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Abstract

Background

Current Ebola virus (EBOV) detection methods are costly and impractical for epidemic sce-

narios. Different immune-based assays have been reported for the detection and quantifica-

tion of Ebola virus (EBOV) proteins. In particular, several monoclonal antibodies (mAbs)

have been described that bind the capsid glycoprotein (GP) of EBOV GP. However, the cur-

rently available platforms for the design and production of full-length mAbs are cumbersome

and costly. The use of antibody fragments, rather than full-length antibodies, might repre-

sent a cost-effective alternative for the development of diagnostic and possibly even thera-

peutic alternatives for EBOV.

Methods/Principal Findings

We report the design and expression of three recombinant anti-GP mAb fragments in

Escherichia coli cultures. These fragments contained the heavy and light variable portions

of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are conse-

quently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments

exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-

length anti-GP antibodies (i.e., the same order of magnitude) and they are easily and eco-

nomically produced in bacterial cultures.

Conclusion/Significance

Antibody fragments might represent a useful, effective, and low cost alternative to full-length

antibodies in Ebola related capture and diagnostics applications.

PLOS ONE | DOI:10.1371/journal.pone.0135859 October 21, 2015 1 / 17

OPEN ACCESS

Citation: Rodríguez-Martínez LM, Marquez-Ipiña AR,
López-Pacheco F, Pérez-Chavarría R, González-
Vázquez JC, González-González E, et al. (2015)
Antibody Derived Peptides for Detection of Ebola
Virus Glycoprotein. PLoS ONE 10(10): e0135859.
doi:10.1371/journal.pone.0135859

Editor: Gourapura J Renukaradhya, The Ohio State
University, UNITED STATES

Received: March 25, 2015

Accepted: July 27, 2015

Published: October 21, 2015

Copyright: © 2015 Rodríguez-Martínez et al. This is
an open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: MMA gratefully acknowledges the
institutional funding received from Tecnológico de
Monterrey (seed funding to Strategic Research
Groups, 2015) and funding provided from CONACyT
(Consejo Nacional de Ciencia y Tecnología, México)
in the form of Scholarships to GT-dS, ARM-I, EG-G,
and RP-C. MMA, GT-dS and AK acknowledge
funding from MIT International Science and
Technology Initiatives (MISTI). GT-dS acknowledges
funding form Fundación México en Harvard. AK,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0135859&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
The recent Ebola outbreak that began in West Africa in December 2013 [1] has revealed how
poorly prepared the medical world is to effectively face this disease [2]. As of March 19th 2015,
more than 24,600 cases have been documented in West Africa [3]. This implies a great eco-
nomic and logistic burden.

Current methods to diagnose the presence of the EBOLA virus (EBOV) in biological sam-
ples rely mainly on PCR [4–7]. These methods are able to detect EBOV at low viral loads with
high accuracy and reproducibility, but they require special instrumentation and trained per-
sonnel, which impose heavy restrictions for use of PCR in Ebola epidemic scenarios. Other
Ebola diagnostic alternatives include the use of immunological methods based on polyclonal or
monoclonal antibodies (mAbs) [8–11]. However, the production of full-length antibodies is a
complex process from an engineering perspective, and the currently available production plat-
forms are not sufficiently effective to provide the required rapid response in an emergency.

Antibody fragments present several potential advantages over the use of full-length mAbs
[12]. They can be expressed easily and produced readily and economically in bacterial cultures
(i.e., Escherichia coli cultures) in large quantities. To produce 1 g of a mAb fragment in a bacte-
rial system would cost between 1/10 to 1/100 of the cost of producing 1 g of a full length mAb
in a CHO cell system [13–15], the preferred production platform for mAbs. Furthermore,
novel expression and purification technologies [16] have greatly simplified the purification of
recombinant proteins produced by E. coli; this purification was traditionally considered a seri-
ous drawback of this widely-used expression system [17].

Antibody fragments contain the variable regions of a full-length antibody and conceptually
they retain the binding specificity of full-length antibodies. A general decrease in binding affin-
ity of antibody fragments, compared to binding of intact antibodies, has been documented
[18,19]; however, the fragment molecules can be tailored by genetic engineering to improve
their affinity and stability [20–22]. Many other design adjustments are possible for antibody
fragments with respect to size, pharmacokinetics, immunogenicity, specificity, and even effec-
tor functions [12,23,24]. The use of antibody fragments to diagnose the presence of viral parti-
cles has been recommended and reported in the context of a number of viral diseases [25–27].
A properly optimized mAb fragment should be as effective as a full length mAb in terms of
molecular affinity for an ex-vivo diagnostic application. Since a fragment molecule is much
smaller than its corresponding mAb (approximately one sixth of the mAb mass), it can be
argued that the use of an optimized mAb implies 6X higher binding efficacy per unit of mass.

In this paper, we aimed to produce three antibody fragments that contain variable regions
of mAb 13C6, 13F6, and KZ52—three well-studied anti-EBOV full-length mAbs [28]. Briefly,
mAb 13C6 is one of the three full-length mAbs contained in M–003 (fromMapp Biopharma-
ceuticals), a formulation with proven protection against a lethal EBOV challenge in non-
human primates [29,30,31]. Full-length mAb 13C6 is also a constituent in Zmapp, the mAb
cocktail recently administered to human patients with apparent good results [32]. Mab 13C6
binds the glycan cap region of the glycoprotein (GP) [33]. MAb 13F6 is one of the constituents
of ZMab, another anti-EBOV full-length mAb cocktail fromMapp Biopharmaceuticals
[34,35]. It binds the mucin-like domain (MLD) in GP, a highly glycosylated region that is
cleaved upon the internalization of viral particles into the host cells [33]. KZ52 is a full-length
mAb originally isolated from an Ebola disease (EBD) survivor. The 3D structure of this mAb
bound to trimeric GP was characterized in detail by Lee et al. [36] and Lee and Saphire [37].

The three antibody fragments that we designed and produced are Fab-KZ52, scFv-13C6,
and scFv-13F6, respectively named after their full-length counterparts, mAb KZ52, mAb 13C6,
and mAb 13F6. All three fragments were expressed in Escherichia coli and produced using
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straightforward fed-batch culture protocols in instrumented 2.0L reactors. We demonstrate the
use of these antibody fragments to capture GP in ELISA experiments.

