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RRx-001: a chimeric triple action
NLRP3 inhibitor, Nrf2 inducer,
and nitric oxide superagonist

Bryan Oronsky1*, Lori Takahashi1, Richard Gordon2,
Pedro Cabrales3, Scott Caroen1 and Tony Reid1

1Drug Development, EpicentRx, Torrey Pines, CA, United States, 2Department of Translational
Neuroscience, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia,
3Department of Bioengineering, University of California at San Diego, La Jolla, CA, United States
RRx-001 is a shape shifting small molecule with Fast Track designation for the

prevention/amelioration of chemoradiation-induced severe oral mucositis

(SOM) in newly diagnosed Head and Neck cancer. It has been intentionally

developed or “engineered” as a chimeric single molecular entity that targets

multiple redox-based mechanisms. Like an antibody drug conjugate (ADC),

RRx-001 contains, at one end a “targeting” moiety, which binds to the NLRP3

inflammasome and inhibits it as well as Kelch-like ECH-associated protein 1

(KEAP1), the negative regulator of Nrf2, and, at the other end, a

conformationally constrained, dinitro containing 4 membered ring, which

fragments under condit ions of hypoxia and reduction to release

therapeutically active metabolites i.e., the payload. This “payload”, which is

delivered specifically to hypoperfused and inflamed areas, includes nitric

oxide, nitric oxide related species and carbon-centered radicals. As

observed with ADCs, RRx-001 contains a backbone amide “linker” attached

to a binding site, which correlates with the Fab region of an antibody, and to

the dinitroazetidine payload, which is microenvironmentally activated.

However, unlike ADCs, whose large size impacts their pharmacokinetic

properties, RRx-001 is a nonpolar small molecule that easily crosses cell

membranes and the blood brain barrier (BBB) and distributes systemically.

This short review is organized around the de novo design and in vivo pro-

oxidant/pro-inflammatory and antioxidant/anti-inflammatory activity of RRx-

001, which, in turn, depends on the reduced to oxidized glutathione ratio and

the oxygenation status of tissues.

KEYWORDS

RRx-001, NLRP3 inflammasome, Nrf2, KEAP1, nitric oxide, antibody drug conjugate
(ADC), NFkB
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1 Introduction

This short review covers the de novo design of the chimeric or

hybrid therapy, RRx-001, also referred to by its chemical acronym,

ABDNAZ, for alpha bromodinitroazetidine, and its United States

Adopted Names (USAN) generic, non-proprietary, first-in-class

name, nibrozetone.

Increasingly, it has become clear that many disorders especially

progressive ones like several types of cancer, neurodegenerative

diseases, congestive heart failure, diabetes, and kidney disease are

too complex and too multifactorial to be successfully treated by a

single medication or therapy (1). This provides support for

polypharmacology of which perhaps the most successful example

is the triple therapy cocktail for human immunodeficiency virus

(HIV). However, combination therapies are potentially subject to

drug-drug interactions, additive toxicities, and the development of

resistance, which limit their usefulness.

An alternative to combination of two or more therapies

administered separately is multi-targeted drugs particularly those

obtained through conjugation of two or more pharmacophores

having specific pharmacological activities and rendered potentially

more effective and less toxic than in isolation due to the avoidance

of different bioavailabilities, pharmacokinetics, metabolism, and

drug-drug interactions (2). Several small molecule chimeric drugs

are in development; however, to best knowledge, one of the most

clinically advanced is RRx-001 on which this review focuses.

RRx-001 amalgamates two pharmacophores with mixed and

diametrically opposed biological functions: the targeting moiety is

(mostly) anti-inflammatory/anti-oxidative and the payload moiety,

depending on whether conditions are redox-reduced and hypoxic, is

(mostly) pro-inflammatory/pro-oxidative. These two pharmacophores

are an acyl bromide and a dinitroazetidine, which are conjugated

through a stable i.e., non-cleavable amide linker. This design

intentionally resembles that of an antibody drug conjugate (ADC), as

shown below in Figure 1.

As structure dictates activity, the design of RRx-001 serves as

a jumping off point to describe its paradoxical antioxidant/pro-
Frontiers in Oncology 02
oxidant and anti-inflammatory/proinflammatory properties

in vivo.

