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Remarkable progress has come from whole-brain models linking
anatomy and function. Paradoxically, it is not clear how a neuronal
dynamical system running in the fixed human anatomical connec-
tome can give rise to the rich changes in the functional repertoire
associated with human brain function, which is impossible to ex-
plain through long-term plasticity. Neuromodulation evolved to
allow for such flexibility by dynamically updating the effectivity
of the fixed anatomical connectivity. Here, we introduce a theo-
retical framework modeling the dynamical mutual coupling between
the neuronal and neurotransmitter systems. We demonstrate that
this framework is crucial to advance our understanding of whole-
brain dynamics by bidirectional coupling of the two systems through
combining multimodal neuroimaging data (diffusion magnetic reso-
nance imaging [dMRI], functional magnetic resonance imaging [fMRI],
and positron electron tomography [PET]) to explain the functional
effects of specific serotoninergic receptor (5-HT2AR) stimulation with
psilocybin in healthy humans. This advance provides an understand-
ing of why psilocybin is showing considerable promise as a therapeutic
intervention for neuropsychiatric disorders including depression, anxiety,
and addiction. Overall, these insights demonstrate that the whole-brain
mutual coupling between the neuronal and the neurotransmission sys-
tems is essential for understanding the remarkable flexibility of human
brain function despite having to rely on fixed anatomical connectivity.

serotonin | PET | psilocybin | neurotransmitter | whole-brain modeling

Human connectomics has been very successful in revealing
how function arises from structure (1, 2), and by showing

how anatomy can give rise to a complex dynamical neuronal
system as measured with multimodal neuroimaging (3–5). De-
spite the attractiveness of the idea that function is shaped by
anatomy, it is also clear that the single fixed structure of the
anatomical connectome should not be able to give rise to the full
palette and complexity of brain function. However, evolution has
found a solution to this apparent paradox by dynamically mod-
ulating the connectome over time through neuromodulatory
systems, enabling the richness of behaviors needed for survival.
Indeed, the necessary dynamics of human brain function can be
obtained by modulating the effective connectivity of the coupling
over time, as proposed by Friston and many others (6, 7). Still, a
principled and mechanistic description of the dynamic con-
nectome must bring together the anatomical, neuronal, and
neurotransmitter systems at the whole-brain level (8).
Here, we show how the mutual coupling between the neuronal

and neurotransmitter systems is fundamental to understanding
the dynamic connectome. This can be achieved through whole-
brain modeling of multimodal neuroimaging data using a mutually
coupled neuronal–neurotransmitter whole-brain model where the

structural anatomical connectivity can be measured using diffusion
magnetic resonance imaging (dMRI), the functional connectivity
with functional magnetic resonance imaging (fMRI), and neuro-
transmission (receptor density) with positron electron tomography
(PET). In this model, the synaptic/neuronal activity and the neu-
rotransmitter diffusive system are portrayed in a realistic bio-
physical way by a set of separate dynamical equations, which are
mutually coupled through the receptor maps and synaptic dy-
namics (neurotransmitters to neuronal), and the excitation of the
projections from the brain regions producing the neurotransmit-
ters (neuronal to neurotransmitters). The explicit linkage between
this dual-coupled dynamical system yields a deeper understanding
of the crucial mutual coupling between neuronal and neuro-
transmitters systems at the whole-brain level. We perceive this as a
significant improvement compared to our previous unique whole-
brain study, which had only one neuronal dynamical system
influenced by static neurotransmitter concentrations modulating
the neuronal gain (9). Specifically, we demonstrate the explana-
tory and predictive power of this mutually coupled whole-brain
model by investigating the effects of psychedelics on brain activity.

Significance

In a technical tour de force, we have created a framework demon-
strating the underlying fundamental principles of bidirectional coupling
of neuronal and neurotransmitter dynamical systems. Specifically, in
the present study, we combined multimodal neuroimaging data to
causally explain the functional effects of specific serotoninergic receptor
(5-HT2AR) stimulation with psilocybin in healthy humans. Longer term,
this could provide a better understanding ofwhy psilocybin is showing
considerable promise as a therapeutic intervention for neuropsychiatric
disorders including depression, anxiety, and addiction.
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Psilocybin, the prodrug of psilocin (4-OH-dimethyltryptamine),
is a good model system to demonstrate the power of a mutually
coupled whole-brain model, since it has been shown to act mainly
through the serotonin 2A receptor (5-HT2AR) (10), rather than
more complex interactions between many receptors. The seroto-
nin system works through the projections of the raphe nucleus. In
addition, conveniently, the 5-HT receptor density maps have re-
cently been mapped with PET (11). Here, we were interested in
revealing the effects of mutual coupling of both neuronal and
neurotransmitter systems on brain repertoire and specifically the
effects of psilocybin on resting-state activity on healthy human
participants.
Specifically, the bidirectional coupling of the neuronal and

neurotransmitter systems was modeled in the following way: For
the placebo condition, we used a standard whole-brain model to
simulate the neuronal system, i.e., modeling spontaneous brain
activity at the whole-brain level (measured with blood oxygen
level-dependent [BOLD] fMRI), where each node represents a
brain area and the links between them are represented by white
matter connections (measured with dMRI). For the psilocybin
condition, we mutually coupled the whole-brain neuronal and
neurotransmitter systems by including an explicit description of
the neurotransmitter dynamical system and the mutual coupling
with the neuronal system. This was done by modeling the dy-
namics of the neurotransmitter system through simulating the
release-and-reuptake dynamics, where the serotonin receptor
density of each brain area is measured with PET. The neuro-
transmitter dynamics are then in turn coupled with the neuronal
activity through the firing rate activity of the raphe nucleus,
source of the serotonin neurotransmitter.
The relevance of the whole-brain modeling developed here is

strongly supported by recent studies that have started to dem-
onstrate the functional neuroanatomy underlying the experience
of unconstrained cognition and enhanced mind-wandering
reported following psilocybin (12–15). Due to its therapeutic
action for the treatment of neuropsychiatric disorders such as
depression, anxiety, and addiction (16–18), psilocybin has begun
to elicit significant interest from the neuropsychiatric community
as a potential treatment (19). Long term, the in silico framework
presented here for investigating the dynamical connectome has
the potential to bring insights and help design interventions for
brain disease including neuropsychiatric disorders, which are
otherwise difficult to study with traditional animal models.

