
UC Irvine
UC Irvine Previously Published Works

Title
The Galois Complexity of Graph Drawing: Why Numerical Solutions Are Ubiquitous for Force-
Directed, Spectral, and Circle Packing Drawings

Permalink
https://escholarship.org/uc/item/5nr7m4pk

Authors
Bannister, Michael J
Devanny, William E
Eppstein, David
et al.

Publication Date
2014

DOI
10.1007/978-3-662-45803-7_13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nr7m4pk
https://escholarship.org/uc/item/5nr7m4pk#author
https://escholarship.org
http://www.cdlib.org/

The Galois Complexity of Graph Drawing:
Why Numerical Solutions are Ubiquitous for

Force-Directed, Spectral, and Circle Packing Drawings?

Michael J. Bannister, William E. Devanny,
David Eppstein, and Michael T. Goodrich

Department of Computer Science, University of California, Irvine

Abstract. Many well-known graph drawing techniques, including force directed
drawings, spectral graph layouts, multidimensional scaling, and circle packings,
have algebraic formulations. However, practical methods for producing such draw-
ings ubiquitously use iterative numerical approximations rather than constructing
and then solving algebraic expressions representing their exact solutions. To ex-
plain this phenomenon, we use Galois theory to show that many variants of these
problems have solutions that cannot be expressed by nested radicals or nested
roots of low-degree polynomials. Hence, such solutions cannot be computed ex-
actly even in extended computational models that include such operations.

1 Introduction

One of the most powerful paradigms for drawing a graph is to construct an algebraic
formulation for a suitably-defined optimal drawing of the graph and then solve this
formulation to produce a drawing. Examples of this algebraic graph drawing approach
include the force-directed, spectral, multidimensional scaling, and circle packing draw-
ing techniques (which we review in Appendix A for readers unfamiliar with them).

Even though this paradigm starts from an algebraic formulation, the ubiquitous
method for solving such formulations is to approximately optimize them numerically in
an iterative fashion. That is, with a few exceptions for linear systems [1–3], approximate
numerical solutions for algebraic graph drawing are overwhelmingly preferred over
exact symbolic solutions. It is therefore natural to ask if this preference for numerical
solutions over symbolic solutions is inherent in algebraic graph drawing or due to some
other phenomena, such as laziness or lack of mathematical sophistication on the part of
those who are producing the algebraic formulations.

In this paper, we introduce a framework for deciding whether certain algebraic
graph drawing formulations have symbolic solutions, and we show that exact symbolic
solutions are, in fact, impossible in several algebraic computation models, for some
simple examples of common algebraic graph drawing formulations, including force-
directed graph drawings (in both the Fruchterman–Reingold [4] and Kamada–Kawai [5]
approaches), spectral graph drawings [6], classical multidimensional scaling [7], and

? This research was supported in part by ONR MURI grant N00014-08-1-1015 and NSF grants
1217322, 1011840, and 1228639.

circle packings [8]. Note that these impossibility results go beyond saying that such
symbolic solutions are computationally infeasible or undecidable to find—instead, we
show that such solutions do not exist.

To prove our results, we use Galois theory, a connection between the theories of
algebraic numbers and abstract groups. Two classical applications of Galois theory
use it to prove the impossibility of the classical Greek problem of doubling the cube
using compass and straightedge, and of solving fifth-degree polynomials by nested
radicals. In our terms, these results concern quadratic computation trees and radical
computation trees, respectively. Our proofs build on this theory by applying Galois
theory to the algebraic numbers given by the vertex positions in different types of
graph drawings. For force-directed and spectral drawing, we find small graphs (in
one case as small as a length-three path) whose drawings directly generate unsolvable
Galois groups. For circle packing, an additional argument involving the compass and
straightedge constructibility of Möbius transformations allows us to transform arbitrary
circle packings into a canonical form with two concentric circles, whose construction is
equivalent to the calculation of certain algebraic numbers. Because of this mathematical
foundation, we refer to this topic as the Galois complexity of graph drawing.

Related Work. The problems for which Galois theory has been used to prove
unsolvability in simple algebraic computational models include shortest paths around
polyhedral obstacles [9], shortest paths through weighted regions of the plane [10], the
geometric median of planar points [11], computing structure from motion in computer
vision [12], and finding polygons of maximal area with specified edge lengths [13]. In
each of these cases, the non-existence of a nested radical formula for the solution is
established by finding a Galois group containing a symmetric group of constant degree
at least five. In our terminology, this shows that these problems cannot be solved by a
radical computation tree. We are not aware of any previous non-constant lower bounds
on the degree of the polynomial roots needed to solve a problem, comparable to our
new bounds using the root computation tree model. Brightwell and Scheinerman [14]
show that some circle packing graph representations cannot be constructed by compass
and straightedge (what we call the quadratic computation tree model).

2 Preliminaries

Models of computation. We define models of computation based on the algebraic
computation tree [15, 16], in which each node computes a value or makes a decision
using standard arithmetic functions of previously computed values. Specifically, we
define the following variant models:

– A quadratic computation tree is an algebraic computation tree in which the set of
allowable functions for each computation node is augmented with square roots and
complex conjugation. These trees capture the geometric constructions that can be
performed by compass and unmarked straightedge.

– A radical computation tree is an algebraic computation tree in which the set of
allowable functions is augmented with the kth root operation, where k is an integer
parameter to the operation, and with complex conjugation. These trees capture the
calculations whose results can be expressed as nested radicals.

2

– A root computation tree is an algebraic computation tree in which the allowable
functions include the ability to find complex roots of polynomials whose coeffi-
cients are integers or previously computed values, and to compute complex con-
jugates of previously computed values. For instance, this model can compute any
algebraic number. As a measure of complexity in this model, we define the degree
of a root computation tree as the maximum degree of any of its polynomials. A
bounded-degree root computation tree has its degree bounded by some constant
unrelated to the size of its input. Thus, a quadratic computation tree is exactly a
bounded-degree root computation tree (of degree two).

Our impossibility results and degree lower bounds for these models imply the same
results for algorithms in more realistic models of computation that use as a black box
the corresponding primitives for constructing and representing algebraic numbers in
symbolic computation systems. Because our results are lower bounds, they also apply a
fortiori to weaker primitives, such as systems limited to real algebraic numbers, which
don’t include complex conjugation.

It is important to note that each of the above models can generate algebraic numbers
of unbounded degree. For instance, even the quadratic computation tree (compass and
straightedge model) can construct regular 2k-gons, whose coordinates are algebraic
numbers with degrees that are high powers of two. Thus, to prove lower bounds and
impossibility results in these models, it is not sufficient to prove that a problem is
described by a high-degree polynomial; additional structure is needed.

Algebraic graph theory. In algebraic graph theory, the properties of a graph are
examined via the spectra of several matrices associated with the graph. The adjacency
matrix A = adj(G) of a graph G is the n × n matrix with Ai,j equal to 1 if there is
an edge between i and j and 0 otherwise. The degree matrix D = deg(G) of G is the
n × n matrix with Di,i = deg(vi). From these two matrices we define the Laplacian
matrix, L = lap(G) = D −A, and the transition matrix, T = tran(G) = D−1A.

Lemma 1. For a regular graph G, adj(G), lap(G), and tran(G) have the same set of
eigenvectors.

Lemma 2. For the cycle on n vertices, the eigenvalues of adj(G) are 2 cos(2πk/n),
for 0 ≤ k < n.

Möbius transformations. We may represent each point p in the plane by a complex
number, z, whose real part represents p’s x coordinate and whose imaginary part rep-
resents p’s y coordinate. A Möbius transformation is a fractional linear transformation,
z 7→ (az + b)/(cz + d), defined by a 4-tuple (a, b, c, d) of complex numbers, or the
complex conjugate of such a transformation. We prove the following in Appendix B.

Lemma 3. Given any two disjoint circles, a Möbius transformation mapping them to
two concentric circles can be constructed using a quadratic computation tree.

Number theory. The Euler totient function, φ(n), counts the number of integers in
the interval [1, n− 1] that are relatively prime to n. It can be calculated from the prime
factorization n =

∏
prii by the formula

φ(n) =
∏

pri−1i (pi − 1).

3

A Sophie Germain prime is a prime number p such that 2p+1 is also prime [17]. It
has been conjectured that there are infinitely many of them, but the conjecture remains
unsolved. The significance of these primes for us is that, when p is a Sophie Germain
prime, φ(2p + 1) has the large prime factor p. An easy construction gives a number n
for which φ(n) has a prime factor of size Ω(

√
n): simply let n = p2 for a prime p, with

φ(n) = p(p− 1). Baker and Harman [18] proved the following stronger bound.

Lemma 4 (Baker and Harman [18]). For infinitely many prime numbers p, the largest
prime factor of φ(p) is at least p0.677.

