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ARTICLE

Consumption-based greenhouse gas emissions
accounting with capital stock change highlights
dynamics of fast-developing countries
Zhan-Ming Chen 1,2, Stephanie Ohshita2,3, Manfred Lenzen 4, Thomas Wiedmann 4,5, Magnus Jiborn6,7,

Bin Chen8,9, Leo Lester10, Dabo Guan 11,12, Jing Meng12,13, Shiyun Xu14,15, Guoqian Chen16, Xinye Zheng1,

JinJun Xue9,17, Ahmed Alsaedi15, Tasawar Hayat15,18 & Zhu Liu 11,12

Traditional consumption-based greenhouse gas emissions accounting attributed the gap

between consumption-based and production-based emissions to international trade. Yet few

attempts have analyzed the temporal deviation between current emissions and future con-

sumption, which can be explained through changes in capital stock. Here we develop a

dynamic model to incorporate capital stock change in consumption-based accounting. The

new model is applied using global data for 1995–2009. Our results show that global emis-

sions embodied in consumption determined by the new model are smaller than those

obtained from the traditional model. The emissions embodied in global capital stock

increased steadily during the period. However, capital plays very different roles in shaping

consumption-based emissions for economies with different development characteristics. As a

result, the dynamic model yields similar consumption-based emissions estimation for many

developed countries comparing with the traditional model, but it highlights the dynamics of

fast-developing countries.
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Greenhouse gas (GHG) emissions accounting is an
important factor in the design and implementation of
climate mitigation policy1,2. In addition to production-

based GHG emissions accounting (PBA) that has provided a
baseline for climate science and policy regimes3–5, consumption-
based accounting (CBA) has attracted increased attention over
the past decade6–10. CBA studies ground on the opinion that
those who benefit from a process should bear (at least some)
responsibility for the associated emissions11. Accordingly, one of
the main tasks of CBA is to estimate the consumption-based
emissions of an economy, i.e., the environmental impacts gen-
erated during the production and use of its final goods and
services12,13. Especially, by providing information to incorporate
emissions embodied in international trade14–16, CBA extends the
national perspective to a global context and draws attention to the
emission transfer problem that troubles global mitigation
efforts17,18.

The international trade inherent in globalization has made
multi-regional input-output modeling an appropriate tool to
describe global supply chains19–21 and their associated GHG
emissions22–24. Within the multi-regional input-output frame-
work, economic outputs are categorized as either intermediate
input or final demand (which includes consumption and capital
investment). In most traditional CBA studies, global GHG
emissions of a given year are allocated to different countries
according to their final demands (both consumption and capital
investment) and thus current emissions embodied in final
demand (usually termed emission footprint) of a country are used
to indicate its consumption-based emissions11,25–29. By adopting
this allocation scheme and the associated indicator, CBA model is
significantly simplified, because intertemporal dynamics through
the use of past capital to enable current production are ignored
and all domestic final demand is attributed to support domestic
consumption.

The indicator of emissions embodied in final demand applied
in traditional CBA model presents a good reflection of emissions
driven by consumption activities for a country if the economy is
near a steady state and if its capital is only used to produce
domestically consumed goods. Unfortunately, in the real world,
most economies are moving away from instead of towards the
two conditions. Therefore, a traditional CBA perspective might
bring bias to the estimation of consumption-based emissions
because the capital dynamics and the international engagement of
capital services are overlooked.

As a result, this study revisits the definition of consumption-
based emissions and constructs an alternative indicator by
acknowledging the role and dynamics of capital stock in the
global production structure. A new dynamic model is proposed
by endogenizing capital as a dynamic stock within the multi-
regional input-output framework, in which the contributions of
capital input from different times as well as from different regions
are taking into account to measure the emissions generated by
consumption activities. The new model is applied to the global
economy based on the World Input-Output Database30 to
examine the role of capital in consumption-based GHG emissions
accounting. Our results confirm the evolution of global capital
stock and the international engagement of capital use have sig-
nificant impact to the consumption-based emissions, especially
for fast-developing countries. To provide clarity for the discussion
that follows, the term traditional footprint indicates the GHG
emissions embodied in final demand based on traditional CBA
model, where capital stock is treated in a static way and it is
assumed to support only domestic consumption. The term
dynamic footprint, on the other hand, indicates the emissions
embodied in consumption goods calculated by our new dynamic
CBA model (Fig. 1).

