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Abstract
A majority of breast cancers (BC) are age-related and we seek to determine what cellular and molecular changes occur 
in breast tissue with age that make women more susceptible to cancer initiation. Immune-epithelial cell interactions are 
important during mammary gland development and the immune system plays an important role in BC progression. The 
composition of human immune cell populations is known to change in peripheral blood with age and in breast tissue during 
BC progression. Less is known about changes in immune populations in normal breast tissue and how their interactions with 
mammary epithelia change with age. We quantified densities of T cells, B cells, and macrophage subsets in pathologically 
normal breast tissue from 122 different women who ranged in age from 24 to 74 years old. Donor-matched peripheral blood 
from a subset of 20 donors was analyzed by flow cytometry. Tissue immune cell densities and localizations relative to the 
epithelium were quantified in situ with machine learning-based image analyses of multiplex immunohistochemistry-stained 
tissue sections. In situ results were corroborated with flow cytometry analyses of peri-epithelial immune cells from primary 
breast tissue preparations and transcriptome analyses of public data from bulk tissue reduction mammoplasties. Proportions 
of immune cell subsets in breast tissue and donor-matched peripheral blood were not correlated. Density (cells/mm2) of T and 
B lymphocytes in situ decreased with age. T cells and macrophages preferentially localized near or within epithelial bilayers, 
rather than the intralobular stroma. M2 macrophage density was higher than M1 macrophage density and this difference was 
due to higher density of M2 in the intralobular stroma. Transcriptional signature analyses suggested age-dependent decline in 
adaptive immune cell populations and functions and increased innate immune cell activity. T cells and macrophages are so 
intimately associated with the epithelia that they are embedded within the bilayer, suggesting an important role for immune-
epithelial cell interactions. Age-associated decreased T cell density in peri-epithelial regions, and increased M2 macrophage 
density in intralobular stroma suggests the emergence of a tissue microenvironment that is simultaneously immune-senescent 
and immunosuppressive with age.
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Background

More than 75% of breast cancers (BC) are diagnosed in 
women after age 50y [1], however, the mechanisms under-
lying age-related BC susceptibility are not well under-
stood. The increased incidence is thought to be driven 
by a combination of accumulated somatic mutations, and 
changes in the breast tissue microenvironment that unleash 
malignant cells and increase susceptibility of the tissue 
to cancer initiation [2]. Age-dependent tissue composi-
tion changes in breast include decreased connective tis-
sue, increased adipose cell proportions [3, 4], reduced pro-
portions of myoepithelial cells, accumulation of luminal 
epithelial cells and dysfunctional progenitor cells with a 
basal differentiation bias [5–7]. Age-related chronic ster-
ile inflammation in peripheral blood and solid tissues is 
thought to promote, if not cause, many diseases of aging 
[8, 9]. However, there is limited understanding of how the 
immune milieu changes in breast with age.

Immune cells can impose potent phenotypic and com-
positional changes during mammary gland development 
[10–13]. Mouse models suggest that the innate and adaptive 
immune cell types exert opposing effects during mammary 
gland development. Innate immune cells promote mammary 
gland branching and proliferation of mammary epithelial 
cells; e.g., TNF-α secreted by macrophages stimulates pro-
liferation of rat mammary epithelial cells [11]. Conversely, 
adaptive immune cell types are involved in negative regula-
tion of the mammary gland; e.g., interferon gamma (IFN-ɣ) 
produced by  CD4+ T helper 1 (Th1) cells inhibits lumi-
nal differentiation and thereby inhibits mammary gland 
organogenesis [13]. In addition to sculpting developmental 
processes, the immune system is infamous for its role in 
tumor progression [14], for example tumor-associated mac-
rophages (TAMs) are polarized to an M2-like phenotype, 
giving them immunosuppressive functions and further facil-
itating tumor progression and cancer cell proliferation [15].

Whereas aging adversely impacts all people, women 
with germline mutations in BRCA1 or BRCA2 genes are 
considered specifically high risk for BC, having an average 
cumulative risk by age 70y of 65% in BRCA1-mutation car-
riers and up to 45% in BRCA2-mutation carriers [16], com-
pared with a lifetime risk of 13% in average risk women. 
BRCA1-deficient and BRCA2-deficient tumors have distinct 
T cell and myeloid populations that impact response to 
immunotherapy [17], and low expression of BRCA1 pro-
tein in breast tumors is associated with increased  CD8+ T 
cell infiltration, higher tumor proliferation, and poor sur-
vival [18]. Considering higher  CD8+ T cell counts within 
breast tumors are generally associated with more favorable 
survival outcomes [19], these studies suggest that suscep-
tible high risk mammary microenvironments have unique 

immune landscapes that may be present even before tumor 
initiation. Compared to pathologically normal breast tissue, 
benign breast disease (BBD) showed increased densities 
of dendritic cells, macrophages,  CD8+ T cells, and B cells 
near lobules, but pre-malignant BBD that later developed 
into breast cancer had lower B cell density compared to 
BBD that did not develop into breast cancer [20]. These 
findings further support the concept that unique immune 
milieus likely develop in breast tissues over time to influ-
ence breast cancer susceptibility as well as progression. 
Here, we examined changes in immune cell densities in 
pathologically normal breast tissue as a function of age 
from samples that consist of both genetically average risk 
and genetically high risk women.

T cells, B cells, and macrophages were quantified in non-
cancer breast tissue from prophylactic mastectomies. T cells 
and macrophages were abundant within and nearby normal 
epithelial ducts and alveoli, emphasizing the likelihood of 
impactful immune-epithelial interactions. Intralobular stro-
mal and peri-epithelial immune cell densities showed that 
 CD3+ T cell and  CD20+ B cell densities decreased with age 
and that this decrease may happen more rapidly in geneti-
cally high risk tissue compared to genetically average risk 
tissue. Whereas densities of  CD163− M1 macrophages were 
similar in peri-epithelial and intralobular stroma regions, 
 CD163+ M2-polarized macrophages had higher densities 
in the intralobular stroma compared to peri-epithelium in 
both young and old tissues. The age-dependent changes and 
localization differences in immune cell densities observed 
in situ are consistent with reduced peri-epithelial immune 
surveillance and suggestive of increased immunosuppression 
in the intralobular stromal microenvironment.

