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Artificial intelligence (AI) and machine learning models are being increasingly deployed
in real-world applications. In many of these applications, there is strong motivation
to develop hybrid systems in which humans and AI algorithms can work together,
leveraging their complementary strengths and weaknesses. We develop a Bayesian
framework for combining the predictions and different types of confidence scores from
humans and machines. The framework allows us to investigate the factors that influence
complementarity, where a hybrid combination of human and machine predictions leads
to better performance than combinations of human or machine predictions alone.
We apply this framework to a large-scale dataset where humans and a variety of
convolutional neural networks perform the same challenging image classification task.
We show empirically and theoretically that complementarity can be achieved even if
the human and machine classifiers perform at different accuracy levels as long as these
accuracy differences fall within a bound determined by the latent correlation between
human and machine classifier confidence scores. In addition, we demonstrate that
hybrid human–machine performance can be improved by differentiating between the
errors that humans and machine classifiers make across different class labels. Finally,
our results show that eliciting and including human confidence ratings improve hybrid
performance in the Bayesian combination model. Our approach is applicable to a wide
variety of classification problems involving human and machine algorithms.

human–AI complementarity | Bayesian modeling | image classification | artificial intelligence

There has been significant progress over the past decade in the development of machine
learning and artificial intelligence (AI) techniques, particularly those based on deep
learning methods (1). This has led to new and more accurate methods for addressing
problems in areas such as computer vision (2), speech recognition (3), and natural language
processing (4). In turn, these techniques are increasingly embedded in commercial real-
world applications, ranging from autonomous driving to customer service chatbots
(5, 6). While these approaches have produced impressive gains in testbed performance
metrics, such as predictive accuracy, it is broadly acknowledged that these approaches have
systematic weaknesses and blind spots (7–9). For example, state-of-the-art deep learning
classifiers for images and text can fail in surprising and unpredictable ways (10–12).

Thus, hybrid systems where AI algorithms and humans work in partnership are gaining
prominence as a focus of both AI and human–computer interaction research (13–17),
providing opportunities for more human-centered approaches in the overall design of
AI systems (18). An emerging theme in this work is the idea that for many problems,
ranging from high risk (medical decisions and autonomous driving) to low risk (automated
recommendations on what product or movie to select next), systems that allow humans
and AI algorithms to work together are likely to occupy an important part of the spectrum
between full autonomy and no autonomy (19–23).

Indeed, there is empirical evidence to suggest that human and machine algorithms
working together can be more effective than either working alone, for tasks as varied as
face recognition (24), sports prediction (25), diagnostic imaging (26), and classifying
astronomical images (27). This prior work demonstrates that humans and machine
algorithms can have complementary strengths and weaknesses, possibly resulting from
using different sources of information as well as different strategies to process information.
For example, in image classification tasks, the differences in processing strategies by
humans and machine classifiers lead to different types of errors made by each, even though
their overall level of accuracy is similar (28). As a result, a variety of new ideas have emerged
on designing crowdsourcing platforms which can leverage algorithmic predictions given
limited human resources (29) as well as new theoretical frameworks that optimize machine
predictions in the context of working with humans (30–33).

Previous research in decision-making and machine learning has focused on demon-
strating the benefits of combining predictions across individuals or algorithms. For
example, statistically combining the predictions from a group of individuals often leads to
performance better than any individual in the group, especially when the group is diverse
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(34–38). Similarly, work on ensemble methods in machine learn-
ing has shown that combining classifiers is particularly effective
when they are less correlated in their predictions (39–42). While
much research on human decision-making and machine learning
has contributed to our understanding of separate combinations of
human (37, 43) or algorithm predictions (44), less is known about
the factors that influence hybrid combinations of both.

To systematically investigate these factors, we develop a
Bayesian modeling framework that can jointly model human
and machine classifier predictions. We apply the framework to
a large dataset where humans and a variety of convolutional
neural networks (CNNs) perform the same challenging image
classification task. CNNs and human visual processing share a
number of similarities in terms of their internal representations
(45), and the internal representations of CNNs can explain some
aspects of human decisions in image classification experiments
(46). However, there are also differences in the errors that humans
and CNNs make in image classification tasks (28, 47), making
image classification an ideal domain to test for complementarity.

