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ABSTRACT OF THE DISSERTATION

Lattice dynamics of substitutional alloys through a combined vibrational and

compositional expansion

by

Yu-Sheng Kuo

Doctor of Philosophy in Materials Science and Engineering

University of California, Los Angeles, 2018

Professor Dwight Streit, Co-Chair

Professor Vidvuds Ozolins, Co-Chair

A general method incorporating both vibrational and configurational degrees of freedom is

proposed by expanding energy into vibrational clusters. Our approach captures vibrational

properties in substitutional alloys with arbitrary atomic configurations which can serve as

an accurate surrogate model for first-principles calculations. Compressive sensing is applied

to robustly and accurately select the important configuration dependent force constants

and determine their value by learning from first principles calculations in one shot. Unlike

virtual crystal approximation which tends to overestimate lattice thermal conductivity at

high concentration range. Great agreements with experimental results across all composition

for PbTe-Se demonstrates our VCE method is an accurate approach to generate high fidelity

potential energy surface across a wide range of alloy materials.
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CHAPTER 1

Introduction

It is fair to say human advancement is pretty much defined by the innovation of materials.

Ever since the usage of stone, the innovation of bronze, brass and steel and the modern Silicon

era, whenever there is a new material being well exploited, the human civilization takes a

great step forward. Traditionally, the discovery of materials often occurs in accidence or led

by laboring experimentalists with countless time and expenses. According to recent National

Research Council’s report, a “new consumer product from invention to widespread adoption

typically takes 2 to 5 years, but doing the same for a new material may take 15 to 20 years”[1].

This is the number has not taken numerous days and nights for experimentalists working in

academic or industrial labs. The strong need of new and unique functional materials ranging

from batteries with faster charge time, longer sustainability and safer usage in wide range

of operating conditions, to better energy harvesting devices without intermittent issue, and

higher conversion rate can hardly be kept up by the innovation of new materials.

The fundamental reason of the slow materials innovation is one can hardly relies on its limited

understanding and intuition to systematically discover the important features of materials

out of astronomically large materials space. The strong pressure between unbalance demand

and supply in materials innovations has urged the development of "virtual lab". Unlike

conventional lab investing money and time for one jack-pot material, virtual lab leverage

the advancement of understanding of physics, advanced numerical methodologies and high

performance computing to accelerate the materials discovery process which used to be guided

by intuitions and experiences.

Though the idea of creating new materials using computer sounds like distant scenario

in sci-fi movies, the advancement of first-principles methods, especially the development of
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density functinoal theory(DFT)[2, 3, 4] has helped us making great breakthrough to get

closer to this goal. By realizing external potential is a unique functional of electron density,

DFT has successfully transform the original Schrödinger equation which directly deal with

wave-functions for N electrons to a question of 1 electron alike question. This breakthrough

riding on the wave of unprecedented progress of computing power has successfully built the

foundation for modern first-principles calculations[5, 6]. Unlike most empirical models re-

quires wide range of experimental inputs to infer the parameters to build the models, DFT

has attracted significant attention because it requires no experimental data in advance. It

liberate all the possibilities to design and analyze the materials from bottom up. The use

of DFT has successfully guided the engineering design like desired band-gap[7] for electronic

devices[8], high-voltage and high charging rate li-ion batteries[9, 10], high energy conversion

thermoelectrics[11], nano scale optical devices[12], porous frameworks[13], and high entropy

alloys[14] with unprecedented strength. We have now arrived at the point where the prop-

erties of hundreds and even thousands of materials can be screened in an automated fashion

with minimized human intervention[15, 16].

Indeed, the initiative of Materials Project[17] and Open Quantum Materials Database[18]

have largely summarized the significant progress of first-principles calculations.

1.0.1 Issues of first-principles calculations

Through high-performance computing and state-of-art screening algorithms, thousands of

materials have been calculated and recommended to scientists with specific domain-expertise

everyday. Though being demonstrated as powerful tool, with the computation complexity

approximately scale with the number of electrons to the cubic, DFT is still well limited to

calculate the ground state, at most, for few thousand atoms in a molecule or a periodic

supercell even with the most advanced computation platform nowadays.

Therefore, though with impressive improvements, out of the computational necessity,

most of DFT-based calculations have been conducted for perfect materials, which has no

long-range disorder, at zero temperature. In reality, materials are fabricated and operated
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at finite temperature with intrinsic defects and solubility of other elements. The fact is the

material properties at real environment can rarely be represented by the calculation at perfect

and zero temperature conditions. Non-perfect materials usually means the introduction of

atomic configurational disorder. One of the common configurational disorder is defects,

which can be vacancy or doping atoms. Obviously, most of the time, defect stands for

detrimental effect in materials performance[19]. Accurately predict the effect of defect plays

important role to properly estimate the performance of proposed materials. Furthermore, in

terms of compositional disorder, calculating only perfect materials cast out a large class of

compositional alloy materials

Alloys, also known as solid solution, is arguably one of the most popular material sys-

tem. From the innovation of bronze and brass all the way to the modern micro-electronics,

alloys plays important role in the success of engineering advancement. Due to the similarity

in both physical and chemical properties, the alloy bonding allows the guest elements to

interchange positions with host elements without significant increase of free energy. This

special property allows stochastic distribution of elements with no definite relative positions.

Unlike compound system with highly ordered atomic configurations, one of the most spe-

cial property in alloys is its tunability. By alloying, graduate change of material properties

between end-member can easily fill the gap which can not be easily obtained by existing

compounds. For instance, it is well known by doping Indium into AlGaN, a continuous

change of direct bandgap[20] can achieve wide range of lighting colors which can hardly be

matched by other light emitting semiconductor compounds. Beside the graduate change, the

alloying system can also create some unique properties only exhibited when intrinsic disorder

is allowed. For instance, titanate-perovskite materials based on the substition of Ti for Mn,

Nb, Zn, and Zr, exhibit a remarkable dielectric response at non-stoichiometric compositions

near the morphotropic phase boundary[21], which is as well inaccessible in the end-member

compounds themselves. High entropy alloys(HEA)[22] is another impressive example when

disorder becomes essential. By equiatomically mixing more than 5 elements, HEA performs

superb radiation resistance which makes it an ideal material for space mission and nuclear

3



power plant.

Other than configurational disorder, thermal disorder is another disorder which often

can not be approximated by 0K temperature calculations. Indeed, without thermal disor-

der consideration, various predicted promising materials would simply fall flat because the

violated thermodynamic stability. The finite temperature effect plays important role not

only in predicting promising materials, but also essential for fabrication and synthesis. Even

with materials which are stable at finite temperature, the synthesis of these materials often

involve a series of meta-states which highly depend on finite temperature effects. The ability

to accurate capture these meta materials is key to successfully fulfill the idea of virtual lab

beyond the materials properties predictions.

Thermal and configurational disorder present serious challenge to researchers who only

have access to standard electronic structure packages which are designed to handle perfectly

ordered structures at zero temperature. This kind of calculations contain very limited ther-

modynamic information. Even now, it is common some fascinating materials are screened

and recommended but never fulfill its promise because its property depends sensitively on

the temperature and defect level. Series of phase transformations and segregation also are

sensitive to the doping of carriers while optimizing the best performance[23]. For example,

it is well known ferroelectric and piezoelectric exhibit its unique dielectric and piezoelectric

properties only within certain critical temperature and doping concentration range. Above

examples can not further emphasize the importance to expand the current DFT capability

to incorporate thermal and configurational disorder.

1.1 Multi-scale Modeling

A typical approach to address computational complexity issue is applying multi-scale mod-

eling coupling with first-principless calculations[24, 25, 26]. Instead of directly use first-

principles calculations to explicitly incorporate thermal and configurational disorder across

large time and length scale. The key idea of multi-scale modeling is if there is a higher
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Figure 1.1: Schematic illustration of multi-scale modeling

level model, or say representation, which faithfully inherit all the targetting information

from first-principles calculations but with only a fraction of computational cost, we can then

use this higher level model as the surrogate model for further calculations to bypass the

expensive calculations.

An question one would ask is if it is possible to find this kind of model given the complex

level of underlying quantum mechanics? One of the fundamental approximation to enable

multi-scale modeling is the application of Born-Oppenheimer approximation(BOA)[27], also

known as adiabatic approximation. Due to the significant masses differences between electron

and nuclear, BOA allows the separation of ion and electron wave function. By assuming that

the electrons are close to their ground state, we can express ground state energy landscape

which determines most materials properties as a simple function of the nuclear coordinates

{Ri} and ion type {Zi} at lattice site i:

E ≈ EGS
BO({Ri}, {Zi}) (1.1)

We often refer this ground state energy as the potential energy surface(PES). This PES

determines the ground state order, dynamics, statistical mechanics, and thermodynamics of

targeting system. And all of this can be available to us by building this entire PES landscape
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in a closed, parameterized functional form if our PES is smooth enough. Fortunately, this

is the case for most of the time. By rapidly sampling the approximated PES obtained from

the surrogate model instead of the exact yet time-consuming DFT calculations, we could

efficiently extract the entire statistical mechanics, dynamics etc. This enables much larger

scale simulation in both time and length.

To intuitively explain how first-principles mutli-scale modeling work as a whole, we know

that at some scale, and for some problems, often time we do not need to know how atoms

interact with each other, nor do we need to know how atoms are arranged exactly. For

instance, an engineer does not need to know where the atoms in a bridge are to know how

much the bridge will bend under the weight of a truck. Knowledge of the elastic properties

of the supporting beams, together with the material they are made of, is sufficient as long as

the response of the material to elastic deformations is known. For microscopic parameter like

elastic deformation, we can then obtain from knowing the landscape of PES. And PES can be

built from first-principles calculations. In this fashion, if we had a set of workable physical

models at all length and time scales of our interest, we could compute the microscopic

parameters of the larger scale model from the next scale down, and thus be done with a

first-principless model of the world as a whole. As schematic represented in Figure 1.1, the

key to bring first-principles into larger scale is an accurate description of PES. However,

building this PES model is a challenging work, and the process gets even tougher when

compositional disorder comes into the picture. Most of the PES models tend to oversimplify

the PES with very few degree of freedom using well crafted empirical functional like famous

Lenard-Jones potential. The results are usually these empirical models are not accurate

and can hardly be improved. For those exact methods derived models like lattice dynamics

,though enjoy high accuracy, often have the atomic type Zi or fixed Ri implicitly implied

when the model is built. It makes the study of dynamic in compositional disorder materials

extremely cumbersome and time-consuming, and practically impossible to compute.

To address these issues, we propose to develop a vibrational cluster expansion(VCE)

method that can construct physically-accurate and mathematically rigorous model with sig-

6



Figure 1.2: A schematic representation of VCE. The core of VCE is a combination of lattice

dynamics and cluster expansion through the tensor product. Lattice dynamics handles

vibrational degrees of freedom while cluster expansion handles configurational degree of

freedom as highlighted by spring and different color, respectively. The product of VCE is

thus the model which can directly handle both of degrees of freedom

nificant advantage to simulate materials under realistic condition with complexities such as

random site disorder, local and low-dimensional orderings, static and anharmonic thermal

displacements, and temperature-composition instability.

VCE method incorporates both configurational and vibrational degrees of freedom by

merging the ideas of lattice dynamics (LD) and cluster expansion (CE) to accurately con-

struct PES for alloys as depicted in Figure 1.2. It requires no prior knowledge or empirical

potential form in potential design. Unlike empirical potential form, because both LD and

CE are derived from exact models, accurate vibratinoal properties can be recovered with

controlled approximations. Because of the capability to explicitly incorporate both vibra-

tional and configuration degree of freedom, the VCE model will be suitable for the modeling

of a host of functional materials whose performance-critical properties are sensitive to disor-

der and finite-temperature effects, such as battery components, ferroelectrics, piezoelectrics,

thermoelectrics, thermal coatings, superconductors, thin-film solar cells, and transparent

conductors.
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Though with numerous applications, to limit our scope, in this study we try to demon-

strate how our VCE method can help us tackle one of the multi-scale modeling applications

which requires accurate PES representation that can incorporate configurational disorder:

Lattice thermal conductivity of alloys.

1.2 Lattice thermal conductivity of alloys

Thermal conductivity describes the heat transportation process in materials. Thermal con-

ductivity in semiconductors alloys plays important role in modern technology. Tuning ther-

mal conductivity in semiconductor alloys through adjusting compositions allows one to ob-

tain thermal properties that cannot be obtained from pure compounds. Moreover, in the

real world, there can hardly find any perfect crystals. In other words, if we want to have

trustworthy description of heat transport in solids, we can not ignore the impurities. Likes of

microelectronics and thermoelectrics applications all rely on highly accurate thermal conduc-

tivity control to achieve high performances and durabilities. In microelectronics, the need of

high performance devices and the pursuit of Moore’s law, a well known heuristic rule predict

density of transistors doubles every two years, causing heat budget a serious issue when size

kept shrunk down. In the mean time, semiconductor alloys are ubiquitous in microelectron-

ics nowadays. Thermal conductivity of alloys thus need to be well understood for better

reliability in the ever-complex integrated circuits. For thermoelectrics, a device which can

directly convert wasted heat into power is an emerging alternative of green energy sources.

State-of-art power plants can only convert 60% of energy while the rest 40% caused 15 ter-

awatts of energy lost per year[28]. The dissipated heat also caused the detrimental effect to

our environments. These facts make numerous research and development efforts contribute

to the discovery of high performance thermoelectrics. The performance of thermoelectrics

is commonly characterized by the dimensionless figure of merit ZT = S2σT
κ

. Where S, σ, T,

κ correspond to Seeback coefficient, electrical conductivity, temperature and thermal con-

ductivity, respectively. One of the major approach to improve ZT from existing materials

is reducing thermal conductivity while keeping electron transportation minimally affected
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Figure 1.3: Temperature dependence of the thermoelectric figure of merit, zT, for

PbTexSe1−x. A significant improvement of ZT can be seen when Se atom is introduced

to PbTe compared with pure PbTe compound. Image Courtesy of Pei et al.[30]

to achieve phonon gas electron crystals(PGEC)[29]. Various approaches has been proposed,

yet alloying is still considered as the most promising and practical avenue to achieve high

performance thermoelectrics due to its stability across wide temperature range and low cost

fabrications. As depicted in Figure 1.3 from the work of Pei et al.[30], through alloying,

numerous studies demonstrated more than double of optimum ZT can be achieved. To

fully exploit and optimize this tunablity for materials design and development, an accurate

calculation of thermal conductivity for alloys at different concentrations is crucial.

For solids there are two main types of thermal conductivity. The first type of thermal

conductivity is often referred as electron thermal conductivity(κe) and the second type is

lattice thermal conductivity(κL). The κe is mainly contributed from the electron as the car-

rier to transport the energy while κL is mainly caused by the ion vibrations. In non-metallic
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systems, the dominant thermal conductivity is κL, which originates from ionic vibrations

due to its low free electron density.

1.2.1 Limitation of Existing Methods

To describe lattice thermal conductivity, one of the most important atomic feature is ion

vibration. To be able to describe ion vibrations, all computational methods have to start

from some representations of PES along with corresponding multi-scale modeling approaches.

Given the significant importance of lattice thermal conductivity, numerous multi-scale mod-

els have been proposed to handle thermal conductivities in semiconductor alloys. Two of

the most popular methods are phonon methods and molecular dynamics. These two mod-

els originated from two distinctive perspectives. First is from the phonon, a quasi-particle

describing the quantized ion vibration. In phonon, all of the vibrations are transformed

into the reciprocal space. Another starts from the real space perspective is the well-known

molecular dynamics(MD) to directly simulate the ion dynamics over the time.

1.2.2 Phonon Based Methods

The discovery of phonons[31], a quantized vibrations, can be tracked back to 1907 when

Einstein first proposed this elegant yet powerful quasi-particle picture to describe lattice

vibrations in diamond. The behavior of phonons is commonly characterized in reciprocal

space and discussed within the framework of Born von Karmans[32] lattice dynamics models,

where periodic boundary condition is applied for its simplicity and great applicability in

crystalline structures. For decades, phonons in crystalline structures have been extensively

developed into various tractable models to accurately describe thermodynamic properties in

solids. By assuming ion is moving in harmonic PES, phonon properties, including density of

state, dispersion relation, and group velocity can be analytically calculated.

However, if with harmonic PES only, phonons would not interact with each other and

hence there are no finite thermal conductivity in perfect bulk materials. This obviously

disagrees with the experimental observations. This result has first been addressed by Peril
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in 1929[33], that due to the solution form of phonons in harmonic PES, any perturbation

persist forever. To enable thermal conductivity calculations in phonon framework, high order

phonon interactions thus need to be included as perturbations by considering anharmonicity

part of PES for the calculations of finite phonon life time. With the help of Boltzmann

transport equation[34], which is discussed in Section 4.1, thermal conductivity can then be

numerically calculated once the phonon properties and phonon life time is derived. One

of the great advantage of phonon method is it’s seamless incorporation of first-principles

calculations. The recent advancement of first-principles calculation based on density func-

tional theory greatly enhance the predictability of thermal conductivity with phonon the-

ory. For harmonic phonon, Pioneer work from Giannozzi et al.[35] successfully apply the

density-functional perturbation theory to compute the phonon properties for Si and Ge.