Methods

Participants, Samples, and Donor Demographics

Donors (24–74 years of age) at City of Hope (COH) con-
sented to donate discarded breast tissue and/or blood (IRB 
no. 17185 and 15,418). Only normal tissues that were his-
tologically confirmed to be non-cancerous were used in the 
study. Tissues were classified as either peripheral-to-tumor 
(P), contralateral-to-tumor (C), or prophylactic mastectomy 
(PM). For this study, women with germline variants that are 
understood to substantially increase risk of BC (e.g., muta-
tions in BRCA1 or BRCA2) were considered genetically 
high risk (HR), and those with the absence of germline vari-
ants were considered genetically average risk (AR). Donors 
underwent surgical mastectomy and discarded breast tissues 
were examined by the Pathology Core and verified to be 
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tumor free. Donor metadata (e.g., age, BMI, risk status) were 
collected, de-identified, and used in statistical analyses.

Immune Cell Isolation from Breast Tissues

Fresh surgical discarded tissues were processed and frozen 
following previously described methods [21]. Filtrate pool 
ampoules (filtrates) from this process containing mesen-
chymal, epithelial, and immune cells, and small pieces of 
vasculature were selected from each specimen for analyses 
of immune cells originating from breast tissue.

Flow Cytometry of Filtrates

Filtrate ampoules were removed from liquid nitrogen, thawed 
in a 37 °C water bath, added to 4 mL of media (RPMI + 10% 
FBS) in 15  mL conical tubes, and gently resuspended. 
Samples were incubated at 37 °C for 3 h to allow recov-
ery of surface marker expression, and the suspensions were 
passed through 45um filters. Cells were centrifuged, and 
pellets were resuspended in antibody solution. Cells were 
stained with anti-CD45-APC (BioLegend, Cat. 368512), 
anti-CD3-FITC (BioLegend, Cat. 300406), anti-CD19-PE 
(BioLegend, Cat. 302208), and anti-CD14-PerCP/Cy5.5 
(BioLegend, Cat. 367110) to identify leukocytes, T cells, B 
cells, and monocytes/macrophages, respectively. The marker 
CD14 detects monocytes and macrophages and was used 
in flow cytometry of filtrates rather than CD68 to allow a 
more direct comparison to  CD14+ monocytes detected in 
donor-matched peripheral blood. The presence of other leu-
kocyte subsets in the filtrates was not accounted for (e.g., 
NK cells and granulocytes). Gating for each cell type in 
the flow cytometry analysis was performed in a way that 
eliminated any ambiguously positive results, as such, the 
percentage of the three cell types did not add up to 100% 
for a given donor. Viability control stain 7-AAD was used 
to exclude dead cells from the analysis. Stained cells were 
analyzed on a BD Accuri™ C6 flow cytometer, and FlowJo 
was used for color compensation and gating.

Multiplex Immunohistochemistry and Slide Imaging

Surgically discarded breast tissue was formalin-fixed and 
paraffin-embedded (FFPE) at the COH Solid Tumor Pathol-
ogy Core. FFPE tissues were sectioned at a thickness of 
5 μm and adhered to positively charged glass slides.

FFPE sections were triple-stained via immunohistochemis-
try (IHC) protocol for T cells using anti-CD3 primary antibody 
(clone SGV6, rabbit monoclonal), for B cells using anti-CD20 
(clone L26, mouse monoclonal), and for macrophages using 
anti-CD68 (clone KP-1, rabbit monoclonal). Staining was per-
formed on Ventana Discovery Ultra Automated IHC Stainer 
(Ventana Medical Systems, Roche Diagnostics, Indianapolis, 

USA). First, the slides were loaded onto the instrument, and 
deparaffinization, rehydration, endogenous peroxidase activ-
ity inhibition, and antigen retrieval at pH 8.5 for 64 min were 
performed. Then, the three antigens were sequentially detected 
by addition of primary antibodies; heat inactivation was used 
to prevent antibody cross-reactivity between the same species. 
Following each primary antibody incubation, DISCOVERY 
anti-Rabbit HQ or NP, DISCOVERY anti-Mouse HQ or NP, 
and DISCOVERY anti-HQ-HRP or anti-NP-AP were incu-
bated. The stains were then visualized with DISCOVERY 
Purple Kit, DISCOVERY Teal Kit, and DISCOVERY Yel-
low Kit, respectively, counterstained with hematoxylin, and 
cover-slipped.

The same IHC process was followed for double-staining 
of pro-inflammatory type (M1) and anti-inflammatory type 
(M2) macrophages, except using the primary antibodies 
anti-CD68 (clone KP-1, mouse monoclonal) and anti-CD163 
(clone MRQ-26, mouse monoclonal). First, anti-CD163 
was added, followed by incubation with DISCOVERY anti-
mouse HQ and DISCOVERY anti-HQ-HRP, and visualized 
by DISCOVERY Teal-HRP kit. Then, after heat inactiva-
tion, anti-CD68 was added, followed by incubation with 
DISCOVERY anti-Mouse NP and DISCOVERY anti-NP-
AP, visualized by DISCOVERY Yellow-AP kit, counter-
stained with hematoxylin, and cover-slipped. Hematoxylin 
and all IHC antibodies were from Ventana.

