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Abstract Microglia are considered the brain’s resident im-
mune cell involved in immune defense, immunocompetence,
and phagocytosis. They maintain tissue homeostasis within
the brain and spinal cord under normal condition and serves as
its initial host defense system. However, when the central
nervous system (CNS) faces injury, microglia respond
through signaling molecules expressed or released by neigh-
boring cells. Microglial responses are dual in nature. They
induce a nonspecific immune response that may exacerbate
CNS injury, especially in the acute stages, but are also essen-
tial to CNS recovery and repair. The full range of microglial
mechanisms have yet to be clarified, but there is accumulating
knowledge about microglial activation in acute CNS injury.
Microglial responses require hours to days to fully develop,
and may present a therapeutic target for intervention with a
much longer window of opportunity compare to other neuro-
logical treatments. The challenge will be to find ways to
selectively suppress the deleterious effects of microglial acti-
vation without compromising its beneficial functions. This
review aims to provide an overview of the recent progress
relating on the deleterious and beneficial effect of microglia in
the setting of acute CNS injury and the potential therapeutic
intervention against microglial activation to CNS injury.
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Introduction

Microglia represent anywhere from 5 to 20 % of the total glial
population and are key modulators of the immune response in
the brain (Kreutzberg 1996). Under normal physiological
conditions, these highly dynamic and motile cells are spread
throughout the brain and spinal cord and constantly survey
their microenvironment for noxious agents and injurious pro-
cesses (Nimmerjahn et al. 2005). They respond to extracellu-
lar signals and are responsible for clearing debris and toxic
substances by phagocytosis, thereby maintaining normal cel-
lular homeostasis in the central nervous system (CNS)
(Hanisch and Kettenmann 2007). Therefore, under non-
pathological conditions there is continuous low-level
microglial activity in the CNS which is primarily involved in
activity-dependent synaptic pruning and repair (El Khoury
et al. 1998).

However, in the event of infection, inflammation, trauma,
ischemia, and neurodegeneration, microglia quickly respond
and can undergo morphologic transformation from a resting
state referred to as “ramified” to an active “amoeboid” state,
where they become virtually indistinguishable from circulat-
ing macrophages (Kreutzberg 1996; Thomas 1992).
Therefore, activated microglia are often called “resident brain
macrophages”. This is also stems from the fact that microglia
are of mesodermal origin as are macrophages. The origin of
brain microglia and whether microglia are renewed in situ or
are replenished by precursors originating outside of the CNS
is the subject of controversy (Lawson et al. 1992; Priller et al.
2001; Simard et al. 2006; Ajami et al. 2007; Mildner et al.
2007). The current thinking is that embryonic hemoatopoietic
waves of microglial recruitment and differentiation occur in
the CNS, and that maintenance and local expansion of mi-
croglia are solely dependent on the self-renewal of CNS
resident cells (Ajami et al. 2007; Ginhoux et al. 2010), rather
than continuous replenishment from the periphery.
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Microglial normally display a ramified appearance, but
when activated, microglia become amoeboid and it are indis-
tinguishable from macrophages and circulating monocytes,
not only morphologically, but also with regard to surface
markers and function (Saijo and Glass 2011; Appel et al.
2011). Despite the many similarities between microglia and
macrophages, there are a few reports regarding cell type
specific gene transcription mechanisms in these tow cell types
(Durafourt et al. 2012; Lee et al. 2014). There are also several
reports using bone marrow chimera model obtained by trans-
plantation of lethally irradiated recipients to distinguish the
microglia to macrophages (Tang et al. 2012b; Evans et al.
2014). However, due to technical issues, such as BBB disrup-
tion by irradiation permitting influx of circulating myeloid
cells, limit the interpretation of data generated by this ap-
proach (Ajami et al. 2007; Ginhoux et al. 2010).

