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THERMAL STRESSES IN BI-COATED STRUCTURES

By Mauro Ferrari! and Luca Lutterotti?

ABSTRACT: The thermoelastic problem of a three-phase concentric sphere subject to phase-
wise uniform temperature variations is solved exactly. With this solution, the cooldown
stresses in a metallic structure with plasma-sprayed oxidation- and thermal-barrier coatings
are determined. In this context, the relevance of several control parameters is examined.

The general thin-film approximation to the subject problem is presented.

INTRODUCTION

Ceramic coatings have been extensively employed for protection of metallic
components subject to thermochemically aggressive environments [Zaat (1983), Miller
(1984)]. In its standard implementation, the coating deposition is achieved by plasma-
spraying a diffusion (oxidation) barrier first, and subsequently depositing the thermal
barrier coating with the same technique. While this method has lead to substantial
improvements in the life and efficiency of mechanical components - like combustion
chambers and turbine blades - the number of unresolved issues remains considerable

[e.g., Zaat (1983), Miller (1984)].
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In particular, thermal stress have been shown to play a central role in the failure
modes of coated structures, both under thermal shock conditions or deposition [Miller
(1984), Hobbs and Reiter (1988), Bennett (1986), Kvernes and Fartum (1978)], and
during service, i.e., when subject to thermal cycling [McDonald and Hendricks (1980),
Rickerby et al. (1989)]. “

In this work, the thermal stress field developed during the cooldown phase of the
deposition procedure for a bi-coated spherical body is determined. This goal is achieved
by obtaining a closed-form solution for such system subject to phase-wise uniform
temperature variations. Thus, two advantages are afforded: (i) The developing of general
considerations that apply to bi-coated systems of different nature (e.g., PVD-deposited);
and (ii) simplyfying of the analysis of the relevance of various control parameters, which
is fundamental for optimal process and material design. In the following developments,
attention is focused on the substrate deposition temperature, on the thermoelastic
properties of both coating layers, and on the thickness of the coatings. All of these
parameters have been considered in experimental investigations [Hobbs and Reiter
(1988), Perry et al. (1990), Rickerby et al. (1989)].

The spherical geometry, here employed, permits the exact solutions, and models the
state of in-plane elastic constraint and free normal expansion, which is experienced by
actual coatings. Uniformly heated, bi-coated structures with non-spherical geometries
have been examined by several authors [e. g. Benveniste et al. (1989), Suhir (1988)],
employing various approximate methods.

In this work, the thermoelastic properties have been considered as constants for each
phase, and their values have been taken from experimental reports. Thus, no effort has
been made to relate the microstructure to the macroscopic response. Methods relevant to
this problem are presented in Ferrari and Harding (1991) and Ferrari et al. (1991), where
the spatial inhomogeneity of the microstructure and the temperature variation are also

taken into account.



In the present investigation, the structure is assumed to be stress-free at the instant of
termination of the spraying. This is endorsed by the experimental observation of
Schmauder and Schubert (1986), but in contrast with the modelling of Takeuchi et al.
(1990). Dynamical effects are neglected, as these appear to be relevant in the deposition
phase only- see the approximate strain computation scheme of Elsing et al. (1990).

No inelastic processes were here considered. The occurrence of high-temperature
superplasticity, viscous flow, and shrinkage cracking, has been reported in the literature
[Duclos and Crampon (1987), Schmauder and Schubert (1986)]. The relevance of these

mechanisms is presently under investigation.

THE THERMOELASTIC PROBLEM

Generalities
Let the region B+3B, of boundary 8B, be occupied by a material of stiffness tensor C,

and be subject to a thermal strain field g*:
* _
g¥ =0 8T 1)
where @ is the thermal expansion tensor, and 8T is the temperature variation field.
The material properties C and q are allowed to vary smoothly with position. The strain g,

related to the displacement u by

g=sym(grad(w), or  g;= Al )

is the sum of the thermal and the mechanical components:



e=g" +¢ (3)

In thermoelasticity, the relation between the various kinematical quantities and the

stress tensor T is

1=Ce=Cle-£"1=C[sym(gradw)) - £* ] )

In the absence of body forces, the local equations of equilibrium may thus be written

in any of the following forms:

divi=0 &)
div (C €) = div(C ™) (6)
div [C sym(grad(u))] = div(C £*) 7

Here, div(.), grad(.) and sym(.) are the divergence, the gradient and the symmetric
part operators.

