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Development of a Machine Learning Model to Predict
Recurrence of Oral Tongue Squamous Cell Carcinoma
Yasaman Fatapour 1 , Arash Abiri 1,2 , Edward C. Kuan 2 and James P. Brody 1,*

1 Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA;
yfatapou@uci.edu (Y.F.)

2 Department of Otolaryngology‑Head and Neck Surgery, University of California, Irvine, CA 92604, USA
* Correspondence: jpbrody@uci.edu; Tel.: +1‑949‑824‑2471

Simple Summary: In this study, we developed a generic framework to analyze the Surveillance, Epi‑
demiology, and End Results (SEER) database to generate reliable machine learning (ML) prediction
models for cancer recurrence. As a proof‑of‑concept, using 130,979 oral tongue squamous cell car‑
cinoma patients, we generated ML models to predict 5‑ and 10‑year recurrence with high accuracy,
recall, and precision. Thus, we demonstrate an effective framework for guiding future ML efforts in
predicting cancer recurrence using the SEER database, with implications for the guidance of patient
management and follow‑up care.

Abstract: Despite diagnostic advancements, the development of reliable prognostic systems for as‑
sessing the risk of cancer recurrence still remains a challenge. In this study, we developed a novel
framework to generate highly representative machine‑learning prediction models for oral tongue
squamous cell carcinoma (OTSCC) cancer recurrence. We identified cases of 5‑ and 10‑year OTSCC
recurrence from the SEER database. Four classification models were trained using the H2O ai plat‑
form, whose performances were assessed according to their accuracy, recall, precision, and the area
under the curve (AUC) of their receiver operating characteristic (ROC) curves. By evaluating Shap‑
ley additive explanation contribution plots, feature importance was studied. Of the 130,979 patients
studied, 36,042 (27.5%) were female, and the mean (SD) age was 58.2 (13.7) years. The Gradient
Boosting Machine model performed the best, achieving 81.8% accuracy and 97.7% precision for
5‑year prediction. Moreover, 10‑year predictions demonstrated 80.0% accuracy and 94.0% precision.
The number of prior tumors, patient age, the site of cancer recurrence, and tumor histology were
the most significant predictors. The implementation of our novel SEER framework enabled the suc‑
cessful identification of patients with OTSCC recurrence, with which highly accurate and sensitive
prediction models were generated. Thus, we demonstrate our framework’s potential for application
in various cancers to build generalizable screening tools to predict tumor recurrence.

Keywords: oral tongue squamous cell carcinoma; cancer recurrence; machine learning; oral cancer;
artificial intelligence

1. Introduction
Oral tongue squamous cell carcinoma (OTSCC) is a common head and neck neoplasm

that accounts for approximately 1%of newcancer cases diagnosed in theUnited States each
year [1]. Despite advancements in cancer therapeutics and surgical techniques, the world‑
wide incidence of OTSCC is on the rise, and adequate OTSCC management still remains
a challenge, with 5‑year survival rates for patients averaging at about 50% [2–5]. With re‑
cent studies reporting recurrence rates as high as 32.7%, further investigations aimed at
optimizing treatment regimens and post‑therapy follow‑up are critical for enhancing pa‑
tient outcomes [6–8].
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The advent of machine learning (ML) and its adoption by the medical community has
enabled unique perspectives and solutions for numerousmedical challenges. Over the past
decade, scientific efforts have demonstrated the utility of machine learning in guiding can‑
cer diagnosis and management in a variety of medical fields, including general surgery,
neurosurgery, and otolaryngology [9–13]. Specifically, many studies have applied ma‑
chine learning techniques for predicting tumor diagnosis, tumor recurrence, and patient
survival in the context of various cancers [14–21]. Recently, Alabi et al. and Karadaghy
et al. demonstrated the capacity for ML to elucidate models and predict recurrence and
survival, respectively, in OTSCC patients [22,23]. However, as with many of their prede‑
cessors, these studies are limited by the small samples of patients fromwhich their models
were trained.

Over the past two decades, a widespread shift toward the use of electronic medical
records has resulted in a rapid accumulation of digital medical data, from which large
administrative registries have been formed. The Surveillance, Epidemiology, and End Re‑
sults (SEER) program, in particular, provides one of the largest cancer databases in the
United States and represents nearly 48% of the national population. Recently, ML experts
have been able to leverage the expansive nature of the SEER database to generate more
precise and representative models to predict patient survival. However, to date, there is a
paucity of studies that have attempted to utilize this database for predicting the recurrence
of cancer following treatment and complete remission.