Results
The main aim of the mutually coupled neuronal–neurotransmitter
whole-brain model (shown in Fig. 1) is to investigate the tight
interactions between these two different but mutually coupled
dynamical whole-brain systems (Fig. 1A), which are fitted (Fig. 1B)
to the empirical neuroimaging BOLD data (Fig. 1C). In other
words, neuronal-only models that fit neuroimaging data using
local node dynamics constrained by anatomical structural con-
nectivity (20–23) are now described by a balanced dynamic mean
field model that expresses consistently the time evolution of the
ensemble activity of the different neural populations building up
the spiking network (24, 25). The spontaneous activity of each
single brain region is described by a network consisting of two
pools of excitatory and inhibitory neurons (Fig. 1D and Eqs. 2–7 in
Materials and Methods). The neurotransmitter system, on the other
hand, uses a separate set of differential equations describing the
dynamics of the neurotransmitter concentration level, given by the
well-known Michaelis–Menten release-and-reuptake dynamics
(Eq. 13 in Materials and Methods and shown in Fig. 1E) (26–28).
We couple the neurotransmitter and neuronal dynamical systems
by means of the anatomical connectivity between the raphe nu-
cleus and the rest of the brain, estimated using Human Con-
nectome Project (HCP) dMRI (Materials and Methods). The
explicit coupling between the neurotransmitter and the neuronal

system is shown in Fig. 1F (and in Eqs. 14 and 15 in Materials and
Methods). As can be seen, the neurotransmitter currents are ap-
plied to each region’s excitatory and inhibitory pools of neurons
using the effectivity/conductivity parameters (WE and WI, re-
spectively). In each region, the neurotransmitter currents are also
scaled by each region’s receptor density (measured in vivo using
PET). The reverse coupling from the neuronal to the neuro-
transmitter system is given by inserting in the Michaelis–Menten
release-and-reuptake equation the neuronal population firing rate
of the source brain region of the neurotransmitter spread from the
raphe nucleus.
As a demonstration of the power of this general framework,

we show how it can used to explain the specific case of modu-
lation of the serotonin system by psilocybin by analyzing the
neuroimaging data from a group of healthy participants being
administered psilocybin i.v. (see details in Materials and Meth-
ods). This allowed us to study the relevant role of the coupling
between the neuronal and neurotransmitter systems to un-
derstand the specificity of the 5-HT2A receptor densities
[mapped with PET in vivo (11)]. Specifically, the main source of
serotonin neurotransmission is the raphe nucleus, which is es-
sential for the correct coupling between both dynamical systems.
We therefore used the structural connectivity from this region
estimated using dMRI tractography (Materials and Methods).
We fitted the mutually coupled whole-brain model using our

framework of describing a brain state as an ensemble or proba-
bilistic “cloud” in a given state space (29). This cloud is of course
not clustered into discrete states (30), but it has been shown that
clustering can nevertheless be useful in providing so-called
“metastable substates” that can significantly distinguish between
brain states (31, 32). A brain state is determined by a collection of
metastable substates, i.e., of time-varying pseudo-states resulting
from the clustering process (33–35).
We extracted this probabilistic metastable substate (PMS) space

for the empirical psilocybin data (placebo and active condition)
using the leading eigenvector dynamics analysis (LEiDA) method
(described in detail in Materials and Methods and schematized in
Fig. 2) (31). Briefly, we define a time-resolved dynamic FC (dFC)
matrix by using BOLD phase coherence connectivity. In order to
reduce the dimensionality of the problem, we compute the cor-
responding time-resolved leading eigenvector, which captures the
dominant connectivity pattern of dFC(t) at time t. Then we detect
a discrete number of metastable substates by clustering the dFC(t)
across time points and subjects. The obtained k cluster centroids
define the PMS space, for which we compute the probabilities,
lifetimes, and transition probability between them for both the
placebo and active conditions of psilocybin. The placebo and the
active conditions of the psilocybin can be significantly distin-
guished by three substates. Fig. 3A shows three different substates
of the PMS methodology with associated probabilities and tran-
sition probabilities between them for the placebo and active
conditions of the psilocybin. As can be seen in the subplots, two
substates (1 and 3) are significantly different between the two
conditions (P < 10−4) in terms of probability and substate 3 is
significantly different for lifetimes (P < 10−2). This demonstrates
that the clustering approach is indeed useful for distinguishing
brain states.
We first fitted the whole-brain model to the PMS space of the

placebo condition of psilocybin using only the neuronal system
(and thus without coupling the neurotransmitter system). We did
this by fitting the minimum of the symmetrized Kullback–Leibler
distance (KLD) between the empirical placebo condition PMS
and modeled PMS (Materials and Methods). This yielded a global
neuronal coupling parameter G = 1.6. Equally, we measured the
Markov entropy distance (ME) (Materials and Methods). The
optimal values were found to be KLD = 0.002 and ME = 0.05.
Second, we proceeded to study the role of the neurotrans-

mitter dynamical system by coupling both systems in the model.
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This allowed us to predict the changes in brain dynamics under
the effects of psilocybin. Specifically, the mutually coupled
whole-brain model used the same centroids found in the neu-
roimaging empirical data and a two-dimensional (2D) matrix of
coupling parameters WS

E and WS
I for generating the modeled

PMS (Fig. 3B). We searched this matrix for the optimal fitting
(global minimum) to the active condition of the psilocybin data
by using the optimal symmetrized KLD between the empirical
active psilocybin condition PMS and the modeled PMS. Never-
theless, it is clear from the deep diagonal ridge that there is an
invariant ratio between WS

E and WS
I that yields equivalent sig-

nificantly different results with respect to WS
E = 0 and WS

I = 0,
which is the relevant comparison. Fig. 3B shows the matrices of
the KLD and the error lifetimes of the substates in the empirical
active psilocybin condition PMS and the modeled PMS as a
function of coupling parameters WS

E and WS
I (Materials and

Methods). The optimal description of the active psilocybin condition
is found at the minimum of the KLD at WS

E = 0.3 and WS
I = 0.1,

while the full disconnection of the neurotransmitter system is found at

WS
E = 0 and WS

I = 0. Fig. 3C shows the PMS spaces for the
uncoupled system (WS

E = 0 andWS
I = 0, leftmost panel), the optimal

model fit (WS
E = 0.3 andWS

I = 0.1, middle panel), and the empirical
data (rightmost panel).
At this optimal fit, the mutually coupled whole-brain model

allows us to obtain further insights into the underlying dynamics
of neurotransmission involved in psilocybin (in this case for
serotonin). Fig. 4A shows a significant difference between the
optimal fit and the uncoupled system in KLD (P < 10−6). This
clearly demonstrates the significance of coupling the neuronal
and neurotransmitter systems. Fig. 4B further dissects this
finding by showing a significant difference between the optimal
fit and the optimal fit but where we have frozen the feedback
dynamics from the neurotransmitter system to the neuronal
system (P < 10−6). This was done by allowing the coupling until
the steady state is achieved, and then we take the average of the
neurotransmitter variables and freeze these and cancel the
feedback dynamics. With this uncoupling, we consider a simpler
coupled system, where the neuronal dynamics are preserved but