Parenterally administered RRx-001 is currently in a Phase 3

trial with a platinum doublet (etoposide + carboplatin/cisplatin

or EP) for the treatment of third line and beyond small cell lung

cancer (SCLC) called REPLATINUM (3) and in a Phase 2b

radioprotective trial called KEVLARx in newly diagnosed head

and neck cancer. As an uncharged (albeit non-lipid soluble)

small molecule, RRx-001 and its metabolites are cell membrane

permeable (4) and cross the highly restrictive blood brain barrier

(BBB) (5), which otherwise excludes 98% of small molecule

drugs and ~100% of biologics (6, 7); this BBB permeability and

encouraging evidence of clinical activity against brain metastases

(5) and glioma (8, 9) prompted the preclinical assessment of

RRx-001 in various neurodegenerative diseases, including

Alzheimer’s, Parkinson’s, and ALS/MND where it has, to date,

demonstrated genuine disease modifying potential (10).

It may seem counterintuitive that RRx-001, as a prooxidant,

which reverses resistance to chemotherapy protects against the

progression of neurodegenerative diseases in preclinical models

since already elevated levels of inflammation and reactive oxygen

and nitrogen species (RONS) are thought to underlie them.

However, a common misconception is that RONS are universally

harmful and that so-called “antioxidants”must scavenge them to be

effective. In fact, like RRx-001, most antioxidants are either

prooxidants that generate reactive species and/or electrophiles,

which form covalent adducts with proteins. This is the case, for

example, with physical exercise and several phytochemicals

including curcumin from turmeric, diallyl sulfide from garlic,

resveratrol from grapes, epicatechin from cocoa or green tea and

sulforaphane from cruciferous vegetables like broccoli, cauliflower,

and kale (11), all of which generate a mild oxidative stress that, in

turn, upregulates endogenous antioxidant defense systems, such as

reduced glutathione (12). This is also the case with dimethyl

fumarate (DMF), an electrophilic compound, which has been

approved for the treatment of relapsing multiple sclerosis in the

United States and Europe, and which is under investigation in
FIGURE 1

Engineering of RRx-001 to Resemble an Antibody Drug Conjugate (ADC).
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cancer and other neurodegenerative diseases like Alzheimer’s, and

Parkinson’s (13). Like RRx-001, DMF induces an initial oxidative

burst through alkylation of thiols and depletion of glutathione

(GSH) that activates Nrf2 and ultimately increases GSH levels (14).

Structure activity relationships have demonstrated that analogs

of RRx-001, which do not contain the inflammatory payload are

minimally active.

The a-bromoacetamide moiety of RRx-001 selectively and

rapidly alkylates/derivatizes available thiolate anions (R-S-)

through nucleophilic substitution (SN2) which displaces the

leaving group, bromide (15), as shown in Figure 2. A thiolate is

much more nucleophilic and reactive than a neutral thiol (16). The

stability of the thiolate residues to which RRx-001 preferentially

binds depends on the presence and proximity of cationic amino

acids or specific hydrogen bonds that depress their pKa value and,

hence, increase reactivity (4).

Depending on the cysteine thiolate residues that it alkylates,

RRx-001 irreversibly inhibits the function of proteins. Because RRx-

001 binds covalently, its half-life is effectively equivalent to the

resynthesis half-life of the bound protein, which impacts the dosing

frequency. Accordingly, RRx-001 is administered on a weekly or

monthly basis, depending on the disease indication. The fact that

RRx-001 only reacts with a few select thiolates (17) based on

metabolism and disposition studies (18) probably accounts for the

absence of dose limiting toxicities, and drug-related serious adverse

events (SAEs) in over 350 patients treated with it to date. Also, a

maximal tolerated dose (MTD) has never been reached (19). The

main adverse event associated with RRx-001 is an infusion-related

superficial thrombophlebitis-like venous inflammation and pain

(20), which is treated, if it is treated at all, with non-steroidal

anti-inflammatory drugs. RRx-001 is administered in an ex vivo

device with an aliquot of anticoagulated blood to improve patient

discomfort and to prevent more serious complications and sequelae

such as infection or progression to deep vein thrombosis. However,

typical chemotherapy-like hematologic and non-hematologic

adverse events such as nausea/vomiting, alopecia, weight loss,

fatigue, stomatitis, diarrhea, and myelosuppression are never

encountered with it. In addition to venous inflammation, another

common side effect with RRx-001 is tumor pseudoprogression, in

which decreased tumor burden follows transient tumor growth due

to edema and immune infiltration (21). Pseudoprogression mimics

true early progression, which is potentially problematic because it

may lead to premature discontinuation from treatment with RRx-

001 (22).