Materials and Methods

Molecular engineering of antibody fragments
Three anti GP(EBOV) antibody fragments, inspired by the full-length mAbs 13C6, 13F6, and
KZ52, were designed in silico and expressed in E. coli cultures Fig 1A and 1B). Briefly, we
designed a DNA construct for each mAb fragment that contained the light variable region
(LV) and heavy variable region (HV) of its corresponding mAb (13C6, 13F6, and KZ52). The
LV and HV regions were connected by a glycine-serine linker. Each construct (Fig 1C)
included a region encoding an N-terminus 6xHisTag to facilitate purification using a Ni+2-
IMAC column (Fig 1C). In the case of Fab-KZ52, a small portion of the light constant region
and the heavy constant region of mAb KZ52 were included in the corresponding construct
(Table 1). Constructs were optimized for E. coli expression and synthetized by our colleagues at
DNA 2.0 (San Francisco, CA); they were built into the plasmid pD444-SR and cloned into the
BL21 C41(DE3)pLysS strain (for Fab-KZ52) and BL21 C43(DE3)pLysS strain (for scFv-13C6
and scFv-13F6).

Production and purification of mAb fragments
E. coli was cultured in Luria-Bertani medium with ampicillin (LB-Amp) (supplemented with
15 g/L glucose, 5 g/L potassium phosphate dibasic, 2.5 g/L magnesium sulfate, and 1 mL/L
trace nutrients: zinc chloride (2 g/L), cobalt chloride (2 g/L), sodium molybdate (2 g/L), cal-
cium chloride (1 g/L), boric acid (0.5 g/L), and hydrochloric acid (100 mL/L)] in fully instru-
mented 2-L bioreactors (APPLIKON, Netherlands). The culture conditions were pH = 7.2,
37°C and 400 RPM during growth phase, and 30°C, 600 RPM after induction. Protein produc-
tion was induced using 1mM isopropyl thiogalactoside (IPTG) approximately 4 hours after ini-
tiation of the process. The presence of protein was confirmed with SDS-PAGE and anti-
HisTag western blotting (Fig 2).

Cells were recovered by centrifugation in a Z 36 HK (Hermle Labortechnik, Germany) fixed
angle rotor centrifuge at 5,000 x g, 4°C, for 15 min. and resuspended in PBS buffer (20 mM
PBS, 100 mMNaCl, pH 7.4) at a ratio of 7.5 mL of buffer per 1 g of biomass (wet weight). Cells
were disrupted with an Emulsiflex C–3 (Avestin, Canada) high-pressure homogenizer. A pro-
tocol of three cycles was followed. The first cycle was set at 5,000 psi; the following two cycles
were performed at 20,000 psi.

Cell lysates were centrifuged in a Z 36 HK (Hermle Labortechnik, Germany) centrifuge at
15,000 x g, 4°C, for 30 min. The pellet was resuspended in inclusion bodies IB wash buffer
(20 mM PBS, 500 mMNaCl, 1 mM ethylenediaminetetraacetic acid, 2 M urea, 2% v/v Triton
X–100, pH 7.4) at a ratio of 25 mL of buffer per 1 g of pellet (wet weight). The suspension was
washed vigorously for 30 minutes at room temperature. A final wash with PBS buffer was
implemented. The resulting pellet was re-suspended in solubilization buffer (20 mM PBS, 500
mMNaCl, 6 M urea, 1 mM dithiothreitol, 10 mM imidazole, pH 8.2), stirred vigorously at
room temperature overnight, and then centrifuged at 15,000 x g, 4°C for 30 minutes. The
supernatant containing solubilized IBs was microfiltered through a 0.45 μmmembrane (Pall
Corporation, NY) and stored at 4°C.

Purified mAb fragment solutions were obtained by immobilized metal-affinity chromatog-
raphy (IMAC) with 1 mL His Trap FF (GE Healthcare, UK) column pre-charged with Ni2+-

using an Äkta Explorer 100 (GE Healthcare, UK) chromatography system. On-column protein
refolding was achieved through the elimination of the chaotropic agent using a 20 CV of linear
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Fig 1. Anti-GP full-length mAbs and their correspondingmAb fragments. (A) The full-length mAbs, 13C6, 13F6, and KZ52, have been widely studied in
previous literature.28-34 Each of these mAbs targets epitopes in different regions of the GP protein of the Ebola virus (EBOV). In its native form, GP is a trimer
composed of three monomers. Each monomer is composed of a GP1 subunit (yellow ovals) and a GP2 subunit (orange stalk). MAb13F6 binds a linear
epitope region located in the mucin-like domain (MLD) region of GP31 (light yellow small oval). The specific binding region for mAb13C6 is known to be
located within the GP1 region31 (yellow oval). The binding region of mAbKZ52 has been well characterized;33,34 it comprises residues at GP1 (yellow oval)
and GP2 (orange stalk). (B) Antibody fragments scFv-13C6, scFv-13F6, and Fab-KZ52 contained the variable regions (responsible for specific GP
recognition) of the full-length mAbs that their design was based upon. (C) Schematic representation of the DNA construct used for the expression of scFv-
13C6, scFv-13F6, and Fab-KZ52. The sequence of the linker peptide is shown in red.

