimension (Fig. 5.5). After ALS, components were ordered by 

their variance, with component 1 having the greatest variance and component 6 having the least. 

Since the effect of a component is the product of weights on three modes, the original tensor is 

invariant to coordinated sign flipping or scaling. We enforced that the receptor and antigen factors 

are positive on average by cancelling out negative effects along two factor modes. Factor 

components were also scaled to fall within the range of -1–1, and their scaling factors were 29.3, 

12.4, 7.4, 7.2, 14.0, and 3.9 respectively. We elected to not scale the glycan factors on a per-

component basis so that the relative scaling is evident in the plot itself (Fig. 5.5d). Every 

component must be distinct along at least one factor matrix due to hyper-orthogonality, so no 

component was redundant. 
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Figure 5.5. Factor components represent consistent patterns in the HIV humoral immune 

response. 

(a-d) Decomposed components along subjects (a), receptors (b), antigens (c), and glycans (d).  

EC: elite controller, TP: treated progressor, UP: untreated progressor, VC: viremic controller (see 

Methods). All plots are shown on a common color scale after scaling each factor component within 

the range −1 to 1. Antigen names indicate both the protein (e.g., gp120, gp140, gp41, Nef, and 

Gag) and strain (e.g., Mai and BR29). Descriptions of each receptor name can be found in Tbl. 

5.1. 
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Receptor Description 

FcgRI FcγRI130 

FcgRIIa FcγRIIa130 

FcgRIIa.H131 FcγRIIa.H131130 

FcgRIIa.R131 FcγRIIa.R131130 

FcgRIIb FcγRIIb130 

FcgRIIIa FcγRIIIa130 

FcgRIIIa.F158 FcγRIIIa.F158130 

FcgRIIIa.V158 FcγRIIIa.V158130 

FcgRIIIb FcγRIIIb130 

FcgRIIIb.NA1 FcγRIIIb.NA1130 

FcgRIIIb.SH FcγRIIIb.SH130 

IgG1 Mouse anti-Human IgG1129 

IgG2 Mouse anti-Human IgG2129 

IgG3 Mouse anti-Human IgG3129 

IgG4 Mouse anti-Human IgG4129 

LCA Lens Culinaris Agglutinin130 

MBL Mannan binding lectin130 

PNA Peanut Agglutinin130 

SNA Sambucus Nigra Lectin130 

VVL Vicia Villosa Lectin130 

C1q Human C1q130 

IgG Mouse anti-Human pan-IgG129 
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Table 5.1. Descriptions of the receptor detections found within the tensor analysis. 
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The resulting factor plots can be read in two ways. First, one can trace the effect of a 

component across different dimensions by looking at that component within each plot. For 

instance, component 4 represents a subset of unique variation in the data that is higher in viremic 

controllers (Fig. 5.5a), broadly covarying across FcγRs (Fig. 5.5b), and increases p24/decreases 

gp120 antigen binding (Fig. 5.5c). In an alternative view of the factorization results, one can ask 

how components are different in the variance they explain within a single factor mode. For 

instance, components 2 and 4 are very similar in their receptor interactions (Fig. 5.5b), but unique 

in their antigen binding specificity (Fig. 5.5c). Finally, the product of subject (Fig. 5.5a) and glycan 

(Fig. 5.5d) factors reconstructs the glycan measurements. 

Components 1 and 2 explained the most variance and had broad receptor (Fig. 5.5b) and 

antigen (Fig. 5.5c) weighting, indicating that they represent overall titers in a general manner. 

Some difference exists within both components in their antigen specificity—component 1 is 

weighted toward surface antigens, while component 2 is more uniform in its antigen weights (Fig. 

5.5c). Component 1 (along with component 4) was also uniquely high in viremic controllers 

compared to other groups (Fig. 5.5a). Component 3 represents a similar antigen specificity to 

component 2 (Fig. 5.5c), and similar receptor set except for most of the lectin-binding proteins 

(MBL, PNA, SNA, VVL) and C1q (Fig. 5.5b). Component 4 displayed similar receptor specificity 

to component 1 (Fig. 5.5b) but with unique antigen specificity that was positive for intracellular 

antigens and negative for surface ones (Fig. 5.5c). Component 5 was surface antigen-specific (Fig. 