Appropriate boundary conditions for the field equations are specified as

tn=t on OB, (8)
where n is the outward unit normal, and
u=u on 0B

. ‘ )

Here, i\ and ﬁ are assigned tractions and displacement vectors, respectively, and 6B, ,



OB, are complementary portions of 6B.

In general, stress is generated whenever the thermal strain ¢* is non-uniform, in its

thermal variation component 8T, in the thermal expansion g, or in both.

Conditions for zero strain

The stress-yielding expression reduces to

1=-CadT, (10)

only when g = 0, as may be seen from (4) and (1). For this to be the actual solution, it

1s necessary that the equilibrium requirement

div(Ce™) =0, (11)

be satisfied, and the boundary conditions (8) - (9) be met. In particular, the strain
vanishes for homogeneous materials with zero displacements prescribed on the entire
boundary, and uniform thermal loading. In general, condition (11) is violated, and thus
equation (10) is not applicable, if the thermal strain is non-uniform or the material
properties vary with position (and/or with temperature), or both. For multi-phase
structures, even the satisfaction of (11) and the boundary conditions under the
assumption of zero strain does not assure the vanishing of the strains, as continuity
conditions must also be satisfied. For instance, in a structure undergoing a uniform
temperature variation, continuity of the traction components of the stress (i.e., the
condition of equilibrium) is not satisfied at the interface between two phases with
different thermal expansions. Thus, for such situations equations (10) - (11) are not
- applicable.

The isotropic relation



o=-E adT, (12)

is frequently encountered. To avoid further misuses, it is here emphasized that (12) is
applicable only when the eigenstrained body is fully constrained against deformation in
the axial direction, and the orthogonal lateral surfaces are stress-free. Under these
assumptions, the axial stress (12) will be the only non-vanishing stress component,
provided (11) is satisfied. For homogeneous media this condition is verified if and only if

the thermal variation is spatially uniform.

THE BI-COATED SPHERE SUBJECT TO PHASE-WISE UNIFORM THERMAL

VARIATIONS

Exact solution

A structure composed by a sphere, surrounded by two concentric spherical shells is

here considered. The external radii of the spherical core and the two successive shells are

I, , 1, and r, . The region r;, < r < r; (hereafter referred to as 'the i-th substructure') is

subject to the uniform temperature variations C; (Notation: r, = 0). The constituent

material of each substructure is isotropic and homogeneous.
The assumption of material isotropy and the polar symmetry of the problem reduce

the equilibrium requirements (7) for the i-th substructure to the single equation

+
dre "1

di 2 [dui ui]
dr r

=0 (13)

in the i-th phase radial displacement ui . This equation is expressed in a natural
spherical polar coordinate system (r, ¢, 8), which is employed throughout the present

work. Equation (13) is satisfied by taking



ui=Ki1r+% (14)

where the K;; are constants of integration. The non-vanishing stresses corresponding to

this displacement are

| |

| th=-3k (0,C K, ) - 4,2 15)
? L K,

‘: T = Teo =~ 3K {0 Ci- Ky} + 217 (16)

where k; and W, are the bulk and shear moduli of the i-th substructure, respectively.
The constants of integration are deduced by imposing continuity, equilibrium, and
boundedness conditions:

The vanishing of the radial stress at the free surface implies that

4K, 1,

K31=0L3C3+ 3k,r§

17)

The continuity of the radial stress at the interfaces between the layers 1 and 2 and the

layers 2 and 3 implies that

k, 1 (13-13)
K21 = (12C2+ E(Kll-alCl)+3 (r;-r3)kz[4K32u3 rg -3 k,(K“-OLlCI)rgH (]_8)
. S ©-1) 3k Al | y
R = H, (13- 17) Kz uB, 4 (K, -0, C)rl; (19)



The boundedness of the displacement at r = 0 implies that K, = 0; introducing the

new quantity

Kn = Kn - alcl’ (20)

the stresses may be rewritten in term of two constants only, as:

=1, =1,=3k K, 21
.3 [1-5] [rg-l]
. B ) |}
12=3k K, |1- o +4u, K, —— (22)
1-=— ( 2 1)
r3
r Rl Wb
435 [“w] [ 1]
=1,=3k K, |1- ) n +4u, K, @) (23)
3
3 11
Trr=4u3 Kaz rg'la (24)
3 = 3 1.1
Q== 4Ky |5+ 5p (25)

By imposing continuity of the displacement at the 1-2 and 2-3 interfaces it is then

found that

11

. N
K.=-D

NS
K.=D

(26)