doi:10.1371/journal.pone.0135859.g001
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Fig 2. Production of antibody fragments in E. coli cultures. (A) SDS-Page gel showing the protein expression profile in E. coli cultures at 0 and 8 hours
after IPTG induction. The bands corresponding to each antibody fragment (scFv-13C6, scFv-13F6, and Fab-KZ52) are indicated in red. (B) Corresponding
western-blot gel indicating the bands of each anti-body fragments marked with anti-histidine antibodies. (C) Antibody fragments (in this case scFv-13C6)
were recovered by immobilized metal-affinity chromatography (IMAC) with 1 mL His Trap FF (GE Healthcare, UK) column pre-charged with Ni2+. The
absorbance signal at 280 nm, associated with the presence of different protein fractions, is indicated with a blue line; the peak at 100–110 mL of volume
(along the blue line) corresponds to fragment scFv-13C6.The percentage of elution buffer fed at different times during the separation protocol is indicated by
the red line. (D) SDS-Page gel showing the protein profile in streams at different stages of the IMAC purification process: inlet stream of solubilized inclusion
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gradient with refolding buffer 1 (20 mM PBS, 500 mMNaCl, 1 mM dithiothreitol, 10 mM
imidazole, pH 8.2), and another 10 CV of linear gradient with refolding buffer 2 (20 mM PBS,
500 mMNaCl, 10 mM imidazole, pH 8.2). The target protein was eluted with 10 CV of elution
buffer (20 mM PBS, 500 mMNaCl, 350 mM imidazole, pH 7.8). All steps were run at a flow
rate of 1 mL/min. Desalting of protein purified from IMAC was achieved using an Amicon
Ultra–15 centrifugal filter unit (Millipore, MA) of 10 kDa NMWL. The retentate was diluted
1:2.5 with PBS buffer with glycerol 50% v/v.

The degree of purity of each MAb fragment was estimated from SDS-PAGE protein profiles
using scanning densitometry analysis; Image J, an open source software, was used for image
analysis.

ELISA experiments
In the first series of assays, a commercially available recombinant version of GP was attached to
the surface of ELISA 96-well microplates and different full-length mAbs or antibody fragments
were tested for specific binding (Fig 3A and 3B). For these experiments, 100 μL of a 0.5 μg/mL
solution of His-tagged recombinant GP (rGP) expressed in insect cells (Integrated Biotherapeu-
tics Bioservices; Gaithersburg, MD USA) were dispensed into each well, incubated for 12 h at
4°C, and washed twice with a 0.05% PBS-Tween solution. Afterwards, 200 μL of commercial
blocking solution (Pierce; Rockford, IL USA) were dispensed per well, incubated at ambient
temperature for 30 minutes, and then washed twice with PBS-Tween solution. The GP binding
affinities of two different full-length monoclonal antibodies, namely mAb 13F6 (Integrated
Biotherapeutics Bioservices; Gaithersburg, MD USA) and Infliximab (a commercial anti-rheu-
matoid arthritis therapeutic mAb from Janssen Biotech; Horsham, PA USA), and three antibody
fragments (scFv-13C6, scFv-13F6, and Fab-KZ52) were then evaluated. For this purpose, 100 μL
of a 1.0 μg/mL solution of each mAb or mAb fragment were dispensed into different wells, incu-
bated for 1 h at room temperature, and washed three times with 0.05% PBS-Tween solution.

In a variation of this ELISA format (Fig 4A and 4B), 100 μL of either a 1 or 5 μg/mL solution
of anti-Histidine Tag IgG (AbD serotec; Kidlington, UK) was dispensed into each well, incu-
bated for 1 h at room temperature, and washed twice with a 0.05% PBS-Tween solution;
200 μL of commercial blocking solution were then dispensed per well, incubated at ambient
temperature for 30 minutes, and then washed twice with 0.05% PBS-Tween solution. After-
wards, 100 μL of a 1 μg/mL solution of His-tagged rGP expressed in insect cells were dispensed
into each well (or 100 μL of a 1 μg/mL solution of His-tagged HA-RBD expressed in-house)
[38–40]; and incubated for 12 h at 4°C, and washed twice with a 0.05% PBS-Tween solution.
The GP (or HA) binding affinities of two different full-length monoclonal antibodies (mAb
13F6) and antibody fragment Fab-KZ52 were then evaluated. Briefly, 100 μL of a 1.0 μg/mL
solution of each mAb or mAb fragment were dispensed into different wells, incubated for 1 h
at room temperature, and washed three times with 0.05% PBS-Tween solution.

In both ELISA formats, the GP-mAb complexes were revealed by adding 100 μL per well of
a solution of an anti-human IgG-Fcγmarked with horseradish peroxidase (Pierce; Rockford,
IL USA). The mAb fragments were revealed by adding a solution of anti-Polyhistidine IgG
horseradish peroxidase conjugate (Sigma-Aldrich; St. Louis, MO USA). Revealing solutions
were prepared in 0.05% PBS-Tween solution at dilution 1:120000 and 1:75000 respectively.
Samples and revealing solutions were incubated for 1 h at room temperature, and then washed
three times with PBS-Tween solution. Afterwards, 100 μL of TBM substrate (Pierce; Rockford,

bodies (lane 2), column flow-through stream (lane 3), eluate (lane 4), and purified product solubilized in a 50% glycerol solution (lane 5). The molecular
weight ladder is shown in lane 1.

doi:10.1371/journal.pone.0135859.g002
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Fig 3. The binding of antibody fragments to GP: ELISA type I. (A) The specific binding of GP to Fab-KZ52, scFv-13C6, and scFv-13F6 was evaluated in
ELISA experiments in which either rGP (yellow oval with orange stalk) or (B) HA-RBD (red oval with orange stalk) was attached to untreated assay surfaces.
In these experiments, the binding between GP and the fragments was revealed using a solution of poly-clonal anti-histidine IgGs marked with horse radish
peroxidase (gray Y). Negative controls consisted of surfaces with GP or HA-RBD not exposed to anti-GP fragments. (C) Plots of the absorbance signal, as
measured in ELISA experiments, corresponding to assay wells where either GP (orange bars) or HA-RBD (red bars) was exposed to Fab-KZ52, (burgundy
fragments), scFv-13F6 (green fragment), or scFv-13C6 (blue fragments). The absorbance signal has been normalized by the absorbance value of the
negative controls (black bars). Symbols for mAb fragments are the same as those presented in Fig 1. Error bars indicate standard deviation from four repeats
of independent ELISA experiments. Horizontal black lines indicate significant differences between groups (*p<0.05, **p<0.01; ***p<0.001).

doi:10.1371/journal.pone.0135859.g003
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IL USA) were added per well and incubated for 15 minutes. Finally, 50 μL of a 1M H2SO4 solu-
tion was added to each well, and absorbance was measured at 450 nm in microplate reader
(Biotek; Winooski, VT USA).

