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Hydrodynamic theories effectively describe many-body systems
out of equilibrium in terms of a few macroscopic parameters.
However, such parameters are difficult to determine from micro-
scopic information. Seldom is this challenge more apparent than
in active matter, where the hydrodynamic parameters are in
fact fields that encode the distribution of energy-injecting micro-
scopic components. Here, we use active nematics to demonstrate
that neural networks can map out the spatiotemporal variation
of multiple hydrodynamic parameters and forecast the chaotic
dynamics of these systems. We analyze biofilament/molecular-
motor experiments with microtubule/kinesin and actin/myosin
complexes as computer vision problems. Our algorithms can
determine how activity and elastic moduli change as a func-
tion of space and time, as well as adenosine triphosphate (ATP)
or motor concentration. The only input needed is the orien-
tation of the biofilaments and not the coupled velocity field
which is harder to access in experiments. We can also forecast
the evolution of these chaotic many-body systems solely from
image sequences of their past using a combination of autoen-
coders and recurrent neural networks with residual architecture.
In realistic experimental setups for which the initial conditions
are not perfectly known, our physics-inspired machine-learning
algorithms can surpass deterministic simulations. Our study paves
the way for artificial-intelligence characterization and control
of coupled chaotic fields in diverse physical and biological sys-
tems, even in the absence of knowledge of the underlying
dynamics.

deep learning | active turbulence | liquid crystals | topological defects |
biomaterials

Machine learning holds great promise as a tool capable of
transforming quantitative modeling in the physical sci-

ences (1, 2). It takes data generated from simulations or collected
from experiments and uses powerful nonlinear fitting functions
to find the characteristic features behind the data. It can be
used as either a continuous regression tool to extract physical
principles or a discrete classifier to identify states of matter.
Among the wide variety of machine-learning techniques, neu-
ral networks (3, 4) have attracted much attention due to their
strong predictive power and ability to establish complex models
from common building blocks (see SI Appendix for a primer).
Notable developments within condensed-matter physics have led
to machine-learning algorithms capable of recognizing structural
signatures of the glass transition (5, 6) or distinguishing phases
of matter (7, 8). They have also unveiled intriguing connections
between deep learning and renormalization group methods (9,
10). However, the use of machine learning as a tool for the exper-
imental characterization and discovery of material properties
is still in its infancy (11, 12). Active nematics (13–21) pro-
vide an ideal material platform for machine-learning methods.
While sufficiently well characterized to be a reliable benchmark,
their chaotic dynamics are hard to predict and rich in unex-

plored phenomena of relevance to both material science and
biology (14, 22–30).

Unlike simple fluids, nematic liquid crystals are orientationally
ordered media described by a director field n(r), which tracks the
average orientation of their microscopic constituents (e.g., biofil-
aments or elongated molecules), in addition to the local velocity
field v(r) (13, 14). Representative images of the director field are
shown in Fig. 1 A and B. In equilibrium nematics, the filaments
tend to align and gradients of n(r) are penalized by the Frank
free energy, which in three dimensions reads

F =
K

2

∫ [
(∇· n)2 +(n · (∇× n))2 +(n× (∇× n))2

]
dr [1]

where, for simplicity, all of the elastic constants are set equal
to K .

The introduction of microscopic energy sources into these ori-
entationally ordered fluids generates out-of-equilibrium systems
called active nematics (13, 14). A common example is provided
by cytoskeleton filaments, with molecular motors that generate
active forces promoting interfilament sliding. The resulting active
stress, σa

ij , can be macroscopically described by

Significance

Artificial intelligence holds considerable promise for trans-
forming quantitative modeling in materials science. We illus-
trate this potential by developing machine-learning models
of a paradigmatic class of biomaterials called active nemat-
ics. These hybrid materials can be viewed as artificial muscles
composed of biological fibers and molecular motors. Here,
the macroscopic coefficients characterizing energy injection
by motors and material elasticity are not constant. They are
unknown functions of space and time that we extract directly
from experiments using neural networks. Our physics-inspired
machine-learning algorithms can also forecast the evolution
of these complex materials simply using image sequences
from their past, without any knowledge of the governing
dynamics.

Author contributions: Z.B., Z.D., M.L.G., J.J.d.P., and V.V. designed research; J.C., M.H.,
R.Z., S.A.R., L.M.L., L.M., P.V.R., and R.A. performed research; and J.C., M.H., R.Z., S.A.R.,
L.M.L., L.M., P.V.R., R.A., Z.B., Z.D., M.L.G., J.J.d.P., and V.V. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y

See online for related content such as Commentaries.y
1 J.C. and M.H. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: vitelli@uchicago.edu or depablo@
uchicago.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2016708118/-/DCSupplemental.y

Published March 2, 2021.

PNAS 2021 Vol. 118 No. 10 e2016708118 https://doi.org/10.1073/pnas.2016708118 | 1 of 12

http://orcid.org/0000-0003-4162-0276
http://orcid.org/0000-0002-9108-8364
http://orcid.org/0000-0003-1149-9401
http://orcid.org/0000-0001-8482-4573
http://orcid.org/0000-0002-2393-6114
http://orcid.org/0000-0003-1846-9854
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016708118/-/DCSupplemental
https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://doi.org/10.1073/pnas.2016708118
mailto:vitelli@uchicago.edu
mailto:depablo@uchicago.edu
mailto:depablo@uchicago.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016708118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016708118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016708118
https://doi.org/10.1073/pnas.2016708118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2016708118&domain=pdf


E

F G

Director Field Recurrent DenseConv

sin(2θ)

2D director fieldA

C

3D director field

D

B

+1/2

-1/2

Fig. 1. Machine-learned hydrodynamic parameters in lattice Boltzmann
simulations. (A and B) Nematic director fields in two (A) and three (B) dimen-
sions. The + 1/2 and − 1/2 defects in 2D are marked as red and blue dots,
respectively. Disclination loops are indicated in red. (C and D) Continuous
representations of the director field used by the network. In 2D, the net-
work can use sin 2θ where θ is the angle of the director field. In 3D, the
network uses the tensor Qij = ninj − 1/3. Color indicates the magnitude of
these continuous representations. (E) Schematic of neural network archi-
tecture. The full input images are divided into patches, which are then
fed into a set of convolutional filters, a LSTM recurrent layer, and a fully
connected dense layer. The outputs are averaged into a final estimate for
hydrodynamic parameters. (F and G) Predictive accuracy of rescaled dimen-
sionless activity in simulation data in 2D and 3D at different values of K.
Networks were trained at K = K0. Units such as K0 are listed in Materials
and Methods.

σa
ij =αninj , [2]

where α(r, t) is an a priori unknown activity field related to
the concentration of molecular motors or other energy sources,
which is typically approximated as constant (13, 31).

Active-Nematic Hydrodynamics
The dynamical equations for active nematics involve a coupling
between the director field n(r, t) and the velocity field v(r, t) (13,
14, 31, 32). In particular, the director field evolves according to
the equation

(∂t + v ·∇)ni =λijk∂j vk −
1

γ

[
δF

δni
−
(
δF

δnj
nj

)
ni

]
, [3]

where γ is the rotational viscosity. The tensor λijk is given by

λijk≡
λ+1

2
nj δik +

λ− 1

2
nkδij −λninjnk [4]

where λ is a dimensionless flow-alignment parameter and δij is
the Kronecker delta.