With the Bayesian framework, we can empirically and theo-
retically investigate the conditions that give rise to complemen-
tarity. For example, is it better to combine the predictions from
a mixture of humans and machine algorithms, leveraging their
complementary strengths and weaknesses? Further, when is it
better to combine predictions from a group of humans (without
algorithms) or a set of machine algorithms (without humans)
all performing the same task? Finally, how important is it to
differentiate the errors that human and machine algorithms make,
and how can we combine qualitatively different expressions of
confidence across humans and algorithms?

Combining Human and Machine Classifier
Predictions

The Bayesian combination model we introduce combines the
classifications and confidence scores from different ensembles of
classifiers, where we use the term “classifier” to refer to either
a human or a machine classifier. Although this framework can
be applied to any number of classifiers, to simplify the analysis
we focus on pairs of classifiers: hybrid human–machine (HM),
human–human (HH), and machine–machine (MM) pairs. For
each image, the predictions from the two classifiers in the pair are
combined leading to a prediction for the pair.

The modeling approach generates a combined prediction as
well as estimates of the latent correlation between classifiers (Fig. 1
and SI Appendix, Fig. S1 provide a schematic overview of the
generative process assumed by the model). This correlation cap-
tures the dependencies across confidence scores of human and/or
machine classifications. For example, if one classifier (human or
machine) is confident about the label for a particular image,
another classifier (human or machine) might show a similar level
of confidence about the label for the same image. The correlation
between classifiers is a key characteristic of this latent representa-
tion and is estimated for the different pair types (HM, HH, and
MM). Previous combination models rely on strong conditional
independence assumptions (40, 48) or assume that all predictors
have the same output types (44, 49, 50) and, hence, fail to
address the unique challenges of HM combinations. In particular,
previous approaches are not applicable when human and ma-
chine classifiers provide different types of confidence scores. For
example, machine classifiers (including CNNs) typically produce
a probability distribution representing the confidence scores across
all labels. In contrast, for the human classifiers it is not practical
to request confidence scores for all possible labels. Instead, we
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Fig. 1. Graphical model of the Bayesian combination model for hybrid HM
pairs. Shaded and unshaded nodes represent observed and latent variables,
respectively. The plates represent conditionally independent replications of
instances (images) and label-related variables per instance.

model a more typical scenario where a human provides a single
confidence score associated with the classification. We assume
that human confidence is expressed through a small set of ordinal
responses (e.g., “low,” “medium,” and “high”), leading to a differ-
ent type of confidence score compared to the continuous scores
provided by the machine classifier. The difference in confidence
scoring between human and machine classifiers is modeled by
different generative processes for confidence scoring, operating on
the same latent representations.

We first consider the problem of combining the predictions
from a hybrid HM classifier pair. We assume there are N total
images, and for each image a classifier can assign one of L possible
labels. In addition, both the human and machine classifier are
assumed to be noisy labelers relative to the ground truth zi ∈
{1, . . . ,L} for each image i. The generative process starts with
a bivariate normal model, conditioned on zi , to generate latent
human and machine classifier logit scores, λH ,i,j and λM ,i,j ,
separately for each label j ∈ {1, . . . ,L}, similar to the logit-
normal model (51). The ground truth zi determines which of two
bivariate normal distributions is used to generate the logit scores.
For each of the labels j ∈ {1, . . . ,L}, depending on whether j
agrees with the true label zi or not, the bivariate distributions have
means

(
aH
aM

)
or

(
bH
bM

)
, respectively:

( λH ,i,j

λM ,i,j

)
∼

⎧⎨
⎩
N
((

aH
aM

)
,
( σ2

H σHσMρHM

σHσMρHM σ2
M

))
if zi = j

N
((

bH
bM

)
,
( σ2

H σHσMρHM

σHσMρHM σ2
M

))
if zi �= j

.

