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Abstract

Statistical Methods for Characterizing Occurrences and Impacts of Climate

by

Miyabi Ishihara

Doctor of Philosophy in Statistics

University of California, Berkeley

Assistant Professor Samuel Pimentel, Co-chair

Professor Solomon Hsiang, Co-chair

This thesis explores statistical methods for characterizing the occurrences and im-
pacts of climate. Data on climate and the environment more broadly show unique
characteristics, posing methodological challenges.

Part I presents an overview of an emerging, accessible earth observation data source,
satellite images, and explores its potential applications in statistical and causal infer-
ence. We introduce an approach for incorporating image data, represented by image
features, into a regression framework as a potential proxy for confounding variables.
The study examines the impact of image features on regression estimates, focusing
on the characterization of bias with and without the inclusion of images, as well as
the conditions under which the inclusion of image data reduces or amplifies bias.

Part II introduces an empirical and methodological problem related to estimating the
economic values of the environment. This question is pertinent for understanding
how various environmental qualities, such as flood risk and air pollution, are cur-
rently reflected in residential property values and how society manages climate and
environmental risks. However, a methodological challenge in estimating capitaliza-
tion lies in the difficulty of accounting for confounders, which invites the application
of the method studied in Part I. The results indicate that while some risk-related
factors are associated with lower housing values, others, such as PM 2.5 and flood
risk score, are associated with higher housing prices. This provides a lens through
which to discuss how risks could be reflected in property values.
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Part III focuses on statistical methods for characterizing occurrences of extreme cli-
mate events. These data are spatio-temporal in nature, and effectively visualizing
and summarizing such data is challenging, though crucial for monitoring and iden-
tifying hazardous events. A primary challenge stems from the context-dependent
nature of extreme events, where definitions vary over time and space. While many
adopted approaches involve pre-defining criteria for anomalous events, typically by
setting an exceedance threshold, determining appropriate values for the exceedance
threshold, time window, and spatial boundary is a non-trivial task. The study ap-
plies functional principal component analysis to characterize spatio-temporal trends
of extreme precipitation. The method shows potential as a flexible way to identify
both the temporal window and geographic location of anomalous events.
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Chapter 1

Introduction

This thesis explores the emerging accessible data of earth observation captured by
satellite images and explores how it affects statistical and causal inference. The study
discusses an approach for incorporating image features into a regression framework
and applies it to study an empirical question: estimating the economic values of
the environment, a key aspect necessary for discussing how different environmental
qualities are currently considered and how risks are managed in society. The final
part of the thesis focuses on extreme climate events and applies a statistical method
for characterizing spatio-temporal extremes, an aspect necessary for monitoring and
identifying anomalous events.

1.1 Regression using satellite imagery

Since the early 2000s, satellite images have become an accessible source of data, con-
tributing to the monitoring of land-based attributes on a large scale. With over 1,000
earth observation satellites in orbit [85], satellite imagery offers a viable means of ob-
taining observations in locations where ground-based measurements face limitations,
whether due to cost, risk, or time constraints.

Therefore, the usage of satellite image data, particularly in policy domains, in-
volves aiding in the understanding and measurement of specific issues with detailed
spatial and temporal resolution on a large scale. Additionally, image data have been
used to assist in formulating intervention plans, including time-sensitive resource
allocation and program design, while also providing information to evaluate the es-
timated impact of such interventions.

In using satellite image data for analysis, a methodological challenge lies in effec-
tively transforming unstructured image data into a structured format. Many image
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featurization techniques focus on estimating specific variables, such as tree cover.
With the development of a generalizable featurization approach proposed by Rolf et
al [73], it has become possible to use a single encoding of images to estimate vari-
ous types of variables, resulting in more widely accessible structured image data for
research.

While predictive performance has been studied for various variables, including
considerations of error structure and the nature of bias, questions remain regarding
how the inclusion of image data affects statistical and causal inference. Assessing the
impact of satellite data on such analyses is necessary to understand how and under
what circumstances the use of image data helps with inference.

Chapter 2 studies the impact of incorporating image features into a regression
framework. Specifically, we investigate the potential role of satellite images as proxies
for confounding variables, given their capacity to capture rich information observable
from space. The chapter discusses the conditions under which the inclusion of images
either reduces or amplifies bias compared to the omission of confounding variables.

We observe that incorporating image features reduces the bias of coefficient es-
timates for the variable of interest when their inclusion makes that variable or the
outcome less confounded —meaning it is less associated with the confounder. Even
if imagery captures a large portion of the variations in the confounder, the potential
for bias amplification exists if there is a shared variation in the outcome, variable of
interest, and confounder that is not captured by the imagery. While the conditions
require the knowledge of unmeasured confounders and a diagnostic check remains
a perpetual objective, our study using empirical data suggests that image inclusion
tends to reduce bias when the number of observed covariates is limited.

1.2 Economic value of environment

Chapters 3 and 4 are driven by specific empirical and methodological questions, and
we use the method introduced in Chapter 2 to study these questions. Globally,
the frequency and cost of weather and climate disasters are increasing due to a
combination of factors, including the heightened frequency of extreme climate events,
increased exposure, and vulnerability. While the reasons for increased exposure are
multifaceted and shared among multiple parties [42], one domain in which climate
risks and broader environmental qualities are capitalized is the housing market. From
one perspective, the housing finance system has the potential to incorporate the risks
associated with specific regions and play a role in discouraging risky developments,
such as the rapid construction of properties in high climate-risk areas.



CHAPTER 1. INTRODUCTION 3

Given the increasing importance of risk management and the interconnected na-
ture of these risks, it is essential to gain a comprehensive understanding of the current
state of incorporating environmental and climate conditions into property values on
a national scale and across multiple variables simultaneously. Previous studies on
capitalization have primarily concentrated on specific regions or environmental qual-
ities, and results vary widely. The substantial variability in results may, in part, be
attributed to the methodological challenge in regression, which involves the difficulty
of effectively accounting for all confounding variables—a crucial aspect for obtaining
accurate estimates of capitalization.

Our study adds to the existing thread of research by estimating the extent to
which diverse environmental qualities are incorporated or overlooked on a national
scale. The environmental qualities under study include flood risk, storms, precipi-
tation, surface water, air pollution, wildfire risk, temperature, sunlight, dew point,
elevation, and tree cover. In estimating the capitalization of each, we use regression
analysis that controls for satellite data, as introduced in Chapter 2.

Chapter 3 situates the empirical problem, synthesizing the existing research in the
valuation of the environment. The chapter also summarizes examples of how these
research results were used outside the academic community, particularly in providing
one perspective for designing or assessing environmental policy. The chapter further
presents a catalog of the nature of the housing, environmental, and satellite data
used to study the capitalization problem.

In Chapter 4, the regression using satellite images is implemented, and the impli-
cations of the estimates are discussed. While some risk-related factors, such as the
fire potential index and wind speed as indicators of storms, show a general downward
trend, indicating that greater risk is associated with lower pricing, we observe that
certain risk-related factors, such as PM 2.5 and flood risk score, are associated with
higher housing prices. While a more detailed study is necessary to understand how
the trend varies at the state or county level, on a national scale, the current housing
pricing raises questions about how risks should be reflected.

1.3 Characterizing spatio-temporal trends of

extreme precipitation

Despite the contributions of satellite data and spatial smoothing techniques in es-
timating missing information and achieving spatially complete data, in situ mea-
surements continue to be imperative. This significance becomes particularly evident
when studying rare events that deviate from the norm, such as extreme climate
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events. Firstly, assessing the accuracy and error characteristics of satellite data re-
quires ground-truth measurements. The capacity of satellite data is limited to what
can be observed from space. Additionally, interpolation techniques used to generate
spatially complete data rely on input from ground-truth data, and they have a ten-
dency to dampen extreme values, potentially leading to misleading results [27] [83]
[71]. In situ measurements, collected directly from the specific locations of interest
over time, remain an essential source for providing data at the native scale.

When studying spatio-temporal data of extremes, one of the initial challenges is
in effectively visualizing and summarizing the information to help with the moni-
toring and identification anomalous events. A commonly adopted approach involves
pre-defining the criteria for anomalous events, typically by setting an exceedance
threshold. This involves calculating the frequency of events surpassing the threshold
and aggregating the results within predefined spatial subdivisions. However, deter-
mining the appropriate values for the exceedance threshold, time window, and spatial
boundary is a non-trivial task. The challenge arises from the context-dependent na-
ture of extreme events, where definitions vary over time and space. What may be
considered as extreme in one region may not be considered the same in another
location.

Chapter 5 provides a concise overview of the exploratory analysis of visualizing
and summarizing spatio-temporal extremes, specifically focusing on extreme precip-
itation in the contiguous United States. We use functional principal component
analysis, a methodology in the literature of functional data analysis, commonly ap-
plied in health and biomedical contexts [84] for grouping multiple functional or lon-
gitudinal datasets without spatial information. This method is used to characterize
extreme precipitation measurements collected over the last century, each obtained
from multiple weather stations across the United States.

To accommodate the diverse definitions of extreme events across regions and
time, the method is implemented to minimize the need for pre-specified criteria.
Specifically, the analysis does not require predefined specifications for dividing the
contiguous US or determining temporal windows. The resulting principal component
(PC) function, coupled with maps of PC scores, offers a way to identify both the
temporal window and geographic location of anomalous events.
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Part I

Regression Using Satellite Data
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Chapter 2

Use of Satellite Imagery in

Regression

2.1 Introduction

Causal effects can be estimated using regression if the model is accurate and includes
all confounding variables. Failure to account for confounding variables leads to biased
estimated coefficients. In settings where there are spatially correlated unmeasured
confounders, a common approach to mitigate bias is by incorporating spatial infor-
mation. The underlying assumption is that units in close geographic proximity share
similarities in terms of unmeasured confounding factors, and thus involves treating
spatial information as a proxy for these confounders in the estimation process. Pa-
padogeorgou has developed methods in this domain, including a propensity score
matching procedure which takes into account units’ spatial proximity, ensuring ap-
propriate matching of units with similar covariates and spatial proximity [56]. In a
regression framework, Druckenmiller and Hsiang proposed a spatial analogue of the
first differencing approach commonly used in time series analysis. This method in-
volves regressing the spatial first differences of the outcome variable on the treatment
variable, thereby differencing out these covariates [20].

In many cases, we do not know whether unmeasured confounders are spatially
correlated or not. Certain variables such as land use and socio-demographics can
differ considerably in neighborhoods that are geographically close to each other. On
the other hand, neighborhoods that are far away from each other may share similar
confounding (Figure 2.1). We are interested in a proxy for unmeasured confounding
that is defined for each location unit (and thus free from the assumption that nearby
units are similar) and study its effect on coefficient estimates. For such a proxy,
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we use satellite images, which capture a range of environmental and socio-economic
characteristics that are visible from space.

Figure 2.1: Example showing the relationship between physical features
and geographic proximity of three neighborhoods captured by satellite
images. Image A shows a neighborhood with high tree coverage and a few houses,
whereas images B and C show residential neighborhoods. Images A and B are 1.5
miles apart and images B and C are 3000 miles apart.

In this chapter, we provide an overview of earth observation data as represented
by satellite images and its potential contribution in causal inference, along with
machine learning methods for summarizing image data. The chapter presents a
basic framework for incorporating image information within a regression context. We
explore the effect of images on regression estimates, including the characterization
of bias with and without the inclusion of images, as well as simulation studies that
examine scenarios where controlling for images can help reduce or amplify bias. We
comment on constraints associated with satellite images, underscoring the need of
context-specific considerations and future prospects in this domain.

2.2 Earth observation for causal inference

Current usage of satellite imagery in policymaking

Satellite-based data has been used in policymaking across a range of functions. Satel-
lite data plays a role by: a) aiding individuals to understand and measure specific
problems at a detailed spatial and temporal resolution over a large scale; b) assisting
in the formulation of intervention plans, including time sensitive resource alloca-
tion and program design; and c) providing information to evaluate the impact of
interventions.
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Satellite data enables individuals to understand and measure specific problems
that pose challenges for traditional data collection methods. These difficulties can
stem from the nature of the variable being measured or the location where data is re-
quired, which may involve risks or financial constraints. For example, since the early
2000s, satellite images have played a role in monitoring land-based attributes like
forest cover [24] [7], which were previously assessed through ground surveys. By us-
ing satellite sensors and imaging systems that adhere to standardized techniques and
calibration procedures, globally comprehensive measurements are obtained, ensuring
comparability and consistency across different regions.

