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Dispersion and line shape of plasmon satellites in one, two, and three dimensions
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Using state-of-the-art many-body Green’s function calculations based on the GW plus cumulant approach,
we analyze the properties of plasmon satellites in the electron spectral function resulting from electron-plasmon
interactions in one-, two-, and three-dimensional systems. Specifically, we show how their dispersion relation,
line shape, and linewidth are related to the properties of the constituent electrons and plasmons. To gain
insight into the many-body processes giving rise to the formation of plasmon satellites, we connect the GW
plus cumulant approach to a many-body wave-function picture of electron-plasmon interactions and introduce
the coupling-strength-weighted electron-plasmon joint density states as a powerful concept for understanding
plasmon satellites.

DOI: 10.1103/PhysRevB.93.235446

Introduction. The interaction of electrons with bosons is of
fundamental importance for many phenomena in condensed
matter physics, plasma physics, and cold atom physics. Re-
cently, there has been great interest in the coupling of electrons
and plasmons, which are collective excitations describing
quantized oscillations of the charge density. For example, the
decay of plasmons into energetic or “hot” electron-hole pairs
in metallic surfaces and nanoparticles, which is triggered by
electron-plasmon coupling, has led to a new generation of
plasmonic devices for photovoltaics and photocatalysis [1–3].

Satellite features in the spectral function of electrons are
another consequence of electron-plasmon interactions. Such
plasmon satellites have long been known in core-electron
photoemission spectra [4,5]. In recent years, valence band
plasmon satellites, which were observed experimentally in
three-dimensional metals and semiconductors [6–9], but also
in two-dimensional systems, such as doped graphene and
semiconductor quantum-well electron gases [10–12], received
much attention.

To analyze and design the properties of plasmon satel-
lites for photonics and plasmonics applications, an accurate,
material-specific theoretical description of electron-plasmon
interactions is needed. This is achieved by the GW plus
cumulant (GW+C) approach [13,14], where the cumulant
expansion of the electron Green’s function G is truncated
at second order in the screened Coulomb interaction W .
GW+C calculations yielded good agreement with experimen-
tal photoemission and tunneling spectra in a wide range of
physical systems [6–8,15–17] and also with highly accurate
coupled-cluster Green’s function calculations [18].

While Green’s function methods, such as the GW+C
approach, often produce highly accurate results, gaining
intuition and insights into the underlying many-body processes
can be difficult. In this paper, we develop a complementary
many-body wave-function-based approach for plasmonic (and
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more generally, bosonic) satellites in the electron spectral
function which offers a clear and simple physical picture
of electron-plasmon interactions and leads to insights into
the results of GW+C calculations. Specifically, this approach
reveals that the concepts of satellite dispersion, satellite line
shape, and satellite linewidth are closely related, explains
why in three-dimensional materials the plasmon satellite band
structure looks like a shifted copy of the quasiparticle band
structure, and demonstrates that previous models of plasmon
satellites in three dimensions are oversimplified and cannot
be applied to lower-dimensional systems. We present results
for three-dimensional [silicon and the three-dimensional elec-
tron gas (3DEG)], two-dimensional (doped graphene), and
one-dimensional [the one-dimensional electron gas (1DEG)]
systems.

Green’s function theory. The electron spectral function
is related to many observables, such as the tunneling and
photoemission spectrum, and the contribution AIP

k (ω) (with k
denoting the wave vector and we omit a band index) describing
the removal of an electron is given by [19,20]

AIP
k (ω) =

∑
λ

|〈N−1,λ|ck|GS〉|2δ(ω+EN−1,λ−EGS), (1)

where |GS〉 and EGS denote the ground-state wave function and
energy of the N -electron system, respectively, and |N − 1,λ〉
and EN−1,λ denote the eigenstates and energies of the (N − 1)-
electron system.

The spectral function is related to the one-electron Green’s
function Gk(ω) via Ak(ω) = 1/π × |ImGk(ω)|. Within the
generalized GW+C approach, the retarded Green’s function is
expressed as a function of time t via [21]

Gk(t) = −i�(t)e−iEHF
k t+Ck(t), (2)

where EHF
k denotes the Hartree-Fock orbital energy (given

by EHF
k = εk + �X

k − V xc
k with εk, V xc

k , and �X
k denoting the

mean-field orbital energy, the mean-field exchange-correlation
potential, and the bare exchange self-energy, respectively).
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Also, Ck(t) is the cumulant function given by

Ck(t) = 1

π

∫
dω|Im�k(ω + Ek)|e

−iωt + iωt − 1

ω2
, (3)

where �k(ω) denotes the GW self-energy [22,23] and Ek is
the GW quasiparticle energy.

