
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Mechanisms for generating realistic annotated Internet topologies

Permalink
https://escholarship.org/uc/item/5nj0b1k3

Author
Mahadevan, Priya

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nj0b1k3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Mechanisms for Generating Realistic Annotated Internet Topologies

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Priya Mahadevan

Committee in charge:

Professor Amin Vahdat, Chair
Professor Kimberly Claffy
Professor Bill Lin
Professor Ramesh Rao
Professor Stefan Savage
Professor Alex Snoeren

2007

Copyright

Priya Mahadevan, 2007

All rights reserved.

The dissertation of Priya Mahadevan is approved, and it is

acceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2007

iii

DEDICATION

To my parents for always believing in me

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgments . xi

Vita . xiv

Abstract . xvi

Chapter 1 Introduction . 1
1.1. Importance of Topologies . 3
1.2. Requirements of a Topology Generator 6
1.3. Limitations of Current Topology Generators 9
1.4. Hypothesis and Contributions 11
1.5. Organization . 13

Chapter 2 Background and Related Work . 15
2.1. Topology Metrics . 17

2.1.1. Average degree . 18
2.1.2. Degree distribution . 18
2.1.3. Joint degree distribution 19
2.1.4. Clustering . 20
2.1.5. Rich club connectivity 21
2.1.6. Distance . 22
2.1.7. Betweenness . 23
2.1.8. Spectrum . 24

2.2. History of Topology Generators 26
2.3. Acknowledgments . 29

Chapter 3 Understanding Interplay Among Metrics 30
3.1. Constructing AS Graphs . 31

3.1.1. Limitations and validity of our results 35
3.2. Metric Results for the Three Topologies 37

3.2.1. Average degree . 37
3.2.2. Degree distribution . 39

v

3.2.3. Joint degree distribution 39
3.2.4. Clustering . 42
3.2.5. Rich club connectivity 44
3.2.6. Distance . 44
3.2.7. Betweenness . 46
3.2.8. Spectrum . 49

3.3. Implications . 50
3.4. Acknowledgments . 51

Chapter 4 dK-Series: Using Degree Correlations to Analyze and Generate Topolo-
gies . 52
4.1. Requirements for Defining a Unifying Property Series 54
4.2. dK-series and dK-graphs . 56
4.3. Constructing dK-graphs . 61

4.3.1. Algorithms to construct dK-graphs 61
4.3.2. dK-random graphs . 69
4.3.3. dK-space explorations 71

4.4. Evaluation . 74
4.4.1. Algorithmic comparison 75
4.4.2. Topology comparison . 79

4.5. Discussion and Summary . 83
4.6. Acknowledgments . 87

Chapter 5 Rescaling Topologies . 89
5.1. Challenges in Rescaling . 90

5.1.1. Internet topology input data 94
5.2. 1K-rescaling . 100
5.3. 2K-rescaling . 102

5.3.1. 1K + r-rescaling . 104
5.4. Results . 106

5.4.1. 1K-rescaling for AS-graphs 106
5.4.2. 1K-rescaling for router-graphs 107
5.4.3. 2K rescaling for AS-graphs 109
5.4.4. 1K + r-rescaling for AS-graphs 109
5.4.5. 2K-rescaling for router-graphs 111
5.4.6. 1K + r-rescaling for router-graphs 111

5.5. Summary . 113
5.6. Acknowledgments . 114

Chapter 6 Annotating Topologies . 115
6.1. AS-membership Annotations 117
6.2. Results . 120
6.3. Summary . 124

vi

6.4. Acknowledgments . 124

Chapter 7 Conclusions and Future Work . 125
7.1. Contributions . 125
7.2. Future Work . 131

Bibliography . 134

vii

LIST OF FIGURES

Figure 2.1 Methodologies of network topology research. 16

Figure 3.1 Node degree distributions P(k) for skitter, BGP and WHOIS
graphs. 40

Figure 3.2 Normalized average neighbor connectivity knn(k)/(n − 1). . . 42
Figure 3.3 Local clustering C(k). 43
Figure 3.4 Rich club connectivity φ(ρ/n). 44
Figure 3.5 Distance related metrics . 45
Figure 3.6 Node betweenness B(k)/n/(n− 1). 47
Figure 3.7 Logarithm of normalized link betweenness B(k1,k2)/n/(n − 1)

on a log-log scale. 48
Figure 3.8 Spectrum - Absolute values of top 10% of eigenvalues ordered

by their normalized rank: normalized rank is node rank divided
by the total number of nodes in the graph. 49

Figure 4.1 The dK- and dK-random graph hierarchy. The circles represent
dK-graphs, whereas their centers represent dK-random graphs.
The cross is the nK-graph isomorphic to a given graph G. . . . 56

Figure 4.2 Picturizations of dK-graphs and the original HOT graph illus-
trating the convergence of dK-series. 57

Figure 4.3 dK-preserving rewiring for d = 0, 1, 2. 66
Figure 4.4 2K-space exploration . 71
Figure 4.5 Comparison of 2K-graph-constructing algorithms in skitter. . . 76
Figure 4.6 Comparison of 2K- and 3K-graph-constructing algorithms. . . 77
Figure 4.7 Comparison of distance distribution in dK-random and skitter

graphs. 80
Figure 4.8 Betweenness in dK-random and skitter graphs. 81
Figure 4.9 Clustering in dK-random and skitter graphs. 82
Figure 4.10 Varying clustering in 2K-graphs for skitter. 83
Figure 4.11 Comparison in dK-random and HOT graphs 84

Figure 5.1 Rescaled and non-rescaled 0K-graph 91
Figure 5.2 Rescaled and non-rescaled 1K-graph 92
Figure 5.3 dK-graphs of size 2000 and the original HOT graph (939 nodes)

illustrating rescaling . 93
Figure 5.4 PDF of degree distribution observed in historical skitter data . . 95
Figure 5.5 PDF of degree distribution observed in skitter router-level topol-

ogy of different sizes . 96
Figure 5.6 PDF of assortativity observed in skitter router-level topology of

different sizes . 97
Figure 5.7 Degree distribution for 1K-rescaled skitter AS graphs 107

viii

Figure 5.8 Degree distribution for 1K-rescaled HOT graphs 108
Figure 5.9 Distance distribution for HOT using 1K-rescaling 109
Figure 5.10 Distance distribution for skitter topologies using 2K-rescaling . 111
Figure 5.11 Distance distribution for 2K-rescaled HOT topologies 112
Figure 5.12 Betweenness distribution 2K-rescaled HOT topologies 113

Figure 6.1 Generating a router-level topology, where each router is anno-
tated with AS-membership . 118

Figure 6.2 PDF of number of routers in an AS class 120
Figure 6.3 Distance distribution in skitter-router topology for original and

generated graphs . 122
Figure 6.4 Degree distribution for routers belonging to AS class 0 122
Figure 6.5 Degree distribution for routers belonging to AS class 1 123
Figure 6.6 Degree distribution for routers belonging to AS class 2 123

ix

LIST OF TABLES

Table 3.1 Comparison of graphs built from different data sources. The
baseline graph GA is the BGP tables graph. Graph GB is the
other graph listed in the first row. 32

Table 3.2 Summary of important metrics for skitter, BGP and WHOIS
topologies . 38

Table 4.1 The summary of dK-series. 69
Table 4.2 Scalar graph metrics notations. 74
Table 4.3 Scalar metrics for 2K-random HOT graphs generated using dif-

ferent techniques. 75
Table 4.4 GCC sizes of 2K-random graphs generated using different tech-

niques. 75
Table 4.5 GCC sizes of 3K-random graphs generated using different tech-

niques. 78
Table 4.6 Scalar metrics for 3K-random HOT graphs generated using dif-

ferent techniques. 78
Table 4.7 Numbers of possible initial dK-randomizing rewirings for the

HOT graph. 79
Table 4.8 Comparing scalar metrics for dK-random and skitter graphs. . . 79
Table 4.9 Scalar metrics for 2K-space explorations for skitter. 81
Table 4.10 Comparing scalar metrics for dK-random and HOT graphs. . . . 83

Table 5.1 Scalar metric values for historic skitter AS-level topologies. . . . 95
Table 5.2 Scalar metrics for 1K-rescaled skitter AS graphs (Section 5.2 . . 106
Table 5.3 Scalar metrics for 1K-rescaled HOT graphs (Section 5.2 108
Table 5.4 Scalar metrics for 2K-rescaled skitter AS topologies 110
Table 5.5 Scalar metrics for skitter using target r rewiring 110
Table 5.6 Scalar metrics for HOT graphs using 2K-rescaling 112
Table 5.7 Scalar metrics for 1K + r-rescaled HOT graphs (Section 5.3.1) 113

Table 6.1 Scalar metric values for router-level topologies annotated with
AS membership . 121

x

ACKNOWLEDGMENTS

The past few years have provided me with opportunities to work and interact with a

diverse set of people who have all contributed to making my graduate school experience

interesting and enjoyable. First and foremost, I would like to thank my advisor, Dr.

Amin Vahdat, for his support, guidance, constant feedback and positive outlook over

these years. Amin has been instrumental in helping me identify and understand research

problems and how to address them. I have learnt a lot from him on how to communi-

cate research ideas better by way of effective writing and presentation skills. I would

especially like to thank him for his constant encouragement to work towards goals that

I would not have otherwise targeted.

I am fortunate to work with my committee members - Dr. Stefan Savage, Dr.

Alex Snoeren, Dr. k claffy, Dr. Bill Lin and Dr. Ramesh Rao. They have provided

valuable feedback that has helped make this dissertation better. I would also like to

thank Dr. Geoff Voelker and Dr. George Varghese for providing insightful comments

and feedback during my time at UCSD. Dr. Jeff Chase, Dr. Carla Ellis and Dr. Alvy

Lebeck helped shape my initial years in graduate school at Duke University and I am

ever grateful to them.

I would like to thank Dr. Dmitri Krioukov for his guidance and critical feed-

back. I would also like to thank Bradley Huffaker, Dr. Marina Fomenkov and other

researchers from CAIDA for their help. Colleen Shannon and David Moore have been

very supportive and have given useful feedback on numerous paper drafts and practice

talks.

Dr. Joann Ordille has been a great mentor throughout my graduate school

days and has been a constant source of encouragement. I am grateful to Dr. Jeanne

Ferrante for being a wonderful motivator and for providing me the opportunity to attend

the Grace Hopper Conference. The administrative staff at both UCSD and Duke Univer-

sity have been extremely helpful, in particular Julie Conner, Michelle Panik and Diane

Riggs.

xi

I would like to thank my office mates and colleagues who have made my stay

in graduate school fun - Kashi Vishwanath, Jeannie Albrecht, Alvin Auyong, Barath

Raghavan, Diwaker Gupta, John McCullough, Chip Killian, Dr. Dejan Kostić, Qing

Zhang, Kiran Tati, Ranjita Bhagwan, Alper Mizrak, Jay Chen, Sangmin Lee, Dr. Flavio

Junqueira, Dr. Renata Texeira, Dr. Adolfo Rodriguez, Dr. Lipyeow Lim, Lisa Cowen,

Roshni Malani, Patrick Verkaik, James Anderson and other sysnet folks. My special

thanks to Priyanshu Jain, Reena Mathew and Kavitha Kannan for their wonderful com-

pany, constant support and providing the much needed distractions outside of work.

None of this would have been possible without the support of my family. The

values of hard work, dedication and sincerity that my parents have inculcated in me

have stood me in good stead during my days in graduate school. Their unconditional

support, love and belief in me have made me what I am today. My brother Prashant has

been motivating in his very unique way. His eternal optimism has helped me see the

brighter side of things. I am deeply indebted to Rahul for always being there for me and

helping me overcome all obstacles. No amount of thanks will ever do justice to his love,

patience, guidance, motivation and selflessness.

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings

of the ACM SIGCOMM Computer Communications Review (CCR), January 2006, Ma-

hadevan, Priya; Krioukov, Dmitri; Fomenkov, Marina; Huffaker, Bradley; Dimitropou-

los, Xenofontas; claffy, kc; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in the Proceedings of

the ACM SIGCOMM Computer Communications Review (CCR), January 2006, Ma-

hadevan, Priya; Krioukov, Dmitri; Fomenkov, Marina; Huffaker, Bradley; Dimitropou-

los, Xenofontas; claffy, kc; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

xii

Chapter 4, in full, is a reprint of the material as it appears in the Proceedings

of the ACM SIGCOMM Conference, Pisa, Italy, September 2006, Mahadevan, Priya;

Krioukov, Dmitri; Fall, Kevin; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapters 5 and 6, in full, are a reprint of the material as it appears in the Pro-

ceedings of the ACM SIGCOMM Conference, Kyoto, Japan, August 2007, Mahadevan,

Priya; Hubble, Calvin; Krioukov, Dmitri; Huffaker, Bradley; Vahdat, Amin. The disser-

tation author was the primary investigator and author of this paper.

xiii

VITA

2007 Doctor of Philosophy
University of California, San Diego
San Diego, CA

2003 Master of Science
Duke University
Durham, NC

PUBLICATIONS

Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, Bradley Huffaker and Amin Vahdat,
“Orbis: Rescaling Degree Coorelations to Generate Annotated Internet Topologies.” In
Proceedings of the ACM SIGCOMM Conference, Kyoto, Japan, August 2007.

Priya Mahadevan, Dmitri Krioukov, Kevin Fall and Amin Vahdat, “Systematic Topol-
ogy Analysis and Generation Using Degree Correlations.” In Proceedings of the ACM
SIGCOMM Conference, Pisa, Italy, September 2006.

Priya Mahadevan, Adolfo Rodriguez, David Becker and Amin Vahdat, ”MobiNet: A
Scalable Emulation Infrastructure for Ad Hoc and Wireless Networks.” ACM SIGMO-
BILE Mobile Computing and Communications Review (MC2R), April 2006.

Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Bradiley Huffaker, Xenofontas
Dimitripoulos, kc claffy and Amin Vahdat, ”The Internet AS-Level Topology: Three
Data Sources and One Definitive Metric.” ACM SIGCOMM Computer Communications
Review (CCR), January 2006.

Aameek Singh, Arup Acharya, Priya Mahadevan and Zon-Yin Shae, ”SPLAT: A Unified
SIP Services Platform for VoIP Applications.” Wiley’s International Journal of Commu-
nication Systems (IJCS) (Special Issue on VoIP - Theory and Practice), 2006.

Priya Mahadevan , Adolfo Rodriguez, David Becker and Amin Vahdat, ”MobiNet: A
Scalable Emulation Infrastructure for Ad Hoc and Wireless Networks.” International
Workshop on Wireless Traffic Measurements and Modeling (WiTMeMo) in conjunction
with MobiSys, Seattle, WA, June 2005.

Aameek Singh, Priya Mahadevan , Arup Acharya, and Zon-Yin Shae, ”Design and Im-
plementation of SIP Network and Client Services.” In Proceedings of the 13th Interna-
tional Conference on Computer Communication and Networks (ICCCN), Chicago, IL,
October 2004

xiv

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan , Dejan Kostic, Jeff Chase,
and David Becker, ”Scalability and Accuracy in a Large-Scale Network Emulator.”
In Proceedings of 5th Symposium on Operating Systems Design and Implementation
(OSDI), Boston, MA, December 2002.

FIELDS OF STUDY

Computer Systems

xv

ABSTRACT OF THE DISSERTATION

Mechanisms for Generating Realistic Annotated Internet Topologies

by

Priya Mahadevan

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Amin Vahdat, Chair

Researchers involved in designing network services and protocols rely on re-

sults from simulation and emulation environments to evaluate correctness, performance

and scalability. To better understand the behavior of these applications and to pre-

dict their performance when deployed across the Internet, the generated topologies that

serve as input to simulated and emulated environments must closely match real network

topologies with respect to a wide range of graph metrics proposed in the literature. Val-

ues for a particular graph metric may capture a graph’s resilience to failure or its routing

efficiency. Unfortunately, there are typically no known algorithms to generate graphs

matching one or more proposed metrics and there is little understanding of the relation-

ships among individual metrics or their applicability to different settings. Furthermore,

the generated topologies must also be annotated with observed network characteristics

that, for instance, include latencies for the edges in a router-level graph, and AS mem-

bership for the nodes in the graph. Finally, it should be possible to rescale a given

topology to a variety of sizes while still maintaining its essential characteristics.

We present a new, systematic approach for analyzing and synthesizing net-

work topologies. We first introduce a unifying series of properties, the dK-series of

probability distributions, specifying all degree correlations within d-sized subgraphs of

a given graph G. Increasing values of d capture progressively more properties of G and,

xvi

in the limit, describes the graph in its entirety. Using the dK-series, we construct ran-

dom graphs and demonstrate that these graphs reproduce, with increasing accuracy, all

important metrics of measured and modeled Internet topologies. The nature of the dK-

series implies that it will also capture any future metric that may be proposed. Further,

we scale the generated graphs to a wide range of sizes while still preserving the graph’s

structure. Finally, we propose techniques to annotate these topologies and specifically

describe our scheme to annotate Internet router graphs with AS-membership as well as

whether a router is peering or internal.

xvii

Chapter 1

Introduction

The Internet has revolutionized our computing capabilities and communica-

tions like nothing before. From its initial form, ARPANET, that had 4 computers con-

nected to form a network in 1969, the Internet today has grown to several hundred mil-

lion hosts. While the exact number of hosts in the Internet is unknown, one study [45]

observed 434 million hosts in February 2007. It is estimated that 17.2% of the world’s

population now has access to the Internet [43]. There are approximately 410 million

Internet users in Asia alone, followed by 320 million users in Europe [43].

With this unprecedented growth, both in the number of hosts and the num-

ber of users, in the past decade, it is only natural that the number of applications and

protocols developed for the Internet has also grown exponentially. Some of the early

applications included electronic mail, file transfer and remote login. Over the years

however, these simple applications have given way to far more complex, large-scale dis-

tributed applications, capable of supporting millions of simultaneous users. Examples

of large scale distributed systems and services include online shopping applications, ser-

vices for making flight and hotel reservations, online banking and trading tools, instant

messaging applications, audio and video conferencing capabilities and realtime audio

and video streaming.

These services are playing an increasingly important role in our daily lives,

making their security, reliability, and performance of paramount importance. Therefore,

1

2

system designers and application developers need to ensure that these applications meet

certain scalability, usability, availability and reliability requirements. Having built these

applications and services, the developers cannot directly deploy them full-fledged over

the Internet. Ideally, they would like to evaluate these applications in a realistic but

controlled environment in order to gain more confidence about the behavior of these

applications when actually deployed over the Internet.

Unfortunately, the scale and complexity of the Internet makes it nearly impos-

sible to evaluate network services under a range of realistic conditions. These conditions

include evaluating application behavior under expected workloads, as well as over other

network conditions such as sudden bursts in traffic, lossy links, etc. It is also critical to

understand how these applications perform when unexpected events occur. For exam-

ple, one would like to understand application behavior when there is a partition in the

network, or when the service is subject to a distributed denial of service (DDoS) attack.

While simulation and emulation tools are available for evaluating network ap-

plications, one key limitation of such environments is their inability to capture the rich

and complex characteristics of real networks. Typically, one needs to specify as input

several important parameters such as the input network topology over which the appli-

cation is to be evaluated, annotations to this topology such as link latencies, bandwidths

and loss-rate for all edges in the topology, queue sizes and drop policies for all the

routers, background traffic flows across the topology, congestion levels, network failure

models and so forth. In addition, one might also have to supply application specific

parameters. For example, while evaluating a web server, application specific parame-

ters include file sizes requested by the web clients and arrival rate of all the requests

at the web server. Determining which input parameters to specify is dependent on the

application being evaluated and the research questions being investigated [32].

Modeling each of the above components such that they reflect known and ob-

served Internet conditions is difficult and challenging in its own right. In this disserta-

tion, we focus on modeling annotated network topologies. We discuss the limitations of

current methodologies in generating network topologies and propose novel techniques

3

for producing realistic random graphs that closely resemble measured network topolo-

gies.

1.1 Importance of Topologies

Knowledge of network topologies is crucial for understanding and predict-

ing the performance, robustness and scalability of network protocols and applications.

Routing and searching in networks, robustness to random network failures and targeted

attacks, the speed with which worms spread in a network, strategies for traffic engineer-

ing and network management all depend on the topological characteristics of a given

network. In this section, we briefly describe how topologies impact different aspects of

networking.

Evaluating and predicting application performance and behavior: Re-

searchers and system developers aiming to improve the performance and reliability of

Internet applications and protocols face a daunting task when it comes to evaluating

their design. The developer must implement their proposed solution and evaluate it un-

der conditions that match realistic Internet scenarios. There are typically three options

for performing such an evaluation: live network deployment, simulation, and emulation.

Live deployment involves running the application across hosts that are directly

connected on the Internet. PlanetLab [77] and VINI [6] are examples of such testbeds.

Live deployment has the benefit of offering realistic workloads. Additionally, evaluat-

ing the application over hosts spread across the Internet also provides confidence that

the application will perform well if actually deployed across the Internet. However, re-

sults produced in this environment are difficult to repeat as network conditions on the

Internet change continuously. Isolating faults that manifest themselves only under cer-

tain conditions require running experiments in a tightly controlled manner, which is not

feasible in the Internet. Moreover, deploying and administering development software

at more than a handful of Internet sites is a strenuous task.

Simulators such as ns2 [73] have been widely adopted by the networking com-

4

munity as an alternative technique to live deployment. Simulators offer more control

over the target platform, and allow repeatability of experiments, which makes debug-

ging and fault isolation easier. However, simulators typically have limited scalability

and usually require rewriting the software in a language specific to the simulation frame-

work. Rewriting the application for the simulator not only leads to increased develop-

ment efforts, but also masks key details of real implementation. Further, the effect of

deploying the application over a real operating system, sending real packets over a real

TCP/IP stack is lost. Evaluating the application in such an environment usually leads to

differences in observed behavior as compared to when deployed over the Internet.

Emulators combine the repeatability of simulation with the realism of live

deployment. Examples of large-scale emulators include [24, 102] as well as our own ef-

fort, ModelNet [98]. Emulators allow users to run unmodified applications on commod-

ity operating systems while subjecting the applications to some user-specified network

topology and characteristics. For example, in ModelNet, users specify a target topology

over which they would like to run their tests; ModelNet nodes running the application

are configured to route their packets through a set of ModelNet core nodes, which co-

operate to subject the traffic to the bandwidth, congestion constraints, latency, and loss

profile of each hop in the target network topology.

As in all simulators, emulators, and even live deployment testbeds such as

VINI [6], the user is required to specify as input the target topology over which the

application is to be evaluated along with parameters for latency, bandwidth, etc., for

each link in the target topology.

Both the structure of the network, i.e. how the nodes are interconnected in

the network, as well as its characteristics such as latency and loss-rate play a signifi-

cant role in application behavior and performance. Even minor variations in network

structure and characteristics can impact application and protocol behavior and perfor-

mance [81, 32, 52, 51]. Consider the case where an application running on a node s is

communicating with another application running on node d. If the shortest path between

nodes s and d comprises of 5 hops, then the application packets from s have to traverse

5

all of these 5 hops before reaching d. Now, if the topology is modified so that s and d are

separated by merely 1 hop, application packets from s to d will have to traverse just this

1 hop and therefore the application behavior in this new topology is likely to be different

from its behavior on the old one. As a result, we might not be able to correctly predict

application behavior if we run our experiments over non realistic topologies. There-

fore, it is crucial to accurately model real observed topologies for realistic evaluation of

wide-area applications and services.

Content distribution networks: Many emerging large-scale applications and

services depend on accurate information about the topology and its characteristics. For

example, content distribution networks such as Akamai [3] and Coral [33] dynamically

redirect each client to the replica that yields the best performance based on the underly-

ing network state. Consider the case when one replica is 5 hops away from the client and

another replica is 10 hops away. In this case, the ability to determine the closest replica

to the client requires knowledge of the underlying topology. With such knowledge, the

system can choose the closest replica to service the client, thus improving performance

at the client site.

Peer-to-peer systems [93, 84, 21, 49, 15] and overlay networks can also incor-

porate information from the underlying network in order to better choose their peers.

For example, for increasing fault tolerance, a host in a peer-to-peer system can choose

peers such that all the paths from the host to all its peers are disjoint.

Traffic Engineering: Topology is also important from the perspective of traffic

engineering [4, 28]. Once the network is deployed, an Internet Service Provider must

map its customer traffic flows onto the physical topology. Traffic engineering provides

the ability to move traffic flows away from the shortest path and onto a potentially less

congested physical path across the service provider’s network. Such a mapping requires

intimate knowledge of the underlying topology. One recent effort [47] uses multiple

paths in the ISP’s network to meet customer demands, adaptively moving traffic from

over-utilized to under-utilized paths.

Routing: Performance of routing protocols critically depend on the network

6

topology [51]. Recent studies have shown that even though Internet-like topologies have

the ability to support efficient routing techniques, the current routing architecture does

not exploit this ability [51, 9]. Researchers have shown that convergence of routing pro-

tocols such as BGP is impacted by the topological structure of the Internet [52, 1]. Thus,

a better understanding of the Internet’s topology will help researchers and engineers de-

velop more efficient routing architectures.

Network Evolution: In addition to the important role played by topology in the

above examples, it is also important to understand the evolution of the network. Based

on the current network structure and its evolution over time, the ability to predict the

structure of the Internet when it, for example, grows to double its current size will help

in developing futuristic technologies and applications. Another important motivation for

understanding the topology is to direct network engineering efforts. If it is known that

certain connectivity structures lead to better fault tolerant networks, then we can target

our engineering efforts to construct topologies with these connectivity properties.

1.2 Requirements of a Topology Generator

For all of the scenarios described in the previous section, one needs to be

able to generate a wide variety of graphs that are structurally similar to real observed

networks. We note here that it is possible to represent the Internet topology at several

levels.

One level is the Internet’s AS topology. An Autonomous System (AS) is a

collection of networks controlled usually by a single entity and that presents a common

routing policy to the Internet. In an AS-level topology, a node represents an AS, while

an edge represents a peering relationship between two ASes. A peering-relationship is

a contractual agreement to exchange traffic directly between the two ASes. There are

two classes of peering relationships: customer-provider and peer-to-peer. In a customer-

provider relationship, one AS acts as a customer while the other AS provides the cus-

tomer with Internet access (usually for a fee). In a peer-to-peer relationship, two ASes

7

mutually agree to connect to each other and thus obtain direct access to each other’s

network. It is important to note that two ASes can peer at multiple points, i.e. they can

connect physically with each other at multiple places. However, in an AS-level topology,

a single edge corresponds to the peering relationship between two ASes. Measurements

of the Internet’s AS-level topology include skitter [48], Route Views [82], and WHOIS

database [44].

Another representation is the Internet’s router topology. Here, a node repre-

sents a router, while an edge between two nodes represents a direct physical connection

between two routers. DIMES [72], Mercator [95], Rocketfuel [92], iPlane [55] and skit-

ter [48] all provide information on the router connectivity map of the Internet. The type

of topology an experimenter needs to use depends on the application under study. For

experiments involving intra-AS routing, one requires an AS-level topology. Evaluating

a web service in an emulator or simulator requires specifying a router-level topology of

the network.

While these measured topologies are publicly available, researchers cannot

restrict their experiments to these measured topologies alone. The reasons are mani-

fold. For example, they may want to explore how their application or protocol performs

with minor variations in the topology to better understand application sensitivity to the

current Internet structure.