Accumulating evidence now indicates that activated
microglial responses can be detrimental as well as beneficial
after CNS injury (Fig. 1). Once activated, microglia are
thought to release a variety of inflammatory and cytotoxic
mediators contributing to cell damage and cell death leading
to exacerbated damage (Wood 1995; Lai and Todd 2006).
Deleterious effects seem to be predominated especially in
the acute stages of CNS injury, while beneficial activities
characterize later stages. Recent studies demonstrated that
microglia and macrophages can be activated into two major
phenotypes: classically activated (M1) and alternatively acti-
vated (M2) (Chawla 2010; Gordon and Taylor 2005;
Geissmann et al. 2010). Lipopolysaccharide (LPS) and the
pro-inflammatory cytokine IFNγ promote M1 phenotype,
which produces high levels of pro-inflammatory cytokines
and oxidative metabolites such as IL-12, TNF-α, IL-6, IL-
1β, and nitric oxide (NO), factors previously shown to cause

additional damage. In contrast, M2 cells are activated in
response to IL-4 or IL-13 (Nair et al. 2006; Nguyen et al.
2011), which are thought to suppress inflammation, tissue
repair, and promote wound healing (Colton 2009). Hu et al.
and Wang et al. recently reported that local microglia and
recruited macrophages assume a M2 phenotype at an early
stage, peaking at around 5 days from injury, gradually
transforming into a M1 phenotype at the sites of injury in
ischemic stroke and traumatic brain injury. TheM1 phenotype
seems to be primed by ischemic neurons and leads to exacer-
bated neuronal damage, whereas M2 protects against it (Hu
et al. 2012; Wang et al. 2013). This raises the importance of
the understanding of different phenotype and their function of
microglia (Mantovani et al. 2004; Mosser and Edwards 2008).

Microglia require longer time windows to fully develop as
described later, and thus presents a good target for therapeutic
intervention with a much longer window of opportunity com-
pare to other neurological treatment. The challenge will be to
find ways to selectively suppress the deleterious effects of
microglial activation after CNS injury without compromising
repair and remodeling.

In this review, the authors will focus on the deleterious and
beneficial effect of microglia in the setting of acute CNS
injury and the potential therapeutic intervention against
microglial activation to the CNS injury.

Mechanisms of microglial cytotoxicity and cellular
protection

Microglia, like macrophages, respond to invading pathogens
by facilitating rapid sequestration and killing of microorgan-
isms and limit the effects of damage and cell necrosis
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Fig. 1 Schematic of the time
course of microglial activation
after CNS injury. Temporal
evolution of M1 and M2
microglial polarization ratios is
indicated
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(Ransohoff and Perry 2009). These responses include rapid
migration, proliferation, and release of superoxide, nitric ox-
ide (NO), proteases, cytokines, and phagocytosis of the dam-
aged cells. However, some of these reactions may lead to
deleterious effects to the CNS.

Superoxide and nitric oxide

Superoxide, produced by the partial reduction of molecular
oxygen, is a reactive species which interacts with other mol-
ecules to produce more highly reactive oxygen species, such
as peroxynitrite, hypochlorous acid, carbonyl radical, and
hydroxyl radical, all of which are directly cytotoxic to neurons
and other cells. Superoxide and other reactive species are also
pro-inflammatory signaling molecules which promote
microglial activation in a feed-forward manner (Mander
et al. 2006; Kauppinen et al. 2008). The production of super-
oxide in microglia occurs primarily by NADPH oxidase
(NOX), of which several isoforms have been characterized
(Groemping and Rittinger 2005; Lambeth 2004). The major
isoform found in immune cells including microglia is NOX2,
or professional NOX. Activation of NOX through has been
demonstrated in brain ischemia and related disorders, and its
inhibition or deficiency has been shown to be protective (Tang
et al. 2012a). While NOX2 is present in both microglia and
circulating immune cells, one study using a bone marrow
chimera model suggested that the detrimental effects of
NOX-generated superoxide was due to NOX present in brain
cells (Walder et al. 1997). However, work from our own group
using a similar approach indicated that while superoxide gen-
erated byNOX in bothmicroglia and circulating immune cells
contributed to ischemic brain injury (Tang et al. 2011; Yenari
et al. 2006), NOX in circulating immune cells contributed
more to injury.

Nitric oxide (NO) is another major reactive species pro-
duced by immune cells. Activated microglia produce NO
through inducible nitric oxide synthase (iNOS). The cytotox-
icity of NO is thought to be due primarily to its reactive
metabolite, peroxynitrite, which is formed by reaction with
superoxide (Beckman and Koppenol 1996). However, like
superoxide, NO is also a powerful signaling molecule, and
also promotes pro-inflammatory responses in a feed forward
manner.

Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are proteases that can
break down extracellular proteins, such as collagen, and are
involved in extracellular matrix remodeling. MMPs are nor-
mally found in the microglial cytosol as an inactivated state,
they are cleaved by proteases such as plasmin or other MMPs
to their active state (Rosenberg 2002). Some MMPs, notably
MMP-2 also have direct cytotoxic effects and can disrupt the

blood–brain barrier (Candelario-Jalil et al. 2009). Microglia
are the major source of MMP, especially MMP-3 and -9
(Rosenberg et al. 2001; del Zoppo et al. 2007). Recent work
has indicated that fibronectin and vitronectin, substances typ-
ically found in the plasma, can activate microglial cells to
generate pro-MMP-9 (del Zoppo et al. 2012). Bone marrow
chimera models, where bone marrow of host animals is
transplanted with marrow from host marrow, have shown that
MMPs derived from immune cells contribute to worsened
ischemic injury, although the contribution from leukocytes
appears more significant that that contributed by microglia
(Gidday et al. 2005; Wang et al. 2009).

Chemokines, cytokines, and trophic factors

Resting microglia release a variety of chemokines and cyto-
kines, and pattern of this release is dramatically altered after
CNS injury (Lucas et al. 2006). These factors function pri-
marily as intercellular signaling molecules, and many have
feed-forward effects in driving the inflammatory response.
Some, such as tumor necrosis factor-α (TNFα), can also have
direct cytotoxic effects and promote disruption of the blood–
brain barrier (Shohami et al. 1999; Vexler et al. 2006). On the
other hand, microglia also release a number of neurotrophic
factors, such as TGFβ1, BDNF, and GDNF, and these are
thought to be important in maintaining neuronal integrity after
CNS injury (Lehrmann et al. 1998; Suzuki et al. 1999; Lee
et al. 2002; Batchelor et al. 1999).

Phagocytosis

Microglia and macrophages phagocytose injured cells, there-
by clearing necrotic debris and setting the stage for recovery.
A few signals that lead to phagocytosis have been recently
identified. One model proposes that necrotic cells release
nucleic acid remnants into the extracellular space where they
can bind appropriate receptors on phagocytes. Some of these
phagocytosis initiating signals have been referred to as
DAMPs, or danger associated molecular patterns (An et al.
2013). Those identified in stroke and related injury models
include purines such as UTP, ADP and ATP, and signal
through purinergic receptor systems to lead to phagocytosis
(Koizumi et al. 2007). However, phagocytosis through these
signaling systems, while leading to the clearance of injured
cells, may also worsen cell death either by causing microglia
to phagocytose viable cells or generate neurotoxic substances
(Emmrich et al. 2013; Neher et al. 2013). Our laboratory has
recently begun to study a recently characterized microglial
receptor, triggering receptor expressed on myeloid cells
(TREM2). TREM2 was originally characterized by its ability
to bind pathogens such as bacteria and initiate phagocytosis
(N’Diaye et al. 2009). It has been described on activated
macrophages and microglia (Sessa et al. 2004; Takahashi
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et al. 2005; Daws et al. 2001), and binds to one or more ill-
defined ligands on eukaryotic cells including neurons and
astrocytes (Hsieh et al. 2009; Stefano et al. 2009; Daws
et al. 2003). TREM2 has been shown to mediate phagocytosis
of apoptotic neurons without stimulating a typical inflamma-
tory response (Hsieh et al. 2009). Conversely, loss of TREM2
impairs phagocytosis and promotes inflammation (Takahashi
et al. 2005). In a model of neuroprotection by therapeutic
hypothermia, our group found that while therapeutic cooling
led to decreased activated microglia and other pro-immune
responses, TREM2 was actually increased on microglia of
brains protected from ischemia, suggesting that TREM2 was
correlated to improved stroke outcome (Kawabori et al. 2013).
Thus, some phagocytic pathways of microglia may potentiate
damage, while other pathways may ameliorate it. Preliminary
work in our lab suggests that preventing phagocytosis by
deleting TREM2 may exacerbate functional neurological re-
covery (Kawabori et al., International Stroke Conference 2014
abstract).

