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Detecting diversity: emerging methods
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CA 94720-3110, USA
2Woodrow Wilson School, Princeton University, Princeton, NJ 08544, USA
3California Department of Fish and Wildlife, 601 Locust Street, Redding, CA 96001, USA

Estimates of species richness and diversity are central to
community and macroecology and are frequently used
in conservation planning. Commonly used diversity
metrics account for undetected species primarily by
controlling for sampling effort. Yet the probability of
detecting an individual can vary among species, obser-
vers, survey methods, and sites. We review emerging
methods to estimate alpha, beta, gamma, and metacom-
munity diversity through hierarchical multispecies occu-
pancy models (MSOMs) and multispecies abundance
models (MSAMs) that explicitly incorporate observation
error in the detection process for species or individuals.
We examine advantages, limitations, and assumptions
of these detection-based hierarchical models for esti-
mating species diversity. Accounting for imperfect
detection using these approaches has influenced con-
clusions of comparative community studies and creates
new opportunities for testing theory.

Diversity and imperfect detection
Diversity estimates are central to community and macro-
ecology [1–4] and are frequently used in conservation
planning as a surrogate for biodiversity and to identify
areas in need of protection [5,6]. Diversity is classically
divided into alpha (site level), beta (turnover across multi-
ple sites), and gamma (composite of all sites in a region)
components. The fundamental unit of all diversity metrics
is a count of species, individuals, or both. Yet rarely do
circumstances occur when all species or all individuals are
detected during a survey, regardless of whether the study
organisms are birds [7], mammals [8], insects [9], or plants
[10,11]. Imperfect detection has predictable consequences:
when species are common, missed individuals result in
underestimation of populations; when species are rare,
missed individuals result in false absences. Uncorrected
counts of observed species often used in measures of diver-
sity ignore detection altogether and established methods
used to account for missed species do not disentangle
detection from occurrence.

Hierarchical occupancy models have recently become a
standard method to account for false absences when model-
ing the occurrence of a single species [12]. These models
can distinguish between and elucidate two key processes
[13]: (i) the ecological or state process of interest (e.g., site
occupancy); and (ii) the observation process that always
accompanies field sampling (e.g., variability in detection of
individuals or species) and that makes identification of the
state process imperfect. Recent advances have applied
these hierarchical ‘detection-based’ models (i.e., models
that incorporate the underlying detection process sepa-
rately from the ecological measure of interest) to surveys
comprising multiple species to estimate diversity metrics.
They not only account for multiple sources of detection but
can estimate the number of species never encountered
during surveys [14].

In this review, we examine the origins of imperfect
detection and discuss how hierarchical detection-based
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Glossary

Bayesian shrinkage: increased precision and accuracy in a parameter estimate

that occurs when parameters are modeled with a common prior distribution,

which results in the individual estimates being pulled (‘shrunk’) toward the

mean; also called ‘borrowing strength’.

False absence: an individual or species that is present at a site but not detected

during sampling due either to observation error or to the individual not being

available for detection during the survey period.

Hierarchical model: a statistical model described by a nested sequence of

observed and unobserved random variables, which is a particularly flexible

and transparent way to model complex dependencies in observed data.

Hill numbers: a set of mathematically unified diversity indices whose outputs

are in units of ‘effective number of species’ also known as ‘numbers

equivalent’.

Hyperparameter: a parameter that governs the community-level distributions

from which species-specific probabilities are drawn.

Latent variable: a parameter that is inferred from other parameters through

statistical models and that is not directly observed by sampling.

Markov chain Monte Carlo (MCMC) methods: a class of algorithms used to

generate dependent random samples from statistical distributions that may be

intractable analytically (typically posterior distributions in Bayesian analysis of

a model).

Nonparametric estimator: an estimator that does not assume an underlying

distribution for the data on which the estimate is being made.

Rarefaction: a plot of the average number of species encountered as a function

of sampling effort, which facilitates comparison of diversity metrics across

samples derived from unequal sampling effort.

Species-accumulation curve: a plot that records the total number of species

encountered with increasing sampling effort. Effort is usually measured by

number of samples or number of individuals.