Consider the case when an experimenter may have developed a new inter-

domain routing protocol and wishes to test its sensitivity to a range of possible deploy-

ments. While the experimenter may test the behavior of his or her protocol relative

to a known Internet AS topology, he or she may also be interested in the sensitivity

of the protocol to other potential (random) topologies that follow similar node inter-

connectivity patterns. If the protocol displays widely varying behavior to these random

graphs (that have similar node inter-connectivity), then it might be concluded that the

protocol’s behavior may not be robust to a range of possible settings. The researcher

might also want to experiment with various ’what-if’ scenarios, such as what if some

of the Tier 1 Internet Service Providers changed their peering arrangements. In this

8

case, the researcher might want to modify the graph specifically to account for the new

peering arrangement and again validate the routing protocol over this new graph.

More importantly, the experimenter may be interested in the behavior of the

protocol under a different scale. For instance, the new routing protocol may be claimed

to be more scalable than existing protocols. In this case, the experimenter would require

access to topologies that display the same local connectivity characteristics, but that

may be much larger than the measured graph. Similarly, the experimenter may require

access to smaller topologies because of scalability limitations in existing simulation

and emulation evaluation environments (or because only smaller scale topologies can

be configured in future deployment environments such as GENI [35]). This scenario

requires the need to evaluate the protocol over random graphs of sizes different from the

measured AS topology.

Thus, in addition to available topologies, we also require the ability to generate

random graphs that are structurally similar to observed graphs and also of a wide range

of sizes. The generated topologies should also support a range of annotations important

to higher-level studies. For instance, nodes in the generated router-level topology should

be annotated with AS membership information to enable studies that account for routing

behavior. Similarly, the business relationships among peering ASes (peering, customer,

etc.) should be included. Without such annotations, Internet routing would have to

default to shortest path between end hosts. Other important annotations include link

latencies, loss rates, and capacities for edges in the router-level topology.

Furthermore, the topology generator should stand the test of time. The Inter-

net is heterogeneous and is undergoing change at a rapid rate [74]. Thus, it is likely

that the Internet topology (both AS- and router-level) might exhibit different connec-

tivity patterns in a few years. Therefore, all proposed algorithms to generate random

graphs matching the Internet’s connectivity characteristics today should also be capable

of reproducing the graph characteristics of the Internet of the future.

9

In summary, a topology generator should be able to perform the following

tasks:

1. Generate random graphs that are structurally similar to the measured topology,

i.e. the generated random graphs should faithfully reproduce all metrics of the

original graph. Additionally, any graph generation algorithm should also be able

to reproduce any metric that may be proposed in the future.

2. Effectively scale the graph sizes while still maintaining the structure of the ob-

served topology.

3. Annotate the generated graphs such that nodes in a router-level topology can be

assigned AS membership, while edges in this graph can be annotated with latency,

capacity and loss-rate.

1.3 Limitations of Current Topology Generators

The state-of-the-art in network topology research can be broadly classified

into the following three categories: (i) developing measurement techniques to map the

Internet’s current topology, (ii) proposing metrics that characterize key properties of

the topology, (iii) developing algorithms to generate graphs that reproduce some of the

metric values of real observed networks.

Over the years, a wide variety of network topology metrics have been sug-

gested to measure the similarity between two graphs. Researchers have shown that

these metrics have a direct influence on the performance and behavior of applications

and protocols. Thus, topology generators aim to produce random graphs that match the

metric values of observed networks.

These important metrics include graph spectrum (the largest and smallest non-

zero eigenvalues provide tight bounds for critical network characteristics including net-

work resilience [54] and network performance [94]), betweenness (closely related to

10

link value [94] and router utilization [54]), distance distribution (or path-length distribu-

tion, a renormalized form of expansion [94]), and clustering (used to compare accuracy

of topology generators [12]).

While all the above metrics are individually interesting, there are a number of

problems with the current set of available network topology properties. First, they derive

from a wide range of studies, and there is no systematic way to determine which metrics

should be used in a given scenario. Second, there are no known algorithms to construct

graphs with desired values for most of the described metrics. Thus, while it is possible

to determine whether two input graphs have, for example, similar distance distribution,

it is currently not possible to generate graphs that precisely reproduce a specified form

of distance distribution. In the same vein, spectrum and betweenness characterize global

graph structure, while known graph-generating algorithms are unable to reproduce these

metrics.

Another important limitation of these metrics is that they are essentially in-

complete. A future metric may be proposed that might impact a certain class of applica-

tions. Identifying such a metric might result in finding that known synthetic graphs do

not match this new metric. In this case, one will have to rewrite the topology generation

algorithm to account for this new metric and this process could go on forever.

Unfortunately, the current state-of-the-art in topology generation does not pro-

duce graphs that reproduce the metrics of real observed topologies. Earlier work shows

that existing tools do not reproduce the complex structure of router-level topologies [54].

Existing AS-level topology generators produce AS-level graphs, representing entire Au-

tonomous Systems as a single node in the graph with links between ASes representing

peering relationships. Furthermore, these tools include either no annotations or use sim-

ple heuristics known not to reflect Internet characteristics. Finally, existing techniques

typically either cannot perform graph rescaling or do not do so in a manner that reflects

known patterns of network evolution.

11

1.4 Hypothesis and Contributions

Given the requirements of a topology generator for producing representative

Internet graphs, the hypothesis of this dissertation is, “It is possible to generate random

graphs of a wide range of sizes that match observed topologies with respect to all metrics

proposed or that may be proposed in the literature.” If out hypothesis is true, it will be

possible to build a topology generator that meets all of the requirements described in

Section 1.2 above.

To verify our hypothesis, we propose a novel methodology for generating In-

ternet topologies. First, we identify a series of graph properties, called the dK-series,

to unify all the set of topology metrics identified in the literature so far. By using the

dK-series as a basis, we propose techniques to generate random graphs that also au-

tomatically reproduce all the metrics of the observed topology. Further, we present

algorithms to generate graphs of sizes vastly different from that of the original graph,

while still maintaining the structural properties of the original graph. Specifically, in

this dissertation, we make the following contributions:

1. We present a finite set of enumerable graph properties, the dK-series, to describe

and constrain random graphs in successively finer detail. In the limit, these prop-

erties describe any graph completely. In our model, we make use of probability

distributions on subgraphs of size d in some given input graph. We call dK-graphs

the sets of graphs constrained by such distributions.

2. We develop and implement new algorithms for constructing random graphs that

match the corresponding distributions of the dK-series. We show that our gener-

ated random graphs automatically match all graph metrics proposed in the liter-

ature as well as any graph metric that maybe proposed in the future. Validity of

the last strong statement follows from the fact that in the limiting case, our syn-

thetic graphs converge to the original: if two graphs are the same, then all their

metrics are the same too. This unique convergence feature makes our approach

12

stand separately from all the previous topology research and concludes the quest

for a single set of definitive topology metrics.

3. We present algorithms to generate graphs of different sizes from the original.

There are a range of possible techniques for performing rescaling; we propose

considering historical Internet connectivity data to inform such rescaling.

4. We present a top-down technique for generating router-level topologies anno-

tated with AS membership. We further classify routers in this topology based

on whether they are peering or internal routers. We compare our randomly gen-

erated, annotated router topologies to observed Internet router topologies and find

close matches for a range of graph metrics proposed in the literature.

Our topology generator will serve as valuable input to a range of research

studies discussed in Section 1.1. We outline some of the cases here. Studying routing

protocol scalability and convergence requires knowledge of both topology and AS rela-

tionships and hence our work can serve as input to such work. Many studies on conges-

tion control protocols employ simple “dumbbell”-style topologies. While such simple

topologies are appropriate starting points, it will be valuable to consider more com-

plex topologies, for instance with more variable round trip times and multiple, changing

bottlenecks. Many overlay and peer-to-peer systems attempt to create application-level

logical topologies that match the characteristics of the underlying network. Similarly,

developing network coordinates [20, 71, 87] and geo-localization [14, 105] has recently

become an important research area. Our topology generator can supply a range of inputs

and potential deployment scenarios in support of such studies.

Emerging network testbeds such as VINI [6] and GENI [35] will enable net-

work topology configuration for deployed systems running across the wide area. Once

again, running with a range of topologies, scaled to fit available resources, will allow

more accurate conclusions to be drawn for emerging network architectures. Our gener-

ator will be equally applicable to producing future Internet graphs. Multiple aspects of

13

network security efforts, including defenses against denial of service attacks and large-

scale worm outbreaks depend on network topology. The ability to experiment with a

range of random graphs that match Internet characteristics to understand the sensitivity

of particular techniques to network topology (and to variations in network topology)

will be of significant value.

Additionally, since all of our graph generation algorithms do not depend on the

type of the topology (whether AS- or router-level) and the evolution of the network, all

of our graph analysis and synthesis techniques are applicable to non-Internet graphs as

well. Our topology generator will also benefit researchers in biology, sociology, physics,

mathematics and economics where graph synthesis and analysis is important. As an ex-

ample, biologists use protein networks to study interaction among different kinds of

proteins. Economists use graphs to study trade patterns among different countries, soci-

ologists use graphs to study interaction amongst people. All of these studies will benefit

from our topology generator.

1.5 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes state-

of-the-art in network topology research. We discuss all important graph metrics pro-

posed in the literature as well as efforts to produce graphs mimicking values of these

metrics. In order to identify our unifying property series, we first analyze Internet AS-

level topologies extracted from three commonly used data sources. Our analysis helps

understand the interplay among all the graph metrics and identify the property that ap-

pears fundamental to the graph. We describe our study and its implications in Chapter 3.

In Chapter 4, we define the unifying property series, the dK-series, and present algo-

rithms to generate random graphs matching the properties of the dK-series. We also

present empirical evidence that our generated graphs reproduce all known metric values

for comparatively complex Internet AS-level and router-level topologies. In Chapter 5,

we present algorithms to generate graphs of sizes vastly different from that of the orig-

14

inal graph. Chapter 6 describes our techniques to annotate router-level topologies with

AS-membership information for each router. Finally, in Chapter 7, we discuss a number

of scenarios that could benefit from our topology generation techniques, we present our

conclusions and outline avenues for future work.

Chapter 2

Background and Related Work

In the previous chapter, we emphasized the importance of topologies in net-

working and the need to accurately model the topology of the network under study. The

Internet’s topological properties and their evolution are cornerstones of many practical

and theoretical network research agendas. Evaluation environments that will enable

development, reliable testing, and performance evaluation of new applications, pro-

tocols, and routing architectures that require, as input, annotated network topologies

that closely resemble the structure and characteristics of real measured networks. Re-

searchers have been focusing on various aspects of network topology study for the past

couple of decades. In this chapter, we take a look at the state-of-the-art in network

topology research.

Research involving network topology, particularly Internet topology, generally

investigates the following two questions:

1. Generation: Can we efficiently generate ensembles of random but “realistic”

topologies by reproducing a set of simple graph metrics?

2. Evolution: What are the forces driving the evolution (growth) of a given network?

In Figure 2, we illustrate the methodologies used to answer these questions

in the left, bottom, and right parts, respectively. Common to these methodologies is

a set of practically important metrics used for analyzing and comparing sets of graphs

15

16

Measurements,
observations

Observed graphs Selection and
abstraction

Graph metrics
to reproduce

Network
evolution
modeling

Synthetic
‘growing’ graphs

Synthetic
‘static’ graphs

Simulations

Comparison with the observed
graphs against a set of

important graph properties

Topology Processes

Extraction

Construction Execution

Formalization

If graphs differ, refinements are needed:
modify the set of

reproduced graph metrics (on the left)
or abstracted evolution rules (on the right)

Figure 2.1: Methodologies of network topology research.

as shown in the center box of the figure. Researchers have explored and defined many

such metrics in the literature. All of these metrics have been shown to directly influence

the performance of the network applications and protocols. When two graphs have

similar values for these metrics, we say that both the graphs are structurally similar.

As we underlined in Chapter 1, we need to deploy and evaluate the application over a

variety of random graphs that are structurally similar to real observed topologies. The

rationale behind this assumption is that applications display similar behavior when run

over structurally similar topologies.

As depicted in the top box in the picture, researchers have undertaken several

projects to measure the Internet’s topology [44, 48, 55, 82, 95, 92]. From these measure-

ment studies, we can generate graphs that correspond to the Internet’s router-level and

AS-level topology. The left side of the picture depicts efforts in the research community

to build topology generators that output static synthetic graphs that are structurally simi-

lar to the observed graphs. In this methodology, we first extract important graph metrics

17

from the observed graph and then develop algorithms to generate random graphs that

reproduce these extracted metric values.

The right side of the picture depicts studies to understand the fundamental laws

governing the network’s evolution. By analyzing these observed graphs over a period

of time, researchers attempt to understand the fundamental growth properties and create

network models that mimic the evolution process. As in the previous case, the random

graphs generated by the evolution models are compared to the original observed graph

with respect to the practically important metrics. The closer the match for all the metrics,

the more accurate is the evolutionary model under consideration.

In this chapter, we first describe some of the important topology metrics that

have been proposed in the literature, as well as the impact these metrics have on applica-

tion behavior and performance. Next, we summarize efforts undertaken by researchers

to generate synthetic graphs that attempt to reproduce the characteristics of real observed

networks. We also discuss some of the efforts in the modeling of network evolution.

2.1 Topology Metrics

Given any topology, we need a mechanism to characterize its structure. We

also need a technique to compare the structures of two or more graphs. Merely com-

paring the adjacency matrix of two graphs is not meaningful. The two graphs might be

of different sizes, making a comparison of their adjacency matrices impossible. Thus,

researchers have proposed various topology metrics in the literature to compare and

characterize graph structure. As previously mentioned, all these metrics also directly in-

fluence the performance and behavior of various networking applications and protocols.

In this section, we explain the various topology metrics proposed in influential

networking papers. We begin with simple metrics that characterize local connectivity

in a network. We then move on to metrics that describe global properties of the topol-

ogy. These latter metrics play a vital role in the performance of network protocols and

applications.

18

Let G be a graph with n nodes and m edges. A variety of complex structures

can be represented as graphs. For example, Autonomous Systems in the Internet can be

depicted as a graph with each node representing an AS, while an edge connecting the

two nodes represents the peering relationship between the two ASes. In a router-level

topology, a node represents a router and an edge represents a direct connection between

the two routers. Graphs are also widely used in other fields such as biology, economics

and sociology. For example, in protein networks, a node represents a protein and an

edge represents the interaction between two proteins. While all of the metrics in this

section can be applied to all graph types, we discuss the importance and impact of these

metrics specifically with respect to the Internet’s router and AS-level topologies.

2.1.1 Average degree

Definition. The two most basic graph properties are the number of nodes n

(also referred to as graph size) and the number of links m. They define the average
node degree k̄ = 2m/n.

Importance. Average degree is the coarsest connectivity characteristic of the

topology. Networks with higher k̄ are “better-connected” on average and, consequently,

are likely to be more robust. Detailed topology characterization based only on the aver-

age degree is rather limited, since graphs with the same average node degree can have

vastly different structures.

2.1.2 Degree distribution

Definition. Let n(k) be the number of nodes of degree k (k-degree nodes).

The node degree distribution is the probability that a randomly selected node is k-

degree: P (k) = n(k)/n for all distinct degrees present in graph G.

Importance. The degree distribution is the most frequently used topology

characteristic. The degree distribution contains more information about connectivity

in a given graph than the average degree, since given a specific form of P (k) we can

19

always restore the average degree by k̄ =
∑kmax

k=1 kP (k), where kmax is the maximum
node degree in the graph. If the degree distribution in a graph of size n is a power

law, P (k) ∼ k−γ , where γ is a positive exponent, then P (k) has a natural cut-off at the

power law maximum degree [27]: kPL
max = n1/(γ−1).

2.1.3 Joint degree distribution

While the node degree distribution tells us how many nodes of a given degree

are in the network, it fails to provide information on the interconnection between these

nodes: given P (k), we still do not know anything about the structure of the neighbor-

hood of the average node of a given degree. The joint degree distribution fills this gap

by providing information about 1-hop neighborhoods around a node.

Definition. Let m(k1, k2) be the total number of edges connecting nodes of

degrees k1 and k2. The joint degree distribution (JDD), or the node degree corre-
lation matrix, is the probability that a randomly selected edge connects k1- and k2-

degree nodes: P (k1, k2) = µ(k1, k2) × m(k1, k2)/(2m), where µ(k1, k2) is 1 if k1 = k2

and 2 otherwise. The JDD contains more information about the connectivity in a

graph than the degree distribution, since given a specific form of P (k1, k2) we can

always restore both the degree distribution P (k) and average degree k̄ by expres-

sions in [27]. A summary statistic of JDD is the the average neighbor connectiv-
ity knn(k) =

∑kmax

k′=1 k′P (k′|k). It is simply the average neighbor degree of the average

k-degree node. This property shows whether nodes of a given degree preferentially

connect to other high- or low-degree nodes. In a full mesh graph, knn(k) reaches

its maximum possible value, n − 1. We can further summarize the JDD by a sin-

gle scalar called assortativity coefficient r [69, 26], r ∼
∑kmax

k1,k2=1 k1k2(P (k1, k2) −

k1k2P (k1)P (k2)/k̄
2).

Importance. The assortativity coefficient r, −1 6 r 6 1, has direct practical

implications. Disassortative networks with r < 0 have an excess of radial links, that is,

links connecting nodes of dissimilar degrees. In other words, smaller degree nodes con-

20

nect to higher degree nodes. Failure or removal of higher degree nodes in these graphs

may lead to the smaller degree nodes getting disconnected, consequently leading to one

or more partitions in the network. Thus disassortative networks are vulnerable to both

random failures and targeted attacks. On a positive note, vertex covers in disassortative

graphs are smaller, which is important for applications such as traffic monitoring [11].

The opposite properties apply to assortative networks with r > 0 that have an excess of

tangential links, that is, links connecting nodes of similar degrees. Assortative graphs

have an excess of tangential links in the core, the connectivity inside the core is richer,

and as a consequence, assortative graphs are harder to break (e.g. to decompose into

similarly-sized disconnected components). Classic examples are social networks [69].

In contrast to the widely studied degree distribution, the network community

has recently started recognizing the importance of JDD [103, 46]. In a prominent recent

example [54] Li et al. define likelihood as the product of the degrees each edge in the

graph is incident on, summed over all the edges in the graph. Thus likelihood is a non-

normalized version of assortativity coefficient. The authors propose to use likelihood

as a measure of randomness to differentiate between multiple graphs with the same de-

gree distribution. Such a measure is important for evaluating the amount of order, e.g.,

engineering design constraints, present in a given topology. A topology with low like-

lihood is not random; it results from some sophisticated evolution processes involving

specific design purposes, whereas a topology with high likelihood is more random and

non-engineered.

2.1.4 Clustering

While JDD contains information about the degrees of neighbors for the av-

erage k-degree node, it does not tell us how these neighbors interconnect. Clustering

partially satisfies this need by providing a measure of how close a node’s neighbors are

to forming a clique.

Definition. Let m̄nn(k) be the average number of links between the neigh-

21

bors of k-degree nodes. Local clustering is the ratio of this number to the maximum

possible number of such links: C(k) = m̄nn(k)/
(

k
2

)

. If two neighbors of a node are

connected, then these three nodes together form a triangle (3-cycle). Therefore, by def-

inition, local clustering is the average number of 3-cycles involving k-degree nodes.

The two summary statistics associated with local clustering are mean local cluster-
ing Cmean =

∑

C(k)P (k), which is the average value of C(k), and the clustering co-
efficient Ccoeff , which is the percentage of 3-cycles among all connected node triplets

in the entire graph.

Importance. Clustering expresses local robustness in the graph and thus has

practical implications: the higher the local clustering of a node, the more interconnected

are its neighbors, thus increasing the path diversity locally around the node. Clustering

also dictates the effectiveness of placement policies for a variety of network services.

Newman [70] also showed that worm outbreaks spread faster in high-clustered networks,

although outbreak sizes are smaller. One can also use clustering for verifying the ac-

curacy of a topology model or generator. Bu et al. [12] propose using the clustering

coefficient to distinguish various power law topology generators. They show that while

most of these algorithms can generate the Internet’s AS-level topology with the node

degree distribution following a power law, these graphs did not reproduce the clustering

coefficient of observed AS-level topologies. Clustering is a basic connectivity charac-

teristic. Therefore, if a model reproduces clustering incorrectly, it is likely to be less

accurate for a variety of other graph characteristics.

2.1.5 Rich club connectivity

Definition. Let ρ = 1 . . . n be the first ρ nodes ordered by their non-increasing

degrees in a graph of size n. Rich club connectivity (RCC) φ(ρ/n) is the ratio of the

number of links in the subgraph induced by the ρ largest-degree nodes to the maximum

possible number of such links
(

ρ
2

)

. In other words, the RCC is a measure of how close

ρ-induced subgraphs are to cliques.

22

Importance. The Positive Feedback Preference (PFP) model by Zhou and

Mondragon [108] has successfully reproduced a wide spectrum of metrics of their mea-

sured AS-level topology by trying to explicitly capture only the following three char-

acteristics: (i) the exact form of the node degree distribution; (ii) the maximum node

degree; and (iii) RCC. In a previous work [109], the authors characterize Internet AS

topology generators using the RCC. They present evidence that the Internet AS graphs

have a rich club, i.e a core tier. This agrees well with the intuition that tier 1 ASes peer

with each other. They argue that synthetic graph generators that do not model this rich

club will necessarily be different from real Internet graphs that exhibit this particular

characteristic.

One can show that networks with the same JDDs have the same RCC. The

converse is not true, but given a specific form of RCC, one can fully describe all possible

JDDs that would yield the specified RCC.

2.1.6 Distance

Definition. The shortest path length distribution or simply the distance distri-
bution d(x) is the probability that a random pair of nodes are at a distance x hops from

each other. To define the distance distribution more formally, let ni(x) be the number of

nodes at distance x from node i. We assume that ni(0) = 1 (node i is at distance 0 from

itself). Note that ni(1) = deg(i). The distance distribution for node i is di(x) = ni(x)/n

and its average distance d̄i =
∑D

x=0 xdi(x).

The distance distribution for the entire graph is d(x) =
∑n

i=1 di(x)/n; the

average distance is d̄ =
∑D

x=0 xd(x). σ is the standard deviation of the average dis-

tance and is typically called the distance distribution width since the distance distribution

observed in the Internet (and in many other networks) has a characteristic Gaussian-like

form. The maximum distance D is called the graph diameter.

Importance. Distance distribution is important for many applications, the

most prominent being routing. A distance-based locality-sensitive approach [76] is the

23

root of most modern routing algorithms. As shown in [51], performance parameters of

these algorithms depend mostly on the distance distribution. In particular, short aver-

age distance and narrow distance distribution width break the efficiency of traditional

hierarchical routing. They are among the root causes of interdomain routing scalability

issues in the Internet today.

Distance distribution also plays a vital role in robustness of the network to

worms. Worms can quickly contaminate a network that has small distances between

nodes. Topology models that accurately reproduce observed distance distributions will

benefit researchers developing techniques to quarantine the network from worms [86].

We note that expansion, identified in [94] as a critical metric for topology

comparison analysis, is a renormalized version of the distance distribution. Expansion

E(h) is the average fraction of nodes in the graph that fall within a ball of radius h

centered at a node in the topology [94]. For a node v in the graph, Tangmunarunkit et

al. first compute the number of nodes that can be reached within h hops. They compute

the above value for each node in the graph, average the result and then normalize it by

the total number of nodes in the graph. Thus, by renormalizing the distance distribution,

we get the expansion of the graph.

2.1.7 Betweenness

Although the average distance is a good node centrality measure–intuitively,

nodes with smaller average distances are closer to the graph “center,”–the most com-

monly used measure of centrality is betweenness. It is applicable not only to nodes, but

also to links.

Definition. Betweenness measures the number of shortest paths passing

through a node or link and, thus, estimates the potential traffic load on this node/link

assuming uniformly distributed traffic following shortest paths. Let σij be the number

of shortest paths between nodes i and j and let l be either a node or link. Let σij(l)

be the number of shortest paths between i and j going through node (or link) l. Its be-

24

tweenness is Bl =
∑

ij σij(l)/σij . We note here that there might be multiple shortest

paths of the same length between nodes i and j, all of which are considered in the be-

tweenness calculation. The maximum possible value for node and link betweenness is

n(n − 1) [22], therefore in order to compare betweenness in graphs of different sizes,

we normalize it by n(n − 1).

Importance. Betweenness is important for traffic engineering applications that

try to estimate potential traffic load on nodes/links and potential congestion points in a

given topology. Betweenness is also critical for evaluating the accuracy of sampling the

topology using tree-like probes (e.g. skitter and BGP). As shown in [22], the broader

the betweenness distribution, the higher the statistical accuracy of the sampled graph.

We note that link value, used in [94] is directly related to betweenness. Tang-

munarunkit et al. use link value to characterize hierarchy in the graph. They argue that if

some level of hierarchy exists in the topology, then certain links will be used more often

than the others. Link value is very similar to betweenness as the authors use shortest-

path routing between all source-destination pairs to compute the number of times a link

is traversed.

Finally, we note that router utilization [54] used to measure network perfor-

mance is also directly related to betweenness. Router utilization computes the total

traffic flow through each router in the topology. This metric computes how many times

a router is traversed, and is thus essentially node betweenness.

2.1.8 Spectrum

Definition. Let A be the adjacency matrix of a graph. This n × n matrix is

constructed by setting the value of its element aij = aji = 1 if there is a link between

nodes i and j. All other elements have value 0. The scalar λ and vector v are the

eigenvalue and eigenvector respectively of A if Av = λv. The spectrum of a graph is

the set of eigenvalues of its adjacency matrix.

Another closely related definition of the graph spectrum is the spectrum of the

25

eigenvalues of its Laplacian, L = T −1/2(T −A)T −1/2, where T is the diagonal matrix

with tii equal to the degree of node i. This definition is a normalized version of the

original definition, in the sense that for any graph, all the eigenvalues of its Laplacian

are located between 0 and 2.

Importance. Spectrum is one of the most important global characteristics of

the topology. Spectrum yields tight bounds for a wide range of critical graph character-

istics [19], such as distance-related parameters, expansion properties, and values related

to separator problems estimating graph resilience under node/link removal. The largest

eigenvalues are particularly important. Most networks with high values for these largest

eigenvalues have small diameter, expand faster, and are more robust, and thus less sus-

ceptible to random failures and targeted attacks.

Two specific examples of significant metrics proposed by networking topology

researchers are directly related to spectrum. First, Tangmunarunkit et al. [94] defined

network resilience, one of the three metrics critical for their topology comparison analy-

sis, as a measure of network robustness under link removal, which equals the minimum

balanced cut size of a graph. By this definition, resilience is related to spectrum since

the graph’s largest eigenvalues provide bounds on network robustness with respect to

both link and node removals [19].

Second, Li et al. [54] define network performance, one of the two metrics

critical for their HOT argument, as the maximum traffic throughput of the network.

By this definition, performance is related to spectrum since it is essentially the network

conductance [36] which can be tightly estimated by the gap between the first and second

largest eigenvalues [19].

Beyond its significance for network robustness and performance, the graph’s

largest eigenvalues are important for traffic engineering purposes since graphs with

larger eigenvalues have, in general, more node- and link-disjoint paths to choose from.

The spectral analysis of graphs is a powerful tool for detailed investigation of network

structure, such as discovering clusters of highly interconnected nodes [100], and possi-

bly revealing the hierarchy of ASes in the Internet [37].

26

So far, we have described the important metrics that are used in a wide variety

of topological studies to compare and characterize the structure of different graphs. In

the next section, we briefly summarize various topology generation efforts in the net-

working community.