The fine spatial resolution of satellite imagery enables the acquisition of localized
information at a large scale. For instance, agricultural data that was previously ac-
cessible only at larger scales such as state, district, or county levels can be obtained
at the field scale by satellites [37]. This development allows for more targeted inter-
ventions to be implemented, as stakeholders gain a detailed understanding of specific
areas and can tailor their strategies accordingly.

The temporal resolution and scale of satellite data facilitate the study of variable
changes over time, spanning both small and large time scales. Satellites have been
available since the 1970s, and depending on the sensor, they offer time resolutions
as fine as daily measurements. This capability enables the comparison of ground
conditions before and after specific events, such as evaluating the extent of damage
caused by natural disasters or conflicts [88] [11], and assessing the impact of develop-
ment programs [36] [68] and conservation policies [9]. The effects in these examples
can manifest over various time spans, ranging from immediate impacts following the
event to longer-term consequences.

The combination of granularity and scale in satellite data also serves in the es-
timation of missing data. Satellite data has been used to learn and fill in data
gaps for regions or variables where ground measured information is lacking. For
instance, machine learning methods have been used to generate poverty maps by
learning the relationship between satellite data and ground-measured poverty levels,
and estimating poverty levels in regions with incomplete data, including countries
with low-resource or affected by conflicts [39] [32] [93] [79] [14]. Another applica-
tion involves the delineation of crop field boundaries in regions where field boundary
datasets were previously unavailable [90], which has been contributing to the creation
comprehensive crop type mapping and yield mapping for smallholder farmers.

The examples provided highlight the capability of satellite images to swiftly esti-
mate information in previously inaccessible areas, enabling real-time monitoring and
facilitating prompt actions. They can bring long-standing problems and emerging
problems more salient to public attention. In this context, satellite imagery serves
as a tool for estimating missing values of a specific variable Y in particular locations
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by leveraging data from areas where ground truth information is available. The es-
timated outcome variables Ŷ have been used to inform the selection of appropriate
interventions T and monitor the impact resulting from the implementation of the
chosen intervention T .

Challenges of using satellite imagery in statistical analysis

While satellite imagery data presents many opportunities, the use of imagery data is
subject to certain challenges, which can be categorized into multiple aspects. First,
there are nuances inherent to imagery as a data product, including measurement
errors and its unstructured nature. The unstructured nature necessitates methods
to transform image data into a numerical summary, while the indirect measurement
nature of the data requires treating the numerical summary as a proxy of the variable
that is intended to capture. Second, there are relatively unexplored realms concerning
how these qualities of image data impact the implications drawn from downstream
statistical analysis and causal inference.

There is a limit regarding the extent to which satellite imagery can estimate
certain variables. This limitation arises both from the machine learning method and
the presence of measurement errors inherent in the satellite imagery itself. Therefore,
although the inclusion of additional training data and imagery sources can improve
predictive performance, there is a threshold to the extent of improvement.

Several studies have been conducted to explore the manifestation of these er-
rors across various variables and geographic locations. For example, predictions of
variables using imagery often demonstrate reduced variability compared to the true
values, resulting in reduced predictive performance, particularly at the lower and up-
per extremes [73] [68] [63] [77]. The systematic tendency to over-predict low values
and under-predict high values across all variables can in part be attributed to the
choice of the objective function in the model. This selection favors predictions that
gravitate towards the mean, leading to such patterns in the predictions.

Predictive accuracy can also vary depending on the geographic location. A study
examining the accuracy of satellite-based poverty maps indicates the challenges as-
sociated with accurately predicting wealth levels within urban and rural areas [2].
For instance, satellite-based poverty maps may fail to identify urban populations
living in poverty, which may be attributed to the limited capacity of satellite data in
capturing more detailed wealth information beyond distinguishing whether an area
is urban or not.

With regard to how the inclusion of satellite imagery affect implications drawn
from statistical or causal analysis, studies are limited. Proctor et al focuses on
the measurement error of image data and quantifies the extent to which variables
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estimated via satellite imagery affect bias and uncertainty when used in regression
analysis either as an independent or dependent variable [63]. Jerzak et al studies the
potential of using imagery as proxy for confounding variables in observational causal
inference [69] [40] [41].

In this study, we consider using satellite imagery as a proxy for confounding
variable in a regression analysis, and quantify its effect on bias both from theoretical
and simulation point of view.

2.3 Controlling for imagery in regression

We consider the problem of estimating causal effects using regressions in which we
observe proxies for latent confounders.

Setting and notation

Let Yi denote the continuously scaled outcome of the ith of n location units, for
example, the average housing price in locational region i. Let Ti be the treatment,
which can be categorical or continuous, for example, the annual average air pollution
in location i. Let Xi = (Xi1, ..., Xip) denote the vector of p observed covariates,
for example, the average number of rooms or building age of houses in location i.
Let Ui = (Ui1, ..., Uik) denote the vector of k latent confounding covariates that
are related to the outcome and/or treatment variable. This may be urban form,
which encompasses the configuration of buildings, transportation corridors, and other
structural elements that shape the physical aspects of a city.

Consider the following “correct” but infeasible hedonic regression model:

Yi = �0 + Ti�T + Zi �Z +Ui �U +✏i (2.1)

If the confounding variable is not observed, we can fit the model

Yi = �⇤
0 + Ti�

⇤
T + Zi �

⇤
Z +✏⇤i . (2.2)

Omission of confounding variables U induces bias of coefficient estimates and
may affect conclusions about the extent to which housing values reflect air pollution
information. Unobserved variables are often difficult to define specifically or may not
be available as ground measured data.

A common approach to alleviating the problem of unobserved heterogeneity has
been to use spatial fixed effects [1].
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This problem invites the use of remotely sensed data sources, in particular satellite
images, to serve as proxy for unmeasured confounding variables. Satellite images
capture various aspects of socioeconomic and environmental characteristics to the
extent that they can be observed from space. Given their fine spatial scales, images
can be used to detect small-scale heterogeneous variations.

Conceptually, we are interested in obtaining a regression estimate of interest while
controlling for images – an infeasible task given that images are unstructured and
cannot be regressed on. Hence we use a statistical summary of images, as represented
by a vector of variables (hereafter, image features). Because the interest is in using
images as proxy of unmeasured confounders, we rely on a highly descriptive set of
features with the capacity to estimate ground conditions across diverse variables.

In this study, we use the image featurization technique called Multi-task Obser-
vation using Satellite Imagery and Kitchen Sinks (MOSAIKS), as proposed by Rolf
et al [73]. This method involves a one-time unsupervised image featurization pro-
cess using random convolutional features [65]. Image features measure the similarity
between the image and smaller patches of imagery, which are selected randomly.
hese features can be used for predicting ground conditions through linear regres-
sion, where the variable of interest is regressed against the features. The predictive
performance of these features has been studied across various environmental and so-
cioeconomic variables, both within and outside the U.S. [63] [73] [77]. The predictive
performance of MOSAIK’s image features is comparable with existing deep-learning
methods, whilst offering faster computational speed [73]. Each satellite image in this
study is represented using 4000 features. Further details regarding the featurization
of images can be found in Section 3.4.

Convolutional random features, which we denote as Ri = (Ri1, ..., Rif ) = r(Ii),
is a vector of f = 4000 elements that is transformed from the daytime image Ii.
Because R is descriptive, we expect that it captures variations of T , Z, and U and
thus can be represented as a function of these variables with some noise:

Ri = f(Ti,Zi,Ui) + "i

When R is used as proxy for unmeasured confounders of U, we can fit the model

Y = �0
0 + Ti�

0
T + Zi�

0
z +Ri�

0
R + "0i. (2.3)

2.4 Effects of controlling for imagery
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Sources of Bias

One approach for understanding the effect of controlling for imagery is to study its
effect on the bias in the coefficient estimate of the variable of interest, �0

T . To do
this, it helps to consider sources of bias that is induced from controlling for image
information. There are three sources: measurement error bias, omitted variable bias,
and included variable bias.

Measurement error bias
Satellite images inherently involve measurement error as they serve as proxies

for confounding variables rather than direct representations of those variables. The
quality of images is influenced by the characteristics of the satellite sensor and its
angles [47]. These factors influence the measurement of radiance, which is the amount
of light reaching the satellite sensor. Atmospheric conditions, such as air pollution
or rainfall, can also contribute to errors by introducing additional gases and aerosols
into the atmosphere. Typically, including the images used for this analysis, image
processing is applied to correct for variations caused by factors, such as atmospheric
conditions, sensor characteristics, and sensor angles. Radiance data is also converted
to surface reflectance data, a more consistent measure of the proportion of sunlight
reflected by the Earth’s surface.

The choice of how images are represented by features also plays a role in mea-
surement errors. In this analysis, every image is characterized by 4000 random
convolutional features, although alternative methods of feature creation or different
number of features are possible. The accuracy of representing the confounder can
vary depending on the method of image featurization. If an essential confounder is
subject to measurement error, it can result in considerable bias in the estimate [81].

Omitted variable bias
Even with descriptive features extracted from high-quality images, omitted vari-

able bias can persist. The limitations lie in the characteristics of satellites to capture
specific types of confounding variables, where variables visibly discernible from space,
such as trees, are more accurately represented. On the other hand, certain variables,
such as air quality, are captured with a reduced accuracy by satellite imagery. The
reduction of bias through the inclusion of images depends on the extent to which the
relevant confounding variable is captured in the images.

Included variable bias
The inclusion of images can introduce new problems. One issue arises when

images contain too much information, in particular if they can predict the outcome
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Y or treatment variable T at a high level. The overlap assumption requires that the
propensity score to remain away from 0 and 1, which ensures that the probability of
treatment assignment is not entirely determined by covariates. Adding more variables
for control can improve the accuracy of predicting treatment assignment, potentially
leading to the violation of the overlap assumption. When the outcome variable is
entirely dependent on information within the images, estimating the treatment effect
becomes difficult. This problem can be assessed by checking how much image features
predict Y and T .

Depending on the situation, controlling for variables can result in bias amplifica-
tion phenomenon [16] [80]. One potential problem could manifest as M-bias, where
certain covariates U1 and U2, although independent of one another, affect a common
variable X and each impact T and Y . It has been studied that adjusting for such a
covariate X may introduce bias [78] [57] [19].

Another potential issue is Z-bias, or instrumental variable bias. The situation
arises when there is an instrumental variable X which affects the treatment T but
not the outcome Y directly and there is an unmeasured confounding U . If X is not
controlled for, then it can bias the coefficient on T . However, adjusting for X may
result in a larger bias in the adjusted estimator [8] [92] [80] [52]. The stronger the
instrumental variable, that is, if X is more predictive of T , the higher the relative
bias becomes. Controlling for X can have an effect of removing essential variation
in T .

Quantification of bias in omitted variable model

To understand the effect of image inclusion on the estimate of interest, we charac-
terize the bias of the estimate under two scenarios: 1) when U is omitted and 2)
when R, a remotely sensed proxy of U, is included. Quantifying bias allows us to
gain insight into conditions under which controlling for image features is desired.

Bias when latent confounding covariate is omitted

Recall that if the confounding covariate U is not measured, then one can fit the
model with treatment T and observed covariates Z:

Yi = �⇤
0 + Ti�

⇤
T + Zi �

⇤
Z +✏⇤i . (2.4)

To understand the bias of �⇤
T , it helps to define a third regression on the omitted

variable:

Ui = �0 + Ti�T + Zi �Z + ⌫i. (2.5)
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If we substitute this representation of U into the correct equation and rearrange
terms, we get

Yi = (�0 + �U�0) + (�T + �U�T )Ti + (�Z + �U�T )Zi + (✏i + �2⌫i) (2.6)

Equating the coefficients of T in (2.1) and (2.6) yields the omitted variable bias term

�⇤
T � �T = �U�T , (2.7)

which is large when there is a large association between the treatment and the con-
founder (i.e. large �T ) and/or if there is a large association between the outcome
and the confounder (i.e. large �U).