To gain physical understanding, it is useful to separate the
cumulant function into a satellite contribution Csat

k (t), which
contains the e−iωt term in Eq. (3), and a quasiparticle contribu-
tion, which contains the (iωt − 1) term. Expanding the Green’s
function in powers of Csat

k leads to a representation of the
spectral function as the sum of a quasiparticle contribution A

qp
k

and an infinite series of plasmon satellite contributions A
(m)
k

(with m denoting the number of plasmons that are created in the
shake-up process). Specifically, the first satellite contribution
can be expressed as

A
(1)
k (ω) =

∫
dω′Csat

k (ω − ω′)Aqp
k (ω′). (4)

Approximating A
qp
k (ω) ≈ Zkδ

(	k)(ω − Ek) with Zk denoting
the renormalization factor and δ(	) being a Lorentzian of width
	, we find that A

(1)
k (ω) ≈ Zk/π × Im�k(ω)/(ω − Ek)2.

Evaluating Eq. (4) requires the calculation of the imaginary
part of the GW self-energy. To clarify the physical picture,
we use the self-energy of a homogeneous electron system in
D dimensions with a plasmon-pole model for the dielectric
response. With these assumptions, the electron-removal part
of the self-energy is given by [23]

Im�IP
k (ω) = π

LD

∑
q

λqvqδ(ω − Ek−q + ωq), (5)

where vq denotes the Coulomb interaction in D dimensions
and ωq and λq are the plasmon dispersion relation and the
plasmon strength, respectively. Also, L is the linear extension
of the system and k − q corresponds to a hole state.

Inserting Eq. (5) into the expression for A
(1)
k yields

A
(1)
k (ω) = Zk

LD

∑
q

g2
q

(Ek − Ek−q − ωq)2
δ(ω − Ek−q + ωq),

(6)

where we introduced the electron-plasmon coupling strength
g2

q = λqvq . Equation (6) shows that the satellite contribution
to the spectral function closely related to the coupling-
strength-weighted electron-plasmon joint-density of states
Jk(ω) = 1/LD × ∑

q g2
qδ(ω − Ek−q + ωq) comprising only

plasmon-hole pairs with total momentum k.
Wave-function theory. We will now demonstrate that the

expression for the satellite contribution to the spectral function
from GW+C [Eq. (6)] can also be derived by considering the
effective electron-plasmon Hamiltonian

Hel−pl =
∑

k

Ekc
†
kck +

∑
q

ωqa
†
qaq (7)

+
∑
q,k

gq√
LD

c
†
k−qck(aq + a

†
−q), (8)

where ck and aq are destruction operators for quasiparticles
and plasmons, respectively. In this Hamiltonian, the first term

describes a set of noninteracting quasiparticles, the second
term describes a set of noninteracting plasmons (or more
generally, bosons), and the third term captures the interaction
between quasiparticles and plasmons.

This electron-boson Hamiltonian plays a fundamental role
in the theory of electron-phonon interactions, but computing
accurate spectral functions is difficult [19,24,25]. At inter-
mediate coupling strengths, different types of perturbation
theory give significantly different results: When compared to
highly accurate path-integral calculations, the self-consistent
Brillouin-Wigner perturbation theory yields substantially
worse results than standard Rayleigh-Schrödinger perturbation
theory [19].

For electron-plasmon interactions, Lundqvist demon-
strated [24] that the application of Brillouin-Wigner pertur-
bation theory to Hel−pl results in the Dyson equation of the
GW approach. Solving this equation, he found two solutions.
While the first solution corresponds to a standard quasiparticle
excitation, he assigned the second solution to a novel particle,
the plasmaron, a strongly coupled, coherent hole-plasmon
state. Despite several reports claiming the observation of
the plasmaron [10,11], it has become clear recently that
no such excitation exists in known materials and that its
spurious prediction signals the inability of the GW method
(and, equivalently, the Brillouin-Wigner perturbation theory)
to describe plasmon satellites [6,7,15,16].