2.2 History of Topology Generators

Synthetic graphs resembling actual Internet-like topologies are critical to a

wide variety of studies including evaluating network protocols and applications, under-

standing and optimizing routing algorithms, network management and traffic engineer-

ing. For the past decade or more, researchers have been focusing on building topology

generators that attempt to produce representative Internet-like graphs. Most of these

generators focus on generating random graphs that reproduce specific aspects of real

observed networks such as the observed hierarchy amongst the nodes or the observed

degree distribution.

One of the earliest topology models was proposed by Waxman [101], and is

based on the classical Erdős-Rényi random graphs [30]. In the Waxman model, an edge

from node u to v is added with the probability given by P (u, v) = αe−d/(βL), where

0 < α, β ≤ 1 are parameters of the model and L represents the maximum distance

between any two nodes in the graph. While the Waxman model accounts for some

network characteristics such as node placement and geographic distance between the

nodes, it fails to capture the hierarchy believed to exist in the Internet and was abandoned

in favor of other models such as GT-ITM [106] and Tiers [25].

GT-ITM incorporates the Transit-Stub (TS) model to reproduce the hierarchi-

cal structure of the Internet. The TS model has two kinds of nodes - transit and stub.

Transit nodes represent the backbone of the Internet. The stub nodes, representing the

edge systems in the Internet, connect to the transit nodes. This specific form of connec-

tivity gives rise to a tiered structure in the graph.

The Tiers model is another example of generators that model structural hier-

27

archy. Tiers reproduces a three-level hierarchy and models Wide-Area, Metropolitan-

Area and Local-Area networks within the Internet. Seminal work [31] in 1999 pre-

sented evidence that the degree distribution of Internet ASes followed a power law. The

widely held belief that an organized hierarchy existed among the ASes in the Internet

was also disproved by researchers [94] who showed that topologies derived from struc-

tural generators such as GT-ITM and Tiers that incorporated hierarchies of AS tiers

did not have much in common with topologies obtained from real observed data. The

smooth power law degree distribution indicates that there are no organized tiers among

ASes. The power law distribution also implies substantial variability associated with de-

grees of individual nodes. Later, topology generators such as PLRG [2], Inet [103], and

BRITE [61] also focused on reproducing the observed power law degree distribution.

The popular BA model [5] incorporates growth of the network using prefer-

ential attachment. In this model, the network is grown by adding a new node and the

newly added node connects to the existing nodes with a probability that is biased to-

wards degrees of the nodes. In other words, newly added nodes connect to existing high

degree nodes in the graph, leading to the ’rich get richer’ effect. The degree distribution

resulting from the BA model is scale free and follows the power law.

PLRG relies on generating random graphs where the node degree distribution

follows the power law. The input to the PLRG model includes the number of nodes, n,

in the new topology and the value of the power law exponent γ. Nodes in the graph are

first assigned degrees with a probability given by P (k) ∼ k−γ , where k is the degree.

Nodes are then randomly connected to form a graph, such that their assigned degree is

respected.

Inet is specific to the Internet’s AS-level topology and is also based on the

preferential attachment model. Inet also assigns degrees to nodes based on the power

law distribution and ensures that the resulting graph is connected by first creating a

spanning tree using nodes of degree greater than two. Nodes with degrees one and

two are connected to nodes in the spanning tree and new links are added to the graph

according to various rules to ensure that degree of every node is fulfilled.

28

While Inet, BRITE and PLRG are commonly used in a wide variety of net-

working research, the graphs from these generators do not match real observed topolo-

gies with respect to the wide range of metrics that we discussed in Section 2.1. Addition-

ally, the networking community is focusing on another approach to modeling topologies,

especially router-level topologies. Li et al. [54] consider router capacity constraints

as well as likelihood to model router-level topologies and advocate understanding the

evolution of networks in order to accurately model router-level graphs. For AS-level

topologies, recent work [17] considers the technological, economic, and political con-

siderations behind whether pairs of ASes peer with one another. Thus, this and related

efforts consider the driving evolutionary forces behind the growth of particular topolo-

gies. However understanding the evolutionary forces for a network’s growth is a difficult

problem. To date, researchers have not had much success in inferring these evolutionary

principles.

Unfortunately, the current state-of-the-art in topology generation fails to meet

our requirements specified in Chapter 1. Ideally, one would like a topology generator

to produce random graphs that capture important metrics such as distance distribution,

betweenness, clustering, spectrum, etc. of real measured topologies. The generator must

also have the ability to output random graphs of a variety of sizes, as well as annotate the

graphs with information that includes AS membership and link latency. All the topology

models and generators discussed in this section are unable to reproduce important metric

values of real observed topologies such as spectrum and distance distribution. Further,

they include either no annotations or use simple heuristics known not to reflect Internet

characteristics. While these generators can generate graphs of a variety of sizes, these

different sized graphs again are structurally different from the observed topologies.

A first step to building a topology generator that can produce graphs struc-

turally similar to observed Internet topologies is to understand the structural character-

istics of these topologies. One needs to know the values of the mostly commonly used

graph metrics. Consequently, we study Internet AS-level topologies extracted from var-

ious data sources in the next chapter. In addition to analyzing these graphs, we also

29

examine the interplay amongst the various metrics. The question we attempt to answer

is: Can we identify a single metric that is fundamental to the graph structure? Is there

any one property that also automatically captures all the other graph metrics? Identify-

ing such a metric will simplify our task in building a topology generator as there will be

fewer graph characteristics to specify as inputs to the generator.

2.3 Acknowledgments

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings

of the ACM SIGCOMM Computer Communications Review (CCR), January 2006, Ma-

hadevan, Priya; Krioukov, Dmitri; Fomenkov, Marina; Huffaker, Bradley; Dimitropou-

los, Xenofontas; claffy, kc; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapter 3

Understanding Interplay Among
Metrics

In the previous chapter, we described some of the most important and com-

monly used metrics in topological research. These metrics are sufficiently diverse and

derived from a wide range of studies. More importantly, these metrics directly influ-

ence the performance of network protocols and services. For example, convergence of

routing protocols is dependent on the distance distribution and average distance of the

graph. Studies analyzing the performance of current routing protocols as well as de-

veloping new routing architectures must be evaluated over Internet-like topologies that

have similar distance distribution as real measured Internet graphs. If this is not the case,

any conclusion reached about the routing architecture beforehand may not be valid if the

same routing protocol is deployed over the Internet.

Past efforts to generate random graphs that match observed topologies with

respect to these metrics have not met with much success. Given our goal to build a gen-

erator capable to producing random graphs that match observed networks with respect

to all the proposed metrics (and any future metric), one of our first tasks is to understand

the structure of Internet topologies. Computing the values for all the important metrics

and studying the interplay among the metrics will provide us a better intuition on how

to generate random graphs that match the observed graphs with respect to these metrics.

30

31

We analyze the structure of the Internet’s AS-level topology as these measure-

ments are more readily available than router-level graphs. There are a number of sources

of AS topology data, obtained using different methodologies that yield substantially dif-

ferent topological views of the Internet’s ASes. We, therefore, extracted our AS-level

topologies from three commonly-used data sources: (1) traceroute measurements [48];

(2) BGP [83]; and (3) the WHOIS database [44]. We characterized these topologies with

respect to the metrics discussed in Section 2.1. In the rest of this chapter, we discuss

our methodology for constructing these AS graphs; further we reveal the peculiarities of

each data source and the resulting interplay between artifacts of data collection and the

key properties of the derived graphs.

While we study AS-level topologies, our choice of this specific type of topol-

ogy does not impact our understanding of the interplay amongst the topology metrics.

The key insights from this study that we summarize at the end of this chapter, laid the

foundation for developing Orbis, our generic network topology generator, that can out-

put any topology including AS-, router-, and even enterprise-level graphs.

3.1 Constructing AS Graphs

We used the following data sources to construct AS-level graphs of the Inter-

net: traceroute measurements, BGP data, and the WHOIS database.

BGP (Border Gateway Protocol) [82] is the protocol for routing among ASes

in the Internet. RouteViews [83] collects BGP routing tables using 7 collectors, 5 of

which are located in the USA, 1 in the UK and 1 in Japan. Each collector has a number

of globally placed peers (or vantage points) that collect BGP messages from which we

can infer the AS topology.

RouteViews archives both static snapshots of the BGP routing tables and

dynamic BGP data in the form of BGP message dumps (updates and withdrawals).

Therefore, we derive two types of graphs from the BGP data for the same month

of March 2004: one from the static tables (BGP tables) and one from the updates

32

(BGP updates). We create the BGP tables graph using data from the collector route-

views.oregon-ix.net as it gathers data from the largest number of peers—68. For the

BGP updates graph, we choose the collector route-views2.oregon-ix.net, which uses 40

peers to collect data, since at the time of this research route-views.oregon-ix.net did not

collect BGP updates. The data contains AS-sets [82], that is, lists of ASes with unknown

interconnection structures. For both BGP tables and updates graph, we discard AS-sets

and private ASes [41] because they create false links in the graph. We then merge the

31 daily graphs of March 2004 into one graph for each BGP data source.

Table 3.1: Comparison of graphs built from different data sources. The baseline
graph GA is the BGP tables graph. Graph GB is the other graph listed in the first row.

BGP
updates

skitter WHOIS

Number of nodes in both GA and GB (|VA

⋂

VB|) 17,349 9,203 5,583
Number of nodes in GA but not in GB (|VA \ VB|) 97 8,243 11,863
Number of nodes in GB but not in GA (|VB \ VA|) 68 1 1,902
Number of edges in both GA and GB (|EA

⋂

EB|) 38,543 17,407 12,335
Number of edges in GA but not in GB (|EA \EB|) 2,262 23,398 28,470
Number of edges in GB but not in GA (|EB \EA|) 3,941 11,552 44,614

We show the overlap statistics of our graphs in Table 3.1. This table uses the

BGP-table graph as the baseline and compares it with the BGP-updates graph in the first

column. Between the two BGP-derived graphs, we note the similarity in the sets of their

constituent nodes and links. Given minor differences between node and link sets of the

BGP table- and update-derived topologies, we find the graph metric values calculated

for these two topologies to be nearly identical for all characteristics that we consider.

Therefore, we present characteristics of the static BGP table graph only and refer to it

as the BGP graph.

Traceroute [97] captures the sequence of IP hops along the forward path from

the source to a given destination by sending either UDP or ICMP probe packets to the

destination. CAIDA has developed a tool, skitter [48], to collect continuous traceroute-

based Internet topology measurements. skitter maintains a target destination list that

33

comprises approximately one million IPv4 addresses. CAIDA collects these addresses

from various sources such as existing destination lists, intermediate addresses in skitter

traces, users accessing CAIDA website. The goal is to find one responding IP address

within each routable /24 segment, to provide representative coverage of the routable

IPv4 address space. The destination list is updated once every 8 to 12 months to ensure

the addresses stay current and to maximize reachability. Skitter uses 25 monitors (tracer-

oute sources), strategically placed in the global Internet: 15 monitors in North America,

6 monitors in Europe, 3 monitors in Japan and 1 in New Zealand. Each monitor sends

probe packets to destinations in the target list and gathers the corresponding IP paths.

Using the core BGP tables provided by RouteViews, CAIDA maps the IP ad-

dresses in the gathered IP paths to AS numbers, constructs the resulting AS-level topol-

ogy graphs on a daily basis and makes these graphs publicly available at [13]. For this

study, we started with daily graphs for each day of March 2004, i.e., 31 daily graphs.

Mapping skitter-observed IP addresses to AS numbers involves potential distortion, e.g.,

due to multi-origin ASes, that is, the same prefixes advertised by multiple ASes [58],

AS-sets, and private ASes. Both multi-origin ASes and AS-sets create ambiguous map-

pings between IP addresses and ASes, hence we filtered them from each graph. In

addition, we filtered private ASes as they create false links. Unresolved IP hops in the

traceroute data give rise to indirect links [13], which we discarded. The total discarded

and filtered links constitute approximately 5 percent of all links in the initial graph. We

then merged all the daily graphs to form one graph, which we call the skitter graph.

Comparing the skitter graph with the BGP graph, we notice that there is ex-

actly 1 node seen in the skitter but not in the BGP graph. This node is AS2277 (Ecaunet).

Since we use BGP table dumps to map IP addresses to AS numbers in constructing the

skitter graph, we expect the number of nodes present in the skitter but not in the BGP to

be 0. The one node difference occurs because different BGP table dumps were used to

construct the BGP table graph and to perform IP-to-AS mapping in the skitter graph on

the day when skitter observed this IP address in its traces.

WHOIS [44] is a collection of databases with AS peering information useful

34

to network operators. These databases are manually maintained with little requirements

for timely updates of registered information. Of the public WHOIS databases, RIPE’s

WHOIS database contains the most reliable current topological information, although it

covers primarily European Internet infrastructure [88, 16].

We obtained the RIPE WHOIS database dump for April 07, 2004. We were

interested in the following types of records:

aut-num: ASx
import: from ASy
export: to ASz

This record indicated the presence of links between ASx-ASy and ASx-ASz.

We constructed an AS-level graph (here after referred to as WHOIS graph) from these

records and excluded ASes that did not appear in the aut-num lines. Such ASes are

external to the database and we cannot correctly estimate their topological properties,

e.g., node degree. We also filtered private ASes.

Both Table 3.1 (column 3) and the topology metrics we considered in Sec-

tion 2.1 show that the WHOIS topology differs significantly from the other two graphs.

Thus, the following question arises: Can we explain the difference by the fact that the

WHOIS graph contains only a part of the Internet, namely European ASes? To answer

this question we perform the following experiment. We consider the BGP tables and

WHOIS topologies narrowed to the set of nodes present both in BGP tables and WHOIS,

i.e., the 5,583 nodes present in the intersection of BGP tables and WHOIS graphs (Table

3.1) and compute the various topological characteristics for these reduced graphs. We

then compare the properties of the original BGP and WHOIS graphs to their reduced

graphs respectively and find that the reduced graphs preserve the full set of the properly

normalized topological properties of the original graphs. In other words, the reduced

BGP graph, consisting only of ASes found in the intersection of WHOIS and the origi-

nal BGP graph, has topological characteristics similar to the original BGP graph, while

the reduced WHOIS graph has characteristics similar to the original WHOIS graph.

Therefore, the differences between full BGP and WHOIS topologies are likely due to

35

dissimilar intrinsic properties of their originating data sources, and not due to geograph-

ical biases in sampling the Internet.

Based on the very method of their construction, the three graphs in our study

reveal different sides of the actual Internet AS-level topology. The skitter graph closely

reflects the topology of actual Internet traffic flows, i.e., the data plane. The BGP graph

reveals the topology seen by the routing system, i.e., the control plane. The BGP graph

does not reflect how traffic actually travels toward a destination network. The WHOIS

graph reflects the topology extracted from manually maintained databases, i.e., the man-

agement plane.

3.1.1 Limitations and validity of our results

All our data sources have some inaccuracies arising from their collection

methodology. Since skitter methodology relies on answers to ICMP requests, ICMP

filtering at intermediate hops adds some inaccuracy to the data. skitter also fails to re-

ceive ICMP replies in the address blocks advertised by some small ASes. The BGP

graph depends on routing table exchanges, and not all peer ASes advertise all their

peering relationships; therefore the BGP graph tends to miss these unadvertised links.

Various misconfigurations, e.g., announcement of prefixes not owned by an AS, etc.,

are some of the other causes of errors with the BGP data. The manually maintained

WHOIS database is most likely to contain stale or inaccurate information [88]. In fact,

the WHOIS graph is likely to reflect unintentional or even intentional over-reporting of

peering relationships by some providers. There have been reports about some ISPs en-

tering inaccurate information in the WHOIS database to increase their “importance” in

the Internet hierarchy [88].

We limit our data collection to a single month for obtaining the AS-level

graphs in this chapter. We believe that the interdependencies between different met-

rics will hold for data gathered over various periods of time and are not an artifact of

the current Internet or our sampling period. We study historical AS-level data for skit-

36

ter and BGP for the period from 2000 to 2005 and find that indeed the metric values

have more or less stayed invariant during this period. We present detailed results from

historic AS-level graphs in Chapter 5.

When processing each of our data sets to create the desired graph, we make

choices while dealing with ambiguities and errors in the raw data. One example is the

detection of “false” links created by route changes in traceroute data. The processing

we apply may potentially cause ambiguity in our final graphs.

While all three sources of topology data contain a number of sources of er-

rors and cannot be considered perfect representations of true AS-level interconnectivity,

the results of a number of recent studies indicate that the available data is a reasonable

approximation of AS topology. The presence of global and strategically located van-

tage points for both BGP and skitter graphs as well as the careful choice of destinations

used by skitter lend credibility to traceroute-based measurement studies. There have

been some doubts about the validity of topologies obtained from traceroute measure-

ments. Specifically, Lakhina et al. [53] numerically explored sampling biases arising

from traceroute measurements and found that such traceroute-sampled graphs of the In-

ternet yield insufficient evidence for characterizing the actual underlying Internet topol-

ogy. However, Dall’Asta et al. [22] convincingly refute their conclusions by showing

that various traceroute exploration strategies provide sampled distributions with enough

signatures to statistically distinguish between different topologies. The authors also ar-

gue that real mapping experiments observe genuine features of the Internet, rather than

artifacts.

While each of our data sources has its own limitations, an open question is

which data source most closely matches actual Internet AS topology, given that each

graph approximates a different view of the Internet looking at the data (skitter), con-

trol (BGP), and management (WHOIS) planes. Our study does not aim to answer this

important question. Rather we focus on the structure of these graphs as revealed by

the various topology metrics. Our study shows that despite their different collection

methodologies, all the metric values for these three graphs is determined by its average

37

degree (k̄) and assortativity coefficient (r), both of which are coarse summary statistics

of the joint degree distribution (JDD). As will be evident from the results, of all the met-

rics we considered, the JDD appears to play a central role in determining a wide range

of other topological properties.

3.2 Metric Results for the Three Topologies

In this section, we quantitatively analyze differences between the three graphs

in terms of various topology metrics. In Table 3.2, we summarize the important metric

values for all three graphs – skitter, BGP and WHOIS. The table shows that the skitter

and BGP graph are qualitatively similar to each other, while the WHOIS graph is the

most different. We now proceed to discuss how each of these graphs differ with respect

to the metrics. At the same time, we also discuss the interplay amongst the various

metrics.

3.2.1 Average degree

The WHOIS graph has the smallest number of nodes, but its average degree

is almost three times larger than that of BGP, and ∼ 2.5 times larger than that of skit-

ter (Table 3.2). In other words, WHOIS contains substantially more links, both in the

absolute (m) and relative (k̄) senses, than any other data source, although the credibil-

ity of these links is lowest. The chief reason for WHOIS graph’s high average degree

lies in its measurement specifics: we have information from every node’s perspective

in the database, while skitter and BGP graphs are obtained by sampling using tree-like

explorations of the Internet’s ASes.

We also observe that the number of nodes in the BGP graph is almost twice the

number of nodes in skitter. This again can be explained by the measurement techniques

of the two data sources: skitter relies on responses to ICMP requests sent to IP addresses

on its target list of destinations and it may not have any targets in the address blocks

advertised by some small ASes. As a result, skitter does not see these ASes. The BGP

38

Table 3.2: Summary of important metrics for skitter, BGP and WHOIS topologies
skitter BGP WHOIS

Average degree Number of nodes (n) 9,204 17,446 7,485
Number of edges (m) 28,959 40,805 56,949
Avg node degree (k̄) 6.29 4.68 15.22

Degree distribu-
tion

Max node degree (kmax) 2,070 2,498 1,079

Power-law max degree
(kPL

max)

1,448 4,546 -

Exponent of P (k) (−γ) 2.25 2.16 -
Joint degree dis-
tribution

Avg neighbor degree
(k̄nn/(n − 1))

0.05 0.03 0.02

Exponent of knn(k) (−γnn) 1.49 1.45 -
Assortative coefficient (r) -0.24 -0.19 -0.04

Clustering Mean clustering (Cmean) 0.46 0.29 0.49
Clustering coefficient
(Ccoeff)

0.03 0.02 0.31

Exponent of C(k) (−γC) 0.33 0.34 -
Rich club Exponent of φ(ρ/n) (−γrc) 1.48 1.45 1.69
Distance Avg distance (d̄) 3.12 3.69 3.54

Std deviation of distance
(σ)

0.63 0.87 0.80

Exponent of d(k) (−γd) 0.07 0.07 0.09
Betweenness Avg node betweenness

(B̄node/(n(n − 1)))

11 · 10−5 7.7 · 10−5 17 · 10−5

Exponent of B(k) (γB) 1.35 1.17 -
Avg edge betweenness
(B̄edge/(n(n − 1)))

5.37·10−5 4.51·10−5 3.10·10−5

Spectrum Largest eigenvalue 79.53 73.06 150.86
Second largest eigenvalue -53.32 -55.13 68.63
Third largest eigenvalue 36.40 53.54 62.03

39

routing tables however contain information about these ASes and thus these nodes are

observed in the BGP graph. The extra ASes in the BGP dataset are mostly low-degree

(cf. Section 3.2.2) and therefore the BGP graph has a lower average degree than skitter.

Graphs ordered by increasing average degree k̄ are BGP, skitter, WHOIS. We

call this order the k̄-order.

3.2.2 Degree distribution

As expected, the degree distribution PDFs and CCDFs in Figure 3.1 are in the

k̄-order (BGP < skitter < WHOIS) for a wide range of node degrees.

Comparing the observed maximum node degrees kmax with those predicted by

the power law kPL
max in Table 3.2, we conclude that skitter is closest to power law. The

power-law approximation for the BGP graph is less accurate. The WHOIS graph has an

excess of medium-degree nodes and its node degree distribution does not follow a power

law at all. Thus, generators based on reproducing the power-law degree distribution such

as PLRG [2] will be unable to produce random graphs structurally similar to the WHOIS

topology.

There are fewer 1-degree nodes than 2-degree nodes in all the graphs (Figure

3.1(a)). This effect is due to the AS number assignment policies [41] allowing a cus-

tomer to have an AS number only if it has multiple providers. If these policies were

strictly enforced and if there were no measurement inaccuracies, then the minimum

observed AS degree would be 2.

3.2.3 Joint degree distribution

The JDD, or the node degree correlation matrix, is the probability that a

randomly selected edge connects k1- and k2-degree nodes: P (k1, k2) = µ(k1, k2) ×

m(k1, k2)/(2m), where µ(k1, k2) is 1 if k1 = k2 and 2 otherwise. We can summarize

this matrix by a single scalar called assortativity coefficient r [69, 26]. Computing the

assortativity coefficient for our topologies, we find that all the three Internet graphs built

40

100 101 102 103 10410−5

10−4

10−3

10−2

10−1

100

Node degree

PD
F

skitter
BGP−tables
WHOIS

(a) PDF

100 101 102 103 10410−5

10−4

10−3

10−2

10−1

100

Node degree

CC
DF

skitter
BGP−tables
WHOIS

(b) CCDF

Figure 3.1: Node degree distributions P(k) for skitter, BGP and WHOIS graphs.

41

from our data sources are disassortative (r < 0) as seen in Table 3.2. We call the order of

graphs with decreasing assortativity coefficient r—WHOIS, BGP, skitter—the r-order.

We can explain the r-order in terms of differing topology measurement

methodologies. First, we notice that both skitter and BGP graphs are results of tree-

like explorations of the network topology, meaning that we can roughly approximate

these graphs by a union of spanning trees rooted at, respectively, skitter monitors or

BGP data collection points. As such, both these methods are likely to discover more

radial links connecting numerous low-degree nodes, i.e., small ASes, to high-degree

nodes, i.e., large ISP ASes, where the monitors are located. At the same time, these

measurements fail to detect some tangential links interconnecting medium-to-low de-

gree nodes since many of these links belong to none of the spanning trees rooted at

the vantage points in the core. In contrast, WHOIS data contains abundant medium-

degree tangential links because it relies on operators to report all the links attached

to a given AS, i.e., a source of a WHOIS record. This excess of tangential links in

WHOIS is thus responsible for its much higher assortativity. Second, we explain that

the BGP graph has a slightly higher assortativity than the skitter graph. As discussed

in Section 3.2.2, the BGP graph contains the tangential links between low-degree nodes

that traceroute probes of skitter miss since these links are typically the backup links to

smaller secondary providers, while skitter’s ICMP packets tend to follow the primary

paths to larger primary providers. This small excess of tangential links is responsible

for a slightly higher assortativity of the BGP graph compared to skitter.

The interplay between k̄- and r-orders underlies Figure 3.2, where we plot

the average neighbor connectivity functions for the three graphs. For uniform graph

comparison we plot normalized values of the average neighbor degree knn(k)/(n − 1).

In the case of skitter and BGP, knn(k) can be approximated by a power law with the

corresponding exponents γnn in Table 3.2.

Skitter has the largest excess of radial links that connect low-degree nodes

(customers ASes) to high-degree nodes (large provider ASes). The highest relative num-

ber of radial links is responsible for skitter’s highest average degree of the neighbors of

42

100 101 102 103 10410−4

10−3

10−2

10−1

Node degree

No
rm

al
ize

d
av

er
ag

e
ne

ig
hb

or
 d

eg
re

e

skitter
BGP−tables
WHOIS

Figure 3.2: Normalized average neighbor connectivity knn(k)/(n − 1).

low-degree nodes: in Figure 3.2, skitter is at the top in the area of low degrees, while

BGP is below and WHOIS is at the bottom (r-order). On the other hand, the greatest

proportion of tangential links between ASes of similar degrees in the WHOIS graph

contributes to connectivity of neighbors of high-degree nodes; therefore the WHOIS

graph is at the top for high-degree nodes (k̄-order).

3.2.4 Clustering

The two summary statistics associated with local clustering are mean local
clustering Cmean =

∑

C(k)P (k), which is the average value of C(k), and the cluster-
ing coefficient Ccoeff , which is the percentage of 3-cycles among all connected node

triplets in the entire graph. We first observe that the clustering average values Cmean

in Table 3.2 are in the k̄-order, which is expected: clustering increases with increase

in number of links. The values of Cmean are almost equal for skitter and WHOIS,

but the clustering coefficient Ccoeff is 15 times larger for WHOIS than for skitter. As

shown in [90], orders of magnitude difference between Cmean and Ccoeff is intrinsic to

highly disassortative networks and is a consequence of strong degree correlations (JDD)

necessarily present in such networks. Skitter, which is highly disassortative, therefore

43

100 101 102 103 10410−3

10−2

10−1

100

Node degree

Lo
ca

l c
lu

st
er

in
g

skitter
BGP−tables
WHOIS

Figure 3.3: Local clustering C(k).

expectedly exhibits this huge difference between its Cmean and Ccoeff values. The BGP

graph, which is again disassortative, also displays this order of magnitude difference

between its Cmean and Ccoeff values. The WHOIS graph, on the other hand, is much

more random as explained by its assortativity coefficient value of -0.04, and therefore

its Cmean and Ccoeff are fairly close to each other. We stress that the JDD plays an

important role in dictating the values for Cmean and Ccoeff for all three graphs.

Similar to knn(k), the interplay between k̄- and r-orders explains Figure 3.3,

where we plot local clustering as a function of node degree C(k). Skitter’s clustering

is the highest amongst the three graphs for low-degree nodes because this graph is most

disassortative. The links adjacent to low-degree nodes are most likely to lead to high-

degree nodes, the latter being interconnected with a high probability. The WHOIS graph

exhibits the highest values for clustering for high-degree nodes since this graph has

the highest average connectivity (largest k̄). The neighbors of high-degree nodes are

interconnected to a greater extent, resulting in higher clustering for such nodes. Similar

to knn(k), C(k) also can be approximated by a power law for skitter and BGP graphs

(exponents γC in Table 3.2).