5.5c) and strongly specific for LCA, PNA, and VVL (Fig. 5.5b). Finally, component 6 was 

weighted toward genotype specific FcγR measurements over all others (Fig. 5.5b), with broad 

antigen specificity (Fig. 5.5c). As these were (1) the most sensitive measurements as indicated by 

their generally higher fluorescence signal before normalization and (2) the component’s variation 
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was greatest for the subjects that were low on component 1 (Fig. 5.5a), we took this to indicate the 

component explained variation specific to low-titer subjects. 

We were surprised to find little unique variation in the glycan matrix factor along each 

component (Fig. 5.5d). The weights within each component were proportional to the dynamic 

range of each measurement (most for G2S2 and less for total G0 as an example; r2 = 0.82). We 

took this to indicate that there is little variation explained in the glycan data beyond an overall 

increase or decrease. As independent evidence of this, a one-component PCA decomposition of 

just the glycan matrix could explain >70% of the variation in the glycan data, even after centering. 

 

5.6 CMTF extensively reduces and visualizes  

dynamic responses to SARS-CoV-2 infection 

To demonstrate the general benefit of tensor methods in systems serology data analysis, 

we applied them to a separate dataset on acute SARS-CoV-2 infection133. In this dataset, samples 

from SARS-CoV-2 negative and infected subjects were collected over the course of infection for 

about 4 weeks. Antibodies were tested for their antigen and Fc receptor engagement. We 

restructured the data into a three-mode tensor according to the sample, antigen, and receptor 

measured. In doing so we obtained a tensor of size 438×6×11 (Fig. 5.6a). In this form, the tensor 

contains no missing values. After log-transforming and centering the data on a per-antigen-

receptor basis, two components could explain 74% of the variance with 0.3% the size of the 

original dataset ((438 + 6 + 11) × 2 = 910 numbers) (Fig. 5.6b).  
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Figure 5.6. Application of tensor factorization to SARS-CoV-2 systems serology 

measurements. 

(a) Schematic of the data tensor. Measurements were arranged according to samples, target 

antigen, and receptor detection. 

(b) Percent variance reconstructed (R2X) versus the number of components. 

(c-e) Decomposed factor components along samples (c), antigens (d), and receptors (e). 

(f) Subject component weights plotted according to the sample time after symptom onset, together 

and separated into PCR-negative subjects along with moderate, severe, and deceased cases. 

(g) Boxplot of subject component weights for just samples within the first week after symptom 

onset, separated by subject group (negative N = 33, mild N = 7, moderate N = 122, severe N = 

196, deceased N = 74). Each point represents a distinct biological sample. The three bands in each 

box represent the first, second, and third quartiles of the weights, from the bottom to the top, 

respectively; the whiskers extend up to 1.5 times the interquartile range beyond the box range; any 

outliers beyond the whisker ends are plotted as single points. 
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(h) ROC curve of logistic regression classifier for predicting severe disease versus deceased 

outcome. Model is built using the two component weights of the subject factors. The shaded area 

indicates the standard deviation from a 10-fold cross-validation. 
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The resulting factors clearly separated into a clear acute (e.g., IgG3, IgM, IgA) or long-

term (IgG1-specific) response pattern34 (Fig. 5.6c), with the abundance of each program in each 

sample indicated by the sample factors (Fig. 5.6e). Both components 1 and 2 generally shared 

broad specificity across antigens with slight differences (Fig. 5.6d). As expected, component 1 

also represented stronger association with FcγR and FcαR immune receptors31 (Fig. 5.6c). 

We proceeded similarly to earlier analysis133 and plotted each sample by the collection time 

after symptom onset, separated by the outcome of infection (SARS-CoV-2 negative, moderate 

disease, severe disease, and deceased) (Fig. 5.6f). A sigmoidal curve was fit to each temporal 

profile as a summary of the data. In contrast to the earlier analysis, we were able to plot these along 

the two components summarizing all the data, instead of the 66 individual measurements. Overall, 

samples showed a time-dependent increase in factor values (Fig. 5.6f). Interestingly, a subset of 

PCR-negative subjects showed positive weights specific to component 2, indicating some IgG1-

specific pre-existing immunity. As previously observed, severe cases displayed a component 1 

response that on average had a higher initial and final quantity compared to either moderate or 

deceased cases (Fig. 5.6f/g). A logistic regression classifier using just the week 1 data predicted 

severe versus deceased outcome with AUC of 0.73 (Fig. 5.6g/h), comparable to a random forest 

classifier in previous analysis133 (AUC 0.71). Factorization with more components than 2 did not 

improve classification accuracy. 