Bias when image features are included as proxy

Next, we quantify the bias when image features R are controlled as proxy for un-
measured confounders U. Because R is a function of T , Z, and U with some noise,
it helps to consider variables T , Z, and U as comprised of two components: varia-
tion that is estimated by R and the remaining variation that is not estimated by R.
For example, T = T1 + T0, where T1 denotes part of the treatment variation that is
estimated by image features and T0 denotes the the residual. We refer T1 as visible
variation and T0 as invisible variation of T .

Recall the three models and our set up:

Yi = �0 + Ti�T + Zi�Z + Ui�U + "i Correct Model
Yi = �⇤

0 + Ti�
⇤
T + Zi�

⇤
Z + "⇤i Omitted Variable Model

Yi = �0
0 + Ti�

0
T + Zi�

0
z +Ri�

0
R + "0i Proxied Model

Ui = �0 + Ti�T + Zi�Z + ⌫i Confounder Model
Ti = T1,i + T0,i Variable Decomposition

We know that the true effect of T is �T and the omitted variable bias is �U�T .
Now, we want to quantify the bias of �

0
T , which is the bias incurred by including

proxy. By Frisch–Waugh–Lovell theorem [25] [46], we know that the estimate of � 0
T

is equivalent to those obtained by running the following regression:

"Y = �0
T "

T + "0, (2.8)
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where

"Y = Y � �̂Y
ZZ � �̂Y

RR

"T = T � �̂T
ZZ � �̂T

RR

"Y and "T denote the residual of Y and T , respectively, that are not predicted by
observed covariates Z or proxy R. �̂Y

Z and �̂Y
R are the regression coefficient estimates

of Z and R from running the regression:

Y = �Y
ZZ + �Y

RR + ✏Y

Similarly, �̂T
Z and �̂T

R are the regression coefficient estimates of Z and R from running
the regression:

T = �T
ZZ + �T

RR + ✏T

Therefore, by design, "Y = Y0 and "T = T0. Eq. (2.8) can be rewritten as

Y0 = �0
TT0 + "0

We can compute the bias of �0
T in the same way as we did with the omitted variable

bias and obtain that it is �0
T � �T = �U0�T0 , where �U0 and �T0 are regression

coefficients int he following relationships between invisible variations of Y , U , T , and
Z:

Y0 = �00 + �T0T0 + �Z0Z0 + �U0U0 + ⌘0
U0 = �00 + �T0T0 + �Z0Z0 + ⌫0

The bias of the proxy model is high when the invisible variation of the treatment
T0 is highly associated with the invisible variation of Y and/or U . That is, even if
imagery captures a large extent of the variations of U , if there is a common variation
in Y , T , and U that is not captured by imagery, then the bias can be high. On
the other hand, if a large extent of the variation in confounding U is captured by
imagery and the invisible variation U0 to be close to noise, then its association with
T0 would be minimal and thus we can expect the bias to be small.

Condition in which image inclusion reduces bias

The bias of the treatment effect has been characterized when a confounding variable
is omitted from regression and when it is proxied by imagery. By comparing the two
biases, it can be observed that the bias after controlling image features is smaller
than the omitted variable bias when the following condition is satisfied:
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|�U0�T0 | < |�U�T |, (2.9)

where �U is the association between U and Y , �U0 is the association between invisible
variations U0 and Y0, �T the association between T and U , �T0 the association between
invisible variations T0 and U0.

Conceptually, image features reduce bias of the treatment effect estimate if includ-
ing them in the regression makes the treatment variable and/or the outcome variable
less confounded, that is, less associated with the confounder. In other words, even if
imagery captures a large extent of the variations of U , if there is a common variation
in Y , T , and U that is not captured by imagery, then including imagery can result in
high �U0 and/or high �T0 , potentially making the bias larger than when the imagery
was not included.

To provide an alternative representation, a simulation is carried out to visualize
the theoretical condition outlined in Equation 2.9. The simulation illustrates the
influence of including image features R on bias in relations to varying values of �T ,
�T0 , �U , and �U0 .

Simulation example
Consider a simple setup with a single treatment T and a single confounder U .

1. Visible components T1 and U1 were generated as functions of image features
R:

T1 = ↵tR

U1 = ↵uR,

with

✓
↵t

↵u

◆
⇠ N

✓✓
0
0

◆
,

✓
1 �1

�1 1

◆◆

2. Invisible components T0 and U0 were drawn from the bivariate normal distri-
bution: ✓

T0

U0

◆
⇠ N

✓✓
0
0

◆
,

✓
1 �0

�0 1

◆◆

3. Variables T and U were defined as a linear sum of visible and invisible compo-
nents:

T = n1T1 + n0T0

U = m1U1 +m0U0,
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where n1, n0, m1, and m0 are constants.
The outcome variable Y was defined as a linear combination of T and U with
some noise:

Y = �TT + �UU + "

4. Parameters �U0 , �T , and �T0 were estimated by running the following regres-
sions:

U = �0 + �TT + ⌫

U0 = �00 + �T0T0 + ⌫0
Y0 = �00 + �T0T0 + �U0U0 + ⌘0

5. Treatment effect was estimated under the following two specifications:

Y = �0⇤+ �⇤
TT + ✏⇤

Y = �0
0 + �

0

TT + �
0

RR + ✏
0

The procedure was carried out under all combinations of the following parameter
values:

�T = �U = 1

�1, �0 2 {�0.9, 0.8, ..., 0.8, 0.9}
m1,m0 2 {0, 0.1, ..., 1.9, 2}

�1 and �0 are varied as �1 modulates the strength of association between the vis-
ible components of T and U , while �0 governs the association between their invisible
components. m1 and m0 are varied as they influence the amount of variation in U
that is captured by image features.

Simulation Result
In general, including image control reduces bias in comparison to not controlling for
images, when the relationships between the invisible variations of T and U or the
invisible variations of Y and U are relatively weak.

The condition �U0 = �U illustrates a situation in which the degree of association
between the invisible variations U0 and Y0 is the same as the association between U
and Y , which occurs when m1 = 1. In this context, including images reduces bias
when the association between the invisible variables U0 and T0 is weaker than the
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association between U and T (�T0 < �T ), which occurs in approximately half of the
data points in the simulation (Figure 2.2). Conceptually, �T0 < �T when including
images explains shared variations in U and T .

The condition �U0 > �U illustrates a situation in which the degree of association
between the invisible variations U0 and Y0 is greater than the association between
U and Y , which occurs when m1 > 1. In this context, the association between the
invisible variations must to be considerably weaker than the association between U
and T , which occurs less than half of the data points int he simulation. The risk of
amplifying bias is higher compared to the case when �U0 = �U , and the degree of
amplification can be large.

The condition �U0 < �U illustrates a situation in which the degree of association
between the invisible variations U0 and Y0 is less than the association between U and
Y , which occurs when m1 < 1. In this context, there are considerably more cases of
bias reduction due to image inclusion. Even when the inclusion amplifies bias, the
extent of amplification is relatively minor.

The issue with the theoretical condition described in Equation 2.9 and illustrated
in the simulation is it requires the knowledge of unobserved confounders U , and
therefore, it is not practical to confirm whether the condition is satisfied using avail-
able data. A perpetual goal is the design of diagnostic checks to assess in advance
whether incorporating image information contributes to the accuracy of the estimate.
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Figure 2.2: Differences in biases computed under varying degrees of asso-
ciations between �T , �T0, �U , and �U0. (A) Distribution of the differences biases
under three scenarios: 1) �U0 < �U , 2) �U0 = �U , and 3) �U0 > �U . The differ-
ence in biases is calculated as omitted variable bias � image proxied bias. (B) The
relationship between �T and �T0 under the same three scenarios. The colors denote
differences in biases; blue represents positive values when including images reduces
bias, white indicates no change in bias with the inclusion of images, and red indicates
the inclusion of images amplifies bias.
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Simulated experiment on the effect of controlling imagery in

relation to omitted variables

An additional simulated experiment is conducted to examine how the inclusion of
images affects bias across different numbers of omitted variables. This involves a
hybrid simulation that generates a true outcome model using empirical data con-
taining covariates and image features. The effect of treatment variable is estimated
under different model specifications, categorized into two groups: one without image
features and the other including image features.

Simulation example: A Single True Outcome Model with Varied Model Specifications.
One variation of the simulation involves defining an outcome model as a linear com-
bination of the treatment and all p covariates. Subsequently, a comprehensive list
of model specifications is generated by systematically witholding covariates in all
possible combinations (e.g., temperature, temperature + precipitation, temperature
+ precipitation + tree cover, and so on). With p covariates in place, this process
generates 2p model specifications. The treatment effect is estimated within each of
these model specifications, both with and without the inclusion of image features
R. The model specifications are grouped based on the number omitted variables,
or the number of covariates withheld in the analysis. Within each group of omit-
ted variables, various model specifications are evaluated, resulting in distributions
of two biases: omitted variable bias and the image-proxied bias. For each number
of omitted variables, the average difference between the omitted variable bias and
the image-proxied bias is computed. This comparative analysis is used to assess the
effect of the inclusion of image features across varying number of omitted variables.

Figure 2.3 suggests that as more covariates are omitted from the model, the
difference between omitted variable bias and image-proxied bias tends to increase.
The difference is positive across all treatment variables, indicating that the inclusion
of image features tends to reduce bias compared to the omission of variables. The
magnitude of this difference varies depending on the specific treatment variable under
consideration. For example, for certain treatment variables such as elevation, dew
point, and building age, the reduction in bias incurred by image features is relatively
large. For other variables such as house units, vacant house percentage, and flood risk
score, the reduction in bias is comparatively low, even when most of the covariates
are omitted from the analysis.
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Figure 2.3: Differences in biases computed for varying number of omitted
variables and treatment variables. The difference in biases is computed as
omitted variable bias subtracted by image-proxied bias. The overall trend shows an
increase in the difference between omitted variable bias and image-proxied bias as
more covariates are omitted from the model.
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2.5 Conclusion

In this chapter, we introduced the potential for incorporating information obtained
from satellite imagery, specifically as a proxy for confounding variables, which previ-
ously may have been difficult to measure using other sources of measurements. One
approach involves integrating image information by using image features as a control
in a regression framework. The study examines the impact of incorporating image
features, considering their potential to either reduce or amplify bias.

Theoretically, the inclusion of image features reduces bias of the variable of inter-
est when incorporating these features in the regression makes the treatment variable
and/or the outcome variable less confounded, meaning they are less associated with
the confounder. However, if there is common variation in the outcome, treatment, or
confounder that is not captured by imagery, including imagery can potentially am-
plify bias, even if it captures a significant portion of the variation in the confounding
variables.

Since the theoretical condition requires the knowledge of the unmeasured con-
founding variable and cannot be verified using empirical data, one of the perpetual
goals is to formulate a diagnostic study. The goal is to assess whether image features
contribute to the accuracy of estimating the parameter of interest. One experiment
which can be conducted using empirical data is to generate a true outcome model
using empirical data and image features, then assessing whether the inclusion of
images, on average, reduces bias. Such a simulated experiment is carried out using
environmental and housing data. The result indicates that including imagery is likely
to reduce bias, especially when there is a high number of omitted variables.

While the primary focus of this chapter was on examining the impact of including
image features on bias of the estimate of interest, it is pertinent to study the tradeoff
between bias and standard error. Additionally, though the imagery information was
controlled within the context of a regression framework, an avenue for future work
involves exploring matching techniques based on images. For example, matching
land units based on their satellite images could be used as a way to pair units with
similar physical land characteristics. This introduces considerations for measuring
image similarity, identifying key factors contributing to such similarity, and exploring
the relationship between image similarity and confounding variables.