The velocity field evolves according to the equation

ρ0(∂t + v ·∇)vk =−∂kP + η∇2vk + ∂j

(
λijk

δF

δni

)
+ ∂jσ

a
jk

[5]

where P is the hydrostatic pressure, η is the isotropic fluid vis-
cosity, and σa is the active stress defined in Eq. 2. The final three
terms on the right-hand side of Eq. 5 correspond to the viscous,
elastic, and active stresses, respectively. The coupled equations
of motion Eqs. 3–5 can also be cast in terms of a symmetric and
traceless order parameter Qij =S(ninj − δij/3) with a scalar
field S that quantifies the orientational-order strength (Materials
and Methods).

Determining how hydrodynamic parameters, such as α and
K , vary in space and time as well as a function of adeno-
sine triphosphate (ATP) or motor concentrations is challenging
(18, 33–35). Even direct measurements (36–39) that rely on
controlled flow experiments are difficult to devise if the under-
lying flows are chaotic. This is precisely what happens in active
nematics, where the energy injected by molecular motors at the
microscale cascades to macroscopic scales, leading to chaotic
flows mediated by the proliferation of topological defects (13,
31). The mechanisms behind this process, loosely called active
nematic turbulence, are not fully understood (15, 20, 30, 31, 40–
45). Nonetheless, it is clear that most active nematic responses
depend on the competition between active stresses that promote
director or velocity gradients and viscoelastic stresses that resist
them. As a consequence of this interplay, experimental mea-
surements often access only nontrivial combinations of hydro-
dynamic parameters, e.g., α/K or ratios of elastic constants
(18, 34). Furthermore, the derivation of these parameters from
realistic microscopic models is often prohibitively difficult (39).
This prompts us to seek approaches that bypass coarse graining
and extract hydrodynamic parameters like α(r, t) directly from
experiments.

In this paper, we first design a neural network to extract
hydrodynamic parameters directly from experimental or simu-
lated movies. This requires prior knowledge of the underlying
physics. For systems whose governing equations are unknown,
we introduce another neural network capable of forecasting the
time evolution of a nonequilibrium system solely based upon its
past. Detailed workflows for training and testing these neural
networks are provided in SI Appendix, Fig. S2.

Extracting Hydrodynamic Parameters as Fields
To make progress, we recast the task of estimating the spa-
tiotemporal variations of multiple hydrodynamic parameters as
a computer-vision problem that can be effectively addressed by
artificial intelligence. We begin by generating a library of direc-
tor fields (Fig. 1 A and B) for a wide range of activity in two
and three dimensions using lattice Boltzmann simulations based
on the continuum equations (18, 46) (Materials and Methods).
Using the simulated library, we train neural networks on contin-
uous representations of n that account for the nematic symmetry
n=−n. For instance, in two dimensions we use sin(2θ) with θ
denoting the tilt angle of n (Fig. 1 C and D). The neural network
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architecture, shown schematically in Fig. 1E, contains 1) a sin-
gle convolutional layer used for image processing, 2) a recurrent
layer that captures the system dynamics, and 3) a dense layer that
identifies the hydrodynamic parameters (see SI Appendix primer
on neural networks and SI Appendix, Fig. S1). We train these
neural networks on simulation data for which we can obtain the
exact values of the prescribed hydrodynamic parameters corre-
sponding to each director-field configuration. This allows us to
conduct supervised learning, which would not be possible using
experimental data alone. Once trained, these neural networks
can be used to obtain hydrodynamic parameters in simulations
as well as experiments (SI Appendix, Fig. S2A).

We first apply this scheme to estimate a single parameter: the
rescaled dimensionless activity α/K × a2, where a denotes the
pixel or voxel size for the director-field image. Comparison of
the machine-learning predictions for the activity with the known
values of α reveals good agreement for both two-dimensional
(2D) and three-dimensional (3D) active nematics (Fig. 1 F and
G). Although these networks are trained on data generated at a
single value of K =K0, their accuracy persists for samples where
K differs from K0. We also stress that our machine-learning
model is robust and its predictive performance does not depend
on the choice of K0 (SI Appendix, Fig. S3).

Hydrodynamic theories suggest how α can be estimated from
the characteristic length `d ∝

√
K/α obtained by balancing the

right-hand sides of Eqs. 1 and 2 (47). In 2D, `d can be interpreted
(and experimentally extracted) as the average spacing between
point disclinations, topological defects with index +1

2
and −1

2
shown in Fig. 1A as red and blue dots, respectively (13, 40). This
procedure cannot be carried out in the low-activity regime, where
disclinations are not always present in the field of view. Further-
more, it does not extend to 3D samples where the dominant
excitations are charge-neutral disclination loops (19) (Fig. 1B)
whose activity dependence is unclear. Extracting and measuring
topological defects with a neural network would require multi-
ple convolutional layers to achieve a sufficiently large receptive
field, i.e., the total field of view for the last neural layer. Our
networks, which contain just a single convolutional layer, simply
exploit local spatial fluctuations of the director field.

While capable of achieving high accuracy even in 3D or at low
α, neural networks designed for single-parameter estimation still
predict only combinations of parameters such as `d ∝

√
K/α.

To decouple α from K , one would need to resort to additional
measurements (35) or ad hoc assumptions like the independence
between K and α which is not always experimentally valid (34).
However, our neural networks are also capable of extracting mul-
tiple parameters without the need to devise a set of experiments
that disentangle the parameters’ interdependence. In Fig. 2, we
demonstrate the performance of a machine-learning model that
uses the same architecture described above but is trained to
predict α and K simultaneously.

Using a simulated dataset, we evaluate the performance of
our machine-learning model by comparing it to high-throughput
scans of parameter space inspired by ref. 35. While the exact
approach implemented in ref. 35 uses all evolving fields, our
machine-learning model does not rely on knowledge of the veloc-
ity field to which the director is coupled. Because complete
information about the system state is inaccessible in many experi-
mental systems, we compare our method against parameter scans
which use only the nematic director field. These scans aim to
find the set (α,K ) best fitting the observed nematic correlation
length and correlation time (SI Appendix, SI Text and Fig. S4).
For each parameter, we quantify the model performance using
the R2 value of the linear fit between the predicted parameter
and the ground truth. We find that the machine-learning model
results in a higher R2 than the parameter-scan approach (Fig. 2),
indicating a more accurate prediction of the ground truth for
each parameter.

A B

C D

Fig. 2. Comparison of multiparameter estimation using neural networks
and a high-throughput parameter scan. (A and B) Simultaneous estima-
tion of α and K using a high-throughput parameter scan (SI Appendix, SI
Text). (C and D) Multiparameter estimation using our neural network. The
network estimator outperforms the parameter scan approach for the pre-
dictions of both α and K. Here ᾱ and K̄ are the mean values of α and K
from the training dataset. We quantify the performance for each parameter
using the R2 of the linear fit between the predictions and the ground truth
(dashed line).