Fig 4. The binding of antibody fragments to GP: ELISA type II. (A) The specific binding of GP to Fab-KZ52, scFv-13C6, and scFv-13F6 was evaluated in
ELISA experiments in which rGP (yellow oval with orange stalk) was attached to assay surfaces treated with anti-histidine IgGs (grey Ys). In these
experiments, the binding between GP and the fragments was revealed using a solution of poly-clonal anti-histidine IgGs marked with horse radish peroxidase
(grey Ys marked with a fluorescent star). (B) Negative controls consisted of surfaces with GP or HA-RGB not exposed to anti-GP fragments. (C) Plots of the
absorbance signal, as measured in ELISA experiments, corresponding to assay wells where either GP (orange bars) was exposed to Fab-KZ52, (burgundy
fragments), scFv-13F6 (green fragment) or scFv-13C6 (blue fragments). The absorbance signal has been normalized by the absorbance value of the
negative controls (black bars). Symbols for mAb fragments are the same as those presented in Fig 1. Error bars indicate standard deviation from four repeats
of independent ELISA experiments. Horizontal black lines indicate significant differences between groups (**p<0.01; ***p<0.001).

doi:10.1371/journal.pone.0135859.g004
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Results and Discussion

Expression of antibody fragments in bacterial cultures
We expressed a set of three anti-GP EBOVmonoclonal antibody fragments in E. coli cultures.
These fragments contained the variable regions (heavy and light) of three well-studied full-
length mAbs referred in literature as 13C6, 13F6, and KZ52 (Fig 1A) [28]. Here, the corre-
sponding mAb fragments are referred to as scFv-13C6, and scFv-13F6, and Fab-KZ52. The
scFv-13C6 and scFv-13F6 proteins are single-chain variable fragments. The scFvs are the
smallest stable antibody fragments capable of specifically binding an antigen. Generically, they
are a recombinant polypeptide composed of an antibody variable light-chain amino acid
sequence (VL) linked to a variable heavy-chain sequence (VH) by a designed peptide (of 10 to
about 25 amino acids) that links the carboxyl terminus of the VL sequence to the amino termi-
nus of the VH sequence. Fab-KZ52 was not strictly designed as an scFV, since it also contained
portions of the constant heavy and constant light chains of full-length mAb KZ52 (see Fig 1B
and 1C; Table 1).

Fig 2A shows the SDS-PAGE protein profiles of samples of bacterial suspensions of scFv-
13C6, scFv-13F6, and Fab-KZ52 producer strains cultured in an instrumented 1.5 L bioreactor.
We observed similar protein profiles and a similar degree of expression of the three fragments,
as measured by SDS-PAGE gels and western blotting (Fig 2A and 2B). Cells were induced with
IPTG at t = 8 h of culture. After induction, a band of protein of�30–50 KDa (30, 37, and 50
KDa for scFv-13C6, scFv-13F6, and Fab-KZ52 respectively) was observed, in agreement with
the molecular weight of these fragments (Fig 2A and 2B). The additional bands in the Fab-
KZ52 lane suggest the occurrence of a certain degree of fragmentation during culture.

Under the experimental conditions reported here, practically all the protein of interest was
accumulated in inclusion bodies. The maximum biomass concentration in non-optimized
batch cultures was 6–8 g/L and the product concentration after 18 h of culture was estimated at
20–80 mg/L.

After cultivation, each mAb fragment was recovered and purified using the protocols
described in the Materials and Methods. An overall yield of� 5–10 mg/L (mg of antibody frag-
ment per L of culture media in the reactor) can be obtained by this non-optimized process with
a final product purity higher than 98% (Fig 2C and 2D).

ELISA experiments: rGP attached to the assay surface
The binding capacity of each antibody fragment (Fab-KZ52, scFv-13C6, and scFv-13F6) to a
commercial recombinant EBOV GP (rGP) expressed in insect cells was determined in ELISA
experiments (Figs 3–6). In a first round of experiments, rGP (commercial) was attached to
assay well plate surfaces and either full length mAb 13F6 (positive control), scFv-13F6, scFv-
13C6, or Fab-KZ52 was dispensed at a concentration of 0.5 μg/mL. Assays with the HA-RBD
from Influenza A/H1N1/2009 attached to well surfaces were used as negative controls. In these
experiments, mAb 13F6, Fab-KZ52, scFv-13F6, and scFv-13C6 were confirmed to have
attached to the surface functionalized with rGP as revealed by the addition and binding of com-
mercial rabbit polyclonal anti-IgGs (in the case of experiments using fragments) and poly-
clonal anti-constant region IgGs (in the case of experiments using mAb 13F6).

All three antibody fragments exhibited selective GP binding activity in ELISA experiments,
but significant differences in binding activity and selectivity were found among them. Fig 3C
shows a comparison of the binding activity against GP (orange columns) as determined in
ELISA assays, where GP is attached to the assay surface. The scFv-13C6 mAb exhibited the
highest GP-binding activity, followed by scFv-13F6 and Fab-KZ52. The absorbance signal ratio
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between positive binding samples and blanks (no fragment added) was 10.18(±1.246), 13.93
(±1.397), and 19.08(±1.750) for Fab-KZ52, scFv13F6, and scFv-13C6, respectively. We run
additional negative controls, using human serum—fromMexican patients exposed to Influ-
enza A/H1N1/2009 and presumably negative for Ebola—instead of PBS. These negative con-
trols exhibit a similar absolute absorbance signal to that of a PBS sample.