Results
Global emissions and footprints. Given the basic assumption
that the emissions intensity of capital stock is not changing
dramatically over a short period (which will be shown to be true
later), one would expect global PBA is larger than global dynamic
CBA footprint when the capital formation exceeds the deprecia-
tion of existing capital. This hypothesis is confirmed by the
empirical results regardless of the type of GHG or the years
studied (Fig. 2). When emissions embodied in international trade
are redistributed at the global level, the gap between PBA and
dynamic CBA measures indicates the difference between emis-
sions embodied in the formation and depreciation of capital,
reflecting a net accumulation of capital in terms of emission
embodiment. Corresponding to the influential business cycles
that affected the whole world, the gap shrank significantly from
1997 to 2002 and in 2009. On average, the gap between the
territorial emissions and the dynamic footprint equaled 7.4% of
the former during 1995–2009, and was proportionally larger for
CO2 (8.3%) than for CH4 (6.0%) and N2O (4.1%). This is because
capital formation has a closer connection with CO2 emitting
activities (e.g., fossil fuel combustion and cement production)
than CH4 and N2O emitting activities (considerable parts of
which are agriculture-related).

Under the dynamic CBA analysis, in 2009, the GHG emissions
embodied in capital formation is significantly larger than that
embodied in depreciation (Fig. 3). This highlights the importance
and influence of capital in global production chains. Utilities and
heavy industry released almost half of the global territorial GHG
emissions in 2009, but only a very small fraction of the world’s
dynamic footprint came from these two sectors. This is because a
majority of their outputs was used as intermediate inputs, not as
consumption goods. The emissions emanating from the business

EEE

EECF

EECD

Territorial
emissions

A

B

C

EEI

Fig. 1 Conceptual illustration of embodied emissions flows associated with
emissions accounting. EEE represents emissions embodied in export, EEI
represents emissions embodied in import, EECF represents emissions
embodied in capital formation, and EECD represents emissions embodied in
capital depreciation (utilization). Circle A indicates the scope of production-
based accounting, which covers emissions within the targeted region during
the targeted year. Circle B indicates the scope of traditional CBA, which
covers emissions within and without the targeted region during the
targeted year. Circle C indicates the scope of dynamic CBA, which covers
emissions within and without the targeted region before and during the
targeted year. The traditional footprint is calculated as territorial emissions
plus EEI less EEE, while the dynamic footprint is calculated as territorial
emissions plus EEI and EECD less EEE and EECF. Note that the sizes of the
three circles do not necessary represent the relative value of the indicators.
For example, territorial emissions of a country can be larger than the
traditional footprint when emissions embodied in export exceed those
embodied in import
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services sector constituted the largest fraction of emissions
embodied in depreciated capital, which can be explained by the
large capital investment and depreciation for real estate and
transportations. The heavy industry sector and the social services

sector are the second and the third largest capital-related
emissions sources owing to their considerable machinery and
equipment usage. Regarding the composition of newly formed
capital, over half the embodied emissions came from the

Emissions embodied in household consumption Emissions embodied in non-household consumption
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Fig. 2 Territorial emissions and dynamic footprint of the world. The global dynamic footprint is smaller than the direct territorial emissions during the
period and the gap is more remarkable for CO2 than the other two GHG types. The dynamic footprint is the aggregation of household direct emissions,
emissions embodied in final household consumption, and emissions embodied in final non-household consumption. GHG emissions are calculated as the
sum of CO2, CH4, and N2O emissions based on the relative global warming potentials of 100 years with climate change feedback58, which are 1, 34, and
298, respectively
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37,907 Industrial processes

11,309 Capital depreciation
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11,006 Heavy industries