So far, we have tested our machine-learning algorithms on
numerical data. We now turn to experiments and begin by apply-
ing our multiparameter estimation trained on simulations to
data obtained from microtubule–kinesin experiments (15, 48)
(Materials and Methods). It is known that in this system the
rescaled activity α/K increases with ATP concentration (33, 34).
Here, we use machine learning to measure α and K indepen-
dently, probing first how they vary with the ATP concentration,
c. Inspection of Fig. 3A shows that the spatiotemporally aver-
aged activity, α, predicted by our machine-learning algorithms
increases with c while the elastic modulus, K , decreases. Similar
results obtained from experiments on 3D microtubule–kinesin
systems (19) and 2D actin–myosin systems (18, 27) are shown in
SI Appendix, Figs. S5 and S6.

Before expanding on the capabilities of our parameter-
estimation networks, we highlight their salient features. Our
algorithms do not perform curve fitting by 1) identifying observ-
ables for which the underlying theory is solvable and 2) parame-
terizing them in terms of the sought-after coefficients. Instead,
neural networks are trained on data obtained using whatever
conditions are experimentally available without choosing in
advance which reduced data representations to use (e.g., correla-
tion functions or collective variables). Training neural networks
differs from building lookup tables (or other discrete represen-
tations of the data), which are impractical for fields like n(r, t)
when the number of possible pixel (voxel) configurations vastly
exceeds the number of available data points. When applied to
previously unseen data, neural networks can still produce accu-
rate predictions because they learn the smooth high-dimensional
manifolds that map all possible realizations of the fields onto the
corresponding hydrodynamic parameters.

Equipped with the ability to determine multiple hydrodynamic
parameters from experimental data, we now proceed to put
the hydrodynamic theory itself to the test. Here, we compare
microtubule–kinesin experiments at different ATP concentra-
tions to the evolution of lattice Boltzmann simulations calibrated
using parameters machine learned from the same experiments.
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Fig. 3. Multiparameter estimation and dynamics in microtubule–kinesin experiments. (A) Dependence of spatiotemporally averaged activity and elastic
modulus on ATP concentration. Here, αmin, Kmax are the time-averaged predicted activity and elastic modulus at the lowest level of ATP concentration
cmin = 10 µM. (B) Comparison of director-field correlation length lθ and defect spacing nd in experiments (Exp) and machine-learning informed lattice
Boltzmann simulations (ML + LB). (C) Simultaneous prediction of activity and elastic modulus over time at different levels of ATP concentration. The shaded
regions represent the standard error of spatiotemporal fluctuations in the machine-learning predictions. ATP concentration c is indicated by the color bar.

As the chaotic nature of active nematics makes exact director-
field comparisons unreliable over long times, we instead resort
to properties of the dynamical steady state. Using the spatial
correlation function Cs(r) for the director field (Materials and
Methods), we define the correlation length `θ such that Cs(`θ)=
1/2. We find that both the average correlation length and the
defect density nd calculated from machine-learning informed lat-
tice Boltzmann simulations match experiments for a wide range
of ATP concentrations (Fig. 3B). This procedure allows us to
provide a partial experimental validation of the hydrodynamic
theory with constant parameters. Note, however, that these
hydrodynamic parameters are often taken as constant because
measuring them locally is difficult.

Our machine-learning methods provide a rare glimpse into the
spatiotemporal variations of these hydrodynamic parameters.
For example, we can extract from the microtubule–kinesin exper-
iments the activity field, α(r, t), whose coarse-grained dynamics
stem from heterogeneities in the motor distribution. We start
by plotting in Fig. 3C examples of time series for the sample-
averaged α(t) and K (t). The mean values are plotted as solid
lines and their uncertainties are marked with shaded regions over
a wide range of ATP concentrations (denoted by color bars). We
compare the parameters extracted from experiments with those
from simulations, where constant parameters are prescribed so
that the fluctuations in the extracted parameters arise solely from
the uncertainty of the machine-learning predictions. We find that
the fluctuations of the machine-learned α are markedly more
pronounced in experiments than in simulations, while the varia-
tion of the predicted K is comparable in both cases (SI Appendix,
Fig. S7). Our analysis also shows that the time variations in α
and K are significantly larger than their spatial fluctuations. The
machine-learned evidence discussed above suggests that a non-
linear fluctuating hydrodynamic theory may better explain our
experimental observations. Heuristically, the strong disruption of
fiber alignment at large activity can trigger motor detachment–
reattachment events causing the time modulation of α inferred
by our algorithms.

Our machine-learning models can be also applied to situa-
tions in which activity is engineered to deliberately vary in both
time and space. We test this activity control scenario first in lat-
tice Boltzmann simulations, where we prescribe spatiotemporal
patterns of α(r, t) (27). Remarkably, neural networks trained
on the data with constant activity can still accurately estimate
a time-varying activity coefficient as shown in Fig. 4 A and B
where linear and sinusoidal activity profiles are probed. Since
small director-field patches are sufficient to generate reliable
predictions, we can generate a spatial activity map of α(r, t)
by applying our neural networks locally to each patch compos-
ing an image. By doing this, we are able to discern prescribed

spatial activity patterns in lattice Boltzmann simulations, as
demonstrated in Fig. 4C where activity is nonzero only in the
central square.

We further test the capability of our machine-learning mod-
els in extracting parameter fields using actin–myosin experiments
(18). In this system, one can alter the speed of some spe-
cialized molecular motors via selective exposure to light (49).
This phenomenon, informally called gear shifting (Materials and
Methods), allows for precise spatiotemporal control of active
stresses (27). Inspection of Fig. 4D and Movie S1 reveals that our
machine-learning models can successfully identify the marked
increase in activity that occurs as light is turned on (indicated by
the dashed line in Fig. 4D). Furthermore, our approach can iden-
tify the activity changes that occur in selectively illuminated spa-
tial domains in these systems (Fig. 4 E and F and Movie S1). We
can also extract the elastic modulus field K (r, t) in these exper-
iments, but we find that K does not change significantly when
light is applied to the gear-shifting motors (SI Appendix, Fig. S8).
The performance of our machine-learning model in identifying
spatiotemporally varying activity demonstrates its potential for
1) the control of engineered active materials and 2) the inference
of biochemical processes that take place at the microscopic level
(such as the different experimental configurations summarized
in SI Appendix, Table S1).