27)



where the following definitions were introduced:

— 3 3
D=f+ing+Eeg+f e

f] =-4 d’lZ H, ABaz

fz =-4 a32 H, ABu (28)
f,=4 Ba Auaz AE’Z]
f4 = -aIZ Bsazs

N, = 4{Ay,, B,IAr, (4u, 1, 13+, B, 1)+, B, 18 Arg, ]+, B, 13 A, [Ay,, B,+AY,, 41,1}

(29)
N, = B,&2 {2Ay,, 1,(B,+2B,)Ar2, +3B, [(AY,, 12 +AY,, I)A,+AY,, 21, 1]} (30)
Bi=2w+3N=3k
o =B+ 4 1 (D)
Y=o, C
Axij=xi-xj, x:'Y,u,B,rii

Substitution of (26) - (31) into (21) - (25) and (14) yields all stresses and

displacements, respectively.

The thin film case

For the purpose of thin film analysis, the coating radii are expressed as

r,=r1, (14x), 1, =1, (1 +px), 12p210 (32)



In the limit as x approaches zero, it is then found that

- (33)

Ky, =f, +1f; x (34

where higher order terms were neglected, and the definitions

_ A0l Dz B+ A,z B, ]

f, = B (35)
142
B, .
f50’: 3 z, AFY13r1 (36)
AYI3[(p-1)2263(B1+4u3)+BIZ3(3B2+8u2)]+A‘YZ3BZBIZ3+4A’YIZZ3B2LL2 3 3
fS] = B3 3[3 Z Z§ r1 ( 7)
142
z =2+ A (38)

were introduced.

APPLICATION: A CERAMIC-COATED METAL STRUCTURE WITH OXIDATION

BARRIER AS INTERMEDIATE LAYER

The case of a Nickel superalloy sphere with a plasma-sprayed Zirconia coating and a
MCrAlY bonding layer is studied next. Table 1 reports the defaults values for the
geometric, material, and processing parameters employed [Lombard (1985), Schmauder

and Schubert (1986), Schubert (1986)]. The dependence of the transverse and radial



stresses on several of these parameters is studied by varying one of them at the time, as
summarized in Table 2.

The first parameters considered are the Poisson's ratios of the oxidation barrier and of
the coating, as the lamellar microstructure induced by some processing conditions makes
the latter fluctuate considerably [Lombard (1985)]. Figure 1 shows that varying the
Poisson's ratio of the intermediate layer reduces the transverse stress there, but bears no
significant effect on the transverse stress state of the coating. The viceversa is also true.
This substantial decoupling is a consequence of the relative thinness of the coatings, as
discussed in the last section. Another consequence of the thin geometry is that the radial
stresses are negligible, compared with the transverse ones, as exhibited in Figure 1.b. In
view of this, radial stresses are not discussed any further.

Figure 2 displays the stresses at the mid-point of each of the three phases as a function
of the substrate temperature during deposition. The importance of this control parameter
is obvious: Allowing the substrate to heat during deposition induces moderate
compressive stresses, while low substrate temperatures correspond to high tensile stresses
in both the intermediate layer and the coating.

Table 2 compares the stresses in the default system (Case 1) with the stresses obtained
by varying the intermediate layer's thickness, temperature variation, or thermal
expansion. The imposed variations alter the stress level of the oxidation barrier

significantly (especially in Case 2, where Ay,, is nearly zero, and in Case 3, where it

becomes large and negative), but have a minor effect on the coating stress.

DISCUSSION AND CONCLUSIONS

The exact thermoelastic solution for sphere with three concentric phases, subject to a

phase-wise homogeneous temperature variation was presented in this paper. Concerning



this solution, it is observed that all stresses vanish if and only if v, =7, = v, . Also, it is

seen by (24) - (25), that the radial and transverse stresses in the outermost layer are
always of opposite sign. This is not true for the intermediate layer, as shown by a later
counterexample, and is trivially true for the substrate, since these stresses here coincide.

Algebraic manipulation proves D, -see eq. (28) - to be positive definite. Thus, the

substrate stresses are compressive if and only if N, is positive, which is in turn true if ¥, <
Y, <7, - Similarly, the outermost layer is in transverse compression (and radial tension) if
Y >, >,

For the special case C, = C, = 0, the solution of Luo and Weng (1987) is recovered.

For r, =1, =1, the solution of Boley and Weiner (1985) is obtained.