Uncorrected count: the count of individuals or species from survey data that

has not been statistically adjusted to account for sampling bias or sources of

imperfect detection.
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models can be applied to multiple species to improve
estimates of diversity. We highlight important advantages,
drawbacks, and considerations of using detection-based
models for estimating diversity and compare results from
this approach with traditional methods. Multispecies hi-
erarchical approaches are relatively new, so both their
potential and their limitations have yet to be realized.

Origins of imperfect detection
Arriving at valid estimates of species diversity from mul-
tispecies surveys requires an appreciation of the myriad
ways in which species are imperfectly detected. The detec-
tion process can be separated into three components: indi-
viduals emit a signal (either auditory or visual) that is
transmitted through the environment and received by an
observer. Various factors affect the rate and strength of
transmission, the environmental filtering of the signal’s
clarity, and the observer’s ability to receive it. These factors
can be decomposed into four groups (Figure 1) – two that
characterize the organism being surveyed (species and
individual) and two that relate to sampling logistics (site
and survey). Whereas survey- and site-specific factors
affecting detectability can be partly addressed through
study design, species- and individual-specific differences
in detectability can be accounted for only by using statisti-
cal methods.

Species vary in their inherent probabilities of detection.
Differences in detectability arise from species’ behavior
(e.g., vocalization rate or volume, movement frequency)
and distinctiveness (e.g., call, size, color). The rarity of a
species also influences detectability and the probability of
detecting a species is positively related to its abundance
[15–17]. Less appreciated is that the local abundance of
another species (e.g., a competitor or predator) can influ-
ence the behavior of the focal species, resulting in either
positive or negative changes in detectability [18–20]. Sub-
stantial heterogeneity in detection among individuals can
also occur within species. For example, in species detected
by vocalizations, the frequency and volume of calls can
differ by body size, sex, and age. Distance from observer
affects the probability of detection of individual animals
[21] and can also affect plant detection [22,23].

Site- and survey-specific detectability factors can influ-
ence the detectability of all species (Figure 1). The sam-
pling site has intrinsic characteristics that affect
detectability relative to comparable samples at other
sites. Site-level heterogeneity in detection derives from
factors that impede visual or auditory detection regardless
of observer, such as habitat structure or noise. Many
factors related to the individual survey or sampling event
affect detectability. Weather, which generally changes
across observation periods, has a strong influence on
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Figure 1. Factors affecting the probability of detection of a species. Mean detectability can be considered a species-level trait that is a function of behavior, life history, and

rarity. In a hierarchical model, species-specific detectability is assumed to come from a common community-level distribution, shown here in purple. A hypothetical

distribution of observed detection probabilities for two members of a bird community (indicated by dashed lines and color-coded probability curves) is shown for different

aspects affecting the detection process (individual-, site-, and survey-specific factors). As more components of the observation process are considered, variation in the

probability of detection increases.
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detectability, affecting both animal behavior and the de-
tection process itself. For example, playback experiments
found breezy conditions reduced auditory detections of
songbirds by 28% [24]. Surveys are often conducted by
different observers, and observer ability, age, and experi-
ence affect detectability [25,26]. These factors can also
impact whether or not a species is identified correctly,
which can result in false positives. Sampling design (e.g.,
survey methods, timing, effort) also affects detection
rates. For example, the detectability of animals often
differs by time of day or sampling date (e.g., calling frogs
or birds). Although easily controlled, sampling design can
differ across the course of a study or among studies.

As a result of imperfect detection, the species that occur at
a site at any moment in a multisite survey comprise three
categories (Figure 2A): (i) species detected at the site; (ii)
species not detected at the site but detected at other sites;
and (iii) species not detected at any surveyed site but which
are known to, or could, occur in the metacommunity or
regional pool of species, which may or may not be well
described. When a site is surveyed only once (Figure 2B),
the proportion of species undetected may be high. Temporal
replication improves the resolution of diversity estimates for

a site. Spatial replication improves the resolution of diver-
sity estimates for the metacommunity due to the patchiness
of species’ occurrences across a landscape. Because sam-
pling is rarely sufficient to detect all individuals or species,
each of the three categories of detected or undetected species
should be modeled to estimate the true richness of a site.