Some of the yellow CD68 staining, which appeared as 
speckles not associated with nuclear counterstain, was ini-
tially interpreted as non-specific staining thought to be due 
to the use of multiple chromogens in the multiplex IHC 
experiments. However, after consultation with a patholo-
gist and repeating IHC staining of adjacent tissue sections 
with the traditional chromogen 3,3′-Diaminobenzidine 
(DAB) and anti-CD68 antibody, which yielded identical 
staining results, it was determined to be true CD68 staining 
(Fig. S1). Further consideration led to the conclusion that 
the yellow speckles were CD68 protein on macrophages that 
were sliced in the tissue, leaving only fragments of the types 
of large macrophages that survey the epithelium through 
dendritic cell-like movement [22]. For consistency between 
specimens, a threshold was set in the cell classification 
algorithm to only count as macrophages the areas of yellow 
CD68 staining with an associated nucleus.

To enable use in image analysis, stained tissue sections 
were digitized using the VENTANA iScan HT whole slide 
scanner (Roche) at 20x objective, with a scan resolution of 
0.465 μm per pixel.

Automated Image Analysis to Quantify Triple 
and Double‑Stained IHC Tissues

Machine-learning algorithms for image analysis were cus-
tomized in the VisioPharm software (Denmark, 2019.11), 
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as detailed below, to segment tissue and classify cells from 
triple-stained slides with markers for CD3, CD20, and 
CD68, and double-stained slides with markers for CD68 
and CD163.

T cells, B cells, and macrophages were quantified from 
digitized images of breast tissue sections from 102 donors. 
 CD3+/CD20−/CD68− (purple-stained cells) were counted 
as T cells,  CD3−/CD20+/CD68− (teal-stained cells) were 
counted as B cells, and  CD3−/CD20−/CD68+ (yellow-
stained cells) were counted as macrophages.

M1 and M2 macrophages were quantified from tis-
sue images from 17 donors (eight ≤ 41y and nine ≥ 58y). 
 CD68+/CD163− (yellow-stained cells) were counted as 
M1, and  CD163+  (CD163+/CD68− and  CD163+/CD68+ 
double-positive, teal- and green-stained cells, respectively) 
were counted as M2.

Scientists were blinded to age of donors until after auto-
mated cell quantification from images was complete. The 
objective quantification of immune cells required the fol-
lowing three major steps. First, tissue was segmented to 
isolate epithelium-enriched regions from fat and stroma. 
Second, epithelium-enriched regions were further seg-
mented to distinguish epithelial cells of ducts and lobules 
(peri-epithelium) from intralobular stroma. Third, quan-
tification of individual immune cells within epithelium-
enriched regions and classification of each cell type as 
either directly localized to peri-epithelium, or within 
intralobular stroma and localized away from epithelium. 
Detailed description of the three steps follows.

Segmentation of Epithelium‑Enriched Regions 
from Fat and Stroma

We utilized a deep learning model in the image analysis soft-
ware VisioPharm to segment and classify the different tissue 
compartments. In this study, we used the u-net-based deep 
learning model that is based on the convolutional neural 
network and we utilized the network architecture [23]. The 
ReLU activation used is of the form f (x) = max (0, x). An 
input image size of 512*512 was used for training the model. 
Using IHC whole slides as reference images, the epithelium-
enriched regions and fat and stroma regions were annotated 
by the pathologist. The training regions were annotated 
within the VisioPharm framework and act as a ground truth 
for training the model. Data augmentation was performed 
during the training process due to small sample size. A total 
of 10 whole slide images of 35,000*28,000 pixel size were 
used for training the algorithm with two different classifiers: 
epithelium-enriched regions (EER, blue) and fat or stroma 
(FSR, green) shown in Fig. S2A. Multiple training regions 
were annotated for each classifier in the samples. Training 
samples contained images with diverse staining patterns and 
different staining intensities to address tissue heterogeneity. 
A total of 45 annotations were made on different training 
samples and the model was trained on these images. Once 
the model was trained, it was tested on a large cohort of 
samples (n=100) and annotations were made in EER only.

Segmentation of Epithelial Cells of Ducts 
and Lobules from Intralobular Stroma

In this step, we only consider the region annotated by step 
1 for further segmentation of the EER region. Instead of 
directly segmenting the intralobular epithelial region this 
two-stage approach was adopted to increase the segmenta-
tion accuracy. We used the u-net architecture described above 
to train a two-class classifier to segment the EER into peri-
epithelium (PE, blue) and intralobular stroma (ILS, green). 
The training images and labels were generated as shown in 
Fig. S2B. The training regions were annotated within the 
VisioPharm framework and act as a ground truth for training 
the model. The u-net was trained for 6000 epochs until the 
validation error was less than 10 percent. The trained model 
was saved and tested on a large cohort of samples (n=100) 
and annotations were made both on PE and ILS to estimate 
the immune cell count within the respective regions.

Quantification of Individual Immune Cells

Within the VisioPharm framework, we utilized the color 
deconvolution algorithm along with the binary image 

Fig. 1  Immune cells closely associated with mammary epithelium 
and their density in situ changed with age. Representative images of 
IHC triple-stained pathologically normal breast tissue from A young 
(33y) and B older (66y) donors. Purple (CD3), Teal (CD20), Yellow 
(CD68). Scalebars are 50  µm. C  Machine-learning algorithms were 
used to first segment the tissue into fat and stroma regions (FSR) or 
epithelium-enriched regions (EER) (light blue dotted lines), and then 
to further segment tissue within EER as intralobular stroma (ILS) or 
peri-epithelium (PE) (magenta dotted lines). The three immune cell 
types were then classified within EER as being either within the PE 
(within magenta dotted lines) or within the ILS (within light blue and 
outside of magenta dotted lines) and quantified in each area. (i) and 
(iii) show segmentation output only, (ii) shows cell classification out-
put of  CD3+ T cells within PE from inset in (i), and (iv) shows cell 
classification output of  CD20+ B cells within ILS from inset in (iii). 
Scalebars are 50 µm. D Total density (cells per  mm2) of each immune 
cell type in EER was quantified in situ and compared with donor age 
by linear regression (n = 102). r, correlation coefficient, and p-value 
of each regression are indicated. E Age regressions of each immune 
cell type when samples are grouped into AR (filled shapes; n = 67) or 
HR (open shapes; n = 36). r and p-value of each regression are indi-
cated. F Immune cell densities (cells per  mm2) quantified in PE (blue) 
and in ILS and distant from the epithelium (orange) (n = 102). r and 
p-value of each regression are indicated. * p < 0.05, ** p < 0.01, *** 
p < 0.001, NS = not significant (P > 0.05)