The excellent agreement between computed and experimentally measured phonon frequen-

cies corroborate the validity of DFT calculations. For anharmonic part, linear response

or finite differences calculations can derive the finite phonon line-width caused by anhar-

monicity. Broido et al.[36] obtained the anharmonic effects with linear response and solved

the phonon Boltzmann equation exactly using an iterative process. These first-principles

approaches, which are free from any adjustable parameters, is found to yield an excellent

agreement between the calculated and experimentally measured thermal conductivities for

Si and Ge. Li et.al. also applied finite difference method to construct more efficient extrac-

tion scheme for anharmonicity from DFT forces calculations to compile excellent thermal

conductivity agreement between computation and experimental measurement for InAs[37].

Though phonon theory has been successful in most compound systems, one can still find

phonon calculations hard to be directly used for alloy systems. There are two major reason

to inhibit the thermal conductivity calculation of alloys using phonon theory. First, and the

most fundamental reason of it is due to the definition of phonon modes is based on period-

icity of primitive cell. However, in alloy system, no periodicity is expected and if one decide

to use a large supercell to simulate disorder, one would quickly found vanished thermal con-

ductivity is the only expected result due to the vanished phonon group velocity. This issue is

first pointed out by Allen and Feldman[38]. They suggested that when the number of atom
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Figure 1.4: A schematic plot of zone folding for one dimensional phonon due to reduced

symmetry when enlarge the modeling cell for alloys. The induced flat band, which has zero

group velocity, at zone edge reduce the propagation of energy.(Image from [38])

N of concerning primitive cell increases when longer range disorder is explicitly taken into

account, then 3N phonon bands would repel each other like described in Figure 1.4. In the

limit of N approaches infinity the repelled band would cause the flat phonon band and thus

vanished group velocity. In Garg’s simulation study[39], it also suggests similar trend for

Si-Ge alloys. They found κL drops with N in a 1/N0.24 rate. Thus in the limit of an infinitely

large supercell, directly using phonon theory in large disorder supercell would yield zero ther-

mal conductivity. These results show phonon is inadequate to explicitly describe disorder

system. Virtual crystal approximation(VCA), a work around method, is proposed by giving

up the explicitly description of local environment but treat the disorder system as an order

system with an virtual PES calculated from weight-averaged PES. The disorder effect is

then treated as perturbation from mass disorder on top of anharmonicity from virtual PES.

The facile calculation processes in VCA makes it the most popular method when it comes

to alloy thermal conductivity calculations. But the fact VCA only consider the average PES

makes it inaccurate to handle materials which is strongly affected by local environments
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e.g. highly anharmonic materials. One of significant case is from Garg et.al.[40]. They suc-

cessfully match their computation works of Si-Ge with experiments, however with the same

technique, it fails to predict PbTe-Se[41], a highly anharmonic materials. The second issue

of phonon comes with the effect of anharmonicity. Since phonon relaxation time is mainly

due to the anharmonic phonon interaction, accurate relaxation time theoretically requires

arbitrary high order of phonon interaction until converging values. This is widely regarded

as impractical approach due to the great complexity to calculate phonon interaction, even

only consider up to 4th order. This is well evidenced by most state-of-art BTE solvers only

capable of 3rd order phonon calculations[37]. Moreover, from our study, it is not uncom-

mon that these high order phonon interaction would be sensitive to the local environments.

Indeed, most promising thermoelectrics come with the strong anharmoncity and thus often

time current phonon calculations can hardly accurately predict their thermal conductivities.

In short, lack of ability to explicitly treat local environment and high anharmonicity makes

phonon hardly be the ideal approach to accurately calculate the lattice thermal conductivity

of alloys.

1.2.2.1 Molecular Dynamics with Emperical Potentials

Unlike phonon operated in reciprocal space, one another major approach is directly consider-

ing the ion movements in real space. The most popular method for this approach is molecular

dynamics(MD). By knowing ion trajectory with respect to time, we can calculate thermal

conductivity either through Green-Kubo formalism[42] or Fourier transport equation[42] de-

pending on the choice of ensemble. Due to its real space property, it is straightforward

to use large disorder supercell to simulate long-range disorder system. Moreover, the real

space property also allows interaction of phonon up to full order without the need to handle

complicated formalism, but incorporat implicitly by monitoring ion trajectories. The most

important ingredient for MD to faithfully represent thermal conductivity is an accurate de-

scription of PES. However, obtaining quality PES from first-principles calculations is a fairly

challenging work. To that end, various empirical potential like Tersoff[43] and Stillinger-
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Weber[44] are proposed and widely used instead. Unsurprisingly, though commonly used in

MD community, they are far from satisfying PES. Poor phonon dispersion and force predic-

tion shows inaccurate representation of PES using empirical potentials. Skye et al.[45] tries

to use equilibrium MD to simulate Si-Ge but failed with overestimated thermal conductivity.

Broido et al. [46] benchmarked force constants derived from several different empirical poten-

tials, including, Stillinger-Weber, Tersoff and environment dependent potentials comparing

to linear response force constants from ab initio calculations. The results show none of these

empirical potentials gives satisfying agreement compared to experimentally measured values

of thermal conductivity in fi calculations. Though the advancement of machine learning

techniques allow better first-principles calculations incorporation for empirical potentials,

the fixed potential form inhibits accurate vibrational property of ions, which is very sensi-

tive the shape of PES landscape. It can be evidenced by commonly poor phonon dispersion

extraction from this kind of approaches. Its fixed functional form also means its an uncon-

trolled approximation, in other word, no systematically improvable approach can be applied

to these empirical potentials. What makes the matter worse is, these potential forms are

highly tailored for specific materials. The lack of transferability of empirical potentials be-

tween materials not only renders potential design a challenging task but also undermines the

predictive power for unknown materials. To the best of our knowledge, no general method

is available to obtain quality empirical potential for all materials exists.

Indeed, the advancement of ab initio MD(AIMD) which directly samples from first-

principles calculations alleviate the inaccuracy issue in emperical potentials. Some very

recent works[47] show, with proper extrapolation scheme, great match between highly an-

harmonic compounds can be achieved even at high temperature. Though excellent results

has been shown for highly anharmonic materials, the computation cost limits the advanced

AIMD scheme can only work for small unit cell materials.

To conclude, disorder makes phonon based methodology hardly an ideal candidate given

its incapability to handle explicit environments and undermine its accuracy at high temper-

ature and highly anharmonic materials. MD, on the other hand, is a compelling method
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with its ability to directly incorporate phonon scattering to full order with ability to explicit

simulate disorder in supercell. The main issue for MD is from poor PES description from

empirical potentials which can not accurately simulate ion vibrations and thus caused the

unreliable thermal conductivity calculations. Though AIMD can sample along exact PES,

the great computational requirements makes it prohibitive for alloys calculations. The ques-

tion now is: how can we be able to address these issues so we can sample accurate PES

without the need of intensive self-consistent calculations for each time stamp in MD? Here,

our proposed VCE method is an exact method with controlled approximation which can

represent near DFT accuracy but with only a fraction of cost. Moreover, this method explic-

itly incorporate arbitrary disorder into account thus we can sample over various supercell

configuration within the same model rapidly. This makes it an ideal PES generator for alloy

systems which has strong anharmonicity.

1.3 Goal and motivations

The core of this work is demonstrating a model building process which can accurately con-

struct the PES landscape for alloy systems. Given the importance of thermal conductivity

calculations, we try to address the issues in current approaches to calculate thermal con-

ductivity with our accurate PES model. By combining with first-principles calculations, the

accurate thermal conductivity prediction can thus be used to compliment the sparse experi-

mental results, in which only around 1% of 100,000 known inorganic materials has published

measurement results. To achieve this, we develop a general formalism can be used as the

representation of arbitrary disorder alloys with the proposed VCE method.

The acquired VCE model then can be used in MD calculations to accomplish the lattice

thermal conductivity calculations.

In Ch.2, we would give an in-depth backgrounds review to cover the materials which

are required for the development of VCE model. This includes two important building

blocks, LD and CE, two powerful techniques to model the energy surface with respect to
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ion trajectory and atomic configuration, respectively. Kanzaki theory, the preliminary works

aiming to solve the configuration disorder in lattice dynamics also are discussed and are

given as the theoretical framework of our VCE model. To robustly infer the parameters,

we also introduce an emerging mathematical technique called compressive sensing, a signal

recovery protocol. As an advanced signal processing technique CS can handle highly under-

determined problem by exploiting the sparsity in the system. Lastly, a brief introduction of

molecular dynamics is included to make this report as self-explainable as possible.

In Ch.3 we introduce how we construct VCE model mathematically and discuss the sig-

nificance of its physical meanings. With group theory, we can apply the symmetry to identify

the independent parameters to dramatically reduce the necessary dimension of parameters.

By using compressive sensing, we can further robustly and accurately construct the VCE

model efficiently. Prototypical studies on Si-Ge and PbTe-Se are shown to demonstrate the

exceptional ability to construct accurate PES for alloys with arbitrary configurations.

In Ch.4 Thermal conductivity calculations process is discussed in detail. Both phonon

calculations and MD calculations are performed for Si-Ge and PbTe-Se to further demon-

strate the accuracy of our VCE model. For PbTe-Se, we show the constructed PES from

our VCE method can replicate the force fields with near-DFT accuracy. VCE generated

PES is then used in MD simulations to accurately predict thermal conductivity with respect

to the change of concentrations. An in-depth discussion of why VCA can work well with

Si-Ge but not PbTe-Se also demonstrate VCE as a more general and future-proof tool to

calculate thermal conductivity. This also demonstrates VCE as an ideal tool to analyze and

understand the non-trivial interaction between anharmonicity and configurations. Finally,

we propose the future works in Ch.5 to discuss the potential of VCE and the prospective

applications beyond thermal conductivity calculations before the conclusion words in Ch. 6.
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CHAPTER 2

Backgrounds

Before going through the construction of VCE, it is helpful to first understand existing

methods which serve as the theory foundation of our VCE model. To harness the predictive

power of first-principle calculations, the first and most important topic need to be discussed

is density functional theory(DFT). Arguably the most popular first-principles method for

solid-state physics and the main driving force of modern computational materials, a brief

theory review of DFT is presented at first.

2.1 Density functional theory

Directly calculating material properties from quantum mechanics has long been considered

an intractable approach due to the complexity of solving a many-body Schrödinger equation.

In 1964, the seminal work by Hohenberg and Kohn[3] successfully demonstrated that for all

non-degenerate ground state properties of materials can be determined by its electron density

n(r). This striking results successfully cast the original N electrons problem with 3N degrees

of freedom into a single-electron alike problem with only 3 degrees of freedom. This lays

down the foundation of density functional theory which serve as the main tool to practically

studying the electronic properties of many-electrons systems. The theoretical basis of density

functional theory is based on two following theorem:

1. For a system of interacting particles in an external potential Vext, the potential is

uniquely defined (up to a constant) by the ground state particle density n0(r).

2. For any Vext, a universal energy functional E[n] can be defined in terms of the den-
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sity. For any specific Vext, the ground state energy can be found by minimizing this

functional.

The Hohenberg-Kohn expression of energy functional E(n(r)) of electron density is then

expressed as:

E[n(r)] = T [n(r)] +
1

2

∫
n(r)n(r)

|r− r′|
drr′ +

∫
vext(r)n(r)dr + Exc[n] (2.1)

These terms in appearance order correspond to 1) kinetic energy 2) classic Coulomb in-

teraction, 3) external potential contribution and 4) the self-interaction correction. Though

Hohenberg-Kohn successfully reformulated the problem from many-body to electron den-

sity, it does not offer practical solution to solve it since no explicit functional form of kinetic

Hamiltonian T [n] and self-interaction correction Exc[n] can be obtained. Famous Kohn-Sham

equation[4] address this issue by assuming an interacting system is equal to a non-interacting

system with all the complicated exchange and correlation terms lumped into the unknown

exchange-correlation functional EKH
xc :

E[n(r)] = T0[n(r)] +
1

2

∫
n(r)n(r)

|r− r′|
drr′ +

∫
V KH
ext (r)n(r)dr + EKH

xc (2.2)

With T0 represents non-interacting particle kinetic interaction and the local effective po-

tential V KH
eff , the only unknown functional form is EKH

xc . To handle EKH
xc , various approx-

imation has been made. Depending on the expansion process, common exchange correla-

tion functional are local density approximation(LDA)[4] and generalized gradient approxi-

mation(GGA)[48]. Since each of them suffer different source of errors, the choice of EKH
xc

nowadays still needs to be vindicated by one which best match the interested experiment

results.
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2.2 Lattice Dynamics

One of a key building block of our VCE leverages the power of lattice dynamics(LD), which is

commonly used for phonon calculations. The subject of lattice dynamics is the study of atom

vibration in crystals. Understand how atom vibrates plays important role to understand var-

ious critical physical phenomenon in crystalline solids. For example, by understanding how

wave propagate through ion vibration we are able to understand the acoustic sound wave

and light-matter interactions. Most importantly, understand vibration is the foundation of

almost all of the thermodynamics and mechanical properties in solids. It can thus answer

questions ranging from heat capacity, phase transformation to elasticity and thermal expan-

sion. Though plays such an important role, we used to have very small understanding on

how to quantitatively describe it until the pioneering work from Einstein[31]. Often time

crystalline solids are pictured by countless atom staying statically at lattice sites bonded by

neighboring atoms, while the fact is at finite temperature, even the solid is staying quietly,

the atoms inside are unceasingly vibrating. After the discovery of atom from Brownian’s

motion[49], Einstein propose the quantized vibration which is responsible for strong temper-

ature dependent heat capacity in 1902. The theory is further extended and completed by

Born and von Karman by starting with the assumption that the crystal is infinite and has

a perfect periodicity. Debye, in the meantime also successfully adopted the idea of lattice

dynamics to accurate predict the heat capacity in solids at low temperature by introduc-

ing more realistic phonon distribution. Born and Huang’s work[50] further elaborate how

harmonic vibrations relate to the elastic properties. Before a more rigorous discussion, we

need to be aware that the main framework of LD is discussed within the Born-Openherimer

approximation(BOA). The core motivation of this assumption is the fact that the mass of an

atomic nucleus in a molecule is much larger than the mass of an electron (more than 1000

times). Because of this difference, the nuclei move much more slowly than the electrons.

Within this approximation, no ion-electron interaction is considered, and hence we can de-

couple the overall wave function into ion wave function and electron wave function as:
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Figure 2.1: Illustration of a) Second and b) third order force constant tensor(FCT). Second

order FCT represent the strength of coupling between atom a and b. Along with the displace-

ment deviated away from the reference points ua and ub determines the energy differences.

Same principle applied to third and higher order FCTs

Ψtot = ψelectronic × ψnuclear (2.3)

Consider the electron system to be in its ground state then electron and ion Hamiltonian are:

He = −1

2

∑
i

∇2
i −

∑
i,I

ZI
rIi

+
∑
i>j

1

rij
(2.4)

HI = − 1

2MI

∑
I

∇2
I +

∑
i>j

ZIZJ
Rij

+ Ue(R) (2.5)

where r, R, U, Z represents the distance between electron pair, distance between ion pair,

potential from electron, and charge of ion, respectively. Clearly, we can use equation 2.5

to describe the dynamics of crystal lattice if potential Ue(R) were available. Given the fact
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Figure 2.2: A typical potential energy surface(PES) of solids cause by the repulsive short-

range force and attractive binding force. The bottom part of PES can often be well approx-

imated by the harmonic potential well(red curve)

that potential Ue(R) is position-dependent and no energy exchange exist between ion and

electron due to BOA, we can expand Ue(R) with respect to displacement u = R − ueq of

ions if only small distortion from equilibrium position ueq is considered.

Instead of applying some empirical potential form like Lenard-Jones to get the full PES,

lattice dynamics is a mathematical framework which provides exact description of inter-

atomic potentials. From Born and Huang’s approach we can expand U(u) using Taylor

expansion. We then have an explicit form of U as a function of u

U(u) = U0 +
∑
a

Φaua +
∑
ab

1

2!
Φabuaub +

∑
abc

1

3!
Φabcuaubuc + · · · (2.6)

In the traditional three dimensional Euclidean space, the coefficient Φ(n), commonly
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termed as force constant tensor(FCT) of any order n can form an n-dimensional tensor from

the derivative of PES U(u). For example, the 2nd and 3rd order FCT can be determined

from:

Φab ≡ Φij(ab) = ∂2U/∂ua∂ub (2.7)

Φabc ≡ Φijk(abc) = ∂3U/∂ua∂ub∂uc (2.8)

Where ijk represents the Cartesian coordinate x,y,z. The physical meaning of FCT is

straightforward. As depicted in figure 2.1 first order FCT Φa represent the static force

exerted on atom a. Similarly, second order FCT Φab represent force exerted on atom a if

atom b is displaced along u. Higher order terms can then be deduced based on the similar

pattern.