[1]
In this generative model, on a per label basis, the logit scores across
classifiers are generated from a multivariate normal distribution
which captures the dependencies between labels. The covariance
matrix captures the dependencies between logit scores for cor-
responding labels of the classifiers, where ρHM is the (latent)
correlation between the two classifiers, and σ2 is the variance of
logit scores. Across the labels, the logit scores for the label that
matches the true label have means a, and the logit scores for all
other labels have means b. The difference a − b determines the
ability of the classifier to discriminate between labels. Continuing
with the generative process, the logit scores λ are then transformed
to (normalized) probability confidence scores (i.e., the estimated
label probabilities) for both the human and machine classifier:
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γH ,i,j ∝ exp(λH ,i,j )/(1 + exp(λH ,i,j ))

γM ,i,j ∝ exp(λM ,i,j )/(1 + exp(λM ,i,j ))
. [2]

For the machine classifier, the γM confidence scores are observ-
able for all labels, as produced by the output of the CNN models.
For the human classifier, the γH confidence scores are latent and
assumed to form the basis for generating a single decision and
a confidence rating associated with the decision. To produce the
human classification y, we first apply a softmax rule to the latent
confidence scores:

yi ∼ Categorical

(
eγi,1/τ∑L
j eγi,j/τ

, . . . ,
eγi,L/τ∑L
j eγi,j/τ

)
, [3]

where we have suppressed the H index for readability. The temper-
ature parameter τ controls the degree to which the label with the
highest probability score determines the classification, modeling
the noise that arises in a number of human decision-making
contexts (46, 52).

To model the human confidence ratings, we use an ordered
probit model that probabilistically maps the latent probability
score γi,yi

corresponding to the classification made by the human
to an ordinal confidence rating, ri . For our data, we have three
confidence ratings (1, low; 2, medium; and 3, high) generated
according to

ri ∼OrderedProbit(γi,yi
, c, δ), [4]

where the parameters c determine the intervals that map the
latent confidence score into a confidence rating and δ determines
the sharpness of the rating probability curves, i.e., the degree of
randomness in the probabilistic mapping from the confidence
score to a rating (see SI Appendix for details).

The preceding description of the model applies to the case of a
hybrid HM pair. For MM pairs, the human is replaced by another
machine classifier in Eqs. 1 and 2, and Eqs. 3 and 4 are left unused.
For HH pairs, the machine classifier in Eqs. 1 and 2 is replaced by
another human, and Eqs. 3 and 4 are applied separately to each
individual human classifier.

Model Inference. To apply this model to data, we assume that the
ground truth labels (z) are observed for a set of training instances
and latent for a set of test instances. In addition, human labels,
human confidences, and classifier label probabilities are assumed
to be observed for both training and test instances. Fig. 1 illustrates
the graphical model and inference problem when combining
hybrid HM pairs. Conditioned on the observed data for training
and test instances, Markov chain Monte Carlo (MCMC) is used
to estimate the posterior distribution of the true labels for the test
instances, the latent correlation ρ, and all other model parameters
(σ, a, b, c, δ, and τ ) (see SI Appendix for details).

For simplicity, the current modeling framework assumes that a
single set of parameters (aH , bH , σH , c, δ, and τ ) applies to each
individual human classifier as only few observations of the same
person are present in the datasets under consideration. However,
the framework can be extended to account for individual differ-
ences in these parameters.

Theoretical Limits of Complementarity. While our Bayesian
model allows us to combine human and machine predictions, the
general conditions under which complementarity arises are not
immediately clear. In this section, we analyze our combination
model and derive a condition characterizing complementarity in
terms of the accuracies and latent correlations of the classifiers.

Specifically, let H1 and H2 be two human classifiers, and let
M1 and M2 be two machine classifiers. For any pair of classifiers

C1,C2 ∈ {H1,H2,M1,M2}, the accuracy of the combined pair
of C1, and C2 is represented by AC1,C2

. We have complementar-
ity if for some H ∈ {H1,H2} and some M ∈ {M1,M2}, we have
AH ,M > max {AH1,H2

,AM1,M2
}. In our analysis, we assume

that H1 and H2 are exchangeable, as well as M1 and M2. Under
additional mild assumptions, we derive a necessary and sufficient
condition for complementarity in terms of the individual classifier
accuracies and correlations (see SI Appendix for a detailed proof
and discussion of our assumptions).