9182 Business services
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4674 Social services

1562 Light industries

1438 Machinery

492 Construction

Production 49,216

Utilities 3607

Heavy industries 3241

Business services 9981

Social services 8557

Agriculture 4916

Light industries 5883

Machinery 5187

Construction 7842

Household consumption 34,175

Capital formation 13,916

Non-household consumption 5493

28,850 CO2

10,046 CH4

3380 N2O

8790 CO2

2080 CH4

439 N2O

Unit: MtCO2e

Fig. 3 Sankey diagram of embodied GHG flows of the world in 2009 under dynamic footprint accounting. Capital stock is shown to be an important source
as well as destination of GHG flows. The industrial structure from production-based perspective is very different from that from consumption-based
perspective. Sector definition is reported in Supplementary Table 1
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construction sector, which is obviously due to the durable feature
of its outputs. The global dynamic footprint in 2009 is about one
quarter smaller than the total emissions embodied in final
demand of that year, while this gap was, through its inclusion in
capital formation, embodied in future rather than current
consumption.

National emissions and footprints. Per-capita dynamic foot-
prints were lower than their traditional counterparts for most
countries during 1995–2009, with only two exceptions of Japan
and the UK (Fig. 4). The difference between PBA and traditional
CBA comes from spatial emission transfers, i.e., a net exporter
(importer) of embodied emissions has a traditional footprint that
is lower (higher) than its territorial emissions. At the meanwhile,
the difference between dynamic and traditional measures of CBA
comes mainly from the temporal change in capital stock, i.e., the
dynamic footprint is lower (higher) than the traditional footprint
if there is a net increase (decrease) in emissions embodied in
capital stock.

With an average discrepancy smaller than 5%, the traditional
footprint was, in the long run, a close approximation of the
dynamic indicator for some developed countries, e.g., France,
Germany, Japan, the UK, and the US. However, this approxima-
tion does not hold for countries with rapid capital accumulation,
since much higher levels of GHG emissions are embodied in
capital formation than in capital depreciation, leading to a
dynamic footprint that is significantly lower than the traditional
one. In particular, for some fast-developing countries including
China, India, Indonesia, Mexico, and Turkey, the discrepancy
between the dynamic and traditional footprints was even larger
than the difference between the traditional CBA footprint and the
territorial PBA emissions. This suggests that the error created by
neglecting capital inputs in the traditional model can be
remarkable. Moreover, while traditional accounting suggests
Ireland and Korea had higher consumption-based than
production-based emissions as a result of their outflowing
emission transfers, a proper accounting for changes in capital
leads to the opposite finding. In business cycles, investment in
capital usually falls during recessions and rises during economic

100 20 30

tCO2eq. per capita
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Territorial emissions
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Fig. 4 National per-capita territorial emissions, traditional footprint, and dynamic footprint (average of 1995–2009). The position of the vertical short line
represents territorial PBA emissions; the free end of the upper line represents the country’s dynamic footprint; and the free end of the lower line represents
the traditional footprint. Values are indicated on the horizontal axis. By way of an example, China’s dynamic footprint is lower than its traditional footprint,
while both CBA measures are lower than is territorial PBA emissions
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recoveries. Therefore, emissions embodied in newly formed
capital are also more heavily affected by the economic cycle than
those in depreciated capital (Supplementary Figure 1).

By acknowledging the contribution of capital through
depreciation as well as investment, the dynamic footprint has a
steadier temporal trend than the traditional footprint (Supple-
mentary Figure 2). While traditional CBA attributes the gap
between emission footprint and territorial emissions solely to
spatial difference in production and consumption, the accounting
method proposed in this study decomposes it into international
trade and capital change (changes of capital stock and inventory).
For China, as an example, net capital change contributed to over
one third of the deviation between its dynamic footprint and
territorial emissions during 1995–2009. In general, for economies
with higher production-based than consumption-based emis-
sions, large fraction of the gap can be explained by their capital
accumulation. By contrast, capital change outweighs significant
part of the net embodied emission import for economies whose
consumption-based emissions are higher than their territorial
counterparts (Supplementary Figure 3).