Fig 5. Binding activities of Fab-KZ52 to GP and HA-RBD in ELISA type II experiments. (A) The binding activity of Fab-KZ52 to GP was evaluated in
ELISA experiments where a layer of anti-histidine IgGs (grey Ys) was first dispensed on the surface of assay wells for later attachment of a rGP layer (yellow
ovals with orange stalk) (B) The non-specific binding of Fab-KZ52 to HA-RBD (red ovals with an orange stalk) was evaluated in a similar manner. (C) The
binding activity in terms of absorbance units (normalized by the absorbance of the negative controls), as determined by ELISA experiments, of Fab-KZ52 to
rGP (yellow bars), HA-RBD (red bars), and negative controls (black bars). Each panel shows results from experiments conducted at two different
concentrations of the anti-histidine IgG solution (1 or 5 μg/mL) used to treat the assay surface. Symbols for mAb fragments are the same as those presented
in Fig 1. Error bars indicate standard deviation from four repeats of independent ELISA experiments. Horizontal black lines indicate significant differences
between groups (***p<0.001).

doi:10.1371/journal.pone.0135859.g005
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Fig 6. GP-binding activities of mAb-13F6, Fab-KZ52, scFv-13F6, scFv-13C6 in ELISA type II experiments. (A) The binding activity of full-length mAb-
3F6 to GP was evaluated in ELISA experiments, where a layer of anti-histidine IgGs (grey Ys) was first dispensed on the surface of assay wells for later
attachment of a rGP layer (yellow ovals with orange stalks). The presence of the mAb+GP complex was revealed by the addition of a solution of anti-IgG
polyclonal-IgGs (grey Ys with black variable regions and green fluorescent stars). (B) Analogously, the binding activity of Fab-KZ52, scFv-13F6, and scFv-
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Red columns indicate the absorbance signal relative to the blank (experiments where no
antibody-fragment added) when another virus capsid protein, HA-RBD from Influenza A/
H1N1/2009, was attached to the assay surface instead of GP. The ratio of GP-binding affinity
to HA-RBD affinity (GP/HA), an indicator of selectivity, was 3.91(±0.468), 4.48(±0.439), and
5.00(±0.455) for Fab-KZ52, scFV-13F6, and scFv-13C6, respectively.

Although fragment Fab-KZ52 did bind to GP, its affinity and selectivity were the lowest
among the three fragments tested. A probable explanation for this could be the nature of the
KZ52 epitope. While the conformational epitopes for 13C6 and 13F6 only include GP1 domain
residues [33], KZ52 (and its analogous fragment Fab-KZ52) should interact with residues at
GP1 and GP2 for proper binding. Any misalignment of the variable regions in the fragment
could conceivably cause a decrease in binding efficacy [41]. In addition, the Fab-KZ52 epitope
is less exposed than the scFv-13C6 or scFv-13F6. Since the access to the KZ52 epitope is steri-
cally more impaired (not shown), the proper alignment of GP molecules could favor the access
of antibody fragments to it. We tested this hypothesis by conducting binding experiments
using a slightly modified ELISA format in which a layer of anti-histidine IgGs was dispensed at
the surface of the assay wells for later addition of his-tagged rGP. While the direct attachment
of rGP to the assay surface does not favor any particular alignment of the molecule, the layer of
anti-histidine antibodies induces a preferred orientation for the His-tagged GP (Fig 4A) and
HA-RBD molecules. Indeed, further improvement in the performance of ELISA Fab-KZ52
experiments was achieved by using an anti-histidine IgG layer (Fig 4C). The average Fab-KZ52
GP binding affinity (normalized by the negative control) increased 65.00%(±29.94%), from
10.18(±1.246) (Fig 3C) to 16.61(±2.674) (Fig 4C). Interestingly, the average GP-binding affinity
of the other two fragments (scFv-13C6 and scFv-13F6) decreased. On average, the apparent
scFv-13F6 GP binding affinity decreased 30.20%(±10.69%) (from 13.93(±1.397) to 9.65
(±1.336) normalized units) and the apparent scFv-13C6 GP binding affinity decreased by
41.34%(±6.54)% (from 19.08(±1.750) to 11.12(±0.938) normalized units) (see Figs 3C and 4C).
Taken together, these results suggest that the effects of molecular orientation and alignment
are relevant in the design of strategies for the diagnosis, capture, or blockage of EBOV. They
also suggest that it may be useful to include more than one antibody fragment (actually a cock-
tail of them) to maximize binding.

In this system, steric effects appear to be important at the molecular level. This has implica-
tions for the design of protocols to treat/sensitize surfaces in ELISA methods. Fig 5A–5C shows
results from Fab-KZ52 + GP ELISA experiments that evaluated two different anti-histidine
IgG surface densities associated with the use of two different anti-histidine IgG coating solution
concentrations (1 or 5 μg/mL). The non-specific binding of Fab-KZ52 to HA-RBD was also
measured (Fig 5B). The sensitivity of the assay was higher for the surface with lower anti-histi-
dine IgG density. On average, the ratio of absorbance signals between positive samples (Fab-
KZ52 + GP) and negative controls was 13.86(±1.053) and 9.03(±0.337) units, respectively, in
assays with surfaces treated with 1 and 5 μg/mL of anti-histidine IgGs (Fig 5C). This ratio
increased to 16.61(±2.674) units in assays conducted on surfaces treated with 0.5 μg/mL of

13C6 to GP was evaluated in ELISA experiments where a layer of anti-histidine IgGs was first dispensed on the surface of assay wells (grey Ys) for later
attachment of an rGP layer (yellow ovals with orange stalks). The presence of the mAb fragment+GP complexes was revealed by the addition of a solution of
anti-histidine polyclonal-IgGs (grey Ys with green fluorescent stars). (C) Negative control experiments consisted of the use of Infliximab (anti-rheumatoid
arthritis therapeutic mAb; black mAb with pink variable regions) instead of an anti-GP mAb or fragment. (D) Binding activity (in terms of arbitrary absorbance
units), as determined by ELISA experiments of the full-length mAbs-13F6 (black mAb with green variable regions), Fab-KZ52 (burgundy fragment), scFv-
13F6 (green fragment), and scFv-13C6 (blue fragment) to GP (yellow ovals with orange stalks). The absorbance reading of negative controls are also shown
(pink bars). Each panel shows results from experiments conducted at two different concentrations of the anti-histidine IgG solution (1 or 5 μg/mL) used to
treat the assay surface. Error bars indicate standard deviation from at least two repeats of independent ELISA experiments. No normalization has been
performed. Horizontal black lines indicate significant differences between groups (*p<0.05, **p<0.01; ***p<0.001).

doi:10.1371/journal.pone.0135859.g006
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anti-histidine IgGs (Fig 4C). The Fab-KZ52 selectivity, measured as the ratio of the absorbance
signals between GP and HA-RBD binding assays, did not increase significantly in the experi-
ments using assay surfaces treated with 1 and 5 μg/mL of anti-histidine IgGs (GP/HA = 3.32
(±0.121) and 4.03(±0.153), respectively) when compared with the experiments conducted with
GP directly attached to the assay surface (GP/HA = 3.91(±0.468)).