Forecasting Time Evolution
We now ask, Can neural networks forecast the evolution of
chaotic many-body systems solely from image sequences of their
past? A time-honored approach to quantitative modeling relies
on writing down equations and then solving them, analytically
or via simulations, to make predictions. In what follows, we
use the term machine-learning model to denote a very differ-
ent approach (50). Instead of solving the equations, we train
neural networks on existing data and then ask them to fore-
cast the future behavior of the chaotic system. A feature that
distinguishes our forecasting neural networks from the ones
used for parameter estimation is that the former can be trained
directly on experimental data while the latter rely on an under-
lying model. Our physics-inspired machine-learning approach
to forecasting the dynamics of active nematics consists of iter-
ating the following two steps. First, we perform next-frame
predictions using a neural network that does not know any-
thing about the physics of the system. Second, we reduce any
noise generated in the previous step by applying to each frame
a physics-inspired sharpening algorithm. This sharpening filter
harnesses the known propensity of the fibers to align (i.e., it min-
imizes the elastic energy in Eq. 1) while being agnostic about
the active forces driving the nonequilibrium dynamics (Materials
and Methods).
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FED

Fig. 4. Machine-learned activity field, α(r, t), in simulations and actin–myosin experiments. (A and B) Machine-learning predicted activity on lattice
Boltzmann simulations with spatially uniform activity prescribed to vary linearly (A) and sinusoidally (B) in time. (C) Machine-learning predicted activity on
simulations where the central square (dashed line) is activated. (D) Machine-learning predicted activity vs. time on actin–myosin experiments where myosin
motors are controlled through light-activated gear shifting. The dashed line indicates when light is switched on. (E and F) Direct image (E) and machine-
learning predicted spatial activity profile (F) of a selectively illuminated actin nematic with light-activated gear-shifting motors. For E and F the experimental
data are the dataset reported in figure 1 of Zhang et al. (27). Data for D are from the current study, following the approach used in ref. 27. (Scale
bars, 20 µm.)

Our forecasting neural networks are a modification of the
autoencoder architecture, a popular tool in the computer vision
community (SI Appendix primer). A traditional autoencoder
learns to compress an image to a feature vector which is
then used to reconstruct the image. In our network, we insert
a recurrent layer in between the encoder and the decoder
to learn the system dynamics (Materials and Methods). Cru-
cial for ensuring high performance is the following algorithmic
trick: A residual architecture (52) is used in the recurrent
layer to capture the difference between frames, rather than
the images themselves. Denoting the output of the recurrent
layer as RNN(X0,X1, · · · ,Xt), the predicted next frame can be
written as

Xt+1 =Xt +RNN(X0,X1, · · · ,Xt). [6]

Such a residual recurrent network resembles the discrete form of
a general differential equation:

dX
dt

= f (X0,X1, · · · ,Xt). [7]

As illustrated in Fig. 5A, the network encodes a time series of
director-field images into a sequence of feature vectors. Next, it
uses them to predict the future state of the system and finally
decodes this state back into a director-field image (Fig. 5A).
For large systems, the director field is divided into small over-
lapping domains. Machine-learning predictions are made within
each domain and then stitched into a final prediction of the
next director-field configuration. Although stitching could intro-
duce artificial defects and image blurriness in the overlapping
area between adjacent domains, these errors can be automat-
ically corrected by the sharpening step (Materials and Meth-
ods). Once trained on either simulated or experimental image
sequences, the machine-learning model can then forecast the
defect dynamics in active nematics (SI Appendix, Fig. S2B).

We first examine the performance of our forecasting neu-
ral networks on simulation data. Given a particular sequence

of nematic configurations, our algorithm can reliably learn the
spatiotemporal evolution of the director field including singular
events such as defect annihilation and nucleation (see Movie S2
or selected examples in SI Appendix, Fig. S9).

To systematically evaluate the accuracy of our machine-
learning predictions, we first compare the time-evolved director
fields generated by machine-learning and lattice Boltzmann sim-
ulations pixel by pixel. Such pixelwise comparison is only mean-
ingful within the Lyapunov time, the characteristic timescale
after which a nonlinear dynamical system becomes chaotic.
Inspection of Fig. 5B shows that the pixelwise error rate of the
predicted director field 1−〈|nML · nLB |〉 remains small within
the Lyapunov time (Materials and Methods). The Lyapunov time
is the exponential diverging time for the evolution of a small dif-
ference in n(r, t) introduced in the initial condition, which we
find is equal to tλ∼ 3.6τd (τd denotes the average defect life-
time). Beyond the Lyapunov time (shaded region in Fig. 5B),
even the lattice Boltzmann simulations are unreliable at the
pixelwise level due to numerical precision.

Our forecasting neural network predicts the evolution of the
director field without knowing the velocity field v(r, t) or order-
ing magnitude S . We compare the error rates of our algorithm to
those of a lattice Boltzmann simulation, where similarly no initial
velocity or ordering magnitude information is provided (Fig. 6A).
Our machine-learning model achieves lower error rates up to the
Lyapunov time, except at the lowest levels of activity when the
system is nearly passive.

To evaluate the predictive accuracy of our machine-learning
methods for even longer times, we turn to properties of the
dynamical steady state such as the director-field correlation
length `θ defined before and the correlation time tθ defined
by setting the time correlation function Ct(tθ)= 1/2 (Materi-
als and Methods). Previous numerical studies have shown that
the quantity `θ is proportional to

√
K/α (47). When compar-

ing the predictions of our machine-learning model against lattice
Boltzmann simulations, we find that machine learning correctly
captures the activity dependence of the characteristic length `θ

Colen et al.
Machine learning active-nematic hydrodynamics

PNAS | 5 of 12
https://doi.org/10.1073/pnas.2016708118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016708118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016708118/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2016708118/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016708118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016708118


t = 2 s t = 6 s t = 10 s

M
L

E
xp

er
im

en
t

Recurrent

+

Encoder Decoder
A

B C D

E

Fig. 5. Neural networks with a residual architecture as surrogate models of time evolution. (A) Schematic for predicting the time evolution of an active
nematic. Individual images are first compressed by a convolutional encoder into a feature vector to reduce the data dimension by fivefold. Time evolution
is predicted in the feature space using a residual block, which is composed of a direct shortcut (straight arrow) to preserve the memory from the previous
frame and a recurrent layer (cyan box with a purple looped arrow) to capture the change between frames. Based upon the sequence of feature vectors for
the past, the residual block generates the next feature vector for the future, which is then translated by a convolutional decoder into an output image.
The output is sharpened by first using relaxational dynamics to update defect positions and then using the updated defect positions to sharpen the entire
director field. This procedure is iterated and the sharpened image is used as the next frame. (B) Pixelwise error rate 1−〈|nML · nLB|〉 of the predictive
model versus time, for different groups of activity in lattice Boltzmann simulations. The gray area shows regions beyond the Lyapunov time for the lattice
Boltzmann simulations (Materials and Methods). Here τd = η/α, the characteristic defect lifetime. We observe that measuring the Lyapunov time in units
of τd yields a common value of tλ∼ 3.6τd. (C) Comparison of time-averaged correlation length in machine-learning and lattice Boltzmann simulations.
(D) Comparison of average director-field correlation time tθ in machine-learning and lattice Boltzmann simulations. Here, τLC is an activity-independent
viscoelastic relaxation timescale defined as τLC = γa2/K, where γ is the rotational viscosity (51). (E) A defect nucleation event as seen in experiment and as
predicted by the machine-learning model trained on microtubule–kinesin experimental data. Machine–learning predictions depict the magnitude of sin(2θ),
where θ is the angle of the director field. The + 1/2 and − 1/2 defects are marked as red and blue dots, respectively. (Scale bar, 100 µm.)

(Fig. 5C) (corresponding results for the mean defect spacing `d
are shown in SI Appendix, Fig. S10). We stress that while `θ
at steady state is plotted in both Figs. 3B and 5C, the former
is generated from lattice Boltzmann simulations with machine-
learned parameters whereas the latter is generated solely using
our time-evolution neural network. Furthermore, our networks
also reproduce the same activity dependence for tθ as the lat-
tice Boltzmann simulations (Fig. 5D), suggesting that they have
learned to reproduce the correct dynamics expected at each level
of activity.