Phagocytic activities of microglia are also shown to regu-
late the numbers of synapses and affect the structural plasticity
of the CNS. Microglia are engaged in the regulation and
remodeling of synapses both in perinatal and postnatal periods
(Ji et al. 2013; Paolicelli et al. 2011). These observations
highlight the fact that microglial activities are crucial not only
under pathological condition, but also under physiological
condition.

Microglial activation in stroke

Stroke is a leading cause of death and disability in the indus-
trialized world (Onwuekwe and Ezeala-Adikaibe 2012;
Towfighi and Saver 2011). Stroke is a heterogeneous condi-
tion consisting of several subtypes. Regardless, stroke can be
broadly categorized into ischemic and hemorrhagic types.
Microglia have been documented to play an important role
in both, contributing to inflammatory responses both nega-
tively and positively.

Microglia in ischemic stroke

Ischemic stroke constitutes 87 % of all strokes and is caused
by the occlusion of a blood vessel due to either embolism or
thrombus. As a result, brain tissue is deprived of blood glu-
cose and oxygen. This leads to neuronal death, release of
reactive oxygen species and other substances. Many of these
molecules are shown to activate microglia and causes second-
ary damage to the injured and alive cells that escaped the
damage (Yenari and Han 2012; Taylor and Sansing 2013).
Accumulating data shows that TNF-α, glutamate, heat shock
protein (HSP), Adenosine triphosphate (ATP), CD14 recep-
tors, followed by toll-like receptor 4 (TRL4) have been

documented in activated microglia in the infarct brain (Saito
et al. 2000; Beschorner et al. 2002b; Lehnardt et al. 2003).

Activated microglia can be detected as early as 2 h after
ischemia, whereas blood-derived macrophages do not enter
the brain before 10 h. By 22–46 h after the insult, activated
microglia and macrophages are distributed throughout the
entire lesion and are detectable up to 1 week after the insult
(Zhang et al. 1995; Nilupul Perera et al. 2006; Stoll et al. 1998;
Dirnagl et al. 1999; Clausen et al. 2008).

Direct evidence supporting a damaging role of microglia/
macrophages was demonstrated when their direct application
potentiated neuron cell death (Giulian et al. 1993; Lehnardt
et al. 2003; Zhang et al. 1997; Huang et al. 2010), and
microglia were also shown to express and release various kind
of inflammatory mediators as described above, most of which
are cytotoxic. Recent work has shown that microglia can
potentiate injury to blood–brain barrier constituents (astro-
cytes and endothelial cells) via NOX-mediated superoxide in
cell culture models of ischemia (Yenari et al. 2006). Several
groups also show that mice deficient in the gp91 subunit of
NOX2 have smaller infarcts than do wild-type mice (Kahles
et al. 2007; Walder et al. 1997; Chen et al. 2009), and that
outcomes from experimental cerebral ischemia reperfusion
are improvedwith early administration of the pharmacological
NOX inhibitor, apocynin (Chen et al. 2009; Tang et al. 2007;
Tang et al. 2005; Tang et al. 2008). Pharmacological inhibition
of iNOS reduces infarct volume (Iadecola et al. 1995), and
iNOS null mice have smaller infarcts and better neurological
outcomes than wild-type control animals (Zhao et al. 2000).
Therapeutic hypothermia after ischemia likewise reduces
microglial iNOS expression and NO production (Han et al.
2002). Inhibition of MMP at the acute stage of ischemia are
also shown to reduce infarct size, brain edema, and recombi-
nant tissue plasminogen activator-induced hemorrhage
(Pfefferkorn and Rosenberg 2003), and mice deficient in
MMP-9 or MMP-3 have reduced ischemic injury compare
to wild-type (Asahi et al. 2000; Walker and Rosenberg 2009).
However, because of the neurovascular remodeling function
of the protease, prolonged inhibition of MMPs after ischemia
may have deleterious effects on function recovery (Zhao et al.
2006). Of translational relevance, the widely used antiplatelet
agent, clopidogrel, is also an antagonist of the P2Y12
purinergic receptor. P2Y12 is known to mediate microglial
chemotaxis under conditions of injury. P2Y12 deletion or its
inhibition by clopidogrel led to reduced microglial migration
to areas of injury, and also protected the brain from global
cerebral ischemia (Webster et al. 2013).