44

3.2.5 Rich club connectivity

10−4 10−3 10−2 10−1 10010−4

10−3

10−2

10−1

100

Normalized node rank ρ/n

CC
DF

skitter
BGP−tables
WHOIS

Figure 3.4: Rich club connectivity φ(ρ/n).

The RCC φ(ρ/n) is the ratio of the number of links in the subgraph induced

by the ρ largest-degree nodes to the maximum possible number of such links
(

ρ
2

)

. As

expected, the values of φ(ρ/n) in Figure 3.4 are in the k̄-order with WHOIS at the top:

more links result in denser cliques. RCC exhibits clean power laws for all three graphs

in the area of medium and large ρ/n. The values of the power-law exponents γrc in Table

3.2 result from fitting φ(ρ/n) with power laws for 90% of the nodes, 0.1 6 ρ/n 6 1.

Again, the JDD plays a key role in determining the RCC values for all three

graphs. The JDD captures connectivity information between pairs of nodes in the graph,

while the RCC in effect measures the connectivity amongst the “rich” nodes in the graph.

It follows that two graphs having the same JDD, will have the same RCC.

3.2.6 Distance

The distance distribution d(x) is the probability that a random pair of nodes

are at a distance x hops from each other. Although the distance distribution is a global

topology characteristic, we can explain Figure 3.5(a) by the interplay between our local

connectivity characteristics: the k̄- and r-orders. First, we note that the skitter graph

45

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of hops

PD
F

skitter
BGP−tables
WHOIS

(a) Distance d(x) distribution

100 101 102 103 1040

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Node degree

Av
er

ag
e

di
st

an
ce

skitter
BGP−tables
WHOIS

(b) Average distance from k-degree nodes d(k).

Figure 3.5: Distance related metrics

46

stands out in Figure 3.5(a) as it has the smallest average distance and the smallest distri-

bution width (Table 3.2). This result appears unexpected at first since the skitter graph

has more nodes than the WHOIS graph and only about half the links. One would ex-

pect a denser graph (WHOIS) to have a lower average distance since adding links to a

graph can only decrease the average distance in it. Surprisingly, the average distance

of the most richly connected (highest k̄) WHOIS graph is not the lowest. This result

can be explained using the r-order. Indeed, a more disassortative graph has a greater

proportion of radial links, shortening the distance from the fringe to the core. We use

terms fringe and core to mean “zones” in the graph with low- and high-degree nodes

respectively [96]. The skitter graph has the right balance between the relative number of

links k̄ and their radiality r, that minimizes the average distance. Compared to skitter,

the BGP graph has larger distance because it is sparser (lower k̄), and the WHOIS graph

has larger distance because it is more assortative (higher r).

Another observation is that for all three graphs, including WHOIS, the average

distance as a function of node degree exhibits relatively stable power laws in the full

range of node degrees (Figure 3.5(b)), with exponents given in Table 3.2. The average

distance for the WHOIS graph is higher than that of skitter and the BGP graph. As

in the case of distance distribution, the r-order dictates these values. The existence

of radian links in skitter reduces its average distance, while the WHOIS graph, being

less disassortative does not have these links, thus increasing its average distance. In

summary,the distance related metrics for the three graphs are determined by their JDD.

3.2.7 Betweenness

Betweenness measures the number of shortest paths passing through a node or

link and, thus, estimates the potential traffic load on this node/link assuming uniformly

distributed traffic following shortest paths. The simplest approach to calculating node

betweenness requires long run times, but we used an efficient algorithm from [10]. We

also modified it to compute link betweenness.

47

100 101 102 103 10410−8

10−6

10−4

10−2

100

Node degree

No
rm

al
ize

d
no

de
 b

et
we

en
ne

ss

skitter
BGP−tables
WHOIS

Figure 3.6: Node betweenness B(k)/n/(n− 1).

For skitter and BGP graphs, node betweenness is a growing power-law func-

tion of node degree as seen in Figure 3.6 with exponents given in Table 3.2. An excess

of medium degree nodes in the WHOIS graph (Figure 3.1) leads to greater path diversity

and, hence, to lower betweenness values for these nodes.

We also calculate average link betweenness as a function of degrees of nodes

adjacent to a link B(k1, k2) and show the plots in Figure 3.7. The contour plots provide

information on the betweenness values of the links that connect similar or dissimilar

degree nodes. One would expect links connecting high-degree nodes to exhibit highest

link betweenness and thereby be used as a measure of link centrality. Contrary to popu-

lar belief, the contour plots show that link betweenness does not measure link centrality.

First, betweenness of links adjacent to low-degree nodes (the left and bottom sides of the

plots) is not the minimum. In fact, non-normalized betweenness of links adjacent to 1-

degree nodes is constant and equal to n − 1 (the number of destinations in the rest of the

network). Similar values of betweenness characterize links elsewhere in the graph, in-

cluding radial links between high and low-to-medium degree nodes and tangential links

in the zone of medium-to-high degrees (diagonal zone from bottom-right to upper-left).

While the maximum-betweenness links are between high-degree nodes as expected (the

48

0 1 2 3
0

1

2

3

log10k1
lo

g 10
k 2

log10{Bskitter(k1,k2)}

−4
.3

69
6

−4.3696
−4.3696 −4.3696

−4.3696

−4.3696

−4.3696

−4.3696

−4
.36

96

−5.0373

−5.0373

−5.0373

−5.0373

−5
.0

37
3

−3.7019

−3.7019 −3.0342

−5.0373

−5
.03

73

−5.5

−5

−4.5

−4

−3.5

(a) skitter

0 1 2 3
0

1

2

3

log10k1

lo
g 10

k 2

log10{BBGP−tables(k1,k2)}

−4.2201

−4.2201

−4.2201

−4.8501

−4.8501

−4.8501

−4.8501

−4.8501

−4.8501

−4.8501

−4
.85

01

−3.5901

−3.5901

−2.9601

−2.9601

−4.2201

−4.8501

−5

−4.5

−4

−3.5

−3

(b) BGP tables

0 1 2 3
0

1

2

3

log10k1

lo
g 10

k 2

log10{BWHOIS(k1,k2)}

−4
.7

14
9

−4.7149

−4.7149

−4
.71

49

−4.7149

−4.7149

−4
.71

49

−4.0718

−4.0718

−4
.07

18
−4

.0
71

8

−4.0718 −4.0718 −4.0718

−4
.0

71
8

−5.358

−5.358

−5.358

−5.358

−4.0718

−4.0718

−3.4287

−4.0718

−4.7149

−4.7149

−4.0718

−6

−5.5

−5

−4.5

−4

−3.5

(c) WHOIS

Figure 3.7: Logarithm of normalized link betweenness B(k1,k2)/n/(n − 1) on a log-
log scale.

49

upper right corner of the plots), the minimum-betweenness links are tangential in the

medium-to-low degree zone (diagonal areas of low values from bottom-left to upper-

right). We can explain the latter observation by the following argument. Let i and j be

two nodes connected by a minimum-betweenness link l. The only shortest paths going

through l are those between nodes that are below i and j, where “below” means further

from the core and closer to the fringe. When the degrees of both i and j are small, the

numbers of nodes below them (with lower degree) are small, too. Consequently, the

number of shortest paths, proportional to the product of the number of nodes below i

and j, attains its minimum at l. We conclude that link betweenness is not a measure of

centrality but a measure of a certain combination of link centrality and radiality.

3.2.8 Spectrum

10−4 10−3 10−2 10−1 100100

101

102

103

Normalized rank

Ei
ge

nv
al

ue
s

skitter
BGP−tables
WHOIS

Figure 3.8: Spectrum - Absolute values of top 10% of eigenvalues ordered by their
normalized rank: normalized rank is node rank divided by the total number of nodes in
the graph.

The spectrum of a graph is the set of eigenvalues of its adjacency matrix. We

computed the spectrum for the three graphs. The k̄-order (BGP, skitter, WHOIS) plays

a key role once again: the densest graph, WHOIS, is at the top in Figure 3.8 and its first

eigenvalue is largest in Table 3.2. The eigenvalue distributions of all the three graphs

50

follow power laws.

From our analysis, it follows that the relative positions of data curves for all

topological metrics in our plots can be explained by either the average degree (increasing

k̄-order: BGP, skitter, WHOIS), or graph assortativity coefficient (decreasing r-order:

WHOIS, BGP, skitter), or their interplay. How do these k̄- and r-orders result from

the specifics of the data sources? The explanation is relatively straightforward. In the

WHOIS data, the abundance of tangential medium-degree links increases both the av-

erage degree k̄ and assortativity coefficient r. Since the BGP graph has relatively more

low-degree nodes than the skitter graph, its average degree is lower. At the same time,

most links present only in BGP but not in skitter are backup links between low-degree

ASes. Being tangential, these links increase the BGP graph’s assortative coefficient.

3.3 Implications

To better understand the metrics and the interplay among them, we studied

AS-level graphs obtained from various data sources—skitter, BGP, and WHOIS—with

respect to all important metrics proposed in the literature. Of the set of metrics we

considered, the joint degree distribution (JDD) P (k1, k2) appears to play a central role

in determining a wide range of other topological properties. Using only the average

degree k̄ and the assortativity coefficient r, the two coarse summary statistics of the JDD,

we can explain the relative order of all other metrics for all our data sources. Indeed,

the JDD plays a central role in even determining metrics such as distance distribution,

betweenness and spectrum, all of which characterize global graph structure. Our finding

regarding the JDD’s definitiveness has important implications for developing an accurate

topology generator since it would reduce the number of parameters one has to reproduce.

By generating random graphs that reproduce the JDD of observed networks, it appears

that these generated graphs will also automatically reproduce the other metrics. While

this result might not hold for other kinds of Internet graphs, our study suggests that it

51

would at least hold for Internet AS topologies.

Looking back at historical graph generation techniques, we observe that gener-

ators based on reproducing the degree distribution of observed graphs are more success-

ful than generators based on merely reproducing the average degree. A graph’s degree

distribution contains more information about the graph structure than its average degree

and as a result, degree distribution based generators do a better job at modeling topolo-

gies than generators based merely on average degree. Along the same lines, the JDD

incorporates more information about the graph structure than its degree distribution; in

fact the JDD captures connectivity information between any two nodes in the graph.

Intuitively, the more node interconnectivity information we can extract from the orig-

inal graph, the more accurate will be the random graphs reproducing this connectivity

of the original graph. In the next chapter, we discuss how we extend this idea to define

a graph property series, the dK-series, that captures connectivity amongst increasingly

larger node neighborhoods and in the limit describes the original graph in its entirety.

In addition to unifying all known graph metrics, the dK-series also forms a basis for all

graph analysis and synthesis.

3.4 Acknowledgments

Chapter 3, in full, is a reprint of the material as it appears in the Proceedings of

the ACM SIGCOMM Computer Communications Review (CCR), January 2006, Ma-

hadevan, Priya; Krioukov, Dmitri; Fomenkov, Marina; Huffaker, Bradley; Dimitropou-

los, Xenofontas; claffy, kc; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapter 4

dK-Series: Using Degree Correlations
to Analyze and Generate Topologies

For the past fifteen years or so, researchers have been working towards devel-

oping algorithms to produce random graphs that match the topological characteristics of

observed networks. One of the techniques of determining the accuracy of these random

graphs generated is to compare them to the original graph with respect to all the impor-

tant graph metrics such as distance distribution, betweenness, clustering, spectrum, etc.

It is important that the generated graphs match the measured topology with respect to

the metrics as values of these metrics dictate application behavior and performance.

Consider for example, a researcher studying the performance of a new routing

protocol. The protocol performance is evaluated by typically emulating or simulating

its behavior over an input network topology. Now, in order to correctly predict the

routing protocol performance, it is critical that the input topology for the emulation

has the same metric values as real observed networks, over which the protocol will

ultimately be deployed. If this is not the case, then any conclusion that the researcher

might draw about the protocol performance will be incorrect. While, the researcher

might certainly use one of the real measured topologies such as the skitter, BGP or

WHOIS graph (discussed in the previous chapter) as one of the input graphs to the

evaluation infrastructure, ideally, the protocol should be evaluated on a wide range of

52

53

random graphs. Studying the sensitiveness of the protocol to minor variations in the

graph structure, might require the researchers to test their protocol over different graphs

that have say the same joint degree distribution (JDD), but are random with respect to

all other graph metrics. Studying the scalability of the protocol requires evaluating the

protocol over topologies much larger but structurally similar to the real network. Thus

it is imperative that we are able to generate random graphs of a range of sizes that

reproduce important metric values of observed and measured topologies.

Metrics such as spectrum, distance distribution, and betweenness characterize

global graph structure, while as discussed in Chapter 2, known approaches to generating

graphs deal only with local, per-node statistics, such as the degree distribution. There are

several problems with the graph metrics discussed in Section 2.1. First, they derive from

a wide range of studies, and no one has established a systematic way to determine which

metrics should be used in a given scenario. Second, there are no known algorithms

capable of constructing graphs with desired values for most of the described metrics,

save degree distribution and more recently, clustering [85]. Third, this list of metrics is

incomplete. In particular, it cannot include any future metrics that may be of interest.

Identifying such a metric might result in the finding that known synthetic graphs do not

match this new metric’s value and one will have to rewrite graph generation algorithms

to account for this new metric. Such a process could potentially continue forever with

the discovery of each new metric.

Given the limitations with reproducing metrics such as distance distribution,

betweenness and spectrum, our approach, is to understand the interdependencies among

these metrics. Is there possibly one graph property, or series of properties that define all

others? If this theory indeed holds, then we only need to reproduce this one property

instead of trying to reproduce the wide range of metrics.

Based on our analysis of a wide variety of graphs in the previous chapter, we

put forth a series of graph characteristics, node degree correlations, and demonstrate

how they progressively capture essential graph properties by incorporating more and

more information about connectivity among increasingly larger node neighborhoods.

54

Using both the theoretical argument and empirical evidence, we show that by repro-

ducing degree correlations at the right level, one can generate graphs that automatically

match all other metrics, including those that have not been considered yet. Validity of

the last strong statement follows from the fact that in the limiting case, our synthetic

graphs converge to the original: if two graphs are the same, then all their metrics are the

same, too. This unique convergence feature makes our approach stand separately from

all the previous topology research and concludes the quest for a single set of definitive

topology metrics. In the rest of this chapter, we establish our construction of the prop-

erties Pd, which we will call the dK-series. We use this series to describe and constrain

random graphs in successively finer detail.

4.1 Requirements for Defining a Unifying Property Series

Given the limitations with the current set of graph metrics, there are many

requirements for defining our unifying property series. We want our graph generation

algorithms to reproduce any graph metric – current or future. One way of achieving this

goal is to ensure that our property series can describe the original graph in its entirety.

In this case, any random graph that reproduces the description of the original graph

in its entirety will necessarily reproduce all possible graph metrics. Also, given our

inability to propose algorithms that can match given values of metrics such as spectrum

and distance distribution, our goal is to ensure that we can generate random graphs that

match specified values for the properties in our series.

To summarize, for any graph G, we wish to identify a series of graph proper-

ties Pd, d = 0, 1, . . . that will satisfy the following requirements:

1. constructability: we can construct graphs having these properties;

2. inclusion: any property Pd subsumes all properties Pi with i = 0, . . . , d − 1:

that is, a graph having property Pd is guaranteed to also have all properties Pi

for i < d;

55

3. convergence: as d increases, the set of graphs having property Pd “converges”

to G: that is, there exists a value of index d = D such that all graphs having

property PD are isomorphic to G.

Our observations from the analysis of AS-level graphs in Chapter 3 provides

us with a starting point for defining the property series. The graph’s Joint Degree Distri-

bution or JDD appeared to dictate the values for all metric including global ones such as

distance distribution and betweenness. The JDD provides connectivity information on

pairs of node degrees in the graph. We surmised that, at least for AS-level graphs, a ran-

dom graph generator that reproduces the JDD of a given graph might also automatically

reproduce values for other important graph metrics.

Looking at historical topology generators, we observe that the initial genera-

tors were based on reproducing a given graph’s average degree. When it was shown that

such graph models were inadequate, researchers developed generators based on repro-

ducing the graph’s node degree distribution. They found that the node degree distribu-

tion captured more information about the graph structure than the average degree and

thus generators that reproduced the node degree distribution were able to better repro-

duce the graph characteristics. The average degree is a scalar value and does not provide

any connectivity information on a per-node basis. The node degree distribution, on the

other hand, is a vector and describes the connectivity for each node in the graph. Taking

this point further, the JDD is a matrix and captures more connectivity information than

both the average degree and node degree distribution. The JDD summarizes connectivity

information between pairs of node degrees in the graph. Extending this idea further, it

appears that connectivity information amongst increasingly larger node neighborhoods

progressively described more information about the graph structure. Thus, if we can

extract connectivity information amongst increasingly larger node neighborhoods, we’ll

come closer and closer to describing the original graph. We use this idea to define our

unifying property series.

56

0K

1K

2K

nK=G
(n-1)K

2K-random
1K-random
0K-random

Figure 4.1: The dK- and dK-random graph hierarchy. The circles represent dK-graphs,
whereas their centers represent dK-random graphs. The cross is the nK-graph isomor-
phic to a given graph G.

4.2 dK-series and dK-graphs

We begin with the observation that the most basic properties of a network

topology characterize its connectivity. The coarsest connectivity property is the average

node degree k̄ = 2m/n, where n = |V | and m = |E| are the numbers of nodes and links

in a given graph G(V, E). Therefore, the first property P0 in our dK-series Pd is that

the graph’s average degree k̄ has the same value as in the given graph G. In Figure 4.1

we schematically depict the set of all graphs having property P0 as 0K-graphs, defining

the largest circle. Generalizing, we adopt the term dK-graphs to represent the set of all

graphs having property Pd.

The P0 property tells us the average number of edges per node, but it does

not tell us the distribution of degrees across nodes. In particular, we do not know the

number of nodes n(k) of each degree k in the graph. We define property P1 to capture

this information: P1 is therefore the property that the graph’s node degree distribution

P (k) = n(k)/n has the same form as in the given graph G. It is convenient to call P (k)

the 1K-distribution. Sacrificing a certain amount of rigor, we interchangeably use the

57

(a) 0K-graph (b) 1K-graph

(c) 2K-graph (d) 3K-graph

(e) original HOT graph

Figure 4.2: Picturizations of dK-graphs and the original HOT graph illustrating the
convergence of dK-series.

58

enumeration of nodes having some property in a given graph, e.g., n(k)/n, with the

probability that a node has this property in a graph ensemble, e.g., P (k). The two

become identical when n → ∞. We refer the readers to [8] for additional information.

P1 implies at least as much information about the network as P0, but not vice

versa: given P (k), we find k̄ =
∑

kP (k). P1 provides more information than P0, and it

is therefore a more restrictive metric: the set of 1K-graphs is a subset of the set of 0K-

graphs. Figure 4.1 illustrates this inclusive relationship by drawing the set of 1K-graphs

inside the set of 0K-graphs.

Continuing to d = 2, we note that the degree distribution constrains the num-

ber of nodes of each degree in the network, but it does not describe the interconnectivity

of nodes with given degrees. That is, it does not provide any information on the total

number m(k, k′) of links between nodes of degree k and k′. We define the third prop-

erty P2 in our series as the property that the graph’s joint degree distribution (JDD)

has the same form as in the given graph G. The JDD, or the 2K-distribution, is

P (k1, k2) = m(k1, k2)µ(k1, k2)/(2m), where µ(k1, k2) is 2 if k1 = k2 and 1 otherwise.

The JDD describes degree correlations for pairs of connected nodes. Given P (k1, k2),

we can calculate P (k) = (k̄/k)
∑

k′ P (k, k′), but not vice versa. Consequently, the set

of 2K-graphs is a subset of the 1K-graphs. Therefore, Figure 4.1 depicts the smaller

2K-graph circle inside 1K.

We can continue to increase the amount of connectivity information by

considering degree correlations among greater numbers of connected nodes. To move

beyond 2K, we must begin to distinguish the various geometries that are possible in

interconnecting d nodes. To introduce P3, we require the following two components:

1) wedges: chains of 3 nodes connected by 2 edges, called the P∧(k1, k2, k3) compo-

nent; and 2) triangles: cliques of 3 nodes, called the P4(k1, k2, k3) component:

59

As the two geometries occur with different frequencies among nodes having different

degrees, we require a separate probability distribution for each configuration. We call

these two components taken together the 3K-distribution.

For P4, we need the above six distributions: where instead of indices ∧,4 we use

for d = 3, we have all non-isomorphic graphs of size 4 numbered by 1, . . . , 6. We

note that the order of k-arguments generally matters, although we can permute any

pair of arguments corresponding to pairs of nodes whose swapping leaves the graph

isomorphic. For example: P∧(k1, k2, k3) 6= P∧(k2, k1, k3) 6= P∧(k1, k3, k2), but

P∧(k1, k2, k3) = P∧(k3, k2, k1).

In the following figure, we illustrate properties Pd, d = 0, . . . , 4, calculated

for a given graph G of size 4, where for simplicity, values of all distributions P are

the total numbers of corresponding subgraphs, i.e., P (2, 3) = 2 means that G contains

2 edges between 2- and 3-degree nodes.

Generalizing, we define the dK-distributions to be degree correlations within non-

isomorphic simple connected subgraphs of size d and the dK-series Pd to be the

60

series of properties constraining the graph’s dK-distribution to the same form

as in a given graph G. In other words, Pd tells us how groups of d-nodes with

degrees k1, ..., kd interconnect. In the ‘dK’ acronym, ‘K’ represents the standard

notation for node degrees, while ‘d’ refers to the number of degree arguments k of

the dK-distributions P (k1, . . . , kd) and to the upper bound of the distance between

nodes with known degree correlations. Moving from Pd to Pd+1 in describing a given

graph G is somewhat similar to including the additional d + 1’th term of the Fourier

(time) or Taylor series representing a given function F . In both cases, we describe

wider “neighborhoods” in G or F to achieve a more accurate representation of the

original structure.

The dK-series definition satisfies the inclusion and convergence requirements

described above. The inclusion requirement is satisfied because any graph of size d is a

subgraph of some graph of size d + 1. Convergence follows from the observation that

in the limit of d = n, the set of nK-graphs contains only one element: G itself. As a

consequence of the convergence property, any topology metric we can define on G will

eventually be captured by dK-graphs with a sufficiently large d.

Hereafter, our main concerns with the dK-series become: 1) how well we can

satisfy our first requirement of constructability and 2) how fast the dK-series converges

toward the original graph. We address both these two concerns in the rest of this chapter.

The reason for the second concern is that the number of probability distribu-

tions required to fully specify the dK-distribution grows quickly with d: see [89] for

the number of non-isomorphic simple connected graphs of size d. Relative to the ex-

isting work on topology generators typically limited to d = 1 [2, 61, 103], we present

and implement algorithms for graph construction for d = 2 and d = 3. We present

these algorithms in Section 4.3.1 and then show in Section 4.4 that the dK-series con-

verges quickly: 2K-graphs are sufficient for most practical purposes for the graphs we

consider, while 3K-graphs are essentially identical to observed and modeled Internet

topologies.

To motivate our ability to capture increasingly complex graph properties by in-

61

creasing d, we present visualizations of dK-graphs generated using the dK-randomizing

approach we will discuss in Section 4.3.1. Figure 4.2 depicts random 0K-, 1K-, 2K- and

3K-graphs matching the corresponding distributions of the HOT graph, a representative

router-level topology from [54]. This topology is particularly interesting, because, prior

to our work, reproducing router-level topologies using only degree distributions had

proven difficult [54]. However, a visual inspection of our generated topologies shows

good convergence properties of the dK-series: while the 0K-graph and 1K-graph have

little resemblance with the HOT topology, the 2K-graph is much closer than the pre-

vious ones and the 3K graph is almost identical to the original. Although the visual

inspection is encouraging, we defer more careful comparisons to Section 4.4.

4.3 Constructing dK-graphs

There are several approaches for constructing dK-graphs for d = 0 and d = 1.

We extended a number of these algorithms to work for higher values of d. In Sec-

tion 4.3.1, we describe these approaches, their practical utility, and our new algorithms

for d > 1. In Section 4.3.2, we introduce the concept of dK-random graphs, in Sec-

tion 4.3.3, a dK-space exploration methodology. We use this methodology to deter-

mine the lowest values of d such that dK-graphs approximate a given topology with the

required degree of accuracy.

4.3.1 Algorithms to construct dK-graphs

We classify existing approaches to constructing 0K- and 1K-graphs into the

following categories: stochastic, pseudograph, matching, and two types of rewiring:

randomizing and targeting. We attempted to extend each of these techniques to gen-

eral dK-graph construction. In this section, we qualitatively discuss the relative merits

of each of these approaches before presenting a more quantitative comparison in Sec-

tion 4.4.

62

Stochastic

The simplest and most convenient for theoretical analysis is the stochastic

approach. For 0K, reproducing an n-sized graph with a given expected average de-

gree k̄ involves connecting every pair of n nodes with probability p0K = k̄/n. This

construction forms the classical (Erdős-Rényi) random graphs Gn,p [30]. Recent efforts

have extended this stochastic approach to 1K and 2K [7, 18, 26]. In these cases, one

first labels all nodes i with their expected degrees qi drawn from the distribution P (k)

and then connects pairs of nodes (i, j) with probabilities p1K(qi, qj) = qiqj/(nq̄) or

p2K(qi, qj) = (q̄/n)P (qi, qj)/(P (qi)P (qj)) reproducing the expected values of 1K-

or 2K-distributions, respectively.

In theory, we could generalize this approach for any d in two stages: 1) extrac-

tion: given a graph G, calculate the frequencies of all (including disconnected) d-sized

subgraphs in G, and 2) construction: prepare an n-sized set of qi-labeled nodes and con-

nect their d-sized subsets into different subgraphs with (conditional) probabilities based

on the calculated frequencies. In practice, we find the stochastic approach performs

poorly even for 1K because of high statistical variance. For example, many nodes with

expected degree 1 wind up with degree 0 after the construction phase, resulting in many

tiny connected components.

Pseudograph

The pseudograph (also known as configuration) approach is probably the most

popular and widely used class of graph-generating algorithms. In its original form [2,

63], it applies only to the 1K case. Relative to the stochastic approach, it reproduces

a given degree distribution exactly, but does not necessarily construct simple graphs.

That is, it may construct graphs with both ends of an edge connected to the same node

(self-loops) and with multiple edges between the same pair of nodes (loops).

It operates as follows: given the number of nodes, n(k), of degree k,

n =
∑kmax

k=1 n(k), first prepare n(k) nodes with k stubs attached to each node, k =

63

1, . . . , kmax, and then randomly choose pairs of stubs and connect them to form edges.

To obtain a simple connected graph, remove all loops and extract the largest connected

component.

We extend this algorithm to 2K as follows: given the number m(k1, k2) of

edges between k1- and k2-degree nodes, m =
∑kmax

k1,k2=1 m(k1, k2), we first prepare a

list of m(k1, k2) disconnected edges and label the ends of each edge by their respective

degree values k1 and k2, k1, k2 = 1, . . . , kmax. Next, corresponding to each degree k,

k = 1, . . . , kmax, we create a list of all edge-ends that were labeled with k; from this list,

we randomly select groups of k edge-ends to create the nodes in the graph with degree

k, k = 1, . . . , kmax.

The pseudograph algorithm produces good results for d = 2. Unfortunately,

we could not generalize it easily for d > 2 because starting at d = 3, d-sized subgraphs

overlap over edges. Such overlapping introduces a series of topological constraints and

non-local dependencies among different subgraphs, and we could not find a simple tech-

nique to preserve these combinatorial constraints during the construction phase.