A B C

F

ED

Fig. 1. Overview of the coupled neuronal–neurotransmitter whole-brain model. (A) We studied the mutual coupling of two different mutually coupled
dynamical whole-brain systems (neuronal and neurotransmitter). (B) This system is fitted to the empirical neuroimaging data, which is described by prob-
abilistic metastable substate (PMS) space (C), which is extracted from the empirical BOLD data. (D) We achieve this by adding a coupled neurotransmitter
system (blue) to modulate and interact with the neuronal system (green), which was modeled using a balanced dynamic mean field model that expresses
consistently the time evolution of the ensemble activity of the different neural populations building up the spiking network (24, 25). (E) The neurotransmitter
system (blue) is modeled by a set of differential equations describing the dynamics of the neurotransmitter concentration level, which is given by the well-
known Michaelis–Menten release-and-reuptake dynamics (Materials and Methods) (26–28). (F) The neuronal coupling dynamics (green) is modeled by an-
other set of differential equations describing the spontaneous activity of each single brain region consisting of two pools of excitatory and inhibitory neurons
(Materials and Methods). We couple the neurotransmitter and neuronal dynamical systems through the anatomical connectivity between the raphe nucleus
and the rest of the brain, estimated using dMRI from the HCP (Materials and Methods). The explicit coupling between the neurotransmitter and the neuronal
system is given in Eqs. 16–17 (shown here and described in Materials and Methods). As can be clearly seen, the neurotransmitter currents are applied to each
region’s excitatory and inhibitory pools of neurons using the effectivity/conductivity parameters (WE and WI, respectively). In each region, the neurotrans-
mitter currents are also scaled by the each region’s receptor density (measured in vivo using PET). The reverse coupling from the neuronal to the neuro-
transmitter system is given by inserting in the Michaelis–Menten release-and-reuptake equation the neuronal population firing rate of the source brain
region of the neurotransmitter spread from the raphe nucleus.

9568 | www.pnas.org/cgi/doi/10.1073/pnas.1921475117 Kringelbach et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1921475117


unable to influence the neurotransmitter dynamics that
are frozen.
Fig. 4C shows the significant difference between using the

empirical 5-HT2A receptor densities across the regions at the
optimal fit compared with the results of randomly shuffling the
receptor densities (P < 10−4). Similarly, as shown in Fig. 5A, we
also tested the specificity of the receptor binding maps by com-
paring (at the optimal fit) the 5-HT2A receptor with the other
serotonin receptors, namely 5-HT1A, 5-HT1B, and 5-HT4, which
showed significant differences between 5-HT2A and 5-HT1A (P <
10−6), 5-HT1B (P < 10−6), and 5-HT4 (P < 10−6). This strongly
confirms the main role this receptor plays in the effects of psi-
locybin (10). Finally, in Fig. 5B, we show the comparison to the
5-HTT, which is also significant (P < 0.02). 5-HTT is not a re-
ceptor but has been shown to play an important role for the
treatment of depression.

Discussion
Here, we have shown how a dynamic mutually coupled whole-
brain model can address the major challenge in neuroscience,
which is to explain the paradoxical flexibility of human brain
function despite the reliance on a fixed anatomical connectome.
One of the most important elements in this flexibility is the way
that the fixed connectome can be modulated by neuro-
modulators to selectively change the balance of the excitation
and inhibition of individual brain regions. Here, we modeled the
dynamical mutual coupling between neuronal and neuro-
modulator systems at the whole-brain level. In particular, we
implemented a mutually coupled dynamical system, which cou-
ples at the whole-brain level the neuronal system, which was
modeled using a balanced dynamic mean field model (24, 25)
and the neuromodulator system describing the dynamics of the
neurotransmitter concentration levels (measured in vivo using
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Fig. 2. Computing the probabilistic metastable substate (PMS) space for whole-brain activity. For illustrative purposes in the following, we sketch the full
process of computing the PMS space. For all parcellated brain regions of each participant (A), we extract the original BOLD signal (orange line), bandpass filter
between 0.02 and 0.1 Hz (blue line), and then use the Hilbert transform to compute the time-varying amplitude A and its phase θ (with real and imaginary
components) of the BOLD signal (black dotted lines). The red arrows represent the BOLD phase at each TR, and, as can be seen, much of the original BOLD
signal is captured by the BOLD phase, cos(θ). (B) We compute the BOLD phase coherence matrix between brain regions (Lower) and extract its leading ei-
genvector V1(t) for every timepoint t (Top, colored red and blue according to their sign). (C) Finally, to determine the PMS space, we gather all leading
eigenvectors V1(t) for all participants for every time point as a low-resolution representation of the BOLD phase coherence patterns (leftmost panel). We
apply a clustering algorithm (k-means), which divides the data into a predefined number of clusters k (here k = 3). Each cluster is represented by a central
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PET) and modeled by the well-known Michaelis–Menten
release-and-reuptake dynamics (26–28). Here, as proof of prin-
ciple, we consider the effects of psilocybin on the serotonin
system and therefore use anatomical connectivity between the
raphe nucleus and the rest of the brain to couple the two systems.
Overall, the results show that the interaction between these

dynamical systems is fundamental for explaining the empirical
data. In other words, the dynamic mutual interaction between
neuronal and neuromodulator systems at the whole-brain level is
important to fully explain the functional modulation of brain

activity by psilocybin, a powerful psychedelic drug, acting on the
serotonin system. This is especially important given the demon-
strated ability of psilocybin to rebalance the human brain in
treatment-resistant depression. The results provide evidence for
how the integration of dMRI (anatomy), fMRI (functional
neuronal activity), and PET (neurotransmitter system) at the
whole-brain level is necessary for predicting properly brain dy-
namics as a result of the mutual coupling between a dual dy-
namical system. This expands on the rich existing experimental
and theoretical research on the local effects of neurotransmitters
(e.g., refs. 36–40).
Specifically, the results provide insights into the underlying