Field theory. A field is a system of values and arithmetic operations over them
(addition, subtraction, multiplication, and division) obeying similar axioms to those of
rational arithmetic, real number arithmetic, and complex number arithmetic: addition
and multiplication are commutative and associative, multiplication distributes over ad-
dition, subtraction is inverse to addition, and division is inverse to multiplication by
any value except zero. A field K is an extension of a field F , and F is a subfield of
K (the base field), if the elements of F are a subset of those of K and the two fields’
operations coincide for those values. K can be viewed as a vector space over F (values
in K can be added to each other and multiplied by values in F) and the degree [K : F]
of the extension is its dimension as a vector space. For an element α of K the notation
F (α) represents the set of values that can be obtained from rational functions (ratios
of univariate polynomials) with coefficients in F by plugging in α as the value of the
variable. F (α) is itself a field, intermediate between F and K. In particular, we will
frequently consider field extensions Q(α) where Q is the field of rational numbers and
α is an algebraic number, the complex root of a polynomial with rational coefficients.

Lemma 5. If α can be computed by a root computation tree of degree f(n), then
[Q(α) : Q] is f(n)-smooth, i.e., it has no prime factor > f(n). In particular, if α
can be computed by a quadratic computation tree, then [Q(α) : Q] is a power of two.

Proof. See Appendix B. ut

A primitive root of unity ζn is a root of xn − 1 whose powers give all other roots of
the same polynomial. As a complex number we can take ζn = exp(2iπ/n).

Lemma 6 (Corollary 9.1.10 of [19], p. 235). [Q(ζn) : Q] = φ(n).

Galois theory. A group is a system of values and a single operation (written as
multiplication) that is associative and in which every element has an inverse. The set
of permutations of the set [n] = {1, 2, . . . , n}, multiplied by function composition, is a
standard example of a group and is denoted by Sn. A permutation group is a subgroup
of Sn; i.e., it is a set of permutations that is closed under the group operation.

A field automorphism of the field F is a bijection σ : F → F that respects the field
operations, i.e., σ(xy) = σ(x)σ(y) and σ(x + y) = σ(x) + σ(y). The set of all field
automorphism of a field F forms a group denoted by Aut(F). Given a field extension
K of F , the subset of Aut(K) that leaves F unchanged is itself a group, called the
Galois group of the extension, and is denoted

Gal(K/F) = {σ ∈ Aut(K) | σ(x) = x for all x ∈ F}.

4

The splitting field of a polynomial, p, with rational coefficients, denoted split(p) is the
smallest subfield of the complex numbers that contains all the roots of the polynomial.
Each automorphism in Gal(split(p)/Q) permutes the roots of the polynomial, no two
automorphisms permute the roots in the same way, and these permutations form a
group, so Gal(split(p)/Q) can be thought of as a permutation group.

Lemma 7. If α can be computed by a radical computation tree and K is the splitting
field of an irreducible polynomial with α as one of its roots, then Gal(K/Q) does not
contain Sn as a subgroup for any n ≥ 5.

Proof. If α is computable by a radical computation tree, it can be written as an expres-
sion using nested radicals. If K is the splitting field of an irreducible polynomial with
such an expression as a root, Gal(K/Q) is a solvable group (Def. 8.1.1 of [19], p. 191
and Theorem 8.3.3 of [19], p. 204). But Sn is not solvable for n ≥ 5 (Theorem 8.4.5
of [19], p. 213), and every subgroup of a solvable group is solvable (Proposition 8.1.3
of [19], p. 192). Thus, Gal(K/Q) cannot contain Sn (n ≥ 5) as a subgroup. ut

The next lemma allows us to infer properties of a Galois group from the coefficients
of a monic polynomial, that is, a polynomial with integer coefficients whose first co-
efficient is one. The discriminant of a monic polynomial is (up to sign) the product of
the squared differences of all pairs of its roots; it can also be computed as a polynomial
function of the coefficients. The lemma is due to Dedekind and proven in [19].

Lemma 8 (Dedekind’s theorem). Let f(x) be an irreducible monic polynomial in
Z[x] and p a prime not dividing the discriminant of f . If f(x) factors into a product
of irreducibles of degrees d0, d1, . . . dr over Z/pZ, then Gal(split(f)/Q) contains a
permutation that is the composition of disjoint cycles of lengths d0, d1, . . . , dr.

A permutation group is transitive if, for every two elements x and y of the ele-
ments being permuted, the group includes a permutation that maps x to y. If K is the
splitting field of an irreducible polynomial of degree n, then Gal(K/Q) (viewed as a
permutation group on the roots) is necessarily transitive. The next lemma allows us to
use Dedekind’s theorem to prove that Gal(K/Q) equals Sn. It is a standard exercise in
abstract algebra (e.g., [20], Exercise 3, p. 305).

Lemma 9. If a transitive subgroup G of Sn contains a transposition and an (n − 1)-
cycle, then G = Sn.

3 Impossibility Results for Force Directed Graph Drawing

In the Fruchterman and Reingold [4] force-directed model, each vertex is pulled toward
its neighbors with an attractive force, fa(d) = d2/k, and pushed away from all vertices
with a repulsive force, fr(d) = k2/d. The parameter k is a constant that sets the scale
of the drawing, and d is the distance between vertices. We say that a drawing is a
Fruchterman and Reingold equilibrium when the total force at each vertex is zero.

5

Fig. 1. Two stable drawings of K4.

a

b

Fig. 2. A drawing whose coordinates
cannot be computed by a quadratic
computation tree.

In the Kamada and Kawai [5] force-directed model, every two vertices are con-
nected by a spring with rest length and spring constant determined by the structure of
the graph. The total energy of the graph is defined to be

E =
∑
i

∑
j>i

1

2
kij
(
dist(pi, pj)− `ij

)2
,

where pi = position of vertex vi, dij = graph theoretic distance between vi and vj ,
L = a scaling constant, `ij = Ldij , K = a scaling constant, and kij = K/d2i,j . We
say that a drawing is a Kamada–Kawai equilibrium if E is at a local minimum. The
necessary conditions for such a local minimum are as follows:

∂E

∂xj
=
∑
i 6=j

kji(xj − xi)
(
1− `ji

dist(pj , pi)

)
= 0 1 ≤ j ≤ n

∂E

∂yj
=
∑
i 6=j

kji(yj − yi)
(
1− `ji

dist(pj , pi)

)
= 0 1 ≤ j ≤ n.

For either of these approaches to force-directed graph drawing, a graph can have
multiple equilibria (Figure 1). In such cases, typically, one equilibrium is the “expected”
drawing of the graph and others represent undesired drawings that are not likely to be
found by the drawing algorithm. To make the positions of the vertices in this drawing
concrete, we assume that the constants k (Fruchterman–Reingold), L, andK (Kamada–
Kawai) are all equal to 1. As we will demonstrate, there exist graphs whose expected
drawings cannot be constructed in our models of computation. Interestingly, the graphs
we use for these results are not complicated configurations unlikely to arise in practice,
but are instead graphs so simple that they might at first be dismissed as insufficiently
challenging even to be used for debugging purposes.

Root computation trees. Consider the cycle Cn with n vertices. When drawn with
force directed algorithms, either Fruchterman and Reingold or Kamada and Kawai, the
embedding typically places all vertices equally spaced on a circle, such that neighbors
are placed next to each other, as shown in Figure 2. As an easy warm-up to our main
results, we observe that this is not always possible using a quadratic computation tree.

Theorem 1. There exist a graph with seven vertices such that it is not possible in a
quadratic computation tree to compute the coordinates of every possible Fruchterman
and Reingold equilibrium or every possible Kamada and Kawai equilibrium.

6

Proof. Let G be the cycle C7 on seven vertices. Both algorithms have the embedding
shown in Figure 2 (suitably scaled) as an equilibrium. In this embedding let a and b be
two neighboring vertices and α and β their corresponding complex coordinates. Then
α/β is equal to ±ζ7 the seventh root of unity. By Lemma 6

[Q(ζ7) : Q] = φ(7) = 6.

Since 6 is not a power of two, Lemma 5 implies that ζ7 cannot be constructed by a
quadratic computation tree. Therefore, neither can this embedding. ut

Theorem 2. For arbitrarily large values of n, there are graphs on n vertices such
that constructing the coordinates of all Fruchterman and Reingold equilibria on a
root computation tree requires degree Ω(n0.677). If there exists infinitely many Sophie
Germain primes, then there are graphs for which computing the coordinates of any
Fruchterman and Reingold equilibria requires degree Ω(n). The same results with the
same graphs hold for Kamada and Kawai equilibria.

Proof. As in the previous theorem we consider embedding cycles with their canonical
embedding, which is an equilibrium for both algorithms. The same argument used in
the previous theorem shows we can construct ζn from the coordinates of the canonical
embedding of the cycle on n vertices.