Motivated by its accurate description of electron-phonon
interactions, we now apply Rayleigh-Schrödinger perturbation
theory to Hel−pl . Without electron-plasmon interactions, i.e.,
for gq = 0, the eigenstates of the (N − 1)-electron system are
simply ck|GS〉 (with energy EGS − Ek) and a

†
qck−q |GS〉 (with

energy EGS − Ek−q + ωq) [26]. Only the state ck|GS〉 gives a
contribution to Eq. (1) and the resulting spectral function has
a single delta-function peak and no satellite features.

Next, we include electron-plasmon interactions using first-
order Rayleigh-Schrödinger perturbation theory. The non-
interacting states that lie in the energy region of the first
satellite are the hole-plasmon pairs a

†
qck−q |GS〉. Including the

hole-plasmon coupling yields

a†
qck−q |GS〉→

[
a†

qck−q+ 1√
LD

gq

Ek−Ek−q+ωq
ck+ · · ·

]

× |GS〉; (9)

i.e., the hole-plasmon pair state acquires a quasiparticle
component, which makes this state “visible” in the spectral
function as a satellite structure. Inserting Eq. (9) into Eq. (1),
we recover Eq. (6) for the plasmon satellite contribution to the
electron spectral function. This analysis shows clearly that no
single, coherent hole-plasmon state is formed, but instead the
satellite is comprised of a large number of incoherent, weakly
interacting hole-plasmon pairs.

Plasmon satellites in three dimensions. We first study the
properties of plasmon satellites in the 3DEG. In this system,
the plasmon dispersion is parabolic at small wave vectors, i.e.,
ωq = ω0 + βq2 [20], and we assume that also the quasiparticle
dispersion is parabolic, i.e., Ek = αk2.

With these assumptions, we can analytically compute the
coupling-constant-weighted electron-plasmon joint density of
states, which is closely related to the satellite contribution

235446-2



DISPERSION AND LINE SHAPE OF PLASMON . . . PHYSICAL REVIEW B 93, 235446 (2016)

(a) (b) (c)

FIG. 1. (a) GW plus cumulant spectral functions of the three-dimensional electron gas at k = 0 for rs = 1.0 (red curve) and rs = 3.0 (blue
curve). (b) Spectral functions (in 1/eV) of the three-dimensional electron gas at rs = 4.0 (corresponding to metallic sodium) from GW plus
cumulant theory. (c) Spectral functions (in 1/eV) of silicon from ab initio GW plus cumulant theory calculations.

A
(1)
k (ω) to the spectral function (see Appendix). For k = 0, we

find

Jk=0(ω) = ω0

2π

�(sgn(α − β)[ω + ω0])√|(α − β)(ω + ω0)| . (10)

This result shows that the satellite feature is peaked at ω =
−ω0; i.e., the satellite is shifted from the quasiparticle energy
by the lowest plasmon energy ω0. Moreover, the satellite
exhibits a highly asymmetric line shape, which depends
sensitively on the relative magnitudes of the plasmon and
quasiparticle effective masses [given by m∗

pl = 1/(2β) and
m∗

qp = 1/(2α), respectively]: if β is larger α, the satellite peak
has a tail towards higher binding energies (i.e., away from the
Fermi energy). If α is greater than β, the tail is towards lower
binding energies. If the effective masses are equal, the satellite
structure is symmetric.

Equation (10) predicts the occurrence of a drastic change
in the satellite line shape as function of the Wigner-Seitz
radius rs . While the quasiparticle effective mass only has
a weak dependence on rs and may be approximated by its
noninteracting value, i.e., α = 0.5 (in atomic units) [23], the
plasmon effective mass depends sensitively on rs . Within the
random-phase approximation (RPA), we find β ≈ 0.64/

√
rs

[20]. At small rs , β is large and the tail of the satellite extends
to higher binding energies. For rs � 1.6, β is smaller than α

and the tail of the satellite extends to lower binding energies.
Figure 1(a) shows the GW+C spectral functions for the 3DEG
with rs = 1.0 and rs = 3.0 obtained with a plasmon-pole
model. It can clearly be seen that the tails of the satellites
extend into different directions.