dynamics of neurotransmission involved in psilocybin. In terms
of dynamics, we first uncoupled the neuromodulators from the
neuronal systems and found that this produced a highly signifi-
cant breakdown in fitting the empirical data (Fig. 4A). We then
ran further simulations to investigate the role of specific parts of
the dynamic coupling. The full mutually coupled whole-brain
model ran until a steady state was achieved, upon which we
then froze the feedback dynamics from neuromodulators to
neuronal system by removing coupling through the raphe nu-
cleus. This again produced a highly significant breakdown in
fitting the empirical data (Fig. 4B).
In further sets of experiments designed to investigate the im-

portance of the receptor distribution, we changed the distribu-
tion of regional receptor densities by 1) randomly shuffling the
5-HT2A (Fig. 4C) and 2) replacing them with those of other se-
rotonin receptors, known to be much less sensitive to psilocybin,
namely 5-HT1A, 5-HT1B, and 5-HT4. Again, this produced a
highly significant breakdown in the ability to explain the empir-
ical data (Fig. 5B). This result confirms the crucial, causative role
of the precise anatomical location and density of 5-HT2A.
Interestingly, as mentioned above, psilocybin has been dem-

onstrated to play a role in rebalancing the human brain in
treatment-resistant depression (19). The therapeutic action of
psilocybin in depression is thought to depend on activation of
serotonin 2A receptors, thereby initiating a multilevel plasticity
(41). This is different from selective serotonin reuptake inhibi-
tors, which are the most frequently prescribed antidepressant
drug class and whose therapeutic action is thought to begin with
reuptake blockade at the 5-HTT; psilocybin has no appreciable
affinity or action at the 5-HTT. We were interested in further
investigating this by replacing the receptor densities with the
5-HTT densities. We found that the fit with 5-HTT was signifi-
cantly worse than 5-HT2A (Fig. 5C) and supports the potential
for psilocybin in rebalancing brain function in treatment-
resistant depression (19).
More broadly, the mutually coupled whole-brain model and

results shed important light on our understanding of human
brain function. Over the last decade, the discovery of whole-
brain modeling has led to important new insights for explain-
ing the principles of human brain function based on human
neuroimaging data. The initial breakthrough was the recognition
that the anatomical connectivity of the human brain shapes
function at the whole-brain level (1, 2). However, it also became
clear relatively quickly that this was a by-product of the close link
between anatomy and function, given that it is possible to de-
scribe static spontaneous activity (i.e., grand average functional
spatial connectivity over longer periods) even in the absence of
neuronal dynamics, i.e., combining the underlying anatomy with
noise (42). Still, it was shown by further investigations that
capturing the dynamics of the spatiotemporal whole-brain ac-
tivity requires more sophisticated dynamical modeling (3, 35,
43). All of these whole-brain studies were initially solely based on
neuronal modeling, but recently it was shown that even better
results can be obtained when the dynamics of the neuronal sys-
tem (through the neuronal gain of excitatory neurons) is influ-
enced by static neuromodulation (9).

A

B

C

Fig. 3. Finding the optimum fit of mutually coupled whole-brain model as a
function of excitatory and inhibitory coupling parameters. (A) We computed
the three probability metastable substate (PMS) spaces that significantly
distinguish the placebo and psilocybin conditions (each shown rendered on
the human brain). As shown, substates 1 and 2 are significantly different in
terms of probability of occurrence and substate 3 in terms of lifetimes. (B)
We first fitted the whole-brain model to the PMS space of the placebo
condition using only the neuronal system (and thus without coupling the
neurotransmitter system).We then studied the coupled neuronal–neurotransmission
whole-brain model (using the same centroids found in the neuroimaging
empirical data) and a 2D matrix of coupling parameters WE and WI for
generating the modeled PMS spaces. We show the resulting matrices for the
symmetrized Kullback–Leibler distance (KLD) and average error distance
between the lifetimes of the substates. (C) First, we show the PMS when the
neurotransmitter system is disconnected (WS

E = 0 and WS
I = 0, leftmost or-

ange box). However, the most significantly optimal fit to the empirical PMS
(rightmost black panel) is found at WS

E = 0.3 and WS
I = 0.1 (Middle, red box,

P < 10−4).

9570 | www.pnas.org/cgi/doi/10.1073/pnas.1921475117 Kringelbach et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1921475117


Here, we have demonstrated the importance of having a bio-
physically realistic dynamic neuromodulator system, and more
importantly the need for full mutual coupling between the full
dynamics of both neuronal and neuromodulation systems. In
other words, this framework for mutually coupled whole-brain
modeling involves the underlying anatomical connectivity and two
mutually interacting dynamical neuronal and neuromodulator
systems.
Overall, the framework put forward here is likely to be es-

sential for accurately modeling and explaining mechanisms of
human brain function in health and disease. The framework
combines multimodal neuroimaging from dMRI (anatomy),
fMRI (functional neuronal activity), and PET (neurotransmitter
system) at the whole-brain level. This offers unique opportunities

for investigating how to rebalance human brain activity in disease
through pharmacological manipulation that can be discovered
and tested in silico in the mutually coupled whole-brain model
proposed here. This whole-brain modeling can thus be used to
make predictions that can be tested causally with electromag-
netic stimulation (deep brain stimulation [DBS] and transcranial
magnetic stimulation) or pharmacological interventions. In the
future, this framework could further extended by measuring
even faster whole-brain dynamics (measured with magneto-
encephalography) (44) and incorporating gene expression at
the whole-brain level, offering even more exciting avenues for
discovering new and effective ways of rebalancing the human
brain in disease.
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into the underlying dynamics of neuromodulation involved in psilocybin were obtained by comparing the Kullback–Leibler distance (KLD) for the PMS and
the error lifetimes between the empirical data and the whole-brain model undergoing various manipulations. (A) For the optimal fit of the mutually coupled
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state, at which point we kept just the average of the neurotransmitter variables while cancelling all feedback dynamics. (C) We found a significant difference
between using the empirical 5-HT2A receptor densities across the regions at the optimal fit compared with randomly shuffling the receptor densities (P <
10−4). This demonstrates the causal importance of the 5-HT2A receptor densities.
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Materials and Methods
We provide here the details on the pipeline used to integrate structural and
functional connectivity (dMRI and fMRI) with neurotransmission (PET) in a
model of the placebo and psilocybin response in healthy participants (sum-
marized in Fig. 1). Please note that all structural, functional and neuro-
modulation data are integrated into the Automated Anatomical Labeling
(AAL) parcellation:

1) Structural connectivity: probabilistic tractography derived from
the dMRI;

2) Functional dynamics: functional dynamics described as probability meta-
stable substates were estimated from the fMRI data obtained in the
placebo and psilocybin condition;

3) Neurotransmitter receptor density: estimation of the density of the 5HT-
2A receptors that has been obtained using PET;

4) Whole-brain neuronal model: description of the (uncoupled) neuronal
dynamic mean field model used to fit the placebo condition;

5) Mutually coupled neuronal and neurotransmission whole-brain model:
dynamic coupling of the neuronal and neurotransmission models to dy-
namically fit psilocybin condition;

6) Empirical fitting of mutually coupled whole-brain model to neuroimag-
ing data: measuring the fit of model to the empirical neuroimaging data.