We consider cycles with p vertices where p is a prime number for which φ(p) =
p− 1 has a large prime factor q. If arbitrarily large Sophie Germain primes exist we let
q be such a prime and let p = 2q + 1. Otherwise, by Lemma 4 we choose p in such a
way that its largest prime factor q is at least p0.677. Now, by Lemma 6 we have:

[Q(ζp) : Q] = φ(p) = p− 1.

This extension is not D-smooth for any D smaller than q, and therefore every construc-
tion of it on a root computation tree requires degree at least q. ut

Thus, such drawings are not possible on a bounded-degree root computation tree.
Radical computation trees. To show that the coordinates of a Fruchterman and

Reingold equilibrium are in general not computable with a radical computation tree
we consider embedding the path with three edges, shown in Figure 3. We assume
that all of the vertices are embedded colinearly and without edge or vertex overlaps.
These assumptions correspond to the equilibrium that is typically produced by the
Fruchterman and Reingold algorithm.

Let a > 0 be the distance from v0 to v1 (equal by symmetry to the distance from v2
to v3) and let b > 0 be the distance from v1 to v2. We can then express the sum of all
the forces at vertex v0 by the equation

F0 = a2 − 1

a
− 1

a+ b
− 1

2a+ b
=

2a5 + 3a4b+ a3b2 − 5a2 − 5ab− b2

2a3 + 3a2b+ ab2
,

and the sum of all the forces at vertex v1 by the equation

F1 = −a2 + 1

a
+ b2 − 1

b
− 1

a+ b
=
−a4b− a3b2 + a2b3 − a2 + ab4 − ab+ b2

a2b+ ab2
.

7

v0 v1 v2 v3

Fig. 3. A graph whose Fruchterman–
Reingold coordinates cannot be com-
puted by a radical computation tree.

u0 u1

u2

u3

Fig. 4. A graph whose Kamada–Kawai
coordinates cannot be computed by a
radical computation tree.

In an equilibrium state we have F1 = F2 = 0. Equivalently, the numerator p of F1 and
the numerator q of F2 are both zero, where

p(a, b) = 2a5 + 3a4b+ a3b2 − 5a2 − 5ab− b2 = 0

q(a, b) = −a4b− a3b2 + a2b3 − a2 + ab4 − ab+ b2 = 0.

To solve this system of two equations and two unknowns we can eliminate variable a
and produce the following polynomial, shown as a product of irreducible polynomials,
whose roots give the values of b that lead to a solution.

1

3
b2(3b15 − 48b12 + 336b9 − 1196b6 + 1440b3 + 144).

The factor b2 corresponds to degenerate drawings and may safely be eliminated. Let f
be the degree-fifteen factor; then f(x) = g(x3) for a quintic polynomial g. A radical
computation tree can compute the roots of f from the roots of g, so we need only show
that the roots of g cannot be computed in a radical computation tree. To do this, we
convert g to a monic polynomial h with the same splitting field, via the transformation

h(x) =
x5

144
g(6/x) = x5 + 60x4 − 299x3 + 504x2 − 432x+ 162.

The polynomial h can be shown to be irreducible by manually verifying that it has no
linear or quadratic factors. Its discriminant is −26 · 39 · 23412 · 2749, and h factors
modulo primes 5 and 7 (which do not divide the discriminant) into irreducibles:

h(x) ≡ (x+ 1)(x4 + 3x3 + 6x2 + x+ 1) (mod 7)

h(x) ≡ (x2 + 3x+ 4)(x3 + 2x2 + x+ 3) (mod 5).

By Dedekind’s theorem, the factorization modulo 7 implies the existence of a 4-cycle in
Gal(split(h)/Q), and the factorization modulo 5 implies the existence of a permutation
that is the composition of a transposition and a 3-cycle. Raising the second permutation
to the power 3 yields a transposition. By Lemma 9, Gal(split(h)/Q) = S5. So by
Lemma 7 the value of b cannot be computed by a radical computation tree. Thus, we
cannot compute the equilibrium coordinates of the path with three edges under the
assumptions that the vertices are collinear and there are no vertex or edge overlaps.

Theorem 3. There exists a graph on four vertices such that it is not possible on a
radical computation tree to construct the coordinates of every possible Fruchterman
and Reingold equilibrium.

8

To show that the coordinates of a Kamada and Kawai equilibrium are in general not
computable with a radical computation tree we consider the graph depicted in Figure 4.

Theorem 4. There exists a graph on four vertices such that it is not possible on a
radical computation tree to construct the coordinates of every possible Kamada and
Kawai equilibrium.

Proof. See Appendix B. ut

4 Impossibility Results for Spectral Graph Drawing

Root computation trees. We begin with the following result for root computation trees.

Theorem 5. For arbitrarily large values of n, there are graphs on n vertices such
that constructing spectral graph drawings based on the adjacency, Laplacian, relaxed
Laplacian, or transition matrix requires a root computation tree of degree Ω(n0.677).
If there exist infinitely many Sophie Germain primes, then there are graphs for which
computing these drawings requires degree Ω(n).

Proof. Since all of the referenced matrices have rational entries, it suffices to consider
the computability of their eigenvalues. Further, if we restrict our attention to regular
graphs it suffices to consider the eigenvalues of just the adjacency matrix,M = adj(G),
by Lemma 1. Let p be a prime and G the cycle on p vertices. By Lemma 2 the eigenval-
ues ofA = adj(G) are given by 2 cos(2πk/p) for 0 ≤ k ≤ p−1. In a root computation
tree of degree at least 2 the primitive root of unity ζp = exp(2iπ/p) can be computed
from 2 cos(2πk/p) for all k 6= 0. Therefore, from the proof of Theorem 2, for arbitrarily
large n, there are graphs on n vertices such that M has one rational eigenvector (for
k = 0) and the computation of any other eigenvector on a root computation tree requires
degree Ω(n0.667). If infinitely many Sophie Germain primes exist, there are graphs for
which computing these eigenvectors requires degree Ω(n). ut

Thus, such drawings are not possible on a bounded-degree root computation tree.
Radical computation trees. To show that in general the eigenvectors associated

with a graph are not constructible with a radical tree we consider the graph, Y , on nine
vertices in Figure 5 for the Laplacian and relaxed Laplacian matrices, and the graph,H ,
on twelve vertices in Figure 7 for the adjacency and transition matrices.

Fig. 5. A graph Y whose Laplacian eigenvectors are uncomputable by a radical tree.

The characteristic polynomial, p(x) = det(M − xI), for the Laplacian matrix for
Y , can be computed to be

p(x) = char(lap(Y))

= x(x8 − 16x7 + 104x6 − 354x5 + 678x4 − 730x3 + 417x2 − 110x+ 9).

9

Lemma 10 (Stäckel [21]). If f(x) is a polynomial of degree n with integer coefficients
and |f(k)| is prime for 2n+ 1 values of k, then f(x) is irreducible.

Let q = p(x)/x. The polynomial q is irreducible by Lemma 10, as it produces a
prime number for 17 integer inputs from 0 to 90. The discriminant of q is 28 · 9931583
and we have the following factorizations of q modulo the primes 31 and 41.

p1(x) ≡ (x+ 27)(x7 + 19x6 + 25x5 + 25x4 + 3x3 + 26x2 + 25x+ 21) (mod 31)

p1(x) ≡ (x+ 1)(x2 + 15x+ 39)(x5 + 9x4 + 29x3 + 10x2 + 36x+ 16) (mod 41).

By Dedekind’s theorem, the factorization modulo 31 implies the existence of a 7-
cycle, and the factorization modulo 41 implies the existence of a permutation that is
the composition of a transposition and a 5-cycle. The second permutation raised to the
fifth power produces a transposition. Thus, Lemma 9 implies Gal(split(p1)/Q) = S8.
So by Lemma 7 the only eigenvalue of lap(Y) computable in a radical computation
tree is 0. For the relaxed Laplacian we consider the two variable polynomial f(x, ρ) =
char(lapρ(Y)). Since setting ρ equal to 1 produces a polynomial with Galois group S8,
Hilbert’s irreducibility theorem tells us that the set of ρ for which the Galois group of
f(x, ρ) is S8 is dense in Q.

Theorem 6. There exists a graph on nine vertices such that it is not possible to con-
struct a spectral graph drawing based on the Laplacian matrix in a radical computation
tree. For this graph there exists a dense subset A of Q such that it is not possible to
construct a spectral graph drawing based on the relaxed Laplacian with ρ ∈ A in a
radical computation tree.

In Appendix C we similarly prove that spectral drawings based on the adjacency
matrix and the transition matrix cannot be constructed by a radical computation tree. In
Appendix D we similarly prove that drawings produced by classical multidimensional
scaling cannot be constructed by a radical computation tree.

5 Impossibility Results for Circle Packings

Root computation trees. A given graph may be represented by infinitely many circle
packings, related to each other by Möbius transformations. But as we now show, if one
particular packing cannot be constructed in our model, then there is no other packing
for the same graph that the model can construct.