Thus, in this study, we developed a novel algorithm to identify cases of cancer recur‑
rence in the SEER database, from which we generated ML models to accurately predict
5‑ and 10‑year locoregional OTSCC recurrence. By using simple and commonly acquired
prognostic markers as the basis of our models, we enabled our system to be more accessi‑
ble and easily adoptable by a wide range of practitioners. Furthermore, we leveraged our
nationally representativeMLmodels to accurately classify patients into low‑ and high‑risk
categories. Hence, our system not only lays a foundation for future ML efforts in predict‑
ing cancer recurrence using the SEER database but also serves as an accurate data‑driven
tool for the prediction of OTSCC recurrence, with implications for the guidance of cancer
management and follow‑up medical care.

2. Methods
A novel strategy was implemented for extracting cases from the SEER database with

the goal of identifying the locoregional recurrence of cancer within 5‑year and 10‑year pe‑
riods. As further detailed in the sections below, SEER*Stat version 8.3.9 (Surveillance Re‑
search Program, National Cancer Institute, Bethesda, MD, USA) was used to extract data
from 18 SEER registries from 2000 to 2018. After processing the data and extracting vari‑
ables of interest, the dataset grouping, feature extraction, and training and validation of
the model were performed (Figure 1).

2.1. Seer Database Query (Data Source)
The 2000–2018 SEER database is a deidentified registry that reports cancer incidence

and survival data on approximately 48% of the national population, serving as one of the
largest and most comprehensive efforts for tracking oncological cases within the U.S. Due
to the massive scale of available data, this work utilized SEER as its target database. Due
to the anonymized and public nature of the SEER database, this study was exempt from
the University of California Irvine Institutional Review Board’s approval.

The database was queried for patients diagnosedwith OTSCC using the International
Classification of Disease for Oncology, 3rd Edition (ICD‑O‑3) topography codes for the
oral tongue (C02.0‑C02.9) and histology/behavior codes for squamous cell carcinoma (SCC;
8010/3, 8020/3, 8021/3, 8070/3, 8071/3, 8072/3, 8073/3, 8074/3, 8082/3). The following demo‑
graphic and clinical variables of interest were used to train our machine learning models
for age, sex, race, marital status, year of diagnosis, the number of prior tumors, tumor site
(e.g., ventral surface of the tongue, dorsal surface of the tongue, border of the tongue),
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histology, tumor grade, T/N/M stage, and administered treatments (i.e., surgery, radia‑
tion, chemotherapy). To account for variant‑specific OTSCC behavior, histology was strat‑
ified into the following prognostic categories: nonkeratinizing SCC with maturation, un‑
differentiated nonkeratinizing SCC, differentiated nonkeratinizing SCC, and keratinizing
SCC [24]. Furthermore, each case contained a sequence number that provided information
on the number of all reportable primary tumors that occurred over the lifetime of a patient.
This variable was used to calculate the “Number of prior tumors”, which was defined as
the sequence number minus one. All cases with unknown or missing sociodemographic
or outcome variables were excluded.
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Figure 1. Schematic of data processing and model development. The model development process,
data cleaning, and machine learning steps were performed in the R studio and H2O.ai tool.

2.2. Patient Grouping and Feature Extraction
Each individual case in the SEER dataset was defined by a unique patient identifi‑

cation number. The cases were first grouped according to their patient IDs before being
subsequently sorted within their groups using their sequence numbers. Next, a series of
validations were performed for all patients and their respective cases. These validations fo‑
cused onminimizing errors in later classification steps by eliminating conditionswhere the
“state of recurrence” (recurrence = true/false) could not be determined with absolute con‑
fidence based on the available SEER data. The following validations were implemented:
1. The oral tongue should be the primary site of the first case for each patient.
2. All cases corresponding to patients with missing or unknown values for any vari‑

able critical for analysis, including the Total Number of Malignant Tumors, Sequence
Number, Survival Months, and Year of Diagnosis, were filtered out.
In the final step of the algorithm, we computed the target outcome variable, “Will

Recure”. This variable, which was computed for each individual case, defined whether
or not a case would recure in locoregional sites within the defined period of time (5 and
10 years). Of note, due to SEER coding guidelines, a recurrence that occurred at the exact
same topographical code as its prior incident case was not reported in the database and,
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thus, was unavailable for analysis. A non‑recurrencewas defined as a patient that had only
one primary tumor and survived longer than the target window (e.g., 5 years). Conversely,
if there was another recurrence of cancer within the target window and in the same region
as the initial tumor, then the case was marked “Will Recur” = true. It is worth noting that,
based on the algorithm above, the last case for a patient with multiple primary tumors (i.e.,
multiple cases) would be marked as will not recur if the patient survived longer than the
target window without another recurrence of cancer. This is critical as it tends to indicate
successful treatment.