Emissions embodied in capital stocks. Along with the growth of
the emissions embodied in global capital stock from 84 GtCO2e
in 1995 to 116 GtCO2e in 2009, there was a general trend that saw
the developing economies expanding their shares (Fig. 5). India
had the fastest proportional growth in capital accumulation, while
China had the largest increment in terms of emission embodi-
ment during the period. In contrast, Japan had the largest
reduction in capital. In spite of absolute increases in emissions
embodied in capital stocks, the EU and the US both had smaller
shares in 2009 compared with in 1995. The global financial crisis
of 2007–2009 wrought severe shocks on the capital investments of
these two economies, resulting in an accelerated decline in their

shares. Using the indicator decomposition technique31, we find
capital stock expansion was the dominant factor driving up the
emissions embodied in capital stock during 1995–2009; interna-
tional capital share change and emission intensity change both
played increasingly important roles during the period (Supple-
mentary Table 2).

Investment and depreciation continuously adjust the composi-
tion and emission intensity of capital stock in a dynamic way. The
emission intensity of capital stock decreased slowly (average
annual change rate of −1.0% for the 39 countries) during 1996-
2009, but the trend varies (between −5.6% and+3.2%) across
countries and years (Supplementary Figure 4 and Supplementary
Table 4).

Emissions embodied in trade. Taking into account the emissions
embodied in capital depreciation dramatically affects the com-
position and volume of emissions embodied in international
trade, which in turn influence national trade balances in terms of
embodied emissions (Supplementary Figure 5). Exactly how
capital depreciation affects the emission intensity of exports varies
greatly among countries. For example, in 2009, China had lower
direct current emissions embodied in each dollar of export than
did India. However, investment in capital (such as infrastructure,
factories, and machinery) was more important in China than in
India, leading to larger fraction of emissions embodied in asso-
ciated capital depreciation. When the cumulative emissions
associated with capital (which would have been accounted for in
the year of emission under PBA approaches) are properly
accounted for through depreciation in our dynamic CBA
approach, China’s higher overall emission intensity is again
revealed. The results are consistent with the conclusion of a
recent report32, which indicated that capital investment can form
a significant part of the total resources (and thus their associated
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Fig. 5 Global emissions embodied in capital stock in 1995, 2000, 2005, and 2009. Others includes Indonesia, Mexico, Turkey, and rest of the world, see
Supplementary Table 3. Absolute value in GtCO2e shown represents global total
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emissions) attributable to international trade. In contrast to
exports, the imports of different countries have less diversified
emissions intensities.

As the world’s largest exporter of embodied emissions, in 2009,
China had over one-fifth of its export-related emissions flow to
the EU and the US, respectively: the two largest importers of
embodied emissions in the world (Supplementary Figure 5). The
fact that regions with higher per-capita dynamic footprints
usually had net embodied emissions inflows through their
bilateral trade with regions with lower per-capita dynamic
footprints (Fig. 6 and Supplementary Tables 5 and 6) reinforces
the already large international disparity in terms of per-capita
consumption-based emissions11.

A dynamic CBA model is established by taking the changes of
capital stock into account, which extends our understanding of
the GHG emissions associated with consumption and investment
within the CBA framework. In spite of the growing emissions
embodied in international trade17,33,34, the consideration of
capital dynamics suggests that the gap between production-based
and consumption-based emissions can be decomposed into
international trade (the discrepancy between territorial emissions
and traditional footprint) and capital accumulation (the dis-
crepancy between traditional footprint and dynamic footprint).
While the former redistributes emissions across geography, the
latter redistributes emissions across time.