Lemma 11. Suppose that a circle packing P contains two concentric circles. Suppose
also that at least one radius of a circle or distance between two circle centers, at least
one center of a circle, and the slope of at least one line connecting two centers of
circles in P can all be constructed by one of our computation models, but that P itself
cannot be constructed. Then the same model cannot construct any circle packing that
represents the same underlying graph as P .

10

Fig. 6. The graph Bipyramid(7) and its associated concentric circle packing.

Proof. Suppose for a contradiction that the model could construct a circle packing Q
representing the same graph as P . By Lemma 3 it could transform Q to make the two
circles concentric, giving a packing that is similar either to P or to the inversion of P
through the center of the concentric circles. By one more transformation it can be made
similar to P . The model could then rotate the packing so the slope of the line connecting
two centers matches the corresponding slope in P , scale it so the radius of one of its
circles matches the corresponding radius in P , and translate the center of one of its
circles to the corresponding center in P , resulting in P itself. This gives a construction
of P , contradicting the assumption. ut

We define Bipyramid(k) to be the graph formed by the vertices and edges of a
(k + 2)-vertex bipyramid (a polyhedron formed from two pyramids over a k-gon by
gluing them together on their bases). In graph-theoretic terms, it consists of a k-cycle
and two additional vertices, with both of these vertices connected by edges to every
vertex of the k-cycle. The example of Bipyramid(7) can be seen in Figure 6, left.

Theorem 7. There exists a graph whose circle packings cannot be constructed by a
quadratic computation tree.

Proof. Consider the circle packing of Bipyramid(7) in which the two hubs are repre-
sented by concentric circles, centered at the origin, with the other circle centers all on
the unit circle and with one of them on the x axis. One of the centers of this packing
is at the root of unity ζ7. By Lemma 6, [Q(ζ7) : Q] = φ(7) = 6. 6 is not a power
of two, so by Lemma 5 ζ7 cannot be constructed by a quadratic computation tree. By
Lemma 11, neither can any other packing for the same graph. ut

In Appendix E, we prove that certain circle packings also cannot be constructed by
radical computation trees nor by bounded-degree root computation trees.

6 Conclusion

We have shown that several types of graph drawing cannot be constructed by models
of computation that allow computation of arbitrary-degree radicals, nor by models that
allow computation of the roots of bounded-degree polynomials. Whether the degree of
these polynomials must grow linearly as a function of the input size, or only propor-
tionally to a sublinear power, remains subject to an open number-theoretic conjecture.

It is natural to ask whether these drawings might be computable in a model of
computation that allows both arbitrary-degree radicals and bounded-degree roots. We
leave this as open for future research.

11

Acknowledgements

We used the Sage software package to perform preliminary calculations of the Galois
groups of many drawings. Additionally, we thank Ricky Demer on MathOverflow for
guiding us to research on large factors of φ(n).

References

[1] Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three
dimensions. In: 12th Symp. on Computational Geometry (SoCG). (1996) 319–328

[2] Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms. Algorithmica 7
(1992) 339–380

[3] Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 3 (1963) 743–767
[4] Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.

Software: Practice and Experience 21 (1991) 1129–1164
[5] Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information

Processing Letters 31 (1989) 7–15
[6] Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Computers &

Mathematics with Applications 49 (2005) 1867–1888
[7] Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: Proc. First General Conf. on

Social Graphics. (1980) 22–50
[8] Koebe, P.: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig,

Math.-Phys. Kl. 88 (1936) 141–164
[9] Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. 23rd

Allerton Conf. on Communication, Control and Computing. (1985) 510–517
[10] Carufel, J.L.D., Grimm, C., Maheshwari, A., Owen, M., Smid, M.: A Note on the

unsolvability of the weighted region shortest path problem. In: Booklet of Abstracts of the
28th European Workshop on Computational Geometry. (2013) 65–68

[11] Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput.
Geom. 3 (1988) 177–191

[12] Nister, D., Hartley, R., Stewenius, H.: Using Galois theory to prove structure from motion
algorithms are optimal. In: IEEE Conf. Computer Vision & Pattern Recog. (2007) 1–8

[13] Varfolomeev, V.V.: Galois groups of the Heron–Sabitov polynomials for inscribed
pentagons. Mat. Sb. 195 (2004) 3–16 Translation in Sb. Math. 195: 149–162, 2004.

[14] Brightwell, G., Scheinerman, E.: Representations of planar graphs. SIAM J. Discrete
Math. 6 (1993) 214–229

[15] Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th Annu. Symp.
Theory of Computing. (1983) 80–86

[16] Yao, A.C.: Lower bounds for algebraic computation trees of functions with finite
domains. SIAM J. Comput. 20 (1991) 655–668

[17] Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge
Univ. Press (2009)

[18] Baker, R.C., Harman, G.: Shifted primes without large prime factors. Acta Arith. 83
(1998) 331–361

[19] Cox, D.A.: Galois Theory. 2nd edn. Pure and Applied Mathematics. Wiley (2012)
[20] Jacobson, N.: Basic Algebra I. 2nd edn. Dover Books on Mathematics. Dover (2012)
[21] Stäckel, P.: Arithmetische Eigenschaften ganzer Funktionen. (Fortsetzung.). J. Reine

Angew. Math. 148 (1918) 101–112

12

A A Brief Review of Algebraic Graph Drawing

In this appendix, we provide a brief review of algebraic graph drawing, for readers
unfamiliar with these topics.

A.1 Force-Directed Graph Drawing

Force-directed algorithms are among the most popular and flexible general purpose
graph drawing algorithms. They work by setting up a system of forces between ver-
tices in the graph and then performing an iterative algorithm to attempt to reach an
equilibrium state. By choosing an appropriate balance of forces, these algorithms can
readily produce aesthetically pleasing drawings that exhibit the structure of the graph
being drawn. More details on such algorithms can be found in several surveys on the
subject [22–24].

In this paper, we focus our attention on the two most popular force-based drawing
algorithms. We consider the Fruchterman and Reingold algorithm, which views the
vertices as repelling charged particles connected by springs of rest length zero, and the
Kamada and Kawai algorithm, which views graphs as a system is which every pair of
vertices is connected by a spring whose spring constant and rest length is based on the
graph theoretic distance between the vertices. The Fruchterman and Reingold algorithm
computes a local minimum by simulating the motion induced by the forces, i.e., at each
step the vertices are moved in a direction based on the current total force at the vertex.
On the other hand, the Kamada and Kawai algorithm defines a total energy function for
the system and then attempts to minimize this function by moving one vertex at a time,
using a two-dimensional Newton–Raphson method. In both algorithms, computing an
equilibrium may be viewed as solving a large system of polynomial equations in many
variables. [4, 5]

A straightforward implementation of a force directed drawing algorithm would
requireΩ(n2+m) work per iteration, as the pairwise forces must be computed between
every pair of vertices in addition to the edge forces. This slow runtime would limit
the size of graphs on which this method can be used. Researchers have found that by
using the multipole method of n-body simulation [25, 26] the work per iteration can
be reduced to O(n log n). These fast algorithms, in combination with the parallelism
of modern GPUs [27, 28] allow force directed algorithms to be run on graphs with a
hundred thousand nodes in under ten seconds.

A.2 Spectral Graph Drawing

Another family of general purpose graph drawing method are the spectral methods.
To produce a spectral graph drawing of a graph G, we define an associated matrix,
M , and, from the eigenvectors, u1, u2, u3, · · · , un of M (ordered by eigenvalues), we
choose two vectors ur and us. The coordinates in R2 of a vertex i in the drawing of
G are given by (ur[i], us[i]). The choice of M , r, and s determine the aesthetics of the
drawing, and can be motivated by viewing the eigenvectors as solutions to optimization
problems [6].

13

In 1970, Hall was the first to propose such a method for graph drawing, using the
Laplacian matrix and the eigenvectors u2 and u3 [29]. Later Manolopoulos and Fowler
used the adjacency matrix to draw molecular graphs with the eigenvectors chosen based
on the molecule being drawn [30]. Brandes and Willhalm used the u2 and u3 eigenvec-
tors of a relaxed Laplacian, lapρ(G) = lap(G)− ρdeg(G) [31]. More recently, Koren
has used the transition matrix and the eigenvectors un−2 and un−1 [6].

Fast iterative algorithms for the numerical computation of the eigenvectors useful
for graph drawing have been developed, which make spectral graph drawing practical
for graphs with tens of millions of vertices and edges [6] [32, 33]. Unlike many force
directed methods, these methods can be guaranteed to converge to a unique solution,
rather than getting stuck in local optima. Based on this property, it has been claimed
that in spectral drawing an exact solution may be computed, as opposed to typical NP-
hard graph drawing formulations [6]. In light of the results in this paper, we feel that it
is more appropriate to say that there exists a single solution which may be efficiently
approximated.