In combination with angle-resolved photoemission spec-
troscopy (ARPES), the above analysis imposes useful limits
on the value of the plasmon effective mass. While ARPES
experiments do not measure the plasmon dispersion, they can
determine both the quasiparticle effective mass and the satellite
line shape. Depending on the direction of the satellite tail [see
Fig. 1(a)], the plasmon effective mass must be either smaller
or larger than the quasiparticle effective mass. This approach
is particularly useful in multiband systems, where each band
leads to an additional constraint on the plasmon effective mass.

The satellite line shape from full GW+C calculations
is more symmetric than predicted by Eq. (10) since addi-

tional broadening mechanisms arising from finite quasiparticle
linewidths [see Eq. (4)] and finite plasmon linewidths (for
example, caused by Landau damping [27]) are taken into
account. The total linewidth of the satellite may thus be
approximated as the sum of the widths of the coupling-
strength-weighted hole-plasmon joint density of states, the
quasiparticle spectral function, and the plasmon line shape. In
spectroscopic experiments on real samples, additional phonon
and disorder broadening as well as broadening due to extrinsic
losses occur [28,29].

Also at nonzero wave vectors, the peak of Jk(ω) is located
at an energy ω0 below the quasiparticle energy Ek (see
Appendix). In other words: the satellite band is a rigidly shifted
copy of the quasiparticle band. Surprisingly, this means that the
effective mass of the satellite is the same as the quasiparticle
effective mass irrespective of the plasmon effective mass. We
confirm our conclusions by carrying out GW+C calculations
of the 3DEG at rs = 4.0 (corresponding to metallic sodium)
using the frequency-dependent RPA dielectric function; see
Fig. 1(b).

Generalizing our findings for the plasmon satellite prop-
erties of the 3DEG to real materials is straightforward.
Figure 1(c) shows the spectral functions of crystalline silicon
obtained from ab initio GW+C calculations [30]. Because of
the parabolic dispersion of the valence quasiparticle bands
near the band extrema and the parabolic dispersion of the
plasmon, the plasmon satellite band structure appears as a
rigidly shifted copy of the quasiparticle band structure, but
significantly broadened.

Previous models of plasmon satellites in three-dimensional
systems [6,31,32] assumed that plasmon dispersion is a minor
effect and approximated the satellite simply as a shifted,
broadened copy of the quasiparticle peak. Such approaches
fail to describe the asymmetric line shape of the satellite and
also cannot be applied straightforwardly to lower-dimensional
systems, which we discuss below.

Plasmon satellites in two and one dimensions. In three-
dimensional systems, the satellite feature is separated from
the quasiparticle peak by the lowest plasmon frequency. In
metallic two-dimensional systems, the plasmon energy is
proportional to the square root of the plasmon wave vector,
i.e., ωq = β

√
q [20], and it is not a priori clear where the

satellite peak is located.
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(a) (b)

FIG. 2. (a) Spectral functions (in 1/eV) of doped graphene on a
silicon carbide substrate from GW plus cumulant theory. (b) Spectral
functions (in 1/eV) of a one-dimensional electron gas from GW plus
cumulant theory.

We now apply our GW+C-based analysis of plasmon
satellite properties to two-dimensional systems and choose
electron-doped graphene as a test case. Within the Dirac model
approach, the two bands in the vicinity of the Fermi energy are
described by a linear dispersion relation, i.e., Ek = ±vF k, with
vF denoting the graphene Fermi velocity. Here, k is measured
from the K or K ′ points of the graphene Brillouin zone.

Taking into account that electrons in the upper Dirac
band give the dominant contribution to the satellite spectral
function at the Dirac point [33], we find that Jk=0(ω) ∝ �(ω +
ω̃)/

√
ω + ω̃, where ω̃ = β2/(4vF ) is the separation between

the quasiparticle and satellite peaks. Again, the plasmon
satellite line shape is highly asymmetric. The dependence of
β on the charge density n, β ∝ √

n [16], gives rise to small
changes in the line shape as a function of the carrier density.
Comparing the expression for Jk=0 of doped graphene to the
result for the 3DEG [see Eq. (10)], we observe that no drastic
changes in the asymmetry of the line shape occur as function
of the carrier density.

Figure 2(a) shows the spectral functions of doped graphene
on a silicon carbide substrate from GW+C calculations [34].
We observe that the plasmon satellite band is not a shifted copy
of the quasiparticle band, but that the two bands merge at the
Fermi wave vector kF .