In conventional LD, the expansion is derived from equilibrium position, and thus the first

order coefficient is always equal to zero.

Theoretically, to fully express potential with respect to displacement, one should collect

high order terms to meet the required convergence. However, the number of parameters

grows exponentially along the order of force constant tensor. Fortunately in solids, where

there is an equilibrium lattice positions, the PES would be more or less alike a parabolic

potential well as depicted in Figure 2.2. Therefore, it is common to approximate PES

according to the harmonic approximation.

2.2.1 Dynamical matrix and phonon dispersion

Though theoretically one can use lattice dynamics to expand to arbitrary anharmonic or-

der just like one can expand any interesting continuous function with Taylor expansion,

out of the computational necessity and the practical applications, harmonic approximation

are commonly used for phonon calculations. From the experimental data, we do know the

anharmonicity plays important role in finite thermal conductivity, thermal expansion, and
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countless high temperature effects. However, for most of the solids, while at relatively low

temperature, the atom would spend most of their time vibrating within the parabolic like

well. This fact makes harmonic approximation works surprisingly well in most of the cases.

Most importantly, harmonic approximation offers elegant solution to equation of motion and

hence the notion of phonon can be constructed. Indeed, the whole phonon theory is based

on the harmonic approximation. Starting from the equation of motion. When the atoms

in a crystal vibrate, the Hamiltonian can be written into the sum of kinetic and potential

energy. By applying harmonic approximation for the potential energy,

H = K.E.+ P.E.

=
∑
a

p2
a

/
2m+ U0 +

1

2

∑
ab

Φabuaub (2.9)

And taking Cartesian coordinate as the general coordinate qi, the canonical Hamiltonian

equation can be written as:

u̇a =
∂H

∂pa
=

pa

ma

(2.10)

ṗa = − ∂H
∂ua

= −
∑
ab

Φabub (2.11)

By deriving equation 2.10 and equation 2.11, the equation of motion can thus be obtained:

maüa = −
∑
b

Φa,bub (2.12)

To solve this partial differential equation, it is common to transform the basis to Fourier

space to convert the question into linear equations. Knowing boundary condition with su-

percell size R is u(r) = u(r−R) and displacement u can be transformed into reciprocal
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space as u(r) =
∑

q εq,me
i(qr)−ωmt Now the displacement of atom become a summation over

all possible plane waves which is characterized by the wave vector q and frequency mode

ωm. Since these Fourier basis are orthonormal, these plane waves also are known as normal

modes. Moreover, this collective motion is quantized by the boundary condition, and these

modes are actually the well known phonons. By alternating summation order, and exploiting

the orthogonality between phonon modes, we can rewrite the equation of motion as:

ω2(q)εm,q = Dab(q)εm,q (2.13)

Where D is the dynamical matrix defined as:

Dab(q) =
1

√
mamb

∑
a,b

Φeiq(ua−ub) (2.14)

Once the dynamic matrix Dab(q) is established, phonon frequency and dispersion relation

can easily be obtained from equation 2.14. One can also easily obtain phonon density of state

D(ω) by counting the number of phonon modes in each frequency width DOSω = ω(q−q′):

D(ω) =
1

2π

∫
dqδ(ω − ω(q)) (2.15)

By comparing phonon properties with experimental results at low temperature can therefore

serve as an important metric for the quality of PES representation.

2.2.2 Anharmonicity

Though harmonic approximation generates great results for specific heat, free energy and

phonon dispersions across various materials, there are situations where harmonic approxi-

mation fails completely. As introduced in the Introduction, without anharmonicity, phonon
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Figure 2.3: (a) Phonon dispersion of tetrahedrite(Cu12Sb4S13) calculated from finite dis-

placement[52]. The flat imaginary mode, represented by negative part of dispersion, is

shown along the high symmetry k path. (b)The potential well with double well is the cause

of the imaginary mode. The potential calculated directly by DFT and LD are shown as

comparison to demonstrate the accuracy of extracted force constant for phonon dispersion

is not interacting with each other. No thermal resistance is expected in harmonic approx-

imations thus. In addition, due to the symmetry in harmonic potential well, no thermal

expansion is expected to deviate away from its fixed equilibrium positions. Even for specific

heat, when the temperature start to get higher, the interaction between phonons can not be

ignored. In Ti-AlN at T > 1500K[51], free energy is found to be overestimated by harmonic

approximation. In body-center cubic(BCC) metals, existence of imaginary mode is another

important demonstration showing including harmonic approximation is not sufficient. As

depicted in figure 2.3, The double well like potential turns the sign of force constant and

generate the imaginary modes, which is phonon with imaginary frequency. In phonon disper-

sion, imaginary modes are commonly drawn in the area where ω < 0. Due to the ill-defined

phonon mode in imaginary phonons, all the phonon related applications can not be applied

anymore.

Above mentioned scenario states the importance of accurate anharmonicity is not only

important for the sake of theoretical satisfaction, but plays important role to explain and

extend the application which can not be solved by harmonic approximations.
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With inclusion of anharmonicity, instead of a fixed parametric fitting, LD can be seen as

an infinite set of functions derived from Taylor expansions. It empowers LD to model any

PES with controlled approximations. However, in LD, the number of parameters need to

be inferred in model building process grows with (Na)
n where Na and n is the number of

atom and order of inter-atomic interactions, respectively. It is prohibitive expensive to build

one alloy even for a 512 atom supercell up to 3rd order. What makes it worse is even it

is possible to simulate one cell, it is common an ensemble averaging over multiple different

configurations need to be considered. This makes LD can hardly be applied to model PES

of alloys practically. Therefore, an efficient scheme which can explicitly incorporate alloys

configuration is desired.

2.3 Cluster Expansion

Model configuration is a very challenging work. How to find a compact representation to

efficiently sample the vast configuration space is the objective of cluster expansion(CE). CE

is an invaluable technique building from the expansion of material properties with respect to

the atomic configuration distribution. Because of its ability to incorporate configuration dis-

tribution, it serves great help for the development of alloys theory including total energy[53],

thermodynamics[54] and band gaps[55].

The fact that accurate alloy property has to sample over large configurational space,

direct first principle calculations simply is not a practical approach. Have been proposed for

alloys system, the motivation of CE is to construct a multi-scale model which explicitly take

configuration into account to rapidly visit important configurational space.

The strong benefit of cluster expansion is from its efficient computation process along

with high accuracy for configurational problem. By using lattice configurations, which is the

occupations of the lattice sites by different atoms, as an approximate indicator for different

systems and possible energy states, forward mapping from configuration to energy is made

possible. Using this simplified picture, the cluster expansion maps the true alloy Hamilto-
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nian onto a very simple Ising-like form. In short, the cluster expansion (CE) is a method

for representing a property that depends on discrete and topologically ordered degrees of

freedom in a system. In alloys theory, the cluster expansion is essentially a parameterization

of the energy in terms of discrete variables that give the occupancy of each lattice point in

the crystal. Obviously, energy can not be solely represented by discrete and topologically

ordered parameters only, the constraints and the underlying assumption of cluster expansion

is based on the coarse graining. In general, energy of solids can be treated as a function

of configuration, atomic vibration, electronic states. Through coarse graining, a dimension

reduction process, the states which has more rapid variation either in time or space can be

averaged out. Here, configuration can be treated as the larger scale property compared to

vibration and electronic state and thus a simpler indicator based on configuration can be

obtained from the sampling and integration. Unfortunately, the sampling and integration

can be practically infeasible. A simplification often adopted in alloy theory is replacing the

summation process to finding the minimum energy.

E({σ}) = minE(σ, v, e) (2.16)

.

Where σ, v, e represent configuration, vibration, and electronic degree of freedom, respec-

tively. With minimum energy, the lattice points is no longer a variable but implicitly staying

on the relaxed positions which usually are close to the ideal undistorted lattice positions.

Mathematically speaking, CE is an expansion of the interested property in a set of lin-

early independent basis function that span the whole(or relevant) configuration space. In

most forms, the basis set of the cluster expansion is desired to be mathematically complete

by design. Thus with the full expansion, a perfect representation can be obtained. The key

to construct useful CE is finding this basis set which is physically relevant and computation-

ally efficient. Through proper basis set, one can reduce the dimension with systematically

truncation while retain the most information. The goal in developing an effective CE is

to identify a expansion set along with the systematical model building process for accurate
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mapping between configuration and interested material properties.

2.3.1 Formalism

Cluster expansion is mainly built on the foundation of Ising model[56]. Ising model was first

proposed by physicist Ernst Ising to explain ferromagnetism in statistical mechanism. In the

simplest 1-D case, Ising model uses discrete state σi such that σi ∈ {+1/ − 1} to describe

either spin-up or spin-down state at lattice site i. The whole Ising model Hamiltonian then

can be expanded in the configuration space:

H(σ) =
∑
i

J iσi+
∑
i,j

J ijσiσj (2.17)

Where the energy is assumed to be dependent on self energy and the pair interaction as

represented by the first and second term in the left hand side of equation 2.17, respectively.

Cluster expansion inherits the same idea of Ising model but generalizing it to configurational

space with respect to the atoms occupancy instead of spin. Spin variable σ ∈ {+1,−1} is

borrowed to represent atom type A or B. In the simplest case, any configuration of a system

can simply be represented by an N component σ = {σ1, ..., σN}. And any configurational

function should be able to be represented by this vector as f(σ), such as energy E(σ). To

calculate f(σ), we can start with the definition of inner product in configurational space

first. The inner product for any two function of configuration f(σ) g(σ) is defined as:

〈f(σ), g(σ)〉 = ρ0

∑
σ

f(σ)g(σ) (2.18)

The sum in equation is over all possible configurations in the space, and it is normalized to

unity by ρ0. Once we have the definition of inner product, it is intuitive to define the basis

in configurational space which is complete and orthogonal for future convenience. For each

binary site, degree of freedom is 2. Therefore, we can first construct the constant function
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w(σi) = 1 and the point function w(σi) = σi to represent possible configuration degree of

freedom on each site. We can then have an orthogonal point function set by applying Gram-

Shimidt procedure. Given we have an orthogonal point function set {θ0, θ1}, we can choose

them by letting θ0 = w0 = 1 and θ1(σi) = β(σi − 1), where β is the normalization factor.

After constructing the orthogonal basis for each site, we need to assure there is orthogonal-

ity between each point functions belonging to different sites. To achieve this we utilize the

fact that the alloy occupation on one site does not depend on other atom on the other site.

Mathematically it can be expressed as:

〈θi(σi), θj(σi′)〉 = δi,jδi,i′ (2.19)

where δi,j,δii′ is the Kronecker’s delta. The completeness can also be shown using the same

basis:

θ2
0 + θ1(σi)θ1(σi′) = δ(σi, σi′) (2.20)

The constructed proper orthogonal point function basis can simply be assigned to each site

and form the tensor product assuming each site’s occupancy does not depends on others:

 1

θ1(σ1)

×
 1

θ1(σ1)

× ...×
 1

θ1(σN)

 = {Πα(σ)} (2.21)

Because each site has an orthogonal and complete basis, the tensor product would spon-

taneously show the orthogonality and completeness without further worries. The product

series can be characterized by cluster α, where α is simply the possible combination of sites

α = (i, i′, ..). And these correlation functional Πα can be our basis in the configurational

space. The orthogonality and completeness along with the finite dimension property allow
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us to expand any configuration function f(σ) as:

f(σ) = f0 +
∑
α

fαΠα(σ) (2.22)

And for the coefficient of cluster α , we can simply apply inner product to both side:

fα = 〈Πα(σ), f(σ)〉 (2.23)

Since here our inner product is defined over all possible configurations without any con-

straints on concentration, this CE also are described as grand canonical CE[57]. In grand

canonical CE, we can easily choose the point function θ1(p) as σ since 〈1, σp〉 = 0 and

Φα(σ) =
∏

p∈α σp. However, in alloys calculations we are interested in energy with different

configurations but fixed concentration. In other words, we are interested in the canonical

case. The first hurdle need to be addressed in canonical CE is the violated independent

relation between site functions θ Once the concentration is fixed, one can easily understand

this dependency by imaging 2 lattice site with fixed concentration c. If first one is σp, then

the other one has to be 2c− σp which violates our assumption that each site is independent.

To resolve this issue, we need to take the thermodynamic limit that N →∞ to effectively re-

move the dependency. In canonical CE, point function θ1(σ) now becomes (σp−σ̄)/(1−σ̄2)
1
2 .

Where σ̂ = 2c− 1 as the average spin in the system. By giving up the normalization factor,

one can get the orthogonal cluster function

Πα(σ) =
∏
α

σi − σ̄ (2.24)

which is almost identical to grand canonical cluster functions except it captures the deviation

from the mean field. With canonical CE, we can easily express any configuration dependent
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Figure 2.4: Illustration of effective cluster interaction(ECI) J for (a) pair and b) triplet

configurational cluster. Pair ECIs represents the strength of coupling between the atomic

configuration of atom a and atom b with respect to uniform mean field. Triplet and higher

order ECIs can be understood by the similar principle

function with fixed atomic position into:

E(σ) = J0 +
∑
α

JαΠα(σ) (2.25)

The coefficient J for each cluster is called effective cluster interaction(ECI) as described

in Figure 2.4. Given the configuration sets ({σ1}, · · · , {σL}), the above equation can be

constructed as the linear matrix multiplication:

f = M · J (2.26)

where M is the correlation matrix constructed through CE:

M =


1 φ(σ1

1) · · · φ(σ1
1)φ(σ2

1) · · ·

· · · · · ·

1 φ(σ1
L) · · · φ(σ1

L)φ(σ2
L) · · ·

 (2.27)
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Same as LD, by parameterizing energy into configuration space with known ECI, one can

rapidly enumerate energy for different configurations. Physically, CE is trying to illustrate

if we change the occupancy of one site i, how the energy would change accordingly. From

this perspective, we only need to take those clusters with significant contribution to energy

differences into account. And it is straightforward to believe if the pair clusters include the

site j that far apart from i, it is expected to have diminished effect since j can hardly feel

the change of i in most cases. Though theoretically there are infinite clusters, CE show it

is reasonable to truncate most of them and only focus on few nearest neighbor and thus

greatly alleviate the computational complexity. This great feature makes CE a very popular

method to search for ground state configuration and thermodynamic stability of alloys over

other configuration expansion scheme.

The success of the cluster expansion formalism has been proven in studies of metals,

semiconductors, and ceramics. And its ability to reproduce experimental thermodynamic

data has been confirmed repeatedly in binary systems[58], and multi-component systems[59].

However, One major issue of CE is it can hardly handle the vibration property, which

is essential for heat transport and thermodynamics , since it is expanded on either fixed

or ensemble averaged atomic positions. It makes CE a convenient method only for fixed

temperature simulations. The work around method is to directly incorporate T as the

variable by rewriting energy E(σ) into temperature dependent physical property like free

energy F (σ, T ) or lattice thermal conductivity κL(σ, T ). However, the problem of calculating

F (σ, T ) over large set of σ is a much more computational demanding task than E(σ) due

to the integration process to incorporate temperature effect. Same issue occurs to κL(σ, T )

that each data points typically requires long MD simulations [60]. Lack of efficient way

to incorporate vibrational property is the fundamental problem of CE to be successful for

temperature dependent physical properties.

But as the reader has figured, the similarity of clusters between LD and CE and the

complimentary features between LD makes them perfect match for the construction of con-
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Figure 2.5: Schematic illustration of Kanzaki force calculation. (a) Represent the ideal

crystal without vacancy, (b) is the ideal crystal with external Kanzaki force Fk to force atom

at the same position as (c) fully relaxed position due to the presence of vacancy.

figuration sensitive PES for alloys. What if we can parameterize not only on vibration or

configuration, but both of them simultaneously? But what would the physics scheme be like

in this case? The pioneer work from Kanzaki tries to address this issue by answering how

configuration would affect the elastic properties of solids. He successfully incorporate both

of the configuration and vibration effect by formulating the Kanzaki force.

Later on, we will show by combining both of them, Kanzaki demonstrates a preliminary

yet pioneering work to study how strain are explicitly affected by atomic configurations.

2.3.2 Kanzaki Force

Before getting into VCE, some works focusing on parameterizing configurational dependent

PES would be introduced. One of the pioneering approach is done by Kanzaki in 1957[61].

Kanzaki force is a classical combination of CE and LD designed to solve the substitutional

point defect problem in perfect lattice. The insight of Kanzaki force is it explicitly stated

the problem of a defect in crystal at equilibrium position is equivalent to a perfect lattice

site without defect with an external force Fk as described in figure 2.5. The Hamiltonian of

this problem is:

H{σ},{u} = Hchem({σ}) +Hrel({σ} , {u}) (2.28)
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The chemical part Hchem is the energy from all atoms fixed at ideal positions of the parent

lattice, and another Hamiltonian Hrel is from the relaxation strain, showing the energy

required to drift lattice away form their ideal positions to reach equilibrium positions.