A.3 Multidimensional Scaling

Multidimensional scaling algorithms are a family of graph drawing methods originally
presented by Kruskal and Seery [7]. These techniques attempt to place vertices into
d-dimensional space (where d is usually two or three) such that the geometric distance
of each pair of vertices is approximately close to some measure of their graph-theoretic
distance. It can be seen as closely related both to Kamada–Kawai drawing (which
attempts to fit the drawing to target distances between vertices) and spectral drawing
(which uses matrices and their eigenvectors to construct drawings).

We encapsulate the target measure of distance in a matrix D of pairwise squared
vertex distances in G. Formally we wish to find a matrix of vertex positions, X =
[x1, . . . , xn]

T , so that for each pair of vertices i and j, ||xi − xj ||2 ≈ Di,j . When the
matrix D is the matrix of the squared graph theoretic distances for all vertex pairs, this
is classical multidimensional scaling [34]. In this case, to compute X , we first compute
a derived matrixB by double centering the matrixD; this is an operation that combines
D linearly with its row averages, column averages, and overall average, in a way that
(if D were truly a matrix of squared Euclidean distances) would produce a matrix of
dot products B = XXT . Then, to recover the matrix X of vertex positions, we factor
B as B = V ΛV T where V is the orthonormal matrix of the eigenvectors of B, sorted
by eigenvalue, and Λ is the matrix of corresponding eigenvalues of B. The final vertex
positions are obtained by taking the first d columns of the matrix V Λ1/2.

The computation of the matrix D of squared graph theoretic distances, by an all
pairs shortest path algorithm, and the computation of the eigenvectors ofB, by repeated
multiplication and orthogonalization, are polynomial but can be expensive for large
graphs. Alternative variants of multidimensional scaling that reduce its computation
time at the cost of solution quality have been proposed [34]. These other variants,
including landmark and pivot multidimensional scaling, construct D as the squared
distance matrix of a smaller sample of vertex pairs and use slightly different techniques
to computeX . These methods only approximate theX from classical multidimensional
scaling, but can be feasibly run on much larger graphs.

14

Multidimensional scaling can also be computed by a technique called majorization
[35]. The energy or stress of a drawing is defined to be a weighted sum of squared dif-
ferences between vertex pair distances in the graph and their real positions. A solution
can be computed iteratively by bounding the energy from above with a convex function,
based on the current solution, and setting each successive solution to be the minimizer
of this convex function.

A.4 Circle Packings

The famous circle packing theorem of Koebe, Andreev, and Thurston states that every
planar graph can be represented by a collection of interior-disjoint circles in the Eu-
clidean plane, so that each vertex of the graph is represented by one circle and each
edge is represented by a tangency between two circles [8] [36]. If the given graph is a
maximal planar graph, the circle packing is unique up to Möbius transformations; it can
be made completely unique by packing the circles on a sphere rather than on the plane
and by choosing a Möbius transformation that maximizes the minimum radius of the
circles [37]. Circle packings have many algorithmic applications, detailed below.

Efficient numerical algorithms for computing a circle packing representing a given
graph are known, in time polynomial in the number of circles and the desired numerical
precision [38–40]. These algorithms work with a system of radii of the circles, leaving
their geometric placement for later. Starting from an inaccurate initial system of radii,
they repeatedly improve this system by choosing one of the circles and replacing its
radius by a new number that would allow the circle to be precisely surrounded by
a ring of circles with its neighbors’ radii. Each such replacement can be performed
by a simple calculation using trigonometric functions, and the system of radii rapidly
converges to values corresponding to a valid circle packing. Once the radii have been
accurately approximated, the locations of the circle centers of the circles can be cal-
culated by a process of triangulation. These algorithms have been implemented by
multiple researchers—our figures are the output of a Python implementation initially
developed for a graph drawing application [41]—and they work well in practice.

Although the known algorithms for circle packing use trigonometry, the circle pack-
ings themselves are algebraic: it is straightforward to write out a system of quadratic
equations for variables describing the centers and radii of the circles, with each equation
constraining two circles to be tangent. The real-valued solutions to these equations
necessarily include the desired circle packings, although they may also include other
configurations of circles that have the proper tangencies but are not interior-disjoint.

Nevertheless, despite being an algebraic problem with many applications and with
algorithms that are efficient in practice, we do not know of a strongly polynomial
algorithm for circle packing, one that computes the solution exactly rather than nu-
merically, and uses a number of computational steps that depends polynomially on the
size of the input graphs but does not depend on the desired numerical precision of the
output. The absence of such an algorithm cannot be explained solely by the high degree
of the polynomials describing the solution, because the system of polynomials for a
circle packing only has degree two, and because there are other problems (such as the
construction of regular 2n-gons) that have high degree and yet are easily solvable (for
instance as an explicit formula or by compass and straightedge). In this paper, we use

15

more subtle properties of the polynomials describing circle packings, based on Galois
theory, to explain why an efficient exact circle packing algorithm does not exist.

Applications of circle packing. The circle packing theorem, and algorithms based
on it for transforming arbitrary planar graphs into tangent circle representations, have
become a standard tool in graph drawing. Graph drawing results proved using circle
packing include the fact that every planar graph of bounded degree can be drawn
without crossings with a constant lower bound on its angular resolution (the minimum
angle between incident edges) [42] and with edges that have a constant number of
distinct slopes [43]. Circle packings have also been used to draw graphs on the hy-
perbolic plane [44], to draw planar graphs on spheres in a way that realizes all of the
symmetries of the planar embedding [37], to construct convex polyhedra that represent
planar graphs [45], to find Lombardi drawings of planar graphs of degree at most
three, drawings in which the edges are represented as circular arcs that surround each
vertex by angles with equal areas [41], to represent 4-regular planar graphs as the arcs
and intersection points of an arrangement of circles that may cross each other [46],
to construct drawings in which each vertex is incident to a large angle [47], and to
construct confluent drawings, drawings in which edges are represented as smooth paths
through a system of tracks and junctions [48].

Beyond graph drawing, additional applications of circle packing include algorithmic
versions of the Riemann mapping theorem on the existence of conformal maps between
planar domains [49], unfolding human brain surfaces onto a plane for more convenient
visualization of their structures [50], finding planar separators [51, 52], approximation
of dessins d’enfant (a type of graph embedding used in algebraic geometry) [53], and
the geometric realization of soap bubbles from their combinatorial structure [54].

16

B Omitted Proofs of Lemmas and Theorems

In this appendix, we provide details for omitted proofs of lemmas used in our paper.

B.1 Proof of Lemma 3

Recall that Lemma 3 states that, given any two disjoint circles, a Möbius transformation
mapping them to two concentric circles can be constructed using a quadratic computa-
tion tree.

Proof. Such a transformation can be achieved by an inversion centered at one of the two
limiting points of the two circles. These two points lie on the line connecting the circle
centers, at equal distances from the point x where the radical axis of the two circles (the
bisector of their power diagram) crosses this line. The distance from x to the limiting
points equals the power distance from x to the two circles (the length of a tangent line
segment from x to either circle) [55]. From these facts it is straightforward to compute
a limiting point, and hence the transformation, using only arithmetic and square root
operations. Weisstein [56] provides an explicit formula. ut

B.2 Proof of Lemma 5

Recall that Lemma 5 states, if α can be computed by a root computation tree of degree
f(n), then [Q(α) : Q] is f(n)-smooth, i.e., none of its prime factors are greater than
f(n). In particular, if α can be computed by a quadratic computation tree, then [Q(α) :
Q] is a power of two.

Proof. Annotate each node of the given root computation tree with a minimal extension
of the rational number field containing all of the values computed along the path to that
node. This field is an extension of the field for the parent node in the tree by the root of
a polynomial of degree at most f(n), so as a field extension it has degree at most f(n)
(Proposition 4.3.4 of [19], p. 89). Therefore, the field for each node can be constructed
by a sequence of extensions of the rational numbers, each of degree at most f(n). Since
Q(α) is a subfield of this field, it can also be constructed in the same way. The degree
of a sequence of extensions is the product of the degrees of each extension (the “tower
theorem”, Theorem 4.3.8 of [19], p. 91). Since each of these extensions is f(n)-smooth,
so is their product. ut

B.3 Proof of Theorem 4

Recall Theorem 4, which states that there exists a graph on four vertices such that it is
not possible on a radical computation tree to construct the coordinates of every possible
Kamada and Kawai equilibrium.