◂

251Journal of Mammary Gland Biology and Neoplasia (2021) 26:247–261



1 3

operation to segment and count the individual immune 
cells. Using color deconvolution, individual immune cells 
stained for CD3 (purple), CD20 (teal), and CD68 (yellow) 
were deconvolved from the hematoxylin counterstain. The 
deconvolved positive stain channel was further used for the 
cell segmentation. In this process the deconvolved positive 
stain channel was smoothed using the mean filter and Poly 
Blob filter to segment the individual cells. The Poly Blob fil-
ter size was manually estimated to be 33µm. Binary objects 
less than 15 µm were filtered out and cells of image intensity 
less than 50 were considered positive cells for each immune 
marker. Image analysis parameters such as cell count and 
area of peri-epithelium and intralobular stroma were esti-
mated. The ratio of cell count to area of the intralobular 
compartments estimate the cell density within their corre-
sponding compartments (cells/mm2). Figure 1C shows the 
segmentation and classification output of CD3 (Fig. 1Ci-ii) 
and CD20 (Fig. 1Ciii-iv) in the peri-epithelium and intralob-
ular stroma, respectively.

PBMC Isolation from Whole Blood

Peripheral blood mononuclear cells (PBMCs) were isolated 
from whole blood of 20 donors, from which breast tissue 
was obtained on the same day, using Lymphoprep™ den-
sity gradient medium and SepMate™ PBMC isolation tubes 
(StemCell). PBMCs were stained with antibodies for CD3, 
CD19, CD14, and CD45 and analyzed via flow cytometry 
in the same manner as filtrates.

In Silico Transcriptional Signature Analyses

As described in the original article (NCBI GEO GSE102088 
[24]), frozen breast tissue obtained from reduction mam-
moplasty (RM) of 121 healthy women underwent RNA 
extraction and was profiled via the GeneChip® Human 
Transcriptome Array 2.0 (Affymetrix Inc, Santa Clara, CA). 
The data were  log2-transformed and quantile-normalized 
by the original authors. All further analyses for this study 
were conducted in R. Published immune gene signatures 
[25–28] were aggregated into a single dataset for further 
downstream analysis. These immune signatures give an 
estimate of the proportions or enrichment of immune cell 
types as well as of immunomodulatory signaling (e.g., IFN 
and TGF-β response) present in bulk tissue, allowing the 
comparison of many immune cell subsets across a range 
of ages. The samples were grouped by age, with ≤ 35 years 
old defined as young (n = 51) and ≥ 50 years old defined as 
older (n = 23), and gene annotations were updated. Identi-
fied gene probes with maximum average gene expression 
across all samples were filtered for and mean center scaled 
prior to analyses. The Wilcoxon rank-sum test was used for 
statistical analysis between young and older age groups. The 

Holm-Bonferroni method was used to correct for multiple 
testing across all signatures and calculate adjusted p-values 
(adj. p-val). These analyses were performed to determine 
age-dependent immune changes in an orthogonal dataset 
from normal breast tissue with no previous or current BC 
and no known genetic mutations.

Statistical Analysis

GraphPad Prism 8 was used for data visualization and statis-
tical analyses of all data except the in silico analyses, which 
used the statistical software R. All boxplots used the Tukey 
method for plotting whiskers and outliers. The relationships 
between variables were analyzed by simple linear regres-
sion, Pearson’s correlation, two-tailed t-tests, or ordinary 
one-way analysis of variance (ANOVA). Paired t-tests were 
used to compare PE to ILS data from the same individu-
als and unpaired t-tests were used to compare AR to HR 
data between different individuals. Any significant ANOVA 
was followed by post-hoc analyses using Tukey’s multiple 
comparisons test, corrected for multiple comparisons using 
statistical hypothesis testing, and reported as adj. p-val. For 
all statistical analyses, a two-sided p-value less than 0.05 
was considered significant and the following symbols were 
used to indicate significance: * p ≤ 0.05, ** p ≤ 0.01, *** 
p ≤ 0.001, **** p ≤ 0.0001, NS (p-value is not significant).

Results

Density of T Cells, B Cells, and Macrophages 
by In Situ IHC Analysis

To determine how immune milieus change with age in breast 
tissue, we examined densities of common immune cell types 
in pathologically normal breast tissue. Multiplex IHC of 
FFPE sections for single marker identification of T cells 
(CD3), B cells (CD20), and macrophages (CD68) demon-
strated that immune cells closely associated with epithelium-
enriched regions (EER) in normal breast tissue (Fig. 1A-
B). Manual examination showed most of the immune cell 
density was localized in EER, rather than in adipo-stromal 
regions, and T cells and macrophages were visible within 
the epithelial bilayers. Thus, cell counting algorithms were 
optimized for detecting immune cells in EER (Fig. 1C and 
Fig. S2) and quantified per  mm2 to account for variation in 
total area of EER regions between donors.