2.3. ML Training & Validation (Balancing, under Sampling, Number of Runs and Distribution
of Data)

We used the H2OAI platform (H2O.ai, Inc., Mountain View, CA, USA) in conjunction
with anR statistical computing environment (version 3.6.1; The R Foundation for Statistical
Computing) to train and test numerous machine learning models with the goal of identi‑
fying the best model for the prediction of the locoregional recurrence of OTSCC. In order
to properly validate and test each model, the dataset was split into training (80%) and test
(20%) sets. H2O’s Automl function was used to run through different machine learning
algorithms and evaluate various hyperparameters for each algorithm [25]. Using the H2O
Automl function, we trained and evaluated various machine learning algorithms, includ‑
ing the gradient boostingmachine (GBM), distributed random forest (DRF), deep learning,
logistics regression, and generalized linear model (GLM) [25–31]. To prevent overfitting
during the training phase, we initially assessed the performance of these models using a
5‑fold cross‑validation technique. The trained models were ranked based on their AUC
values, and we selected the top four models for further evaluation on an unseen data split.

The evaluation metrics, accuracy, precision, recall (sensitivity), and area under the
curve (AUC) for the receiver operating characteristic (ROC) were computed for the top
four predictive models on a separate 20% test set. The method to compute these hyperpa‑
rameters is presented in Equations (1)–(3).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Precision =
TP

(TP + FP)
(2)

Recall =
TP

TP + FN
(3)

Due to the unbalanced nature of the dataset, with fewer recurrence cases compared
to non‑recurrence cases (13,873 non‑recurrence vs. 657 recurrence cases for 5 years and
6129 non‑recurrences vs. 971 recurrence cases for 10 years), we evaluated two approaches
for balancing the data. The first was oversampling, which involved synthesizing new ex‑
amples from the existing samples for the minority class [22]. The downside of oversam‑
pling is that it introduces the risk of overfitting and/or introducing mathematically valid
yet logically non‑sensical sample sets. The second approach was under‑sampling, which
involved randomly selecting examples from the majority class to remove from the train‑
ing dataset. In general, under‑sampling is the preferred method, particularly for a large
dataset [32,33]. In this case, the application of the massive SEER dataset helped make the
utilization of the under‑sampling approach a reality, further strengthening the accuracy of
the final model. H2O was executed with a 5‑fold cross‑validation, which was configured
for a maximum runtime of 600 s. For each ML model, 5 different runs were executed, and
the average performances of the top fourMLmodels were compared using the areas under
the curves (AUCs) for the receiver operating characteristic (ROC) curves.



Cancers 2023, 15, 2769 5 of 12

3. Results
3.1. Study Population Characteristics and Cancer Recurrence Information

A total of 136,826 cases were extracted from the SEER dataset, which represented
130,979 unique patients. Two models were trained: one focusing on the locoregional re‑
currence of OTSCC in a 5‑year period and the other in a 10‑year period. In the 5‑year anal‑
ysis, 14,530 patients met the inclusion criteria, of which 657 suffered from a locoregional
recurrence. For the 10‑year analysis, 7100 patients met the inclusion criteria, of which
971 experienced a locoregional recurrence. It is worth noting that only patients alivewithin
the follow‑up period (5‑ or 10 years) were considered in our analyses. Table 1 shows a sum‑
mary of predictors that were used to train the machine learning model.

Table 1. Summary of the sociodemographic and clinical predictors used in developing ML models
for the prediction of OTSCC recurrence.