Our main theoretical result is that the accuracy of the Bayesian
combination pair for any unique classifiers C1 and C2 can be
expressed as

AC1,C2
=

∫ ∞

−∞
Φ(x )L−1φ(x − rC1,C2

) dx , [5]

where Φ(·) represents the cumulative distribution function of
a standard Gaussian random variable, and φ(·) represents its
probability density function. The variable rC1,C2

, which depends
on the parameters of our combination model, is defined for each
pair type as

rH1,H2
=

|aH |
σH

√
2

1 + ρHH
rM1,M2

=
|aM |
σM

√
2

1 + ρMM

rHM =
1

σ
√
1− ρHM

√
a2
H + a2

M − 2aH aMρHM

1 + ρHM
.

[6]
Although the integral in Eq. 5 does not have an analytical

solution, it can be shown that AC1,C2
> AC ′

1,C
′
2

if and only
if rC1,C2

> rC ′
1,C

′
2
. Hence, complementarity is equivalent to

the condition rH ,M > max{rH1,H2
, rM1,M2

}. In SI Appendix, we
further analyze the condition rHM > max{rHH , rMM }, allowing
us to predict complementarity from given model parameters.

Note that according to Eq. 6, increasing the nonhybrid cor-
relations (ρMM and ρHH ) will always cause the nonhybrid pair
accuracies to decrease, thus making complementarity easier to
achieve. Similarly, increasing rHM will increase the hybrid accu-
racy. However, since rHM has a more complex dependence on
ρHM , increasing the hybrid correlation ρHM will cause AHM

to decrease if and only if min
(

aM

aH
, aH

aM

)
> ρHM . Intuitively,

the ratios aM /aH and aH /aM control the relative human–
model performance, and higher human–model correlations can
be beneficial if the humans and models have vastly different levels
of performance.

Results

To empirically verify our theoretical results and to further inves-
tigate the factors that influence complementarity, we collected a
large dataset of human and machine classification decisions for
a set of 4,800 images. To create variability in machine classifier
performance, we selected a number of well-known benchmark
CNN architectures (1) for image classification, representative of
the recent state of the art in machine classification performance.

To examine conditions for complementarity, we created a num-
ber of experimental conditions that lead to variability in perfor-
mance for human and machine classifiers. One such manipulation
is based on adding varying degrees of image noise (47), affecting
both human and machine classifier performance. In addition, the
classifiers were tuned to the image noise to varying degrees in order
to create additional variations in machine classifier performance
(SI Appendix, Fig. S4).
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Fig. 2. Examples of human and machine classifier complementarity. (A) Examples of images that are challenging for humans but relatively easy for machine
classifiers. Correct answers in reading order are bird, boat, bear, bear, oven, and oven. (B) Examples of images that are challenging for machine classifiers but
relatively easy for humans. Correct answers in reading order are car, car, cat, cat, bear, and bear. The machine classifiers in both examples were tuned for one
epoch on the noisy images.

Human and Machine Classifiers Make Different Types of
Errors. Even at comparable levels of performance, human
participants and machine classifiers make different types of errors.
Fig. 2 shows examples of HM algorithm complementarity. The
images in Fig. 2A are challenging for humans but relatively easy
for machine classifiers. For all of these images, human accuracy
and confidence were low (all six human participants made a
low-confidence classification, and at most, one out of six human
participants made a correct judgment), but machine accuracy was
high (at least four out of five machine classifiers made a correct
classification for any of these images). The images in Fig. 2B
are challenging for machine classifiers but relatively easy for
humans. All six human judges made a correct and high-confidence
classification, whereas at most, one out of five machine classifiers
made a correct classification for each of these images.

Hybrid Combinations of Human and Machine Classifiers Lead to
High Accuracy. For the Bayesian combination model, we created
a number of datasets based on three different types of pairs: HH,
HM, and MM classifier pairs. As described in Model Inference, we
use MCMC for inference, with the inferred latent ground truth z
label and correlation ρ being of particular interest. Fig. 3 shows the
out-of-sample accuracy results, based on fourfold cross-validation,
of the Bayesian combination model. The results are based on low
levels of image noise (Ω= 80) and with CNNs that are fine-tuned
for one epoch (see SI Appendix, Figs. S9–S11 for the results based
on other levels of image noise and fine tuning).