After training a neural network exclusively on experimen-
tal data, we can successfully forecast the time evolution of the
nematic director field including singular events such as topo-

logical defect nucleations or annihilations; see Fig. 5E for an
example. Here we choose microtubule–kinesin experiments as a
paradigmatic example, as they often exhibit clear defect dynam-
ics. In Movie S3 we show the corresponding experimental video
next to the one generated using machine learning. Inspection
of these movies show no discernible differences in the defect
dynamics between experiments and machine-learning predic-
tions. Similar agreement is obtained when our time-evolution
neural networks are trained on lattice Boltzmann simulation
data (Movie S3).

As an alternative approach, one can also forecast the evolu-
tion of active nematics by first extracting the parameters (α,K )
using our parameter-estimation network and then plugging them
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Fig. 6. Performance comparison between physics-inspired machine-
learning model and lattice Boltzmann simulations with parameters
extracted using the multiparameter estimation network. To make a fair
comparison as well as mimic the true experimental constraints, both
approaches take director fields only as input, with no prior knowledge of
the velocity field. We quantify their performance by measuring the pixel-
wise error rate 1−〈|nprediction · nground truth|〉. (A) Error rates for predicting
the simulated nemato-hydrodynamics at different levels of activity. Red
curves show results for the machine-learning model, while purple curves
show results for velocity-uninformed lattice Boltzmann predictions. The gray
area shows regions beyond the Lyapunov time for the lattice Boltzmann
simulations (Materials and Methods). (B) Error rates for predicting the evo-
lution of microtubule–kinesin experiments at different ATP concentrations.
Here we emphasize that unlike lattice Boltzmann simulations, the machine-
learning model does not implement any physical theory. Nevertheless, its
performance matches or exceeds that of lattice Boltzmann simulations.

into lattice Boltzmann simulations to model the correspond-
ing hydrodynamics. We stress that this approach requires prior
knowledge of the underlying physics. Notably, we find that our
time-evolution network outperforms the physics-informed simu-
lations in the context of practical applications to experimental
data, where complete knowledge of the initial state is inac-
cessible (Fig. 6B). To evaluate the long-term validity of our
predictions beyond specific realizations, we systematically check
(as we did in Figs. 3B and 5C) that the steady-state values of `θ
and nd extracted from the machine-learned nematic director are
in good agreement with experiments over a wide range of ATP
concentrations (SI Appendix, Fig. S11).

The successful performance of our time-evolution networks
relies on the combination of autoencoders and recurrent net-
works that adopt a residual architecture. The convolutional
autoencoders compress input images into feature vectors, which
represent the underlying physics using fewer variables. This
dimensional reduction not only diminishes the burden of the
machine-learning model, but also enables training on limited
experimental datasets without overfitting. We stress that our
recurrent networks predict the correct long-term dynamics at
steady state only when supplemented with a residual architecture
(SI Appendix, Fig. S12). More generally, we expect the use of a
residual architecture capturing the difference between frames to
be crucial for all dynamical systems that are naturally governed
by differential equations (Eqs. 6 and 7).

Conclusion
The machine-learning framework proposed here can estimate
hydrodynamic parameters using only movies of the director field
without requiring knowledge of the velocity field, even if the
two are coupled. Because the framework primarily exploits local
spatial fluctuations of the nematic director, one can map out
the spatiotemporal variation of hydrodynamic parameters and
promote them from constants to fields. This provides a generic
way to quantitatively connect experimental observations and
theories.

When trained only on experimental data, neural networks are
shown to be capable of forecasting the future, without theoretical
knowledge of the underlying dynamics. This scenario is par-
ticularly intriguing for experimental systems that, unlike active
nematics, lack a quantitative description of their coarse-grained
dynamics. In addition, the simplicity of our time-evolution neural
network system makes it suitable for implementation of artificial-
intelligence informed control of such systems. For example,
induced spatiotemporal variations of active parameters com-
bined with machine-learning techniques could enable efficient
control of complex flows and pattern formation in synthetic (26–
28, 32, 53 and biological systems (22–25, 56). Beyond active and
soft matter, our neural-network models could be employed in
other contexts where coupled chaotic fields naturally occur, such
as turbulent flows or magnetohydrodynamics (57–59).

Materials and Methods
Active Nematohydrodynamics and Lattice Boltzmann Simulation. Simulation
data for training and testing were generated using a hybrid lattice Boltz-
mann method which has been used in prior studies of different types of
active nematics (18, 27, 60, 61). The symmetric and traceless tensorial order
parameter of the nematic is defined as

Q = S(nn− I/3) [8]

with S being the scalar order parameter, n being the unit vector describing
the local nematic orientation, and I being an identity tensor. The following
governing equation of the nematic microstructure, namely Beris–Edwards
Eq. 9, reads

(∂t + u · ∇)Q− S(W, Q) = ΓH [9]

where u is the velocity vector, W is the velocity gradient ∇u, and Γ is
related to the rotational viscosity γ1 via Γ = 2S2

0/γ1 with S0 the equilibrium
scalar order parameter (62). Here, the generalized advection term S(W, Q) is
defined as

S(W, Q) = (ξA +Ω)(Q + I/3)

+ (Q + I/3)(ξA−Ω)

− 2ξ(Q + I/3))Tr(QA)

[10]

with A = (W + WT )/2 being the strain rate tensor, Ω= (W−WT )/2 being
the vorticity, and ξ being a flow-alignment parameter setting the Leslie
angle. The molecular field H is a symmetric, traceless projection of the
functional derivative of the free energy of the nematic. Its index form reads

Hij =
1

2

(
δF

δQij
+

δF

δQji

)
−
δij

3
Tr
(
δF

δQkl

)
[11]
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in which the free-energy functional is F =
∫

V fdV . Its density f takes the
form (63)

f =
A0

2

(
1−

U

3

)
QijQij −

A0U

3
QijQjkQki

+
A0U

4
(QijQij)

2
+

1

2
L∂kQij∂kQij

[12]

where A0, U are material constants and L is related to the Frank elastic
constant under the one-constant approximation. Eq. 9 is solved using a
finite-difference method.

The hydrodynamic flow is governed by a momentum equation

ρ(∂t + uj∂j)ui = ∂jΠij + η∂j
[
∂iuj + ∂jui + (1− 3∂ρP0)∂γuγδij

]
[13]

where ρ is density, η is the isotropic viscosity, and P0 = ρT − f is the hydro-
static pressure with T being the temperature. The additional stress has two
contributions, Πij = Πp

ij + Πa
ij , where the first term is passive in its nature

accounting for the anisotropy and is defined as

Π
p
ij=− P0δij − ξHik

(
Qkj +

1

3
δkj

)
− ξ

(
Qik +

1

3
δik

)
Hkj

+ 2ξ
(

Qij +
1

3
δij

)
QklHkl

− ∂jQkl
δF

δ∂iQkl
+ QikHkj −HikQkj.