Parcellation. Based on our previous whole-brain studies, we used the AAL
atlas but considered only the 90 cortical and subcortical noncerebellar brain
regions (45). All structural, functional, and neuromodulation data were
integrated using this atlas.
Structural connectivity.

Ethics. The study was approved by the Research Ethics Committee of the
Central Denmark Region (De Videnskabsetiske Komitéer for Region Mid-
tjylland). Written informed consent was obtained from all participants prior
to participation.

Participants and acquisition. The dMRI data used in the study was collected
from 16 healthy right-handed participants at Aarhus University, Denmark (11
men; mean age, 24.8 ± 2.5) (46, 47). We recorded the imaging data in a
single session on a 3-T Siemens Skyra scanner at Center of Functionally In-
tegrative Neuroscience, Aarhus University, Denmark. The structural MRI T1
scan used the following parameters: reconstructed matrix size, 256 × 256;
voxel size of 1 mm3; echo time (TE) of 3.8 ms; and repetition time (TR) of
2,300 ms. We collected dMRI using the following parameters of TE = 84 ms,

TR = 9,000 ms, flip angle = 90°, reconstructed matrix size of 106 × 106, voxel
size of 1.98 × 1.98 mm with slice thickness of 2 mm and a bandwidth of
1,745 Hz/Px. The data were recorded with 62 optimal nonlinear diffusion
gradient directions at b = 1,500 s/mm2. Approximately one nondiffusion
weighted image (b = 0) per 10 diffusion-weighted images was acquired. We
collected two dMRI datasets: one with anterior-to-posterior phase encoding
direction and the other acquired in the opposite direction.

Tractography. We used the structural connectivity between 90 AAL regions
in the dMRI dataset described above. First, we used the linear registration tool
from the FSL toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; Functional Mag-
netic Resonance Imaging of the Brain [FMRIB], Oxford, UK) (48) to coregister
the echo-planar imaging (EPI) image to the T1-weighted structural image. In
turn, the T1-weighted image was coregistered to the T1 template of
ICBM152 in Montreal Neurological Institute (MNI) space (49). We concate-
nated and inversed the resulting transformations, which were further ap-
plied to warp the AAL template (45) from MNI space to the EPI native space;
ensured discrete labeling values were preserved by interpolation using
nearest-neighbor method. The brain parcellations were thus conducted in
each individual’s native space. The structural connectivity maps were gen-
erated for each participant using the dMRI data acquired. We combined the
two datasets acquired with different phase encoding to optimize signal in
difficult regions. Constructing these structural connectivity maps or struc-
tural brain networks involved a three-step process: 1) Regions of the whole-
brain network were defined using the AAL template as used in the func-
tional MRI data. 2) Probabilistic tractography was used to estimate the
connections between nodes in the whole-brain network (i.e., edges). 3) Data
were averaged across participants.

The FSL diffusion toolbox (Fdt) in FSL was used to carry out the various
processing stages of the dMRI dataset. The default parameters of this imaging
preprocessing pipeline were used for all participants. We then estimated the
local probability distribution of fiber direction at each voxel (50). The
probtrackx tool in Fdt was used to provide automatic estimation of crossing
fibers within each voxel, which significantly improves the tracking sensitivity
of nondominant fiber populations in the human brain (51).

We defined the connectivity probability from a given seed voxel i to
another voxel j by the proportion of fibers passing through voxel i that reach
voxel j when using a sampling of 5,000 streamlines per voxel (51). We then
extended from the voxel level to the regional level, i.e., to a parcel in the
AAL consisting of n voxels, i.e., 5,000 × n fibers were sampled. This allowed
us to compute the connectivity probability Pnp from region n to region p as
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the number of sampled fibers in region n that connect the two regions di-
vided by 5,000 × v, where v is the number of voxels in a given AAL region i.

We computed the connectivity probability from a given brain region to
each of the other 89 regions within the AAL. It is important to note that the
dependence of tractography on the seeding location, i.e., the probability
from voxel i to voxel j is not necessarily equivalent to that from j to i. Still,
these two probabilities are highly correlated across the brain for all partic-
ipants (the least Pearson r = 0.70, P < 10−50). We defined the unidirectional
connectivity probability Pnp between regions n and p by averaging these two
connectivity probabilities since directionality of connections cannot be de-
termined based on dMRI. This unidirectional connectivity can be thought of
as a measure of the structural connectivity between the two areas, with
Cnp = Cpn. The computation of the regional connectivity probability was
implemented using in-house Perl scripts. For both phase encoding directions,
we constructed 90 × 90 symmetric weighted networks, based on the AAL90
parcellation, and normalized by the number of voxels in each AAL region.
This represents the structural connectivity network organization of
the brain.

In order to consider the serotonin source region, we included in our model
the connectivity between the raphe nucleus region and the rest of the brain.
In this way, the neuronal activity across the whole brain excites through the
existing fibers the raphe neurons, and this information is used in the neu-
rotransmitter system (see below). In brief, we used the estimate of the raphe
nucleus region from the Harvard Ascending Arousal Network Atlas (Athi-
noula A. Martinos Center for Biomedical Imaging; https://www.nmr.mgh.
harvard.edu/resources/aan-atlas) (52). We then used LeadDBS Mapper
(https://www.lead-dbs.org/) within Matlab to estimate the whole-brain
tractography from this mask of the raphe nucleus to the rest of the brain
(53, 54) using the Structural group connectome based on 32 Adult Diffusion
HCP subjects GQI (55, 56). This allowed us to estimate the projections from
the raphe nucleus to each AAL region, represented as a vector of 90 values.