 

5.7 Discussion 

We show here that tensor-structured data decomposition can improve our view of systems 

serology measurements. Specifically, this approach recognizes that antibody variation takes place 

across the distinct and separable antigen binding and Fc/receptor dimensions. Using this property, 
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we identify that these measurements can be reduced more efficiently (Fig. 5.2), this reduction is 

robust to missing values (Fig. 5.3), and that properties of the immune system and infection can be 

accurately predicted (Fig. 5.4). Most critically, this form of dimensionality reduction provides a 

clearer interpretation of the resulting models (Fig. 5.5), as it accounts for the high degree of inter-

correlation across each dimension. Finally, reducing the data into patterns enables robust 

associations between the biophysical parameters of antibodies and functional responses or 

immunological status (Fig. 5.4, 5.S2). 

The resulting factors and their association with infection state extend prior knowledge 

regarding changes in humoral immunity in HIV. One of the clearest patterns is an association of 

progression status with components 1 and 4, representing an antigen shift between surface and 

intracellular antigens (Figs. 5.4f, 5.5c, 5.S1b). Abundance of p24 antigen and its antibody titer has 

been proposed as an effective marker of HIV progression142, and predictive of death143, although 

it correlates strongly with viral RNA and CD4+ counts144. As we observe with component 4, 

viremic controllers have been characterized as having especially high p24-specific IgG1 and IgG2 

driving phagocytic responses145. The negative association with component 1 likely reflects a 

decrease in antibody titers overall which has separately been found to predict progression146. 

Therefore, while features of p24 abundance or antibody titers may have an incomplete and 

complex relationship with progression, a p24/gp120 ratio may be more predictive (Fig. 5.S3). 

Viremia status was predicted through an even decrease in many of the components (Fig. 5.4f), 

generally opposite the component weights predicting functional responses (Fig. 5.4E). This broad 

difference matches perfectly with previous observations that viral control is associated with 

polyfunctionality, rather than a specific molecular program136. Predicting viremia using the viral 

RNA quantities, rather than classifying groups based on a threshold, could reveal more specific 
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regulatory changes since, for example, elite controllers were heterogeneous as a group, and this 

variation may correlate with viral RNA amounts147 (Fig. 5.5a). 

The functional predictions and their component contributions matched expected patterns. 

All three NK activation measurements (CD107a, IFNγ, and MIP1β) had very similar weights to 

be expected given their high correlation (Fig. 5.4e). The only component with a negative weight 

with respect to gp120/gp140, component 4, showed a negative or negligible contribution to 

functional predictions (Fig. 5.4e, 5c). More specifically, ADCC was predicted by positive 

association with all the components that included both FcγRIII and surface (gp120/gp140) antigen 

binding (components 1, 2, 3, and 6)(Fig. 5.4e, 5b, 5c). ADCD had only two consistently positive 

component weights—1 and 5—which can be taken to reflect probably overall titers and lectin-

pathway complement activation, respectively, as component 5 had unusually strong weights for 

the glycan-binding probes LCA, PNA, and VVL148 (Fig. 5.5b). In contrast, while sparse models 

can predict these functions as accurately132, one cannot assign significance to the individual model 

weights as they change upon resampling the dataset (Fig. 5.S2), a challenge when modeling highly 

correlated measurements such as these149–151. Establishing links between specific molecular factors 

and functional responses could be further improved by experimentally introducing less correlated 

variation into the data, such as by measuring samples after enzymatic glycosylation modifications 

or depletion of certain isotypes152,153. This also highlights the need for multi-variate serological 

profiling, as single-factor studies are likely to find indirect associations. 

Although the glycan measurements had insufficient variation to link them to specific 

molecular programs beyond variation in amounts overall, future refinements to these 

measurements or analysis may reveal more precise regulation125. Glycan measurements across a 

panel of antigens might reveal more specific regulation, particularly as glycans are known to be 
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tuned in an antigen-specific manner152,154,155. Paired glycan and biophysical measurements in acute 

infection may also reveal more drastic glycan variation, especially given links with outcomes such 

as between severe COVID-19 and IgG fucosylation133,155. A tensor partial least squares regression 

approach would also reveal variation specifically associated with glycan changes by specifically 

focusing on variation shared in both datasets139. 