One of the most important targets of RRx-001 is the nucleotide-

binding oligomerization domain, leucine-rich repeat, and pyrin

domain containing 3 (NLRP3) inflammasome. RRx-001 is a

double inhibitor of the NLRP3 inflammasome, firstly because it

selectively binds to cysteine 409 on the central NACHT domain of
Frontiers in Oncology 03
NLRP3 (14, 15), which prevents its assembly and, secondly, because

it inhibits nuclear factor kappa B (NF-kB) (23).
2 Targeting moiety

2.1 Double inhibition of the NLRP3
inflammasome by RRx-001

The NLRP3 inflammasome is an intracellular multiprotein

complex that activates in response to harmful stimuli, such as

dead cells, irritants, or pathogens. This activation mediates an

inflammatory response through the production and release of IL-

1b, IL-18, and gasdermin D (GSDMD).

Inflammation is the first line of defense against infection, which

makes NLRP3 inflammasome activation beneficial and

homeostatic, provided that the duration of the subsequent

inflammatory response is short-lived i.e., days to weeks, and

resolution quickly follows removal of the noxious stimulus (24).

However, if the inflammatory response is inadequate or if the

noxious stimulus persists, chronicity develops, which is pathologic

and maladaptive, because of the overproduction of reactive oxygen

species (ROS) and cytokines from ongoing inflammasome

activation and immune cell infiltration (25). A malicious cycle of

chronic inflammation, oxidative stress, and destruction of healthy

cells and tissues ensues, which over time i.e., months to years leads

to disease, end-organ damage, and even mortality.

NLRP3 inflammasome activation is canonically a two-step

process involving NF-kB priming from a range of pathogen-

associated molecular patterns (PAMPs) such as viral and bacterial

components and damage-associated molecular patterns (DAMPs)

(Step 1) and protein complex assembly (Step 2), also involving a

range of PAMPs and DAMPs, which are also known as “danger

signals” (26). As shown in Figure 3, RRx-001 inhibits both steps,

due to its repression of TAK1, which activates NF-kB, and NLRP3

assembly. The non-canonical NLRP3 pathway involves human

caspase-4 and caspase-5 from gram-negative bacterial

infection (27).

Aberrant activation of the NLRP3 inflammasome is associated

with the onset and progression of many diseases including metabolic

syndrome, type 2 diabetes, non-alcoholic fatty liver disease,

cardiovascular disease, chronic kidney disease, cancer, depression,

neurodegenerative and autoimmune diseases, and endometriosis. For

this reason, NLRP3 inflammasome inhibitors are used to treat a range

of diseases from cancer to neurodegenerative conditions like

Parkinson’s and Alzheimer’s (28).

Indeed, outside of cancer, RRx-001, the most clinically

advanced of the direct NLRP3 inhibitors, including MCC950,

which is no longer in development, has received FDA Fast Track

status (29) as a radioprotector to prevent/ameliorate severe oral

mucositis based on the results of a randomized Phase 2 clinical trial

called PREVLAR (30) and is also under preclinical study in

Parkinson’s Disease and amyotrophic lateral sclerosis (ALS)/

motor neuron disease with grants awarded from the Michael J.

Fox Foundation (MJFF) and Fight MND, respectively. The second

most clinically advanced NLRP3 inflammasome inhibitor is OLT-
FIGURE 2

RRx-001 Reacts Rapidly with Thiolate Anions.
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1177 (Dapsutrile), having completed at least three Phase 2 trials in

gout, osteoarthritis, and heart failure (31). On top of NF-kB and

NLRP inhibition, RRx-001 directly and indirectly upregulates the

master antioxidant transcription factor, nuclear factor (erythroid-

derived 2)-like 2 (Nrf2), which differentiates RRx-001 from other

rationally designed, unimechanistic direct NLRP3 inhibitors like

selnoflast, dapsutrile, DFV890 (IFM-2427), and ZYIL1 (32). Besides

NLRP3 inhibition and Nrf2 induction, other established

mechanisms of action for RRx-001 including epigenetic

modulation (33), tumor associated macrophage repolarization

(34), and vascular normalization (6), which may play greater or

lesser roles depending on the disease indication, are not discussed

herein since this review was solicited specifically for a redox-based

article collection.
2.2 Double upregulation of Nrf2
by RRx-001

Because RRx-001 reacts with glutathione and cysteine

(preferentially in their thiolate forms), it induces oxidative stress

(OS) (30). In response to OS, which damages cellular components

such as proteins, DNA and lipids the constitutive inhibitor of Nrf2,

Kelch-like ECH-associated protein 1 (KEAP1), physically

dissociates from Nrf2, leading to the nuclear translocation of

Nrf2, and transcription of a detoxifying battery of antioxidant

response element (ARE) genes such as reduced glutathione

(GSH), glutathione S-transferase Ya, NAD(P)H oxidoreductase

(NQO1) and heme oxygenase-1 (HO-1) (35). In addition to

oxidation of specific cysteine residues in KEAP1, RRx-001 is

thought to form adducts with these residues, presumably leading

to the ubiquitination and subsequent proteasome-dependent

degradation of KEAP1.