Variable
5‑Year (N = 14,995) 10‑Year (N = 7342)

No. (%) No. (%)

Mean Age, years (SD) 58.4 (11.5) 56.2 (11.5)

Sex

Male 10,636 (72.0) 4075 (67.7)

Female 4129 (28.0) 1943 (32.3)

Race

White 13,261 (89.8) 5991 (90.1)

Black 706 (4.8) 270 (4.1)

Asian 798 (5.4) 387 (5.8)

Marital Status

Single 5056 (34.2) 2040 (30.7)

Married 9709 (65.8) 4608 (69.3)

Number of Prior Tumors

0 14,051 (95.2) 6324 (95.1)

1 496 (3.4) 232 (3.5)

2 161 (1.1) 77 (1.2)

3 46 (0.3) 14 (0.2)

4+ 11 (0.1) 1 (0.0)

Histology

Nonkeratinizing SCC with maturation 11,468 (77.7) 5276 (79.4)

Undifferentiated nonkeratinizing SCC 86 (0.6) 39 (1.0)

Differentiated nonkeratinizing SCC 824 (5.6) 288 (4.3)

Keratinizing SCC 2286 (15.5) 993 (15.0)

SCC NOS 101 (0.7) 52 (1.0)

Tumor Grade

Well‑differentiated 2262 (18.8) 1067 (19.7)

Moderately differentiated 5752 (47.8) 2585 (47.6)

Poorly differentiated 3896 (32.4) 1710 (31.5)

Undifferentiated 117 (1.0) 64 (1.2)

T‑Stage

T1 4443 (46.7) 1594 (50.0)

T2 3274 (34.4) 1109 (34.8)

T3 1013 (10.6) 262 (8.2)

T4 784 (8.2) 221 (6.9)
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Table 1. Cont.

Variable
5‑Year (N = 14,995) 10‑Year (N = 7342)

No. (%) No. (%)

N‑Stage

N0 5110 (45.5) 1918 (48.3)

N1 1968 (17.5) 764 (19.2)

N2 3847 (34.3) 1187 (29.9)

N3 296 (2.6) 102 (2.6)

M‑Stage

M0 11,200 (99.3) 3913 (99.2)

M1 75 (0.7) 30 (0.8)

Surgery

Yes 6125 (41.8) 2506 (37.5)

No 8519 (58.2) 4185 (62.5)

Radiation

Yes 8965 (60.7) 3811 (57.3)

No 5800 (39.3) 2837 (42.7)

Chemotherapy

Yes 6598 (44.7) 2632 (39.6)

No 8167 (55.3) 4016 (60.4)
SCC: Squamous Cell Carcinoma; NOS: Not Otherwise Specified; values are based on the number of cases.

3.2. Model Prediction and Development (Performance Metric for the Algorithm)
To identify the most predictive model, the AUC of the ROC curve was used as a met‑

ric to compare the performance of four machine learning algorithms: Generalized Linear
Model (GLM), Gradient Boosting Machine (GBM), Distributed Random Forest (DRF), and
deep learning (artificial neural network, Figure 2) on the test split.
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Figure 2. ROC plots of four developed ML models. Performance of Gradient Boosting Machine
(GBM), Generalized Linear Model (GLM), Distributed Random Forest (DRF), and deep learning (ar‑
tificial neural network) models in predicting (A) 5‑year and (B) 10‑year OTSCC recurrence. Patient’s
data were split into an 80% training set and a 20% test set and 5‑fold cross‑validation was performed
in each run.

The performance metrics of the top four ML models are shown and compared in
Table 2. The GBM classification model with an AUC of 0.75 (0.01) and 0.74 (0.02) outper‑
formed all other models for both the 5‑year prediction and 10‑year prediction, respectively.
Of note, the accuracy, recall, and precision of the model could be calculated at different
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thresholds within the graph of the ROC curve. Thus, the optimum threshold for each
model varied depending on the definition and application of the classification problem.
For example, a screening tool may require high recall and precision. For this proof‑of‑
concept effort, we focused on using the model as a screening tool and, therefore, aimed
to increase recall without a major sacrifice of accuracy. Therefore, the best overall per‑
formance for predicting OTSCC recurrence was achieved by the GBM model with 81.8%
accuracy, 83.0% recall, and 97.7% precision for a 5‑year prediction, and 80.0% accuracy,
82.8% recall, and 94.0% accuracy for 10‑year prediction.

Table 2. Performance metrics of the top 4 machine learning models for predicting 5‑ and 10‑year
cancer recurrence. The GBM model exhibited the highest AUC and accuracy for both prediction
windows.