A more recent study examining SARS-CoV-2 infection allowed us to explore whether 

tensor-structured dimensionality reduction has benefits that extend to the serology of other disease 

and in longitudinal studies (Fig. 5.6). Surprisingly, we found that just two patterns within these 

data could explain 74% of the variance (Fig. 5.6b). While we were able to replicate the difference 

in dynamics between severe and deceased cases (Fig. 5.6f/g/h), the sufficiency of just two patterns 

argues for quantitative differences in these two patterns, rather than detailed qualitative changes 

in the immune response133. Perceived differences between individual measurements could arise in 

part from these two component patterns being combined in each measurement. As evidence of 

this, the reported measurements that differed in dynamics between severe and deceased subjects 

were almost exclusively those we observed to be weighted on both components 1 and 2, while 

those specific to component 1 showed no difference between outcomes133 (Fig. 5.6e/f). It is also 

difficult to draw conclusions on a measurement-by-measurement basis, even in large studies such 

as this, due to large subject-to-subject variability and strong correlations between measurements 

(e.g., Fig. 5.S2). On the other hand, it is possible that immunologically significant patterns remain 

in the unexplained variance that are drowned out by the most drastic changes155. There is also a 

challenge in separating pre-existing partial immunity from prior exposures or cross-reactivity with 

other coronaviruses; some PCR-negative cases showed positive weights on component 2, 

presumably indicative of long-term humoral responses, possibly from cross-reactivity with other 
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coronaviruses156 (Fig. 5.6f). Longer-term longitudinal studies of acute infection would allow one 

to observe the transition from acute immune response to lasting protection, and potentially better 

resolve the dynamics of class switching alongside its functional consequences34. 

Other tensor arrangements of serology data will help to reveal new patterns within these 

data. Indeed, here we have arranged data both with subject, antigen, and receptor modes, in either 

coupled form (Fig. 5.1) or a single tensor (Fig. 5.6a). With longitudinal data in which timepoints 

can be aligned, one could create a mode representing the contribution of time119. While each 

antigen is treated similarly along one dimension, antigenic mutants or strains could also be 

separated into separate tensor modes before decomposition. This could lead to further data 

reduction (e.g., both strains of p24 and gp41 antigens share a similar signature; Fig. 5.5c) and 

simplify comparisons between strains. Differences in the weights would also essentially serve as 

an unsupervised prediction for competition experiments to reveal differences in the binding targets 

of polyclonal serum55. As compared to traditional blocking or mutational experiments, antigens in 

these measurements are multiplexed across identifiable beads157,158. Therefore, making 

measurements across a wider antigen panel requires just small amounts of each antigen, and can 

be scaled to hundreds of antigens without increased sample requirements. Finally, CMTF could be 

used to link other types of immune response measurements besides glycan quantitation to serology, 

such as cytokines and gene expression. 

More effective dimensionality reduction in turn enables new ways of viewing antibody-

mediated protection. Thinking of these measurements as akin to the microarray for gene expression 

data suggestions new possibilities in leveraging this data. One valuable property of CMTF is that 

it separates the immune receptor and antigen-binding patterns within the data. This will enable 

surveys for common Fc response patterns across diseases and studies because these different 
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datasets would still share this axis. This “transfer learning” could therefore help to identify 

common patterns of immune dysregulation. With more extensive profiling of the various 

glycosylation and isotype Fc forms, it would be possible to fix the receptor axis of the 

decomposition, in effect matching new measurements to specific known immunologic patterns. 

These pattern-matching approaches would be much like gene set enrichment analysis for 

expression data159. The binding interactions of antibodies, while they produce combinatorial 

complexity, are a simple set of antigen and receptor binding. Ultimately, one should be able to 

apply multivalent binding models to mechanistically model the interactions within serum10,13,46. 

This might allow separation of avidity versus affinity in binding and integration with extensive 

prior characterization of Fc properties, such as the biophysical properties of individual glycoforms 

and isotypes30,31. A mechanistic view could also help to guide more advanced multi-modality 

therapeutic interventions, like inhibitors or enhancers of antibody response that cooperate with the 

cocktail of endogenous antibodies154,160. 