To demonstrate the overlap problem, we consider the simplest d = 3 case. We

first note that the 3K pseudograph algorithm applied to graph G is equivalent to the fol-

lowing modification of the 2K pseudograph algorithm applied to G’s line graph L(G).

Recall that a line graph L(G) [78] is a graph whose vertices are edges of G and two

vertices of L(G) are connected iff the two corresponding edges in G are adjacent. Note

that an edge between k1- and k2-degree nodes in G (a (k1, k2)-edge) maps to a node

of degree k1 + k2 − 2 in L(G). We need more detailed degree information preserved

in L(G): we label every edge in L(G) with degree triplets (k1, k2, k3) indicating that

a pair of (k1, k2)- and (k2, k3)-edges are connected over their k2-ends (k2-degree node)

in G. Every (k1, k2, k3)-labeled edge has the two ends which we refer to as (k1, k2)- and

(k3, k2)-ends, i.e., k2 labels the middle of the edge. We thus map (k1, k2, k3)-wedges

in G to (k1, k2, k3)-edges in L(G).

Simplifying our problem and assuming for a moment that G has zero

clustering (no triangles), we see that every (k1, k2)-edge in G participates in

64

k1 − 1 of (xi, k1, k2)-wedges and in k2 − 1 of (k1, k2, yj)-wedges, where xi and yj,

i = 1, . . . , k1 − 1, j = 1, . . . , k2 − 1, are some random degrees. In L(G), this obser-

vation maps to the constraint that we need k1 − 1 of (xi, k1, k2)-edges and k2 − 1 of

(k1, k2, yj)-edges to connect over their, respectively, (k2, k1)- and (k1, k2)-ends to form

a (k1 + k2 − 2)-degree node:

Our 3K algorithm for G becomes the 2K algorithm for L(G) with the follow-

ing modifications. Given the number m∧(k1, k2, k3) of (k1, k2, k3)-wedges in G, first

prepare m∧(k1, k2, k3) disconnected L(G) edges labeled by (k1, k2, k3), and then ran-

domly select groups of p − 1 edge-ends labeled by (q, p) and q − 1 edge-ends labeled

by (p, q) to form (p + q − 2)-degree nodes.

Unfortunately, the above construction does not preserve one of the basic topo-

logical constraints that k-degree nodes in G map to k-cliques in L(G). Indeed, this con-

straint means that for all k, every (·, k, ·)-labeled edge in L(G) belongs to a k-clique. We

see that our modification of the 2K pseudograph algorithm for L(G) does not preserve

this property, and we could not find an easy way to resolve this problem.

Matching

The matching approach differs from the pseudograph approach in avoiding

loops during the construction phase. In the 1K case, the algorithm works exactly as its

pseudograph counterpart but skips pairs of stubs that form loops if connected.

Unfortunately, loop avoidance suffers from various forms of deadlock for both

1K and 2K. In both cases, the algorithms can end up in incomplete configurations

when not all edges are formed, and the graph cannot be completed because there are no

65

suitable stub pairs remaining that can be connected without forming loops. We devise

several techniques to deal with these problems. Specifically, while randomly choosing

pairs of stubs to connect in order to create an edge, we choose stubs in such a manner

that adding an edge between them does not create a self-edge or a loop in the graph.

To solve the problem of not enough suitable stub pairs remaining to connect in order

to complete the graph, we resorted to the technique described below. Consider the case

where we need to connect degrees k1 and k2 to form an edge. Without loss of generality,

let us assume that we have a stub attached to node np having degree k1 and we need

to find a stub attached to a node with degree k2. If there are no more suitable stubs

attached to k2-degree nodes, we randomly pick a stub attached to node nq having degree

k2. Next, we walk through the list of edges already created by connecting pairs of k1-

and k2-degree stubs. We pick an edge at random and let node na with degree k1 and node

nb with degree k2 be the nodes on which the chosen edge was incident. We now remove

the edge between na and nb and check if by creating edges np-nb and edge na-nq, the

graph stays loop-free and does not have any self-edges. If not, we go back and find

another random edge and repeat the process again. This technique, while attempting to

find new nodes to connect between degrees k1 and k2, also ensures that the JDD of the

graph remains unchanged.

With these additional techniques, we obtained good results for 2K graphs.

Once again, we could not generalize matching for d > 2 for essentially the same reasons

related to subgraphs’ overlapping and non-locality as in the pseudograph case.

Rewiring

The rewiring approaches are generalizable to any d and work well in practice.

They involve dK-preserving rewiring as illustrated in Figure 4.3.

The main idea is to rewire random (pairs of) edges preserving an existing form

of the dK-distribution. For d = 0, we rewire a random edge to a random pair of nodes,

thus preserving k̄. For d = 1, we rewire two random edges that do not alter P (k),

66

Figure 4.3: dK-preserving rewiring for d = 0, 1, 2.

as shown in Figure 4.3. If, in addition, there are at least two nodes of equal degrees

adjacent to the different edges in the edge pair, then the same rewiring leaves P (k, k ′)

intact. Due to the inclusion property of the dK-series, (d + 1)K-rewirings form a subset

of dK-rewirings for d > 0. For example, to preserve 3K, we permit a 2K-rewiring only

if it also preserves the wedge and triangle distributions.

The dK-randomizing rewiring algorithm amounts to performing dK-

preserving rewirings a sufficient number of times for some dK-graph. A “sufficient

number” means enough rewirings for this process to lead to graphs that do not change

their properties even if we subject them to additional rewirings. In other words, this

rewiring process converges after some number of steps, producing random graphs

having property Pd. Even for d = 1, there are no known rigorous results regarding

how quickly this process converges, but [38] shows that this process is an irreducible,

symmetric and aperiodic Markov chain and demonstrates experimentally that it takes

O(m) steps to converge.

In our experiments in Section 4.4, we employ the following strategy applica-

ble for any d. We first calculate the number of possible initial dK-preserving rewirings.

By “initial rewirings” we mean rewirings we can perform on a given graph G, to dif-

ferentiate them from rewirings we can apply to graphs obtained from G after its first

(and subsequent) rewirings. We then subtract the number of rewirings that leave the

graph isomorphic. For example, rewiring of any two (1, k)- and (1, k ′)-edges is a dK-

preserving rewiring, for any d, and more strongly, the graph before rewiring is isomor-

67

phic to the graph after rewiring. We multiply this difference by 10, and perform the

resulting number of random rewirings. At the end of our rewiring procedure, we ex-

plicitly verify that randomization is indeed complete and the process has converged by

further increasing the number of rewirings and checking that all graph characteristics

remain unchanged.

One obvious problem with dK-randomization is that it requires an original

graph G as input to construct its dK-random versions. It cannot start with a descrip-

tion of the dK-distribution to generate random dK-graphs as is possible with the other

construction approaches discussed above.

To address this limitation, we consider the inverse process of dK-targeting

d′K-preserving rewiring, also known as Metropolis dynamics [62]. It incorporates the

following modification to d′K-preserving rewiring: every rewiring step is accepted

only if it moves the graph “closer” to Pd. In practice, we can then employ targeting

rewiring to construct dK-graphs with high values of d by beginning with any d′K-

graph where d′ < d. Recall that we can always compute Pd′ from Pd due to the inclu-

sion property of the dK-series. For instance, we can start with a graph having a given

degree distribution (d′ = 1) [99], and then move it toward a dK-graph via dK-targeting

1K-preserving rewiring.

The definition of “closer” above requires further explanation. We require a

set of distance metrics (functions) that quantitatively differentiate two graphs based

on the values of their dK-distributions. In our experiments, we use the sum of

squares of differences between the existing and target numbers of subgraphs of a

given type. For example, in the d = 2 case, we measure the distance between

the target graph’s JDD and the JDD of the current graph being rewired by D2 =
∑

k1,k2
[mcurrent(k1, k2) − mtarget(k1, k2)]

2, and at each rewiring step, we accept the

rewiring only if it decreases this distance. Note that D2 is non-negative and equals

zero only when reaching the target JDD. For d = 3, this distance D3 is a sum of squares

of differences between the current and target numbers of wedges and triangles, and

we can generalize it to Dd for any d. A potential problem with dK-targeting d′K-

68

preserving rewiring is that it can be non-ergodic, meaning that there might be no chain

of d′K-preserving Dd-decreasing rewirings leading from the initial d′K-graph to the tar-

get dK-graph. In other words, we cannot be sure beforehand that any two d′K-graphs

are connected by a sequence of d′K-preserving and Dd-decreasing rewirings.

To address this problem we note that the d′K-randomizing and dK-targeting

d′K-preserving rewirings are actually two extremes of an entire family of rewiring

processes. Indeed, let ∆Dd = Dd,after −Dd,before be the difference of distance to the

target dK-distribution computed before and after a d′K-preserving rewiring step. As

with the usual dK-targeting rewiring, we accept a rewiring step if ∆Dd < 0, but even

if ∆Dd > 0, we also accept this step with probability e−∆Dd/T , where T > 0 is some

parameter that we call temperature because of the similarity of the process to simulated

annealing.

In the T → 0 limit, this probability goes to 0, and we have the standard dK-

targeting d′K-preserving rewiring process. When T → ∞, the probability approaches 1,

yielding the standard d′K-randomizing rewiring process. To verify ergodicity, we can

start with a high temperature and then gradually cool the system while monitoring any

metric known to have different values in dK- and d′K-graphs. If this metric’s value

forms a continuous function of the temperature, then our rewiring process is ergodic.

Maslov et al. performed these experiments in [60] and demonstrated ergodicity in the

case with d′ = 1 and d = 2. In our experiments in Section 4.4, we always obtain a good

match for all target graph metrics in considering (d′, d) < 4. Thus, we perform rewiring

at zero temperature without further considering ergodicity. If however in some future

experiments one detects the lack of a smooth convergence of rewiring procedures, then

one should first verify ergodicity using the methodology above.

For all the algorithms discussed in this section, we do not check for graph con-

nectedness at each step of the algorithm since: 1) it is an expensive operation and 2) all

resulting graphs always have giant connected components (GCCs) with characteristics

similar to the whole disconnected graphs.

69

Table 4.1: The summary of dK-series.
Tag
dK

Property
symbol

dK-
distribution

Pd defines Pd−1 Edge existence probability in
stochastic constructions

0K P0 k̄ p0K = k̄/n
1K P1 P (k) k̄ =

∑

kP (k) p1K(q1, q2) = q1q2/(nq̄)
2K P2 P (k1, k2) P (k) =

(k̄/k)
∑

k′ P (k, k′)
p2K(q1, q2) =
(q̄/n)P (q1, q2)/(P (q1)P (q2))

3K P3 P∧(k1, k2, k3)
P4(k1, k2, k3)

By counting edges, we get P (k1, k2) ∼
∑

k {P∧(k, k1, k2) + P4(k, k1, k2)} /(k1 − 1) ∼
∑

k {P∧(k1, k2, k) + P4(k1, k2, k)} /(k2 − 1),
where we omit normalization coefficients.

.
nK Pn G

4.3.2 dK-random graphs

No dK-graph-generating algorithm can quickly construct the set of all dK-

graphs because: 1) such sets are too large, especially for small d; and, less obviously,

2) all algorithms try to produce graphs having property Pd while remaining unbiased

(random) with respect to all other properties. One can check directly that the last char-

acteristic applies to all the algorithms we have discussed above.

As a consequence, the dK-graph construction algorithms result in non-

uniform sampling of graphs with different values of properties that are not fully de-

fined by Pd. More specifically, two generated dK-graphs having different forms of a

d′K-distribution with d′ > d can appear as the output of these algorithms with drasti-

cally different probabilities. Some dK-graphs have such a small probability of being

constructed that we can safely assume they never arise.

For example, consider the simplest 0K stochastic construction, i.e., the clas-

sical random graphs Gn,p. Using a probabilistic argument, one can show that the

naturally-occurring 1K-distribution (degree distribution) in these graphs has a spe-

cific form: binomial, which is closely approximated by the Poisson distribution:

P0K(k) = e−k̄k̄k/k! [27]. The 0K stochastic algorithm can produce a graph with a

different 1K-distribution, e.g., the power-law P (k) ∼ k−γ with extremely low probabil-

70

ity. Indeed, suppose n ∼ 104, k̄ ∼ 5, and γ ∼ 2.1, so that the characteristic maximum

degree is kmax ∼ 2000 (we chose these values to reflect measured values for Internet

AS topologies). In this case, the probability that a Gn,p-graph contains at least one node

with degree equal to kmax is dominated by 1/2000! ∼ 10−6600, and the probability that

the remaining degrees simultaneously match those required for a power law is much

lower.

It is thus natural to introduce a set of graphs that correspond to the graphs most

likely to be generated by dK-graph constructing algorithms. We call such graphs the

dK-random graphs. These graphs have property Pd but are unbiased with respect to

any other more constraining property. In this sense, the dK-random graphs are the max-

imally random or maximum-entropy dK-graphs. We note that the entropy of a discrete

distribution P (x) is H[P (x)] = −
∑

x P (x) logP (x). If the sample space is also finite,

then among all the distributions with a fixed average, the binomial distribution max-

imizes entropy [40]. Our term maximum entropy here has the following justification.

As we have just seen, 0K-random graphs have the maximum-entropy value of the 1K-

distribution since their node degree distribution is the distribution with the maximum

entropy among all the distributions with a fixed average.

The 1K-random graphs have the maximum-entropy value of the 2K-

distribution since their joint degree distribution, P1K(k1, k2) = P̃ (k1)P̃ (k2), where

P̃ (k) = kP (k)/k̄ [27], is the distribution with the maximum joint entropy (minimum

mutual information) among all the joint distributions with fixed marginal distributions.

The mutual information of a joint distribution P (x, y) is I[P (x, y)] = H[P (x)] +

H[P (y)]− H[P (x, y)], where P (x) and P (y) are the marginal distributions.

The main point we extract from these observations is that in trying to construct

dK-graphs, we generally obtain graphs from subsets of the dK-space. We call these

subsets dK-random graphs and schematically depict them as centers of the dK-circles

in Figure 4.1. These graphs do have property Pd and, consequently, properties Pi with

i < d, but they might not ever display property Pj with j > d since the jK-distributions

has specific, maximum-entropy values in the jK-space that may not overlap with dk-

71

Figure 4.4: 2K-space exploration

random graphs.

4.3.3 dK-space explorations

In general, to understand whether a good approximation of the original topol-

ogy can be achieved with dK-random graphs, we need to explore the dK-graph space.

In schematics of Figure 4.1, such exploration means that we want to find out how large

the dK circle is. If it is large, then the spread of metrics that are not fixed by the

dK-distribution is wide within this circle and we have little chance to have a good ap-

proximation of the original topology with dK-random graphs. If the circle is small,

then the dK-random graphs must be necessarily close to the original. We can assess the

size of the dK circle by checking properties of the graphs located at the periphery of

the circle – non-random dK-graphs with the extremal values of the metrics that are not

unambiguously determined by the dK-distribution.

Often, we are also interested in exploring the structural diversity among dK-

graphs. To motivate the need for this exploration, let us go back to our example of an

experimenter evaluating a new inter-domain routing protocol and wishing to test its sen-

72

sitivity to a range of possible deployments. At this point, it may have been established

that Internet AS topologies are 2K-random. Thus, while the experimenter may test the

behavior of their protocol relative to a known Internet AS topology, he or she may also

be interested in the sensitivity of their protocol to other topologies that follow the same

2K-distribution. So, it might not be sufficient to generate only 2K-random graphs. For

a thorough evaluation of the protocol sensitivity, we need to generate a wide range of

2K-graphs.

To explore structural diversity among all dK-graphs, we must generate dK-

graphs that are not random. These non-random dk-graphs are still constrained by Pd

but have extremely low probabilities of being generated unperturbed by dK-graph con-

structing algorithms.

Now, we cannot construct all possible dK-graphs, so we need to use heuristics

to generate some dK-graphs and adjust them according to a distance metric that draws

us closer to the types of dK-graphs we seek. One such heuristic is based on the inclusion

feature of the dK-series. Because all dK-graphs have the same values of dK- but not of

(d + 1)K-distributions, we look for simple metrics fully defined by Pd+1 but not by Pd.

While identifying such metrics can be challenging for high d’s, we can always retreat to

the following two simple extreme metrics:

• the correlation of degrees of nodes located at distance d;

• the concentration of d-simplices (cliques of size d + 1).

These metrics are “extreme” in the sense that they correspond to the (d + 1)-sized sub-

graphs with, respectively, the maximum (d) and minimum (1) possible diameter. We can

then construct dK-graphs with extreme values, e.g., the smallest or largest possible, for

these (extreme) metrics. The dK-random graphs have the values of these metrics lying

somewhere in between the extremes.

If the goal is to find the smallest d that results in sufficiently constraining

graphs, we can compute the difference between the extreme values of these metrics,

as well as of other metrics we might consider. If this difference is too large, then the

73

selected value of d is not constraining enough and we will need to increase it. dK-

space exploration may further be used to move beyond the relatively small circle of

dK-random graphs and generate graphs that lie on the edges of the dK-circle.

To illustrate this approach in practice, we consider 1K- and 2K-space explo-

rations. For 1K, the simplest metric defined by P2 is any scalar summary statistics of

the 2K-distribution, such as likelihood S (cf. Section 2.1). To construct graphs with

the maximum value of S, we can run a form of targeting 1K-preserving rewiring that

accepts each rewiring step only if it increases S. We can perform the opposite to min-

imize S. This type of experiment was at the core of recent work that led the authors

of [54] to conclude that d = 1 was not constraining enough for the topology they con-

sidered.

To perform 2K-space explorations, we need to find simple scalar metrics de-

fined by P3. Since the 3K-distribution is actually two distributions, P∧(k1, k2, k3) and

P4(k1, k2, k3), we should have two independent scalar metrics. The second-order like-

lihood S2 is one such metric for P∧(k1, k2, k3).

S2 ∼
∑

k1,k2,k3
k1k3P∧(k1, k2, k3); we define S2 as the sum of the products of de-

grees of nodes located at the ends of wedges, so that any two graphs with the

same P∧(k1, k2, k3) have the same S2. For the P4(k1, k2, k3) component, average clus-

tering C̄ ∼
∑

k1,k2,k3
k1P4(k1, k2, k3) is an appropriate candidate. We note that these

two metrics are also the two extreme metrics in the sense defined above: S2 measures

the properly normalized correlation of degrees of nodes located at distance 2, while

C̄ describes the concentration of 2-simplices (triangles). The 2K-explorations amount

then to performing the following two types of targeting 2K-preserving rewiring: ac-

cept a 2K-rewiring step only if it maximizes or minimizes: 1) S2, or 2) C̄. Figure 4.4

illustrates the process of 2K-graph space exploration. The 2K-random graphs, with

unbiased, random values of clustering and second-order likelihood, are in the center,

while maximally non-random graphs lie at the periphery of the 2K circle. Specifically,

the bottom point in the 2K circle represents the set of 2K graphs whose S2 has been

minimized. The top point in the 2K circle represents the set of graphs whose S2 has

74

Table 4.2: Scalar graph metrics notations.
Metric Notation
Average degree k̄
Assortativity coefficient r
Average clustering C̄
Average distance d̄
Standard deviation of distance distribution σd

Second-order likelihood S2

Smallest eigenvalue of the Laplacian λ1

Largest eigenvalue of the Laplacian λn−1

been maximized. Note that for both these points, the C̄ value is still the same as that of

2K-random graphs. The left and right points in the circle correspond to the set of 2K

graphs whose clustering C̄ has been maximized or minimized respectively.

4.4 Evaluation

We conducted a number of experiments to demonstrate the ability of the

dK-series to capture important graph properties. We implemented all the dK-graph-

constructing algorithms from Section 4.3.1, applied them to both measured and mod-

eled Internet topologies, and calculated all the topology metrics from Section 2.1 on the

resulting graphs.

We experimented with the three measured AS-level topologies described in the

previous chapter, namely - skitter traceroute [13] from CAIDA, RouteViews’ BGP [83],

and RIPE’s WHOIS [44] data for the month of March 2004, as well as with a syn-

thetic router-level topology—the HOT graph from [54]. The qualitative results of our

experiments are similar for the skitter and BGP topologies, while the WHOIS topology

lies somewhere in-between the skitter/BGP and HOT topologies. In the case of skitter

comprising of 9204 nodes and 28959 edges, we will see that its degree distribution itself

places significant constraints upon the graph generation process. Thus, even 1K-random

graphs approximate the skitter topology reasonably well. The HOT topology with 939

75

Table 4.3: Scalar metrics for 2K-random HOT graphs generated using different tech-
niques.

Metric Stochastic Pseudograph Matching 2K-
random

2K-
targeting

Original

HOT
k̄ 2.87 2.19 2.22 2.18 2.18 2.10
r -0.22 -0.24 -0.21 -0.23 -0.24 -0.22
d̄ 4.99 6.25 6.22 6.32 6.35 6.81
σd 0.85 0.75 0.74 0.70 0.70 0.57

Table 4.4: GCC sizes of 2K-random graphs generated using different techniques.
Metric Based

on
Matching 2K-

rand-
omizing
rewiring

Pseudo-
graph

2K-
targeting
rewiring

Stoch-
astic

Orig.
graph

nodes skitter 9200 9198 9200 9200 7777 9200
edges skitter 28,848 28,957 28,955 28,957 26,609 28959
nodes HOT 740 819 775 807 665 939
edges HOT 821 893 850 880 954 989

nodes and 988 edges is at the opposite extreme. It is the least constrained; 1K-random

graphs approximate it poorly, and dK-series’ convergence is slowest. We report results

for these two extreme cases, skitter and HOT.

Our results represent averages over 100 graphs generated with a different ran-

dom seed in each case, using the notation in Table 4.2.

4.4.1 Algorithmic comparison

We first compare the different graph generation algorithms discussed in Sec-

tion 4.3.1. All the algorithms give consistent results, except the stochastic approach,

which suffers from the problems related to high statistical variance discussed in Sec-

tion 4.3.1. This conclusion immediately follows from Figure 4.6, Figure 4.5, Table

4.3 and Table 4.6 showing graph metric values for the different 2K and 3K algorithms

described in Section 4.3.1.

In our experience, we find that dK-randomizing rewiring is easiest to use.

76

100 101 102 103 10410−3

10−2

10−1

100

Node degree

Cl
us

te
rin

g

2K Matching
2K Randomizing rewiring
2K Pseudograph
2K Targeting rewiring
2K Stochastic

(a) Clustering in skitter for different 2K algorithms

1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance in hops

PD
F

2K Matching
2K Rewiring
2K Pseudograph
2K Metropolis
2K Stochastic
Skitter

(b) Distance distribution in skitter for different 2K algorithms

Figure 4.5: Comparison of 2K-graph-constructing algorithms in skitter.

77

0 2 4 6 8 10 12 140

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance in hops

PD
F

2K Matching
2K Randomizing rewiring
2K Pseudograph
2K Targeting rewiring
2K Stochastic

(a) Distance distribution in HOT for different 2K algorithms

0 2 4 6 8 10 120

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance in hops

PD
F

3K Randomizing rewiring
3K Targeting rewiring

(b) Distance distribution in HOT for different 3K algorithms

Figure 4.6: Comparison of 2K- and 3K-graph-constructing algorithms.

78

Table 4.5: GCC sizes of 3K-random graphs generated using different techniques.
Based 3K-randomizing 3K-targeting Original
on rewiring rewiring graph
skitter 9200 9200 9200
HOT 939 886 939

Table 4.6: Scalar metrics for 3K-random HOT graphs generated using different tech-
niques.

Metric 3K-randomizing 3K-targeting Original
rewiring rewiring HOT

k̄ 2.10 2.13 2.10
r -0.22 -0.23 -0.22
d̄ 6.55 6.79 6.81
σd 0.84 0.72 0.57

However, it requires the original graph as input. If only the target dK-distribution is

available and if d 6 2, we find the pseudograph algorithm most appropriate in practice.

We note that our 2K version results in fewer pseudograph “badnesses”, i.e., (self-)loops

and small connected components (CCs), than PLRG [2], its commonly-known 1K coun-

terpart. This improvement is due to the additional constraints introduced by the 2K

case. For example, if there is only one node of high degree x and one node of another

high degree y in the original graph, then there can be only one link of type (x, y). Our

2K modification of the pseudograph algorithm must consequently produce exactly one

link between these two x- and y-degree nodes, whereas in the 1K case, the algorithm

tends to create many such links. Similarly, a 1K generator would tend to produce many

isolated degree−1 nodes connected to one another. Since the original graph does not

have such pairs of 1-degree nodes, our 2K generator, as opposed to 1K, does not form

these small 2-node CCs either.

While the pseudograph algorithm is a good 2K-random graph generator, we

could not generalize it for d > 3 (as explained in Section 4.3.1). Therefore, to generate

dK-random graphs with d > 3 when an original graph is unavailable, we use dK-

targeting rewiring. We first bootstrap the process by constructing 1K-random graphs

79

Table 4.7: Numbers of possible initial dK-randomizing rewirings for the HOT graph.
d Possible initial Possible initial rewirings,

rewirings ignoring obvious isomorphisms
0 435,546,699 -
1 477,905 440,355
2 326,409 268,871
3 146 44

Table 4.8: Comparing scalar metrics for dK-random and skitter graphs.
Metric 0K 1K 2K 3K skitter
k̄ 6.31 6.34 6.29 6.29 6.29
r 0 -0.24 -0.24 -0.24 -0.24
C̄ 0.001 0.25 0.29 0.46 0.46
d̄ 5.17 3.11 3.08 3.09 3.12
σd 0.27 0.4 0.35 0.35 0.37
λ1 0.2 0.03 0.15 0.1 0.1
λn−1 1.8 1.97 1.85 1.9 1.9

using the pseudograph algorithm and then apply 2K-targeting 1K-preserving rewiring

to obtain 2K-random graphs. To produce 3K-random graphs, we apply 3K-targeting

2K-preserving rewiring to the 2K-random graphs obtained in the previous step.

4.4.2 Topology comparison

We next test the convergence of our dK-series for the skitter and HOT graphs.

Since all dK-graph constructing algorithms yield consistent results, we selected the

simplest one, the dK-randomizing rewiring from Section 4.3.1, to obtain dK-random

graphs in this section.

The number of possible initial dK-randomizing rewirings is a good prelim-

inary indicator of the size of the dK-graph space. We show these numbers for the

HOT graph in Table 4.7. If we discard rewirings leading to obvious isomorphic graphs,

cf. Section 4.3.1, then the number of possible initial rewirings is even smaller.

We compare the skitter topology with its dK-random counterparts,

80

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance in hops

PD
F

0K−random
1K−random
2K−random
3K−random
Skitter

Figure 4.7: Comparison of distance distribution in dK-random and skitter graphs.

d = 0, . . . , 3, in Table 4.8 and 4.4.2. We report all the metrics calculated for the giant

connected component (GCCs). Minor discrepancies between values of average degree k̄

and r result from GCC extractions. If we do not extract the GCC, then k̄ is the same as

that of the original graph for all d = 0, . . . , 3, and r is exactly the same for d > 1. The

degree distributions match when considering the entire graph and are very similar for

the GCCs for all d > 0. When d = 0, the degree distribution is binomial, as expected.

We see that all other metrics gradually converge to those in the original graph

as d increases. A value of d = 1 provides a reasonably good description of the skitter

topology, while d = 2 matches all properties except clustering. The 3K-random graphs

are identical to the original for all metrics we consider, including clustering.