17

Proof. With respect to the four-vertex graph of Figure 4, we define the following vari-
ables:

a = the distance from u0 to u1
b = the horizontal distance from u1 to u2
c = the vertical distance from u1 to u2
d = the distance from u1 to u2
e = the distance from u0 to u2

We make some assumptions on the positions of the vertices. We assume that the line
defined by the positions of u0 and u1 meet the line defined by the positions of u2
and u3 at a right angle, the vertices are ordered as in the figure, and that there are
no vertex or edge overlaps. These assumption correspond to the equilibrium that is
typically produced by the Kamada and Kawai algorithm. With these variables, the local
optimum conditions for Kamada and Kawai are as follows:

∂E

∂x0
=
−3/2ae+ a− 1/2be+ b+ e

e
= 0

∂E

∂y0
= 0

∂E

∂x1
=
ad− 2bd+ 2b− d

d
= 0

∂E

∂y1
= 0

∂E

∂x2
=

1/4ade− 1/2ad+ 5/4bde− 1/2bd− be
de

= 0

∂E

∂y2
=

13/4cde− 1/2cd− ce− de
de

= 0

∂E

∂x3
=

1/4ade− 1/2ad+ 5/4bde− 1/2bd− be
de

= 0

∂E

∂y3
=
−13/4cde+ 1/2cd+ ce+ de

de
= 0.

We also have the additional constraints,

d2 − b2 − c2 = 0 and e2 − (a+ b)2 − c2,

which follow from our choice of variables. From this system of equations, we can, with
the aid of a computer algebra system, compute the Groebner Basis of the system and
extract a single polynomial, denoted p, that c must satisfy:

p(c) = 365580800000000c18 − 2065812736000000c17 + 5257074184960000c16

−7950536566252800c15 + 7939897360159392c14 − 5501379135910008c13

+2703932242407045c12 − 947252378063088c11 + 234371204926092c10

−40028929618536c9 + 4535144373717c8 − 317453745456c7

+11493047016c6 − 83177280c5 + 167184c4.

18

The polynomial p factors into c4 and an irreducible factor of degree 14. The c4 factor
corresponds to degenerate drawings with c = 0 and with u2 and u3 drawn at the same
point of the plane; since the expected drawing is of a different type, we can ignore this
factor. Let f(c) be the factor of degree 14. We can convert f to a monic polynomial
using the same techniques as before, producing the following polynomial:

g(x) = x14f(258/x)/167184

= x14 − 128360x13

+4575935386x12

−32609554186008x11

+120191907907039173x10

−273701889217560990672x9

+413454551042624579937072x8

−431130685015107552530542464x7

+317510974076480215971285088080x6

−166668765204034179394613907054336x5

+62060780922813932272692806330099712x4

−16033136614269762618278694793639526400x3

+2735179704826314422602131722817699840000x2

−277301626082465808611849917345431552000000x
+12660899181603462048518168020372684800000000.

The polynomial g can be algorithmically verified to be irreducible via a computer
algebra system. Its discriminant is

2188 · 390 · 526 · 725 · 1312 · 43156 · 9870049872 · 1426547617972

· 200409943514532 · 19082702490530411267805114306612

· 2068784364712376186850628387585613,

and we have the following factorizations of g into irreducible polynomials modulo the
primes 67 and 113, which do not divide the discriminant.

g(x) ≡ (x+ 25)(x13 + 54x12 + 62x11 + 40x10 + 48x9 + 52x8 + 10x7

+ 38x6 + 24x5 + 14x4 + 30x3 + 17x2 + 65x+ 34) (mod 67)

g(x) ≡ (x+ 50)(x2 + 15x+ 49)(x11 + 56x10 + 15x9 + 94x8 + 60x7

+ 61x6 + 13x5 + 103x4 + 53x3 + 11x2 + 6x+ 13) (mod 113)

By Dedekind’s theorem, the factorization modulo 67 implies the existence of a 13-
cycle in Gal(split(g)/Q), and the factorization modulo 113 implies the existence of a
permutation that is the composition of a transposition and a 11-cycle. The second per-
mutation produces a transposition when raised to the eleventh power. Now, by Lemma 9
Gal(split(g)/Q) = S14. So by Lemma 7 the value of c cannot be computed by a radical
computation tree. ut

19

C Additional Impossibility Results for Spectral Graph Drawing

In this appendix, we provide additional impossibility results for spectral graph drawing,
based on the 12-vertex graph, H , shown in Figure 7.

Fig. 7. A graph, H , whose adjacency and transition eigenvectors are uncomputable in a radical
tree.

The adjacency matrix of H is given by

adj(H) =

1
1 1
1 1 1
1 1
1 1
1 1
1 1
1 1 1
1 1
1

1
1

and its characteristic polynomial can be computed to be

q(x) = char(adj(H))

= (x6 − x5 − 5x4 + 4x3 + 5x2 − 2x− 1)

(x6 + x5 − 5x4 − 4x3 + 5x2 + 2x− 1).

Let q0 and q1 be the factors of q in the order given above. First, observe that q0(x) =
q1(−x), which implies that we need only compute the Galois group of q0. The poly-
nomial q0 is irreducible by Lemma 10, as it produces a prime for 13 integer inputs in
the range from 0 to 50. The discriminant of q0 is 592661 (a prime), and we have the
following factorizations of q0 into irreducible polynomials modulo the primes 13 and
7, which do not divide the discriminant:

q0(x) ≡ (x+ 9)(x5 + 3x4 + 7x3 + 6x2 + 3x+ 10) (mod 13)

q0(x) ≡ (x+ 2)(x2 + 5x+ 5)(x3 + 6x2 + x+ 2) (mod 7).

By Dedekind’s theorem, the factorization modulo 13 implies the existence of a 5-cycle
in Gal(split(q0)/Q) and factorization modulo 7 implies the existence of a permutation

20

that is the composition of a transposition and a 3-cycle in Gal(split(q0)/Q). The
second permutation when cubed yields a transposition. Therefore, Lemma 9 implies
Gal(split(q0)/Q) = S8. So by Lemma 7 the eigenvalues of adj(H) are not computable
in a radical computation tree.

Theorem 8. There exists a graph on 12 vertices such that it is not possible to construct
a spectral graph drawing based on the adjacency matrix in a radical computation tree.

The transition matrix of H is given by

tran(H) =

1
1/2 1/2

1/3 1/3 1/3
1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2
1/3 1/3 1/3

1/2 1/2
1

1
1

and its characteristic polynomial can be computed to be

r(x) = char(tran(H))

= (x− 1)(x+ 1)(x5 − 1/2x4 − 11/12x3 + 1/3x2 + 1/6x− 1/24)

(x5 + 1/2x4 − 11/12x3 − 1/3x2 + 1/6x+ 1/24)

Let r1, r2, r3 and r4 be the factors of r in the order given above. As before, we have
a relation between r2 and r3, r2(x) = −r3(−x), which means that we need only
compute the Galois group for r2. First, we covert r2 into a monic polynomial with
integer coefficients,

s(x) = −24x5r2(1/x) = x5 − 4x4 − 8x3 + 22x2 + 12x− 24.

The discriminant of s is 28 · 3 · 97 · 6947, and we have the following factorization of
s into irreducible polynomials modulo the primes 11 and 5, which do not divide the
discriminant:

s(x) ≡ (x+ 1)(x4 + 6x3 + 8x2 + 3x+ 9) (mod 11)

s(x) ≡ (x2 + x+ 1)(x3 + x+ 1) (mod 5)

By Dedekind’s theorem, the factorization modulo 11 implies the existence of a 4-
cycle in Gal(split(s)/Q) and the factorization modulo 5 implies the existence of a
permutation that is the composition of a transposition and a 3-cycle in Gal(split(s)/Q).
When cubed the second permutation produces a transposition. Therefore, Lemma 9

21

implies Gal(split(s)/Q) = S5. So by Lemma 7 the only eigenvalues of tran(G) that
are computation in a radical computation tree are 1 and −1. Since the roots of r are
in the interval [−1, 1], the only computable eigenvectors correspond to the largest and
smallest eigenvalues, whose eigenvectors are given below.

u1 = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1,−1, 1)
u12 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Theorem 9. There exists a graph on twelve vertices such that the only spectral drawing
based on the transition matrix that is computable in a radical computation tree uses the
largest and smallest eigenvectors, and produces a drawing in which many vertices have
coinciding positions.

22

D Additional Impossibility Results for Multidimensional Scaling

In this appendix, we provide additional impossibility results for the classical multidi-
mensional scaling method.

Fig. 8. A graph, H , whose classical multidimensional scaling coordinates are uncomputable by a
radical tree.

The squared distance matrix for the graph in Figure 8 is
0 1 1 4 4 9
1 0 1 1 1 4
1 1 0 1 4 4
4 1 1 0 4 1
4 1 4 4 0 1
9 4 4 1 1 0

 .

After double centering it becomes
−73/18 −11/9 −31/18 23/18 7/9 89/18
−11/9 −7/18 1/9 1/9 −7/18 16/9
−31/18 1/9 −25/18 −7/18 19/9 23/18
23/18 1/9 −7/18 −25/18 19/9 −31/18
7/9 −7/18 19/9 19/9 −43/18 −20/9
89/18 16/9 23/18 −31/18 −20/9 −73/18

and the characteristic polynomial of this double centered matrix is:

p(x) = x(x5 + 41/3x4 + 19x3 − 125x2 − 88/3x1 + 48).