In our experiments, we also included full-length mAb 13F6 and Infliximab (a commercial
anti-rheumatoid arthritis therapeutic mAb) as a positive and negative control, respectively (Fig
6A–6C). On average, the ratio of absorbance signals due to GP&mAb-13F6 and GP&Fab-
KZ52 binding was 2.00(±0.161) and 3.187(±0.269) in experiments using 1 and 5 μg/mL of anti-
histidine IgG coating solution, respectively (Fig 6D). These results are provided only as a refer-
ence to indicate the level of sensitivity expected when using a an anti-GP(EBOV) fragment
instead of a commercially available full-length mAb. They should not be considered useful for
a direct comparison of the binding affinities of full-length mAbs and antibody fragments. Note
that MAb 13F6 and Fab-KZ52 target different epitopes at GP. We also revealed the GP&mAb-
13F6 complex by using a marked poly-clonal IgG cocktail instead of anti-histidine IgGs (data
not shown). We also present ELISA results derived from the use of scFv-13F6, and scFv-13C6
(Fig 6D). The three fragments produced and tested exhibited significant differences in binding
affinity to GP, but all of them in the same order of magnitude.

EBOV GP binding does not absolutely guarantee that these three mAb fragments will be
effective in detecting EBOV particles in patient samples. Research using samples containing
actual EBOV particles and samples from Ebola disease patients must be conducted to fully vali-
date the diagnostic usefulness of these peptides.

Conclusions
We show that three antibody fragments (designated Fab-KZ52, scFv-13C6, and scFv-13F6, to
correspond to the full-length mAbs from which their variable regions were taken) are able to
bind a commercially available GP with comparable affinity (lower but in the same order of
magnitude) to that seen with the previously studied and now commercially available full length
anti-GP mAbs. This finding is of substantial relevance to the design of GP detection methods
(and even therapeutic strategies). The use of antibody fragments rather than full length anti-
bodies will significantly reduce the cost of production of Ebola diagnostic devices. The produc-
tion of mAb fragments in bacterial cultures is a more cost-effective proposition than the
production of full-length mAbs in insects or mammalian cell cultures.

We evaluated the binding affinity of GP to each one of these three fragments in ELISA experi-
ments in which a commercial his-tagged rGP was either directly attached to the assay surface or
attached via a layer of anti-histidine IgGs. All three fragments bound GP. Our results suggest that
the apparent sensitivity of the assay depends on the orientation/alignment of rGPmolecules at
the assay surface. We also found that the concentration of the anti-histidine solution used to pre-
pare the surface for rGP binding is relevant for the sensibility and selectivity of the assay.

Antibody fragments can be a useful addition to the toolbox for diagnosis of the presence of
GP in biological samples. They may allow the design of less expensive and high-load/high reso-
lution EBOV detection systems. For instance, nanoparticles highly loaded with antibody frag-
ments could represent a cost-effective alternative for the detection and capture/concentration
of GP and EBOV particles.

In a more general sense, deriving functional mAb fragments from well-studied full length
mAbs, and producing these fragments in bacterial culture, might be a cost-effective (and expe-
ditious) strategy for reacting to diagnostic needs in epidemic (or even pandemic) events. We
are offering a first proof-of-principle for the particular case of Ebola.

Anti-Ebola mAb Fragments

PLOS ONE | DOI:10.1371/journal.pone.0135859 October 21, 2015 14 / 17



Acknowledgments
MMA gratefully acknowledge the institutional funding received from Tecnológico de Monter-
rey (seed funding to Strategic Research Groups, 2015) and funding provided from CONACyT
(Consejo Nacional de Ciencia y Tecnología, México) in the form of Scholarships to GTdS,
ARMI, EGG, and RPCh. MMA, GTdS and AK acknowledge funding fromMIT International
Science and Technology Initiatives (MISTI). GTdS acknowledges funding form Fundación
México en Harvard. AK, SY, and MD acknowledge funding from the National Science Founda-
tion (EFRI–1240443), IMMODGEL (602694), and the National Institutes of Health
(EB012597, AR057837, DE021468, HL099073, AI105024, AR063745).

Author Contributions
Conceived and designed the experiments: LMR-M ARM-I MMA FL-P EG-G CAP-PdL. Per-
formed the experiments: LMR-M ARM-I FL-P EG-G RP-C JCG-V. Analyzed the data: GT-dS
MMAMRD YSZ AK. Contributed reagents/materials/analysis tools: MMA AK. Wrote the
paper: MMA ARM-I GT-dS EG-G AK.

References
1. Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, et al. (2014) Genomic surveillance

elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345: 1369–1372.
doi: 10.1126/science.1259657 PMID: 25214632

2. Enserink M (2014) Ebola drugs still stuck in lab. Science 345, 364–365 (2014). doi: 10.1126/science.
345.6195.364 PMID: 25061181

3. WHO. Global Alert and Response. Ebola Situation Report. March 18 2015. Available: http://www.who.
int/csr/disease/ebola/situation-reports/en/ Downloaded March 24th, 2015.

4. Leroy EM, Baize S, Lu CY, McCormick JB, Georges AJ, Georges‐Courbot MC, et al. (2000) Diagnosis
of Ebola haemorrhagic fever by RT‐PCR in an epidemic setting. J. Med. Virol. 60: 463–467. PMID:
10686031

5. Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, et al. (2004) Rapid diagnosis of
Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of
patient viral load as a predictor of outcome. J. Virol. 78: 4330–4341. PMID: 15047846

6. Pang Z, Li A, Li J, Qu J, He C, Zhang S, et al. (2014) Comprehensive Multiplex One-Step Real-Time
TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses. PLOS ONE
9: e95635. doi: 10.1371/journal.pone.0095635 PMID: 24752452

7. Braize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba NF, et al. (2014) Emergence of
Zaire Ebola Virus Disease in Guinea N. Engl. J. Med. 371: 1418–25.