Prediction Window Classification Model AUC
(SD)

Accuracy %
(95% CI)

Recall %
(SD)

Precision %
(SD)

5 Years

GBM 0.75 (0.01) 81.8 (79.7–83.9) 83.0 (0.02) 97.7 (0.002)

GLM 0.73 (0.02) 77.4 (74.5–80.2) 78.1 (0.03) 98.0 (0.002)

DRF 0.73 (0.03) 72.8 (69.8–75.7)) 73.3 (0.02) 97.8 (0.003)

Deep Learning 0.70 (0.04) 82.1 (74.7–89.6) 83.5 (0.06) 97.6 (0.002)

10 Years

GBM 0.74 (0.02) 80.0 [75.3, 84.1] 82.8 (0.04) 94.0 (0.004)

GLM 0.73 (0.02) 78.4 [74.2, 82.7] 81.0 (0.04) 94.3 (0.002)

Deep Learning 0.71 (0.02) 74.4 [70.1, 78.8] 76.6 (0.04) 94.0 (0.002)

DRF 0.69 (0.01) 70.6 [68.0, 73.3] 72.2 (0.02) 93.8 (0.004)

AUC: Area Under Curve; GBM: Gradient Boosting Machine; GLM: Generalized Linear Model; DRF: Distributed
Random Forest; performance metrics were reported as an average of five runs.

In addition to the performance metrics of the model, we were also interested in the
impact of each individual feature on the predictive outcome. The Shapley Additive ex‑
Planations contribution plot (SHAP) illustrated how the GBM model arrived at its results
(Figure 3) and explored the non‑linearity effects on the features of thismodel [34]. It ranked
(from top to bottom) the importance of each feature in a predictive model based on all the
possible pairs of coalitions between predictors of the model. A higher importance score
was indicative of a higher contribution to the model’s predictive ability. As shown, the
number of prior tumors, age, and tumor site were the most important factors for determin‑
ing the probability of the locoregional recurrence of OTSCC.
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4. Discussion
In this study, we developed a novel framework with which to identify cases of can‑

cer recurrence from the SEER database alongside generalizable and highly representative
machine‑learning models that could be generated. We demonstrated the utility of this
framework by developing ML models that predicted 5‑ and 10‑year cancer recurrence
with high accuracy and precision using a large population‑based cohort of OTSCCpatients.
Specifically, of the four ML algorithms that we employed, the GBM‑based model showed
the most promise, demonstrating accuracies of 82% and 80% for 5‑year and 10‑year recur‑
rence, respectively. Of note, we observed a recurrence rate of ~5%, which was lower than
the 16–33% recurrence rate that has been previously reported [8,35,36]. This was due to the
stringent exclusion criteria that we applied, which required that patients with certain miss‑
ing or unknown case information were excluded from the analysis. However, we do not
anticipate this lower prevalence to have influenced our findings since, unlike traditional
regression techniques that compute likelihood or risk scores based on a sample’s observed
event rate, ourmachine learningmodel was trained using an under‑sampling approach on
the majority class (non‑recurrence) in order to be tolerant of deviations from true popula‑
tion prevalence rates. Ultimately, by using simple andwidely accessible demographic and
clinical variables as the basis for model training, our sensitive prediction model showed
promise in serving as a screening tool with which to assist clinicians in managing OTSCC
patients during and after their treatment course.

Although significant progress has beenmade in cancer diagnostics and treatment, the
prognosis of OTSCC is still poor, with many patients experiencing cancer recurrence and
surviving less than 10 years after their initial diagnosis [23,37]. By developing a predic‑
tive screening tool, treatment teams can be better informed of a patient’s risk for cancer
recurrence and modify their management strategy accordingly. Additionally, the mortal‑
ity rate in recurrent cases of OTSCC is highly dependent on the time of diagnosis, with the
early detection of recurrence being associatedwith reducedmortality [38,39]. By using our
highly representative and sensitive classification models, clinicians can be better informed
of which patients are at a higher risk of OTSCC recurrence and cater to their management
and follow‑up to ensure timely diagnosis if a recurrence were to occur.

In our analysis, we used SHAP to explain the predictionsmade by the Gradient Boost‑
ing model and interpret the tangled nonlinear relationships between the features and local
regional recurrence of OTSCC. Consequently, we found that the number of prior tumors,
patient age, tumor site, chemotherapy, tumor histology, and tumor grade were consis‑
tently the most influential features when predicting cancer recurrence. Thus, by devel‑
oping an artificial intelligence (AI) model in the context of a highly representative popula‑
tion for cancer recurrence and analyzing the nonlinear effect of features through the SHAP
method, we found some of the features to be more prognostic compared to those that were
traditionally considered major prognostic factors in oral tongue cancer recurrence, such
as lymphatic invasion or the T‑stage [8,36]. Importantly, these findings do not discount
the prognostic importance of previously reported clinical factors but rather highlight cer‑
tain factors that may be generally considered highly prognostic across a more diverse and
heterogeneous patient population.