Let p0 and p1 be the two irreducible factors of p in the above order. Because p1(2) <
0 and p1(3) > 0, the factor p1 has a root greater than zero; therefore, p1 is the factor
with the largest root. This root is the largest eigenvalue. We now convert p1 into a monic
polynomial with integer coefficients,

q(x) = x5 − 88x4 − 54000x3 + 1181952x2 + 122425344x+ 1289945088.

The discriminant of q is 261 · 331 · 12421 · 3039011. Factoring q into irreducible
polynomials modulo 7 and 11 gives:

23

q(x) ≡ (x+ 4)(x4 + 7x3 + 4x2 + 8x+ 9) (mod 11)

q(x) ≡ (x2 + 2x+ 5)(x3 + x2 + 5x+ 1) (mod 7)

Because neither 11 nor 7 divides the discriminant of q, Dedekind’s theorem implies
the existence of a 4-cycle and the composition of a transposition with a 3-cycle in
Gal(split(q)/Q). Taking the third power of the latter element gives an element that is
just a transposition. The existence of these two elements in the Galois group implies,
by Lemma 9, that Gal(split(q)/Q) = S5.

In multidimensional scaling the vertex positions are determined by multiplying a
matrix of the first few eigenvectors by a matrix of the square roots of the corresponding
eigenvalues. Lemma 7 implies that these eigenvalues cannot be computed in a radical
computation tree, but we must still show that the vertex positions themselves also cannot
be computed in this model. However, the columns of the matrix of vertex positions
are themselves multiples of eigenvectors. If we could compute the vertex positions,
we could use these eigenvectors to recover their corresponding eigenvalues. Since the
eigenvalues cannot be computed, it follows that the vertex positions also cannot be
computed.

Theorem 10. There exists a graph on six vertices such that the drawing produced by
classical multidimensional scaling is not computable in a radical computation tree.

We leave as open for future research the problem of proving degree lower bounds for
multidimensional scaling in the root computation tree. The technique that we used for
the corresponding problem for other graph drawing techniques was to express the co-
ordinates of drawings of highly-symmetric graphs using high-degree cyclotomic poly-
nomials or (almost equivalently) high degree Chebyshev polynomials, but that does not
seem to work in this case. For instance, the characteristic polynomial for the multidi-
mensional scaling drawing of an n-vertex cycle graph cannot be a cyclotomic polyno-
mial of order n, because the characteristic polynomial for multidimensional scaling
always includes zero as a root whereas the cyclotomic polynomial has all its roots
nonzero.

24

E Additional Impossibility Results for Circle Packings

In this appendix, we provide additional impossibility results for circle packings.

Theorem 11. For arbitrarily large values of n, there are graphs on n vertices such that
constructing a circle packing for the graph on a root computation tree requires degree
Ω(n0.677). If there exist infinitely many Sophie Germain primes, then there are graphs
for which constructing a circle packing requires degree Ω(n).

Proof. As in Theorem 7, we consider packings of Bipyramid(n − 2) that have two
concentric circles centered at the origin and all remaining circle centers on the unit
circle. We choose n = p+ 2 where p is a prime number for which φ(p) = p− 1 has a
large prime factor q. If arbitrarily large Sophie Germain primes exist we let q be such a
prime and let p = 2q + 1. Otherwise, by Lemma 4 we choose p in such a way that its
largest prime factor q is at least p0.677.

By Lemma 6, we have:

[Q(ζp) : Q] = φ(p) = p− 1.

Thus, this extension is not D-smooth for any D smaller than q, and every construction
of it on a root computation tree requires degree at least q. By Lemma 11, the same
degree is necessary for constructing any packing of the same graph. ut

B

C

D

A

B

C

D

D

D

DD

D

D

D

D

Fig. 9. An example of a graph (left) and its corresponding circle packing (right) where the circle
packing is not constructible in a radical computation tree.

Radical computation trees. To show that circle packings are in general not con-
structible with a radical computation tree we consider the input graph shown in Figure 9,
together with a circle packing in which the circles corresponding to the two degree
twelve vertices are concentric. We assume that this packing has been scaled so that the
circles tangent to both concentric circles (the circles labeled with D) have radius equal
to one, and so that (as in the figure) the smaller circle centers lie on the y axis and two

25

of the unit circle centers lie on the x axis. The placement and radii of the circles in this
packing may be determined from two values, namely the radius a of the circle labeled
A and the radius b of the circle B.

We use the following two simple trigonometric lemmas:

Lemma 12. If arccos(X) + arccos(Y) = π, then X + Y = 0.

Proof. Let X ′ = arccos(X) and Y ′ = arccos(Y). Then we have

0 = cos(X ′ + Y ′)− cos(π) = cos(X ′) cos(Y ′)− sin(X ′) sin(Y ′) + 1

= (XY + 1)−
√
1−X2

√
1− Y 2,

which implies

0 = (XY + 1)2 − (1−X2)(1− Y 2) = X2 + 2XY + Y 2 = (X + Y)2.

Thus, X + Y = 0. ut

Lemma 13. If arccos(U) + 2 arccos(V) = π/2, then 4V 4 − 4V 2 + U2 = 0.

Proof. Let U ′ = arccos(U) and V ′ = arccos(V). Then we have

0 = cos(U ′ + 2V ′)− cos(π/2)

= cos(U ′)(2 cos2(V ′)− 1)− sin(U ′)(2 sin(V ′) cos(V ′))

= 2UV 2 − U − 2
√
1− U2

√
1− V 2V

which implies

0 = (2UV 2 − U)2 − 4(1− U2)(1− V 2)V 2 = 4V 4 − 4V 2 + U2.

Thus, 4V 4 − 4V 2 + U2 = 0. ut

We now derive polynomial equations that these two radii must satisfy. If we consider
the triangle formed by the centers of circles C, B and D, then the angle at the center of
B is given by arccos(X), whereX is given below. Similarly, if we consider the triangle
formed by the centers of circles B, D and A, then the angle at the center of B is given
by arccos(Y), where Y is given below. These formulas follow from a direct application
of the law of cosines.

X =
(b+ (1− b))2 + (b+ 1)2 − ((1− b) + 1)2

2(b+ (1− b))(b+ 1)

Y =
(b+ 1)2 + (b+ a)2 − (a+ 1)2

2(b+ 1)(b+ a)

Now we have the relation arccos(X) + arccos(Y) = π, as the angles around B sum to
2π. This fact together with Lemma 12 implies a = 2b2/(1− 2b). Thus, we can remove
the variable a from consideration as it can be computed from b in a radical computation
tree.

26

To find a polynomial with b as its root we consider the angles around circle A.
The angle at the center of circle A in the triangle through the centers of the circle A,
B and D is given by arccos(U), where U is given below. Similarly, the angle at the
center of circle A in the triangle through the centers of A, D and an adjacent D is given
by arccos(V), where V is given below. Again, these formulas follow from the law of
cosines.

U =
(a+ b)2 + (a+ 1)2 − (b+ 1)2

2(a+ b)(a+ 1)
=
−6b2 + 6b− 1

2b2 − 2b+ 1

V =
(a+ 1)2 + (a+ 1)2 − (1 + 1)2

2(a+ 1)(a+ 1)
=

(2b2 − 4b+ 1)(2b2 − 1)

(2b2 − 2b+ 1)2

Since the angles around the circle A sum to 2π we have the relation arccos(U) +
2 arccos(V) = π/2. Plugging the computed values of U and V into the formula of
Lemma 13 yields the polynomial f(b) as its numerator, where:

f(b) = 2304b16 − 18432b15 + 68096b14 − 154112b13 + 254720b12

− 363520b11 + 471424b10 − 501376b9 + 390112b8 − 208000b7

+ 73440b6 − 17504b5 + 3568b4 − 896b3 + 200b2 − 24b+ 1

The polynomial f(b) factors as the product of two irreducible eighth degree poly-
nomials f0(b) and f1(b), below. We have the identity f0(b) = f1(1− b) which appears
to come from the symmetry between the outer and inner circles of the packing. For
this reason the splitting field of f(b) is equal to the splitting field of f0(b). Since the
polynomial f0 is not monic we will instead consider the monic polynomial g(b) =
b8f0(1/b) (this corresponds to reversing the order of the coefficients), which has the
same splitting field:

f0(b) = 48b8 − 256b7 + 592b6 − 656b5 + 336b4 − 64b3 + 4b2 − 4b+ 1

f1(b) = 48b8 − 128b7 + 144b6 − 208b5 + 336b4 − 288b3 + 116b2 − 20b+ 1

g(b) = b8 − 4b7 + 4b6 − 64b5 + 336b4 − 656b3 + 592b2 − 256b+ 48

The polynomial g(b) is irreducible by Lemma 10, as it produces a prime for seven-
teen integer inputs in the range from −119 to 101. The discriminant of g is 252 · 81637,
and we have the following factorization of g into irreducible polynomials modulo the
primes 3 and 29:

g(b) ≡ b(b7 + 2b6 + b5 + 2b4 + b2 + b+ 2) (mod 3)

g(b) ≡ (b+ 9)(b2 + 23b+ 12)(b5 + 22b4 + 9b3 + 20b+ 23) (mod 29)

By Dedekind’s theorem, the factorization modulo 3 implies the existence of a 7-cycle in
Gal(split(g)/Q), and the factorization modulo 29 implies there is also a permutation
that is the composition of a transposition and a 5-cycle. Taking this second permutation
to the fifth power eliminates the 5-cycle, producing a transposition. By Lemma 9,
Gal(split(g)/Q) = S8. So by Lemma 7 the value of b cannot be computed by a radical
computation tree. Thus, by Lemma 11 a radical computation tree cannot construct any
circle packing of the graph in Figure 9, proving the following theorem.