The chemical part can be easily handled by CE as mentioned earlier. However, for most

of the applications, we are not really interested in the chemical part here but the relaxation

energy which is controlled by both local configuration {σ} and displacement {u}.

In Kanzaki’s model, we can see how configuration interact with relaxation explicitly in

Hrel. Under the harmonics approximation we can separate Hrel into two parts. One is

from Kanzaki force, which is caused by configuration and one is from the configuration-

independent pair interaction by assuming configuration has minimal effect on strain, and

thus is the same as LD:

Hrel({σ} , {u}) = −
∑
a

F (σ)Ka ua +
∑
ab

1

2
Φabuaub (2.29)

For each configuration {σ}, if the energy difference between ideal and normal structures Hrel

and distortion displacement {u} are given, one can quickly linearly solve the corresponding

Kanzaki force FK by solving the linear equation 2.29. Equivalently, if FK is given, then one

can easily know the relaxation displacement for any configuration by letting Hrel = 0.

It is easy to notice the force here originates from the configuration disorder, in other

words, a function of configuation. To be more specific, this is the force occur when you

change the site from original atom to a vacancy. Shchyglo et al. successfully show one can

brings in the cluster expansion into Kanzaki force[62]. Realizing at equilibrium position, the

chemical part can be expressed using CE:

Hchem({σ}) =
∑
α

Jασα (2.30)
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and the Kanzaki part can then be explicitly expressed as:

FK
a =

∑
b6=a

Kασ
α (2.31)

The main advantage of adopting this framework is the explicit incorporation of configura-

tions into LD. The only change from LD is that the expansion is no longer done from the

equilibrium position but from the “ideal position”, and the residue force can be expanded in

the configurational space.

Some exciting results[63] have shown Kanzaki force can be a powerful tool to make ac-

curate force/relaxation energy prediction in alloy system simply by correcting the first order

configurational effect with controlled cutoff. In general, more accurate results could be ex-

pected if higher order effects can also be corrected by configurational effect. However, to

the best of our knowledge, although the idea of higher order expansion of configurational

force constants was proposed, only first order force with high order cluster expansion pa-

rameterization jobs[63] have been done. Given the fact that the high order FCT which is

important for thermal conductivity, the short cutoff order of FCT greatly limits the power

of the Kanzaki force to fully capture the interplay between configuration and vibration. So

how can we construct a generalize Kanzaki force scheme to arbitrary order of FCT as well

as the ability to accurately infer the model is the focal point of Chapter 3.

2.4 Compressive Sensing

The signal f(t) can be linearly recorded by sensing waveform φk(t):

yk = 〈f, ψk〉 , k = 1, ...,m (2.32)

The above equation is simply showing we can correlate the interested function with sensing

basis ψ. Physically speaking, this sensing basis ψ is the tool to make f(t) observable to
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Figure 2.6: Schematic illustration of regularization effect for optimal solution. As can be

seen in (a), the L1 regularized optimal solution(red spot) has more sparse solution than (b)

using L2

us. In other words, it is the equipment for us to measure. Meanwhile, one can also find an

intrinsic representation basis φ of f(t) ∈ Rn which can be used to model the signals:

f(t) =
n∑
i=1

xiφi(t). (2.33)

From a set of measurements {yi}, how can we find the coefficient xi for representative basis

is the core of signal recovery. For a long time, common wisdom in signal recovery believes

to exactly recover the signals from measurements, the sampling frequency should be at least

higher than twice the signal bandwidth. This frequency is the well known Nyquist sampling

rate. The very fundamental idea of Nyquist sampling rate is inspired from the fact that a

unique linear equation can not be solved in undetermined setup. To accurately recover signal

from Nyquist sampling requires the good prior of what is the highest frequency. In general,

this is not necessary known in advanced, and another issue is the number of measurements

m is usually much smaller than the dimension of representation basis espeicially for those

expensive measurements. The question CS is trying to answer is whether it is possible to
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accurately reconstruct signal even when measurement m « N?? The answer is yes if your

signal in your representative space is sparse. Instead of directly finding the unique solutions

from high-dimensional space, compressive sensing is finding the minimal number of non-

zero components which can reproduce the original signal. When the basis set is orthogonal

and the signal is sparse, which is only few non-zero components, a unique solution can be

obtained with far fewer samples than required by Nyquist sampling rate. The process of

finding the least number of non-zero components to reconstruct the original signal can be

formulated as an l0 optimization problem:

min ‖X‖0

s.t.AX = y (2.34)

Where A is the correlation matrix. However, this is known to be a NP-hard problem, which

means one can only thoroughly try out all the combinatorial combinations. To efficiently

solve this problem, Candes and Tao proves if the sensing matrix A follows restricted isometry

property(RIP)[64], which implies that the sparse signal cannot be in the null space of A, one

can replicate l0 results by using l1 norm:

min ‖X‖1

s.t.AX = y (2.35)

. The convexity property of l1 norm grants great advantages over l0 norm in terms of compu-

tational complexity, while still preserves sparsity. Figure 2.6 shows an intuitive geometrical

argument on why l1 norm can produce sparse solutions. Unlike l2 norm, l1 norm have strong

tendency to select sparse solutions. The real power of compressive sensing comes from the

high probability that one can useM ≈
√

2 logN measurements[64], where N is the number of

total representation components, to accurately recover the sparse signal. The key to achieve

this significant reduction of required data sampling is selecting an N random structures for
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minimal correlations. In practice, these are commonly done by orthonormalizing n vectors

sampled from uniform random ball.

In real world applications, very few signal is uncorrupted and thus hardly any real sparse

signal existed. One another strong advantages comes along the l1 solutions is its ability to

deal with noise. By setting up the equation with noise bound:

min ‖X‖1

s.t. ‖AX− y‖ < ε (2.36)

Indeed, one might found the whole equation setup pretty much the same as the famous least

absolute shrinkage and selection operator(LASSO) regression which use l1 as the regulariza-

tion terms to produce sparse features. However, the key differences between CS and LASSO

is the fact LASSO is no more than an embedded feature selection process for any given

regression problem but CS is a full suite signal sampling protocol starting from the sampling

to recovery process. By applying CS, a highly efficient and accurate model building process

can then be achieved for sparse systems.

Ever since the practical proposal made by Candes and Tao et.al.[65], CS has been suc-

cessfully applied to wide spectrum of problems ranging from signal processing[66], machine

learning[67] to physical modeling[68]. CS, as a new paradigm for data sampling/sensing tech-

niques to deliver highly accurate signal reconstruction with much fewer required sampling

points than conventional data acquisition processes.

2.5 Molecular Dynamics

Molecular dynamics(MD) is a simulation technique trying to capture the atomic movement

with respect to time. As a sampling scheme trying to resemble the real dynamics of atoms,

MD is a deterministic process based on classical Newton’s equation of motion. Unlike most

sampling scheme utilize the stochastic process, the unique dynamic property preserved in
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MD makes it an ideal tool to asses time dependent physical quantities like transport co-

efficients[69], time-dependent responses to perturbations[70], rheological properties[71] and

thermodynamic properties[72]. To explain atomic dynamics, a good analogy is our video

camera. What camera do is taking snapshot every few micro-seconds consecutively. By

putting them into order, a smooth motion can thus be shown to audiences. Same principle

applies to MD. By recording the atomic position at each time-stamp, a full dynamic process

can be estimated. Similar to the video, the shorter the time interval are taken, the more re-

alistic these snapshots resembles the real dynamic properties. Though the choice of interval

depends on the interested properties and atomic vibration frequency, it is common to choose

time interval around femtosecond(10−15 second). To generate snapshots, the MD simulation

is composed by 4 main iterative steps:

1. Initialize: initialize the atomic position and velocity

2. Evaluate: calculate the forces on all of the atoms

3. Integrate: integrate the equations of motion to advance the time step and determine

new atomic positions

4. Sample: sample the system to calculate properties

Similar to other stochastic sampling scheme, initializing MD involves setting up the corre-

sponding atomic positions and velocity. A proper initialization can make the MD simulation

converges much faster. One common approach is to select the initial configuration that all

atom stays at their ideal or equilibrium positions, while randomly assign velocity according

to the targeting temperature. For high temperature condition where the classical dynamics

is dominant, one can sample velocity from the Maxwell-Boltzmann distribution with tem-

perature T :

f(v) =

√
(

m

2πkbT
)34πv2 exp

− mv2

2kbT (2.37)
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.

After the initial step, the subsequent step is to evaluate the corresponding force and potential

energy at that particular configuration from the PES. This step is the most computational

intensive step in MD, and thus lots of optimization and parallelization has been developed

for this step. The major differences between MD and other stochastic sampling scheme is the

integration step. Once initial position, velocity and force are computed, Newtonian equation

of motion is applied to infer the position and velocity for next time step with designed inte-

gration scheme. One common integration scheme is Verlet algorithm[73]. Verlet algorithm

is constructed from Taylor expansion of particle’s position at time t-δt and time t+δt:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +O(δt3) (2.38)

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2 +O(δt3) (2.39)

The new position of t+ δt can thus be calculated

r(t+ δt) = 2r(t)− r(t− δt) + a(t) (2.40)

Where a(t) = 1
m
F(t)

One major issue of Verlet algorithm[74] is there is no explicit velocity term in Verlet

algorithm. Indeed, velocity can be inferred from :

v(t) =
r(t+ δt)− r(t+ δt)

2δt
(2.41)

But as one can quickly tell, this can only be calculated when new position of r(t + δt) is

calculated. Often time, we are interested in simulation which can give us velocity associated

with the position at the same timestep, e.g. flux. To address this issue, a modified Verlet
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velocity algorithm is adopted. By taking velocity into account explicitly, position and veloc-

ity are integrated at the same timestep using:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 (2.42)

v(t+ δt) = v)(t) +
1

2
[a(t+ δt) + a(t)]δt (2.43)

The explicit algorithm is implemented following:

1. r(t) and v(t) are used to compute a(t), at time t.

2. Calculate r(t+ δt) using equation 2.43.

3. Calculate V (t+ δt
2

) using equation 2.44

4. Calculate new forces using r(t+ δt) to get a(t+ δt).

5. Calculate final velocities v(t+ δt) using equation 2.43.

With Verlet velocity algorithm, velocity can be obtained directly from the integration while

retaining the same level of accuracy as Verlet algorithm. Finaly, before fully advance to

the next timestep, all interested physical observation like energy or temperature would be

recorded for that sampled phase space points. The whole simulation, once initialized, is kept

iterated from step 2 through step 4 until the desired convergence is reached.
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CHAPTER 3

Model Building of VCE

3.1 Formalism of VCE

Thanks to Kanzaki’s theory which layout an intuitive and useful scheme, a clear physical

pictures can be further exapnded based on it. Unlike CE sample energy at relaxed or en-

semble averaged position, Kanzaki shows we could turn an LD problem into configuration

dependent function by using ideal, high symmetry structure. The configurational effect then

can be shown in force terms as Kanzaki force. But obviously, the configurational effect does

not occur on force term only, the change of occupation is expected to change across all orders

of FCTs in LD. VCE model inherited the spirit from the Kanzaki force and further general-

izes the higher order force constant to be configuration dependent. The full Hamiltonian of

VCE can be formulated as:

Htot = HLD +HCE +Hcoup = U0 + Φiui + Jßσi

+
1

2!
Φijuiuj +Kj

i uiσj + Jijσiσj

+
1

3!
Φijkuiujuk +

1

2!
Kk
ijuiujσk +Kjk

i uiσjσk + Jijkσiσjσk + · · · (3.1)

Where the coupling terms takes both vibrational and configurational degree of freedom as:

Hcoup = Kj
i uiσj +

1

2!
Kk
ijuiujσk +Kjk

i uiσjσk + ... (3.2)

Before further derivation and discussion, we start from the definition of clusters notation
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used in our VCE.

To concrete the idea of clusters, let us start from the natural way to define our cluster

α = (α1, α2, · · · , αN) as an N-tuple flatten cluster, where N is the number of total lattice

sites. Each αi here represents the ith lattice on the parent lattice site. For example, a cluster

α=(0,1,1,0,0,. . . 0), represents a cluster composed of a pair-cluster with one vertex at lattice

site 2, and another on lattice site 3. Since the index can be predefined without loss of gener-

ality, one can define their indexing once they decide the way to arrange their parent lattice

site. With site-index predefined, we can also represent this in terms of their site-index as

{i, i′, · · · }. Taking the previous example, we can have one cluster α ≡ (0, 1, 1, 0.., 0) = {2, 3}.

After have clear definition of cluster, one significant distinct between configurational cluster

in CE and vibrational cluster in LD is the fact that there is no duplicated site for configu-

rational cluster. This is understandable since unlike LD’s self-clusters which originate from

the polynomial Taylor expansion, CE’s basis is composed by the inter-product of site basis

(θ0, θ1(σ))T. Based on whether there are duplicated sites, we can define proper cluster and

improper cluster. A proper cluster does not contain any duplicated lattice site, which is

ai ≤ 1, otherwise it is an improper cluster. For example α = (1, 1, 0, ..) = {1, 2} is a proper

cluster while α = (3, 0, · · · ) = {1, 1, 1} is an improper cluster. From now on, we use A

to represent a configurational cluster(proper clusters only) and α to represent a vibrational

cluster(improper clusters included) for CE and LD, respectively. To make the notation com-

pact through our discussion, following multi-index notation is defined:

|α| =
∑
i

αi (3.3)

α! =
∏
i

αi! (3.4)

uα =
∏
i

uαii (3.5)

∂α =
∏
i

∂αi/∂uαii (3.6)
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These notations can help us better track the numerous pre-factors in expansion as well. Take

previous proper cluster α=(1,1,0,. . . .0) as an example, the number of atoms is 2 can easily be

obtained from |α| and the factorial α! is (1!× 1!× 0!× 0!)=1. For improper cluster α=(3,0),

its factorial is just (3!× 0!× 0!)=6. One can thus use these compact notations to rewrite LD

and CE as

LD:

ELD =
∑
α

1

α!

∑
I

ΦI(α)uαI

≡ 1

α!
ΦI(α)uαI (3.7)

CE:

ECE =
∑
A

J(A)σA

≡ J(A)σA (3.8)

To derive the expression of VCE in equation 3.1 explicitly, we start from the LD model. The

key insight of VCE is realizing FCT actually is a configurational dependent funtional with

given reference point lattice u ∈ RN
a . With above lattice constraint, the FCT ΦI(α)here is

no longer constant but configuration dependent ΦI(α, σ). With the same spirit as Kanzaki

force, we can thus apply CE in FCT ΦI(α, {σ}):

ΦI(α, {σ}) =
∑
A

KI(α,A)σA (3.9)

Finally, we have the compact expression for VCE by inserting equation 3.7 into equation 3.9:

E = ELD ⊗ ECE

=
1

α!
KI(α,A)uαI σ

A (3.10)
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Figure 3.1: Schematic illustration of symmetry constraints in VCE. The original configu-

ration dependent FCTs Φ(left) with low symmetry can be derived from the configuration

independent CFCs K, which thus preserves symmetry of parent lattice, and known configu-

rations(right).

equation 3.10 is identical to euqation 3.1. And mathematically we can soon realize it is

actually nothing more than a tensor product between CE and LD. Here we define K as con-

figurational force constant (CFC) and α(α,A) as compound cluster(CC). Similar as Kanzaki

force, One can interpret KI(α,A) as the difference of strain on cluster α along I direction

when configuration of cluster A changes. This makes it falls back to many-body Kanzaki

expression if cluster α is singlet. Few strong advantages are worth mentioning for VCE here,

First and arguably the greatest advantage of VCE is, since configurational and vibrational

variables can be explicitly treated, rapid sampling of configurational dependent PES can

be achieved once {K} is found. This makes accurate PES modeling for arbitrary disorder

alloys possible. Secondly, since both LD and CE are derived from exact method, VCE is

also an exact method. This makes arbitrary accuracy can be done in VCE with controlled

approximation. Unlike empirical potentials highly tailor to specific materials, VCE lays out

a systematic improvable path which is adaptive to different targeting materials. Finally,

with given reference lattice, CFCs are configurational independent. This merit serves great

computational simplification to model large alloy supercell. In contrast, in LD FCTs have

virtually no symmetry for alloys due to the random atomic configurations. It makes model

building for alloy supercell computationally prohibitive. However in VCE, CFCs share the
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Figure 3.2: Comparison of required parameters in the model between VCE and LD with

respect to different size of alloy modeling cell for Si-Ge. The number of parameters from

VCE with converged CE cut-off represented by blue circle dots remain constant regardless

the size of modeling cell. The red square dots is the required parameters for LD which

scale with the size of modeling cell. Both VCE and LD use the same cut-off for vibrational

clusters. Inset is the modeling cell.

same symmetry property as the underlying lattice structure. In general, the higher symme-

try the underlying lattice preserves, the fewer actual independent CFC required in model

building process. More details will be discussed in following sections. The reason of this

great advantage of preserved symmetry is schematically shown in Figure 3.1. Because of

translational symmetry which can not be used in LD but VCE, we can use primitive cell to

efficiently model the alloy supercell with well converged configuration cluster cut-off. Simply

by applying translational symmetry, number of parameters remain constant in VCE while

grow in the fashion of N in LD as shown in Figure 3.2, where N is the number of modeled

alloy cell.
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This great simplification practically makes VCE the only option to model accurate PES

for large alloy supercell. In the following section, we will discuss how we take advantage of

symmetry properties to reduce our number of independent CFCs.