By employing the new model to investigate the global
consumption-based GHG emissions during 1995–2009, our
results show that the world’s dynamic emissions footprint is
7.4% smaller than its territorial emissions. This means the
assumption adopted in traditional CBA, i.e., consumption-based
emissions are equal to production-based emissions at the global
scale, might lead to systematic error for emission footprint
estimation. However, it is essential to identify the very different
roles of capital in shaping consumption-based emissions for
regions with different development characteristics. In many
developed economies, net capital stock change does not play a

remarkable role for the overall embodied GHG budget because a
major part of the new capital investment is used to replace the
depreciated capital. As a result, traditional footprint presents a
close approximation of the dynamic footprint, which suggests
both footprints can be adopted as fair indicators of the
consumption-based emissions. On the contrary, in some devel-
oping countries, the new capital investment significantly out-
weighs the capital depreciation and thus leads to considerable
capital stock change. Therefore, net capital accumulation
embodies large volume of GHG emissions. In those countries, it
is important to differentiate the emissions embodied in capital
accumulation from consumption demand. This finding suggests
we need to be very cautious for the interpretation and comparison
of the traditional emission footprint results when developing
countries are involved. In other words, it is a prioritized task to
update the CBA for developing countries using the dynamic
model.

Methods
Endogenizing capital in CBA. Traditional CBA studies are implicitly assuming
that the GHG emissions embodied in newly formed capital are equal to those
embodied in depreciated capital, thereby maintaining a constant quantity of
emissions embodied in capital. This assumption, however, ignores the dynamics of
capital, which plays an important role in enabling and supporting production in
industrialized economies25,35–38. Unlike the goods used for consumption, which
are final outputs from the perspective of production chains11, capital is an inter-
mediate input for the economy. In order to depict patterns of embodied GHG
emissions by incorporating the influence of capital stock change, the global multi-
regional input-output system is closed in this study by endogenizing capital for-
mation and depreciation from final demand and primary input. Lenzen and Tre-
loar39 presented two methods, i.e., the augmentation method and flow matrix
method, for endogenizing capital change into a static input-output model. While
the flow matrix method is theoretically more accurate, since it avoids the systematic
errors of the augmentation method, its high data requirements have led most
empirical studies to apply the other method40,41. Therefore, this study adopts the
framework of the augmentation method to endogenize capital change. Further, the
model applied in this study is dynamized to trace the change in emissions as well as
emission intensity of the capital stock42–49.
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The distinction between the traditional and dynamic footprints originates from
the different sources of emissions each one contains, which can be explained
intuitively by comparing the sectoral balance equation of the two models. We can
start with the traditional balance equation50 of sector i:

gi þ
X

j

xj;iεj ¼ yiεi ð1Þ

where i and j are the global sector identities (e.g., if there are in total two regions
and three sectors in each region, i and j are integrates between 1 and 6)51, gi is the
direct emissions of sector i, xj,i is the output from sector j that is used by sector i, εj
and εi is the emission intensities of outputs from sectors j and i, and yi is the total
output of sector i. The emission intensity of output from any sector can be obtained
from the matrix expression:

E ¼ Y� Xð Þ�1G ð2Þ

where E is the column vector of sectoral emission intensity, Y is the diagonalized
vector of sectoral output, X is the transpose of multi-regional input-output
transactions matrix, and G is the column vector of sectoral direct emissions.

Introducing the time identity of t indicating the variable corresponding to
period t, Eq. (1) can be generalized to include capital input (capital depreciation
and inventory use) as:

gi;t þ
X

j

xj;i;tεj;t þ di;t�εk;t�1 þ ci;tεi;t�1 ¼ yi;t þ ci;t
� �

εi;t ð3Þ

where di,t is the capital depreciation by sector i in period t, �εk;t�1 is the emission
intensity of capital stock of region k in period t−1, and ci,t is the total inventory use
(sum of negative inventory change in absolute value) of output from sector i in
period t. Here we assume the capital depreciated in period t has the same emission
intensity as the capital stock of period t−1, while the inventory used in period t has
the same emission intensity as the output of period t−1. Notice that when the
emissions embodied in capital input is ignored (�εk;t�1 ¼ 0) and inventory input has
the same emission intensity as current output (εi;t ¼ εi;t�1), Eq. (3) is regressed to
Eq. (1).