Ultimately, a comprehensive view of immunity needs advancements in measurements that 

are complementary to systems serology. Much like how systems serology has served to profile 

antibody-mediated protection, profiling methods are helping to characterize T cell-mediated 

immunity161. These technologies, alongside more traditional technologies to profile cytokine 

response, gene expression, and other molecular features, promise to provide a truly comprehensive 

view of immunity. Integrating these data will require dimensionality reduction techniques that 

recognize the structure of these data alone and in combination. Factorization methods, especially 

those operating on tensor structures, will be a natural solution to this challenge, due to their 

scalability, flexibility, and amenability to interpretation101. 
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Software Source Version 

TensorLy Python Library http://tensorly.org/ v0.6.0 

SciPy Python Library https://www.scipy.org/ v1.7.0 

NumPy Python Library https://numpy.org/ v1.21.0 

Pandas Python Library https://pandas.pydata.org/ v0.2.5 

Seaborn Python Library https://seaborn.pydata.org/ v0.11.1 

Python https://www.python.org v3.9.5 

 
Table. 5.2. Software and packages used in this chapter   
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5.8 Materials and Methods 

Subject cohort, antibody purification, effector function assays, and glycan analysis 

All experimental measurements were collected from prior work132,133. Measurements were 

clipped to be at least 0.1 (HIV glycan), 1.0 (HIV biophysical) or 10.0 (COVID biophysical); log-

transformed; and then centered on a per-measurement basis across subjects. The thresholds before 

log-transformation were determined to be well below the level of noise in the assays using the 

negative controls for each. Two antigens, gp140.HXBc2 and HIV1.Gag, were identified to only 

have one and two receptor measurements, respectively, making their factor values unstable 

because almost all measurements were missing. These were removed on import during the tensor-

based analysis. HIV subjects were classified into four categories: untreated progressors, who failed 

to control viremia without combined anti-retroviral therapy (cART); treated progressors, who 

similarly failed to control viremia without cART but were on it for the study measurements; 

viremic controllers, who possessed a viral load between 50 and 2,000 RNA copies/mL without 

cART; and elite controllers, who had less than 50 copies/mL without cART. These were then 

grouped into two classifications: controllers (EC and VC) versus progressors (UP and TP); and 

viremic (UP and VC) versus non-viremic (TP and EC). 

Coupled Matrix-Tensor Factorization 

We decomposed the systems serology measurements into a reduced series of Kruskal-

formatted factors. Tensor operations were performed using Tensorly82. Most measurements were 

made across specific antigens, and we structured them into a 3-mode tensor, 𝒳, whose modes 

represent subjects, receptors, and antigens. Separately, gp120-associated antibody glycosylation 

was measured for half of the HIV subjects. These measurements were structured into a matrix, 𝑌, 

representing the quantities for each subject (Fig. 5.1).  
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Shaping antigen-specific data into a 3-mode tensor recognizes that measurements of the 

same receptor or antigen should share variation within each component. However, since not all 

receptor-antigen pairs were measured, the constructed tensor contained missing values from the 

perspective of this data structure. Throughout the factorization algorithm, we used censored least 

squares solving, with rows corresponding to missing values removed. 

In preprocessing, we scaled the matrix so that it contained the same amount of variance as 

the tensor. To perform CMTF, we assumed the subject mode was shared between the tensor and 

the matrix: 

𝒳 ≈C𝐚𝐫

K

>($

∘ 𝐛𝐫 ∘ 𝐜𝐫 = 𝒳¹ 

𝑌 ≈C𝐚𝐫

K

>($

∘ 𝐝𝐫 = 𝑌». 

Here, “∘” represents the vector outer product, and 𝑅 is the total number of components in 

the factorization. The original tensor is approximated as a sum of 𝑅 rank-one tensors constructed 

by the vector outer product along each mode. The original matrix is represented by the sum of 𝑅 

rank-one matrices formed by the outer product of row and column vectors. For the 𝑟-th component, 

𝐚𝐫, 𝐛𝐫, and 𝐜𝐫 are vectors indicating variation along the subject, receptor, and antigen dimensions, 

respectively, and 𝐝𝐫 is a vector indicating variation along glycan forms within the glycan matrix.  