However the multiplicity of CE and LD inevitably causes the combinatorial increase of

CFC terms. Since The selection of cut-off is not a prior here, yet unlike LD or CE, which

has various well-studied examples, a proper choice of cut-off is not straightforward in VCE.

In the best case, we should try to include as large cut-off as possible. It inevitably cause

the large number of parameters in VCE. Though it is way fewer than direct LD modeling,

to robustly and accurately infer these parameters is still a challenging task. To address this

issue we need to leverage our understanding of VCE system. We can easily observe that for

most of the systems only those short range clusters have significant contributions to VCE

system. Given either FCTs or ECI decrease rapidly for clusters with sites which are far

apart from each other, we should also expect CFC also decrease rapidly for long distance

clusters. Intuitively, we can expect limd(α,A)→∞KI(α,A) = 0. With this property in mind,

it is safe to assume our system is a sparse system, which is the system in which only a

very few basis have non-zero values. Later on, we would discuss how this sparsity can help

us reduce the required fitting input thanks to compressive sensing. In contrast to tedious

integer programming, compressive sensing allows parameter selection and fitting be done in

one shot. With compresseive sensing, a robust, efficient and accurate VCE model building

can be easily achieved.

3.2 Linear Force relation

Theoretically one can fit CFC from energies of each different configurational and vibrational

structures. However, considering the cost from first-principles calculations, fitting force is

a more efficient option. Thanks to the LD property in VCE, the explicitly captured vibra-

tional degree of freedom enables us to construct a force-to-CFC relation directly through the

well-know force-displacement relationship:

47



Fa = ∂aE =
1

α!
KI(α,A)σA∂au

α
I (3.11)

On the left-hand side, we can generalize Fa as a vector consisting sampled forces for each indi-

vidual atom along certain directions. Also, thanks to the advantage of using one-dimensional

array representation of CFC, we can concatenate all CFC tensors from representative clus-

ters to form a vector as well. We then can construct a “sensing” matrix A based on the

configuration and displacement from the sampled system. To be more explicit, from above

equation, we can calculate each entry in A by:

A =


−1 −σ1

b −u1
b −u1

bσ
1
b . . .

. . . . . .

−1 −σLb −uLb −uLbσLb . . .

 (3.12)

for an N-atom modeling cell with L different training configurations. These linear relations,

though easy to construct, has great redundancy in the model due to the lack of physical

set constraints on our CFCs. Moreover, without applying these constraints, numerical non-

exact calculations would cause the artificial discrepancy between CFCs which are meant

to be identical, e.g. the translational identical CFCs. It can cause artifact effect like the

violation of acoustic sum rule(ASR), which makes acoustic phonon has artificial imaginary

frequency at Γ point. Therefore, it is both computational and physically important to apply

physical constraints to find the independent CFCs.

3.3 Independent Configurational Force Constant

We can reduce the number of CFCs in fitting by finding out symmetry-invariant CFC. In

our current study, by applying physical constraints, three kind of invariances are used. They

are
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1. commutativity

2. space group symmetry

3. translational symmetry

For high symmetry crystals, these constraint can greatly reduce the number of CFCs by

finding the independent CFCs.

3.3.1 Commutativity

Commutativity comes from the fact that for a smooth enough energy surface, the derivatives

do not depend on the order of partial differentiation. In solids, since we are still within the

framework of LD, where ions only moderately move away from their ideal position, It is safe

to apply this commutativity. In our VCE context, since we already pre-defined the order of

our lattice site in cluster, we should not worry about commutativity in our proper cluster.

To examine this, we can make up a permutation operator π. π can take in any index series

and output the index series after the permutation. We can clearly see our K{1,2}x,y for cluster

α = {1, 2} will not be identical to K{1,2}π(x,y) = K
{1,2}
y,x . One can understand this as the force

from site 2’s y-direction to site 1’x-direction, is different from site 1’s x-direction to site 2’s

y-direction, and thus no commutative CFC needs to be concerned when π(α) 6= α. However,

the commutativity still plays an important role for “improper” clusters. For example, if

α = {1, 1, 1} then obviously π(α) is still equal to α = {1, 1, 1}. In other words, this is

impossible to tell the order in which lattice site 1 acts on the other lattice sites 1. Base on

this invariance, we then can set up the commutative relation for CFC:

Kπ(I)(α,A) = KI(α,A) ∀ π(α) = α (3.13)

3.3.2 Space group symmetry

Energy is invariant under an operation if the operator commute with the Hamiltonian. We

can thus utilize space group symmetry for the parent lattice site to find out the CFC which
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are subject to this invariance. By knowing space group operator S = {ŝ} one can map α to

ŝα = α′ and A to ŝA = A′. We can construct the following general linear relation:

KI(ŝα, ŝA) = ΓIJ(ŝ)KJ(α,A)

KI(α,A) = ΓIJ(ŝ−1)KJ(ŝα, ŝA) (3.14)

where ΓIJ is a 3|α| × 3|α| matrix.

The relation can be derived from linear transformation of displacement for each vertex.

u′j = γuπ(j) (3.15)

The original potential energy formed by the original cluster is given by

E = Ki1i2..in(α,A)u1,i1u2,i2 ...un,in (3.16)

and the energy formed by the symmetry transformed cluster is

E = K(α′, A) · (u′1 ⊗ u′2 ⊗ ...u′n)

= K(α′, A) · ((γ · u1)⊗ (γ · u2)⊗ ...(γ · un))

= K(α′, A′)i′1i′2..i′nγ
i′1
iπ(1)

...γ
i′n
iπ(n)

uπ(1),i1 ...uπ(n),in (3.17)

We apply operator π to permute the index is because in general the symmetry transforma-

tion can change the order of pre-defined index. Permutation of index can be examined if

the translational symmetry is preserved. After index permutation, the summation can be
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written as:

E = K(α′, A′)i′1i′2..i′nγ
i′1
iπ(1)

...γ
i′n
iπ(n)

uπ(1),i1 ...uπ(n),in

= K(α′, A′)i′1i′2..i′nγ
i′1
iπ(1)

...γ
i′n
iπ(n)

u1,i1 ...un,in (3.18)

With this expression, we can easily formulate the relation between K(α,A) and K(α̂, Â):

K(α,A)i1i2..in = K(ŝα, ŝA)i′1i′2..i′nγ
i′1
iπ(1)

...γ
i′n
iπ(n)

(3.19)

and the γ part can be written as:

ΓIJ(ŝ−1) = γj1iπ(1) ...γ
jn
iπ(n)

(3.20)

Since the matrix γ, and Γ have the same orthogonality,

ΓIJ(ŝ) = γj1iπ−1(1)
...γjniπ−1(n)

= γ
i−1
π(1)

j1
...γ

i−1
π(n)

jn

= γi1jπ(1) ...γ
in
jπ(n)

= Γ(ŝ−1) (3.21)

Equation is then derived.

Obviously, if we change the origin to another points in our lattice system, the index will shift

but energy still remains the same. We can therefore assure that if we translate our cluster

to another lattice position, which is, if each vertex change the same N lattice points, then

CFC for these two clusters should be the same although the index is changed. This relation

is the so called translational relation. In our VCE system translational relation is preserved

if two clusters’s parent lattice structure are all changed with same N , N ∈ N lattice, and

if at the same time, each vibrational cluster and configuration cluster also move with the
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same N-lattice,i.e. T (C1, C2) = T (α1, α2) = T (A1, A2) = v. Where T is a function takes in

two different clusters’s underlying lattice index and give the translational vector v. Once

translational symmetry is defined, we can build the space group symmetry relation for each

cluster.

Two clusters are considered symmetrically identical only when there is a space group operator

ŝ ∈ S that transforms one clusters to the other clusterss while preserving translational rela-

tion. With this symmetry relation, we can construct our model by finding the representative

clusters, which is the minimal set of clusterss that can be mapped to all possible clusterss in

parent lattice through ŝ ∈ S. Obviously, this minimal set are mutually symmetry distinctive,

and we call this set of clusters as our representative clusters. Once the representative clusters

is selected, all clusterss then can be grouped into “orbitals”. Each orbital is a set of clusterss

which can be transformed into the same representative clusters. Once the orbitals are found,

instead of finding all CFC for all clusters, we only need to find the CFC for representatives

clusters and construct the corresponding Γ from their transformation group ŝ. And then we

can construct all CFCs for all clusters by applying equation 3.20.

Within each orbital, we can even further reduce the number of our independent CFCs by

grouping each translationally identical clusters as isotropy group Sα. Knowing that CFC is

the same for translational identical clusters, we can have the linear relation:

KI(ŝα, ŝA) = ΓIJ(ŝ)KJ(α,A) = KI(α,A) ∀ {α′, A′} = T ({α,A}) (3.22)

(ΓIJ(ŝ)− I)KJ(α,A) = BKJ(α,A) = 0 (3.23)

This relation lets us set up the constraint on CFC for each representative clusters to further

reduce the number of required parameters.

3.3.3 Translational symmetry

In translational symmetry, we presume that uniform translation of the crystal makes no

change in terms of both energy and force for any atom. This assumption leads to the famous
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acoustic sum rule(ASR) for pair interaction, which can be written as:

Φ({a, a}) = −
∑
b6=a

Φ({a, b}) (3.24)

This equation tells us that improper FCT of improper pair cluster on atom a should be

the summation of all FCT from other proper clusters include atom a regardless of the the

configuration. This rule can be generalized to higher order FCTs and CFCs as well. Higher

order ASR for FCTs can simply be derived by replacing the singlet cluster to arbitrary high

order clusters. We then have

∑
a

ΦI({a, b, c, ...}) = 0 (3.25)

For CFC, we can expand ΦI into configurational basis. Since ASR can be applied to any

arbitrary configuration as well, a CFC version of high order ASR can be written as:

∑
a,A

KA
I ({a, b, c, ...}) = 0 (3.26)

Since we have already grouped clusters in terms of orbits, we can easily rewrite equation

3.26 into orbits as:

∑
a,A

KA
I ({a, b, c, ...}) =

∑
α

ΓIJ(ŝ)KA
J (α) = 0 (3.27)

This is the same as what we did in space group symmetry. Equation 3.27 lets us setup

another linear constraint to further reduce the number of required independent parameters

in CFC.
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Other more complicated invariances like rotational invariance can be implemented in the

future, but is not discussed in this study.

As discussed in previous section, to easily implement all of these constraint for high order

CFC, we transform any n-dimensional CFC tensors into 1 dimensional arrays with 3N ele-

ments. By using this expression, we can easily include all invariant constraint effects into

one linear equation. This includes improper commutativity, isotropy group, and transla-

tional invariance as the physical constraints for independent CFCs:

BKJ(α,A) = 0 (3.28)

We then only consider the basis that spans the null space of B as our independent param-

eter k for our model fitting. By applying different null-space reduction methods, the basis

may vary, but the dimensionality shall be invariant with respect to the choice of null-space

reduction method. These null space basis can thus construct a linear transformation matrix

that transforms these independent parameters back to the original clusters as

K = Ck (3.29)

where C is a NK × Nk matrix. These constraints can siginificantly help us reduce the

computational cost. Since these constraints are based on real physical models, it also future-

proof our CFC away from some unphysical effect caused by numerical inaccuracy.

By applying the invariance of equation 3.29, the whole linear equation is reduced to

AK = ACk ≡ A′k = F (3.30)
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3.4 Compressive sensing of VCE

Due to the vast amount of CFC, a robust, accurate and computationally efficient signal

recovery technique is highly desired. In general, the number of CFC parameter is far greater

than the number of calculated forces, and hence we have an under-determined linear equation.

This system is also known to have very few dominant terms like NN-pair, while most are zero

or close to zero. In this kind of situation, compressive sensing offers a very robust, accurate,

and computationally efficient approach for us to recover CFC from known force samples.

Known for the capability to efficiently and robustly extract the exact(near exact) solution

for sparse system even under underdetermined conditions, CS has been widely used in the

computer science community like computer vision, data analysis, etc. Unlike conventional

regression process, the performance of compressive strongly depends on the choice of basis

and the training data acquisition process. To best recover the signal at minimum cost, the

sensing basisΦ should be as incoherent with the representation basis Ψ as possible.

min
√
N · max

1≤k,j≤N
| 〈ψk, φj〉 | (3.31)

where φk and ψk is the element in each basis. However, sometimes the representation basis

can not be selected freely especially in physical-based problems. In the setup of vibrational

cluster expansion, the measurement basis is the atomic configuration with a particular dis-

placement and the representation basis is our coupled clusters. Though with fixed measure-

ment and representation basis, identically independently distributed(i.i.d.) entries has high

possibility[64] to construct low coherent basis with almost any representation basis. Theoret-

ically, a Monte-Carlo simulation can help us to find the training structures which construct

the maximum incoherent sensing matrix A. However, it is computationally expensive even

for small structures. A more heuristic yet practical approach is discussed later.

Compressive sensing has been successfully applied to CE[68] and LD[52]. As a general-

ization of both, VCE is expected to exhibit the same success with the application of CS. In

VCE, we construct the objective function following the one in [52].
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kCS = argmin
k
‖k‖1 +

µ

2
‖F− Ak‖2

2 (3.32)

Equation 3.32 is the classical CS problem with noise. µ in equation 3.32 can be seen as

the weight factor that controls solution between sparsity and accuracy. With a higher/lower

value of µ, the optimization tends be regularized more by l1/l2 norm and the solution hence

become less/more sparse. As shown in previous CS-CE paper[68], the value of µ is reciprocal

to the noise level, but a precise choice of µ is not needed to precisely recover the signal. In

practice, the optimal value of µ can be found by minimizing prediction errors with chose

cross validation scheme.

3.4.1 Split Bregman iteration

Various optimization techniques have been proposed for l1 normalization. Given the fitting

size in VCE, split-Bregman iteration[75] is opted for its capability to deal with a large system.

The advantage of split-Bregman iteration is that it separates ‖Ak − F‖ from the original l1

and l2 mixing case as seen in equation 3.32 by rewriting it as

k = argmin
u,d
‖d‖1 +

1

2
‖F− Ak‖2

2 +
λ

2

∥∥∥∥d− 1

µ
k

∥∥∥∥2

2

(3.33)

Where d is an introduced variable that enables us to separate the l1 and the l2 norms. The

last term in equation 3.33 makes sure d = µk in minimization limit. This allow us to efficient

recover signal without any complicated pre-conditioner for the sensing matrix A. The basic

iteration algorithm in split Bregmann iteration method is:
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kn+1 = argmin
u

1

2
‖Ak − F‖2

2 +
λ

2
‖dn − µu− bn‖2

2 (3.34)

dn+1 = argmin
d
|d|1 +

λ

2

∥∥d− µkn+1 − bn
∥∥2

2
(3.35)

bn+1 = bn + µkn+1 − dn+1 (3.36)

We can efficiently solve equation 3.36 by techniques such as conjugate gradient(CG) or other

standard convex optimization techniques. Once k is acquired,equation 3.35 can be easily

solved entry by entry using the shrinking operator without the need to deal with the matrix:

dn+1
i = shrink(µkn+1

i + bni , 1/λ) (3.37)

Where the shrinking operator is defined as:

shrink(x,u) = argmin
y
µ|y|+ 1

2
‖x− y‖2 =


x− µ, x ≥ µ,

0, |x| ≤ µ,

x+ µ, x ≤ −µ

(3.38)

The final step in equation 3.36 is imposed to reduce the noise and convergence cycles by

adding back the residue after n − th iteration[68]. λ in general does not affect the results

significantly as long as it is not terribly off. Usually the optimal λ can be easily found

within few trial by fixing µ. Overall, split Bregmann iteration yields very stable and efficient

converging results

3.5 Relation between CFC and FCT

Although one can directly calculate alloy related thermodynamic and phonon properties from

CFC, constructing an explicit transformation from CFC to FCT can help the compatibility
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of VCE to existing methods, and also enhance the interpretablity of strain effects in alloy.

Obviously, the relation between CFC and FCT depend on the configuration of the system.