27

Fig. 10. Concentric circle packings Pack(2, n) for n = 5, 7, 9, 11.

Theorem 12. There exists a graph on sixteen vertices such that constructing a circle
packing for the graph on a radical computation tree is not possible.

Additional circle packings and their groups. The Galois groups in this section were
calculated using Sage. We identified the low-degree groups by using the PARI library,
and the high-degree symmetric groups by using a brute force search for primes satis-
fying the conditions of Dedekind’s theorem and Lemma 9. To factor the polynomials
arising in these computations we used the FLINT library.

The circle packings we consider in this section are variants of the bipyramid. The
graph Pack(k, n) is constructed from a cycle of length kn+k by replacing every n+1th

vertex with a pair of adjacent vertices. Then we add two additional vertices u and v. As
in the bipyramid, each of the vertices in the initial cycle is adjacent to both u and v. For
each pair that replaced one of the vertices in the cycle we connect one vertex in the pair
to u and one to v. This creates a maximal planar graph with kn+ 2k + 2 vertices. The
graph in Figure 9 is Pack(2, 5), and Figure 10 depicts several additional graphs of the
form Pack(2, n).

The next conjecture concerns the graphs of the form Pack(2, n). We tested its
correctness for all the graphs of this form up to n = 120.

Conjecture 1. For the concentric packing of Pack(2, n), the value of b satisfies a poly-
nomial such that when

– n ≡ 3, 5 (mod 6) its irreducible factors have Galois group: S2n−2;
– n ≡ 1 (mod 6) its irreducible factors have Galois groups: S2, S2n−4;

28

Fig. 11. Concentric circle packings Pack(1, n) for n = 5, 7, 9, 11.

– n ≡ 0, 2 (mod 6) its irreducible factors have Galois groups: S1, Sn−2, Sn−1;
– n ≡ 4 (mod 6) its irreducible factors have Galois groups: S1, S2, Sn−3, Sn−2,
Sn−2.

The next conjecture concerns the graphs of the form Pack(1, n) depicted in Fig-
ure 11. We tested it only up to n = 13 due to the increased difficulty of identifying
Galois groups that are not symmetric groups. The groups 2 oSd appearing in the conjec-
ture are the hyperoctahedral groups, symmetry groups of d-dimensional hypercubes.

Conjecture 2. For the concentric packing of Pack(1, n), the value of b satisfies a poly-
nomial such that when

– n ≡ 3 (mod 4) its irreducible factors have Galois groups: 2 o Sn−1.
– n ≡ 1 (mod 4) its irreducible factors have Galois groups: S1, 2 o Sn−2;

Either of these conjectures, if true, would imply that circle packing is hard on a root
radical computation tree that can compute both bounded-degree polynomial roots and
unbounded-degree radicals. Moreover, they would imply that the degree necessary to
compute circle packing on a root computation tree is linear in n, without depending on
the infinitude of Sophie Germain primes.

29

Additional References

[22] Tamassia, R.: Handbook of Graph Drawing and Visualization. Chapman & Hall/CRC
(2013)

[23] Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the
Visualization of Graphs. 1st edn. Prentice Hall (1998)

[24] Kaufmann, M., Wagner, D.: Drawing Graphs: Methods and Models. Volume 2025 of
LNCS. Springer (2001)

[25] Barnes, J., Hut, P.: A hierarchical O(N logN) force-calculation algorithm. Nature 324
(1986) 446–449

[26] Greengard, L.: The rapid evaluation of potential fields in particle systems. MIT Press
(1988)

[27] Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing on the
GPU. In: Graph Drawing. Volume 5417 of LNCS., Springer (2009) 90–101

[28] Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Graph Drawing. Volume 3383 of LNCS., Springer (2005) 285–295

[29] Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Science 17
(1970) 219–229

[30] Manolopoulos, D.E., Fowler, P.W.: Molecular graphs, point groups, and fullerenes. The
Journal of Chemical Physics 96 (1992) 7603–7614

[31] Brandes, U., Willhalm, T.: Visualization of bibliographic networks with a reshaped
landscape metaphor. In: Data Visualisation (VISSYM). (2002) 159–ff

[32] Puppe, T.: Spectral Graph Drawing: A Survey. VDM Publishing (2008)
[33] Koren, Y., Carmel, L., Harel, D.: ACE: a fast multiscale eigenvectors computation for

drawing huge graphs. In: IEEE Info. Vis. (2002) 137–144
[34] Brandes, U., Pich, C.: Eigensolver Methods for Progressive Multidimensional Scaling of

Large Data. In Kaufmann, M., Wagner, D., eds.: Graph Drawing. Volume 4372 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2007) 42–53

[35] Gansner, E., Koren, Y., North, S.: Graph Drawing by Stress Majorization. In Pach, J.,
ed.: Graph Drawing. Volume 3383 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2005) 239–250

[36] Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions.
Cambridge Univ. Press (2005)

[37] Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization
and meshing. In: 7th Worksh. Algorithms and Data Structures. Volume 2125 of LNCS.,
Springer (2001) 14–25

[38] Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Th. Appl. 25
(2003) 233–256

[39] Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117 (1993) 257–
263

[40] Mohar, B.: Circle packings of maps in polynomial time. European J. Combin. 18 (1997)
785–805

[41] Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Graph Drawing. Volume
7704 of LNCS., Springer (2013) 126–137

[42] Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete
Math. 7 (1994) 172–183

[43] Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few
slopes. In: Graph Drawing. Volume 6502 of LNCS., Springer (2011) 293–304

[44] Mohar, B.: Drawing graphs in the hyperbolic plane. In: Graph Drawing. Volume 1731 of
LNCS., Springer (1999) 127–136

30

[45] Rote, G.: Realizing planar graphs as convex polytopes. In: Graph Drawing. Volume 7034
of LNCS., Springer (2012) 238–241

[46] Bekos, M.A., Raftopoulou, C.N.: Circle-representations of simple 4-regular planar graphs.
In: Graph Drawing. Volume 7704 of LNCS., Springer (2013) 138–149

[47] Aichholzer, O., Rote, G., Schulz, A., Vogtenhuber, B.: Pointed drawings of planar graphs.
Comput. Geom. Th. Appl. 45 (2012) 482–494

[48] Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict
confluent drawing. In: Graph Drawing. Volume 8242 of LNCS., Springer (2013) 352–363

[49] Stephenson, K.: The approximation of conformal structures via circle packing. In:
Computational Methods and Function Theory 1997 (Nicosia). Volume 11 of Ser. Approx.
Decompos. World Scientific (1999) 551–582

[50] Hurdal, M.K., Bowers, P.L., Stephenson, K., Sumners, D.W.L., Rehm, K., Schaper, K.,
Rottenberg, D.A.: Quasi-conformally flat mapping the human cerebellum. In: Proc.
Medical Image Computing and Computer-Assisted Invervention (MICCAI ’99). Volume
1679 of LNCS., Springer (1999) 279–286

[51] Miller, G.L., Teng, S.H., Thurston, W., Vavasis, S.A.: Separators for sphere-packings and
nearest neighbor graphs. J. ACM 44 (1997) 1–29

[52] Eppstein, D., Miller, G.L., Teng, S.H.: A deterministic linear time algorithm for geometric
separators and its applications. Fund. Inform. 22 (1995) 309–329

[53] Bowers, P.L., Stephenson, K.: Uniformizing dessins and Belyı̆ maps via circle packing.
Mem. Amer. Math. Soc. 170 (2004)

[54] Eppstein, D.: The graphs of planar soap bubbles. In: Proc. 29th Annu. Symp. Comput.
Geom. (2013) 27–36

[55] Johnstone, J.K.: A new intersection algorithm for cyclides and swept surfaces using circle
decomposition. Computer Aided Geometric Design 10 (1993) 1–24

[56] Weisstein, E.W.: Limiting Point. In: MathWorld. Wolfram (2013)

31

	The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