The preclinical and clinical radio- and chemoprotective effects

of RRx-001 that have been observed both preclinically and clinically

are attributable not only to NLRP3 inflammasome inhibition but

also to Nrf2 induction (18, 36, 37). RRx-001 is such a strong
Frontiers in Oncology 04
activator of Nrf2 that it significantly induces the transcription of

target genes including heme oxygenase-1 (HO-1) even in the

presence of N-acetyl-l-cysteine or glutathione (GSH) (37–39).

This hyperactivation of Nrf2 raises the question whether RRx-001

administration has the potential to protect tumors both from

chemotherapeutic agents and radiation-induced damage since

Nrf2 is possibly protumorigenic. Preclinical data have established

that, in fact, RRx-001 selectively kills Caco-2, A2780 (ovarian

cancer), and UWB1 (BRCA1-null human ovarian cancer) cells

but not CRL-1459/CCD-18Co normal fibroblast colon cells (35)

and clinical data support the anticancer activity of RRx-001 both

alone (19) and in combination with chemotherapy (40),

immunotherapy (41), and radiation (42). Separate from all that,

however, it is persistent, long-term activation of Nrf2 that seems to

protect cancer cells from genotoxic chemo- and radiotherapies, and

to make them refractory to treatment, not controlled, intermittent

activation from a small molecule Nrf2 inducer like RRx-001 (43).

Also, Nrf2 is thought to suppress carcinogenesis especially at early

stages, owing to its detoxifying activity (44).

RRx-001 is only behind dimethyl fumarate (DMF, BG-12,

Tecfidera®) and omaveloxolone (Skyclaris®), which are approved

for the treatment of remitting-relapsing multiple sclerosis (RRMS)

and psoriasis (DMF), and Friedrich’s ataxia (omaveloxolone) in

terms of its clinical advancement (45). Like RRx-001,

omaveloxolone is well tolerated and so is DMF except for one rare

serious adverse event, progressive multifocal leukoencephalopathy

(PML), an opportunistic and often fatal infection of the brain (46).

As previously stated, because of its reactivity with the thiolate forms

of cysteine and glutathione, RRx-001 significantly induces oxidative

stress (OS), at least initially, which is a double-edged sword, because

RRx-001 may exacerbate already high baseline OS levels in older

individuals and/or those with chronic diseases like cancer, heart

failure, and diabetic nephropathy before the compensatory

expression of Nrf2-related cytoprotective enzymes such as catalase,

glutathione S-transferases, glutathione reductases, glutathione

peroxidase-1 (GPx), heme oxygenase-1, superoxide dismutase (SOD),

thioredoxin, and quinone oxidoreductases occurs (47).
FIGURE 3

RRx-001 Inhibits Both Steps of NLRP3 Inflammasome Activation.
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2 Non-cleavable linker

In antibody drug conjugates (ADCs) a linker connects the

targeting moiety with the payload. Linkers are classified as

cleavable and non-cleavable. The amide linker in RRx-001 is

stable to external enzymatic cleavage. The comparative advantage

of a non-cleavable linker over a cleavable one in this case is

increased plasma stability so that the dinitroazetidine payload is

not prematurely released or released in normal cells.
3 Payload moiety

It is perhaps misleading to only refer to the highly strained

dinitroazetidine end of RRx-001 as the “payload” given the

enhanced biologic activity of the “targeting moiety” against NF-

kB/NLRP3 inflammasome and KEAP1, the negative regulator of

Nrf2. Nevertheless, the strain in the 4-membered dinitroazetidine

and its reactivity with GSH makes it susceptible to nucleophilic ring

opening and strain release transformations in vivo under ischemic/

hypoxic conditions. Cleavage of C-C and C-NO2 bonds has the

potential to generate carbon-centered radicals and nitric oxide

(NO) or NO-related species, such as the nitrosonium ion (NO+)

or the nitroxyl anion (NO-), respectively, which underlie the

anticancer DNA damaging effects of RRx-001. X-ray crystal

structure analysis on RRx-001 demonstrates that the azetidine

ring is puckered to reduce steric and electronic repulsions, which

favors ring opening to relieve strain (48).