Therefore, to define the CFC/FCT relation, a given configuration {σ} is required. Map CFC

to FCT is a three step process. The First step is to collect all the effects of configuration

from the configurational cluster to a given vibrational cluster by equation 3.9:

ΦId
I (α, {σ}) =

∑
A

KI(α,A)σA (3.39)

Here, we use ΦId to represent FCT expanded from ideal position. The Second step is a coor-

dinate transformation due to different reference position between VCE and LD. In most LD

calculations, the FCT expansion is done from the equilibrium position. However, in VCE,

the expansion is from the ideal position. To address this difference, a relaxation process is

required. In the Kanzaki force context, this relaxation is a linear equation since no order

higher than the harmonic orders are considered. However, in VCE, we include higher orders

to account for anharmonic effects. The relaxation process then need to be done by various

structure optimization algorithms that minimize force. To keep simplicity, volume expan-

sion is not taken into account in this study. Finally, the coordinate transformation based on

displacement between the optimized structure and the ideal structure can be accomplished

by a renormalization process. We can construct an explicit relation between FCT expanded

from the ideal position(ΦId) and FCT from the equilibrium position(ΦEq):

ΦEq
I (α) = ∂uαE =

∑
γ

1

β!
ΦId
J (γ) · δJ(β) γ ∈ {α, β} (3.40)

β here represents all possible clusters in system, and δ(β) represents the relaxation configu-

ration in β. Mapping CFC back to FCT does not introduce any new physics, but it helps us

to validate phonon properties like dispersion, density of states, and phonon life time, etc by

comparing our VCE results directly with other first-principle calculations. Also, the mapped

FCT makes it easier for others to infer more complicated properties from our VCE model.
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Figure 3.3: Lattice constant dependency of concentration for (a)PbTe-Se[30] and (b)SiGe[76].

Strong linear relation following Vegard’s law in both materials is a strong evidence of solid

solution.

3.6 Alloy PES of Si-Ge and PbTe-Se

We choose Si-Ge and PbTe-Se as two alloy systems to demonstrate the validity of our VCE

model. Few incentives make these two materials interesting to be studied for our VCE model.

First is both materials are widely studied and plays important role in microelectronics[77] and

thermoelectrics[78]. Secondly, they posses very different anharmonicity characteristics. Si-

Ge, a widely adopted electronic materials which is well known for its weak anharmonicity and

high thermal conductivity[79]. On the other end, PbTe-Se shows strong anharmonicity[78]

and thus low thermal conductivity. Because of its low thermal conductivity, PbTe-Se has

been demonstrated in various high performance thermoeletric materials[30].

Third, as depicted in Figure 3.3, experimental studies also show both materials lattice

constant follow Vegard’s law, which is an important indication showing both of them are

substitutional alloys from end to end. Finally, both materials have been extensively studied

by state-of-art computational techniques[80, 40, 41] and experimental characterizations[81,

30, 82]. This assures us to benchmark with others state-of-art methods and to be validated

by experimental data.
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3.6.1 Training structure selections

To accurately reconstruct the PES, representative training structures are essential. Few

criteria need to be met for an optimal training structure. First question need to be asked is

how can we use small supercell to model bulk materials. A common technique to model bulk

materials with small supercell is applying periodic boundary condition with u(r) = u(r+R),

where R is the size of supercell. Periodic boundary condition can remove the surface effect

and ensures the indefinitely long interaction(Γ point in reciprocal space), however, it also

reduces the interaction range between independent atoms. The idea can easily be understood

as the image atom. That is the case when you reach out the atom at Ri which the distance

if larger than you supercell size Ri > L. Because of periodic boundary condition, one is

actually getting the interaction between the atom R0 and Ri − L. Though depending on

the shape of the supercell, most common practice is your supercell size should be two time

larger than the longest interaction you are interested in. To make the alloys more close to the

real random cell it is desired to have large supercell to mimic the realistic alloys. However,

since DFT calculations typically scale with O(n2logn)[83], large supercell calculations can

become prohibitive expensive. In practice, we find a good trade-off between cut-off and

computational feasiblity is using size with 4x4x4 FCC supercell. In Si-Ge and PbTe-Se, it

means 512 atoms in each supercell structure. With a chosen supercell size, it effectively

determines the longest cut-off in our VCE models and allows us to set the upper bound of

radius cut-off in our model. With determined supercell size, the next question is how to

efficiently sample the configurational space and vibrational space. For the vibrational part,

although it is intuitive to adopt MD trajectory as sample points given those are the phase

space sample, has high possibility to be visited by the system, the strong correlation between

MD trajectory would inhibit the recovery power of CS. On the other hand, directly construct

a highly uncorrelated sensing matrix is challenging due to the symmetry constraint matrix.

A rigorous way out is using Monte-Carlo to explore the possible phase space and disregard

the samples which are highly correlated. But this step is computationally expensive even

for small supercells. Here, we adopted a more heuristic approach by randomly displaced
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atom with ≈ 0.1Å on top of random alloys. Though depending on the number of clusters

is included, the number of supercell training set usually requires less than 10. Finally, for

different concentrations, we adopted Vegard’s law to decide the macroscopic lattice constant

for the supercells. Our results show our VCE model performs exceptionally with this training

structure selections process.

3.6.2 DFT calculations

After the selection of supercell structures, we use the Vienna Ab initio simulation pack-

age(VASP)[83] to accomplish DFT force calculations. For Si-Ge, we use Perdew-Becke-

Ernzerhof exchange correlation functional form based[84] on projector-augmented wave for-

malism[85]. While for PbTe-Se we use local density approximation functional fit to Ceperley-

Alder elctron gas method[86]. The reason of these choices are based on our previous studies

on which potential forms give rise to best phonon properties. Given the purpose of this work

is trying to demonstrate VCE model can well recover ab initio PES, we would not discuss

the validations of these functinoal forms. The energy cut-off for Si-Ge and PbTe-Se are 600

eV and 400 eV, respectively. All of the training cell use Gamma only K-mesh calculation.

3.6.3 Models and Results

In both cases, we use up to 4th order vibrational clusters with good convergence. For Si-Ge

the cut-off for 2nd, 3rd, and 4th order are 8 6 3. While for PbTe-Se the cut-off are 11 7 6.

The inclusion of longer pair cut-off for PbTe-Se is due to stronger long-range force which

cause non-negligible long range force constant.

The trained model then are used to predict with materials with random configurations

which had not been involved in the training. The selected supercell structures are then put

into AIMD simulation at 300K. The randomly selected snapshots of MD configuration are

calculated in VASP to serve as the cross validation data set. By comparing the force pre-

diction between VCE and DFT calculations in Figure 3.4, we can see our VCE predicted

forces match DFT calculations exceptionally well. In Si-Ge, the prediction error is less than
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Figure 3.4: Predictive forces from VCE compared against DFT calculated forces using the

MD trajectory corresponding to 300K for (a) a 512 atom Si0.8Ge0.2 random alloy supercell

and (b) a 512 atom PbTe0.75Se0.25 random alloy supercell. The diagonal red line represents

perfect match.
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3%. This results demonstrated the capability of VCE to accurately reconstruct PES of arbi-

trary random configurations. In PbTe-Se, however, due to the strong Columnb interaction,

as manifested by the large Born effective charge, FCT decays much slower than Si-Ge. To

handle this situation, we include long pair interaction up to half of the supercell size. Despite

the strong long-range force, we still find our VCE gives satisfying results with less than 8%

prediction error. One thing worth pointing out here is that the error is not due to the lack

of high order anharmonicity. From our calculations and the phonon plot, we know the main

reason for its higher prediction error is mainly due to the pair cluster cut-off, which is mainly

limited by supercell size, can not fully capture long-range force. Unlike anharmonicity which

plays important role in thermal conductivity calculations, long-range force is known to have

minimal effect in thermal conductivity. The reason of it is because long-range force would

only affect optical mode near Gamma point which has close to zero group velocity and thus

virtually contribute nothing to the heat transportation.

To further assure the accuracy of the PES, we use our trained VCE model to generate

sampling atomic configuration for CSLD. Ordered FCC Si-Ge unitcell and PbTe-Se unitcell

corresponding to Si0.5Ge0.5 and PbTe0.75Se0.25 with small displacement is predicted both in

DFT and VCE. Due to non-negligible long-range interaction in PbTe-Se, dielectric constant

and Born effective charge is calculated in VASP and used to account for non analytic cor-

rection following the method introduced in [89]. Strong LO-TO splitting is a clear evidence

on the strength of long-range interaction and again explain why pair FCT decay slowly in

PbTe-Se. The exciting results from our VCE is that not only the force prediction is accurate

across different type of alloys with arbitrary configurations, it also accurately describes the

vibrational properties, which is crucial for accurate thermal conductivity calculations. To

the best of our knowledge, this is the first ever model which can accurately predict the PES

of arguably any type of crystalline alloys. The consistent model building process of VCE

for alloys free us from the burden to design various functional form for complicated materi-

als. Inherited from its parent LD and CE, VCE also preserves the controlled approximation

property, which allows us to adjust the necessary cut-off to meet the desired accuracy. By
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Figure 3.5: Phonon dispersion comparison between first-principle VCE calculations(curve)

and experiments(dots) for (a) Si[87], (b) Ge[87], (c) PbTe[88] and (d) PbSe[88]. The results

demonstrate the accuracy of DFT calculations of force and force constant inferred by VCE

expanding force constant into configurational space, we can greatly reduce the dimension

into one which preserves important environmental information.

These advantages becomes significant for PbTe-Se especially. Due to the poor transfer-

ability between empirical potentials and poor description of anharmonicity, no sophisticated

empirical potential form has been successfully proposed for PbTe-Se. The long-range inter-

action in PbTe-Se also requires large cut-off for converged pair FC. All of the above issues

make accurate FCTs can hardly be obtained numerically. But with compressive sensing, our

model building processes are extremely facile, efficient and the predicting results are accurate
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Figure 3.6: With finite displacement forces calculated from VCE and DFT, phonon dispersion

calculated in CSLD for (c) FCC Si0.5Ge0.5 and (h) FCC PbTe0.75Se0.25 are shown in solid

and dashed line, respectively.

and robust. Our VCE model is the first ever PES representation which can reach such high

accuracy not only in force but even phonon properties for PbTe-Se alloys as demonstrated

in Figure 3.6.

Given the fact that alloys play important role in thermoelectric materials development,

our VCE method successfully paves a general and efficient process to obtain accurate PES

across wide materials classes. Though the constructed PES can be used to calculate wide-

range of thermodynamics properties, In the following chapter, we focus our discussion on the

application of thermal conductivity calculations, which no existing methods can accurately

predict the thermal conductivity of PbTe-Se yet.
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CHAPTER 4

Lattice thermal Conductivity Calculations

Thermal conductivity is a fundamental material feature which directly relate to numerous

applications. And due to the thermodynamic law, all materials at finite temperature would

incorporate certain level of impurities which makes disorder a necessary component in the

discussion of heat transportations. As discussed in the Introduction, finding a proper way to

accurately predict thermal conductivity of alloys is still a very challenging task, even with

all the advancements of first-principles calculations. Though direct thermal conductivity

calculation via DFT is theoretically possible, it is computationally prohibitive due to the

scale required in time and length. Another common approach is through the multi-scale

modeling. Instead of directly using DFT to simulate arbitrary time and length scale, we can

first extract few important parameters which is smooth and insensitive within our interested

scope. These parameters then can be used as pre-calculated parameters for computationally

tractable model for larger system. Two invaluable methods have been widely applied for

multi-scale modeling thermal conductivity calculations are Boltzmann transport and molec-

ular dynamics. Boltzmann transport is based on phonon theory while molecular dynamics

utilize classical Newtonian dynamics in real space. By utilizing these two methods with VCE

inferred PES, we can further validate if our VCE-PES is indeed an accurate model to push

the boundary of modern first-principles thermal conductivity calculations for alloys.

4.1 Boltzmann Transport Calculations

Also known as phonon Boltzmann transport(PBT), Botzmann transport equation(BTE)

was first formulated by Perial to describe the intrinsic lattice thermal conductivity from
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microscopic point of view apart from scattering from boundary or defects[34]. Though the

formulation has been proposed, the accurate solution has long been considered very hard

to solve. Few techniques like relaxation time with Debye approximation[90] has thus been

proposed to alleviate the computational complexity. Thanks to the development of iterative

method[91] we are finally be able to get the exact solution for BTE. To explain how BTE

be derived to calculate lattice thermal conductivity, it starts with the description of non-

equilibrium process of phonons. In lattice thermal conductivity, phonon is the sole carrier to

transport heat. To model intrinsic lattice thermal conductivity, Perial applies perturbation

theory. Given a small temperature perturbation, phonon distribution would be kicked off

from their equilibrium distribution. The intrinsic heat flow then is generate when phonon

return back to equilibrium states. The caused heat flow can be expressed as the collection

of phonons as:

q =
1

N0Ω

∑
λ

~ω(λ)vαλfλ = −kα,β|∆T |β (4.1)

where λ is a tuple comprise both branch index ν and wave vectorq. v,f represents phonon

group velocity and distribution, respectively, and α, β refers to the Cartesian coordinate.

The toughest part to handle in this equation is phonon population fλ. To handle how nλ

would respond to the fluctuation ∆T , the resulting heat flow can be decomposed into the

diffusion part and scattering part. The conservation of energy and momentum ensures the

balance:

− vλ∆T (
∂fλ
∂T

) +
∂fλ
∂t
|scatter = 0 (4.2)

Equation 4.2 is the basic formulation of BTE. In perfect harmonic crystal, all the harmonic

phonon modes are independent and thus no interaction occurs. It caused the vanished scat-

tering part and thus no finite thermal conductivity can be obtained. To allow finite thermal
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Figure 4.1: Two type of phonon generation process involves three phonons describe by

Callaway. (a) is the normal process which the generated phonon is still within its own

Brillouin zone(BZ). (b) is the umklapp process of which the generated phonon is outside of

its own BZ. The equivalence of K3 and K3
′ can be interpreted by the scattering of crystal

momentum G

conductivity in perfect crystal, introducing of anharmonicity is the only way to allow phonon

scattering. To understand how phonon interaction can induce finite thermal conductivity,

Callaway propose the quasi-momentum model[92]. From Callaway’s scattering model, two

type of phonon scattering can occur in crystals. Figure 4.1 shows the simplest three phonon

coalescence interaction. With this three phonon interaction, the first type is the normal scat-

tering, which is after the generation of new phonon, the phonon momentum is still within its

own Broullion Zone(BZ). The second type of phonon interaction is when the new generated

phonon’s momentum is beyond its own BZ. However, due to the periodicity, it’s new momen-

tum K′3 is actually equivalent to K3
′−G where G is the width of BZ. Callaway refers the first

type of phonon scattering as normal scattering while the second type as Umklapp, abnormal

in Germany, scattering. Since no momentum change in first type, it contribute nothing to

thermal resistance. But the second one brings back the phonon, and directly cause the finite

thermal thermal conductivity. In most practical case, the small value of norm |dT | allows

one to apply linear expansion of population fλ into f0(ωλ)−Fλ∇T df0
dT

, where f0 is the equi-

librium phonon distribution. When only less than three phonon interactions are involved,

the resulting linearized BTE can be written as:
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Fλ = τ 0
λ(vλ + δλ) (4.3)

Where τλ is relaxation time of mode λ, and the term δλ is showing how the system is devi-

ated away from constant relaxation time. The omit of δ{λ} is commonly referred to single

mode relaxation time approximation. In single mode relaxation time approximation, only

one mode involved in the interaction is being pushed out of the equilibrium while all others

mode are remained equilibrium. This often not the realistic case but all modes involved

in the interaction are relaxed simultaneously. The reason to introduce the δλ terms is to

address what is missing in single mode relaxation process. δλ can thus be regarded as the

correction term which is depending on how much the relaxation process is deviated away

from normal relaxation time process. Obviously, δλ would be depending on the population

of other modes, and can be explicitly expressed as:

δλ =
1

N

∑
λiλj

Γ+
λiλjλk

(ζλiλkFλj − ζλiλjFλj)+

1

N

∑
λiλj

1

2
Γ−λiλjλk(ζλiλkFλk + ζλiλjFλj)+

1

N

∑
λi

ΓλiλjζλiλkFλj (4.4)

where ζλi,j is the ratio of ωλi/ωλj and relaxation time constant τ 0
λ is:

τ 0
λ =

1

N
(
∑
λiλj

Γ+
λiλjλk

+
1

2

∑
λiλj

Γ−λiλjλk +
∑
λj

Γλiλj) (4.5)

Γ here represents the scattering rate between modes. The scattering rate of phonon can

then be calculated through Fermi’s golden rule to describe the generation and annihilation

of phonons. With three phonon interactions:
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Γ+
λiλjλk

=
~π
4

f i0 − f
j
0

ωλiωλjωλk
|V +
λiλjλk

|2δ(ωλi + ωλj − ωλk) (4.6)

Γ=
λiλjλk

=
~π
4

f i0 + f j0 + 1

ωλiωλjωλk
|V −λiλjλk |

2δ(ωλi − ωλj − ωλk) (4.7)

δ function assures the energy conservation during generation and annihilation process. Through

the scattering equation, whole scattering events strongly depend on 1) phonon distribution

fω, which represent how many phonons are available to be interacted, and 2) the overall area

of phase space which can be calculated from scattering matrix V:

V ±λiλjλk =
∑
i∈u.c.