[14]

The active stress that drives the system out of equilibrium reads (31, 46)

Π
a
ij =−αQij [15]

in which α> 0 describes an extensile active nematic, as is the case for the
experimental systems discussed in this paper. Eq. 13 is solved simultaneously
via a lattice Boltzmann method over a D3Q15 grid (64). Additional details
on this method can be found in ref. 65.

Typical simulation parameters were Γ = 0.13, η= 0.33, A = 0.1, and U =

3.5, leading to S0∼ 0.62. For Figs. 1 and 5, simulations were trained on
K = 0.075, α∈ [0, 0.05]. The range of K for testing in Fig. 1 F and G was
K ∈ [0.06, 0.09]. For the multiparameter estimator used in Figs. 2–4 and SI
Appendix, Fig. S6–S8, K ∈ [0.06, 0.20] and α∈ [0, 0.05]. For the experimen-
tal prediction in 3D (SI Appendix, Fig. S5), models were trained on K = 0.1,
α∈ [0, 0.09] as initial predictions indicated that the range of α first used for
training was insufficient. For all of the simulations prescribed with constant
activity, the director field was recorded after the system reached a dynamical
steady state.

Machine-Learning Details
Neural networks are implemented in Python using the Pytorch
library. Code for data preparation, network implementation,
training, and evaluation is available online (66). The machine-
learning training and testing workflows are summarized in SI
Appendix, Fig. S2.

Parameter Estimation. Parameter estimation networks contain
between one and two convolutional layers with hyperbolic tan-
gent activation functions, each of which is followed by a max-
pooling layer and a dropout layer with dropout probability of
0.15. The convolutional layers are further connected with a sin-
gle recurrent layer implemented with a long short-term memory
cell. Finally, a dense layer with linear activation function is added
to output the predicted parameters. An example architecture
is shown in Fig. 1E. To make predictions on large director-
field images, the network randomly selects patches and ensemble
averages the results into a final prediction. For networks using a
recurrent layer, the model accepts a sequence of director-field
frames, rather than a single frame.

Three parameter estimation network architectures are used
in this paper. The first, used to predict activity in 2D nematics
(Fig. 1F and SI Appendix, Fig. S3), has a single convolutional

layer with 32 filters of size 3× 3, a single 2× 2 max-pooling
layer, a recurrent layer implemented using a long short-term
memory (LSTM) with hidden size 32, and a fully connected
layer with 32 neurons. This model accepts input sequences of
32× 32 pixel image patches and was trained on a dataset of 6,000
director-field frames separated by 10 simulation timesteps, at
12 different levels of activity. The second model, used to pre-
dict activity in 3D nematics (Fig. 1G and SI Appendix, Figs. S3
and S5), has a similar architecture, but with 5× 5× 5 convolu-
tional filters and no recurrent layer. This model accepts image
volumes of size 32× 32× 32 and was trained on a dataset of
6,000 director-field configurations, separated by 100 timesteps,
at 12 levels of activity. The third model is used for simultane-
ous prediction of activity and elastic modulus in 2D nematics
(Figs. 2–4 and SI Appendix, Figs. S6–S8). This network has the
same structure as the other 2D model, but outputs two values
and was trained on a dataset of 15,000 image frames, generated
with 30 different combinations of activity and elastic modulus.
The accuracy of this multiparameter estimator is summarized in
Fig. 2 C and D.

The networks used on 2D active nematics were trained on con-
tinuous representations of the 2D director field such as sin 2θ or
cos 2θ. The choice of continuous representation had no effect
on the predictive accuracy of the model. The networks used
on 3D active nematics were trained on the traceless tensor
Qij =ninj − 1/3, which is the nematic order parameter without
ordering magnitude coefficient.

Networks were trained for 100 epochs on director-field con-
figurations generated using lattice Boltzmann simulations. Each
frame of training data was a 200× 200 director-field image with
periodic boundary conditions. These datasets were augmented
by applying random rotations, flips, and shifts during the training
procedure. During each epoch, each input frame was randomly
cropped to the predictive network input size. During train-
ing, we used an 80 to 20 training-validation split on the input
dataset.

Predicting Time Evolution
Autoencoder Architecture. The neural network for predicting time
evolution, depicted in Fig. 5A, is composed of three parts: an
encoder, recurrent layers, and a decoder. The encoder uses a
sequence of convolutional layers to down-sample input images
into feature vectors. The decoder accepts feature vectors and
uses convolutional layers to up-sample those feature vectors back
into images. A traditional autoencoder is composed of these two
layers only and is an effective method of reducing data dimen-
sionality. In our model, we insert the recurrent layers in between
the encoder and decoder, so that dynamics can be computed
on the encoded feature vectors. A benefit of this approach is
that the dimensional reduction achieved by the encoder allows
for smaller recurrent layers, reducing network complexity and
improving performance.

The models reported in this paper accept director-field images
processed into the two-channel input (sin(2θ), cos(2θ)), where θ
is the local orientation angle of the director field. The encoder
contains two convolutional layers of stride 2 with four and six out-
put channels, respectively. The decoder architecture mirrors that
of the encoder, accepting a six-channel feature vector and using
two stride-2 transposed convolutional layers with four and two
output channels, respectively. All convolutional layers use 4× 4
kernels and are followed by batch normalization, which improves
training performance, as well as hyperbolic tangent activation.
The recurrent portion is a two-layer LSTM unit implemented as
a residual network (resnet), with a shortcut that directly connects
input and output of the entire LSTM cell. Given a sequence of
feature vectors, the resnet computes a small residual to be added
to the input, rather than computing a full output feature vector
from scratch. For input sequences with small time separations,
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the residual vector is sparse, which helps improve training per-
formance and predictive accuracy (SI Appendix, Fig. S12 A and
B). In particular, the residual architecture allowed the model to
more effectively learn the activity-dependent temporal dynamics
present in this system (SI Appendix, Fig. S12C).

These models were trained using a two-step training pro-
cedure. First, the encoder, resnet, and decoder were trained
together for 100 epochs. Next, the weights in the resnet were
frozen and the encoder and decoder were trained together for
50 epochs. Training data were generated either using lattice
Boltzmann simulations or directly from experiments. The lattice
Boltzmann training data consisted of 200× 200 director-field
images with periodic boundary conditions, separated by 6, 10,
and 25 simulation timesteps. Each simulation dataset contained
6,000 director-field configurations at 12 levels of activity and was
augmented during training using random flips, shifts, and crops.
As before, we used an 80 to 20 training/validation split. Differ-
ent models were trained on each dataset, with input image sizes
of 48× 48, 64× 64, and 120× 120. In the main text, we report
results from the best performing of these models, which were
trained on data with a frame separation of 10 timesteps and use
48× 48 input image size. All predictions are made using input
sequences of seven frames.

The experimental data consisted of 1,500 director-field con-
figurations extracted from microtubule–kinesin experiments at
five different ATP concentrations (Experimental Methods). We
did not train on experiments with ATP concentrations of 10 µM
and 18 µM as the time between snapshots was five times longer
than for the other ATP concentrations. Here, we also used an 80
to 20 training validation split and augmented data using random
flips and crops. The results reported in this paper are for a model
with an input size of 48× 48.