Finally, we analyze the plasmon satellite properties in a
one-dimensional metallic system, the 1DEG. In this system,
the plasmon dispersion relation at long wavelengths is given
by ωq = βq

√
ln(1/ql) with l denoting a cutoff distance

[35–37]. Assuming a parabolic quasiparticle dispersion, i.e.,
Ek = αk2, we find again that the first plasmon satellite exhibits
a highly asymmetric line shape. Figure 2(b) shows GW+C
spectral functions for the 1DEG at rs = 1.4 [38]. In contrast
to graphene and the 3DEG, the plasmon satellite is relatively
weak and appears as a shoulder-like feature near a strong
quasiparticle band.

Summary. By connecting the GW+C Green’s function
approach to a wave-function-based perspective, we estab-

lished the coupling-constant-weighted electron-plasmon joint
density of states Jk(ω) as a useful quantity for analyzing
plasmon satellites in electron spectral functions. We evaluated
Jk(ω) for systems in one, two, and three dimensions and
demonstrated how the properties of plasmon satellites are
related to the properties of the underlying electrons and
plasmons emphasizing the importance of plasmon dispersion.
Our formalism for electron-plasmon interactions can be
generalized straightforwardly to study the generation of hot
electron-hole pairs in plasmonic devices for photovoltaics and
photocatalysis in the future.
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APPENDIX

Electron-plasmon joint density of states in three dimen-
sions. We calculate the coupling-strength-weighted joint den-
sity of states Jk(ω) comprising only plasmon-hole pairs with
total momentum k for a three-dimensional homogeneous
electron gas (3DEG). As shown in the main text, this quantity
is closely related to the first satellite contribution to the electron
spectral function. Specifically, Jk(ω) is given by

Jk(ω) =
∫

d3q

(2π )3
g2

qδ(ω − Ek−q + ωq), (A1)

where gq denotes the electron-plasmon coupling strength,
ωq = ω0 + βq2 is the plasmon dispersion, and Ek = αk2 is
the quasiparticle dispersion.

Using a plasmon-pole model that conserves sum rules, we
find g2

q = vqω
2
0/(2ωq) ≈ vqω0/2 with vq = 4π/q2.

For the special case of k = 0, we find

Jk=0(ω) = ω0

π

∫ ∞

0
dqδ(ω + ω0 − [α − β]q2)

= ω0

2π

�(sgn(α − β)(ω + ω0))√|(α − β)(ω + ω0)| , (A2)

which has a peak at −ω0.
In the general case of nonzero k, we have to evaluate

Jk(ω) = ω0

2π

∫ ∞

0
dq

∫ 1

−1
duδ(ω + ω0 − αk2

+ 2αku + [β − α]q2). (A3)

235446-4



DISPERSION AND LINE SHAPE OF PLASMON . . . PHYSICAL REVIEW B 93, 235446 (2016)

Using that
∫ 1
−1 duδ(A + Bu) = �(|B| − |A|)/|B|, we find

that

Jk(ω) = ω0

4π |α|k
∫ ∞

0

dq

q
�(2kq|α| − |ω

+ω0 − αk2 + [β − α]q2|). (A4)

We now assume that β − α > 0 and distinguish the two
cases: (i) ω∗

k ≡ ω + ω0 − αk2 > 0 and (ii) ω∗
k < 0. To find the

position of the peak of Jk(ω), it is sufficient to consider case
(i) and we find that

Jk(ω) = ω0

4π |α|k
∫ ∞

0

dq

q
�(2kq|α| − ω∗

k − [β − α]q2)

= ω0

4π |α|k�(1 − fk) ln

[
1 + √

1 − fk

1 − √
1 − fk

]
, (A5)

with fk = [β − α]ω∗
k/(k|α|)2. This function diverges as ω∗

k →
0 indicating that Jk(ω) is peaked at −[ω0 − αk2].

For case (ii), we have to evaluate

Jk(ω) = ω0

4π |α|k
[∫ q∗

0

dq

q
�(2kq|α| + ω∗

k + [β − α]q2)

+
∫ ∞

q∗

dq

q
�(2kq|α| − ω∗

k − [β − α]q2)

]

= ω0

4π |α|k ln

[
1 + √

1 − fk

−1 + √
1 − fk

]
, (A6)

with q∗ = √|ω∗
k |/[β − α].

Note that the solutions above also describe the case of
β − α < 0, but now Eq. (5) describes negative ω∗

k and Eq. (6)
describes positive ω∗

k .
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