Chapters 3 and 4 provide an empirical application of the proposed regression
method using satellite imagery. The application focuses on estimating the economic
value of environmental qualities.
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Part II

Estimating the Economic Value of

Environment
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Chapter 3

History of Economic Valuation of the

Environment

3.1 Introduction

The frequency and cost of weather and climate disasters are on the rise globally,
including in the United States, driven by a combination of factors such as increased
frequency of extreme climate events, heightened exposure, and vulnerability, with
a significant role played by the concentration of people and properties in high-risk
regions.

For instance, in 2018, approximately 42% of the US population resided in coastal
shoreline counties, which cover around 10% of the continental US landmass and are
prone to known risks of coastal storms and flooding. The population living in areas
at risk of wildfires has grown, with estimates showing an increase from 10 million
in 1990 to 20.8 million in 2010 [67]. The rise has been in part attributed to the
emerging expansion of the wildland-urban interface, where human-made structures
and flammable vegetation converge, thereby increasing the risk of wildfires [67] [64].

While the reasons for the increased exposure is multifaceted and responsibility
is shared across multiple parties [42], one of the few domains where climate risks
and broader environmental qualities are explicitly capitalized is housing markets.
One perspective is that the housing finance system has the potential to incorporate
the risks associated with specific regions and can play a role in discouraging risky
behaviors, such as rapid development of properties in high climate-risk areas.

With the increasing significance of risk management, it is crucial to gain insights
into the current status of how these environmental and climate conditions are in-
tegrated into property values at a national scale. Given the interconnected nature
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of these risks, it is also important to study these variables simultaneously. Prior
research on capitalization has primarily focused on specific regions or environmental
quality, yielding mixed results. Additionally, a methodological challenge lies in ad-
equately accounting for all confounding variables, an aspect for obtaining accurate
estimates of capitalization.

Our study contributes to the existing body of research by estimating the current
state of the extent to which various environmental qualities are incorporated or over-
looked on a nationwide scale. The environmental qualities we study include: flood
risk, storm, precipitation, surface water, air pollution, wildfire risk, temperature, sun
light, dew point, elevation, and tree cover. In estimating the capitalization, we use
regression analysis that incorporates satellite data, as introduced in Chapter 2.

The rest of the chapter is structured as follows: Section 3.2 provides a summary
of the current understanding of how environmental and climate information is cap-
italized in residential properties. Section 3.3 examines a commonly used hedonic
property model, its historical context, and its implications for policy. Section ?? for-
mulates the capitalization problem. Lastly, Section 3.4 introduces the data we use to
study the problem, which encompasses housing, neighborhood, environmental, and
satellite imagery data. This section also details the data processing steps taken to
prepare for the modeling process.

3.2 Valuation of environment

Among climate risks, flood risk has been the subject of considerable research, and
a few nationwide studies have been conducted to evaluate the extent to which ex-
isting residential properties reflect flood risk. For instance, a study by Hino and
Burke in 2021 [33] examined the impact of flood risk information provided by the
federal government on property values. The findings indicated that houses located
in flood zones are currently overvalued by a total of $43.8 billion (95% confidence
interval: $32.6 to $55.6 billion). This overvaluation was calculated by comparing
the empirical findings on the flood zone discount with the estimated efficient flood
zone discounts, which represent the cost of full insurance. Furthermore, a study con-
ducted by Gourevitch et al in 2023 [28] estimated the overvaluation to be between
$121 to $237 billion, after taking into account future climate change impacts. In a
meta-analysis conducted by Beltran et al [6], it was found that many studies focusing
on localized effects within a single county or city suggest a price discount for prop-
erties located in floodplains. However, the results of these studies show significant
variation, ranging from a discount of -75.5% to +61.0% price premium.
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Other climate risks and broader environmental qualities have also been the focus
of extensive studies. While not an exhaustive overview, we highlight some recent
findings from studies conducted in these areas. Regarding wildfire risk, specific
regional studies have indicated that properties located near hazardous topography
tend to be associated with higher sales prices [13], while the provision of information
shocks on wildfire can elevate risk perceptions and result in reduced housing prices
[45], although the effect may be short-term [49].

3.3 Hedonic model

Origins and overview of hedonic model

The hedonic property model is a widely used approach in valuation studies for
estimating the economic value of the environment. Initially, the hedonic pricing
model was introduced in 1929 by Frederick V. Waugh, an agricultural economist
[91]. Waugh conducted research on vegetable pricing, specifically focusing on aspara-
gus. He used regression analysis to examine how the price of asparagus correlated
with three qualities: color, size of stalks, and uniformity of spears. The primary
motivation behind this study was to understand customers’ preferences for these
characteristics, which held interest for producers in the agricultural industry.

During the mid-1960s, the application of hedonic analysis expanded to include the
economic valuation of the environment. Federal agencies funded research projects
aimed at estimating people’s willingness to pay for improved air quality, using data
from residential property values. In 1967, Ridker and Henning published a paper
that initiated discussions about using real estate prices as a means to estimate the
economic value of air quality and, by extension, environmental quality [70].

Since the 1970s, there has been a surge in the number of publications focusing
on hedonic pricing and environmental valuation. In this field of research, hedonic
analysis commonly adopts a regression approach, assuming that the price of a house
is a composite of various implicit prices associated with its individual characteristics.
These characteristics may include: (a) Physical structure of the house, e.g. the num-
ber of rooms and the age of the building; (b) Surrounding neighborhoods, e.g. the
socioeconomic status of the area and the availability of public services; (c) Environ-
mental conditions, e.g. the air quality and the presence of green spaces. A regression
analysis of housing prices in relation to these characteristics provides estimates of
the marginal implicit prices attributed to each particular characteristic of interest.
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Social implications of hedonic model

Estimates derived from hedonic models have had some practical applications be-
yond the research community. Case studies conducted by Palmquist and Smith
[54] indicate that hedonic studies can serve as a basis for establishing and assessing
improvements in various environmental standards. In litigation contexts, hedonic
models have provided legal framework for assessing damage appraisals.

In policymaking, hedonic analysis has played a role in the examination of air pol-
lution damages, providing motivation for improving air quality and setting national
ambient standards. For instance, the 1970 report to the National Air Pollution Con-
trol Administration in the U.S. Department of Health, Education, and Welfare used
estimates from four property value studies to derive a national annual cost estimate
of sulfate air pollution. In addition, the 1974 report titled "Air Quality and Auto-
mobile Emission Control," published jointly by the National Academy of Science and
the National Academy of Engineering, featured several research studies focused on
the welfare effects (i.e., non-health consequences) of air pollution, which collectively
provided the basis for the development of national ambient standards [54].

Hedonic analyses have been utilized in public litigation cases involving residen-
tial properties and the determination of liability for environmental impacts. In such
litigation, the aim is often to seek compensation for matters of public interest. How-
ever, the records of these analyses are not always readily accessible to the public,
and obtaining statistics on the frequency of hedonic analysis usage in such cases can
be challenging. Nonetheless, an illustrative case study presented in [54] offers an
example of its application in this context.

In summary, the case involved the pollution of a river by hazardous substances
stemming from an abandoned silver mine in Colorado during the year 1985. The
litigation concerned the cost of damages that the mine was liable. The defense
computed the estimated loss incurred by homeowners due to the inability to use well
water, using the price of bottled water as a reference. However, the lack of clean
water is just one facet of the problems caused by the pollution. The plaintiff’s expert
conducted hedonic analysis to estimate the market value that was impacted by the
pollution. This involved regressing the reported sales prices of 150 properties against
a binary proximity variable, indicating whether each property was located within six
miles of the mine site. Additionally, five covariates related to the structural housing
attributes were included in the analysis, serving to control for potential confounding
variables. The hedonic analysis produced an estimated loss that was two and a half
times larger than the mitigation cost proposed by the defense. This discrepancy,
where the mitigation cost was significantly lower than the estimated loss of market
value, raised doubts about the plausibility of the defense’s estimate. Consequently,
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this prompted a thorough examination of other claims presented in their report.
Though not exhaustive, examining case studies that use hedonic models offers

insights into the nuances of how estimates from these models can serve in discus-
sions. In specific contexts, like public litigation addressing a particular waste dis-
posal incident, hedonic analysis can directly impact actions by offering quantifiable
and manageable assessments of damages. In more general scenarios, such as national
policies involving diverse regions and populations with varying characteristics, the
impact tends to be more indirect, serving as one aspect of the discussion.

Challenges of hedonic model

One of the challenges encountered with hedonic property models is the difficulty
in effectively controlling for confounding variables [15] [55] [50] [1]. When these
variables are not accounted for or exhibit spatial correlation, the model can be prone
to omitted variable bias. Hedonic analyses are susceptible to confounders, which
may encompass physical, environmental, and socioeconomic characteristics of the
neighborhood. Some of these variables may be latent in nature, posing challenges
in direct measurement. For instance, higher levels of air pollution may be linked to
the urban form, which encompasses the configuration of buildings, transportation
corridors, and other structural elements that shape the physical aspects of a city.
Failing to adequately control for such variables can lead to either over- or under-
estimation of the implication of air pollution on housing prices.

3.4 The ACS, environmental, and satellite data

Data

This section describes datasets we use to estimate the extent to which housing values
capitalize various environmental qualities. Factors were chosen to represent housing
attributes and their surrounding environment, subject to the condition that high
resolution and up-to-date data are available across the continental US. For environ-
mental variables that are known to exhibit temporal variability, we use the normals
data that reflect the average condition in the recent two decades. Below we describe
the data sources.
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Task Units Spatial resolution Temporal period Data source
Temperature degrees Celsius ⇠ 4km ⇥ 4km 2000-2019 [62]
Precipitation mm ⇠ 4km ⇥ 4km 2000-2019 [62]
Dew point degrees Celsius ⇠ 4km ⇥ 4km 2000-2019 [62]
Sunshine Watts / m2 ⇠ 111km ⇥ 111km March 2000 - December 2019 [53]
Fire potential index Index 1 acre 2001 - 2009 [86]
PM 2.5 µg/m3 ⇠ 1.11km ⇥ 1.11km 2000-2019 [5]
Tree cover % tree cover ⇠ 30m ⇥ 30m 2010 [31]
Elevation meters ⇠611.5m ⇥ 611.5m 2010 [4]
Surface Water occurrence % water presence over time ⇠30m ⇥ 30m March 1984 - October 2015 [22]
Wind speed m / s 0.1� ⇥ 0.1� 1950 - 2008 [35]
Flood risk score 1-10 census tract 2020 [3]

Table 3.1: Data sources for environmental and climate variables. The spatial
resolutions mentioned for all raster data sets (forest cover, elevation) apply to grid
cells located at the equator. Due to the Earth’s curvature, the raster size in Euclidean
distance will vary with latitude.

Temperature, Precipitation, Dew Point We use the normal data modeled by the
PRISM Climate Group at the Oregon State University. The data reflect the mean
temperature (degrees Celsius), mean precipitation (mm), and dew point (degrees
Celsius) across the recent two decades for the period 2000 - 2019. The PRISM
(Parameter-elevation Relationships on Independent Slopes Model) uses a regression-
based spatial interpolation method that generates estimates at a resolution of 25
arcmin (approximately 4km) grid cells. The original data used in the estimation
consists of nearly 10000 surface weather observation stations for temperature, 13000
for precipitation, and 4000 for dew point. Stations used in the model are weighted
according to the physiographic similarity of the station to the grid cell. [18] 1

We use dew point as opposed to relative humidity (RH), because dew point di-
rectly affects general human comfort levels outside [44]. Dew point is the temperature
to which the air needs to be cooled to become saturated with water vapor, or RH of
100%. Higher dew point indicates higher amount of moisture in the air.