We perform the 2K-space explorations described in Section 4.3.3 to check if

d = 2 is indeed sufficiently constraining for the skitter topology. We observe small

variations of clustering C̄, second-order likelihood S2, and spectrum, shown in Table

4.9 and Figure 4.10. All other metrics do not change thereby confirming that d = 2,

i.e., the joint degree distribution, indeed provides a reasonably accurate description of

observed AS-level topologies.

The HOT topology is more complex than AS-level topologies. Earlier work

81

100 101 102 103 10410−8

10−6

10−4

10−2

100

Node degree

No
rm

al
ize

d
no

de
 b

et
we

en
ne

ss

0K−random
1K−random
2K−random
3K−random
Skitter

Figure 4.8: Betweenness in dK-random and skitter graphs.

Table 4.9: Scalar metrics for 2K-space explorations for skitter.
Metric Min Max Min Max 2K-random Skitter

C̄ C̄ S2 S2

k̄ 6.29 6.29 6.29 6.29 6.29 6.29
r -0.24 -0.24 -0.24 -0.24 -0.24 -0.24
C̄ 0.21 0.47 0.4 0.4 0.29 0.46
d̄ 3.06 3.12 3.12 3.10 3.08 3.12
σd 0.33 0.38 0.37 0.36 0.35 0.37
λ1 0.25 0.11 0.11 0.1 0.15 0.1
λn−1 1.75 1.89 1.89 1.89 1.85 1.9
S2/S

max
2 0.988 0.961 0.955 1.000 0.986 0.958

argues that this topology cannot be accurately modeled using degree distributions

alone [54]. We therefore selected the HOT topology graph as a difficult case for our

approach.

A preliminary inspection of visualizations in Figure 4.2 indicates that the dK-

series converges at a reasonable rate even for the HOT graph. The 0K-random graph

is a classical random graph and lacks high-degree nodes, as expected. The 1K-random

graph has all the high-degree nodes we desire, but they are crowded toward the core,

a property absent in the HOT graph. The 2K constraints start pushing the high-degree

82

100 101 102 103 10410−4

10−3

10−2

10−1

100

Node degree

Cl
us

te
rin

g

0K−random
1K−random
2K−random
3K−random
Skitter

Figure 4.9: Clustering in dK-random and skitter graphs.

nodes away to the periphery, while the lower-degree nodes migrate to the core, and the

2K-random graph begins to resemble the HOT graph. The 3K-random topology looks

remarkably similar to the HOT topology.

Of course, visual inspection of a small number of randomly generated graphs

is insufficient to demonstrate our ability to capture important metrics of the HOT graph.

Thus, we compute the different metric values for each of the dK-random graph and com-

pare them with the corresponding value for the original HOT graph. In Table 4.10, Fig-

ure 4.11(a) and Figure 4.11(b) we see that the dK-series converges more slowly for HOT

than for skitter. Note that we do not show clustering plots because clustering is almost

zero everywhere: the HOT topology has very few cycles; it is almost a tree. The 1K-

random graphs yield a poor approximation of the original topology, in agreement with

the main argument in [54]. Both Figure 4.2 and Figure 4.11(b) indicate that starting with

d = 2, low- but not high-degree nodes form the core: betweenness is approximately as

high for nodes of degree ∼ 10 as for high-degree nodes. Consequently, the 2K-random

graphs provide a better approximation, but not nearly as good as it was for skitter. How-

ever, the 3K-random graphs match the original HOT topology almost exactly. We thus

conclude that the dK-series captures the essential characteristics of even particularly

83

100 101 102 103 10410−3

10−2

10−1

100

Node degree

Cl
us

te
rin

g

2K with clustering maximized
2K−random
2K with clustering minimized
Skitter

Figure 4.10: Varying clustering in 2K-graphs for skitter.

Table 4.10: Comparing scalar metrics for dK-random and HOT graphs.
Metric 0K 1K 2K 3K HOT
k̄ 2.47 2.59 2.18 2.10 2.10
r -0.05 -0.14 -0.23 -0.22 -0.22
C̄ 0.002 0.009 0.001 0 0
d̄ 8.48 4.41 6.32 6.55 6.81
σd 1.23 0.72 0.71 0.84 0.57
λ1 0.01 0.034 0.005 0.004 0.004
λn−1 1.989 1.967 1.996 1.997 1.997

difficult topologies, such as HOT, by sufficiently increasing d, in this case to 3. We note

that the speed of dK-series convergence depends both on the structure and size of an

original graph G. It must converge faster for smaller graphs of similar structure. How-

ever, here we see that the graph structure plays a more crucial role than its size. The

dK-series converges slower for HOT than for skitter, even though the former graph is

an order of magnitude smaller than the latter.

4.5 Discussion and Summary

While our approach to topology analysis is promising, we point out a few

relevant issues in using the dK-series.

84

0 5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance in hops

PD
F

0K−random
1K−random
2K−random
3K−random
HOT

(a) Distance distribution

100 101 10210−3

10−2

10−1

Node degree

No
rm

al
ize

d
no

de
 b

et
we

en
ne

ss

0K−random
1K−random
2K−random
3K−random
HOT

(b) Betweenness

Figure 4.11: Comparison in dK-random and HOT graphs

85

First, one must determine appropriate values of d to carry out studies of inter-

est. Our experience to date suggests that d = 2 is sufficient to reproduce most metrics of

interest and that d = 3 faithfully reproduces all metrics we are aware of for Internet-like

graphs. It also appears likely that d = 3 will be sufficient for self-organized small-worlds

in general. This issue is particularly important because the computational complexity

of producing dK-graphs grows rapidly with d. Studies requiring large values of d may

limit the practicality of our approach. However, we are encouraged by our initial ex-

periments with non-Internet graphs such as protein networks, social networks and other

biological networks. All of these graphs are small-world and d = 3 was sufficient to

reproduce all the metrics for these graphs as well.

In general, more complex topologies may necessitate developing algorithms

for generating dK-random graphs with high d’s. We needed higher d to describe the

HOT topology as accurately as the skitter topology. The intuition behind this obser-

vation is that the HOT router-level topology is “less random” because it results from

targeted design and engineering. The skitter AS-level topology, on the other hand, is

“more random” since there is no single point of external human control over its shape

and evolution. It is a cumulative result of local decisions made by individual ASes.

A second important question concerns the discrete nature of our model. For

instance, we are able to reproduce 1K- and 2K-distributions but it is not meaningful

to consider reproducing 1.4K-distributions. Consider a graph property X not captured

by 1K but successfully captured by 2K. It could turn out that the space of 2K-random

graphs over-constrains the set of graphs reproducing X . That is, while 2K-graphs do

successfully reproduce X , there may be other graphs that also match X but are not

2K-graphs.

Fundamental to our approach is that we seek to reproduce important charac-

teristics of a given network topology. We cannot use our methodology to discover laws

governing the evolutionary growth of a particular network. Rather, we are restricted to

observing changes in degree correlations in graphs over time, and then generating graphs

that match such degree correlations. However, the goals of reproducing important char-

86

acteristics of a given set of graphs and discovering laws governing their evolution are

complementary and even symmetric.

They are complementary because the dK-series can simplify the task of val-

idating particular evolutionary models. Consider the case where a researcher wishes to

validate a model for Internet evolution using historical connectivity information. The

process would likely involve starting with an initial graph, e.g., reflecting connectivity

from 5 years ago, and generating a variety of larger graphs, e.g., reflecting modern-day

connectivity. Of course, the resulting graphs will not match known modern connectiv-

ity exactly. Currently, validation would require showing that the graph matches “well

enough” for all known ad hoc graph properties. Using the dK-series however, it is suf-

ficient to demonstrate that the resulting graphs are dK-random for an appropriate value

of d, i.e., constrained by the dK-distribution of modern Internet graphs (with d = 3

known to be sufficient in this case). As long as the resulting graphs fall in the dK-

random space, the theory of dK-randomness explains any variation from ground truth.

This methodology also addresses the issue of defining “well enough” above: dK-space

exploration can quantify the expected variation in ad hoc properties not fully specified

by a particular dK-distribution.

The approaches are symmetric in that they both attempt to generate graph

models that accurately capture values of topology metrics observed in real networks.

Both approaches have inherent tradeoffs between accuracy and complexity. Achieving

higher accuracy with the dK-series requires greater numbers of statistical constraints

with increasing d. The number of these constraints is upper-bounded by nd (the size

of dK-distribution matrices) times the number of possible simple connected d-sized

graphs [89]. Although the upper bound of possible constraints increases rapidly, spar-

sity of dK-distribution matrices increases even faster. The result of this interplay is that

the number of non-zero elements of dK-distributions for any given G increases with d

first but then quickly decreases, and it is surely 1 in the limit of d = n (the example

in Section 4.2). Achieving higher accuracy with network evolution modeling requires

richer sets of system-specific external parameters [17]. Every such parameter represents

87

a degree of freedom in a model. By tuning larger sets of external parameters, one can

more closely match observed data. It could be the case that the number of parame-

ters required to characterize the evolution of the Internet is smaller than the number of

constraints required by the dK-series (this remains to be seen). However, with the dK-

series, the same set of constraints applies to any network, including social, biological,

and physical. With evolution modeling, one must develop a separate model for each

network.

In summary, we define a series of graph structural properties to both system-

atically characterize arbitrary graphs and to generate random graphs that match speci-

fied characteristics of the original. The dK-distribution is a collection of distributions

describing the correlations of degrees of d connected nodes in nay given graph. The

properties Pd, d = 0, . . . , n, comprise the dK-series. A random graph is said to have

property Pd if its dK-distribution has the same form as in a given graph G. By increasing

the value of d in the series, it is possible to capture more complex properties of G and, in

the limit, a sufficiently large value of d yields complete information about G’s structure.

We show that 0K- and 1K-graphs are two known graph classes corresponding to special

instances of our properties: average node degree and degree distribution, respectively.

2K-graphs capture relationships among pairs of nodes of given degrees; 3K-graphs cap-

ture such relationships among node triples of given degrees, and so on. For all Internet

graphs (both AS- and router-level) that we consider, we find that the d = 2 case is suffi-

cient for most practical purposes, while d = 3 essentially reconstructs the Internet AS-

and router-level topologies almost exactly. All the generated dK-graphs in this chapter

are the same size as the original graph. We describe our techniques to rescale graph

sizes using dK-distributions in the next chapter.

4.6 Acknowledgments

Chapter 4, in full, is a reprint of the material as it appears in the Proceedings

of the ACM SIGCOMM Conference, Pisa, Italy, September 2006, Mahadevan, Priya;

88

Krioukov, Dmitri; Fall, Kevin; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

Rescaling Topologies

Based on our analysis of a wide variety of AS-graphs in Chapter 3, we put

forth a series of unifying graph properties, the dK-series, and demonstrate how they

progressively capture increasingly finer graph metrics by incorporating more and more

information about connectivity among increasingly larger node neighborhoods. Using

the distributions associated with the dK-series, we construct dK-random graphs and

find that for a wide range of measured and modeled Internet topologies, including com-

paratively complex AS-level and router-level graphs, we have been able to successfully

reproduce virtually all known graphs metrics in the literature. The dk-series, by its

definition, also guarantees to reproduce any future graph metric that may be proposed.

However, the algorithms to generate dK-random graphs described in the pre-

vious chapter are only capable of generating graphs of the same size as the given graph.

Scaling graphs to a range of sizes is important as an enabler for a range of simulation and

emulation studies and is an important requirement for any topology generator. We now

look at several strategies for generating graphs of different sizes using the dK-series.

The goal of our rescaling algorithms is to generate random graphs that main-

tain important local characteristics about graph interconnectivity while appropriately

scaling up or down global graph characteristics (e.g., maximum degree). Ideally, our

rescaling algorithms should be generic to arbitrary topology classes and applicable to,

for instance, biological, social, or physical networks.

89

90

To gain more insight about the connectivity properties, we first study historic

data for AS-level graphs collected over five years. Additionally, we also examine router-

level topologies of various sizes for thousands of ASes. The historic data provide insight

into how the structure of the graph changes as the network grows. We are interested

to see whether measures of local node interconnectivity changes as the graph grows

globally. Based on the results we obtain from historical data analysis, we identify several

rescaling algorithms. To evaluate our success in rescaling, we compare the original

to the generated graph for a range of commonly used topology metrics described in

Chapter 2. We discuss these techniques and results in the rest of this chapter.

5.1 Challenges in Rescaling

From the experiments in the previous chapter, 2K-distribution for an input

graph can reproduce virtually all important graph metrics proposed in the literature for

Internet graphs. In this chapter, we focus on algorithms to generate 1K-random and

2K-random graphs with variable numbers of nodes given a target distribution for some

fixed-sized graph. Rescaling 0K-random graphs is straightforward because the 0K-

distribution consists of a single scalar describing the average degree of nodes in the

graph; it is independent of topology size.

Consider the 1K case however. The 1K-distribution corresponds to a given

graph’s degree distribution. It is a function of one integer variable, i.e., node degree k.

The support1 of P (k) lies within [0, n − 1], 0 6 supp(P) 6 n − 1, while the values

of P (k) are between 0 and 1. If we wish to generate a random graph of a different size n′,

then the main question is how the support and values of P (k) should change to result in

the appropriately rescaled degree distribution P ′(k′) of the new graph. Consider the case

of scaling a graph from 1000 to 2000 nodes.Should the maximum degree k ′
max in the new

degree distribution scale with the ratio n′/n? How should the degrees in the given graph

as well as their corresponding distribution be rescaled in the new graph? The question
1The support supp(f) of function f(x) is the set of values of its argument x such that f(x) 6= 0.

91

(a) Non-rescaled 0K-graph

(b) Rescaled 0K-graph, 2000 nodes

Figure 5.1: Rescaled and non-rescaled 0K-graph

92

(a) Non-rescaled 1K-graph

(b) Rescaled 1K-graph, 2000 nodes

Figure 5.2: Rescaled and non-rescaled 1K-graph

93

(a) Non-rescaled 2K-graph

(b) Rescaled 2K-graph, 2000 nodes

Figure 5.3: dK-graphs of size 2000 and the original HOT graph (939 nodes) illustrating
rescaling

94

becomes more complex when considering, for instance, 2K-distributions P (k1, k2) that

are functions of two arguments.

To motivate how our rescaling works in practice, we present visualizations

of original sized and rescaled graphs versions of the HOT [54] graph starting with the

initial 0K, 1K and 2K in Figure 5.1, Figure 5.2 and Figure 5.3 respectively. While we

will quantify our ability to reproduce important graph metrics in subsequent sections,

visually we see that the rescaled graphs maintain much of the same interconnectivity

and structure of their original-sized counterparts.

There are a number of approaches for scaling an initial degree distribution for

a new graph of a given size. Most of them unfortunately reduce to ad hoc mathematical

transformations that involve either compressing the existing distribution or spreading it

out over larger number of possible degrees. In all cases, these transforms require an as-

sumption about how a graph’s maximum degree should scale with the number of nodes

in the graph. While such mathematical transformations are feasible, we believe that

the appropriate rescaling approach depends on the characteristics of the class of graphs

being considered. That is, individual types of graphs will scale up and down in an

application-specific manner. The way that Internet graphs grow may very well be differ-

ent from how social or biological networks grow. Similarly, growth characteristics for a

given organization’s router topology may well differ from the growth characteristics of

the Internet’s global AS peering graph.

5.1.1 Internet topology input data

AS topology historic data

Since we are interested in building an Internet router topology generator that

also combines AS information for each router, we decided to study the historical growth

characteristics of Internet graphs. In particular, we considered the dK-distributions for

historical AS-level topologies extracted from skitter [48] and RouteViews [83] data in

March of each year between 2000 and 2005. In particular, the AS-level topology ob-

95

Table 5.1: Scalar metric values for historic skitter AS-level topologies.
Year Nodes k̄ kmax r C̄ d̄ σd

2000 3308 5.77 836 -0.25 0.38 3.14 0.41
2001 6021 5.48 1461 -0.22 0.40 3.21 0.42
2002 8359 6.49 2355 -0.24 0.44 2.99 0.35
2003 8512 5.17 1443 -0.23 0.38 3.30 0.43
2004 9204 6.23 2070 -0.24 0.46 3.12 0.37
2005 8500 5.97 1783 -0.23 0.45 3.17 0.39

tained from skitter grew by almost a factor of 3 during this time period.

Our hypothesis was that the graph would demonstrate some steady (rather

than ad hoc) growth characteristics and that we could then apply our understanding of

the Internet’s AS growth to generating graphs of a range of sizes given some initial dK

distribution. While we only present results for the skitter data, the conclusion from the

RouteViews data is statistically similar. Figure 5.4 plots degree distribution and Table

5.1 presents some of the commonly used graph metrics for skitter data during this time

period.

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

PD
F

Node degree

Year 2000
Year 2001
Year 2002
Year 2003
Year 2004
Year 2005

Figure 5.4: PDF of degree distribution observed in historical skitter data

From the historic skitter data we make the following observations:

1. As is well-known, the degree distribution follows a power-law, P (k) ∼ k−γ , with

96

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

PD
F

Node degree

Graph size < 10
Graph size10 - 100

Graph size 100 - 500
Graph size 500 - 1000

Graph size > 1000

Figure 5.5: PDF of degree distribution observed in skitter router-level topology of dif-
ferent sizes

γ ≈ 2.1, and the maximum degree kmax scales almost linearly with the graph

size.2

2. Up to a certain threshold degree, the values of the degree distribution stay the

same and the power-law exponent γ remains unchanged with the evolution of the

topology. The average degree stays the same due to linear scaling of values of

high degrees in the power-law tail.

3. The assortativity coefficient, a scalar summary of the 2K-distribution, and mean

clustering, a partial summary of the 3K-distribution, remain almost constant over

the five year period.

4. Some other global metrics such as the distance distribution, do not drastically

change either.

Router topology data

Next, we consider the growth characteristics of router topologies within in-

dividual ASes. Unlike AS-level topologies, we do not have access to detailed historic
2In fact, the expected maximum among n samples of a random variable distributed according to a power law with

exponent −γ is kmax ∼ n1/(γ−1) [8]. For the observed values of γ, this scaling is almost linear since 1/(2.1− 1) ≈
0.9.

97

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

PD
F

Assortativity valus

Graph size < 10
Graph size 10 - 100

Graph size 100 - 500
Graph size 500 - 1000

Graph size > 1000

Figure 5.6: PDF of assortativity observed in skitter router-level topology of different
sizes

router-level topologies to understand their growth patterns. Instead we gathered router-

level topologies for all the ASes observed in the skitter traceroute data from September

1- 15, 2006.

We first present details of skitter’s router-level traces. Skitter is a traceroute

based tool; 25 monitors strategically located around the globe send traceroute probes

to more than a million destination addresses. Skitter records each hop from the source

monitors to all the destinations by incrementing the “time to live” (TTL) of each IP

packet header and recording replies from each router leading to the destination host.

From the collected traceroute packets, the corresponding router-level topology is ob-

tained by the following steps:

1. From the traceroute traces, we first extract IP links. Using the RouteViews data,

we assign the source AS of the longest matching prefix to each IP link.

2. Interface aliases are merged using iffinder [42] into routers. iffinder

sends UDP probe packets to all IP addresses seen in the traces with destination

UDP ports set to presumably unused values. If router R receives such a packet

from prober P destined to R’s IP interface X , while R’s route to P goes via some

other R’s IP interface Y , then R is supposed to reply to P with ICMP port

98

unreachable message with the source address set to Y . Prober P can thus

conclude that X and Y belong to the same router [39].

3. We translate IP links from step 1 to router links using the results from step 2. Next,

we assign AS numbers corresponding to the IP links to the router links. Since all

traceroute traces are directed from source to destination, the graph obtained at this

step is also directed, i.e., each node is characterized by its in- and out-degree.

4. We discard all nodes with either in-degree 0 or out-degree 0 as majority of nodes

removed this way are end hosts.

After applying the above steps, we obtain a router-level topology of the In-

ternet with more than 200,000 routers. This router-level topology has information on

AS membership, i.e., the AS number that each link in the graph belongs to. By putting

together links that belong to the same AS, we are able to create a router-level topology

for each of the ASes observed in the data.

The resulting topology suffers from several limitations. In particular, since

skitter sends traceroute probes from the source monitors to the hosts in its destination

lists, typically not all routers inside an AS will be discovered. As a result, the router-level

topology for a particular AS need not be connected (disjoint traceroutes may discover

different portions of the same AS). We extract the giant connected component (GCC)

from the router-level topology for each AS and discard ASes where the GCC is less than

75% of the total number of routers in that AS. We consider the connectivity information

for these ASes to be insufficient to inform subsequent topology generation. We are left

with router-level topologies of varying sizes for approximately 5700 ASes. There are a

number of other concerns with the quality of obtained topologies. We list just a few:

• Traceroute explorations are widely known to introduce sampling biases since they

find only those links that, roughly, lie in a collection of shortest-path trees rooted

at the monitors; other links are missing [22].

• Traceroute probes are also susceptible to degree inflation, since they do not ac-

99

count for layer-2 connectivity. For example, when several routers are connected

through a switch, traceroute techniques can mistakenly assume that these route-

rs are directly connected to each other. As a result, the degrees of the routers need

not be accurate.

• Several concerns stem from using iffinder to map IP interfaces to routers.

In particular, while there are no false positives in the mapping, it is difficult to

quantify the false negatives.

Despite these limitations, the skitter data remains one of the few sources of router-level

data that can be used for topological modeling and inference.

We next smooth the obtained router topology statistics. Specifically, we per-

form logarithmic binning to group all the router graphs obtained for each AS into the

following four categories based on the AS size equal to the number of routers within an

AS:
AS category AS size S
T1 S < 10
T2 10 6 S < 100
T3 100 6 S < 1000
T4 S > 1000

We plot the degree distributions and assortativity coefficients averaged for

each category in Figure 5.5 and Figure 5.6, and make the following observations:

• Router graphs with more than 100 nodes have degree distributions that can be

loosely approximated by power laws, although the power law is not as good a fit

as was observed for AS-level topologies. Graphs smaller than 100 nodes have

such scarce degree statistics that any discussion whether their degree distributions

follow any specific laws or not is impossible.

• The observed maximum degree does not scale in a similar fashion as observed

in historic AS-level graphs. In fact, the maximum degree does not increase sig-

nificantly with increase in graph size and the observed maximum node degree is

about 330 in the largest router graphs.

100

This observation agrees with the intuition behind router topologies: the number of

interfaces per router cannot be arbitrarily large; it is bounded by simple technical

network design constraints [54].

• We observe no specific and statistically significant values of assortativity coeffi-

cients for the obtained router graphs of different sizes.

These observations suggest that our rescaling techniques should be appropri-

ately adjusted to account for the specifics of router topologies. The maximum degree, for

example, cannot scale linearly as in the AS topology case. Instead, it should be bounded

above by a specific value representing current technological and practical limitations.

Based on the findings from historic AS-level topology and router-level topolo-

gies of various sizes, we implemented a rescaling algorithm to generate both 1K −

random and 2K − random graphs. This algorithm, however, would only be effective

for scale-free graphs such as the Internet’s topologies. In other words, the scaling of

biological or social networks might exhibit different patterns.

5.2 1K-rescaling

We base our rescaling techniques on the observations made in Section 5.1.1.

In our 1K-rescaling, we attempt to preserve the shape of the PDF of the graph’s degree

distribution. We do so by: i) keeping the proportion of low-degree nodes in the rescaled

graph the same as in the original graph, ii) scaling linearly, with the size of a rescaled

graph, the values of high degrees, and iii) keeping the number of nodes of rescaled high

degrees the same as the corresponding number of nodes in the original graph.

Specifically, our algorithm to rescale 1K-distributions of AS graphs works as

follows.

Input:

• The original graph size n.

101

• The original degree distribution P (k).

• The new graph size n′.

Output:

• The degree distribution P ′(k′) in the new graph.

Procedure:

1. Find the low-degree threshold kl > 1 defined as the lowest degree value such that

the smoothed degree distribution behaves as P (kl + 1) > P (kl), i.e., value kl is

such that statistical noise in P (k) becomes significant for k > kl. We require that

kl be sufficiently large such that the nodes of the remaining degrees account for

less than 10% of the total nodes (the degree distribution PDF does not typically

follow a power law for the first few degrees and most of the nodes in the graph

fall in this range).

2. Find the high-degree threshold kh defined as the lowest degree value such that the

smoothed degree distribution P (k) is a constant function, i.e., value kh is such

that the number of nodes n(k) = nP (k) is approximately the same for all k > kh.

3. Let k ∈ supp(P) be the set of degree values k such that P (k) 6= 0, and k ′(k) ∈

supp(P ′) be the set of corresponding degree values in the new graph.

4. For k 6 kl, k′(k) = k and P ′(k) = P (k).

5. For k > kh, k′(k) = kn′/n and n′(k′(k)) = n(k) ⇔ P ′(kn′/n) = n/n′P (k).3

6. Let M = (kl, kh) be an open interval between kl and kh, and M ′ = (kl, khn
′/n)

be an open interval between k′(kl) and k′(kh). For k ∈ M , we use linear rescaling

to glue the two regimes of P ′(k′) defined at steps 4 and 5 as follows:

(a) Let u be the number of nodes in the original graph with degrees k ∈ M ,

u = n
∑

k∈M P (k), let i = 1, . . . , u be the rank of node i in the list of nodes
3Rounding to closest integers is assumed whenever needed.

102

with degrees in M sorted in the order of non-increasing degrees, and let k(i)

be the degree of node i. This way k(1) = kh and k(u) = kl.

(b) Let u′ be the number of nodes in the new graph that should have degrees

k′ ∈ M ′,

u′ = n′(1 −
∑

k′ /∈M ′ P ′(k′)).

(c) For nodes j = 1, . . . , u′ in the new graph, compute their linearly rescaled

degree values by

k′(j) =
(

1−n′/n
u′−1

(j − 1) + n′

n

)

k
[

u−1
u′−1

(j − 1) + 1
]

.

(d) Let l(x) be a linear function such that l(k′
l) = P ′(k′

l) and l(k′
h) = P ′(k′

h),

i.e., l(x) = ax + b, where a = (n/n′P (khn
′/n) − P (kl))/(khn

′/n − kl)

and b = P (kl) − akl. Let ρ be a small random variable uniformly and sym-

metrically distributed around 0. For values k′ in the new graph produced

by step 6c, compute the corresponding values of the degree distribution by

P ′(k′) = c(l(k′) + ρ), where the constant c is determined from the normal-

ization condition for the whole P ′(k′), i.e.,
∑

k′∈supp(P ′) P ′(k′) = 1.

We then supply the output degree distribution P ′(k′) as input to the 1K-random topol-

ogy generation algorithms described in the previous chapter to obtain the final graph.

As before, we extract the GCC from the generated graph.

To rescale router topologies of sizes smaller than 100 nodes, we also maintain

the degree distribution of the given graph. Rescaling router topologies larger than 100

nodes, we impose an additional constraint on the maximum degree to not exceed 330.

We stress that this value can be configured by the user based on better data for Internet

connectivity or updated router technology information.

5.3 2K-rescaling

Rescaling an original 2K-distribution is more difficult because the 2K-

distribution contains strictly more information than the 1K-distribution. An element

103

P (k1, k2) in the 2K-distribution matrix is the probability of having an edge between

two nodes of degree k1 and k2. The main idea behind our 2K-rescaling is the same as

in the 1K case—we try to preserve the shape of the 2K-distribution P (k1, k2). In other

words, we want the degree correlation “profile” of rescaled graphs be similar to the

original. We preserve it by means of the following algorithm:

Input:

• The original graph size n.

• The original joint degree distribution (JDD) P (k1, k2).

• The new graph size n′.

Output:

• The JDD in the new graph P ′(k′
1, k

′
2).