∑
jk

Φijk
êiêj êk√
MiMjMk

(4.8)

Since Fλ exists in life time τ 0
λ , the explicit Fλ is solved iteratively for exact answer with

three phonon interactions. With given second and third order FCT, group velocity and

scattering rate and finally thermal conductivity can be calculated. We use shengBTE[37] to

be our phonon BTE solver for full iterative solution of thermal conductivity. The key for

accurate thermal conductivity calculations then is the accurate FCTs. The importance of Φijk

shows how anharmonicity plays crucial role for accurate scattering rate. To accurate recover

anharmonicity, however, remains a computational challenging task. Various technique has

been proposed to extract accurate third order FCT. DFPT with 2n+1 approach has been

first demonstrated by [36] for Si and Ge. Frozen phonon based methods like finite difference

methods also show good performance in [37]. With compressive sensing, Fei et. al[52]. shows

how accurate and robust high order force constant can be accurately recovered, and accurate

thermal conductivity for compounds can thus be acquired.

4.1.1 VCA and Mass disorder

To allow the disorder in phonon calculation scheme, VCA is the only possible approach to

work hand in hand with BTE. The center piece of VCA is assuming the disorder should
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be treated as the perturbation on top of the ordered virtual atoms with weight averaged

physical and chemical properties. The only disorder left in VCA is the mass disorder, which

is treated using Klemens’ method[93] for point defects. In Klemens’ discussion, point de-

fect only would interact with harmonic phonon, and thus only harmonic PES is considered

here. The unperturbed Hamiltonina of virtual crystal and mass disorder perturbation can

be written as:

H = H0 +HI (4.9)

Where H0 and H1 are:

H0 =
1

2

∑
α

m̄(α)u2
(α) + VHar (4.10)

HI =
1

2

∑
α

δm(α)u2
(α) (4.11)

Where α is the atomic position and δm = m(α) − m̄(α). By converting equation 4.11 into

eigen mode along with Fermi’s golden rule and knowing random distribution of masses yields:

〈δMiδMj〉 =
〈
[δMi]

2
〉
δij (4.12)

we can have the scattering rate:

Γλiλj =
πω2

2

∑
α

g(α) < ˆe(α)λi
ˆe(α)λj > (4.13)

Where g(α) =
∑

s fs(α)[1 − Ms(α)/M̄(α)]2 and M̄ ,fs are the average mass and relative

concentration of species s,respectively. Though starting as the perturbation method which
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Figure 4.2: κL calculation by VCA for Si-Ge in VCE(square) and experimental(triangle)[94]

and DFPT from Garg et. al.[39](circle)

aims for small mass fluctuation, VCA works surprisingly good for large mass contrast alloys,

e.g. NiPd, SiGe. Garg et al. perfectly predict SiGe thermal conductivity using VCA from

DFT calculations.

4.1.2 Thermal conductivity of Si-Ge and PbTe-Se in VCA

Given DFPT shows accurate results compared to experimental data, it is expected our VCE

generated potential should also give very accurate results. We first use the trained VCE

model for Si-Ge to predict the pure Si and Ge configurations. To approximate VCA effect

in VCE, all of the occupancy variables are replaced with σ = 2c− 1 for SicGe1−c. With this

replacement, the idea of averaged virtual atom can be explicitly implemented instead of just

weight averaging FCT, like the one proposed in [95]. Our VCA results of Si-Ge is compared to

experimental values and Garg’s DFPT[40] calculations in Figure 4.2. As expected, our VCA

model with VCE generated potentials shows great match between Garg’s and experimental

results.
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Though with great success in Si-Ge, common overestimations are found in VCA when

there is 1) mass contrast and 2) strong anharmonicity. Poor agreement between experiments

and VCA in PbTe-Se is a famous example, in which both large lattice mismatch and strong

anharmonicity are found. As depicted in figure 4.7 later, the significant overestimation is

observed in our VCA calculations. A very similar trend also appears in InGaAs and most

pseudobinary alloys[96]. From our further finding, we realize strong anharmonicity would

strongly interplay with configurations. Even in Garg’s report, they found when temperature

in Si-Ge is getting higher, noticeable disagreement between experiments and VCA can only

be reduced by deriving anharmonic relaxation time with explicit supercell configuration.

Indeed, this phenomenological approach seems arbitrary and the need of relaxation time

from explicit supercell further assures the importance of including local configuration is

crucial for general thermal conductivity calculations.

4.2 Molecular Dynamics

The impotence of phonon in handling local configuration for strong anharmonic alloys is

from the fact that phonon becomes ill-defined idea when zero or very low periodicity are

preserved in the system. Beside it, the computational complexity for phonon interaction

higher than 3rd order makes it inaccessible to strong anharmonicity. Unlike phonon based

calculations, molecular dynamics offers another microscopic intrinsic thermal conductivity

view by tracking atomic trajectory in real space. Because of its real space property, it

makes no ambiguity when one apply large long-range disorder supercells to explicit model

random configurations. Moreover, since all phonon interaction are represented in the form

of trajectory, it can directly includes phonon interaction to full order. All these properties

makes MD a convincing alternative when it comes to thermal conductivity calculations of

alloys. The real issue of MD is the lack of high quality potentials which can accurately model

PES. To address this issue, we propose our VCE potential as the alternative solution. By

using VCE as potential, a strong constraint need to be applied is atoms are not allowed to

diffuse. In other words, atom in VCE enabled MD system can only move, or say vibrate,
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Figure 4.3: Upper figure shows the value of σ(ACF ) and E(ACF ) in red dashed line and

blue line, respectively. By Choosing where the σ(ACF ) > E(ACF ), which is 13000 fs here,

can be used to infer the thermal conductivity from integrated ACF in lower figure.

around the equilibrium position. The reason this is a required constraint is because VCE is

derived from LD, which describe only solids which atom is considered to vibrate only within

its potential well. In solids, this constraints pose no serious concern since we are interested

in materials which is well below its melting points. We thus call this lattice MD(LMD)[97]

to differentiate our VCE enable MD from the rest of general MD systems. Depends on

the scheme of ensemble, MD can be categorized into equilibrium MD and non-equilibrium

MD. In equilibrium MD, thermal conductivity is calculated from the perturbation point of

view[98, 99]. In contrast, non-equilibrium MD[100] applies external heat source and sink to

simulate the Fourier’s law with constant temperature gradient. To make our calculations

between BTE and MD comparable, we would focus on the equilibrium MD given both of

them are deriving from the intrinsic heat diffusivity from perturbation.
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4.2.1 Equilibrium MD

Origin from the discovery of Brownian motion, that even a macroscopically equilibrium sys-

tem would still has thermal fluctuation in atomic level. With the closed system, a micro

canonical ensemble condition, the characteristic variables are number of atom N , volume V ,

and total energy E. To extract thermal conductivity from MD, the first thing need to be

defined is the form of heat flux. In crystalline materials without convection, heat flux q is

commonly defined as:

q(t) =
d

dt

1

V

N∑
i

ri(t)ei(t) (4.14)

Where ri and ei are the position and energy of particle i, respectively, at time t with volume V

of material. Though in the equilibrium, these three variables may seems constant in average,

and < q > should be zero. The discovery of Brownian motion demonstrate spontaneous local

fluctuations and dissipations would result in non-zero energy transfer within the system. To

model fluctuation-dissipation, Einstein offers a terse yet straightforward derivation, which

is also known as Einstein relation. Einstein link the diffusivityD to the fluctuation profile by:

D = lim
t→∞

1

2t

〈
[r(t)− r(0)]2

〉
(4.15)

This could be understood easily by realizing if materials have strong dissipation, then the

width would be narrow due to strong decay, and vice versa. And since we know the profile

differences at different time t is

r(t)− r(0) =

∫ t

0

q(t′)d(t′) (4.16)

we can rewrite equation 4.15 into

D = lim
t→∞

1

2t

∫ t

0

dt1

∫
dt2 〈q(t1)q(t2)〉

=

∫ ∞
0

〈q(t0)q(t0 + t)〉 dt (4.17)
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by assuming limt→∞ 〈q(t0)q(t0 + t)〉 dt = 0. With the help of Einstein relation, the thermal

conductivity through Green-Kubo formalism then can be formulated as:

καβ =
1

V kBT 2

∫ ∞
0

〈Jα(0)Jβ(t)〉 dt (4.18)

Where α and β represent the direction and J is the heat current related to the flux via

J = V q. 〈Jα(0)Jβ(t)〉 is the autocorrelation function representing the degree of dissipation

while the instantaneous fluctuation is induced. Since thermal conductivity calculated from

Green-Kubo[98, 99] are directly derived from the fluctuation, it shows the intrinsic property

of the materials without the worries from dependence of temperature gradient. Though

theoretically one can obtain perfect answer from equation 4.18, in reality MD is notorious

for their ambiguity and uncertainty issue. Two major issue in MD is called finite time effect

and finite size effect. With different approach to address these two issues, the calculated

results often would vary too. In following discussion, we try to select the extrapolation

scheme which shows good consistency and sensible in practice.

4.2.2 Finite Time Effect

With all the great merits in EMD, the fact that it is intractable to approach the limit that

t → ∞ brings all the problems. In MD’s context, it means it is impossible to realize er-

godicity[60]. The lack of real ergodicity cause the noticeable fluctuation around zero while

theoretically it should drops to zero quickly due to the finite thermal conductivity. The

ever-existing fluctuation often cause the diverged integrated autocorrelation function, and

so as the thermal conductivity. The time serial property in MD makes large time-scale cal-

culations prohibitively expensive. To resolve this issue, it is common to use multiple random

initial states to simulate same systems. Though it is not equivalent to one long simulation

time, by choosing correlation between these initial states and parallelizing MD simulation

makes the ergodicity more accessible. The ensemble averaged EMD simulation then can be

used to calculate thermal conductivity with finite time τ :
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Figure 4.4: Normalized accumulation thermal conductivity with respect to wavelength. The

alloy calculations is based on VCA. It is clearly mass-disorder is a strong scattering center

for Si-Ge but not as significant for PbTe-Se

καβ =
1

V kBT 2

1

N

N∑
n

∫ τ

0

〈Jα(0)Jβ(t)〉 dt (4.19)

Where N is the number of parallel MD simulations.

Though the ensemble simulation can inhibit the divergence, a well stabilized thermal

conductivity still rarely is the case. The question now is how do we pinpoint the thermal

conductivity. Since the accumulated noise in the simulation would be more dominant to-

ward the long simulation time and the fact that finite thermal conductivity is expected, the

selected time to determine the thermal conductivity should be close to the origin point. In

other words, the thermal conductivity in MD is only reliable up to a small finite time. But

how close to the origin point is arguable. One of the commonly adopted and simple method is

pick the time where autocorrelation first touch zero. Though it is a fairly empirical approach,
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it originates from the idea that theoretically the thermal conductivity is characterized when

no more autocorrelation is observed[101]. This method works fine for some of more trivial

materials like Si, Ge, and NaCl. Commonly, these materials can also be well characterized

by two exponential decaying functions, one corresponding to long wavelength oscillation and

the other one accounts for short wave length oscillation. However, in more complex materi-

als, one would find out the fluctuation does not really follows asymptotically exponentially

decaying curve but strongly oscillate around zero autocorrelation value. To handle materials

with these autocorrelation characteristics, McGaughey et. al.[102] propose to smooth the

fluctuation, and use the location where the first plateau occurs. In practice, we find it is

hard to quantitatively identify where is the turn on point of the plateau. In this report,

we adopt the more recent approach proposed by Chen et al.[103]. It is trying to identify

how noise accumulating in our MD simulation and find the cut-off when the noise overtake

the signals by defining the relative fluctuation in ACF,
∣∣∣ σ(ACF )
E(ACF )

∣∣∣ where σ and E represent

the variance and the mean value of ACF. By choosing a proper averageing timespan δ and

the desired threshold for
∣∣∣ σ(ACF )
E(ACF )

∣∣∣, and compared with independent calculations we can have

consistent thermal conductivity calculations with well defined selection criteria as depicted

in figure 4.3.

4.2.3 Finite Size Effect

Unlike finite time effect which is universal among all the MD calculations, finite size effect

depends heavily on materials. With supercell size L, the use of boundary condition allows

only the commensurate wavelength and thus exclude wavelength longer than 2π/L. Unlike

finite-time effect, whether there is a strong finite size effect in EMD calculations is still

arguable in the community. Often times one can find MD converges in cell size which is

far smaller than the commensurate long-wave length size. One common belief of why this

magical converging thermal conductivity occurs even with a moderated supercell size is due

to the omitted phonons. The omitted phonon can either play as the contribution to the

thermal conductivity and the channel for the scattering [60].
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By borrowing the BTE frame, thermal conductivity contribution from different cut-off

can be formulated as:

kcut(λ
∗) =

∑
q,ν

Cv(qν)v2
g(q, ν)τ(q, ν) (4.20)

(4.21)

The cut-off frequency λ∗ related to the size of supercell with 2πC/L, where C is the long-

wavelength limit group velocity. The lack of long phonon wavelength as the heat trans-

portation carriers would cause the underestimation of thermal conductivity. However, on

the other hand, due to the three phonon energy ω−ω1−ω2 needs to be less than the phonon

line-width. In the finite cell size, this constraint can be harder to reach due to the lack of

phonon contribution from long-wavelength and thus would limit these scattering process. It

would then overestimate the life-time of phonon, and consequently, thermal conductivity.

Due to these two counter effects, one can hardly predict whether the thermal conductivity

is converging or simply in a lucky range. To quantify these effects, Wang et. al.[104] found

though it could be either over-estimation or under-estimation, by using the wavelenth ac-

cumulated thermal conductivity, it is possible to know how big the size of supercell would

guarantee the convergence.

As depicted in figure 4.4, the plot of thermal conductivity with respect to phonon wave-

length indicate in Si-Ge, it shows strong dependency on long wavelength limit while its weaker

in PbTe-Se. And that is the case in our LMD simulations as well. Unlike some compound

systems whose thermal conductivity can be largely carried by moderate to short wavelength,

in alloy materials, most short wavelength are scattered and makes long wavelength vibration

be the dominant heat carrier. To tell the trend of size effect, we apply no magic method but

running multiple cell size to study its size effect. Limited by the computational power, an

extrapolation scheme is required to account for those long wavelength vibrations. To apply

the extrapolation scheme, an assumption need to be made first. Presumably, in long wave-
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Figure 4.5: Size effect in (a) Si-Ge and (b) PbTe-Se. In Si-Ge, due to the strong size effect, Si-

Ge can hardly be approximated by extrapolation scheme proposed by Gang et. al. However,

in PbTe-Se, a strong linear dependency shows validity of the extrapolation. The G. Galli et

al. work is from [105]

length limit, phonons would hardly be scattered by the local environments. This is believed

to be true since in long-range limit, each adjacent atom can hardly feel the displacement and

thus the local configurational dependent strain becomes irrelevant. In other words, we can

safely use VCA to treat the long-wavelength limit. The long wavelength limit then can be

approximated by the Klemens’ formula to estimate long wavelength life time:

1

τKlemens
λ

= γ2
λ

2kbT

Mv2
g(λ)

ω2
λ

ωmax
ν

(4.22)

Where γ2
λ is Gruneisen parameter. By plugging Klemens’ formula into the spectrum accu-

mulated thermal conductivity one can derive a linear extrapolation scheme:

κ(L) = κ(∞)− A
∫ ωcut

0

1

ω2
f(ω)dω = κ(∞)−Dωcut

= κ(∞)− E 1

L
(4.23)

By assuming the low frequency, Cv ≈ kB and vg(ω) is the same as the acoustic velocity.
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In practice, to numerically estimate what is the proper length scale the local environment

has negligible effect to the phonon carriers. we use the κL calculated from harmonic mass-

disorder scattering and anharmonic scattering within VCA framework to see the strength of

size effect. As shown in figure 4.4, Simply by comparing these two distributions, a qualitative

estimation of the applicability of linear extrapolation scheme can be derived. In principle,

one with stronger anharmonicity would exhibit smaller onset size to apply the linear ex-

trapolation since soon anharmoncity become the most dominant scattering mechanism. By

comparing PbTe-Se to SiGe in figure 4.5, we can clearly see in SiGe, due to its weak anhar-

monicity, the onset point to apply linear extrapolation is far larger than PbTe-Se. And in

our MD simulation we also find it is extremely hard to converge Si-Ge and underestimated

thermal conductivity is observed due to the significant contribution from long wave-length

vibration while PbTe-Se is dominated by anharmonicity. We then use the extrapolated

thermal conductivity to derive the κL with respect to alloy concentration of PbTe-Se.