It is important to note that the AAL parcellation has been shown to be less
than optimal, in terms of being the least homogeneous parcellation scheme
compared to a number of other parcellation schemes (57). Still, it is not clear
whether the methodology used for this comparison is particularly mean-
ingful. A recent paper by Eickhoff et al. (58) reviewed the literature on the
topographic organization of the brain and concluded that there is no cur-
rent consensus about what is the right spatial parcellation scheme. It is also
important to note that, in contrast to these two papers, which are mostly
concerned with the spatial organization of the brain, here we focus on the
spatiotemporal global dynamics. As such, the AAL parcellation would seem a
good choice given that AAL yields excellent significant results in the whole-
brain literature in general (20, 35, 59), and, crucially, the relative low num-
ber of parcels in the AAL makes it highly suitable for our very extensive
computational demands.
Functional dynamics. The functional data are described in detail in a previously
published study (13), but here we briefly summarize the participants, study
setting, and acquisition protocol.

Ethics. The study was approved by a National Health Service research ethics
committee. Written informed consent was obtained from all participants
prior to participation.

Participants in psilocybin study. fMRI data from nine healthy subjects were
included in this study (seven men; age, 32 ± 8.9 SD y of age). Study inclusion
criteria were: at least 21 y of age, no personal or immediate family history of
a major psychiatric disorder, substance dependence, cardiovascular disease,
and no history of a significant adverse response to a hallucinogenic drug. All
of the subjects had used psilocybin at least once before, but not within 6 wk
of the study.

All subjects underwent two 12-min eyes-closed resting-state fMRI scans
over separate sessions, at least 7 d apart. In each session, subjects were in-
jected i.v. with either psilocybin (2 mg dissolved in 10 mL of saline, 60-s i.v.
injection) or a placebo (10 mL of saline, 60-s i.v. injection) in a counter-
balanced design. The injections were given manually by a medical doctor
within the scanning suite. The infusions began exactly 6 min after the start
of the 12-min scans and lasted 60 s. The subjective effects of psilocybin were
felt almost immediately after injection and sustained for the remainder of
the scanning session.

Anatomical scans. Imaging was performed on a 3-T GE HDx system. These
were 3D fast spoiled gradient echo scans in an axial orientation, with field of
view = 256 × 256 × 192 and matrix = 256 × 256 × 192 to yield 1-mm isotropic
voxel resolution. TR/TE, 7.9/3.0 ms; inversion time, 450 ms; flip angle, 20°.

BOLD fMRI data acquisition. Two BOLD-weighted fMRI data were acquired
using a gradient echo planer imaging sequence, TR/TE = 2,000/35 ms, field of
view = 220 mm, 64 × 64 acquisition matrix, parallel acceleration factor = 2,
90° flip angle. Thirty-five oblique axial slices were acquired in an interleaved

fashion, each 3.4 mm thick with zero slice gap (3.4-mm isotropic voxels). The
precise length of each of the two BOLD scans was 7:20 min.

Preprocessing. The fMRI data were preprocessed using MELODIC 3.14 (60),
part of FSL (FMRIB’s Software Library; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)
with standard parameters and without discarding any ICA components. For
each participant and for each brain state (i.e., placebo and psilocybin), we
used FSL tools to extract and average the BOLD time courses from all voxels
within each region defined in the AAL atlas (considering only the 90 cortical
and subcortical noncerebellar brain regions) (45).

Extracting PMSs. Extracting the PMSs for the neuroimaging data relies on
conducting the LEiDA analysis (31), summarized in Fig. 2. Similar to the
procedure described in Deco et al. (29), we compute a phase coherence
matrix to capture the amount of interregional BOLD signal synchrony at
each time point, for all subject and conditions (placebo and psilocybin
conditions). The phase coherence between each pair of brain regions is
given by the following:

dFC(n,p, t) = cos(θ(n, t) − θ(p, t)), [1]

where the BOLD phases, θ(n, t), at a region n is estimated using the Hilbert
transform for each BOLD regional time course. The Hilbert transform ex-
presses a given signal x in polar coordinates as x(t) = A(t)*cos(θ(t)). Using
the cosine function, two regions x and p with temporarily aligned BOLD
signals (i.e., with similar angles) at a given TR will have a phase coherence
value dFC(n,p, t) close to 1 [since cos(0°) = 1]. On the other hand, time points
where the BOLD signals are orthogonal (for instance, one increasing at 45°
and the other decreasing at 45°) will have dFC(n,p, t) close to 0 [since
cos(90°) = 0]. The resulting dFC(t) for each participant in each condition is a
3D matrix with size N×N×T, where N = 90 is the number of brain regions and
T is the total number of time points (here different for each subject and each
condition). It is important to note that the phase coherence matrix is un-
directed and, as such, for each time t, the N×N dFC(t) matrix is symmetric
across the diagonal. In order to characterize the evolution of the dFC matrix
over time, we reduced the dimensionality of the problem by focusing on the
evolution of the leading eigenvectors of the dFC matrices. The leading ei-
genvector, V1(t), is a N×1 vector that captures the dominant connectivity
pattern of the dFC(t) at each time t, given in matrix format by its outer
product V1.V1T . This approach substantially reduces the dimensionality of
the data when compared to more traditional approaches considering all of
the values in the connectivity matrix (43, 61, 62). Further details about LEiDA
can be found in the work of Cabral et al. (31).

After computing the leading eigenvector of the phase coherence matrix
dFC(t) for each TR, we identified PMSs, i.e., recurrent FC patterns in the data,
first described by Deco et al. (29). We detected a discrete number of FC
patterns by clustering the leading eigenvectors V1(t) from the collapsed pre/
post-psilocybin fMRI data (two conditions) including all participants. We ran
the k-means clustering algorithm with values of k from 2 to 20. Clustering
solutions output a k number of cluster centroids in the shape of N×1 VC

vectors, which represent recurrent PMSs. The outer product of each cluster
centroid vector Vc .VT

c is a N×N matrix representing the dominant connec-
tivity pattern and the elements of VC weight the contribution of each brain
area to the community structure established by the signs of the corre-
sponding vector elements. We used HCP Workbench to render the cluster
centroid vectors VC onto a cortical surface facilitate to visualization and in-
terpretation of FC states. Here, we found that the optimal number of clus-
ters was k = 3 according many criteria including Silhouette analysis and the
minimal P value for significant differences between probabilities between
conditions.

Upon identifying PMSs, we computed the probability of occurrence and
lifetime of each metastable substate in each condition. The probability of
occurrence (or fractional occupancy) is given by the ratio of the number of
epochs assigned to a given cluster centroid VC divided by the total number
of epochs (TRs) in each experimental condition. The lifetime is defined as
the amount of time spent in each metastable substate (cluster centers).
The probabilities and lifetimes were computed for each participant, in
each experimental condition, and across the whole range of clustering
solutions explored.