Stitching Predictions. While the models were trained to predict
the evolution of director-field patches, the error rates and char-
acteristic length and time scales reported in Fig 5 are computed
for full images in the testing dataset. To obtain the predicted con-
figuration of the full director field, the model stitches together
predictions made on overlapping subdomains of the image.
Here, each pixel will appear in the prediction for multiple subdo-
mains. The final prediction for each pixel is given by the weighted
average of predictions from each subdomain. For a pixel located
at r=(x , y), the weight given to the predicted value from a
subdomain centered at r0 =(x0, y0) is the Gaussian weight with
σ=R, the radius of the subdomain. Thus, more credence is
given to domains in which the pixel is farther from the boundary.
For all results reported in this paper, predictions were stitched
together from 48×48 (R=24

√
2) domains which overlapped by

8 pixels.

Sharpening Algorithm. To reduce any noise or artificial defects
that arise from stitching together neural network predictions,
we use a physically motivated sharpening procedure. This algo-
rithm exploits only the fact that the system is composed of fibers
which tend to align while knowing nothing about the active forces
present in the system.

The sharpening procedure minimizes the elastic free energy of
a system composed of such fibers. Following refs. 67 and 68, we
write the elastic free-energy density as

fd =
1

2
K1(∇· n)2 +

1

2
K2(n ·∇× n)2

+
1

2
K3(n× (∇× n))2.

[16]

Assuming a two-dimensional system parameterized by an
angle θ as n=(cos θ, sin θ), this becomes

fd =
1

2
K1(sin θ∂xθ− cos θ∂yθ)

2

+
1

2
K3(cos θ∂xθ+sin θ∂yθ)

2.

[17]

In the one elastic constant approximation K1 =K3 =K , this
reduces to

fd =
1

2
K
[
(∂xθ)

2 +(∂yθ)
2]. [18]

The elastic free energy is minimized by setting δfd
δθ

=0, leading
to the Laplace equation

∇2θ=0. [19]

Thus, the elastic free-energy minimization can be accom-
plished by applying relaxational dynamics to the director field.
We implement this using a standard finite-differences approach,
slightly modified to account for the nematic symmetry n=−n.

We first apply relaxational dynamics in a small box surround-
ing the topological defect positions from the previous director-
field frame. Because the winding number around the boundary
of this box is fixed and nonzero, this sharpens the director field
around each defect without risking removing the defect. Next,
the director field is fixed inside the box and relaxational dynamics
are applied in the defect-free region. This procedure is applied
iteratively to sharpen the raw predicted image.

This procedure will work if the defect has not moved outside
of the box between image frames. Assuming a timestep of τ , box
size of R, and characteristic defect velocity vd , this condition is
satisfied if vdτ <R. We can approximate vd using the relation
provided by ref. 51 for an isolated +1/2 defect, vd ≈αld/η. Here,
we insert ld ≈

√
K/α, the mean defect spacing, as the radius of

the defect-free region surrounding the +1/2 defect. Thus, the
defect will remain in the box if

√
αK τ/η <R. The simulation

data used in Fig. 5 had K =0.075, η=0.33, αmax =0.05, and
τ =10, leading to R> 2. The data reported in the main text
were generated using a 5×5 box, corresponding to R ∈ [2.5, 3.5].
We chose the smallest possible value for R above this threshold,
as it prevented the immediate annihilation of recently nucle-
ated defect pairs, which would otherwise be close enough to be
enclosed by the same box. This would result in a net zero winding
around the boundary, leading to their removal by the sharpening
procedure.

Applications to Experiment
Before being fed into parameter-prediction models, the actin–
myosin images are adjusted in ImageJ to remove outliers using a
median filter. The fixed orientation of the dye along the actin
filaments and the polarization of the laser yield a polarized
image whose intensity is proportional to cos2 θ, where θ is the
director-field orientation. From this we extract the continuous
director representation cos 2θ and down-sample. For actin–
myosin, we down-sample by a factor of 6 to an effective pixel
width of a =1 µm, a convention that has been used in the past
when comparing this lattice Boltzmann code with actin–myosin
nematics (18, 69).

The microtubule–kinesin orientation fields were extracted
from fluorescence images using the ImageJ plugin OrientationJ,
which determines the structure tensor from intensity gradients.
We use the extracted director field to obtain continuous direc-
tor representations and then down-sample them. Microtubule–
kinesin data were down-sampled to an effective pixel width of
a =2.6 µm, as the length scale of spatial variations in the raw
data is larger. As a machine-learning model will be less reliable
when applied to data significantly different from its training set,
we aimed to down-sample data such that the correlation length
fell within the range of our simulation training dataset.
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Determination of Lyapunov Time
Active nematics are a nonlinear system characterized by a pos-
itive Lyapunov exponent. As a result, direct comparison of
time-evolved director-field configurations is not necessarily valid
for long time scales. Pixelwise accuracy should not be expected
beyond the Lyapunov time, particularly as our predictive model
lacked complete information about the system. While we report
pixelwise accuracy in the main text (Fig. 5B), knowledge of the
chaotic dynamics of these systems is important to contextualize
these results.

The grayed-out region in Fig. 5B is bounded by the Lyapunov
time as determined from lattice Boltzmann simulations. To find
this time scale, we ran lattice Boltzmann simulations at different
levels of activity and saved an intermediate state of the system.
We then perturbed this state and continued the simulation. At
each level of activity, we ran 10 trials from 10 separate interme-
diate states. Each simulation was time evolved on a 200 × 200
grid, from which 100 points were randomly selected and tracked
over time. By comparing these randomly selected pixels as a func-
tion of time, we extracted the Lyapunov exponent which was
inverted to obtain the Lyapunov time. This quantity was depen-
dent on activity, with more active systems exhibiting a shorter
Lyapunov time. However, when we rescaled by the characteris-
tic defect lifetime τd = η/α, we found that all values coalesced to
approximately τ =3.6τd.

As infinitesimal pixelwise changes would be eliminated by
relaxational dynamics, we used a more global method of perturb-
ing the intermediate state. First, we computed the singular-value
decomposition of the order parameter tensor field Qij (r). We
then fractionally changed 10 elements of the singular matrix by
random amounts between –10% and +10% and used the new
matrix to reconstruct the perturbed-order parameter field. This
method of globally varying the intermediate state yielded nonva-
nishing pixelwise deviations that showed exponentially growing
behavior.

Characteristic Length and Time Scales
Direct comparisons of the machine-learning predicted director
field to lattice Boltzmann simulations are unreliable beyond the
Lyapunov time. To evaluate the validity of our predictions over
longer time scales, we compare instead characteristic length and
time scales of the machine-learning predicted dynamical steady
state. For a given order parameter configuration Qij (r, t), with i
and j running over x , y , we define the spatial correlation function
Cs(r, t) as

Cs(r, t)=
〈Qij (r, t)Qij (0, t)〉
〈Qij (0, t)Qij (0, t)〉

[20]

and the time correlation function Ct(r, t) as

Ct(r, t)=
〈Qij (r, t)Qij (r, 0)〉
〈Qij (r, 0)Qij (r, 0)〉

[21]

where indexes i and j are contracted following the Einstein
summation convention. Using Eqs. 20 and 21, we define the
director-field correlation length `θ such that Cs(`θ, t)= 1/2 and
the correlation time tθ such that Ct(r , tθ)= 1/2.