Our first finding is that the hybrid pairs of human and machine
classifiers perform at a high accuracy relative to nonhybrid combi-
nations such as two humans or two machine classifiers, especially
for high levels of image noise. However, for CNNs such as Alexnet
(SI Appendix), the hybrid combination of Alexnet and a human
classifier does not always exceed the performance of a combination
of two humans. For this combination, the low baseline perfor-
mance of the Alexnet classifier does not produce complementarity.
The results also show that a combination of two humans leads to
better performance than a single human, demonstrating the utility
of the human confidence scores—when two human observers
differ in confidence, the Bayesian combination model infers that
the higher-confidence classification is more likely to be correct.

Hybrid Combinations of Human and Machine Classifiers Lead
to Low Latent Correlations. Our second finding is that human
and machine classifiers produce lower latent correlations than

humans do with each other, or than machine classifiers do with
each other, demonstrating the utility of combining human and
machine predictions—the predictions of hybrid combinations of
HM classifiers are more independent than the predictions among
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Fig. 3. (Top) Accuracy results and (Bottom) posterior distributions over cor-
relations from the Bayesian combination model. Results are broken down by
type of classifiers: single human (H), HH, HM, and MM. Error bars in Top reflect
95% confidence interval of the mean based on a binomial model.
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humans and machine classifiers alone. Fig. 3, Bottom, shows the
mean posterior correlations (ρ) between classifier combinations.
The hybrid HM pairs are correlated less (posterior mean around
0.4) than human-only (posterior mean around 0.7) or machine-
only pairs (posterior means between 0.65 and 0.75). Note that
the posterior distributions for the machine classifier correlations
are associated with low uncertainty due to the availability of a full
set of confidence scores across labels for the machine classifiers.
In contrast, for the human classifier, only a single confidence
rating is available, providing less information to estimate the latent
correlational structure.

The inferred pattern of correlation does not critically depend on
the representation of the confidence scores. Having only a single
continuous confidence score (associated with the classification)
and discretizing the machine confidence scores into a small set of
ordinal categories, analogous to the human confidence scores, do
not change the qualitative pattern of results (SI Appendix). This
illustrates that the results are robust to different approaches for
assessing confidence.

Accuracy Difference between Classifiers Affects Complemen-
tarity. In our third result, we show empirically how accuracy dif-
ferences between classifiers lead to complementarity and compare
the results with theoretical predictions. Fig. 4 shows the observed
and predicted complementarity results for a number of hybrid
pairs, where the pairs vary in terms of the individual accuracy
of the human and machine classifiers composing the pair. Each
individual point in the graph is based on the performance of
individual classifiers H and M as well as classifier pairs HH, HM,
and MM ′, where M and M ′ are two different types of CNN
classifiers. Complementarity is observed if the hybrid combina-
tion HM outperforms the combinations consisting of human or
machine classifiers alone: AH ,M > AH ,H and AH ,M > AM ,M ′ .
To understand how complementarity varies as a function of the
difference between human and machine classifier performance,
Fig. 4 shows the out-of-sample results for 320 comparisons by
crossing four levels of fine tuning, four levels of image noise, and
20 CNN pairs.

The shaded area in Fig. 4 shows that there is a relatively narrow
band of performance difference that produces complementarity
(see SI Appendix for computational details). The human and
machine classifiers need to perform at similar levels in order to
produce a hybrid HM pair that is more accurate than either two
humans or two machine classifiers. These results strongly depend
on the correlations between human and machine classifier. For
example, in a hypothetical scenario where the HM classifier corre-
lation is zero, the zone of complementarity will grow (dashed line).
However, note that even in this best-case scenario, there are still
limits on the accuracy differences that produce complementarity.

Differentiating between Human and Machine Classifier Errors
and Confidence Scores Improves Hybrid HM Performance. In
our fourth and final finding, we consider how the performance
of the hybrid HM pairs depends on a number of combinations
of different factors: 1) the presence of a class-specific error model
that can correct for human and machine-classifier errors and biases
for individual labels, 2) the presence of human confidence scores,
and 3) the presence of machine classifier scores. Table 1 shows
the out-of-sample accuracy of a hybrid pair when systematically
varying these three factors. See SI Appendix for details on models
and experimental methodology. The results are averaged over the
five machine classifiers (SI Appendix shows results broken down by
individual classifiers). Each of the three factors contributes to an
improvement in performance of the hybrid ensemble, especially
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different datasets, where filled circles indicate combinations where out-of-
sample accuracy of the hybrid HM pair outperforms pairs of HH and MM pairs.
The colored area shows the area of complementarity as predicted by theory
based on ρHM = 0.33, ρHH = 0.62, and ρMM′ = 0.71, approximately matching
the correlations inferred by the Bayesian combination model. The dashed
line shows the predicted area of complementarity for a best-case situation
where the latent human and model predictions are uncorrelated, ρHM = 0,
and the nonhybrid correlations remain the same (ρHH = 0.62, ρMM′ = 0.71).
The diagonal line indicates points of equivalent single human and model
performance.