Decomposition was initialized using singular value decomposition of the unfolded data 

along each mode, with missing values imputed by a one-component PCA model and entirely 

missing columns removed. We then optimized the decomposition using an alternating least squares 

(ALS) scheme6 for up to 2000 iterations. In each ALS iteration, linear least squares solving was 

performed on each mode separately92: 
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min
x
¾�𝑋($)	𝑌� − 𝐴[(𝐶 ⊙ 𝐵)y	𝐷y]¾%	

min
z
¾𝑋(%) − 𝐵[(𝐶 ⊙ 𝐴)y	]¾% 

min
{
¾𝑋(N) − 𝐶[(𝐵 ⊙ 𝐴)y	]¾% 

min
|
‖𝑌 − 𝐴𝐷y‖% 

where 𝑋($), 𝑋(%), and 𝑋(N) are the tensor unfoldings of 𝒳 along each mode, and “⊙” represents 

Khatri-Rao product. The R2X was checked on each even iteration and decomposition was 

terminated early if the change was found to be less than 10-5.  

Justification of Multiplicative Factor Interactions 

Kruskal-formatted tensors are structured such that each factor component (receptors, 

antigens, subjects) should be multiplied together to reconstruct the data. This structure is simply a 

higher-dimensional generalization of matrix decomposition techniques like PCA or non-negative 

matrix factorization, in which scores and loadings matrices are multiplied together to reconstruct 

the data. An expectation of these approximations is that variation within the tensor occurs in a 

pattern that can be localized to each tensor slice, which is justified by the nature of the 

measurements being considered. These measurements are made in an array format, wherein 

plasma samples from subjects are incubated with individually identifiable beads covalently 

conjugated with antigens129,130. The conjugated antigens isolate IgG fractions specific to those 

targets. After washing, the beads are incubated with fluorescently labelled detection reagents that 

bind to the isolated IgG depending upon their properties. Thus, in essence, the assay is a bead-

based sandwich ELISA, in which the IgG is the sandwiched target. Given the format, the amount 

of fluorescence measured on a given bead should be proportional to both (1) the amount of IgG 

isolated on the bead, and (2) the fluorescence signal obtained per isolated IgG (two of the tensor 



151 

modes), supporting their multiplication. A multiplicative relationship allows each factor to 

contribute positively, negatively, or not at all to the variation represented by a component by a 

positive, negative, or zero weighting. A strong validation of this structure in tensor form is the 

large extent to which the data can be reduced without loss of information. It also fits with the 

biological expectation that antibody Fab variation influences the data along the antigenic slices, 

while Fc variation influences the data along the receptor ones. 

Reconstruction Fidelity 

To calculate the fidelity of our factorization results, we calculated the percent variance 

explained, R2X. First, the total variance was calculated by summing the variance in both the 

antigen-specific tensor and the glycan matrix, where included: 

𝑣FGF}^ = ∥𝒳∥% + ∥𝑌∥% 

Variance was defined as the sum of each element squared, or the square of the norm. Any 

missing values were ignored in the variance calculation throughout. Then, the remaining variance 

after taking the difference between the original data and its reconstruction was calculated: 

𝑣>,}YF`~HY = ∥∥𝒳 −𝒳¹∥∥ 

𝑣>,~^��G��^}F`GY = ∥∥𝑌 − 𝑌»∥∥ 

Finally, the fraction of variance explained was calculated: 

𝑅%𝑋 = 1 −
𝑣>,}YF`~HY + 𝑣>,~^��G��^}F`GY

𝑣FGF}^
 

Where indicated as Q2X instead, this quantity was calculated only for values left out to assess the 

fidelity of imputation. 

Logistic Regression / Elastic Net 

The data was centered and variance-normalized prior to model assembly. Logistic 

regression and elastic net were performed using LogisticRegressionCV and ElasticNetCV 
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implemented within scikit-learn162. Both methods used 10-fold cross-validation to select the 

regularization strength with smallest cross-validation error, and a fraction of L1 regularization 

equal to 0.8 to match previous results132. Logistic regression used the SAGA solver163. 

Cross-Validation 

We employed a 10-fold cross-validation strategy to evaluate each prediction model. 