Procedure:

1. Compute the 1K-distribution from the given 2K-distribution by P (k) =

k̄/k
∑

k1
P (k, k1).

2. Rescale P (k) to P ′(k′) of the new graph as in Section 5.2.

3. Let k̂′(k) be the mapping between the old and new degree values induced by 1K-

rescaling. Specifically, let M =

(kl, kh) be as in Section 5.2. If k /∈ M , then k̂′(k) = k′(k) from steps 4 and 5

in Section 5.2. Otherwise, if k ∈ M , k̂′(k) is given by the degree mapping from

step 6c in Section 5.2.

4. Let X = |supp(P)|M and X ′ = |supp(P ′)|M ′ be the sizes of supports of P (k)

and P ′(k′) within the M and M ′ intervals respectively. When scaling up, n′ > n,

104

X ′ > X , and the 2K-distribution is computed as follows:

P ′(k̂′
1(k1), k̂

′
2(k2)) =























































P (k1, k2), if k1 /∈ M

and k2 /∈ M,

(

X
X′

)2
P (k1, k2), if k1 ∈ M

and k2 ∈ M,

(

X
X′

)

P (k1, k2), otherwise.

When scaling down, n′ < n, X ′ 6 X , and

P ′(k′
1, k

′
2) =

∑

k1,2|k̂′

1,2(k1,2)=k′

1,2

P (k1, k2)

That is, the JDD shapes before and after rescaling are the same, while the above

expressions guarantee that the JDDs of both original and new graphs are properly

normalized.

As in the 1K case, we then supply the produced 2K-distribution P ′(k′
1, k

′
2)

to 2K-random graph construction algorithms in the previous chapter to obtain the final

graph.

5.3.1 1K + r-rescaling

We have also experimented with a rescaling technique lying somewhat in-

between 1K- and 2K-rescaling. The motivation for it is that for the AS-level graphs,

the assortativity coefficient r, a summary statistic of the 2K-distribution, has remained

roughly constant over time (see Table 5.1). We can thus perform 1K-rescaling and

then move the resulting graph to a target value of r by a sequence of 1K-preserving

r-targeting rewirings. At each rewiring step, we select a random pair of edges (v1, v2)

and (v3, v4) and rewire them to the pair (v1, v4) and (v2, v3) only if the 1K-distribu-tion

does not change and the value of r after rewiring is closer to its target value than before

(see [56] for further details).

105

To generate 2K random graphs of any size, we first compute the assortativity

coefficient r of the given graph. We then generate a 1K-random graph of the desired

size using the 1K-rescaling algorithm described in section 5.2. Next, we perform 1K-

preserving rewiring on this graph in such a manner that the rewirings take the graph

towards the target r value. Specifically, we choose a random pair of edges in the gener-

ated 1K-graph and rewire those two edges only if the r value of the resulting graph is

closer to the target r-value. Note that it is not possible to perform rewiring targeting the

exact 2K-distribution because it is not mathematically meaningful to evaluate whether

a rewiring moves us closer to a target matrix. We keep iterating on this rewiring proce-

dure until we reach the target r-value or when a threshold number of candidate random

rewirings do not move us closer to the target.

One potential problem with this rewiring technique is that it may be non-

ergodic, meaning that there may not be a continuous sequence of rewirings that will

take the graph from its initial state to a final state that achieves the target r value. While

we did not encounter this limitation in the graphs we considered, techniques such as

simulated annealing could mitigate potential problems with this technique if necessary.

A second issue is that assortativity is only a summary of our target 2K-distribution;

seen another way, no scalar metric can capture all of the information in arbitrary 2K-

distributions represented by matrices. Hence this second technique may give up some

accuracy.

We present a comparison between these two techniques for 2K-rescaling in

Section 4.4. At a high level, the first techniques of shrinking or expanding the original

2K-distribution matrix has the potential to be more accurate. However, our technique

for, essentially, filling in missing information may introduce inaccuracies of its own. The

rewiring technique, on the other hand is simpler, and can be extended to higher-order

distributions as long as we can find a scalar summary of a given dK-distribution (for in-

stance, the mean clustering and correlation of degrees of nodes located at distance 2 from

each other are such summaries for the 3K-distribution). However, increasing amounts

of information are lost as we complex more and more data onto a single scalar. Further,

106

the rewiring is not guaranteed to converge to a target value as discussed earlier.

5.4 Results

In this section, we conduct a number of experiments to demonstrate the ability

of our rescaling algorithms to reproduce important graph metric values. We compare

our generated topologies to the original observed topology with respect to some of the

most popular metrics used in the networking literature.

To report our metric values, we use notations described in Table 3.2 in the

previous chapter. The results below represent averages over 10 generated graphs in each

case. We note that the standard deviation and variance for all the metrics is negligible.

Table 5.2: Scalar metrics for 1K-rescaled skitter AS graphs (Section 5.2
Number of nodes

Metric Original 9200 6000 12000 15000 30000
(9200)

k̄ 6.29 6.34 6.17 6.38 6.35 6.44
r -0.24 -0.24 -0.23 -0.23 -0.22 -0.21
C̄ 0.46 0.25 0.23 0.25 0.27 0.27
d̄ 3.12 3.11 3.18 3.15 3.13 3.1
σd 0.37 0.4 0.44 0.42 0.41 0.39
λ1 0.1 0.03 0.1 0.09 0.09 0.08
λn−1 1.9 1.97 1.89 1.9 1.9 1.93

5.4.1 1K-rescaling for AS-graphs

The skitter AS-level topology for March 2004 has 9200 ASes, with an average

degree of 6.29 and an assortativity coefficient of -0.24. As seen in the previous chapter, a

1K-random graph with 9200 nodes reproduces most metric values of the original skitter

topology except for clustering. We generate random graphs of varying sizes using the

1K-rescaling algorithm and summarize our results for some of the metrics listed above

in Table 5.2.

107

100 101 102 103 10410−5

10−4

10−3

10−2

10−1

100

Node degree

PD
F

Original skitter
6000 nodes
9200 nodes
12000 nodes
15000 nodes
30000 nodes

Figure 5.7: Degree distribution for 1K-rescaled skitter AS graphs

In Figure 5.7 we plot the degree distribution of these different sized graphs.

We find that the metric values are invariant for most graph sizes, and they closely match

the corresponding values of the input skitter topology. The average degree, average

distance and the assortativity coefficient remain constant even as the graph grows or

shrinks in size. The distance distribution across different sized skitter graphs is the same

as that of the original skitter graph, hence we do not show the plot for brevity. We

generated larger size graphs containing up to 80,000 nodes and note that the average

degree and assortativity coefficient values are maintained for these graphs as well.

5.4.2 1K-rescaling for router-graphs

Next, we experimented with a synthetic router-level topology –the HOT graph

from [54]. As shown in the previous chapter, 2K-random graphs reproduce metric val-

ues of the original graph much better than their 1K-random counterparts. The original

HOT graph has 939 nodes with an assortativity coefficient of -0.22 (making it disassor-

tative). We generate different sized graphs for the HOT topology using our 1K-rescaling

technique for router-graphs described in Section 5.2. We report metric values for dif-

ferent sized HOT graphs in Table 5.3 and Figure 5.8 and Figure 5.9. Unlike AS-level

108

Table 5.3: Scalar metrics for 1K-rescaled HOT graphs (Section 5.2
Number of nodes

Metric Original 939 250 2000 5000 8000
(939)

k̄ 2.1 2.59 2.09 2.25 2.28 2.22
r -0.22 -0.14 -0.32 -0.12 -0.1 -0.1
C̄ 0 0.009 0.002 0.002 0.003 0.001
d̄ 6.81 4.41 5.4 5.02 4.94 5.4
σd 0.57 0.72 1.09 0.91 0.86 1.01
λ1 0.004 0.034 0.006 0.013 0.015 0.007
λn−1 1.997 1.967 1.994 1.987 1.985 1.994

100 101 102 10310−4

10−3

10−2

10−1

100

Node degree

PD
F

Original HOT
250 nodes
939 nodes
2000 nodes
5000 nodes
8000 nodes

Figure 5.8: Degree distribution for 1K-rescaled HOT graphs

topologies, we notice that the 1K-random graphs do not accurately reproduce most met-

ric values such as assortativity coefficient and average distance. The only exception is

the assortativity coefficient for the 1K-random HOT graph consisting of 250 nodes. The

250 node graph is almost 4 times smaller than the original graph and the proportionate

scaling of the maximum node degree causes the change in the assortativity coefficient

value. These results once again verify that reproducing HOT’s 1K-distribution is insuf-

ficient for reproducing important graph properties.

109

0 5 10 15 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance in hops

PD
F

Original HOT
250 nodes
939 nodes
2000 nodes
5000 nodes
8000 nodes

Figure 5.9: Distance distribution for HOT using 1K-rescaling

5.4.3 2K rescaling for AS-graphs

We generate different-sized skitter graphs using our 2K-rescaling algorithm

(Section 5.3) and present metric values for these graphs in Table 5.4. As in the 1K

case, we notice that for variable-sized 2K-random graphs, all metric values accurately

mimic that of the original skitter graph, except for clustering. Earlier work [56] shows

that clustering can be reproduced by a 3K-generator. We have not yet implemented

3K-rescaling, though we note that employing rewiring toward a target clustering value

should result in appropriate clustering values for the rescaled graphs. For brevity, we

do not plot the degree distribution of these graphs as they match their 1K-counterparts.

Finally, Figure 5.10 plots the distance distribution of these graphs. We see that for all

the graphs, the distance distribution remains almost unchanged, matching the trends in

the input graph data for a variety of graph sizes.

5.4.4 1K + r-rescaling for AS-graphs

Next, we generate the graphs using our 1K-rescaling algorithm and then sub-

ject them to the 1K-preserving r-targeting rewiring process. The process terminates

upon reaching required value of r. We present the metric values for the skitter graphs

110

Table 5.4: Scalar metrics for 2K-rescaled skitter AS topologies
Number of nodes

Metric Original 9200 6000 12000 15000 30000
(9200)

k̄ 6.29 6.29 6.09 6.31 6.35 6.44
r -0.24 -0.24 -0.22 -0.23 -0.23 -0.22
C̄ 0.46 0.29 0.26 0.28 0.28 0.27
d̄ 3.12 3.08 3.1 3.1 3.1 3.12
σd 0.37 0.35 0.38 0.36 0.35 0.35
λ1 0.1 0.15 0.13 0.13 0.15 0.12
λn−1 1.9 1.85 1.87 1.88 1.88 1.91

Table 5.5: Scalar metrics for skitter using target r rewiring
Number of nodes

Metric Original 6000 12000 15000 30000
(9200)

k̄ 6.29 6.17 6.38 6.35 6.44
r -0.24 -0.24 -0.24 -0.24 -0.24
C̄ 0.46 0.24 0.26 0.25 0.25
d̄ 3.12 3.1 3.09 3.09 3.2
σd 0.37 0.24 0.36 0.33 0.34
λ1 0.1 0.13 0.13 0.15 0.12
λn−1 1.9 1.88 1.88 1.89 1.91

in Table 5.5. Since all the generated 1K-random skitter graphs have values for r close

to the required r value of the original graph, a few rewirings are sufficient for all the

graphs to reach their target state. In the case of skitter, the loss of accuracy from using

the r value instead of the entire JDD matrix appears minimal. In fact, for all metrics

we considered, the r-targeting rewiring performs as well as the 2K-rescaling technique.

The reason behind this effect is that the skitter AS topology is almost 1K-random [56],

i.e., it can be accurately captured using only its 1K-distribution.

111

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

PD
F

Distance (in hops)

Original skitter - 9200 nodes
9200 nodes
6000 nodes

12000 nodes
15000 nodes
30000 nodes

Figure 5.10: Distance distribution for skitter topologies using 2K-rescaling

5.4.5 2K-rescaling for router-graphs

We now generate different sized 2K-random HOT graphs using our 2K-

rescaling technique. We present the metric values for these graphs in Table 5.6 and

plot the distance distribution in Figure 5.11 and the normalized betweenness distribu-

tion in Figure 5.12. Betweenness is a hard metric to reproduce for the HOT graph, but

all the 2K random-graphs reproduce the shape of the betweenness curve exactly. The

difference in the betweenness values for these graphs is due to the difference in their

sizes. The 2K-random hot graphs better reproduce the metric values of the original

HOT graph than the 1K-random HOT graphs, even when scaling up by a factor of 10 or

scaling down by a factor of 4. We observe that while the average degree remains con-

stant for all sized HOT graphs, the assortativity coefficient does change. This behavior

results from the fact that we have not allowed the higher degrees in the graph to scale in

an exact linear manner and that we have imposed a limit of 330 on the maximum degree

in the graph (to reflect technological constraints, see Section 5.1.1).

5.4.6 1K + r-rescaling for router-graphs

Next, we present results for our 1K + r rescaling of router graphs. Unlike

1K-random AS graphs, for the 1K-random HOT graphs, reaching the target r values

112

Table 5.6: Scalar metrics for HOT graphs using 2K-rescaling
Number of nodes

Met- Original 939 250 2000 5000 8000
ric (939)
k̄ 2.1 2.18 2.2 2.19 2.2 2.21
r -0.22 -0.23 -0.36 -0.19 -0.18 -0.18
C̄ 0 0.0001 0.0005 0.0004 0.0005 0.0001
d̄ 6.81 6.32 5.4 6.4 6.6 6.92
σd 0.57 0.71 0.84 0.83 0.97 1.02
λ1 0.004 0.005 0.01 0.004 0.004 0.005
λn−1 1.997 1.996 1.986 1.997 1.996 1.996

0 5 10 15 200

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance in hops

PD
F

Original HOT
250 nodes
939 nodes
2000 nodes
5000 nodes
8000 nodes

Figure 5.11: Distance distribution for 2K-rescaled HOT topologies

takes longer as the r values of 1K-random HOT graphs are not close to the target value.

We report some of the scalar metric values for the HOT graph in Table 5.7. While most

metric values are similar to the HOT graphs from the 2K-rescaling technique, the aver-

age distance value is higher for all the graphs obtained using the r-targeting technique.

This increase in value for the average distance and, correspondingly, in the distance dis-

tribution results from employing the scalar summary of the 2K-distribution instead of

the entire function. Since the HOT graph is not 1K-random but almost 2K-random [56],

the full information contained in its 2K-distribution is required to accurately capture all

113

100 101 102 10310−4

10−3

10−2

10−1

100

Node degree

No
rm

al
ize

d
no

de
 b

et
we

en
ne

ss

Original HOT
250 nodes
939 nodes
2000 nodes
5000 nodes
8000 nodes

Figure 5.12: Betweenness distribution 2K-rescaled HOT topologies

Table 5.7: Scalar metrics for 1K + r-rescaled HOT graphs (Section 5.3.1)
Number of nodes

Metric Original 250 2000 5000 8000
(939)

k̄ 2.1 2.09 2.26 2.28 2.22
r -0.22 -0.22 -0.2 -0.19 -0.18
C̄ 0 0.005 0.0006 0.0003 0.0005
d̄ 6.81 5.4 7.3 7.41 7.8
σd 0.57 0.89 0.82 .73 0.74
λ1 0.004 0.01 0.001 0.002 0.003
λn−1 1.997 1.989 1.998 1.998 1.998

its global properties. Of course, its 1K + r-random version must closer to the original

than the 1K-random version, but farther than the 2K-random one.

5.5 Summary

Overall, we are satisfied with our ability to generate graphs of a range of sizes

while maintaining important graph properties. Importantly, our analysis of historical

AS topologies and router topologies of a range of sizes shows that a range of local

graph properties often remain invariant even as the graph as a whole changes size. Our

114

algorithms are motivated by this observation. We have shown how to scale a graph up or

down (e.g., number of nodes, maximum degree) while still maintaining other important

graph properties.

As we have described, available data sources have a number of limitations

and inaccuracies, which means that our generated topologies will necessarily reflect any

inaccuracies in the underlying data. The primary contribution of this work is not the

summary data we collected about Internet characteristics, but rather a methodology for

topology generation given an available data source.

Given our heuristics for rescaling, one interesting question is the maximum

rescaling degree that we can safely apply to a given graph. We believe that given the

data sources available to us and our analysis of this data, scaling by a factor of approx-

imately 10 and perhaps 100 is meaningful using our methodology. However, it would

not, for instance, be meaningful to scale a ten node topology to one with one million

nodes. Such scaling would likely require a fundamental understanding of the laws gov-

erning the evolution of a given graph [17] rather than the observation-based techniques

we employ to see how graphs evolve historically based on mathematical topology met-

rics. However, given that we do not yet have a firm grasp of such evolutionary laws,

our rescaling techniques and our generator that combines both AS and router-level in-

formation presents an intermediate solution for researchers interested in evaluating the

performance of services and protocols for a range of graph sizes.

5.6 Acknowledgments

Chapter 5, in full, is a reprint of the material as it appears in the Proceedings

of the ACM SIGCOMM Conference, Kyoto, Japan, August 2007, Mahadevan, Priya;

Hubble, Calvin; Krioukov, Dmitri; Huffaker, Bradley; Vahdat, Amin. The dissertation

author was the primary investigator and author of this paper.

Chapter 6

Annotating Topologies

In the previous chapters, we have seen how our dK-series forms the basis

for all graph synthesis and analysis. The dK-series unifies all graph metrics, both cur-

rent and as well as ones that maybe proposed in the future. Using the associated dK-

distributions as input, we have been able to successfully generate dK-random graphs

that capture increasingly fine-grained metrics of Internet topologies. We have also put

forth algorithms to effectively generate dK-random graphs of a wide variety of sizes,

while still maintaining the structure and important metric values of the original mea-

sured topology. We now move to the final requirement of a topology generator as stated

in Chapter 1 – the ability to annotate the generated graphs.

A graph that merely reproduces the structure of the Internet’s AS-level or

router-level topology, though still useful, might not adequately help researchers who

would like to evaluate the performance of their network applications and services.

One reason is that influence of node and link annotations such as latency, loss-rate,

AS membership, etc., can significantly impact application performance and protocol

behavior. Several studies have emphasized the effect of link latencies on end-to-end

application and protocol behavior and the need to accurately model observed laten-

cies [104, 20, 71, 107]. Similarly, nodes in the generated topology should be annotated

with AS membership information to enable studies that account for routing behavior.

Business relationships among peering ASes (peering, customer, etc.) should also be

115

116

included.

Unfortunately, router-level topologies produced by generators today either do

not contain any AS membership information or are not reflective of real measurements.

In the absence of AS membership information in the generated router graphs, most

studies end up computing shortest paths between pairs of end nodes. Researchers have

shown that actual packet paths between Internet hosts are substantially longer than the

corresponding shortest paths [34, 91, 95]. Thus, studies that use shortest path routing

between end hosts will likely yield incorrect results for packet round-trip times and thus

negatively impact application performance. Annotating each router with AS member-

ship will enable us to implement correct routing paths in the topology. As an example,

one can employ modified shortest-path algorithms such as [57] that respect AS mem-

bership and routing policies between the ASes.

Using AS-level topologies instead for these studies has its own set of limita-

tions. AS-topology generators such as Inet [103] do not provide details of the topology

within an AS. They assume that each AS can be effectively modeled by one router. How-

ever, an AS comprises of fairly complex interconnectivity amongst varying number of

routers. Muhlbauer et al. [65] show that the internal structure of an AS is critical as it

influences inter-domain routing such as hot-potato routing [79, 80]. Representing an AS

as a single node results in an AS always choosing a single best-path to its neighbors and

thus cannot capture diverse behavior of BGP such as hot-potato routing observed in re-

ality. Thus, to capture the route diversity, it is critical to model the router-level topology

within an AS.

In this chapter, we focus on techniques for annotating our generated router

graphs. Annotations in a router-level topology can include latencies and bandwidths

for edges in the graph and AS-memberships for routers in the graph. We specifically

describe our method to generate router-level graphs annotated with AS-membership as

well as whether a router is internal or peering. We note that our methodology for an-

notating the routers are generic and can be applied to other types of topologies such as

AS-topologies. Our algorithms can be adapted to annotate the nodes (i.e. ASes) with

117

tiers (tier1, tier2, etc.) and the edges can be annotated with the type of relationship

between the two ASes such as peer-to-peer or customer-provider.

6.1 AS-membership Annotations

Since our goal is to annotate router-level topologies with AS-membership, we

choose the skitter data, which is one of the best available measurements today. The skit-

ter traceroute data described in the previous chapter (Section 5.1.1) includes information

on both ASes and router connectivity. Given AS annotation information in an original

router topology, there are two possible techniques for maintaining AS annotations in

the randomly generated rescaled graph. The first, bottom up technique, would simply

rescale the input router topology and then devise techniques to “grow” contiguous ASes

to match some target number of ASes, making some assumptions about how the number

of ASes scales with the total number of routers and using observations of the number of

routers per AS in the original topology.

Unfortunately, we could not devise any straightforward techniques for filling

in the details of this bottom up technique. Thus, we propose a top down technique

for generating a rescaled, annotated topology. This technique consists of the following

high-level phases illustrated in Figure 6.1:

1. Generate AS-level topology of desired size.

2. Populate each AS with a router-level topology using information on correlations

between AS degrees and sizes measured by the number of routers within an AS.

3. Select peering (i.e., inter-AS or border) routers for each AS based on the peering

router statistics extracted from the traceroute data.

4. Glue per-AS router topologies into a global router topology by connecting peering

routers.

While we describe details of our methodology in the context of skitter below,

118

(a) Generating AS-graph (b) Generating router
graphs for each AS

(c) Assigning peering
routers for each AS

(d) Connecting peering
routers

Figure 6.1: Generating a router-level topology, where each router is annotated with AS-
membership

119

we note that our approach is general to a variety of data sources. For example, we could

use Rocketfuel [92] or iPlane [55] data to generate router-level topologies for each AS.

To provide more details about our annotation techniques, we first describe

some additional post-processing of the skitter data from Section 5.1.1. In addition to

size-based AS categories T1, . . . , T4 from Section 5.1.1, we also use logarithmic bin-

ning to coarsely smooth the AS degree distribution and split all ASes into the following

degree-based classes C1, C2, C3:
AS class AS degree K
C1 K < 10
C2 10 6 K < 100
C3 K > 100

Note that after the data processing in Section 5.1.1, we do not have ASes with K >

1000.

We next statistically relate AS classes c = C1, C2, C3 and categories t =

T1, . . . , T4. Let A(c, t) be the set of ASes of class c and category t. For each combina-

tion (c, t), we keep the following statistics:

• The number of ASes N(c, t) in A(c, t).

• The collection Ja(c, t), a = 1, . . . , N(c, t), of the intra-AS router topology JDDs

of all ASes in A(c, t). Each Ja(c, t) denotes the whole 2K-distribution P (k1, k2)

of the router topology of AS a ∈ A(c, t).

• The corresponding collection Da(c, t) of the peering router degree distributions.

For each AS a, Da(c, t) = PB(k), where PB(k) is proportional to the number of

routers within AS a that have degree k and that peer with routers in other ASes.

Having prepared the statistics above, we generate rescaled AS-annotated

router graphs as follows:

1. Rescale the AS-level graph using 2K-rescaling as described in Section 5.3 (Fig-

ure 6.1(a)).

2. For each AS A in the rescaled AS graph:

120

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

PD
F

Number of Routers in an AS class

Class C1Class C2Class C3

Figure 6.2: PDF of number of routers in an AS class

(a) Determine A’s class c.

(b) Randomly select A’s category t with a conditional probability proportional

to N(c, t).

(c) Select an AS a from A(c, t) uniformly at random.

(d) Populate A with a 2K-random router topology based on P (k1, k2) = Ja(c, t)

(Figure 6.1(b)).

(e) Choose peering routers within AS a having degree k based on a probability

proportional to PB(k) = Da(c, t) (Figure 6.1(c)).

3. Walk over the pairs of adjacent ASes in the rescaled AS graph and connect random

pairs of designated peering routers in each AS.

6.2 Results

To report our metric values, we use notations described in Table 4.2. We now

evaluate our techniques for performing AS-membership annotations in our generated

router topologies. Since this topology combines both router and AS information, in

addition to evaluating metrics for the overall graph, we present results on the fraction of

peering-routers within an AS, and degree distribution of routers within an AS.

121

Table 6.1: Scalar metric values for router-level topologies annotated with AS member-
ship

k̄ r kmax d̄
Original 4.25 0.006 1141 9.14
Generated 3.9 -0.0009 1333 8.53

We classify the ASes in the AS-level topology based on its degrees (Sec-

tion 6.1). Our AS-level topology consists of a total of 5662 ASes. Of all the ASes,

97% belong to class 0, 2.6% belong to class 1 and the remaining belong to class 2.

Figure 6.2 plots the PDF for the number of routers in an AS for every AS class. As

expected, we observe that a majority of the ASes belong to class 0 have fewer than 10

routers in their router-level topology. The number of routers belonging to the class 0

ASes appear more widespread than class 1 or class 2 routers. In fact, the maximum

number of routers observed for a class 0 AS is 1774. The number of routers for a class

1 AS ranges from 10–1996. For class 2 ASes, the minimum number of routers is 150.

This agrees well with the intuition that ASes that have a higher peering degree tend to

have more routers.

Next, we present some scalar metric values to compare generated combined

AS-router-level topology with a similar graph extracted from the skitter traces in Ta-

ble 6.2. These metrics are for the overall router-level topology across all of the ASes for

both the original as well as the generated graph.

Since both graphs have approximately 200,000 nodes, computing cluster-

ing, distance and betweenness distributions will require extremely long running times.

Hence, we randomly choose 50,000 unique paths from our original and generated graphs

and compute the average distance for these sampled paths using shortest-path algorithm.

We note that average distance for the generated graph compares well with that of the

original graph. In Figure 6.3, we show the PDF of distance distribution for the original

and generated skitter-router topology.

Next, we plot the degree distribution of all routers within an AS for each AS

class for both the original and generated graphs in Figure 6.4, Figure 6.5, and Figure

122

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18

PD
F

Distance in hops

Generated Graph
Original Graph

Figure 6.3: Distance distribution in skitter-router topology for original and generated
graphs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

PD
F

Router degree

Extracted Graph
Generated Graph

Figure 6.4: Degree distribution for routers belonging to AS class 0

123

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

PD
F

Router degree

Extracted Graph
Generated Graph

Figure 6.5: Degree distribution for routers belonging to AS class 1

0.0001

0.001

0.01

0.1

1

1 10 100 1000

PD
F

Router degree

Extracted Graph
Generated Graph

Figure 6.6: Degree distribution for routers belonging to AS class 2

124

6.6. This plot allows us to compare how close the extracted and generated topologies

are with respect to the degree distribution of all the routers belonging to each AS class.

We observe that the variations in the degree distributions stem from the limitations in

our data set.

6.3 Summary

In this chapter we describe techniques to annotate nodes in the generated

router-level graphs with AS-membership as well as router role (peering or internal).

Other useful annotations include link latencies and bandwidths for the edges in the

graph. While this dissertation restricts its attention to AS annotations for generated

router topologies, we believe our techniques can be generalized and used support anno-

tations for link latency and capacity based on available measurement sources.

6.4 Acknowledgments

Chapter 6, in full, is a reprint of the material as it appears in the Proceedings

of the ACM SIGCOMM Conference, Kyoto, Japan, August 2007, Mahadevan, Priya;

Hubble, Calvin; Krioukov, Dmitri; Huffaker, Bradley; Vahdat, Amin. The dissertation

author was the primary investigator and author of this paper.

Chapter 7

Conclusions and Future Work

Topology generators that can accurately reproduce characteristics of observed

networks play a very important role in a range of networking studies such as evaluation

of network protocols and applications, network management, traffic engineering, etc.