T cells were the most abundant immune cell type in EER, 
followed by macrophages, then B cells. T cell and B cell 
densities decreased in breast tissue with age (p = 0.001 and 
p < 0.001, respectively), whereas macrophage density did 
not change significantly with age (p = 0.713) when consider-
ing all samples irrespective of genetic risk status (Fig. 1D). 
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When samples were separated by genetic risk status, T cell 
and B cell density decline with age was more prominent 
in HR than in AR, and opposite directions of regression 
lines suggested macrophage density may trend downward 
with age in HR and upward with age in AR (Fig. 1E), but 
neither was statistically significant. Thus, the germline 
mutations associated with HR status may have differentially 
impacted the immune milieu of the mammary glands. One-
way analysis of variance (ANOVA) indicated that variations 
in T cell and B cell densities in HR tissues (p = 0.006 and 
p = 0.013, respectively) and B cell and macrophage densities 
in AR tissues (p < 0.001 and p = 0.001, respectively) may 
be explained by age range (Fig. S3A). No significant differ-
ences in densities of the three immune cell types were seen 
when samples were grouped by other factors that could influ-
ence immune milieus, including: body mass index (BMI), 
tissue type, or receptor subtype of peripheral or contralat-
eral tumor tissue (Fig. S4A-C). Parity did not show a strong 
effect on immune composition, as only B cells showed a 
potentially significant association that was not robust to out-
liers (Fig. S4D). T cell and B cell densities were lower in 
the post-menopausal group compared to the pre-menopausal 
group, but there were only three women in our dataset who 
were post-menopausal and < 50y so it was not possible to 
distinguish from the effect of age (Fig. S4E).

The densities of T cells and macrophages in peri-epithelial 
regions were greater than the densities of these two immune 
cell types in the intralobular stroma (p < 0.001 between PE 
and ILS for both T cells and macrophages, paired t-tests) 
(Fig. 1F and Fig. S3B, left and right panels), whereas B 
cells were more abundant in the intralobular stroma than 
in the peri-epithelium (p = 0.005, paired t-test) (Fig. 1F and 
Fig. S3B, center panel). Mean density of intralobular stromal 
T cells was 259 ± 123 cells/mm2 in all samples, whereas mean 
density of peri-epithelial T cells was 849 ± 357 cells/mm2 in 
women ≤ 41y (adj. p < 0.001 between ILS T cells of all and 
PE T cells of ≤ 41y) and 477 ± 222 cells/mm2 in women ≥ 58y 
(adj. p = 0.006 between ILS T cells of all and PE T cells 
of ≥ 58y) (Fig. S3C). Mean density of intralobular stromal 
macrophages was 101 ± 54 cells/mm2, whereas mean density 
of peri-epithelial macrophages was 313 ± 152 cells/mm2 (two-
tailed, paired t-test p < 0.001) (Fig. S3B). Mean density of 
peri-epithelial B cells was 11 ± 35 cells/mm2 in all samples, 
whereas mean density of intralobular stromal B cells was 
75 ± 92 cells/mm2 in women ≤ 41y (adj. p < 0.001 between PE 
B cells of all and ILS B cells of ≤ 41y) and dropped to 9 ± 22 
cells/mm2 in women ≥ 58y (adj. p = 0.998 between PE B cells 
of all and ILS B cells of ≥ 58y) (Fig. S3C). This shows that B 
cells were more abundant in the intralobular stroma than in 
the peri-epithelium of young women, but their abundance in 
the intralobular stroma was lost in older women. The mean 
density of peri-epithelial T cells decreased by nearly fifty 
percent with age and approached the density of intralobular 

stromal T cells (Fig. 1F and Fig. S3C, left panel). This decline 
in peri-epithelial T cell density may indicate reduced T cell 
surveillance of the epithelium with age.

Proportions of Peri‑Epithelial Immune Subsets 
by Flow Cytometry Analysis

The fraction of cells that remained following isolation of 
mammary epithelial organoids from processed breast tissue 
specimens, the filtrate fraction, was enriched for immune cells 
of the peri-epithelial region of mammary gland [21]. At least 
10,000 viable mononuclear events per filtrate sample were 
analyzed by flow cytometry (n = 116).  CD45+ leukocytes 
detected in the filtrates comprised 11 ± 7% of mononuclear 
events in filtrates, the remainder of nucleated cells consisted 
of fibroblasts, epithelial cells, and endothelial cells. Quanti-
fication of immune cells from the  CD45+ portion of filtrates 
showed proportions of T cells and B cells, identified by  CD3+ 
and  CD19+, respectively, decreased with age (p = 0.015 and 
p = 0.008, respectively) (Fig. 2A). Macrophage proportions 
identified by  CD14+ expression showed no significant change 
with age (p = 0.060). Thus, using a second analytic modality 
in a parallel set of samples, we observed similar patterns of 
change with age compared to the in situ analyses of immune 
milieus in EER of mammary gland.

High body mass index (BMI) is a common risk factor 
for many health issues, including postmenopausal BC, 
and obesity (BMI ≥ 30) is associated with altered immune 
response, including increased chronic inflammation, how-
ever, variation in these immune subsets was not explained 
by BMI (Fig. 2B). Focusing on the filtrate fractions from 
contralateral mastectomies, we detected no significant differ-
ence in proportions of immune cell subsets associated with 
receptor status (i.e.,  ER+,  HER2+, or TNBC) of the tumor in 
the affected breast (Fig. 2C). Unlike immune milieus inside 
tumor tissues that are dependent on tumor subtype [29], 
these data suggested immune milieus of the contralateral 
normal tissue were primarily correlated with age.