In Fig. 5 C and D, we compare the average values of `θ ,
tθ as found in machine-learning predicted director-field frames
to those of lattice Boltzmann simulations. Here, we iterate
the predictive model to predict large (200× 200) image frames
over a long time (t =30 τLC) and compute the time-averaged
correlation length and spatially averaged correlation time. Cor-
relation lengths and correlation times are computed using only
the machine-learning–generated image frames. In SI Appendix,
Fig. S10, we report the time-averaged mean-defect spacing,
defined as `d =1/

√
nd, where nd is the defect density.

Experimental Methods
Actin–Myosin Nematics. Experiments for Fig. 4D and SI Appendix,
Fig. S6 were performed as in ref. 27 using the method originally
described in ref. 18; the experimental data for Fig. 4 E and F
are taken directly from ref. 27. SI Appendix, Table S1 contains
a full enumeration of the conditions in each experiment
but the general method is summarized here. Fluorescent
(tetramethylrhodamine labeled) and nonfluorescent actin
monomers are mixed at a ratio of 1:5 and allowed to polymerize
in F buffer (1 mM MgCl2, 50 mM KCl, 0.2 mM egtazic acid
[EGTA]) containing either imidazole (10 mM, pH 7.5) or Hepes
(10 mM, pH 7.5) as a buffering reagent. Also present is f-actin
capping protein to limit the length of nascent filaments to 2 µm.
Additionally the mix contains a glucose oxidase/catalase oxygen
scavenging system (2.7 mg/mL glucose oxidase, 1,700 units/mL
catalase, 4.5 mg/mL glucose, 0.5% vol/vol β-mercaptoethanol)
to limit photodamage. Finally, the polymerization mix contains
methylcellulose (0.3% wt/vol in water) as a crowding agent and
ATP as a source of chemical fuel.

The experiment is performed in a chamber composed of a
glass cloning cylinder attached to a glass coverslip via 5 min
epoxy. Before adding the sample to the chamber, the bottom
is first coated with a thin layer of oil that contains a surfactant
(perfluoropolyether–polyethylene glycol–perfluoropolyether
[PFPE-PEG-PFPE] surfactant) to prevent the filaments from
sticking to the glass. The sample is allowed to settle as the
methylcellulose crowds the filaments to the oil–water interface,
forming a nematic liquid crystal. The sample is imaged on an
inverted spinning-disk confocal microscope.

Activity is introduced via the addition of synthetic myosin
motors after the sample has formed a liquid crystal at the oil–
water interface. Two different motor constructs were used. The
synthetic motors used for SI Appendix, Fig. S6 are the engi-
neered myosin tetramers CM11CD7462R∼1R∼TET from ref.
70, referred to in this study as “fixed-gear motor.” These motors
are constructed from the catalytic domain of a fast algal myosin
(Chara corallina myosin XI) fused to an artificial lever arm con-
sisting of two spectrin repeats. The motors oligomerize into
tetramers with flexible linkages using the engineered leucine zip-
per variant pLI2 and contain a spectrin repeat flanked by flexible
linkers. The synthetic motor used for the experiment in Fig. 4 E
and F is MyLOVChar4∼1R∼TET (71), referred to in this study
as “gear-shifting” motor, which is the same construct used for
experiments in ref. 27 including the data from that study analyzed
in Fig. 4 E and F. This motor construct is also based on the cat-
alytic domain of C. corallina myosin XI, but utilizes an artificial
lever arm that contains the light-activatable LOV2 domain that
unfolds upon stimulation with blue light. The conformational
change of the lever arm results in a light-dependent stroke vector
for the motor (71) which, in the context of the active nematic sys-
tem in this study, results in higher activity in the presence of blue
light (27). The fixed-gear and gear-shifting motors were purified,
flash frozen, and stored at –80 ◦C as described in ref. 71. Time-
varying activity movies were stimulated over the entire sample
via a 491-nm solid-state laser, while spatially varying activation
was achieved by targeting a 470-nm light-emitting diode to one
location in the sample using a digital micromirror array (27).

Microtubule–Kinesin Nematics. The microtubule and kinesin
motor-based active nematics were assembled according to pre-
viously published methods (15, 48). Briefly, K401-BIO-HIS puri-
fied from Escherichia coli (72) was incubated with streptavidin
for 30 min to create motor clusters. A mixture containing salt
(5 mM MgCl2), an ATP regeneration system (26.6 mM phosphe-
nol pyruvate (Beantown Chemicals), pyruvate kinase/lactic dehy-
drogenase), the depletion agent (0.8% wt/vol 20 kDa polyethy-
lene glycol), and an antioxidant system (6.7 mg/mL glucose, 0.4
mg/mL glucose catalase, 0.08 mg/mL glucose oxidase, and 2 mM
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trolox) was combined with the kinesin motor clusters in a buffer
of M2B (80 mM Pipes, pH 6.8, 1 mM EGTA, 2 mM MgCl2).
The ATP was added in the desired concentration (from 5 µM
to 1,000 µM) to individual aliquots before flash freezing in liq-
uid nitrogen. The concentration of ATP controls the stepping
rate of the motors, which in turn tunes the level of activity in
the system.

The tubulin was purified from bovine brain (73). Tubu-
lin labeled with NHS-Alexa 647 (74) was copolymerized with
unlabeled tubulin in the presence of Guanosine-5-[(α,β)-
methyleno]triphosphate GMPCPP (Jena Bioscience NU-405L)
to create microtubules with a final fraction of 3% labeled tubulin
and an average length of 2.5 µm. The activity in the nematics
is sensitive to the particular protein preparation, microtubule
(MT) length distribution, and the chemical properties of the
active mixture. Therefore, it was important to use stocks from
the same preparation and polymerization to get quantitatively
consistent results.

The experiments were performed in a flow chamber with
dimensions 18 × 3 × 0.6 mm made of double-sided tape
sandwiched between a glass slide and a coverslip. The glass
slide was treated with commercially available Aquapel to cre-
ate a hydrophobic surface. The coverslip was passivated with
acrylamide.

On the day of experiments, the premixed active components
and MTs were thawed rapidly and combined. To form a large flat
interface, first oil (HFE 7500) stabilized with a fluoro-surfactant
PFPE-PEG-PFPE (1.8% RAN Biotech) was flowed into the
chamber and then the aqueous active mixture. The hydropho-

bic treatment left a thin layer of oil for the MTs to sediment
onto. The chamber was sealed with Norland Optical Adhesive
and cured under ultraviolet light for 1 min. The sedimentation of
the microtubules onto the oil–water interface was aided by spin-
ning the sample in a swinging bucket centrifuge (Sorval Legend
RT rotor 6434) at 1,000 rpm for 20 min.

The samples were imaged using epifluorescence microscopy
on a Nikon Ti-Eclipse equipped with a CMOS camera (Andor
Zyla). The orientation field was extracted from the fluorescence
images using the Image-J plugin Orientation-J which finds that
structure tensor from gradients in intensity.

Data Availability. Machine-learning code and lattice Boltzmann simulation
code data have been deposited in Zenodo (DOI: 10.5281/zenodo.4541607).
Some study data are available upon request.
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