To date, researchers have not been able to successfully generate random graphs that

reproduce all metrics of real measured topologies.

Our work is the first to propose and implement algorithms capable of gen-

erating random graphs that can reproduce all graph metrics including any that maybe

defined in the future. We also present methods to generate graphs of sizes different

from the original topology and outline techniques to annotate these generated graphs.

Specifically, we show how to annotate router-level topologies with router role (peering

or internal) as well as AS-membership. In this final chapter, we summarize our contri-

butions. Further, we discuss scenarios that could benefit from our research. We close

this dissertation with a discussion on avenues for future research.

7.1 Contributions

Researchers have proposed a wide variety of graph metrics for comparing

and analyzing network topologies. Values for a particular graph metric may capture

a graph’s resilience to failure or its routing efficiency. Knowledge of appropriate

125

126

metric values may influence the engineering of future topologies, repair strategies in

the face of failure and understanding of fundamental properties of existing networks.

Unfortunately, there are typically no algorithms to generate graphs matching one or

more proposed metrics and there is little understanding of the relationships among

individual metrics or their applicability to different settings. Further, existing techniques

typically either cannot perform graph rescaling or do not do so in a manner that reflects

known patterns of network evolution.

To this end, our dissertation makes the following contributions.

1. We present a finite set of unifying graph properties, the dK-series, to describe

and constrain random graphs in successively finer detail. In our model, we make

use of probability distributions on the subgraphs of size d in some given input

graph. More formally, the dK-distribution describe the correlations of degrees of

d connected nodes. We call dK-graphs the sets of graphs constrained by such

distributions. In the limit, these generated dK-graphs are isomorphic to a given

graph and thus will necessarily reproduce any graph metric of the original graph,

by virtue of this isomorphism.

2. We develop and implement new algorithms for constructing 2K- and 3K-graphs

(algorithms to generate 0K- and 1K-graphs are already known). Producing a

family of 0K-graphs for a given input graph requires reproducing only the average

node degree of the original graph, while producing a family of 1K-graphs requires

reproducing the original graph’s node degree distribution. 2K-graphs reproduce

the joint degree distribution of the original graph as well—the probability that a

node of degree k is connected to a node of degree k′. 3K-graphs consider triples

of nodes, and so forth.

3. We explore interesting tradeoffs in choosing the appropriate value of d to compare

two graphs. As we increase d, the set of randomly generated graphs having the

127

corresponding dK-distribution becomes increasingly constrained and the result-

ing graphs are increasingly likely to reproduce a variety of metrics of interest. At

the same time, the algorithmic complexity associated with generating the graphs

increases sharply. Thus, we present a methodology where practitioners choose

the smallest d that captures essential graph characteristics for their study. For the

comparatively complex Internet AS- and router-level topologies that we consider,

d = 2 is sufficient for most cases and d = 3 captures all graph properties proposed

in the literature known to us.

4. To explore the structural diversity amongst all dK-graphs, we present space ex-

ploration techniques that allow us to generate graphs with arbitrary values for

metrics that are not defined by the corresponding dK-distribution.

5. We present algorithms to rescale the appropriate dK-distributions in order to gen-

erate graphs of sizes vastly different from the original graph. We examine his-

torical Internet connectivity data to determine our rescaling strategies. We ex-

perimentally show that we are able to produce 1K- and 2K-graphs of a variety

of sizes while still maintaining other important graph characteristics for AS- and

router-level topologies.

6. We present a top-down technique for generating router-level topologies anno-

tated with AS membership. We further classify routers in this topology based

on whether they are peering or internal routers. We compare our randomly gen-

erated, annotated router topologies to observed Internet router topologies and find

close matches for a range of graph metrics proposed in the literature.

7. Finally, all of our graph generation techniques are not dependent on the topology

type or its evolution. Thus, all of our algorithms are applicable to other topologies

such as enterprise and wireless networks, biological networks, social networks,

etc.

128

Our topology generator will serve as valuable input to a range of studies in the

networking community. We outline several specific cases here.

Evaluation of routing protocols: Studying routing protocol scalability and

convergence requires knowledge of both topology and AS relationships. Convergence of

BGP has been shown to depend on the topological characteristics of the network [52, 1].

Our topology generator can be used in the evaluation of scalability of such routing pro-

tocols.

Evaluation of network protocols and applications: Many studies on network

protocols especially congestion control employ simple “dumbbell”-style topologies.

Such studies will benefit from considering more realistic graphs that reflect the structure

of actual measured topologies. We hope that our topology generator suite will enable

protocol and application researchers to test system behavior under a suite of randomly

generated yet appropriately constrained and realistic network topologies. For example,

they can pose and answer questions such as how does the estimation of round-trip times

vary with variance in topological features, how does the sending rate adapt with the

detection of bottlenecks in the network, etc.

Network coordinate systems: Developing network coordinates [20, 71, 87]

and geo-localization [105, 14] has recently gained prominence in the networking com-

munity. Network coordinate systems involve assigning synthetic coordinates to Internet

hosts such that the Euclidean distance between two hosts coordinates predicts the net-

work latency between them. The goal of geo-localization systems is to determine the

physical location of Internet hosts. These systems play a key role in several scenarios

such as network management, fault diagnosis, etc. Our topology generator can supply

a range of input Internet graphs and potential deployment scenarios in support of these

systems.

GENI: One important research initiative is GENI (Global Environment for

Network Innovation) [35], whose goal is to lower the barriers for validation and de-

ployment of software, and to focus on innovative designs for the Future Internet. Our

generator will serve as a valuable input for infrastructures that will evaluate future net-

129

working applications and protocols prior to their deployment. One expected result of

GENI is the availability of an annotated map of the entire Internet including detailed

router and link attributes. We envision our topology generator suite as a component of

the GENI project. While network infrastructures may change over time, leading to dif-

ferent topological features of the Internet than the ones observed today, our generator

will be able to generate these future Internet graphs as well.

Traffic Engineering: Knowledge of network topology is critical for ISPs for

traffic engineering. Traffic engineering provides the ability to move traffic flows away

from the shortest path and onto a potentially less congested physical path across the

service provider’s network. While this ability requires intimate knowledge of the topol-

ogy, engineers can evaluate their traffic engineering solutions on a variety of graphs

produced by our generator. If it is found that certain connectivity characteristics in the

topology yield better alternate routes for forwarding the traffic, then the network can

be engineered to follow the optimum connectivity pattern. In general, our generated

graphs allow network engineers and administrators to play around with different ’what

if’ scenarios and effectively validate their solutions.

Network evolution: The dK-series is a descriptive model in the sense of

matching all graph-theoretic properties of observed networks as compared to network

evolutionary models, that aim to seek the fundamental forces driving the growth of the

network. While the dK-series cannot be used to understand the evolutionary laws driv-

ing the network growth, it can simplify the task of validating evolutionary models. Con-

sider the case where a researcher wishes to validate a model for Internet evolution using

historical connectivity information. The process would likely involve starting with an

initial graph, e.g., reflecting connectivity from 5 years ago, and generating a variety of

larger graphs, e.g., reflecting modern-day connectivity. Of course, the resulting graphs

will not match known modern connectivity exactly. Currently, validation would require

showing that the graph matches “well enough” for all known ad hoc graph properties.

Using the dK-series however, it is sufficient to demonstrate that the resulting graphs

are dK-random for an appropriate value of d, i.e., constrained by the dK-distribution of

130

modern Internet graphs (with d = 3 known to be sufficient in this case). As long as the

resulting graphs fall in the dK-random space, the theory of dK-randomness explains

any variation from ground truth. This methodology also addresses the issue of defining

“well enough” above: dK-space exploration can quantify the expected variation in ad

hoc properties not fully specified by a particular dK-distribution.

Other complex networks: Complex networks are studied across many fields

such as biology, physics, mathematics, sociology, etc. A network topology graph is the

simplest abstraction of any complex system consisting of many interacting elements.

Typically, elements of the system are abstracted as nodes and their interactions as links.

Examples of complex networks include protein-protein interaction networks, social net-

works, etc.

Protein-protein interaction networks, which are commonly used by biologists,

depict interactions among all the proteins of an organism. Biologists have shown that

proteins that interact are more likely to co-evolve [23, 29, 59, 75], therefore it is possible

to make inferences about interactions between pairs of proteins based on their phyloge-

netic distances. Thus, using a network to represent protein interactions and analyzing

such a network has now become an accepted practice among biologists.

A social network is a set of people or groups of people with some pattern

of contacts or interactions between them [67]. The patterns of friendships between

individuals [64, 66] and business relationships between companies [66] are examples of

social networks that have been studied in the community. Another well studied example

is the actor network. In this network, actors are represented as nodes in a graph and two

actors are considered connected if they have appeared in a film together [68]. Graphs are

typically used to represent the above networks. Network modeling, analysis and random

graph generation have become popular among sociologists studying such networks.

Since our graph generation algorithms do not depend on the type of the topol-

ogy (such as AS- or router-level) and the evolution of the underlying network, all our

graph analysis and synthesis techniques are applicable to other complex networks such

as biological, economic and social networks. Our initial results with biological and

131

social networks show that d = 3 is sufficient to reproduce metrics of these graphs as

well. Thus our graph generation algorithms will benefit researchers in biology, sociol-

ogy, physics, mathematics and economics where graph synthesis and analysis plays an

important role.

7.2 Future Work

Our dissertation demonstrates that we can generate random graphs of a wide

range of sizes that match observed topologies with respect to all metrics proposed or that

may be proposed in the literature. Indeed, by reproducing local connectivity properties

(2K- and 3K-distributions), we have also been able to successfully reproduce global

metrics such as distance distribution, spectrum and betweenness. Along the way, we

have discovered a number of interesting avenues for future research.

• Effective techniques for measuring Internet topologies and characteristics: While

there are several sources of data available for both AS-level and router-level

topologies, researchers recognize that these are essentially incomplete. Incom-

pleteness of the data as well as biases during measurement may distort our view

of the Internet [50]. Indeed, our ability to reproduce observed input graph prop-

erties is limited by the quality of available Internet measurements. However, the

methodology and algorithms for generating annotated, rescaled topologies con-

stitute the primary contributions of this work, and not necessarily the particu-

lar generated graphs. While we can verify that our topologies match observed

router topology characteristics, we cannot claim that either the input or generated

topologies accurately reflect reality. The quality of our generated topologies will

improve with the quality of available measurements.

Thus, an important future direction is developing effective and efficient method-

ologies to measure the Internet’s AS- and router-level topologies such that these

measurements reflect the real network connectivity. Additionally, accurate mea-

132

surements of Internet characteristics such as bandwidth, latency and loss-rate will

be critical to any further developments in network modeling.

• Enterprise networks: One promising avenue is studying the characteristics of en-

terprise networks. Networks of large organizations, in general, are poorly under-

stood. It is likely that the topological features of enterprise networks are different

from that of the Internet’s AS- or router-level topology. One interesting study is

determining the smallest value of d that can accurately model enterprise topolo-

gies. Can these complex networks indeed be modeled using low values of d such

as 2 and 3? Such a study would enable network administrators of large enterprises

to better manage both the network and the traffic flowing through it.

Similarly, one can also study the topological features of wireless networks, espe-

cially ad hoc wireless networks. Verifying that d = 3 is sufficient to reproduce

important characteristics of wireless networks will allow us to generate realistic

wireless network models. Such generated graphs will benefit researchers involved

in designing wireless applications and protocols.

• Why is d = 3 sufficient? Another important question pertains to the speed of

convergence of the dK-series for Internet topologies. Why is it possible for 3K-

random graphs to accurately reproduce all known metrics for even comparatively

complex router-level topologies? An interesting area of further research is to the-

oretically connect d = 3 with decisions that guide the engineering of router-level

topologies. Analysis along these lines will enable us to further understand the

principles guiding the evolution of Internet topologies and thus bridge the gap

between descriptive models such as ours and evolutionary models.

• Annotations for bandwidth and loss-rate: In this dissertation we described tech-

niques to annotate nodes in router-level topologies with AS-membership as well

as router roles (internal or peering). Our success in maintaining topology charac-

teristics while supporting the above node annotations suggests that our ideas and

133

methodologies can also be used to augment the edges in the generated graphs.

Currently, we are working on techniques to annotate the links in router-level

topologies with latencies and bandwidth values taken from various measurement

studies. It remains to be seen whether such annotations can match the distribu-

tions found in real networks but we are encouraged by available data sets both for

end-to-end and per-hop latency distributions.

We are releasing the source code for our topology generator suite to produce

dK-random graphs of any specified size for d = 1, 2. Additionally, we are also releasing

code to compute all important metrics for any given topology. We believe that our

techniques will provide a more rigorous and consistent method of comparing graphs and

enable protocol and application researchers to test system behavior with more realistic

network topologies.

Bibliography

[1] A. Ahuja, C. Labovitz, S. Venkatachary, and R. Wattenhofer. The Impact of
Internet Policy and Topology on Routing Convergence. In Microsoft Technical
Report - MSR-TR-2000-74, July 2000.

[2] W. Aiello, F. Chung, and L. Lu. A Random Graph Model for Massive Graphs. In
STOC, 2000.

[3] Akamai, Inc. http://www.akamai.com.

[4] D. Applegate and E. Cohe. Making Intra-Domain Routing Robust to Changing
and Uncertain Traffic Demands. In Proceedings of the ACM SIGCOMM Confer-
ence, August 2003.

[5] A.-L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Sci-
ence, 286:509–512, 1999.

[6] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI Veritas:
Realistic and Controlled Network Experimentation. In Proceedings of the ACM
SIGCOMM Conference, 2006.

[7] M. Boguñá and R. Pastor-Satorras. Class of Correlated Random Networks with
Hidden Variables. Physical Review E, 68:036112, 2003.

[8] M. Boguñá, R. Pastor-Satorras, and A. Vespignani. Cut-offs and Finite Size Ef-
fects in Scale-Free Networks. European Physical Journal B, 38:205–209, 2004.

[9] A. Brady and L. Cowen. Compact Routing on Power-law Graphs with Additive
Stretch. In ALENEX, 2006.

[10] U. Brandes. A Faster Algorithm for Betweenness Centrality. Journal of Mathe-
matical Sociology, 25(2):163–177, 2001.

[11] Y. Breitbart, C.-Y. Chan, M. Garofalakis, R. Rastogi, and A. Silberschatz. Effi-
ciently Monitoring Bandwidth and Latency in IP Networks. In INFOCOM, 2001.

[12] T. Bu and D. Towsley. On Distinguishing Between Internet Power Law Topology
Generators. In INFOCOM, 2002.

134

135

[13] CAIDA. Macroscopic Topology AS Adjacencies. http://www.caida.
org/tools/measurement/skitter/as_adjacencies.xml.

[14] M. Casado and M. J. Freedman. Peering Through the Shroud: The Effect of Edge
Opacity on IP-based Client Identification. In Proceedings of the USENIX Annual
technical Conference (USENIX), 2007.

[15] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
SplitStream: High-bandwidth Multicast in a Cooperative Environment. In 19th
ACM Symposium on Operating Systems Principles (SOSP’03), Oct. 2003.

[16] H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger. Towards Cap-
turing Representative AS-Level Internet Topologies. Computer Networks Jour-
nal, 44:737–755, April 2004.

[17] H. Chang, S. Jamin, and W. Willinger. To Peer or not to Peer: Modeling the
Evolution of the Internet’s AS-Level Topology. In INFOCOM, 2006.

[18] F. Chung and L. Lu. Connected Components in Random Graphs with Given
Degree Sequences. Annals of Combinatorics, 6:125–145, 2002.

[19] F. K. R. Chung. Spectral Graph Theory, volume 92 of Regional Conference
Series in Mathematics. American Mathematical Society, Providence, RI, 1997.

[20] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized Network
Coordinate System. In Proceedings of the ACM SIGCOMM Conference, 2004.

[21] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area Co-
operative Storage with CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP’01), October 2001.

[22] L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. Vázquez, and A. Vespignani.
Exploring Networks with Traceroute-Like Probes: Theory and Simulations. The-
oretical Computer Science, Special Issue on Complex Networks, 2005. http:
//arxiv.org/abs/cs.NI/0412007.

[23] T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of Gene Order:
A Fingerprint of Proteins that Physically Interact. In Trends Biochem Science,
volume 23, pages 324-328, 1998.

[24] DETER. http://www.isi.edu/deter.

[25] M. Doar. A Better Model for Generating Test Networks. In GLOBECOM, 1996.

[26] S. N. Dorogovtsev. Networks with Given Correlations. http://arxiv.org/
abs/cond-mat/0308336v1.

[27] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: From Biological
Nets to the Internet and WWW. Oxford University Press, Oxford, 2003.

136

[28] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS Adaptive Traffic Engi-
neering. In INFOCOM, pages 1300–1309, 2001.

[29] A. Enright, I. Iliopoulos, N. Kyripides, and C. Ouzounis. Protein Interaction
Maps for Complete Genomes Based on Gene Fusion Events. In Nature, volume
402, pages 86-90, 1999.

[30] P. Erdős and A. Rényi. On Random Graphs. Publicationes Mathematicae, 6:290–
297, 1959.

[31] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law Relationships of the
Internet Topology. In Proceedings of the ACM SIGCOMM Conference, 1999.

[32] S. Floyd and E. Kohler. Internet Research Needs Better Models. In Proceedings
of HotNets–I, October 2002.

[33] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing Content Publica-
tion with Coral. In Proceedings of the 1st USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI ’04), San Francisco, California, March
2004.

[34] L. Gao and F. Wang. The Extent of AS Path Inflation by Routing Policies. In
IEEE Global Internet Symposium, 2002.

[35] GENI: Global Environment For Network Innovations. http://www.geni.net.

[36] C. Gkantsidis, M. Mihail, and A. Saberi. Conductance and Congestion in Power
Law Graphs. In SIGMETRICS, 2003.

[37] C. Gkantsidis, M. Mihail, and E. Zegura. Spectral Analysis of Internet Topolo-
gies. In INFOCOM, 2003.

[38] C. Gkantsidis, M. Mihail, and E. Zegura. The Markov Simulation Method for
Generating Connected Power Law Random Graphs. In ALENEX, 2003.

[39] R. Govindam and H. Tangmunarunkit. Heuristics for Internet Map Discovery. In
Proceedings 2000 IEEE INFOCON Conference, March 2000.

[40] P. Harremoës. Binomial and Poisson Distributions as Maximum Entropy Distri-
butions. Transactions on Information Theory, 47(5):2039–2041, 2001.

[41] J. Hawkinson and T. Bates. Guidelines for Creation, Selection, and Registration
of an Autonomous System (AS). IETF, RFC 1930, 1996.

[42] Iffinder tool. http://www.caida.org/tools/measurement/iffinder.

[43] Internet World Statistics. http://www.internetworldstats.com/stats.htm.

[44] Internet Routing Registries. http://www.irr.net/.

137

[45] Internet Systems Consortium. http://www.isc.org/.

[46] S. Jaiswal, A. L. Rosenberg, and D. Towsley. Comparing the Structure of Power-
Law Graphs and the Internet AS Graph. In ICNP, 2004.

[47] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the Tightrope: Re-
sponsive yet Stable Traffic Engineering. In SIGCOMM ’05: Proceedings of the
2005 conference on Applications, technologies, architectures, and protocols for
computer communications, volume 35, August 2005.

[48] kc claffy, T. E. Monk, and D. McRobb. Internet Tomography. Nature, January
1999. http://www.caida.org/tools/measurement/skitter/.

[49] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High Bandwidth
Data Dissemination Using an Overlay Mesh. 2003.

[50] D. Krioukov, F. Chung, kc claffy, M. Fomenkov, A. Vespignani, and W. Willinger.
The Workshop on Internet Topology (WIT) Report. Computer Communication
Review, 37(1), 2007.

[51] D. Krioukov, K. Fall, and X. Yang. Compact Routing on Internet-Like Graphs.
In INFOCOM, 2004.

[52] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet Routing Con-
vergence. In Proceedings of the ACM SIGCOMM Conference, September 2000.

[53] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling Biases in IP Topology
Measurements. In INFOCOM, 2003.

[54] L. Li, D. Alderson, W. Willinger, and J. Doyle. A First-Principles Approach to
Understanding the Internets Router-Level Topology. In Proceedings of the ACM
SIGCOMM Conference, 2004.

[55] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. iPlane: An Information Plane for Distributed Services. In
OSDI, November 2006.

[56] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic Topology Anal-
ysis and Generation using Degree Correlations. In Proceedings of the ACM SIG-
COMM Conference, September 2006.

[57] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On AS-Level Path Inference. In
SIGMETRICS, 2005.

[58] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an Accurate AS-Level
Traceroute Tool. In Proceedings of the ACM SIGCOMM Conference, 2003.

138

[59] E. Marcotte, M. P. H. Ng, D. Yeates, and D. Eisenberg. Detecting Protein Func-
tion and Protein-protein Interactions from Genome Sequences. In Science, vol-
ume 285, pages 751-753, 1999.

[60] S. Maslov, K. Sneppen, and A. Zaliznyak. Detection of Topological Patterns in
Complex Networks: Correlation Profile of the Internet. Physica A, 333:529–540,
2004.

[61] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Approach to Universal
Topology Generation. In MASCOTS, 2001.

[62] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation-
of-State Calculations by Fast Computing Machines. Journal of Chemical Physics,
21:1087, 1953.

[63] M. Molloy and B. Reed. A Critical Point for Random Graphs With a Given
Degree Sequence. Random Structures and Algorithms, 6:161–179, 1995.

[64] J. Moreno. Who Shall Survive? Beacon House, Beacon, NY 1934.

[65] W. Muhlbauer, A. Feldmann, O. Maennel, M. Roughan, and S. Uhlig. Building
an AS-Topology Model. In Proceedings of the ACM SIGCOMM Conference,
2006.

[66] M. Mzruchi. The American Corporate Network,1904-1974. Sage, Beverly Hills,
1982.

[67] M. Newman. The Structure and Function of Complex Networks. http://
arxiv.org/cond-mat/0303516v1.

[68] M. Newman, S. Strogatz, and D. Watts. Random graphs with arbitrary degree
distributions and their applications. Physics Review E 64, 026118 (2001).

[69] M. E. J. Newman. Assortative Mixing in Networks. Physical Review Letters,
89:208701, 2002.

[70] M. E. J. Newman. Properties of Highly Clustered Networks. Physical Review E,
68:026121, 2003.

[71] T. S. E. Ng and H. Zhang. A Network Positioning System for the Internet. In
Proceedings of the USENIX Annual technical Conference (USENIX), 2004.

[72] The DIMES Project. http://www.netdimes.org.

[73] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[74] V. Paxson and S. Floyd. Why We Don’t Know How to Simulate the Internet.
In WSC ’97: Proceedings of the 29th conference on Winter simulation, pages
1037–1044, New York, NY, USA, 1997. ACM Press.

139

[75] F. Pazos and A. Valencia. Similarity of Phylogenetic Trees as Indicator of Protein-
protein Interaction. In Protein Engineering 9(14), pages 609-614, 2001.

[76] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM,
Philadelphia, PA, 2000.

[77] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for Introducing
Disruptive Technology into the Internet. In ACM HotNets, October 2002.

[78] E. Prisner. Graph Dynamics. Longman, Harlow, 1995.

[79] T. G. R. Teixeira, A. Shaikh and J. Rexford. Dynamics of Hot-Potato Routing in
IP Networks. June 2004.

[80] T. G. R. Teixeira, A. Shaikh and G. Voelker. Network Sensitivity to Hot-Potato
Disruptions. August 2004.

[81] P. Radoslavov, H. Tangmunarunkit, H. Yu, R. Govindan, S. Shenker, and D. Es-
trin. On Characterizing Network Topologies and Analyzing their Impact on Pro-
tocol Design. Technical Report USC-CS-TR-00-731, March 2000.

[82] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). IETF, RFC 1771,
1995.

[83] University of Oregon RouteViews Project. http://www.routeviews.
org/.

[84] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a
Large-Scale, Persistent Peer-to-Peer Storage Utility. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP’01), October 2001.

[85] M. A. Serrano and M. Boguñá. Tuning Clustering in Random Networks with
Arbitrary Degree Distributions. Physical Review E, 72:036133, 2005.

[86] C. Shannon and D. Moore. The Spread of the Witty Worm. In Proceedings of
IEEE Security and Privacy, July 2004.

[87] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embedding Network Distances
in Euclidean Space. In Proceedings of IEEE INFOCOM, April 2003.

[88] G. Siganos and M. Faloutsos. Analyzing BGP Policies: Methodology and Tool.
In INFOCOM, 2004.

[89] N. J. A. Sloane. Sequence A001349. The On-Line Encyclopedia of Integer Se-
quences. http://www.research.att.com/projects/OEIS?Anum=
A001349.

[90] S. N. Soffer and A. Vázquez. Clustering Coefficient Without Degree Correlations
Biases. http://arxiv.org/abs/cond-mat/0409686.

140

[91] N. Spring, R. Mahajan, and T. Anderson. Quantifying the Causes of Path Infla-
tion. In Proceedings of the ACM SIGCOMM Conference, 2003.

[92] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with Rock-
etfuel. In Proceedings of the ACM SIGCOMM Conference, August 2002.

[93] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer to Peer Lookup Service for Internet Applications. In Proceedings
of the 2001 SIGCOMM, August 2001.

[94] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Net-
work Topology Generators: Degree-Based vs. Structural. In Proceedings of the
ACM SIGCOMM Conference, 2002.

[95] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. The Impact of
Routing Policy on Internet Paths. In IEEE INFOCOM, 2001.

[96] S. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A Simple Conceptual Model
for the Internet Topology. In Global Internet, 2001.

[97] traceroute. http://www.traceroute.org/#source%20code.

[98] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and
D. Becker. Scalability and Accuracy in a Large-Scale Network Emulator. In
Proceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation (OSDI), December 2002.

[99] F. Viger and M. Latapy. Efficient and Simple Generation of Random Simple
Connected Graphs with Prescribed Degree Sequence. In COCOON, 2005.

[100] D. Vukadinović, P. Huang, and T. Erlebach. A Spectral Analysis of the Internet
Topology. Technical Report TIK-NR. 118, ETH, 2001.

[101] B. M. Waxman. Routing of Multipoint Connections. IEEE JSAC, 1988.

[102] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar. An Integrated Experimental Environment for
Distributed Systems and Networks. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI), December 2002.

[103] J. Winick and S. Jamin. Inet-3.0: Internet Topology Generator. Technical Report
UM-CSE-TR-456-02, University of Michigan, 2002.

[104] B. Wong, A. Slivkins, and E. Sirer. Meridian: A Lightweight Network Location
Service without Virtual Coordinates. In Proceedings of the ACM SIGCOMM
Conference, August 2005.

141

[105] B. Wong, I. Stoyanov, and E. Sirer. Octant: A Comprehensive Framework for the
Geolocalization of Internet Hosts. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), April 2007.

[106] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork. In
INFOCOM, 1996.

[107] B. Zhang, T. S. E. Ng, A. Nandi, R. H. Riedi, P. Druschel, and G. Wang. Mea-
surement Based Analysis, Modeling, and Synthesis of the Internet Delay Space.
In Proceedings of the ACM Internet Measurement Conference, 2006.

[108] S. Zhou and R. J. Mondragón. Accurately Modeling the Internet Topology.
Physical Review E, 70:066108, 2004. http://arxiv.org/abs/cs.NI/
0402011.

[109] S. Zhou and R. J. Mondragón. The Rich-Club Phenomenon in the Internet. IEEE
Communications Letters, 8 No.3, March 2004.