8. Ksiazek TG, West CP, Rollin PE, Jahrling PB, Peters CJ (1999) ELISA for the detection of antibodies to
Ebola viruses. J. Infect. Dis. 179 (Supplement 1): S192–S198.

9. Niikura M, Ikegami T, Saijo M, Kurane I, Miranda ME, Morikawa S. (2001) Detection of Ebola viral anti-
gen by enzyme-linked immunosorbent assay using a novel monoclonal antibody to nucleoprotein. J.
Clin. Microbiol. 39: 3267–3271. PMID: 11526161

10. Yu JS, Liao HX, Gerdon AE, Huffman B, Scearce RM, McAdamsM, et al. (2006) Detection of Ebola
virus envelope using monoclonal and polyclonal antibodies in ELISA, surface plasmon resonance and
a quartz crystal microbalance immunosensor. J. Virol. Methods 137: 219–228. PMID: 16857271

11. Lucht A, Formenty P, Feldmann H, Götz M, Leroy E, Bataboukila P, et al. (2007) Development of an
immunofiltration-based antigen-detection assay for rapid diagnosis of Ebola virus infection. J. Infect.
Dis. 196: S184–S192. PMID: 17940948

12. Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for bio-
sensor-based applications. In Sem. Cell Dev. Biol. 20: 10–26.

13. Huang TK, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell
suspension cultures. Biochem. Eng. J. 45: 168–184.

14. Omasa T, Onitsuka M, KimWD (2010) Cell engineering and cultivation of Chinese hamster ovary
(CHO) cells. Current Pharm. Biotechnol. 11: 233–240.

Anti-Ebola mAb Fragments

PLOS ONE | DOI:10.1371/journal.pone.0135859 October 21, 2015 15 / 17

http://dx.doi.org/10.1126/science.1259657
http://www.ncbi.nlm.nih.gov/pubmed/25214632
http://dx.doi.org/10.1126/science.345.6195.364
http://dx.doi.org/10.1126/science.345.6195.364
http://www.ncbi.nlm.nih.gov/pubmed/25061181
http://www.who.int/csr/disease/ebola/situation-reports/en/
http://www.who.int/csr/disease/ebola/situation-reports/en/
http://www.ncbi.nlm.nih.gov/pubmed/10686031
http://www.ncbi.nlm.nih.gov/pubmed/15047846
http://dx.doi.org/10.1371/journal.pone.0095635
http://www.ncbi.nlm.nih.gov/pubmed/24752452
http://www.ncbi.nlm.nih.gov/pubmed/11526161
http://www.ncbi.nlm.nih.gov/pubmed/16857271
http://www.ncbi.nlm.nih.gov/pubmed/17940948


15. Varadaraju H, Schneiderman S, Zhang L, Fong H, Menkhaus TJ (2011) Process and economic evalua-
tion for monoclonal antibody purification using a membrane‐only process. Biotechnol. Progr. 27: 1297–
1305.

16. Moricoli D, Muller AM, Carbonella DC, Balducci MC, Dominici S, Watson R, et al. (2014) Blocking
monocyte transmigration in in vitro system by a human antibody scFv anti-CD99. Efficient large scale
purification from periplasmic inclusion bodies in E. coli expression system. J. Immunol. Methods 408:
35–45. doi: 10.1016/j.jim.2014.04.012 PMID: 24798881

17. Baig F, Fernando LP, Salazar MA, Powell RR, Bruce TF, Harcum SW (2014) Dynamic transcriptional
response of Escherichia coli to inclusion body formation. Biotechnol. Bioeng. 111: 980–999. doi: 10.
1002/bit.25169 PMID: 24338599

18. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D (2002) Pharmacokinetics and biodistribution of
genetically engineered antibodies. Curr. Opin. Biotechnol. 13: 603–608. PMID: 12482521

19. Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, et al. (2004) Potent neutralization of severe
acute respiratory syndrome (SARS) coronavirus by a humanmAb to S1 protein that blocks receptor
association. P. Natl. Acad. Sci. USA 101: 2536–2541.

20. Wörn A, Plückthun A (2001) Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol.
305: 989–1010. PMID: 11162109

21. Thakkar S, Nanaware-Kharade N, Celikel R, Peterson EC, Varughese KI (2014) Affinity improvement
of a therapeutic antibody to methamphetamine and amphetamine through structure-based antibody
engineering. Sci. Rep. 4.

22. Patterson JT, Asano S, Li X, Rader C, Barbas CF III (2014) Improving the Serum Stability of Site-Spe-
cific Antibody Conjugates with Sulfone Linkers. Bioconjugate Chem. 25: 1402–1407.

23. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat. Bio-
technol. 23: 1126–1136. PMID: 16151406

24. Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K (2011) Engineering the variable region
of therapeutic IgG antibodies. MAbs 3: 243. PMID: 21406966

25. Sengupta D, Shaikh A, Bhatia S, Pateriya AK, Khandia R, Sood R, et al. (2014) Development of single-
chain Fv against the nucleoprotein of type A influenza virus and its use in ELISA. J. Virol. Methods 208:
129–137. doi: 10.1016/j.jviromet.2014.08.009 PMID: 25152529

26. Yuan R, Chen X, Chen Y, Gu T, Xi H, Duan Y, et al. (2014) Preparation and diagnostic use of a novel
recombinant single-chain antibody against rabies virus glycoprotein. Appl. Microbiol. Biotechnol.
98:1547–1555. doi: 10.1007/s00253-013-5351-6 PMID: 24241896

27. Sharma GK, Mahajan S, Matura R, Subramaniam S, Mohapatra JK, Pattnaik B (2014) Production and
characterization of single-chain antibody (scFv) against 3ABC non-structural protein in Escherichia coli
for sero-diagnosis of Foot and Mouth Disease virus. Biologicals 42: 339–345. doi: 10.1016/j.
biologicals.2014.08.005 PMID: 25439091

28. González-González E, Alvarez MM, Márquez-Ipiña AR, Trujillo-de Santiago G, Rodríguez-Martínez
LM, Annabi N, et al. (2015) Anti-Ebola therapies base don monoclonal antibodies: Current state and
challenges ahead. Critical Review Biotecnol. In press.