4.3 The Effect of Configuration on Anharmonicity

By applying the extrapolation scheme, our EMD simulation shows great match to the experi-

mental results as depicted in figure 4.6. The first thing we are interested here is to understand

what cause this overestimation using VCA in PbTe-Se but Si-Ge. To study this effect, we

use MD to simulate VCA by using averaged FCT but explicit mass distribution. In other

words, all of the bond has the same strain while each atom preserves its own atomic mass to

introduce mass disorder effect. We compare the following 3 scenarios: 1) SiGe/PbTe-Se with

explicit mass and explicit FCT depending on the configuration 2) SiGe/PbTe-Se with ex-

plicit mass and same averaged FCT. 3) SiGe/PbTe-Se with same averaged mass and explicit

FCT. All of the cells are computed in a 4x4x4 FCC supercell with random configuration.

By directly comparing these scenarios in MD, we are able to distinguish the effect from

mass disorder and strain disorder, which is configuration dependent FCT. The result is

shown in table 4.1. The result clearly explains the reason of overesitmation in VCA is

due to the lack of description for strain disorder. Due to small mass contrast in PbTe-Se,
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Figure 4.6: κL calculation by VCA for Si-Ge in VCE(square) and experimental(triangle)[94]

and DFPT from Garg et. al.[39](circle)

mass disorder is fairly small in terms of reducing thermal conductivity. In contrast, Si-Ge

shows strong mass disorder effect which further corroborate the observations that why VCA

excellent match to experimental data. To dig deeper on how strain disorder affect the thermal

conductivity and how it interplays with the environmental configurations , we calculate

phonon dispersion of FCC PbTe-Se and Si-Ge supercell with concentration corresponding to

PbTe0.75Se0.25/Si0.75Ge0.25 and PbTe0.25Se0.75/Si0.25Ge0.75 using averaged FCTs and explicit

FCTs from VCE.

As can be seen in figure 4.7, for Si-Ge, the differences between VCA and explicit phonon

is fairly small near the long wavelength area and the change of concentration barely affect

the acoustic mode in Si-Ge. However, there are significant differences between VCA and

explicit supercell calculations for PbTe0.75Se0.25 and PbTe0.25Se0.75. The significant imaginary

mode in PbTe0.75Se0.25 shows strong phonon softening after the doping of Se atoms. From
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Table 4.1: κL(W/mK) for Si-Ge and PbTe-Se with different methods

Case Si-Ge PbTe-Se

Exp. Mass/Exp. FCT 0.97 0.81

Exp. Mass/Avg. FCT 1.23 1.52

Avg. Mass/Exp. FCT 113 0.86

partial phonon density of state and phonon mode in figure 4.7(d), it clearly shows the

coupling between Pb which is closest to Se and Se atom induce strong ferroelectric-like

instability and hence significant phonon scattering is expected to be observed. On the

other hand, in PbTe0.75Se0.25 FCC cell, no imaginary mode is observed. The evidence above

clearly demonstrate how local environment would significantly affect vibrational properties

in random alloys, while VCA can hardly capture these effects. To intuitively describe why

Te rich alloys posses stronger phonon softening effect than Se rich one, we first use VCE

to generate a defect in 512 parent compound for Si-Ge and PbTe-Se. Figure 4.8 gives on-

site FCT minus pure compound on-site force constant. Unlike Si-Ge which barely change

their on-site FCT after substitution, Se substitute has a significant softening of their on-site

FCT and thus a flatter on-site potential well than Te substitute. This is a direct result of

much weaker interaction between Pb and Se compared to Pb and Te and leads to unstable

vibrational modes in Te rich alloys as depicted in Figure 4.7. Meanwhile, to understand

the source of strong flattening, we calculate phonon dispersion of FCC PbTe0.75Se0.25 cell

with lattice constant identical to PbTe0.25Se0.75 and no imaginary modes are found. The

absence of imaginary modes clearly shows size effect reinforce the configuration disorder

effect in phonon softening by trapping a small Se atom in a large PbTe cell. This result

also explains why VCA shows relatively better prediction of κL near PbSe end but deviated

significantly near PbTe end. At near PbSe end, the thermal conductivity drop is mainly due

to the mass disorder perturbation as evidenced by small dispersion change. However, at near

PbTe end, on top of mass disorder, configuration disorder brings in strong anharmonicity

manifested by imaginary mode, and thus stronger scattering. Our calculations gives clear and
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direct evidences on why incorporating configuration dependent force constant is necessary to

reproduce scattering mechanism for accurate thermal conductivity calculations. To achieve

phonon gas electron crystal for high performance thermoelectric materials, common belief

of alloying effect is to bring down kl mainly through mass disorder scattering. However,

our study of PbTe-Se shows force constant disorder plays important role to further lower

thermal conductivity and its effect can be observed simply by calculating phonon dispersion

of few supercells. This study process can thus serve as a guideline for better design of

thermoelectrics by introducing stronger force constant disorder.
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Figure 4.7: (a) and (b) shows phonon dispersion of Si0.75Ge0.25 and Si0.25Ge0.75, respectively.

Solid line is the direct calculation of explicit FCC random cell from VCE, while dashed line

is calculated by VCA. Same phonon dispersion comparison is calculated for (c)PbTe0.25Se0.75

and (d)PbTe0.75Se0.25. Total density of state and partial density of state of Pb2 is plotted in

solid and dashed line, respectively. FCC cell and one of three degenerated imaginary modes

at gamma point is depicted in inset.
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Figure 4.8: Calculated on-site FCT of defect and its surrounded atom minus parent com-

pounds’ on-site FCT. Inset shows the on-site potential curve 1
2
Φaa

defu
2 to visualize the dif-

ferneces. The deviation of defect’s on-site energy from parent compound clearly shows the

substitute effect is more drastic in PbTe-Se than Si-Ge
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CHAPTER 5

Potential Applications of VCE

We have successfully demonstrated VCE as the unique tool to handle thermal conductivity

in alloys by constructing accurate PES model incorporating explicit configurational degrees

of freedom. With an accurate PES which can describe materials in realistic situations, great

amount of applications can be reached beyond thermal conductivity. One of the valuable

applications is calculations of free energy for alloys at finite temperature.

5.1 Introduction

Free energy is one of the most important thermodynamic properties. With accurate free

energy in hand, one can quickly derive thermal expansion, heat capacity, compressibility

and most importantly, the phase transition condition. A common picture to understand

phase transition can be understood as the process that materials transit from higher Gibbs

free energy to minimum one as depicted in figure 5.1. From grand canonical, Gibbs free

energy can be expressed as the function in the phase characterized by temperature and

pressure:

G(T, P ) = U − TS + PV (5.1)

where U , T , S, P and V are the internal energy, temperature, entropy, pressure and volume,

respectively. Although often time Gibbs free energy is a much better phase transition indi-

cator given the fact that both temperature and pressure are experimentally measurable and

controllable quantity. However, controlling pressure turn out is a computationally demand-

ing process in atomic simulations compared to fixed volumes. An alternative free energy
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Figure 5.1: Schematic illustration of phase transition. The phase transition occurs at condi-

tion X where Gnew(solid line) is lower than Gold (dahsed line)

commonly used is Helmholtz free energy F , which instead is characterized by temperature

and volume,

F (T, V ) = U − TS (5.2)

Using F is particularly a good approximation to model realistic phase transitions for solids

given the volume expansion in solid usually are small. The Helmholtz free energy of alloys

can be written as,

F (x, T ) = ∆Umix(x, T )− T [∆Sideal
mix (x) + ∆Sxs(x, T )] (5.3)

where ∆Sideal
mix for binary alloys can easily be derived as:
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∆Sideal
mix = −kB[x log x+ (1− x) log(1− x)] (5.4)

∆Emix and ∆Sxsmix is a mixing energy and excess entropy which is composed by 1) Mixing

energy and mixing entropy at zero temperature, 2) electron excitation energy and mixing

entropy, 3) the mixing energy and entropy from spin which is directly related to magnetism

and 4) mixing energy and entropy from atomic vibrations. In semiconductor and non-

magnetic materials, both 2) and 3) can be ignored in alloy states. For a long time, it is

believed in alloys ∆Sideal
mix is the dominant terms. However, the contribution of vibrational

free energy is found to be significant in recent discoveries. As depicted in figure 5.2 , free

energy without taking vibrational effect into account significantly overestimate the phase

transition temperature in Al-.

5.2 Existing methods

To handle the vibrational effect in alloys with explicit configuration disorder, special quasi-

random structure(SQS)[107] is a popular method. Based on CE, SQS cleverly find the

structure which resembles the true random alloys by exploiting the cut-off range of config-

uration clusters. Phonon property is then calculated based on the derived structure. The

vibrational part of free energy then are computed through harmonic approximation:

F vib = kbT

∫
g(ω) ln(2 sinh

hω

2kbT
)dω (5.5)

The above equation, however, can not handle the anharmonicity which is particularly crucial

for thermal expansion. A simple modification is quasi-harmonic approximation[108], which

incorporates thermal expansion with moderate increase of computational cost. The idea of

QHA is fairly simple yet effective: let phonon frequency be volume dependent by allowing

FCT a function depends on volumes. The effect of volume dependent phonon often are

captured by the Gruneisen parameter[109],
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γjq = −∂ logωjq
∂ log V

(5.6)

which can be calculated from first principle calculations. Though SQS work well along with

QHA in wide range of materials, there are still some issues limiting their applicabilities. First

issue is related to the adoption of SQS. It is known some materials can hardly be modeled

by small SQS, especially for those which has relatively strong long-range force. This can

be easily examined if there is slow convergence of effective cluster interactions in CE. These

large cells would make calculations of FCT impractical as we discussed previously in Chapter

3. Second issue is about QHA. Though being reliable for most of the case, the Achilles’ heel

of QHA is lack of the ability to handle dynamically unstable materials. As many metals

with BCC structure at high temperature, they have elastic constant violating the Born

stability condition that materials which would simply fall flat at zero temperature. These

materials can easily be identified with their characteristic imaginary modes. These imaginary

modes can be intuitively understood by setting up a double well potentials. As depicted in

figure 2.3, the equilibrium position at finite temperature(which is the hill-top between two

valley) is not the energy minimum at zero Kelvin. This negative potential energy curvature

caused imaginary mode and is ill-defined in QHA. The renormalization phonon[110, 111] has

been developed to address this issue by sampling harmonic phonon at high temperature to

construct the temperature or average displacement sensitive effective harmonic potentials to

remove the imaginary modes. However, these methods tend to specialize on specific materials

and specific temperature range rather than a general applicable solution. And again, the

uncontrolled approximation approach also makes it hard to be optimized when discrepancy

is observed.
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5.3 Free energy calculation with VCE

To solve above issues in one-shot and construct a general formalism to accurately acquire

anharmonic lattice vibrations in alloys, we can use VCE to model PES of alloys. With com-

pact representation of vibrational property thanks to the configurational dependent force

constant, VCE can easily infer accurate FCTs for large supercell with arbitrary random

atomic configurations. This elegantly release us from the computational constraints on SQS.

To handle anharmoniciy in free energy calculations, we apply thermodynamic integration,

a well established and robust method which can take in arbitrary high order vibrational

effects. Due to the path independent property of free energy, one can get the full free energy

by integrating along arbitrary path from any referential points A common approach is first

separating potential energy Uλ into Uhar and Uanh as:

Uλ = λUhar + (1− λ)Uvce (5.7)

Unlike QHA calculate the harmonic potential by extracting FCT from ground state, thermo-

dynamic integration allows one to choose referential point on one’s own will. One can thus

choose a well-defined harmonic potential well Uhar as the referential starting point. Find-

ing the renormalized phonon modes is the underlying idea among all methods developed

to find the well-defined harmonic potentials. Methods including self-consistent phonon ab-

initio lattice dynamics(SCAILD)[110], temperature dependent effect potential(TDEP)[111]

are well-known methods to find harmonic phonons incorporating temperature effect to get

rid of imaginary modes in dynamically unstable materials. Unlike above mentioned method

that renormalized harmonic part is the sole contribution for free energy, and thus sophisti-

cate sampling schemes are required. In thermodynamic integration, a rough approximation

is enough. In our prototypical test, we can quickly generate large random displacement con-

figuration with its root mean square roughly equal to the corresponding displacement from

equation 2.38. As demonstrated in Figure 5.3, these configurations can thus be served as the
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training data which incorporate temperature effects to remove imaginary mode. Artificial

free energy Fλ then are calculated along the path from F (Uhar) to F (Uvce):

Fvce = Fhar +

∫ 1

0

∂Fλ
∂λ

(5.8)

By definition, Helmholtz free energy can be calculated from corresponding potential by:

Fλ = kT lnZλ (5.9)

Where Z is the partition function can be obtained from potential energy with:

Zλ =

∫
drNe(−β(Uλ) (5.10)

, and ∂Fλ/∂λ can be derived from:
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Figure 5.2: Phase transition calculation from [106] for Al-Sc intermetallic compounds. The

inclusion of vibrational disorder effect significantly match much better to the experimental

results compared to configuration disorder only calculations
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Figure 5.3: The phonon dispersion calculated by fitting FCTs with different displacement

training structure. The dashed line is calculated from small displacement which would

recover the true PES while solid line is calculated from large displacement which resembles

displacement at high temperature to remove the imaginary part of phonon dispersion
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CHAPTER 6

Conclusions

Due to the strong need of functional materials with exceedingly high performance and astro-

nomically large number of materials, discovering solely from intuition and experiences can

hardly catch up the iteration speed. Thanks to the recent advancement of computational

powers and techniques, the idea of virtual lab has been demonstrated as an important ap-

proach to narrow down the required exploratory process and offer meaningful insight and

guidance. The recent advancement of both computational techniques and powers makes the

idea of virtual lab no longer an distant goal. Well limited by calculating 0 Kelvin and perfect

crystalline materials set a hard cap to extend first principle calculations to directly quantify

materials properties under realistic conditions. To extend the modern first calculation meth-

ods, in this report, we demonstrated an efficient and accurate multi-scale scheme to model

realistic materials from first-principles calculations. Our VCE model shows by combining

lattice dynamics and cluster expansion, one can actually construct a PES model to explicitly

incorporate both vibrational and configurational degree of freedoms. The fact that both LD

and CE are exact methods, as a combination of both, the exact property of VCE allows

controlled approximation for straightforward tuning between desired accuracy and computa-

tional cost. This PES model can then be used as the surrogate model of DFT calculations to

rapidly sample materials with both thermal and configuration disorder. Our VCE model is

built and parameterized from DFT calculations to incorporate the power of parameter free

calculations. Given the fact that DFT calculations is expensive while the dimension of our

parameter space is large, group symmetry is applied for dimension reduction and compres-

sive sensing is adopted to efficiently, robustly and accurately infer the sparse representation

of our model. By comparing Si-Ge and PbTe-Se with random configurations, we showed our
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VCE can accurately predict the force calculated from DFT. The phonon comparisons of FCC

Si-Ge and PbTe-Se between DFT and VCE again demonstrated that the vibrational prop-

erty is also well preserved. Unlike empirical potentials which requires well tailored functional

form, thanks to the exact form of VCE and compressive sensing to retain large number of

degree of freedoms, VCE is a materials-agnostic model building process for crystalline alloys

and minimum prior knowledge is needed to design the model of PES. Indeed, from Si-Ge to

PbTe-Se, barely any change is needed between these two systems. Unlike other first princi-

ple machine learning models, no sophisticate function design feature selections or concurrent

sampling is needed in VCE. Guided by the underlying assumptions of compressive sens-

ing and our empirical study, randomly displaced atomic displacement on top of low-fidelity

AIMD trajectory of a moderate size supercell with random atomic configurations commonly

yield accurate PES. By using our VCE generated PES incorporating explicit configuration

disorder in lattice MD calculations, We demonstrated explicit configuration disorder is cru-

cial to accurately predict thermal conductivity of PbTe-Se, which is overestimated by VCA

in phonon calculations. Our phonon spectrum study on FCC PbTe-Se further shows this

discrepancy is due to the strong interactions between high order anharmonicity and local

environments. In PbTe-Se, it is manifested by the strong ferroelectric-like damping which

cause significantly enhanced anharmonic scattering. A quick glance of how our VCE has

potential to be a powerful tool to calculate free energy for complicated alloy systems is also

shown. We propose that by sampling large displacement, it is possible to generate a harmonic

potential without imaginary modes in dynamically unstable materials. The free energy can

then be calculated through thermodynamic integration along this unphysical path from this

harmonic potentials all the way to full VCE potentials. It is a robust, facile, and most im-

portantly, general process to quantify free energy in alloy systems. We belive the accurate,

materials-agnostic, and effecient evaluation properties in VCE can unlock a wide range of

thermal properties calculations for alloys which can hardly be matched by exisiting methods.
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