Because in situ analyses showed T cells and macrophages 
within the epithelial bilayer, we questioned whether immune 
cells could be a commonly overlooked cellular component of 
standard epithelial organoid preparations or even pre-stasis 
human mammary epithelial cells cultured from epithelial 
organoids. We examined the different fractions generated 
during a mammary epithelial organoid preparation for 
cells expressing CD45 using flow cytometry. The fractions 
examined were: filtrates, uncultured organoids, and cultured 
pre-stasis epithelial cells at passage four and five [21]. The 
majority of  CD45+ immune cells were in the filtrate frac-
tions, whereas there were few percent of total  CD45+ cells 
detected in digested organoid fractions, and none in the cul-
tured epithelial cells (Fig. S5).
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Skewed Intralobular M2 Macrophage Polarization

Pro-inflammatory M1 macrophages and anti-inflammatory 
M2 macrophages were quantified in EER from a subset 
of younger (≤ 41y, n = 8) and older (≥ 58y, n = 9) speci-
mens to determine if there were differences in macrophage 
polarization with age or tissue location. M1 macrophages 
 (CD68+/CD163−) are stained yellow, and M2 macrophages 
 (CD163+) are teal  (CD163+/CD68−) and green  (CD163+/
CD68+ double-positive (DP)) in IHC-stained breast tis-
sues (Fig. 3A-B). Comparison of both  CD163+ populations 

 (CD163+/CD68− and  CD163+/CD68+) in young and older 
tissue groups showed no significant change in density 
of either population with age (Fig. S6). M2 density was 
higher than M1 density in both young (adj. p = 0.034) 
and older tissues (adj. p = 0.001), and though decrease 
in M1 and increase in M2 with age were not statistically 
significant, the difference between mean M1 and mean 
M2 density increased in older tissue (from 423.3 to 582.8 
cells per  mm2), suggesting a slight shift in macrophage 
subtype favoring M2 polarization (Fig. 3C). When exam-
ined according to location of macrophages in either 

Fig. 2  Mammary gland peri-epithelial immune cells were isolated 
and measured by flow cytometry. A  Immune cell proportions quan-
tified via flow cytometry and compared with donor age by linear 
regression. T cells  (CD3+) (n = 116), B cells  (CD19+) (n = 116), 
Macrophages  (CD14+) (n = 74). r and p-value of each regression are 
indicated. B ANOVA for immune cell type and BMI (n = 115): nor-

mal weight (18.5 ≥ BMI < 25) (n = 37), overweight (25 ≥ BMI < 30) 
(n = 43), obese (BMI ≥ 30) (n = 35). C ANOVA for immune cell type 
and tumor receptor status in contralateral tumor tissue (n = 78):  ER+ 
(n = 53),  HER2+ (n = 14), TNBC (n = 11). All ANOVA p-values were 
NS
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peri-epithelial or intralobular stroma regions, it became 
clear that the greater M2 density compared to M1 density 
is due to high M2 density in intralobular stroma. Density of 
M2 macrophages in intralobular stroma of both young and 
older tissues is significantly greater than density of all other 
M1 and M2 populations in peri-epithelium and intralobular 
stroma (Fig. 3D). The increased M2 macrophage density in 
intralobular stroma suggests increased immunosuppression 
in the mammary gland microenvironment.

Comparison of Immune Milieus in Matched Breast 
Tissue and Peripheral Blood

Peripheral blood is often examined as a proxy for immune 
cell composition in solid tissues. We determined whether 
immune cell proportions in filtrate fractions from mammary 
gland preparations were reflected in the peripheral blood 
mononuclear cells (PBMCs). Matched breast tissue and 
PBMCs were examined from n = 20 individuals. Proportions 
of T cells, B cells, and monocytes in tissue and blood did 

Fig. 3  M1 and M2 macrophage quantification in IHC-stained 
breast tissue further characterized the aging immune phenotype. 
Representative images of IHC double-stained breast tissue from 
A  young and B  older donors. Yellow  (CD68+), Teal  (CD163+), 
Green  (CD163+/CD68+). M1  (CD68+/CD163−) and M2  (CD163+/
CD68− and  CD163+/CD68+). Red arrowheads point to peri-epithe-
lial (PE) M1 macrophages, orange arrowheads point to intralobular 

stromal (ILS) M1 macrophages, and black arrowheads point to ILS 
M2 macrophages. Scalebars are 50  µm. C  Density of M1 and M2 
macrophages quantified in  situ from young (≤ 41y, n = 8) and older 
(≥ 58y, n = 9) donor age groups. D  Density of M1 and M2 mac-
rophages in PE or ILS in each age group. Adjusted p-values (adj. 
p-val) of ANOVA post-hoc analyses between groups are indicated
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not exhibit similar patterns of change with age (Fig. 4A). 
In blood, T cell proportions showed a downward trend and 
monocyte proportions showed an upward trend with age. 
Proportions of immune cells in peri-epithelial regions and 
in matched peripheral blood were not correlated (Fig. 4B). 
Therefore, PBMCs are not likely to be a suitable proxy for 
studying age-dependent changes in breast tissue immune 
milieus.

Immune Cell Transcriptional Signatures 
of Reduction Mammoplasty Samples

We examined publicly available gene expression data from 
bulk tissue reduction mammoplasty (RM) samples for the 
presence of immune signatures [25–28]. Older breast tissue 
exhibited higher signature scores for innate immune cells 
associated with inflammation and immunosuppression, 
including macrophages (adj. p = 0.013), mast cells (adj. 
p = 0.014), neutrophils (adj. p = 3.20E-10 and adj. p = 6.70E-
07), and NK  CD56dim cells (adj. p = 0.0022) (Fig.  S7, 
Table S1). Older RM had signature scores consistent with 
decreased function of adaptive immunity and recognition, 
including decreased B cells (adj. p = 0.0027), T helper cells 

(adj. p = 1.10E-11), and central memory T cells (Tcm) (adj. 
p = 4.00E-06) (Fig. S7, Table S1). Additionally, older breast 
tissue exhibited higher signature scores for angiogenesis 
(adj. p = 1.40E-13), which involves both innate and adaptive 
immune functions. This combination of generally increased 
innate immune cell and decreased adaptive immune cell sig-
natures in a dataset that was orthogonal to our own samples 
was consistent with the age-dependent changes observed in 
the immune subsets we quantified in situ.