Sunshine To measure sunlight, we use shortwave flux down data at the Earth’s
surface, provided by The Clouds and the Earth’s Radiant Energy System (CERES)
Science Team. Shortwave flux down data is a satellite-based estimate of the flow
of solar energy per unit area, measured in Watts/m2. The estimate has a spatial
resolution of 1 degree (⇠ 111km). We take the average of monthly data from March

1We accessed these data via the R function get_prism_monthlys from the prism package. Code
and documentation can be found here: https://cran.r-project.org/web/packages/prism/
prism.pdf

https://cran.r-project.org/web/packages/prism/prism.pdf
https://cran.r-project.org/web/packages/prism/prism.pdf
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2000 to December 2019. 2

Fire Potential Index We use wildland fire potential index (FPI) data maintained
by the US Geological Survey (USGS). The index, ranging from 0 to 150, estimates
two aspects of fire danger: the probability that a 1 acre ignition will result in a
100+ acre fire, and the probabilities of having at least 1, 2, 3, or 4 large fires [61] 3.
The estimates are available daily at 1km resolution. For this study, we use average
flammability across the period 2001 - 2019. The estimates are produced based on a
logistic regression model which relates historical fire occurrence data to vegetation
and weather data. Vegetation inputs include the proportion of live to dead vegetation
ad dead fuel moisture, which is the measure of amount of water in a fuel (vegetation)
available to fire. Weather inputs include temperature, precipitation, and wind speed.

PM2.5 We use ground-level fine particulates matter (PM2.5) from Atmospheric
Composition Analysis Group at Washington University in St. Louis. The data has
a spatial resolution of 0.01� ⇥ 0.01� (⇠ 1.11km ⇥ 1.11km) and reflects the average
PM2.5 value over the period 2000-2019. The underlying data sources include a com-
bination of satellite observations, chemical transport modeling, and ground-based
measures. Satellite-derived aerosol optical depth (AOD) provides a measure of the
amount of solar beam prevented from reaching the ground by aerosol particles. The
chemical transport model relates AOD and ground monitor data, allowing for a spa-
tially complete representation that is consistent with ground-based measurements
[30] [87]. 4

Tree Cover We use tree cover data from [31], which estimates the percentage of
maximum tree canopy cover per 30m ⇥ 30m pixel in the year 2010. Trees in the
data were defined as vegetation taller than 5m in height. These estimates are based
on a regression model of growing season Landsat 7 ETM+ data as inputs. 5

Elevation We use data on elevation provided by Mapzen, and accessed via the
Amazon Web Services (AWS) Terrain Tile service and the Open Topography global
datasets API. The data is available in raster format with resolution of different zoom

2The data is available at https://ceres-tool.larc.nasa.gov/ord-tool/jsp/
SYN1degEd41Selection.jsp

3Fire Potential Index can be accessed at https://www.usgs.gov/fire-danger-forecast/
wildland-fire-potential-index-wfpi

4The data is available at https://sites.wustl.edu/acag/datasets/surface-pm2-5/
5Data can be accessed from the University of Maryland, Department of Geographical Sciences

and USGS at https://glad.umd.edu/dataset/global-2010-tree-cover-30-m

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
https://www.usgs.gov/fire-danger-forecast/wildland-fire-potential-index-wfpi
https://www.usgs.gov/fire-danger-forecast/wildland-fire-potential-index-wfpi
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://glad.umd.edu/dataset/global-2010-tree-cover-30-m
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levels, ranging from 1 to 14. We use zoom level 8 (611.5 meters at the equator) to
align the resolution to that of our satellite imagery. 6

Mapzen Terrain Tiles are compilations of several major open data sets. The data
that covers the continental US is based on the light detection and ranging (lidar) de-
rived data, powered by 3DEP (3D Elevation Program) in the U.S. Geological Survey.
Lidar data is collected using a laser scanner, typically mounted on an aircraft, which
transmits pulses of light to the ground surface. The pulses are reflected back and their
travel time is used to estimate the distance between the laser scanner and the ground.

Surface Water Occurrence We use water occurrence, produced under the Coper-
nicus Programme [58]. The data measures the frequency (expressed in percentage)
with which water was present on the surface from March 1984 to October 2015.
Presence of water is estimated by classifying Landsat data as open water, as land or
as a non-valid observation. Open water is defined as any stretch of water larger than
30m by 30m. 7

Wind Speed We use surface-level exposure to tropical cyclone winds derived from
the Limited Information Cyclone Reconstruction and Integration for Climate and
Economics (LICRICE) [35]. The data is the average (across years) maximum wind
speed for all 6,712 storms during 1950-2008. The observed cyclone data is pro-
vided by the International Best Track Archive for Climate Stewardship (IBTrACS)
8. The unit of measurement is meters per second (m/s) and the spatial resolution is
0.1� ⇥ 0.1� (11.1 km ⇥ 11.1km). The surface-level exposure provides an estimate of
the "storm experience" of individuals on the ground.

Flood Risk We use flood risk indicator data offered by First Street Foundation,
available through AWS Data Exchange. The flood risk score, which ranges from
1-10, encapsulates both the likelihood and the severity of flooding due to rainfall
(pluvial), riverine flooding (fluvial), and coastal surge flooding. The risk scores are
discretized based on the First Street Foundation Flood Model, which shows the
distribution of expectation of flooding in the current year and in 30 years. The data
are aggregated at different regional levels. For this study, we use the data that is
aggregated at the census tract level.

6We accessed these data via the R function get_elev_raster from the elevatr package. Code
and documentation can be found here: https://cran.r-project.org/web/packages/elevatr/
elevatr.pdf

7Water data is available at https://global-surface-water.appspot.com/download
8These data are available through the National Climate Data Center at https://www.ncei.

noaa.gov/products/international-best-track-archive

https://cran.r-project.org/web/packages/elevatr/elevatr.pdf
https://cran.r-project.org/web/packages/elevatr/elevatr.pdf
https://global-surface-water.appspot.com/download
https://www.ncei.noaa.gov/products/international-best-track-archive
https://www.ncei.noaa.gov/products/international-best-track-archive
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The model relies on the combination of multiple models and data sources; ... 9

ACS variables Housing attributes and neighborhood characteristics are represented
by 7 variables from the American Community Survey. 10 The survey is conducted
every year across the US, covering a broad range of topics about social, economic,
demographic, and housing characteristics of the US population. We study housing
attributes and neighborhood characteristics that are considered to act as indicators
of the quality of housing and the housing market.

We use the 5-year estimates, which represents the average characteristics over 5-
year period of time and are available at the block group level. The data contains a few
missing values, which are caused by geographic restrictions, unacceptable statistical
reliability, or the Census Bureau’s Disclosure Review Board requirements. Taking
complete cases preserves about 98% of the data. We calculate grid cell level values
by computing the weighted average value of the variable across the grid cell. The
ACS variables we use are listed and described in Table 3.2.

9Flood risk data was accessed by following the instruction https://
firststreet.org/data-access/getting-started-with-first-street-data/
how-to-get-the-aggregate-data-from-aws/

10We accessed ACS daa via the R function get_acs from the package tidycensus pack-
age. Code and documentation can be found here: https://cran.r-project.org/web/packages/
tidycensus/tidycensus.pdf

https://firststreet.org/data-access/getting-started-with-first-street-data/how-to-get-the-aggregate-data-from-aws/
https://firststreet.org/data-access/getting-started-with-first-street-data/how-to-get-the-aggregate-data-from-aws/
https://firststreet.org/data-access/getting-started-with-first-street-data/how-to-get-the-aggregate-data-from-aws/
https://cran.r-project.org/web/packages/tidycensus/tidycensus.pdf
https://cran.r-project.org/web/packages/tidycensus/tidycensus.pdf
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Name Code Description
Median house
value

B25077 For owner-occupied housing units.

Number of hous-
ing units

B25001 “A housing unit may be a house, an apartment, a mo-
bile home, a group of rooms or a single room that is oc-
cupied (or, if vacant, intended for occupancy) as separate
living quarters. Separate living quarters are those in which
the occupants live separately from any other individuals
in the building and which have direct access from outside
the building or through a common hall. Both occupied
and vacant housing units are included in the housing unit
inventory. Boats, recreational vehicles (RVs), vans, tents,
railroad cars, and the like are included only if they are oc-
cupied as someone’s current place of residence.”

Percent vacant B25002 “A housing unit is vacant if no one is living in it at the time
of the interview, unless its occupants are only temporarily
absent. In addition, a vacant unit may be one which is
entirely occupied by persons who have a usual residence
elsewhere”

Number of rooms B25017 “For each unit, rooms include living rooms, dining rooms,
kitchens, bedrooms, finished recreation rooms, enclosed
porches suitable for year-round use, and lodger’s rooms.
Excluded are strip or pullman kitchens, bathrooms, open
porches, balconies, halls or foyers, half-rooms, utility rooms,
unfinished attics or basements, or other unfinished space
used for storage.”

Building age B25035 Data reported is the median year structure built. Building
age is calculated as 2020 – median year structure built.

Income B07011 "Median income in the past 12 months (in 2020 inflation-
adjusted dollars)."

Population B01003 Total population

Table 3.2: Description of variables from the American Community Survey (ACS) used
in the analysis). Quoted descriptions of variables are from: https://www.socialexplorer.
com/data/ACS2020_5yr/metadata/?ds=ACS20_5yr and https://www.census.gov/housing/hvs/
definitions.pdf

https://www.socialexplorer.com/data/ACS2020_5yr/metadata/?ds=ACS20_5yr
https://www.socialexplorer.com/data/ACS2020_5yr/metadata/?ds=ACS20_5yr
https://www.census.gov/housing/hvs/definitions.pdf
https://www.census.gov/housing/hvs/definitions.pdf
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Grid definition

The grids are designed with a consistent resolution of 0.01° ⇥ 0.01° equal-angle,
equivalent to approximately 1.11 km ⇥ 1.11 km at the equator. The grids are po-
sitioned to provide comprehensive coverage across the entire continental US. As a
result, there are 8, 307, 981 individual grids, each uniquely positioned without any
spatial overlap between them. We use the entirety of these grids in our study instead
of the sampled grids, as our empirical objective is to obtain an estimate of nation-
wide capitalization. Each image grid is associated with distinct features and their
corresponding variable values.

Obtaining variable values for each image grid cell

To derive variable values for each grid cell, we perform a spatial overlay of our raw
variable data and the grid cells. Due to the variations in format and spatial resolution
of the variable data, it is necessary to calculate values based on each specific variable.
Here, we will outline the approach used for each variable.

The raw tree cover, elevation, fire potential index, PM2.5, surface water occur-
rence, and wind speed data are initially provided as rasters with the same or higher
spatial resolution compared to our grid cells. In these specific variables, we compute
the mean value by averaging all the pixels in the variable data that are located within
the grid cell boundaries. This process allows us to obtain the mean values across the
image grid cell.

The temperature, precipitation, dew point, sunshine, and flood risk data are
available at a spatial resolution smaller than our image grid cells. We extract the
value that corresponds to each image grid cell, resulting in variables that represent
the raw value present across the image grid cell.

The ACS variables are provided at the block-group level, which can vary in total
area compared to our image grid cells across different regions in the US. In certain
areas, block-groups might be larger in total area than our image grid cells, while in
other regions, they may be smaller. To treat both cases consistently, we employ a
weighted averaging approach for these variables. The weights used in the calculation
are determined by the normalized area of intersection between the image grid cell and
the polygons representing the variable data. This method ensures that the variable
values are adjusted to account for the varying sizes. The resulting variables indicate
the area-weighted average values across the grid cell.



CHAPTER 3. HISTORY OF ECONOMIC VALUATION OF THE
ENVIRONMENT 35

Satellite imagery

We use daytime image data obtained from Planet’s Surface Reflectance Basemaps
product from 2019 [59]. This data offers a range of monitoring frequencies and spatial
resolutions. For our study, we selected data from quarter 3 with a spatial resolution
of 4.77m ⇥ 4.77m at the equator. This particular time point was chosen due to its
minimal ice coverage in the northern hemisphere, making it suitable for our analysis
which focuses on the continental US.

The image data is processed by Planet to achieve consistency in radiance values
across satellite sensors and to minimize the influence of clouds, haze, atmospheric
effects, and other sources of image variability [60]. These processing choices enhance
images to effectively capture diverse physical characteristics of the land, including
forestry, vegetation, and land cover.