Subjects were randomly assigned to folds to prevent the influence of subject ordering in the dataset. 

We found that sharing the cross-validation fold structure between hyperparameter selection and 

model benchmarking led to consistent overfitting. Therefore, we used a nested scheme in which 

the folds were assigned differently for hyperparameter selection and model performance 

quantification. 

Principal Components Analysis 

Principal components analysis was performed using the implementation within the Python 

package statsmodels and the SVD algorithm. Missing values were handled by an expectation-

maximization approach wherein they were filled in repeatedly by PCA. This filling step was 

performed up to 100 iterations or until convergence as determined by a tolerance of 1 × 102j. 

Missingness Imputation 

To evaluate the ability of factorization to impute missing data, we introduced new missing 

values by removing (1) entire receptor-antigen pairs or (2) individual values from the antigen-

specific tensor as indicated, and then quantifying the variance explained on reconstruction (Q2X). 

More specifically, in the first situation, fifteen randomly selected receptor-antigen pairs were 

entirely removed (2,715 values) and marked as missing across all subjects, leaving ~93,000 values 

for training. In the second, fifteen randomly selected individual values were removed, leaving 

~96,000 training values. CMTF decomposition was performed in each trial as described above, 
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and the left-out data were compared to the reconstructed values. 20 or 10 trials were performed in 

each imputation situation, respectively. Varying numbers of components were used for 

decomposition and a Q2X was calculated for each. In the second case we compared CMTF with 

PCA-based imputation with the dataset flattened into matrix form. 

Fitting Sigmoidal Curves 

The sigmoidal curves in Fig. 5.6f were fit to 𝑦 = 𝐴/[1 + exp(−𝑘(𝑥 − 𝑥1))] + 𝐶 using the 

Levenberg-Marquardt algorithm as implemented within curve_fit in the Python package scipy. 

The initial optimization point was set so that 𝐴 was 0.6 of the 𝑦 range; 𝐶 was the smallest 𝑦; 𝑥1 

was the median 𝑥; and 𝑘 was either 0.5 or -0.5, depending on whether the mean of the first half of 

𝑦’s was larger or smaller than that of the latter half. 
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Figure 5.S1: Decision boundaries of subject classification.  

(a) Viremic/non-viremic decision boundary, plotted as the probability of being viremic.  

(b) Controller/progressor decision boundary, plotted as the probability of being a controller.  
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Figure 5.S2: Three runs of bootstrapped samples of elastic net model predicting ADCD.  

(a-c) Each subplot shows the feature weights from an independent run of the elastic net model with 

bootstrapping predicting ADCD. Bars are colored according to the category of each input variable. 

Bootstrapping was performed by resampling subjects with replacement and then rebuilding the 

elastic net model predicting ADCD. 
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Figure 5.S3: A simple gp120/p24 antigen ratio predicts progression to varying degrees.  

(a) Raw gp120/p24 IgG measurement ratios, separated by subject class. Data plotted as boxplots.  

Each point represents a distinct subject (EC N = 45, TP N = 44, VC N = 51, UP N = 41). The three 

bands in each box represent the first, second, and third quartiles of the ratios, from the bottom to 

the top, respectively; the whiskers extend up to 1.5 times the interquartile range beyond the box 

range; any outliers beyond the whisker ends are plotted as single points. 

(b) Controller/progressor prediction accuracy using gp120/p24 ratios of each IgG isotype. 

Predictions were performed using logistic regression as described in methods. Accuracy is defined 

as the percent correctly classified. 
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Chapter 6 

Conclusion 

 

He is blessed by heaven. 

Good fortune. 

Nothing that does not further. 

I Ching  

 

 

In this dissertation, I present two distinct computational modeling strategies for antibody 

response: mechanistic-based and data-driven. These approaches embody two philosophical and 

epistemic pathways prevalent in contemporary biological studies164–166. My study showcases 

common traits in these approaches beyond antibody research. While each chapter has discussed 

specific biological implications, this chapter focuses on these two methodologies themselves and 

their roles in computational biology. 