Discussion

The immune system is increasingly appreciated as a deter-
minant of BC progression. Aging is the greatest risk factor 
for BC, and we performed a survey of immune cell subsets 
in normal breast tissue as a function of age to better under-
stand whether there were changes that could be related to 
breast cancer susceptibility. We examined immune milieus 
in peri-epithelial and intralobular stroma regions of histo-
logically normal breast tissue to better understand whether 
there were age-dependent changes. T cells and macrophages 
were intimately associated within the bilayers of epithelial 

Fig. 4  Immune cell proportions were not correlated in donor-matched 
peripheral blood and breast tissue. Donor-matched PBMCs (n = 20) 
were analyzed by flow cytometry in the same manner as filtrates to 
determine proportions of immune cells. A  Percent of each immune 

cell type in blood (red circles) and in tissue (blue squares) compared 
with donor age. B  Pearson’s correlation analysis for each cell type 
in blood and tissue. r, Pearson’s correlation coefficient, is indicated. 
P-values were all NS
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cells; indeed, without proper biomarkers they could have 
been mistaken for epithelial cells in tissue sections. Chronic 
sterile inflammation, so called “inflammaging”, has been 
proposed to be a driving factor of many diseases of aging 
including cancer. Our in situ macrophage results showing 
no significant increase in M1 macrophage density with age 
did not support the concept that an increased inflammatory 
tissue microenvironment emerges in breast with age. How-
ever, the density of anti-inflammatory M2 macrophages in 
the intralobular stroma was greater than pro-inflammatory 
M1 macrophages, and this difference between M2 and M1 
density increased with age, raising the possibility that age-
related BC susceptibility is aided by increased immunosup-
pression in the microenvironment. Meanwhile, the adaptive 
immune milieu changed significantly, in that both T cells and 
B cells decreased in density with age in two parallel sample 
sets. In addition, decreased transcriptional signatures with 
age for B cells and several T cell subsets were detected in a 
third dataset. Overall, these changes in immune milieus in 
breast with age are consistent with the immunosenescence 
concept, which posits that decreased function of adaptive 
immunity with age is a driver of susceptibility to cancer and 
other age-related maladies [30].

The density of peri-epithelial T cells decreases with age, 
suggesting a reduction in T cell-to-epithelial cell communi-
cation or even a decline in direct surveillance of the epithe-
lium in aged breast tissue. Reduction in T cell migration to 
the epithelium for immune surveillance could contribute to 
tumor development [31]. A previous study of normal breast 
tissues with or without lobulitis showed the most abundant 
type of T cells in breast were  CD8+ cytotoxic T cells [32]. 
Assuming a certain degree of consistency across normal tis-
sues, the age-dependent decline of T cell-to-epithelial cell 
interactions observed in our specimens would be consistent 
with reduced immune surveillance by cytotoxic T cells.

Mouse studies have shown that immune cell subsets are 
involved in sculpting mammary gland development. Cells 
of the innate immune system (e.g., macrophages, eosino-
phils, and mast cells) were shown to promote postnatal 
mammary gland development by increasing branching and 
growth [10–12]. Conversely, the adaptive immune system 
was shown to suppress postnatal mammary development by 
inhibiting luminal epithelial differentiation through IFN-ɣ 
released from Th1 cells that interact with mammary-resident 
dendritic  (CD11c+) cells [13]. It is important to consider 
potential effects of immune cells on the luminal epithelial 
cells in the aging and cancer context [33] because mature 
luminal cells are the chief suspects for the cancer cells-of-
origin of the luminal subtype cancers that are strongly asso-
ciated with age [34]. We previously showed that two of the 
most striking age-dependent changes in human mammary 
epithelia are the accumulation of mature luminal cells and 
progenitor cells with a basal differentiation bias [5, 7]. The 

capacity of  CD4+ T cells to differentiate into Th1 effector 
cells tends to decrease with age [35], thus it is tempting to 
speculate that a subsequent decrease in IFN-ɣ production 
in the microenvironment of the mammary gland lifts the 
inhibition on luminal differentiation enabling accumulation 
of these putative cancer cells-of-origin with age.

One study identified changes in immune populations in 
the aging mouse mammary gland [36]. Many of the find-
ings in that paper are the opposite of ours (e.g., they see 
more T and B cells with age in the mouse mammary gland 
whereas we see less). They also identify two macrophage 
populations, not specifically terming them M1 and M2, but 
one macrophage population that expresses the M2 marker, 
CD163, is more abundant in the stroma, which is in align-
ment with our results of  CD163+ M2 macrophages having 
a greater density in the intralobular stroma compared to in 
the peri-epithelium. However, they showed a decline in the 
 CD163+ macrophage subset with age, making the other 
subset the dominant type in aged tissue, which is not what 
we observed in human breast. These results are intriguing, 
but we are hesitant to directly compare our results from a 
group of over 100 human tissues with these findings from 
a single inbred mouse strain with only 3–4 mice per group. 
This mouse study may be useful for detecting changes with 
age because the mice within each group are so similar to 
one another, but the changes cannot be directly translated 
to humans because of the lack of variation in laboratory 
mouse strains and the many evolutionary differences. 
Indeed, experimental outcomes in mice vary depending 
on the mouse strain background, diet, housing, and other 
environmental factors [37]. This underscores the importance 
of using human samples to identify changes that occur in 
humans, especially to understand complex processes like 
cancer and aging.