In a recent institutional study, Alabi et al. similarly demonstrated success in predict‑
ing locoregional recurrence in OTSCC. However, despite their impressive results, their
modelswere trained using only 217 cases of early‑stageOTSCC,which largely limited their
system’s applicability to more advanced tumors alongside its external validity against the
general population, where the spectrum of disease behavior and progression ismuchmore
diverse than what is experienced at a single institution. Interestingly, the authors found
that certain specialized histopathological parameters, such as lymphocyte host response,
the pattern of invasion, depth of invasion, and perineural invasion, were particularly im‑
portant features in their prediction models. Owing to the limitations of the SEER database,
our models were trained without using these clinical features. While the lack of depen‑
dence on these specialized histopathological parameters expanded the accessibility of our
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system to a broader range of clinical facilities where such information may not be readily
available, the consideration of these features may be warranted in future generations of
ML models where a higher prediction accuracy in lieu of increased accessibility is desired.

Previous studies have reported on the significance of genetic predisposition in head
and neck squamous cell carcinoma (HNSCC) [40,41]. Moreover, genetic and environmen‑
tal factors, including a history of prior head and neck cancer, have been shown to be as‑
sociated with the recurrence of HNSCC [42,43]. The influence of patient age on prognosis
has also been previously established. In a large retrospective study of OTSCC patients,
Mukdad et al. demonstrated that older patients were associated with more advanced dis‑
ease and worse survival [5]. It was hypothesized that this worse prognosis was partly
due to a tendency for clinicians to treat younger patients more aggressively with multi‑
modality therapy. Interestingly, younger patients were also observed to less frequently
present with metastatic lymph nodes. Indeed, survival and recurrence rates have been
reported to be largely influenced by the presence of nodal disease [44]. As such, cancer re‑
currence at a regional site can be suggestive of a more aggressive disease with a tendency
to recur following treatment. In a cohort study, Wolfer et al. suggested that aggressive
neoplastic behavior is strongly dictated by tumor histology [45]. Specifically, the degree
of keratinization in oral squamous cell carcinoma was demonstrated to be an important
prognostic factor for recurrence and survival. Other recent studies have reached similar
conclusions and have even created recurrence risk models on the sole basis of histological
parameters [46–49].

To our knowledge, this is one of the first studies to develop an algorithm that can
identify cases of cancer recurrence from the expansive and widely used SEER database,
laying a basis for future investigations across a variety ofmedical fields. Through the use of
this novel framework, we also present one of the firstmachine learning‑based classification
models that can accurately predict 5‑ and 10‑year recurrence in OTSCC patients using only
commonly available demographic and clinical features.

There are, however, limitations to this study that areworthmentioning. Since patients
were extracted from a de‑identified national database, these data might be susceptible to
information bias. Additionally, despite including a number of sociodemographic and clin‑
ical variables in our models, we would like to point out that certain potentially valuable
histopathological (e.g., lymphocyte host response, perineural invasion, depth of invasion,
tumor budding, and worst pattern of invasion) and clinical features (e.g., the timing of
treatments, radiation dose, HPV status, neck dissection) were not accounted for due to
the limitations of the SEER database. Despite these constraints, we were able to develop a
model with high predictability for the locoregional recurrence of OTSCC. We believe that
incorporating these site‑specific variables along with other clinical and sociodemographic
variables can only enhance the predictive power of these models [6,8,22,42,50]. We hope
that this study will encourage the inclusion of such variables in future updates to SEER
and other large‑scale clinical datasets. Furthermore, we hope that this work will encour‑
age future studies that focus on additional enhancements, such as hyperparameter tuning,
increasing the training time, and utilizing alternative decision tree‑based models such as
xGBoost [51–53].

5. Conclusions
In this study, we developed a novel framework that could identify cases of cancer

recurrence from the SEER database. Using a population‑based sample of over 130,979
patients, we developed several highly accurate and sensitive machine‑learning models to
predict OTSCC recurrence. Despite the use of simple and commonly available prognostic
markers as the sole features for ourmodel training, the GBM‑basedmodel was nonetheless
able to achieve prediction accuracies of 82% and 80% for 5‑ and 10‑year cancer recurrence,
respectively. With our framework’s ability to be applied to a wide variety of cancers, we
believe that this tool can have significant implications in future oncologic research efforts
that are aimed toward improving disease management and optimizing patient outcomes.
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