In addition to the pro-inflammatory aspects of microglia,
microglia have also been shown to have anti-inflammatory
properties, which are neuroprotective. Microglia produce the
growth factor TGF-β1 (Watanabe et al. 2000; Lai and Todd
2006). When microglial proliferation was inhibited in trans-
genic mice, infarct size was increased following ischemia, and
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suggests that proliferating microglia cells exert a beneficial
role (Lalancette-Hebert et al. 2007). There are some possible
mechanisms underlying these observations. First, microglia
produce neurotrophic factors which stimulate neurogenesis
and plasticity. Secondly, phagocytosis of neutrophils by acti-
vated microglia may prevent the release of toxic mediators
(Weston et al. 2007; Frank-Cannon et al. 2009). Finally,
resident macrophages scavenge and remove necrotic debris
and other potentially harmful substances (Frank-Cannon et al.
2009).

Minocycline, a tetracycline family antibiotic, was shown to
provide significant protection against brain ischemia by
inhibiting microglial activation and proliferation
(Yrjanheikki et al. 1998; Yrjanheikki et al. 1999), and
minocycline has shown to protect against permanent cerebral
ischemia in wild-type but not in MMP-9 deficient mice
(Koistinaho et al. 2005). Edaravone, a novel free radical
scavenger, significantly reduced infarct volume and improved
neurological deficit scores for ischemic mice by reducing
microglial activation (Zhang et al. 2005). In spontaneously
hypertensive rats with permanent MCAO, repetitive hyper-
baric oxygen (HBO) treatment reduced infarct volume by
suppressing microglia activation (Gunther et al. 2005).
Protection by hypothermia has been shown to be related, in
part, to inhibiting microglial activation and reducing elabora-
tion of many pro-inflammatory immune molecules (Yenari
and Han 2012; Han et al. 2002). However, as mentioned
above, hypothermic neuroprotection has also been associated
with the upregulation of the pro-phagocytic molecule,
TREM2 (Kawabori et al. 2013).

Recombinant human tissue plasminogen activator (rt-PA)
is the only approved thrombolytic treatment of ischemic
stroke at the current medical practice. Beside from its throm-
bolytic aspect, recent evidence shows that t-PA and its sub-
strate plasmin enhances microglial cell activation and recruit-
ment to the injured site through several chemokines. Activated
microglia are shown to exacerbate the neurological damage
after ischemic stroke (Sheehan et al. 2007; Lenglet et al.
2014).

Microglia in intracerebral hemorrhage (ICH)

Intracerebral hemorrhage occurs when a blood vessels in the
brain parenchyma ruptures, most commonly due to hyperten-
sion and accounts for 10–15 % of all strokes (Manno 2012).
ICH has a high mortality rate: 30–50 % of patients die within
the first 30 days (Qureshi et al. 2009). Despite the recent
advances in the intracerebral hemorrhage research, no specific
treatment for this currently exists (Morgenstern et al. 2010).
The introduction of blood components, including thrombin,
heme, and leukocytes and platelets, into the brain creates the
basis for a secondary injury due to microglial activation and

neuroinflammation resulting in the recruitment of leukocytes
into a normally immune privileged site (Keep et al. 2012).

Microglial activation may also have a dual role after ICH.
While some microglial activities may be beneficial, microglia
have also been shown to play a role in the secondary injury
that occurs after ICH (Keep et al. 2012). A major role of
microglial cells after ICH is to phagocytose the debris and
red blood cells left in the brain after hemorrhage. They have
been shown to endocytose heme and hemoglobin. These
processes are mediated through scavenger receptors, such as
CD36 (Aronowski and Zhao 2011). As in the case of ischemic
stroke, microglia also produce proinflammatory cytokines,
such as TNF-α, IL-1β, and IL-6, in models of ICH (Wang
2010; Aronowski and Zhao 2011; Wang and Dore 2007b).