Furthermore, to capture the trajectories of FC dynamics in a directional
manner, we computed the switching matrix. This matrix contains the
probabilities of transitioning from a given FC state (rows) to any of the other
FC states (columns). Differences in probabilities of transition and probabilities
of occurrence were statistically assessed between conditions using a
permutation-based paired t test. This nonparametric test uses permutations
of group labels to estimate the null distribution (computed independently
for each experimental condition). To compare populations, we applied a
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t test to each of 1,000 permutations and used a significance threshold of
α = 0.05.
Neurotransmitter receptor density. A previous study has carefully described the
methods used to obtain the 5-HT2A receptor density distribution (11), but
here we briefly summarize the main methods.

Ethics. The study was approved by the Ethics Committee of Copenhagen
and Frederiksberg, Denmark. Written informed consent was obtained from
all participants prior to participation.

Participants. The participants were healthy male and female controls from
the freely available Cimbi database (63). The present data analysis was re-
stricted to include individuals aged between 18 and 45 y. Acquisition of PET
data and structural MRI scans were taken from 210 individual participants,
yielding a total of 232 PET scans; of which 189 participants had only one
scan, 20 participants had two scans, and a single had three scans.

PET and structural MRI. Full details on PET and structural MRI acquisition
parameters can be found in the original study (63) and in abbreviated form in
ref. 9.

Extracting receptor density maps. Similar to Deco et al. (9), we extracted the
average receptor density for each individual AAL region 5-HT1A, 5-HT1B, 5-
HT2A, and 5-HT4 as well as 5-HTT using standard FSL tools on the freely
available receptor density maps in MNI space.
Whole-brain model neuronal system.

Whole-brain neuronal model (anatomy-plus-neuronal activity). First, we mod-
eled the system without any coupling between systems, i.e., a pure neuro-
dynamical system (9). For this, we simulated the spontaneous brain activity at
the level of the whole brain in a network model where each node represents
a brain region and the links between nodes represent white matter con-
nections. As proposed by Deco et al. (25), a dynamic mean field (DMF) model
is used to simulate the activity in each brain region. In brief, based on the
original reduction of Wong and Wang (64), this DMF model uses a reduced
set of dynamical equations describing the activity of coupled excitatory (E)
and inhibitory (I) pools of neurons to describe the activity of large ensembles
of interconnected excitatory and inhibitory spiking neurons. The inhibitory
currents, I(I), are mediated by GABAA receptors, while excitatory synaptic
currents, I(E), are mediated by NMDA receptors. In terms of connectivity,
each brain region, n, consists of reciprocally connected excitatory and in-
hibitory pools of neurons, whereas coupling between two areas n and p
occurs only at the excitatory-to-excitatory level where it is scaled by the
underlying anatomical connectivity Cnp (Materials and Methods, Structural
Connectivity).

The following system of coupled differential equations expresses the DMF
model at the whole-brain level:

I(E)n = WEI0 +w+JNMDAS(E)n + GJNMDA  ∑
p

  Cnp   S(E)p − JnS(I)n , [2]

I(I)n = WII0 +   JNMDAS(E)n −   S(I)n , [3]

r(E)n =  H(E)(I(E)n ) =  
gE(I(E)n − I(E)thr)

1 − exp( − dEgE(I(E)n − I(E)thr)), [4]

r(I)n =  H(I)(I(I)n ) =  
gI(I(I)n − I(I)thr)

1 − exp( − dIgI(I(I)n − I(I)thr)), [5]

dS(E)n (t)
dt

= − S(E)n

τNMDA
+ (1 − S(E)n )γr(E)n + συn(t), [6]

dS(I)n (t)
dt

= − S(I)n
τGABA

+ r(I)n + συn(t). [7]

As can be seen, for each inhibitory (I) or excitatory (E) pool of neurons in each

brain area n, the vector I(E, I)n represents the total input current (in nano-

amperes), the firing rate is denoted by the vector r(E, I)n (in hertz), while the

synaptic gating is denoted by the vector S(E, I)n . The total input currents re-
ceived by the E and I pools is converted by the neuronal response functions,

H(E, I), into firing rates, r(E, I)n , using the input–output function of Abbott and
Chance (65), where the gain factors gE = 310 nC−1 and gI = 615 nC−1 de-

termine the slope of H. Above the threshold currents of I(E)thr = 0.403 nA, and

I(I)thr = 0.288 nA, the firing rates increase linearly with the input currents. The
shape of the curvature of H around Ithr is given by the constants dE = 0.16
and dI = 0.087. GABA receptors with τGABA = 0.01 s controls the average

synaptic gating in inhibitory pools. NMDA receptors with a decay time
constant τNMDA = 0.1 s and γ = 0.641=1,000 (the factor 1,000 is for expressing
everything in milliseconds) control the synaptic gating variable of excitatory

pools, S(E)n . All excitatory synaptic couplings is weighted by JNMDA = 0.15 nA,
while the weight of recurrent excitation is w+ = 1.4. The overall effective
external input is I0 = 0.382 nA with WE = 1 and WI = 0.7. Note that in Eqs. 6
and 7, the uncorrelated standard Gaussian noise, υn, has an amplitude of
σ =   0.01 nA.

Emulating the resting-state condition, we used parameters in the DMF
model based on Wong and Wang (64) such that each isolated node exhibited
the typical noisy spontaneous activity with low firing rate (r(E) ∼ 3 Hz) ob-
served in electrophysiology experiments (66–69). Furthermore, similar to Deco
et al. (25), for each node n,we adjusted the inhibition weight, Jn, such that the

firing rate of the excitatory pools r(E)n remained clamped at 3 Hz—even when
receiving excitatory input from connected areas. The algorithm for achieving
feedback inhibition control is described by Deco et al. (25), where it was shown
that using this leads to a better prediction of the resting-state FC and to a
more realistic evoked activity.

The whole-brain network model used parcellated structural and func-
tional MRI data from 90 cortical and subcortical brain regions (9), where
each brain region n receives excitatory input from all structurally connected
regions p into its excitatory pool, weighted by the underlying anatomical
connectivity matrix, Cnp, obtained from dMRI (9) (Materials and Methods,
Structural Connectivity). Importantly, we used a global coupling factor G to
equally scale all interarea E-to-E connections. Finding the optimal working
point of the system simply requires finding the optimal global scaling factor,
such that the simulated activity by the model is maximally fitting the em-
pirical resting-state activity of participants in the placebo conditions.