Featurization of satellite imagery

To create statistical summarization of imagery, we use the image featurization tech-
nique called Multi-task Observation using Satellite Imagery and Kitchen Sinks (MO-
SAIKS), as proposed by Rolf et al [73]. This method involves a one-time unsupervised
image featurization process using random convolutional features [65]. These features
can then be used for predicting ground conditions through linear regression, where the
variable of interest is regressed against the features. The features for the Planet im-
ages used in our analysis can be accessed via API at https://www.mosaiks.org/access
[12].

In the MOSAIKS framework, each satellite image grid cell is associated with a
set of features, which measure the similarity between the image and smaller patches
of imagery. The process of creating these features involves several steps.

First, a large sample of N satellite images is gathered. Additionally, a random
sample of K patches of imagery is selected. These patches are smaller portions of
the satellite images.

Next, each of these K patches is convolved over each satellite image, sliding the
patch over the image and calculating the similarity at each position. The result is a
set of pixel matrices, one for each patch, for each satellite image. These pixel matrices
are then passed through a nonlinear activation function to obtain K activation maps.
The activation function enhances the features by introducing nonlinearity and flexibly
capturing relationships between the patches and the image. Each activation map
signifies regions of similarity between the corresponding patch and the image.

Finally, the activation maps are averaged over the pixels, resulting in a K-
dimensional feature vector for each image. Each element of the feature vector repre-

https://www.mosaiks.org/access
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sents the average similarity between the corresponding patch and the image.

Selection of patch sizes

In our study, we represent each satellite image using 4000 features, which were gen-
erated by Sherman et al [77]. These features are generated using patches of varying
sizes. Specifically, 4000 patches are being used, half of which have a size of 4⇥ 4⇥ 3
pixels, while the other half have a size of 6 ⇥ 6 ⇥ 3 pixels. The values in the patch
size respectively indicate the width, height, and the number of spectral bands, which
correspond to the red, green, and blue channels of the image. Smaller patches cap-
ture local-level image structures, whereas larger patches capture broader larger-scale
structures. These specific patch sizes were selected from a range of patch sizes avail-
able, which ranged from 3⇥ 3⇥ 3 to 10⇥ 10⇥ 3. The chosen combination of patch
sizes showed the highest performance in predicting socioeconomic and environmental
variables at a global level. These variables include night light intensity, road length,
and forest cover.

The patches themselves are randomly sampled from the empirical distribution of
patches derived from our training dataset of satellite images. By drawing patches
from the empirical distribution, as opposed to generating them randomly or draw-
ing them from a fixed distribution, we are able to sample from the distribution of
sub-images encountered within the dataset. This approach contributes to the high
descriptive capabilities of MOSAIKS features.

Evaluation of MOSAIKS features

Performance of MOSAIKS has been examined across a range of socioeconomic and
environmental variables, including forest cover, elevation, population density, night-
time lights, income, road length, and house price in the continental US. The results
indicate that the MOSAIKS demonstrates competitive predictive performance while
also offering faster computational speed compared to existing deep-learning methods
[73].

Nevertheless, there exists important limitations regarding the ability of images
to capture ground conditions comprehensively. When image features were used to
predict various ground conditions, the model consistently exhibited reduced perfor-
mance in predicting extreme values [73] [77]. There was a tendency to overestimate
lower values and underestimate higher values. This behavior may be attributed to
both the implementation of ridge regression, which favors predictions converging to-
wards the mean due to the l2 penalty, and the limited availability of observations
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containing extreme values. This limitation may also stem from the inherent con-
straints associated with the information that can be observed from space.

Additionally, satellite images used in the study are cross-sectional and do not
account for temporal changes. Therefore, it is likely that the images are more suit-
able for capturing confounding variables that are known to have relatively low time
variability, while they are less appropriate for variables that exhibit rapid temporal
variability.
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Figure 3.1: Sample satellite images. Each image is linked to distinct variable
values. For instance, within the US sample, 12 images are chosen, with three images
representing each of the four variables: house value, population, tree cover, and
temperature. These images are ordered to display a spectrum of values, ranging
from low, middle, to high for each variable.
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Exploratory data analysis and data processing

While the majority of environmental and climate variables are spatially complete,
approximately 2% of the ACS variables contain missing values. Due to the chal-
lenging nature of imputing these missing values, we have chosen to exclude these
observations from the analysis. Additionally, to derive a general trend of capital-
ization, we have removed extreme values. This includes observations with buildings
constructed before 1800. After applying these exclusions, the resulting dataset com-
prises x observations. The spatial distribution of each of the variables is shown in
Figure 3.2.

To deal with strong skewness in certain variables (including house value, house
units, vacancy, population, tree cover, and elevation, as shown in Figure 3.3), a log
transformation was applied (Figure 3.4). Before the transformation, a value of 1 was
added to each observation to handle cases where the original values were 0. The
log transformation was selected to enable the interpretation of model coefficients as
percent changes in housing value.
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Figure 3.2: 0.01° ⇥ 0.01° resolution values of variables across the continental
US. There are total of 8,307,981 image grids that cover the continental US. The maps
show values on randomly sampled one million grids for display.
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Figure 3.3: Distribution of variables in raw values. Histograms show the dis-
tribution of variables in their raw values across a sample of image grid cells. Among
a total of 8,307,981 observations, we exclude missing and erroneous data, as well as
the lower and upper 1% extremes, resulting in 7,614,441 observations. 1 million grid
cells were randomly sampled for visualization purposes.
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Figure 3.4: Distribution of variables in transformed values. Histograms show
the distribution of log transformed variables. These variables are transformed due to
the presence of skewness in the distribution of their raw values. For percent vacancy,
population, tree cover, and elevation, log transformation was taken after adding 1,
due to the presence of observations with a value of 0.



CHAPTER 3. HISTORY OF ECONOMIC VALUATION OF THE
ENVIRONMENT 43

Figure 3.5: Correlation of variables. The matrix shows Pearson’s correlation
coefficient between all pairs of variables. The correlation coefficients are calculated
using a random sample of 1 million grid cells.

Relationship between image features and variables

To examine the relationship between image features and the variables under study,
we compute the proportion of variation in each variable that can be accounted for
by image features alone. This is done by conducting ridge regression of a variable X
against a vector of image features R, visualizing the observed and predicted values
of X, and computing R2 as a measure of the explained variability (Figure 3.6).
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Figure 3.6: Scatter plots of observed values (horizontal axis) and predicted
values (vertical axis) for each of the 18 variables under study. The predicted
values represent the variable values estimated from image features alone. R2 indicates
the proportion of variation in the variable explained by image features. Randomly
sampled 400000 points are shown for visualization.
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3.5 Conclusion

While the reasons for the increased exposure to climate risks are multifaceted and
responsibility is shared across multiple parties, one of the few domains where climate
risks and broader environmental qualities are explicitly capitalized is housing mar-
kets. An aspect to consider is that the housing finance system has the potential to
factor in the risks associated with specific regions and can contribute to discouraging
risky behaviors, such as the rapid development of properties in areas with high cli-
mate risks. With the increasing significance of risk management, it is essential to gain
insights into the current status of how these environmental and climate conditions
are integrated into property values at a national scale.

Previous studies have used the hedonic property model as an approach in esti-
mating the economic value of the environment. In the US, results obtained from
hedonic analysis have provided a basis for establishing and evaluating progress in
various environmental standards. The current body of research on capitalization
has predominantly focused on specific regions or environmental quality, resulting
in mixed outcomes. Additionally, a methodological challenge exists in accounting
for confounding variables, an important aspect for obtaining accurate estimates of
capitalization.

To study how different environmental qualities are capitalized in housing prices,
housing variables, environmental variables, and satellite image features are aggre-
gated for each 1km image grid across the continental US. The data cleaning, pre-
processing steps and explanatory analyses are catalogued. These analyses outline
the associations between individual housing attributes and environmental variables,
as well as explore the extent to which satellite images explain variations in each of
the variables.
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Chapter 4

Estimating Economic Value of

Environment

Chapter 2 introduced an approach to integrate satellite image data into a regression
framework, while Chapter 3 discussed motivation and history of research in estimat-
ing the economic valuation of the environment. This included an endeavor to obtain
nationwide estimates for various environmental qualities, which motivated the col-
lection and aggregation of housing, environmental, and satellite image data for the
continental US. The current chapter applies the method introduced in Chapter 2 to
study the empirical question posed in Chapter 3. The study estimates the extent
to which environmental qualities are capitalized in housing markets, using a hedonic
model that includes controls for satellite images.

Section 4.1 outlines the model used to estimate capitalization, and Section 4.2
provides visualizations and interpretations of the estimated capitalization. Section
4.4 discusses the effect of adding image features on the results and provides guidance
for future research.

4.1 Specification

Model Specification

We begin by introducing a simple model in which we assume that environmental
effects are homogeneous across the US housing market and that variables affect
housing value linearly. The model is restrictive, but it provides a baseline for more
flexible models.
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log(Yi) = �0 + Ti�T + Zi�Z + "i, (4.1)

where Yi is the median housing price in location i (1km by 1km region), Ti is the
environmental variable of interest, Zi = (Zi1, ..., Zip) is the vector of p observed
covariates, which include the set of controls, such as housing attributes and environ-
mental qualities, which are associated with either the outcome or the environmental
variable of interest.

Equation (4.1) consists of several challenges, and the following outlines corre-
sponding approaches to alleviate these problems.

• There is a need to select a functional form f(·) for how the variables enter into
Ti and Zi. In particular, variables such as temperature and precipitation have
been studied to have nonlinear associations with housing prices. To allow for
flexible functions, natural splines are used to model f(·) per

f(x) =
mX

j=1

�jgj(x), (4.2)

where gj are the set of basis functions that span the space of kth order splines
with knots at s1, ..., sm and �j are the associated spline coefficients. Natural
splines are used as they impose the piecewise polynomial function to have
a lower degrees to the leftmost and rightmost knots, reducing the issue of
estimating functions with high variance at the boundaries of the domain. The
current study uses 3 degrees of freedom.

• The equation (4.1) assumes homogeneity of the relationship between housing
prices and covariates. However, a more realistic estimation approach involves
accounting for spatial heterogeneity; for instance, the extent to which temper-
ature is capitalized in housing prices may vary by region. One approach to
account for such heterogeneity involves including state fixed effects.

• Unbiased estimation of �T requires that "i is uncorrelated with Ti and Zi, which
is violated if unmeasured confounders exist. Despite the inclusion of covariates
and spatial fixed effects, the presence of unmeasured confounders may still be
likely. To account for variations observable from space, such as the physical
characteristics of the land, satellite image features R are incorporated as a
potential proxy for confounders. As the orthogonality assumption cannot be
tested, sensitivity analysis is conducted to study the variability of estimated
results across alternative specifications.
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• The aforementioned modifications result in an increase in the feature set, in-
cluding natural splines with degrees of freedom set to 3 for 17 variables, 47
spatial fixed effects, and 100 image features. Spatial fixed effects and image
features serve as controls and the main interest is in interpreting coefficient es-
timates pertaining to variables under study. This invites the use deferentially-
weighted ridge regression, which penalizes coefficients with different strength
by putting weights to the loss function.
When fitting ridge regression using glmnet in R, the default setting assigns
equal weights of 1 to all coefficients. In this study, penalty factors of 0 are
assigned to coefficients related to the 17 variables under study, ensuring that
they are included in the model. On the other hand, penalty factors of 1 are
assigned to coefficients associated with spatial fixed effects and image features,
so that their coefficients are subject to shrinkage. These penalty factors are
scaled to ensure their sum equals the number of regressors.

The specified model is

log(Yi) = f(Ti) + f(Zi) + Si�S +Ri�R + "i

=
mX

j=1

�t,j gj(t) +
pX

k=1

mX

j=1

�zk,j gj(zk) + Si �S +Ri�R + "i, (4.3)

where Yi is the housing price, Ti is the environmental variable of interest, Zi is the
vector of covariates, mathbfRi is the vector of image features, and Si is state fixed
effects.