The activation of microglia/macrophage occurs early fol-
lowing ICH. Activated microglia have been observed within
the peri-hematomal region as early as 1 h following in the
collagenase model ICH (where collagenase disrupts extracel-
lular matrix proteins and causes primary brain hemorrhage)
and within 4 h in the ICHmodel where whole blood is directly
injected into the brain (Wang and Dore 2007a; Xue and Del
Bigio 2000). Microglial production of IL-1β in rats can be
seen as early as 6 h and can persist up to 24 h (Wasserman
et al. 2007). The numbers of the activated microglia/
macrophages reaches peak at around 72 h in the peri-
hematomal region, and returns to basal levels between 3 and
4 weeks (Wang 2010; Yabluchanskiy et al. 2010).

Mediators of microglial activation after ICH have also been
studied and some candidates have been found to activate the
microglia (Donovan et al. 1997). Thrombin, a serine protease
necessary for coagulation, has been shown to play a pivotal
role. Direct injection of thrombin into the striatum led to
upregulation of CD11b in microglia, and microglia changed
from the resting, ramified to activated morphology to an
amoeboid shape within 4 h. Activated microglia were also
immunopositive for iNOS by 24 h and the number of
microglia/macrophages were increased by 72 h (Fujimoto
et al. 2007). The effect of thrombin on microglial proinflam-
matory cytokine and MMPs has also been described.
Microglia express thrombin receptors and produce IL-1β,
TNF-α, and MMP-9 when stimulated with thrombin (Wu
et al. 2008; Xue et al. 2006). Product of red blood cell lysis,
including heme and iron, are also active initiators ofmicroglial
activation and neuroinflammation (Wu et al. 2008).

Microglia in subarachnoid hemorrhage

Subarachnoid hemorrhage (SAH), especially aneurysmal
SAH, is often a catastrophic condition of CNS. Although
accounting for only 5 % of all strokes, SAH imposes a
significant burden on society and economy, as it affects main-
ly middle-aged patients, leading to high mortality and disabil-
ity rates (Venti 2012). Early and delayed brain injury after
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SAH have been well documented, but the underlying mecha-
nisms especially the effect of neuroinflammation have not
been well elucidated. Recent findings have highlighted a
strong contribution of neuroinflammation to the early brain
injury, the vasospasm after SAH (Fassbender et al. 2001;
Pradilla et al. 2010). A total of 30 to 40 % of aneurysmal
SAH patients will have delayed cerebral ischemia from vaso-
spasm, anywhere from 4 to 14 days after the insult, resulting in
increased morbidity and mortality. A recent report from
Hanafy showed that microglia and the TLR4 signaling path-
way play important roles in the development of vasospasm
and also in the acute phase of neuronal apoptosis after SAH
(Hanafy 2013). Deficiency of TLR4 downstream adaptor
molecules MyD88 and TRIF reduced vasospasm as well as
neuronal apoptosis. Conversely, another group showed that
administration of the TLR4 agonist, lipopolysaccharide (LPS)
worsened vasospasm (Smithason et al. 2012).

Microglial activation in trauma

Traumatic brain injury (TBI) and spinal cord injury (SCI) are
the leading cause of morbidity and mortality in the younger
generations, and have substantial direct, and indirect cost to
society (Potts et al. 2006). TBI and SCI are a highly complex
disorders caused by both primary and secondary injury mech-
anisms (Kumar and Loane 2012). Primary injury mechanisms
result from the mechanical damage that occurs at the time of
trauma to neurons, axons, glia and blood vessels as a result of
shearing, tearing, or stretching, consequently these damages
induce secondary injury mechanisms that evolve over minutes
to days after the initial traumatic insult and result from delayed
neuronal damage (McIntosh et al. 1996). The secondary injury
includes delayed events, such as ischemia, lipid degradation,
free radical formation, excitotoxity, and protease release (Bao
et al. 2005; Hausmann 2003), leading to demyelination, axo-
nal degeneration, neuronal death, cavitation, and glial scarring
surrounding the area of initial damage (Fitch et al. 1999;
Dusart and Schwab 1994; Koshinaga and Whittemore
1995). Inflammation by microglia is thought to play an im-
portant role in these expanded secondary damage (Potts et al.
2006; Hausmann 2003), as they not only release proinflam-
matory cytokines, but rapidly recruit other immune cells and
exacerbate injury (Dusart and Schwab 1994; Kigerl et al.
2009). However, as described before, these microglial re-
sponses are thought to have not only harmful effects, but
beneficial effects as shown in stroke models.