The exact solution was employed to determine the stress level in a Nickel superalloy
structure, with a bi-layered plasma-sprayed coating, consisting of an internal oxidation
barrier and a Zirconia thermal barrier coating. For the system studied, the thermoelastic
moduli of the oxidation barrier, its thickness, and its thermal load are found not to affect
the coating stresses significantly, in accordance with experimental repgrts [Hobbs and
Reiter (1988)].

The dominant control parameters, for the minimisation of the coating stresses in the
system examined, are the substrate temperature - substrate cooling inducing compression
- and the coating's Poisson' ratio. The thin film limit of the discussed exact solution was
deduced in a preceding section . In this context, it is observed that:

(i) the radial stresses in the coatings are negligible magnitude-wise, with respect to
the transverse ones.

(ii) the thermoelastic properties of the intermediate layer, and its thermal load, affect
the stresses in the outermost layers only in first order in x, and thus are irrelevant in the
thin film limit.

(iii) the sign of K,,, and thus the compressive or tensile nature of the coating stresses

is dominated by Ay,,, and not by o, - a,, as incorrectly reported in Takeuchi et al. (1990).
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SUMMARY

The thermoelastic problem of a three-phase concentric sphere subject to phase-wise
uniform temperature variations is solved exactly. With this solution, the cooldown
stresses in a metallic structure with plasma-sprayed oxidation- and thermal-barrier
coatings are determined. The general thin-film approximation to the subject problem is

presented.

Key words: Thermal Stress, Coating, Layered Structure.



FIGURE CAPTIONS AND TABLES

Figure 1. Effect of the Poisson's ratios on the transverse (a) and radial (b) thermal

stress in the coated sphere; (—— Case 1, see Table 1; — — - Case 2, as Case 1, but v,

=.26; =----- Case 3, as Case 1, but v, = .1).

Figure 2. Transverse thermal stress vs. substrate temperature during deposition

(Case 1 system - see Table 1).



Figure 1 (a).
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Table 1. Case 1:

Material characteristic and processing condition.

Phase (i) E, (GPa) v, o. (mK+) C (K) r, (cm)
1 200 25 20-10¢ -400 1
2 45 .25 16-10% -700 1.005
3 45 075 11-10°% -1100 1.025

Table 2. Influence of material characteristic and processing conditions of the

bonding layer on the transverse thermal stresses (mid-point values reported).

Case | Stress in the substrate | Stress in the bonding layer | Stress in the ceramic layer
1 -0.0098 GPa 0.1868 GPa 0.1944 GPa
Pl -0.0079 GPa -0.0038 GPa 0.1958 GPa
3- -0.0061 GPa -0.1880 GPa 0.1973 GPa
4 -0.0152 GPa 0.1827 GPa 0.1900 GPa

"See Table 1.
*As Case 1, but C, =- 500 K.
-As Case 1, but o, = 7-10 mK-.

&As Case 1, butr, = 1.02 cm, 1, = 1.04 cm.



APPENDIX II. NOTATION

The following symbols are used in this paper:
B = region occupied by material subject to thermal strain field;
C = stiffness tensor;
C, = uniform temperature variation in the i-th substructure;
D = constant, see (28);
div(.) = divergence operator;
e= mechanical component of strain tensor;
E = Young's modulus;
f. = constant, see (28);
f;= constant, see (35)-(37);
grad(.) = gradient operator;
k.= bulk modulus of i-th substructure;
K= integration constant, see (14);
K,,= constant, see (20);
n = outward unit normal on 6B;
N, = constant, see (29) - (30);
p = thickness parameter, see (32);
r, 0, ¢ = polar coordinates;
r; = external radius of the i-th substructure;
sym(.) = symmetric part Operator;
3;\= assigned traction vector;
ui= displacement of the i-th substructure;
u; ;= partial derivative of u; respect to x;

x = thickness parameter, see (32);

z;= material constant, see (38);



o= isotropic thermal expansion coefficient;
o= thermal expansion tensor;
o; = thermal expansion coefficient of the i-th substructure;
a;;= material constant, see (31);
B, = material constant, see (31);
OB = boundary of region B;
dB,, 6B, = complementary portions of 3B;
OT = temperature variation field;
ARy, Ay, Ay, Ary; = see (31) for definitions;
€= strain tensor;

§*= thermal component of strain tensor;

Y, = constant, see (31);
A;, W;= Lamé constants of the i-th substructure;
v; = Poisson's ratio;
O = stress;
I= stress tensor;

i, Ty Tae = Normal stresses in the i-th substructures along r, ¢, 6, directions;