The mechanistic approach is typically employed to gain a deeper understanding of well-

characterized systems. In traditional biology research, researchers study one pathway in great 

detail, examining each component meticulously. Mechanistic modeling is a quantitative extension 

of this approach, following a reductionist logic167: if we know all the details of a pathway, we 

should be able to make accurate predictions, and vice versa. Under this umbrella, there are ordinary 

differential equations (ODE) models168, rule-based models169, logical-network-based models170, 
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graph-based models171, and others. A mechanistic model can integrate existing discoveries 

quantitatively, allowing for fine-tuning of details and hypothesis testing. For example, from Fig. 

3.1b, we observe a significant discrepancy in FcγRI-IgG2 measurements compared to documented 

affinities, but without the model, quantifying it is challenging due to the nonlinear nature of the 

binding. This binding model can be easily applied to the binding of glycosylation mutants172 and 

Fc optimization173. In such cases, the model can serve as an in silico lab to efficiently test the 

effects of unmeasured antibody mixtures19,174. 

However, the mechanistic approach has clear challenges. It requires that each component 

of the system be well-characterized. For instance, the binding model employed in Chapter 3 

necessitates knowledge of different IgG subclasses, FcγRs, and their monovalent affinities. 

Consequently, mechanistic models build on existing knowledge, limiting their application in 

exploratory studies. These models also face scalability issues. The model developed in Chapter 2 

demonstrates good scalability, representing a significant advancement. However, it relies on 

simplistic assumptions (such as a single 𝐾O∗ for steric effect) and only addresses a specific kind of 

cell surface binding interaction without additional processes (e.g., receptor trafficking or 

clustering). Moreover, cascading a specific pathway’s effect to an individual level is challenging. 

In Fig. 3.6, I attempted this, but the results were still constrained since numerous factors remain 

unconsidered, including pharmacodynamics, individual-level diversity, and the impact of other 

pathways. 

Conversely, the data-driven model operates on statistical reasoning. This approach has 

gained great popularity, as it is empowered by the recent advancements in big data and machine 

learning. It measures possible factors and effects directly, hoping that the statistical model reveals 

their association. This exploratory approach, as seen in Fig. 5.4f, allowed the discovery of 
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components most correlated with patient classes, previously unknown. Statistical models’ ability 

to generate new insights independent of controlled experiments makes them attractive to the 

biological community. This is particularly true when the number of potential factors is extensive, 

such as genome-wide association studies175. 

However, statistical approaches often oversimplify questions, with feature selection highly 

dependent on the data provided and the chosen model. They treat complex subjects, like cells or 

individuals, as black boxes176, relying on statistical tools for insights. Nonetheless, correlations do 

not imply causations, especially in these complicated biological systems. Additionally, each model 

is based on different assumptions, leading to divergent discoveries. For instance, using the same 

dataset, tensor method approach presented in this study (Fig. 5.4f) produced a different set of 

features from a previous study using sparse regression (Fig. 5.4.S2). While model performance 

can be evaluated (e.g., p-values, cross-validation accuracy, model stability), definitive verification 

of discoveries is challenging without additional information. Hence, independent experimental 

validation cannot be replaced solely by statistical approaches. 

In Chapter 4, I extensively discuss the potential applications of tensor methods in biological 

studies. While not claiming tensor methods are always superior, I argue that many modern 

biological measurements involve multiple variations, which tensor structures can more faithfully 

record. As some statisticians insightfully noted, “All models are wrong, but some are useful.” The 

“usefulness” here must relate to how well the model reflects the measurement’s intrinsic structure. 

My vision for future multivariate biological data analysis involves developing methods designed 

for inherently higher-dimensional tensor-shaped data beyond linear factorization. 

To summarize, my study exemplifies the value of both mechanistic and data-driven 

approaches in antibody research177. The mechanistic model excels in systems with known 
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mechanisms, aiming to refine specific understandings, while the data-driven approach shows 

promise in exploratory studies, identifying significant signals amidst numerous variables. Ideally, 

these approaches would converge, but numerous factors need to be considered to bridge all gaps. 

Efforts have been made to create hybrid models, such as data-driven models that incorporate 

known mechanisms, but these are often bespoke solutions. As we enter this new era of biology, 

groundbreaking technologies are emerging to gather vast amounts of data, enabling comprehensive 

mapping of biological systems. This evolution requires a reimagining of biology through 

quantitative lenses, the redesign of experiments to deeply incorporate statistical analyses, and the 

innovative application of recent advancements in artificial intelligence. 
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