The balance equation for capital stock of region k can be formulated as:

sk;t�1�εk;t�1 �
X

lk

dlk ;t�εk;t�1 þ
X

j

fj;k;tεj;t ¼ sk;t�εk;t ð4Þ

where lk is the identity of sectors from region k, sk,t−1 and sk,t are the capital stocks
of region k in periods t−1 and t, and fi,k,t is the output of sector i that is used for
capital formation by region k in period t. When initial condition is required to
determine the emission intensity of any concerned period based on Eqs. (3) and
(4), we assume �εk;t0þ1 ¼ �εk;t0 and εi;t0þ1 ¼ εi;t0 for the first two periods (sensitivity
analysis is provided in Supplementary Information regarding alternative initial
condition assumptions). Therefore, Eq. (4) becomes:

�εk;t0 ¼
X

j

fj;k;t0þ1εj;t0þ1= sk;t0þ1 � sk;t0 þ
X

l

dl;t0þ1

 !

ð5Þ

Note that the denominator of Eq. (5) is equal to capital formation of region k (P
i
fi;k;t), then we have:

�εt0 ¼
X

j

fj;k;t0þ1εj;t0þ1=
X

j

fj;k;t0þ1 ð6Þ

Equation (6) implies that when emission intensity of capital stock is constant in
two consequent periods, it is equal to the average emission intensity of capital
formation in the latter period. Apply Eq. (6) and the initial condition assumptions
to Eq. (3) for t= t0+1 get:

gi;t0þ1 þ
P
j
xj;i;t0þ1εj;t0þ1 þ di;t

P
j
fj;k;t0þ1εj;t0þ1=

P
j
fj;k;t0þ1

¼ yi;t0þ1

ð7Þ

It can be solved in matrix notation to get:

Et0þ1 ¼ Yt0þ1 � Xt0þ1 � At0þ1

� ��1
Gt0þ1 ð8Þ

where Et0þ1, Yt0þ1, Xt0þ1, and Gt0þ1 are the topologies of E, Y, X, and G for period
t0+1, and At0þ1 ¼ ½ai;j;t0þ1�. The components of At0þ1 can be obtained as:

ai;j;t0þ1 ¼
di;t fj;k;t0þ1=

P
m
fm;k;t0þ1

P
m
fm;k;t0þ1≠0

� �

0
P
m
fm;k;t0þ1 ¼ 0

� �

8
>>><

>>>:
ð9Þ

where m is also global sector identity. Notice Eq. (8) differs from Eq. (2) by taking
the capital input (At0þ1) and time dimension into account, which leads to the
different connotation of emission intensity in the traditional and dynamic
accounting models. For t= t0+2, solve Eq. (3) to get:

Et0þ2 ¼ Yt0þ2 � Xt0þ2 þ Ct0þ2

� ��1

Gt0þ1 þDt0þ2E
�
t0þ1 þ Ct0þ2Et0þ1

� � ð10Þ

where Ct0þ2 is the diagonalized vector of sectoral total inventory use in period
t0+2, Dt0þ2 is the diagonalized vector of sectoral depreciation in period t0+2, and
E�
t0þ1 ¼ ½�ε�i;t0þ1� with �ε�i;t0þ1 ¼ �εk;t0þ1 whenever sector i belongs to region k.

Thereafter Eq. (4) can be solved for all regions for t=t0+2 to get:

�εk;t0þ2 ¼ sk;t0þ2= sk;t0þ1�εk;t0þ1 �
X

l

dl;t�εk;t0þ1 þ
X

j

fj;k;t0þ2εj;t0þ2

 !

ð11Þ

For future periods, emission intensities of sectoral output and capital stock can
be obtained by solving Eqs. (3) and (4) sequentially.

Data source and manipulations. The calculations in this study were executed
using the World Input-Output Database28 (which was chosen over the other multi-
regional input-output databases because its Socio Economic Accounts contains
detailed data on capital) and the World Bank52. The World Input-Output Database
disaggregates the world into 41 (38 national, two subnational, and one multi-
national) economies, with each economy divided into 35 sectors (detailed sector
information can be found in Supplementary Table 5). The database provides
sectoral capital stock data between 1995 and 2007 for 40 national and subnational
economies; 24 of them have data extended until 2009 and another two until 2008
(detailed information can be found in Supplemental Table 3). While the perpetual
inventory method53 has been applied to connect capital stock with its depreciation
and formation, the following manipulations have been conducted based on the
original database.