Similar to the response in stroke, microglia have been
shown to react within a few hours with a migratory response
toward the lesion site following CNS trauma. In fact, in vivo
two-photon microscopy imaging studies of microglia follow-
ing laser-induced injury documented rapid proliferation and
movement of ramified microglial cells to the site of injury in
response to extracellular ATP released by the injured tissue

(Davalos et al. 2005; Haynes et al. 2006). Microglial process-
es then coalesce to form an area of containment between
healthy and injured tissues, suggesting that microglia may
represent the first line of defense following injury (Davalos
et al. 2005). In human TBI, microglial activation has been
reported as early as 72 h after injury (Engel et al. 2000), and
can remain elevated for months after injury as well as in the
rodent model of TBI (Beschorner et al. 2002a; Gentleman
et al. 2004; Csuka et al. 2000; Maeda et al. 2007).

Previous studies have shown that microglia and blood-
derived macrophages release potentially neurotoxic agents
after spinal cord injury (reactive oxygen species; NO and
peroxynitrite, cytokines; TNF-α and IL-1β) (Satake et al.
2000; Bao et al. 2004). Activation of microglia/macrophages
through Toll-like receptors (TLRs) induces neuronal cell death
and neurite degeneration (Fitch et al. 1999; Lehnardt et al.
2002; Popovich et al. 2002). White matter is also quite sensi-
tive to these immune molecules, and treatments aimed at
reducing the microglial/macrophage response and subsequent
neurotoxicity are often protective (Blight 1994; Popovich
et al. 1999; Park et al. 2004; Byrnes et al. 2009). These
interventions may be expected to prevent the second late
phase of axonal dieback (Stirling et al. 2004; Horn et al.
2008). IL-1β, and TNF-α levels are also elevated in both
the serum and CSF of patients with severe TBI (Ross et al.
1994; Goodman et al. 1990). TNF-a expression after experi-
mental TBI is detectable after 1 h, peaks between 3 and 8 h,
and returns to normal level at 24 h after injury (Stover et al.
2000; Shohami et al. 1994; Fan et al. 1996).

Also in the chronic stage of the injury, activated microglia
surround the lesion and remain chronically activated for
weeks and months after the initial brain trauma (Maeda et al.
2007). Persistent long-term microglial activation was ob-
served in the traumatized cortex 3 months after experimental
brain injury and was associated with increased expression of
proinflammatory cytokines, IL-1β and TNF-α (Holmin and
Mathiesen 1999). In humans, long-term microglial activation
and chronic inflammation after injury may persist for many
years in brain injury survivors (Gentleman et al. 2004). These
long-term persistent inflammatory changes may cause post-
traumatic neurodegeneration, which could form the basis of
the cognitive decline that is often observed in long-term
survivors of TBI.

Anti-inflammatory cytokine levels are also modulated by
TBI. In humans, IL-10 and TFG-b levels are elevated acutely
after injury (Morganti-Kossmann et al. 1999; Csuka et al.
1999), and experimental studies have shown that IL-10 has
beneficial effects following trauma (Knoblach and Faden
1998). Injection of the anti-inflammatory cytokine TGF-β
after injury in rodents reduces damaged lesion size, improves
function, and reduces iNOS expression (Tyor et al. 2002;
Hamada et al. 1996). Intravenous administration of IL-10 after
experimental TBI in rats improved neurological recovery and
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significantly reduced TNF-α and IL1β expression in the
traumatized cortex and hippocampus. These neuroprotective
effects may be the result of suppressed microglial activation,
in that IL-10 treatment has been shown to decrease production
of proinflammatory cytokines (Kremlev and Palmer 2005).

Conclusions

Inflammation following acute CNS injury is increasingly rec-
ognized as a key element in its progression. In this review we
have focused on several elements which are involved in
inflammatory responses following ischemic stroke, intracere-
bral hemorrhage, SAH, and traumatic injury. Although, early
inflammatory responses may potentiate ischemic injury, late
responses may be important in recovery and repair. The pre-
cise mechanisms of the inflammatory responses are still to be
elucidated. And future work and better understanding against
this field will shed light on new therapeutic methods to these
injuries.
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