M2 macrophages were defined as expressing the M2- 
specific marker CD163, a hemoglobin scavenger receptor. 
CD163 is one of the most common and reliable markers 
for M2 macrophages and tumor-associated macrophages 
(TAMs) [38, 39], and it is specific for cells of the mono-
cyte/macrophage lineage [39], but we caution that using 
a single marker as an indicator of M2 polarization and 
no additional M1 marker may be overly simplistic. Mac-
rophage polarization exists in a spectrum, and there are 
several markers that are differentially expressed as a mac-
rophage is polarized to either M1 or M2. The functions of 
macrophages vary along this range of polarization from M1 
to M2, and a polarized macrophage can be converted still 
further depending on microenvironment influence [40]. In 
double-stained IHC tissues we designated  CD163+ cells as 
M2 macrophages even if they appeared to be negative for 
CD68. Though rare, other studies have demonstrated the 
presence of  CD163+ macrophages lacking CD68 expression 
[38, 41]. Thus,  CD163+ (apparent  CD68−) cells were either  
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M2 macrophages with loss of CD68 expression, or M2 mac-
rophages with CD68 expression, but the darker teal chromo-
gen from CD163 expression was masking the lighter yellow 
chromogen from colocalized CD68 expression [42]. Indeed, 
comparison to adjacent tissue slices showed substantial over-
lap of  CD68+ staining with  CD163+/CD68− cells in the dou-
ble-stained tissue, suggesting these  CD163+ cells expressed 
CD68. The increased M2 macrophage density in intralobular 
stroma is consistent with an interpretation that an immu-
nosuppressive microenvironment emerges in breast tissue. 
M2 macrophages secrete growth factors and cytokines that 
modify tissue architecture and enable increased tumor cell 
proliferation and immunosuppression [43]. This suppressive 
microenvironment could provide opportunities for expansion 
of transformed epithelial cell types.

There were disparities between the IHC staining of 
breast tissue and in silico analysis of reduction mammo-
plasty transcriptional signatures in that IHC results showed 
no significant change in macrophage density with age, but 
significant increases with age were detected in macrophage 
transcriptional signature and other innate immune popula-
tions (mast cells, neutrophils, NK cells). This discrepancy is 
likely due to the differences in tissue samples and methods 
of analysis. Transcriptional signatures represent a composite 
of the expression of multiple genes that give an estimate of 
the abundance of certain cell types, whereas IHC data show 
a single protein marker that identifies the discrete cell type 
of interest. A likely reason for the discrepancy between in 
silico and IHC results is that the sequencing data were from 
bulk breast tissue, which includes expression of genes from 
all cell types in the breast, whereas in IHC cell types are 
identified by a specific protein marker. Indeed, we observed 
previously that enrichment of inflammation related genes in 
mammary epithelial cells is a feature of aging [33].

A limitation of this study is that it focuses on the most 
predominant immune cell subsets in the breast and ignores 
other less abundant, but perhaps still physiologically impor-
tant, immune cell subsets. A deeper characterization deter-
mining the abundance and function of other immune cell 
types would provide a clearer picture of how the immune 
landscape in breast tissue changes with age. Furthermore, 
it is possible the flow cytometry data of immune popula-
tions are slightly altered due to changes in surface molecule 
expression that occur while processing the tissue under 
enzymatic conditions at 37  °C. Various enzymatic and 
mechanical tissue digestion procedures impact accurate 
detection of surface marker expression by immune cells 
[44–46]. Though digestion with collagenase, one of the 
enzymes used in our tissue processing procedure [21], was 
shown to have minimal impact on molecules expressed at 
the surface of blood cells [45], the impact of hyaluronidase 
(the other enzyme used for tissue processing) on surface 

molecule expression was not determined. This uncertainty 
is why the in situ IHC results are considered a more reliable 
representation of the true immune cell proportions in the 
human breast compared to the flow cytometry analysis of 
filtrates. With that said, these limitations were addressed, 
in part, by analyzing age-related changes in an orthogonal 
dataset (i.e., transcriptional signatures), which reinforced the 
changes in immune milieus demonstrated by the in situ data 
and also indicated changes in additional immune subsets not 
included in the in situ analysis presented here.

A further limitation to our interpretation of the results of 
immune changes with age is the presence of other factors 
impacting the immune milieu that were not considered here. 
Menstrual cycle stage [47], mammographic density [48], and 
involution following lactation [49, 50] have all been shown 
to affect the abundance of immune cells and breast cancer 
risk, but we did not have this information available for the 
tissue donors used in this study. It is possible these factors 
influenced the immune cell densities in the breast tissue, 
particularly in premenopausal women, and confounded our 
ability to accurately assess the relationship between immune 
milieu and age. In the genetically high risk group, the dif-
ferent genetic mutations imposing increased risk for breast 
cancer might account for some of the variability seen in 
this population. These additional factors could all lead to 
increased variation between individuals, and with a larger 
cohort of women and data on these additional factors, some 
of this variation may be parsed out. Known factors such as 
BMI and parity did not explain variation in the immune cell 
densities in our cohort.

Conclusions

The in  situ characterization presented here shows that 
immune cells are closely associated with epithelial cells in 
normal breast tissue, the T cell and B cell densities in epithe-
lial-enriched regions are reduced with age, and immunosup-
pressive M2 macrophage density is higher than pro-inflam-
matory M1 macrophage density. Many of these immune cell 
changes are reflected in the in silico analysis of immune 
signature scores of bulk tissues from normal RM samples. 
These changes in immune milieus of the mammary gland 
suggest provocative immune-epithelial interactions that may 
presage deleterious changes in immune surveillance with age 
that increase susceptibility to transforming events, and possi-
bly even contribute to some well-described aging phenotypes 
in the luminal epithelia. Luminal subtype breast tumors rep-
resent about 80% of age-related BCs and are infamously con-
sidered “immunologically cold”, which presents challenges 
for immunotherapeutic approaches [51, 52]. It is tempting 
to speculate that the “cold” immune microenvironment is a 
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vestige of the aging process. Perhaps interventions meant to 
prevent general age-related immune decline [53] could be 
used to prevent age-related breast cancers or improve the 
likelihood of a more immunogenic tumor microenvironment.
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