for high-noise conditions. In addition, each of these factors has
an independent effect on hybrid performance. Table 2 shows the
statistical analysis of the relative effects of the three factors on
hybrid performance. All three factors are significant. The avail-
ability of machine confidence has a larger effect on performance
than either the availability of human confidence or an error
model. The difference in confidence scoring likely contributes to
this difference—the machine classifiers express confidence scores
across all labels simultaneously whereas the human participants
express only a single confidence score associated with the decision.
In addition, the human confidence and error model contribute

Table 1. Accuracy for HM classifier combinations across
image noise and different types of combination models
that vary the presence or absence of an error model,
human confidence scores, and machine classifier confi-
dence scores

Image noise (ω)
Error Human Machine

model confidence confidence 80 95 110 125
� � � 0.933 0.906 0.850 0.748
X � � 0.927 0.899 0.841 0.722
� X � 0.928 0.902 0.844 0.738
X X � 0.925 0.895 0.830 0.707
� � X 0.911 0.883 0.823 0.701
X � X 0.903 0.876 0.815 0.686
� X X 0.901 0.872 0.805 0.674
X X X 0.895 0.858 0.769 0.636

The results are averaged across the five machine classifiers. Each accuracy result is based
on 36,000 observations.

PNAS 2022 Vol. 119 No. 11 e2111547119 https://doi.org/10.1073/pnas.2111547119 5 of 7

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111547119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111547119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111547119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2111547119/-/DCSupplemental
https://doi.org/10.1073/pnas.2111547119


Table 2. Effect of including class-specific error model,
human confidence, and machine classifier confidence
scores on hybrid HM performance

Accuracy (log odds)
Predictors Estimate CI P
Intercept 1.368 1.358–1.377 <0.001
Error model 0.101 0.091–0.110 <0.001
Human confidence 0.104 0.094–0.114 <0.001
Machine confidence 0.257 0.247–0.266 <0.001
Observations 1,152,000

about the same in performance to hybrid performance. Thus, a
simple way to boost performance of hybrid HM classifiers is to
elicit human confidence ratings.

Discussion

Previous work has shown the benefits of separately combining the
predictions of diverse machine classifiers (39–42) or groups of
people (34–38). In this work, we extend these results by system-
atically investigating the factors that influence the performance
of hybrid combinations of machine and human classifiers. We
collected a large-scale behavioral and machine classifier dataset
where both humans and machine classifiers make predictions for
the same data. The results showed that even if performance from
a human exceeds the performance of a machine classifier, adding
the predictions from the machine classifier to a single human can
lead to better performance than combining the predictions of two
humans. The converse is also true. Even if a machine classifier
outperforms humans, a hybrid HM pair can still outperform the
predictions from a combination of machine classifiers that are all
individually outperforming a single human.

Our results have implications for algorithmic systems that
have not yet achieved human-level accuracy (53). Starting with
a human predictor, adding algorithmic predictions (that are less
accurate than the human) may be more beneficial than adding ad-
ditional human predictors. Thus, the benchmark for evaluating AI
algorithms need not necessarily be human-level performance. If an
algorithm does not achieve human-level accuracy, it can still lead
to increased accuracy in combined hybrid predictions. Conversely,
our results also indicate that once AI approaches have exceeded
human performance in particular domains, this does not imply
that human judgment is no longer useful in hybrid HM systems.