The simulations were runwith a time step of 1ms for a range ofG between
0 and 2.5 (with increments of 0.025). In order to emulate the empirical
resting-state scans from nine participants, for each value of G, we ran 200
simulations of 435 s each.

Please note that to transform the simulated mean field activity from our
DMF model into a BOLD signal, the generalized hemodynamic model of
Stephan et al. (70) was used. This involves computing the BOLD signal in each

brain area, n, arising from the firing rate of the excitatory pools r(E)n , such
that an increase in the firing rate causes an increase in a vasodilatory signal,
sn, subject to autoregulatory feedback. In proportion to this vasodilatory
signal, the blood inflow fn induces changes in deoxyhemoglobin content qn

and blood volume vn.
These biophysical variables are described by these equations:

dsn=dt = 0.5  r(E)n + 3 − ksn − γ(fn − 1), [8]

dfn=dt = sn, [9]

τ  dvn=dt = fn − vα
−1

n , [10]

τ  dqn=dt = fn(1 − ρ)f−1n /ρ − qnvα
−1

n /vn, [11]

where τ is a time constant, ρ is the resting oxygen extraction fraction, and
the resistance of the veins is represented by α.

For each area, n, the BOLD signal, Bn, is a static nonlinear function of
deoxyhemoglobin content, qn, and volume, vn, that comprises a volume-
weighted sum of extravascular and intravascular signals:

Bn = V0[(k1(1 − qn) + k2(1 − qn=vn
) + k3(1 − vn)]. [12]

We used all biophysical parameters stated by Stephan et al. (70) and con-
centrated on the most functionally relevant frequency range for resting-
state activity, i.e., both simulated and empirical and BOLD signals were
bandpass filtered between 0.1 and 0.01 Hz (71–74).
Mutually coupled whole-brain neuronal and neurotransmitter system. Finally, in
order to fully couple the whole-brain neuronal and neurotransmitter sys-
tems, we have to include an explicit description of the neurotransmitter
dynamical system and the mutual coupling. We do this by modeling the
dynamics of the neurotransmitter system through simulating the
release-and-reuptake dynamics. These dynamics are then in turn coupled
with the neuronal activity through the firing rate activity of the raphe brain
region, source of the serotonin neurotransmitter.
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Specifically, the concentration of serotonin is modeled through the
Michaelis–Menten equations (26–28):

d[sn]
dt

= αCBRr(E)n − Vmax[sn]
(Km + [sn]), [13]

where [sn] is a vector, denoting the dynamics of the neurotransmitter con-
centration level in a brain region n, and where the corresponding density of
a serotonin receptor Rn is measured with PET. This is defining the interaction
between the neuronal and neurotransmitter system through the first term
on the right-hand side in Eq. 13 (i.e., brain raphe coupling). The CBR is outer
product of the fiber density connectivity vector between the whole brain
and the raphe nucleus, obtained through dMRI probabilistic tractography,
and α = 5 is a factor normalizing the activity such that the current generated
by the neurotransmitter (Eqs. 14–16) is working in the nonlinear central
sigmoidal part. For the second term on the right-hand side of Eq. 13,
Vmax = 1,300 nM·s−1 is the maximum reuptake rate and Km = 170 is the
substrate concentration where the uptake proceeds at one-half of the
maximum rate (26–28).

The reverse coupling, i.e., the effect of the neurotransmitter system on the
neuronal system, is described in Eqs. 14–16. Specifically, the neuronal activity
is modeled as a dynamical system in Eqs. 14 and 15 (as a coupled variation of
Eqs. 2 and 3) by generating an extra current on the excitatory pyramidal and
GABAergic inhibitory neurons in the following way:

I(E)n = WEI0 +w+JNMDAS(E)n + GJNMDA∑
p
CnpS(E)p − JnS(I)n +WS

ERnMn, [14]

I(I)n = WII0 + JNMDAS(E)n − S(I)n +WS
I RnMn, [15]

where WS
E and WS

I are the excitatory and inhibitory feedback coupling pa-
rameters from the neurotransmitter system to the neuronal activity. The
density of a serotonin receptor Rn (as measured with PET) weighs the sero-
tonin modulated current vector Mn (current for each brain region), which is
given by the sigmoid-like function commonly used in pharmacology and
current equation (26):

τs
dMn

dt
= −Mn + J

(1 + e−β(log10[sn]+1)), [16]

where β = 10, J = 0.1, and τs = 120   ms (26). The last terms on the right-hand
side of Eqs. 14 and 15 describe the coupling of the neuronal to the neuro-
transmitter system. In this way, both neuronal and neurotransmitter dy-
namical system are explicitly expressed and mutually coupled.
Empirical fitting of mutually coupled whole-brain model to neuroimaging data. We
used the following measurements to measure the empirical fit of the mu-
tually coupled whole-brain system.

Comparing empirical and simulated PMS space measurements. We computed
the symmetrized KLD between the simulated and empirical corresponding

probabilities of the metastable substates, i.e., the probabilities of the
extracted empirical centers after clusterization:

KL(Pemp,Psim) = 0.5(∑
i

Pemp(i)ln(Pemp(i)
Psim(i) ) +∑

i

Psim(i)ln( Psim(i)Pemp(i))), [17]

where Pemp(i) and Psim(i) are the empirical and simulated probabilities on the
same empirical extracted metastable substates i.

Comparing empirical and simulated transition probabilities between metastable
substates. We computed the entropy rate S of a Markov chain, with N states
and transition matrix P. The rate entropy S is given by the following:

S = S1 + S2 + . . . + SN , [18]

where

Si = −p(i)∑N
j=1

P(i, j)logP(i, j). [19]

The stationary probability of state i is given by p(i). For long realizations of
the Markov chain, the probabilities of each state converge to the stationary
distribution p, which is the solution of the following equation:

PTp = p. [20]

The stationary distribution is the eigenvector of the transpose of the tran-
sition matrix with associated eigenvalue equal to 1. A Markov model with a
lot of transitions will have a large rate entropy, while low entropy will be
found in aMarkovmodel withminimal transitions. For each transitionmatrix,
we obtained the stationary distribution and, then, computed the entropy
rate. Comparing the two transition probability matrices is defined by the
absolute value of the difference between both respective Markov entropies.

Data Availability. The code to run the analysis and multimodal neuroimaging
data from the experiment are available on GitHub (https://github.com/
decolab/pnas-neuromod).
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