Capitalization

Coefficient estimates from the hedonic model specified in Equation (4.3) represent
the marginal values of environmental qualities capitalized by market prices for homes.
The capitalization of the environmental variable of interest can be computed as the
product of the variable and its associated coefficient estimate:

log(Ŷi) = Ti�̂T|{z}
capitalization of T

+Zi �̂Z + Si �̂S +Ri�̂R

= �̂0 +
mX

j=1

�̂t,j gj(t)

| {z }
capitalization of T

+
pX

k=1

mX

j=1

�̂zk,j gj(zk) + Si �̂S +Ri�̂R
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Since the outcome is log transformed, T �̂T is converted so that it can be inter-
preted as capitalization in its original unit, USD. A natural way to do this is by
exponentiating the value:

Ŷi = eTi�̂T|{z}
capitalization of T

eZi �̂Z · · ·

However, it is more interpretable to view housing values as a sum of implicit prices
for each of its characteristics rather than as a product. To achieve this, instead of
exponentiating, capitalization is multiplied by the median housing price. This ap-
proach allows the interpretation of capitalization in terms of USD while maintaining
the model additive:

Ỹ log(Ŷi) = Ỹ Ti�̂T| {z }
capitalization of T

+Ỹ Zi �̂Z + · · ·

For enhanced interpretability, relative capitalization is calculated, representing
the change in capitalization of T relative to its reference Tr. The reference Tr is set
as the median value of the variable T .

Relative capitalization of T in location i = Ỹ Ti�̂T � Ỹ Tr�̂T

The relative capitalization reflects a thought experiment comparing two regions
that are identical in all aspects, including observed covariates and satellite images,
except for one characteristic T . For example, one region may have national median
temperature of 11� and another with 21�. Relative capitalization of temperature
indicates the economic value of the added 10�.

4.2 Estimated capitalization

Response functions

The response function in Figure 4.1 shows the percentage change in housing price
relative to the reference, which is defined as the housing price of a location expe-
riencing the median value of variables (Table 4.1). For example, in comparison to
the housing price in a region with a national median temperature of 11�, there is a
trend of increased housing prices, holding all other variables constant. On the other
hand, houses in regions with lower temperatures generally tend to be priced lower.
In the case of precipitation, regions facing deficits are estimated to have lower prices
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compared to regions with an average of 60 mm of annual precipitation, typically
observed in dry areas.

Other variables that indicate increased capitalization with higher values include
dew point, PM 2.5, elevation, flood risk score, and surface water. The overall trend,
where houses situated in areas with higher flood risk scores are estimated to be priced
higher, while houses with minimal flood risk are priced lower, aligns with nationwide
studies reported by [33] and [28]. These studies report the overvaluation of property
values located in flood zones. Houses in areas with increased PM 2.5 levels, indicative
of higher air pollution, are valued more highly.

Variables showing increased capitalization with lower values include sunshine and
wind speed. Houses located in areas with high wind speed, often associated with
storms, are priced much lower compared to areas with lower wind speed. As for
fire potential index, greater potential for fire corresponds to lower-priced houses, but
lower fire potential does not correspond to higher pricing. For tree cover, there seems
to be an optimal amount of around 20% coverage, and houses located in areas with
no or less trees are priced lower.

Environmental
variable Median value

Temperature 10.6�C
Precipitation 61.2 mm
Dew point 1.66�C
Sunshine 185 Watts/m2

Fire potential index 31.2
PM 2.5 2.73 µg/m3

Tree cover 3.15 %
Elevation 511 m
Flood risk score 1.86
Surface water 0 %
Wind speed 0.08 m/s

Table 4.1: Median value of each environmental variable. The median value
is used as a reference for computing the relative value of capitalization.
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Capitalization maps

While response functions show which variable values contribute to higher housing
prices, capitalization maps in Figure 4.2 show the locations that experience relatively
higher prices. For example, houses in warmer regions in the south and west coast
tend to be priced higher relative to regions with a median temperature value of
around 11�C. In general, increased tree cover appears to be positively reflected in
housing prices on the right side of the US, as well as along the west coast.
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Figure 4.1: Response functions. The percentage change in housing price relative
to its reference is plotted for each variable. The reference is defined as the housing
price of a location experiencing the median value of a specific variable. The rug plot
at the bottom of each figure shows the distribution of variable values, with 10,000
data points selected for visualization. As the data used in the study includes all 1km
⇥ 1km grids covering the continental US (i.e., it represents the population and not
a sample), standard errors of the estimates are not plotted.
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Figure 4.2: The distribution of value capitalized by 11 environmental qual-
ities in the United States. The maps show the percent change in the relative
capitalization value for each environmental quality. Areas with reference values
are displayed in white, those with positive changes in red, and those with nega-
tive changes in blue. The maps show randomly sampled 100,000 units for display.
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4.3 Explained variation in housing prices

Explained variation in housing prices

To quantify the extent to which environmental qualities as a collective factor accounts
for housing prices, the study also examines the proportion of variation in housing
prices that is explained by these qualities. This involves estimating housing prices
using coefficients obtained from a regression model that incorporates all variables and
image features. The 17 variables are categorized into three groups, which includes
housing attributes, environmental qualities, and neighborhood characteristics (Table
4.2), and the estimation of housing price is obtained from each group.

Group Variable
Housing attributes House units

Vacant houses
Rooms
Building age

Neighborhood Income
Population

Environmental Temperature
Precipitation
Dew point
Sunshine
Fire potential index
PM 2.5
Tree cover
Elevation
Flood risk score
Surface water
Wind speed

Table 4.2: Grouping of housing, neighborhood, and environmental vari-
ables.

To maintain additivity within the model, the housing price is kept in its trans-
formed state:
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log(Ŷi) = Ti�̂T +X1�̂X1 + · · ·+X10�̂X10| {z }
Xenvironment�̂environment

+X11�̂X11 + · · ·+X15�̂X15| {z }
Xhouse�̂house

+ X16�̂X16 +X17�̂X17| {z }
Xneighborhood�̂neighborhood

+Si �̂S +Ri�̂R

The model, incorporating variables related to housing attributes, neighborhood
characteristics, environmental qualities, state fixed effects, and satellite images, ex-
plains 63% of the variation in housing prices. Housing attributes account for 14%
of the variation, neighborhood characteristics contribute to 18%, and environmental
conditions contribute to 12% (Figure 4.3). The computation of explained variation
in this manner offers a view into the relative contributions of each of the three groups
of variables that are distinctly associated with housing prices.

4.4 Effects of controlling for images

In examining the impact of controlling for image information in this regression study,
two aspects are considered. The first aspect involves comparing the regression results
obtained with and without the inclusion of image information, while the second
aspect explores how this effect varies depending on the amount of image information
incorporated. For discussions of how image information reduces or amplifies bias from
a theoretical standpoint, please refer to Chapter 2. The current section empirically
studies the extent to which image information explains variation in housing prices.

Images and explained variation

To examine the extent to which including image information explains additional
variation, R-squared values are compared between nested models: one without image
features and one with image features R (Table 4.3). When environmental variables
are included in the regression, the addition of image features does not greatly explain
additional variation in housing prices. This outcome is expected due to the high
correlation between some of the remotely measured environmental variables, such as
tree cover and elevation, and image features (Figure 3.6). On the other hand, when
only housing attributes are included in the model, the inclusion of image features
makes a moderate contribution by explaining an additional 15% of the variation. A
similar observation can be made for the model that solely incorporates neighborhood
variables, as well as the model that incorporates both housing and neighborhood
variables.
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Figure 4.3: Predicted housing price vs observed housing price. Each figure
shows a scatter plot of predicted housing prices based on different sets of variables.

Response functions in relation to the number of image

features

In this analysis, we examine the sensitivity of the response functions to the number
of features used (Figure 4.4). As the features in MOSAIKS are generated randomly,
there is no theoretical basis for selecting a specific number of features. We fit a model
with the specification outlined as Model 4.3, but vary the number of features among
the values {0, 10, 100, 1000, 4000}. For each set of features and task, we perform
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Model R2 Change in R2

Y ⇠ R 0.16
Y ⇠ Xenvironment 0.27
Y ⇠ Xenvironment +R 0.3 +0.03
Y ⇠ Xhouse 0.3
Y ⇠ Xhouse +R 0.45 +0.15
Y ⇠ Xneighborhood 0.23
Y ⇠ Xneighborhood +R 0.4 +0.17
Y ⇠ Xhouse +Xneighborhood 0.4
Y ⇠ Xhouse +Xneighborhood +R 0.52 +0.12

Table 4.3: Proportion of variance explained by different sets of variables.
Xenvironment denotes a set of eleven environmental variables, Xhouse includes five hous-
ing attributes, Xneighborhood includes two neighborhood socioeconomic variables, R
indicates a set of 100 image features. Change in R2 is calculated as the difference
between the R2 of a smaller model which excludes R and a larger model that includes
R.

3-fold cross-validation to determine the optimal hyperparameter �.
There is generally a difference between the results obtained when image infor-

mation is entirely excluded compared to when it is included to some extent. The
greatest variation across feature sizes tends to occur in situations where observations
are limited, such as at the lower and upper extremes.

In most of the variables, the response functions for features of sizes 10, 100, 1000,
and 4000 show significant overlap, except for tree cover and surface water. This
implies that the amount of image information does not appear to have a discernible
effect on the interpretation of these variables, particularly in data domains where ob-
servations are abundant. This finding aligns with the sensitivity analysis conducted
in Rolf et al [73], which compares the predictive performance of seven tasks using R2

values across different numbers of features ranging from 100 to 8192. The analysis
indicates that with features of size 100 captures over 80% portion of the variation
explained by the full 8192 features for all seven variables under study.
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Figure 4.4: Response functions across varying number of image features.
For each variable, five response functions are overlaid, each corresponding to a dif-
ferent number of features: 0, 10, 100, 1000, and 4000, while keeping the number of
observations fixed at 400,000.
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Limitations and paths forward

One of the limitations of our study is the presence of measurement error, specifically
regarding the use of imagery. Since imagery is time-specific, incorporating imagery
from different time points may result in the capture of different information. Addi-
tional research is needed to investigate the variability of imagery across various time
points and assess the sensitivity of our findings to the use of imagery from different
temporal contexts.

Secondly, the capitalization of risk is one of several approaches to communicate
the risks involved to home buyers. The discussion surrounding risk capitalization
should be contextualized within the intricate dynamics of housing finance systems,
which can encourage development in unsuitable areas. In many regions across the
country, low-income individuals live in areas where housing is relatively affordable.
Merely reducing prices in risk-prone areas can inadvertently shift the burden of risk
onto low-income individuals. What is needed is a coordinated effort to achieve a long-
term reduction in risk that does not transfer the risk from one group to another.

4.5 Conclusion

The current chapter provides estimates of the extent to which various environmental
attributes contribute to the valuation of housing prices in the continental US. Nation-
wide estimates offer a comprehensive perspective on the current state of how climate
and environmental qualities are reflected in residential property values. Housing
prices are studied, as they represent one of the few contexts where environmental
quality is capitalized and also play a role in shaping the incentive structure concern-
ing the scale and geographical placement of residential development.

The estimation uses a hedonic model, where housing prices are regressed on envi-
ronmental qualities, additional covariates, and satellite image features. The inclusion
of satellite image information in the analysis is considered a potential method for
controlling latent confounding variables. One of the finding suggests that certain risk
factor variables, including flood risk score and PM 2.5, are associated with higher
housing prices. Contrary to the expectation that risks would lead to property deval-
uation, these results suggest an overvaluation of housing prices.
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Part III

Characterizing Spatio-Temporal

Trends of Extremes
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Chapter 5

Characterizing spatio-temporal

trends of extreme precipitation

5.1 Introduction

Characterizing variability and changes in precipitation, including extreme precipi-
tation, is important for understanding and monitoring natural hazards. Numerous
studies report increased variability in extreme precipitation events in the US [29] [89]
[21] [82].

A widely used approach for characterizing variability and changes in extreme
events involves pre-specifying an exceedance threshold and defining an anomalous
event by calculating the frequency of threshold exceedance and aggregating across
space [43] [38] [21] [82]. As an example, the Bukovsky region is one subregionaliza-
tion that divides the US into 29 groupings with similar temperature and precipitation
characteristics [10]. However, determining the appropriate threshold value, time win-
dow, and spatial boundary for defining anomalies is not a trivial task. One challenge
arises from the fact that defining what is considered extreme and catastrophic de-
pends on the specific area under consideration and the timeframe involved. What
may be deemed extreme in one region may not hold the same characterization in
another location.