29. Olinger GG, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, et al. (2012) Delayed treatment of
Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques
P. Natl. Acad. Sci. USA 109: 18030–5.

30. Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, et al. (2013) Therapeutic intervention of
Ebola virus infection in rhesus macaques with the MB–003 monoclonal antibody cocktail. Sci. Transl.
Med. 5: 199ra113. doi: 10.1126/scitranslmed.3005872 PMID: 24353161

31. Hart MK, Wilson J, inventors; The United States of America as represented by the Secretary of the
Army, assignee. Monoclonal antibodies and complementarity-determining regions binding to Ebola gly-
coprotein. United States patent US 6,875,433, 5. 2005 Apr 5.

32. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, et al. (2014) Reversion of advanced Ebola
virus disease in nonhuman primates with ZMapp. Nature, 514: 47–53. doi: 10.1038/nature13777
PMID: 25171469

33. Murin CD, Fusco ML, Bornholdt ZA, Qiu X, Olinger GG, Zeitlin L, et al. (2014) Structures of protective
antibodies reveal sites of vulnerability on Ebola virus. P. Natl. Acad. Sci. USA 111: 17182–17187.

34. Qiu X, Wong G, Fernando L, Audet J, Bello A, Strong J, et al. (2013) mAbs and Ad-vectored IFN-α ther-
apy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and
symptoms. Sci Transl. Med. 5: 207ra143. doi: 10.1126/scitranslmed.3005872 PMID: 24353161

35. Jones S, Qui X, Feldmann H, Stroeher U, inventors; Jones S, Qiu X, Feldmann H, Stroeher U,
assignee. Monoclonal antibodies for Ebola and Marburg viruses. United States patent US 8,513,391.
2013 Ago 20.

Anti-Ebola mAb Fragments

PLOS ONE | DOI:10.1371/journal.pone.0135859 October 21, 2015 16 / 17

http://dx.doi.org/10.1016/j.jim.2014.04.012
http://www.ncbi.nlm.nih.gov/pubmed/24798881
http://dx.doi.org/10.1002/bit.25169
http://dx.doi.org/10.1002/bit.25169
http://www.ncbi.nlm.nih.gov/pubmed/24338599
http://www.ncbi.nlm.nih.gov/pubmed/12482521
http://www.ncbi.nlm.nih.gov/pubmed/11162109
http://www.ncbi.nlm.nih.gov/pubmed/16151406
http://www.ncbi.nlm.nih.gov/pubmed/21406966
http://dx.doi.org/10.1016/j.jviromet.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25152529
http://dx.doi.org/10.1007/s00253-013-5351-6
http://www.ncbi.nlm.nih.gov/pubmed/24241896
http://dx.doi.org/10.1016/j.biologicals.2014.08.005
http://dx.doi.org/10.1016/j.biologicals.2014.08.005
http://www.ncbi.nlm.nih.gov/pubmed/25439091
http://dx.doi.org/10.1126/scitranslmed.3005872
http://www.ncbi.nlm.nih.gov/pubmed/24353161
http://dx.doi.org/10.1038/nature13777
http://www.ncbi.nlm.nih.gov/pubmed/25171469
http://dx.doi.org/10.1126/scitranslmed.3005872
http://www.ncbi.nlm.nih.gov/pubmed/24353161


36. Lee JE, Fusco ML, Hessell AJ, OswaldWB, Burton DR, Saphire EO (2008) Structure of the Ebola virus
glycoprotein bound to an antibody from a human survivor. Nature 454: 177–82. doi: 10.1038/
nature07082 PMID: 18615077

37. Lee JE, Saphire EO (2009) Ebolavirus glycoprotein structure and mechanism of entry Future Virol. 4:
621–35. PMID: 20198110

38. Alvarez MM, López-Pacheco F, Aguilar-Yañez JM, Portillo-Lara R, Mendoza-Ochoa GI, García-
Echauri S, et al. (2010) Specific recognition of influenza A/H1N1/2009 antibodies in human serum: a
simple virus-free ELISAmethod. PLOSONE 5: e10176. doi: 10.1371/journal.pone.0010176 PMID:
20418957

39. Aguilar-Yáñez JM, Portillo-Lara R, Mendoza-Ochoa GI, García-Echauri SA, López-Pacheco F, Bulnes-
Abundis D, et al. (2010) An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia
coli. PLOS ONE 5(7): e11694. doi: 10.1371/journal.pone.0011694 PMID: 20661476

40. DuBois RM, Aguilar-Yañez JM, Mendoza-Ochoa GI, Oropeza-Almazán Y, Schultz-Cherry S, Alvarez
MM, et al. (2011) The receptor-binding domain of influenza virus hemagglutinin produced in Escheri-
chia coli folds into its native, immunogenic structure. J. Virol. 85: 865–872. doi: 10.1128/JVI.01412-10
PMID: 21068239

41. Shen Z, Yan H, Zhang Y, Mernaugh RL, Zeng X (2008) Engineering peptide linkers for scFv immuno-
sensors. Anal. Chem. 80: 1910–1917. doi: 10.1021/ac7018624 PMID: 18290668

Anti-Ebola mAb Fragments

PLOS ONE | DOI:10.1371/journal.pone.0135859 October 21, 2015 17 / 17

http://dx.doi.org/10.1038/nature07082
http://dx.doi.org/10.1038/nature07082
http://www.ncbi.nlm.nih.gov/pubmed/18615077
http://www.ncbi.nlm.nih.gov/pubmed/20198110
http://dx.doi.org/10.1371/journal.pone.0010176
http://www.ncbi.nlm.nih.gov/pubmed/20418957
http://dx.doi.org/10.1371/journal.pone.0011694
http://www.ncbi.nlm.nih.gov/pubmed/20661476
http://dx.doi.org/10.1128/JVI.01412-10
http://www.ncbi.nlm.nih.gov/pubmed/21068239
http://dx.doi.org/10.1021/ac7018624
http://www.ncbi.nlm.nih.gov/pubmed/18290668