However, there are limits to the scope of complementarity.
Prior work has shown empirically that hybrid HM algorithm
systems do not always lead to superior performance (33, 54, 55).
Our results in this paper go beyond these earlier studies, both
theoretically and empirically, and show specifically what factors
contribute to complementarity (25). In particular, the key limiting
factor for complementarity is the degree of correlation between
human and machine classifier predictions. A large correlation
leads to limits on the accuracy difference between classifiers that
can support complementarity. This result has implications for
human–AI collaborative settings where algorithms are used as
decision aids (55, 56). Effective AI advice should not only be
accurate but also be as independent as possible from human
judgment. Independence of the AI component from the human
could, for example, be increased by leveraging different mecha-
nisms to produce predictions or changing the objective function
for the AI model (31). Interestingly, the goal of decreasing the
correlation between human and algorithmic predictions stands
in contrast with modeling natural intelligence, where the goal
is to create computational models that mimic human internal
processing mechanisms (28).

Another important factor is the role of both human and
machine classifier confidence scores. While machine classifier
scores have been used before in hybrid HM systems (57), human
confidence is often not elicited (29, 58). However, our results
show that human confidence ratings can significantly increase
hybrid performance and are as effective in improving combined
performance as inferring an explicit error model that can correct
for class-specific errors and biases. Confidence scores allow differ-
ing abilities of human and machine classifiers to be resolved at the
level of individual instances.

Overall, our results add to a growing literature showing the
advantages of combining human and AI predictions in areas such
as crowdsourcing (29, 58, 59), providing a framework for assessing
hybrid combinations of human and machine predictions, with
potential applications in high-stakes domains such as medicine
(60–62) and the justice system (63, 64).

Materials and Methods

Images for Experiments. There are 1,200 unique images total in our dataset,
divided equally into 16 classes (chair, oven, knife, bottle, keyboard, clock, boat,
bicycle, airplane, truck, car, elephant, bear, dog, cat, and bird). The images and
categories are based on a subset of the ImageNet Large Scale Visual Recognition
Challenge (ILSRVR) 2012 database (65). As ground truth labels we used the
original labels from the ILSRVR database. To create a more challenging classi-
fication task for both the human participants and machine classifiers, images
were distorted by phase noise at each spatial frequency, where the phase noise
is uniformly distributed in the interval [−ω,ω] (66). Four levels of phase noise,
ω = {80, 95, 110, 125}, were applied to each of the 1,200 unique images,
resulting in 4,800 images (see SI Appendix, Fig. S3 for examples).

Behavioral Image Classification Experiment. The behavioral image classifi-
cation dataset consists of 28,997 human classifications from a total of 145 partic-
ipants. The experimental protocol was approved by University of California, Irvine
Institutional Review Board. Informed consent was obtained from participants
before continuing to the classification task. Each participant classified 200 images
into the 16 categories. For each classification, participants also provided a discrete
confidence level (low, medium, or high). The behavioral classification dataset
contains at least six human classifications for each of the 4,800 images. Human
performance decreases as a function of image noise (SI Appendix, Fig. S4), and
accuracy varies systematically as a function of expressed confidence, showing that
confidence is related to decisional uncertainty.

Machine Classifier Predictions. We created a set of machine classifier predic-
tions for the 4,800 images and the set of 16 classes in the behavioral dataset. For
each image, each classifier produces a probability vector over the 16 classes, con-
taining the confidence scores for each class. The class associated with the highest
probability corresponds to the classification for the image. To vary performance of
the machine classifiers relative to human performance, we selected five different
machine classifiers pretrained for ImageNet: AlexNet (67), DenseNet161 (68),
GoogleNet (69), ResNet152 (70), and VGG-19 (71). To create additional levels of
performance variation, we retrained the models to varying degrees to adapt to
the image distortions. For each of the five classifiers, we retrained four variants of
each model, based on how many passes through the noisy images data (epochs)
are used during stochastic gradient training, producing in effect four variants
that are adapted/fine-tuned to varying degrees of noise. The models were fine-
tuned for either 0 epochs (baseline), between 0 and 1 epochs, 1 epoch, and 10
epochs. The second level of fine tuning (0 to 1 epochs) was based on a checkpoint
during training before 1 epoch was reached, leading to a performance level
intermediate between baseline and 1 epoch of training. The different machine
classifiers produce a variety of performance levels relative to human performance,
with some fine-tuned VGG-19 and DenseNet161 classifiers exceeding human
performance at the high image distortion levels (SI Appendix, Fig. S4).

Data Availability. The analysis code and data are available at Open Science
Foundation (OSF) (https://osf.io/2ntrf/?view only=9ec9cacb806d4a1ea4e2f8
acaada8f6c).
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