Preclinical and clinical data have demonstrated that RRx-001 is

an ‘on-demand’ nitric oxide (NO) donor and superagonist,

meaning that, unlike the organic nitrates, which are commonly

used in the treatment of cardiovascular disease, and other nitric

oxide donors such as furoxans, benzofuroxans, NONOates, and S-

nitrosothiols, NO is released from RRx-001 at high levels not

systemically, but locally and only where ischemia/hypoxia is

present, that is in the right time and right place (49, 50). This

local release obviates the toxicities such as hypotension,

methemoglobinemia, dizziness, nausea, and headache that are

associated with these other nitric oxide donors. In solid tumors,

where hypoxia is common, RRx-001-mediated NO donation has

been shown preclinically and clinically to dilate the vasculature (51)

and to augment the delivery of oxygen (52), other anticancer drugs

(6), and effector cells as a result (53). Also, in tumors with high

levels of oxidative stress, nitric oxide, a highly diffusible and reactive

free radical, combines with superoxide to form the powerful

oxidant, peroxynitrite (ONOO-) (47), which induces DNA

damage; peroxynitrite is also associated with macrophage

cytotoxicity since immune myeloid cells, like macrophages,

produce both nitric oxide and superoxide to generate it (54).

Preclinical data have demonstrated that the application of

hyperthermia also increases NO production from RRx-001.

In addition, RRx-001 derivatizes deoxyhemoglobin and

displaces nitric oxide from its binding site on beta cysteine 93;

this adds to the local overproduction of NO since these RRx-001-
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derivatized red cells preferentially adhere to hypoxic/ischemic

vasculature (55–57).

In addition to cancer (58), nitric oxide insufficiency/deficiency

is a characteristic of several disease states (59) including pulmonary

hypertension, hyperlipidemia, and non-alcoholic steatohepatitis

(NASH) (60), COVID-19 (61, 62), chronic kidney disease,

myocardial infarction (63), cerebral malaria and stroke (64),

ischemia reperfusion injury (65), hemorrhagic shock (66), and

sickle cell disease (67) where RRx-001 has demonstrated activity,

although not all this data is publicly available.

However, the effects of nitric oxide are not one-sided in terms of

its pro-oxidant properties, as NO also induces transcriptional

upregulation of Nrf2-related protective genes and activation of

the tumor suppressor, p53 (68, 69).
4 Conclusion and future directions

The paradox of RRx-001, and what separates it from other

NLRP3 inflammasome inhibitors and Nrf2 inducers, several of

which are rationally designed to only inhibit the NLRP3

inflammasome or KEAP1, for example, is that RRx-001 switches

between pro-oxidant/proinflammatory activity and antioxidant/

anti-inflammatory activity depending on the redox potential of

the cellular environment and the presence or absence of hypoxia.

Such plasticity is rarely, if ever, seen because small molecules do not

tend to alter their mechanism of action from one tissue to another.

Thus, as a rule, a protective drug universally protects, no matter the

tissue type, and the same is true for a cytotoxic one, which damages

diseased and healthy cells alike. Chemotherapy may appear to

preferentially target cancer cells but that is only because rapidly

dividing cells are more sensitive to its toxic effects. In fact,

chemotherapy is non-specific; it acts on rapidly dividing cancer

cells and rapidly dividing normal ones, like those in the hair

follicles, the gastrointestinal tract, and the bone marrow; hence

the common side effects from chemotherapy of hair loss, vomiting

and/or diarrhea, and myelosuppression.

The plasticity of RRx-001 is design-driven: the dinitroazetidine

ring is stable under normoxia but under hypoxic, reductive

conditions where vasodilation is needed most to increase local

blood flow and oxygenation the ring fragments and releases nitric

oxide via a radical process. Under mild hyperthermia, RRx-001 also

increases NO production (70). See Figure 4 below. In hypoxic

tumors where high levels of superoxide anion O−
2 are an observed

hallmark, NO outcompetes the enzyme superoxide dismutase

(SOD), which breaks down superoxide into oxygen and hydrogen

peroxide, and readily combines with O−
2 to produce the cytotoxic

and genotoxic radical, peroxynitrite, as follows: O−
2 + NO !

ONOO− (71, 72). In turn, peroxynitrite decomposes to nitrogen

dioxide (NO2) and hydroxyl radicals (·OH), two very potent

oxidants with significant cytotoxic potential.