In the study of extreme precipitation events, it is also common to use gridded
data products, which uses smoothing techniques to produce spatially complete data.
However, the process of smoothing tends to reduce the magnitude of extreme val-
ues. There is a thread of research reporting issues with gridded data products in
accurately characterizing climatological extremes [26] [23] [72]. In contrast, in situ
measurements from weather stations offer important native-scale data for extremes.
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Therefore, using in situ measurements and using a method that allows for the
characterization of precipitation with minimal need for prior specification of anomaly
criteria, such as regional boundaries or fixed temporal windows, would be beneficial.
In this study, functional principal component analysis (FPCA) is used to characterize
both seasonal mean and extreme precipitation using data from the Global Historical
Climatology Network Daily over the contiguous United States. FPCA provides a
flexible method for identifying modes of temporal variability and spatial patterns of
precipitation variability across various scales. Additionally, the method character-
izes nonlinear trends in the distribution of precipitation and help detect anomalous
spatio-temporal events.

5.2 Precipitation data

We use in-situ measurements of daily precipitation (mm) from 1880 to 2017, collected
by 21,232 stations across continental United States. Data is collected by Global
Historical Climatology Network (GHCN) [51]. For each year, seasonal mean and
seasonal extreme precipitation are computed. Seasons are defined as Spring (March,
April, May), Summer (June, July, August), Fall (September, October, November),
and Winter (December, January, February). Seasonal mean is defined as the total
precipitation in a given season, which is computed as the product of seasonal mean
and the number of days in the season. Seasonal extreme is defined as the maximum
precipitation in a given season.

5.3 Methods

Frequency decomposition

Spline smoothing is a smoothing technique that estimates the underlying function of
a data by performing a regularized regression over the natural spline basis, placing
knots at all points x1, ..., xn, where n is the number of knots which we pre-specify.
As a process, it 1) breaks up the domain by n knots, 2) places a special type of
piecewise polynomial function called natural spline, and 3) estimates a coefficient of
each polynomial function such that it minimizes the sum of the squared differences
and a penalty.

A kth order spline is a piecewise polynomial function of degree k that is contin-
uous and has continuous derivatives of orders 1, ..., k� 1, at its knot points. Natural
splines are piecewise polynomial functions that have a lower degree on the leftmost
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and rightmost intervals. This is to remedy the problem that is often confronted in
regression smoothing, where the boundaries of the domain get estimates with high
variance (which gets worse as the order k gets larger).

For a cubic smoothing splines where k = 3, the coefficients � are chosen to
minimize the following objective function

||y �G�||22 + ��T⌦�,

where G 2 Rn⇥n is the basis matrix defined as

Gij = gj(xi), i, j = 1, ..., n,

and ⌦ 2 Rn⇥n is the penalty matrix defined as

⌦ij =

Z
g00i (t)g

00
j (t)dt, i, j = 1, ..., n.

The smoothing spline estimate at x is defined as

r̂(x) =
nX

j=1

�̂jgj(x).

Smoothing splines have a regularization term that determines how much to pe-
nalize the second differential of the basis function gj and imparts more shrinkage on
the coefficients �̂j that correspond to wigglier functions gj. The parameter � � 0 is
the smoothing parameter. If � ! 0, there is no shrinkage or smoothing. If � ! 1,
there is more shrinkage and the estimate converges to a linear least squares estimate.

Functional principal component analysis

A goal of functional principal component analysis (FPCA) is to find the dominant
modes of variation in the data (e.g. sinusoidal nature). We also want to know how
many of these modes of variations are required to adequately approximate the original
data. PCA for functional data works in a similar way as PCA for multivariate data.
[66]

1. Find principal component weight function ⇠1(s) for which the principal compo-
nents scores

fi1 =

Z
⇠1(s)xi(s)ds

maximize
P

i f
2
i1 subject to

Z
⇠21(s)ds = ||⇠1||2 = 1.
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Figure 5.1: Time series of selected station in Kansas for seasonal mean
(left) and seasonal extreme (right) for summer. The upper plot displays
standardized seasonal precipitation measurements (mm). In the middle plot, a low
pass filter is applied through spline smoothing to the standardized measurements,
using a smoothing parameter of 0.9 to capture a long-term trend. Subsequently, a
second smoothing spline is applied with a smoothing parameter of 0.5 to the residuals
to obtain the medium pass filter. The residuals represent the difference between the
standardized measurement and the low pass filter. The bottom plot shows the high
pass filter, obtained by applying spline smoothing to the residuals, where the residual
is the difference between the medium pass filter and the low pass filter. A smoothing
parameter of 0.5 is used to capture shorter-term trends.

2. Compute the weight function ⇠2(s) and principal component scores fi2 that
maximize

P
i f

2
im subject to the normalizing constraint ||⇠2||2 = 1 and the

orthogonal constraint: Z
⇠2(s)⇠1(s)ds = 0.

3. and so on.

In essence, we wish to find principal components, which are linear combination
of functions that maximally explain variation in data. Each component should be



CHAPTER 5. CHARACTERIZING SPATIO-TEMPORAL TRENDS OF
EXTREME PRECIPITATION 65

orthogonal to each other, meaning that they should explain variation that is not
explained by other components.

To obtain simple and interpretable components, we rotate components. Let B
be a K ⇥ n matrix consisting of the first K principal component functions ⇠1, ..., ⇠K .
At row m, B has the values ⇠m(t1), ..., ⇠m(tn). We can define a set of orthonormal
components A as

A = TB,

where T is an orthonormal matrix of order K (i.e. T 0T = I). T is chosen such that it
maximizes the variation in the values a2mj, which occurs when each component have
a few high loadings and the rest being zero or close to zero. Note that, because T
is a rotation matrix, it redistributes the variance explained each of the components,
and thus the overall variance explained by the K components remain the same.

The decisions made in this study include the following:

• Division of time into four seasons

• Decomposition of functional data into three different frequencies

• Determination of the number of principal components

These choices result in a total of 240 principal component (PC) outcomes: 4
seasons ⇥ 10 principal components ⇥ 2 decompositions ⇥ 3 frequencies. While
some pre-specifications were made regarding the temporal window and the number
of frequencies, no spatial boundary was specified.

5.4 Case study of Dust Bowl

A case study is conducted as an initial procedure to examine the capability of FPCA
in detecting anomalous events. Specifically, the case study focuses on the Dust
Bowl, a historical case of severe drought in the central US during the 1930s [48].
The period was marked by a decade of rainfall deficits and increased temperatures
affecting nearly two-thirds of the country, particularly the central and southern Great
Plains [74] [76]. The Dust Bowl is characterized by its atypical spatial pattern [34]
[17], prolonged duration, and intensity, with rainfall deficit exceeding 0.1 mm/day
for much of the central US, with peak deficits over 0.3 mm/day in Kansas [75].
Accompanying the precipitation deficits were major wind erosion and dust storms
[48].
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The FPCA results are shown for high-frequency time series of seasonal mean and
extreme values in both summer and winter (Figure 5.2). Among the 10 principal
components (PC), the outcomes for specific components capturing anomalies in the
1930s are selected. The PC function plot represents the overall mean time series
and two curves derived by adding and subtracting a multiple of each PC curve.
Representing components as perturbations of the mean makes it possible to identify
the time windows in which a component explains high variability. The perturbations
of the mean is constructed by the mean function plus/minus a constant factor times
each eigenfunction separately:

µ̂± 0.2C�̂j,

where µ̂ is the overall mean precipitation, C is a constant, and �̂j is the time series
of PC’s coefficients. The constant C is defined as the root-mean-square difference
between µ̂ and its overall time average µ̄,

C2 =
1

T
kµ̂� µ̄k2,

where
µ̄ =

1

T

Z
µ̂(t) dt.

For example, considering the seasonal mean during summer, the first PC function
explains about 10% of the variability in the data, with a relatively large variability
in the 1930s, as indicated by the high amplitude in the perturbed functions.

The map shows the spatial distribution of individual weather stations along with
their respective PC scores. The PC score indicates the strength of association be-
tween the time series observed at a particular station and the component under
consideration. Weather stations in the central Great Plains exhibit large negative
PC scores, which aligns with the region that experienced a severe precipitation deficit
during the Dust Bowl. The combined use of PC functions and maps provides infor-
mation about the temporal window and spatial distribution which experienced a
anomalous case of precipitation deficit.
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Figure 5.2: PC functions and spatial distributions of PC scores for seasonal
mean and extreme precipitation. Time series plots: seasonal mean or extreme
precipitation (mm) vs. year. For each scenario, one principal component result
is selected for display. The plot features the mean precipitation (in black) and
perturbations of the mean, obtained by adding and subtracting a suitable multiple
of the eigenfunction (in red and blue). Maps: principal component scores of each
weather station. (A) displays the PC functions and maps for the summer, while (B)
displays the same for winter.
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5.5 Conclusion

The study used functional principal component analysis to characterize extreme pre-
cipitation in the US over the last century. To account for the fact that definitions
of extreme events differ across regions and time, the method involves a relatively
small number of decisions. This includes determining how to divide seasons and
the general frequency of precipitation measurements: short-term, medium-term, and
long-term trends. Importantly, the analysis does not require specifications for di-
viding the contiguous US or determining the temporal window. The PC function,
along with maps of PC scores, can be used to identify the temporal window and the
geographic location of anomalous events.

While the study conducts a case study as an initial step to assess the effectiveness
of the FPCA method in detecting extremes, a more comprehensive validation anal-
ysis is required. Specifically, summarizing instances where FPCA results align with
observed anomalous events in raw data, and cases where FPCA incorrectly indicates
anomalies not present in raw data, would be beneficial. Additionally, there is a need
to evaluate the variability in results across different parameter specifications.

Effectively summarizing spatio-temporal events is challenging, particularly when
the area and time under consideration are extensive. Extreme events introduce an
additional layer of complexity as the definitions of extremes are context-dependent,
varying with time and space, and requiring in situ measurements. The current study
introduces a potential approach for conducting an exploratory analysis of spatio-
temporal data.
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Appendix A

Appendix

Term Estimate

House Units 1 8.33
House Units 2 26.29
House Units 3 6.35
Population 1 -1.96
Population 2 -5.56
Population 3 -1.46
Building Age 1 -0.33
Building Age 2 0.48
Building Age 3 -0.46
Vacant Houses 1 -0.082
Vacant Houses 2 0.40
Vacant Houses 3 0.13
Rooms 1 0.85
Rooms 2 1.37
Rooms 3 0.13
Income 1 0.27
Income 2 -0.51
Income 3 0.46
Temperature 1 0.12
Temperature 2 0.11
Temperature 3 0.38
Precipitation 1 0.09
Precipitation 2 0.38
Precipitation 3 0.11
Dew Point 1 0.0009
Dew Point 2 -0.04
Dew Point 3 0.16
Sunshine 1 -0.16
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Sunshine 2 -0.16
Sunshine 3 -0.35
Fire Potential Index 1 0.01
Fire Potential Index 2 -0.03
Fire Potential Index 3 -0.15
PM 2.5 1 0.09
PM 2.5 2 0.25
PM 2.5 3 0.12
Tree Cover 1 0.04
Tree Cover 2 0.06
Tree Cover 3 0.01
Elevation 1 0.09
Elevation 2 -0.18
Elevation 3 0.19
Wind Speed 1 -0.59
Wind Speed 2 -0.04
Wind Speed 3 -0.10
Surface Water Occurrence 1 0.07
Surface Water Occurrence 2 -0.01
Surface Water Occurrence 3 0.05
Flood Risk Score 1 0.16
Flood Risk Score 2 0.30
Flood Risk Score 3 -0.02

Table A.1: Spline coefficient estimates were obtained for housing
and environmental variables. Natural splines with degrees of free-
dom set to 3 were used to model each variable.
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