First, the missing sectoral capital stock data are estimated by assuming that
sectoral capital depreciation rate has been constant since 2007 (for those with
original data until 2007) or 2008 (for those with original data until 2008).
Second, the original sectoral capital stock data of Slovenia for 2008 and 2009 lead
to extraordinary values (e.g., the capital stock drops by 22.7% from 2008 to 2009)
in our calculation, which are deemed to be caused by unknown errors in data
preparation. In response, the sectoral capital stock data of the two years are also
estimated following the assumption of the first step. Third, the initial sectoral
capital stock of the original multinational economy, i.e., the rest of the world,
in 1995 is estimated by assuming it has the same sectoral capital stock to
output ratio as the other 40 economies as a whole. Finally, the capital stock of
the rest of the world between 1996-2009 is estimated by assuming this
region has the same sectoral capital depreciation rate as the 40 economies as a
whole.

After the above manipulations, there are still 219 (1.1% of the total) negative
sectoral capital depreciation values left, which have been set to zero in our
calculations. Furthermore, the multi-regional input-output table provided by the
World Input-Output Database contains 22 (1.5%) null rows in the transaction
matrix of each year, because corresponding sectors do not exist (physically or due
to statistical difference) in the related economies. Since the null sectors will lead to
infinite solutions to the dynamic as well as the traditional accounting model, the
sectoral output of the 22 sectors will be set to an extraordinary large number
($1,000 trillion in our calculation), which can ensure a unique solution without
introducing significant error.

One thing needs to bear in mind is, since the (dynamic) CBA model relies on
large volume of data with high uncertainty, the calculated results need to be
interpreted with cautious. For example, it is more reasonable to be used to identify
the temporal change, the comparative importance of different sectors, or the
directional discrepancy between models, but the footprint value is always too
uncertain to be a meaningful indicator when it stands along.

Other methodological issues. It is worth noting that the description of our model
as “dynamic” does not imply a predictive function, but emphasizes the perpetual
accumulation and depreciation of capital. Therefore, the dynamic CBA model is
used in this study as an ex-post approach to identify the role of capital in regional
consumption-based GHG emissions accounting, instead of as an ex-ante technique
to forecast future emissions.

While the broadest concept of capital includes a variety of components, data
availability leads us in this study to adopt a narrower definition to cover only fixed
capital and changes in inventories. Inventory is taken into account because of its
capacity to redistribute emissions temporally (despite within a short period), which
is similar to the effect of physical capital in dynamic footprint accounting. Two of
the most important factors that have been overlooked are the investment in
intellectual property, i.e., intellectual capital, and that in skills and education, i.e.,
human capital. For the former factor, the present study has potential to be
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upgraded as more and more statistical authorities start to apply the latest 2008
SNA54, which treats intellectual capital as a subcategory of fixed capital. For the
latter factor, so far no generally accepted statistical solution has been advanced to
preciously evaluate the stock and flow of human capital. However, it seems to be
fair to assume the investment and stock change of human capital increase steadily
in both developed and developing economies at the long run, thus the present
results turn out to underestimate the GHG emissions embodied in global capital
stocks.

Finally, the current study focuses on GHG emission patterns at the national and
international levels by acknowledging the influence of capital stock change, while
questions involving more direct consequential analysis, such as how specialized
division of labor and production will affect international trade as well as emission
transfers, are untouched. In order to move from traditional CBA towards more
consequential accounting55–57, Kander et al.23 advanced a meaningful approach by
a technology adjusted measure. The analysis of this study could also be conducted
with similar extension, but we have chosen to take the traditional CBA as our
starting point here to keep the analysis clean and accessible, and since separating
the effects of investments from consumption is a novel approach that is interesting
on its own.

Data availability
The datasets generated and analyzed during the current study are available from the
corresponding authors on reasonable request.
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