Even though RRx-001 mediates nitro-oxidative stress and is

cytotoxic to tumors through the formation of ONOO− and carbon-

and nitrogen-centered radicals, it also protects against ischemia
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reperfusion injury (IRI) in several organs, including the heart and

the kidneys, as preclinical data have demonstrated (73). One of the

likely mechanisms behind this protective effect is NO release from

RRx-001, which is thought to suppress superoxide generation

through S-nitrosylation (SNO) of mitochondrial complex I. As a

gas, nitric oxide, which passively diffuses through mitochondrial

membranes, reversibly S-nitrosates cysteine 39 on the ND3 subunit

of mitochondrial complex I (NADH:ubiquinone oxidoreductase);

complex I is a dynamic enzyme, which transitions between active

(-A) and deactivated (-D) states. During ischemia, complex I

deactivates (-D state), which exposes the ND3 subunit Cys39

residue and makes it susceptible to modification. During

reperfusion, complex I reactivates (-A state), which leads to an

oxidative burst. S-nitrosylation of ND3 cysteine 39 temporarily

inhibits complex I activity and delays mitochondrial recovery at the

onset of reperfusion, hence attenuating excessive reactive oxygen

species (ROS) production and oxidative damage (74).

The bromoacetyl end of the RRx-001 molecule inhibits the

NLRP3 inflammasome, which is responsible for the release of

proinflammatory cytokines, and KEAP1, which sequesters the

antioxidant powerhouse, Nrf2, and targets it for degradation.

NLRP3 inflammasome inhibition and Nrf2 induction are also

related to the protective effects of RRx-001.

RRx-001 arose from a col laborat ion between the

biopharmaceutical company, EpicentRx, (formerly RadioRx) and

chemists from the aerospace and defense industry; the intent of

this collaboration was to translate the well-known phrase, “the whole

is greater than the sum of its parts” through a chimeric ADC-like

small molecule, which combined independent chemical

pharmacophores that were (and are) used in the aerospace and

defense industry. Structure activity relationship (SAR) studies

demonstrate that this is the case since the activity of the parent

molecule significantly exceeds that of its individual pharmacophores

or close analogs in which these pharmacophores are replaced (4).

Accordingly, RRx-001 is an entirely new molecular entity

(NME) without precedent in the pharmaceutical space, which
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warrants the new USAN name, bromonitrozidine, reflective of its

first-in-class mechanisms of action and its lack of belonging to any

other pharmacological groups; the closest relative of RRx-001 is the

high density, melt-castable explosive 1,3,3-Trinitroazetidine

(TNAZ), which has been proposed as a replacement for dynamite

(75). Like TNAZ, RRx-001 is extremely energetic, which makes it

hazardous to manufacture, requiring special safety measures (76).

These measures include the use of proper facilities in isolated areas

well away from any habitation, and the need for substantial personal

protective equipment and emergency procedures on site.

Fortunately, the addition of solvents such as DMSO or

polyethylene glycol (PEG) desensitizes RRx-001 and renders it

safe for transport and use.

In summary, then, RRx-001 is a chimeric, CNS-penetrant (77),

thiolate-reactive molecule that undergoes a physical change in

response to an intrinsic, chemical trigger, reductive hypoxia (78).

A potential second trigger is the application of mild hyperthermia.

RRx-001 is active in cancer with a half maximal inhibitory

concentration (IC50) in the subnanomolar range and synergizes

with (79) and resensitizes to chemotherapies, immunotherapies,

targeted therapies, and radiation (33, 80, 81). It is also a potential

medical countermeasure against the effects of high dose, whole-

body radiation exposure in radiological or nuclear incidents and has

demonstrated preclinical neuroprotective effects in Parkinson’s and

Alzheimer’s Diseases, Multiple Sclerosis, and Amyotrophic Lateral

Sclerosis/Motor Neuron Disease.

In addition to RRx-001, co-crystals of RRx-001 and other

dinitroazetidine-based small molecules with multi-indication

potential are under development as is an oral formulation since

in some disease indications, not necessarily cancer, the p.o. route is

a more acceptable and economical method of administration

despite the potential loss of bioavailability. A future patent-

protected strategy (81) to increase the nitric oxide generation of

RRx-001 (82–84), which takes advantage of its thermal sensitivity, is

to apply mild hyperthermia noninvasively to the organs or tissues of

interest during RRx-001 administration.
FIGURE 4

Dinitroazetidine Ring Fragmentation and Release of Nitric Oxide Under Reductive Conditions in Hypoxic Tissues.
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