Hierarchical detection-based, multispecies models to
estimate diversity
Hierarchical detection-based modeling of occupancy or
abundance offers an approach for estimating diversity
metrics that can incorporate the processes causing imper-
fect detection (Figure 1). Hierarchical occupancy models
are built on ‘encounter histories’ of species’ detection or
non-detection at a survey site (Box 1). These histories
require repeated surveys during a period when the sam-
pled population is assumed to be closed to changes in
occupancy. The pattern of detections at occupied sites
yields information on species’ detectability that can be
applied to sites without detections. ‘Single-season’ occu-
pancy models provide a framework to estimate hierar-
chically a probability of detection ( p) and a probability
of occupancy (C) over a sampling period using either a
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Figure 2. Categories of species at surveyed sites resulting from imperfect detection and how they change with different temporal and spatial sampling strategies. (A) The

true (unknown) species pool of a metacommunity represented at a site comprises species that have been detected there (green bin), those that have not yet been detected at

the site but have been detected at other surveyed sites (yellow bin), and those that have not yet been detected at this or any site but occur in the region (white bin). (B) As

temporal and spatial replication (i.e., sampling effort) increases, knowledge of the species pool changes for both the site (green bins) and the metacommunity

(green + yellow + white bins). When a site is surveyed few times, the relative size of each bin depends on the factors affecting detectability (Figure 1). If there are few sites

and few surveys per site, a large portion of the metacommunity may not be detected (white bin of upper left rectangle), either at the site or at other sites. As the number of

surveys per site increases (temporal replication) but not the number of sites surveyed (i.e., little spatial replication), the total number of species detected per site increases

(green bin in upper right rectangle), mostly as a result of detecting species that are likely to occur at other sites (yellow bin). When the total number of sites surveyed

increases (spatial replication) but not the number of surveys (i.e., little temporal replication), the number of species undetected in the region decreases (white bin in lower

left rectangle), but the number of species detected per site remains the same (green bin). As both the number of surveys per site and the number of sites surveyed increase,

a greater proportion of species in the metacommunity will be known (green + yellow bins in lower right rectangle), either from being directly detected at the site (green bin)

or by being detected at other sites (yellow bin).
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frequentist (maximum likelihood estimation) or Bayesian
framework [12,27]. One option is to use a ‘predict first,
assemble later’ approach [28] to estimate species richness,
where species are modeled individually and richness mea-
sures are calculated through aggregation with established
metrics [29,30]. Although this approach allows occupancy
to be modeled with species-specific covariates, modeling
species individually restricts inferences about diversity to
species that have been detected multiple times, which
excludes species that are rare or are undetected across

all sites (Figure 2). Additionally, this approach makes it
difficult to propagate uncertainty in occurrence estimates
of a single species into uncertainty for community metrics.

As a result of the limitations of aggregating single-
species occupancy models, estimation of diversity metrics
in a detection-based modeling framework typically take an
‘assemble and predict together’ approach using a hierar-
chical community occupancy model. We will refer to these
as MSOMs when used to estimate incidence-based mea-
sures of diversity [14,31,32]. Hierarchical diversity models
have been developed without explicitly accounting for the
detection process [33,34]. However, a great advantage of
incorporating the detection process into community models
is the ability to account explicitly for the effects of survey-,
site-, species-, and individual-level factors affecting detect-
ability (Figure 1) through the inclusion of one or multiple
detection covariates [14,31]. MSOMs model undetected
species in a biologically oriented, process-driven way.
The mathematical framework used by MSOMs is discussed
in Box 1. Although MSOMs can be analyzed using either
frequentist or Bayesian methods, current implementa-
tions, including available code [13,35], favor the latter.

The hierarchical structure of MSOMs allows data from
the entire sample to inform the estimation of diversity,
despite encounter histories being stratified by species and
site [14]. The detection and occupancy probabilities of each
species are assumed to come from a community-level dis-
tribution (e.g., Figure 1, bottom panel). For the sake of
mathematical convenience, a normal distribution on the
logit scale is often used, with an associated mean and
variance as hyperparameters. This construction is equiva-
lent to treating the different species as random effects
[13,27,36]. Community-level hyperparameters facilitate
the modeling of all species, including rare ones, through
a property often referred to as ‘borrowing strength’ [37] or
Bayesian shrinkage [35,38]. Each species’ estimate
informs the overall (community level) mean and variance
and, as a result, estimates of individual species are pulled
(i.e., shrunk) toward the community mean. Many of the
benefits of MSOMs arise from this ‘information sharing’,
because data are used more efficiently compared with
single-species models and individual species estimates
are improved [27,38]. Hierarchical community models
have improved the precision of diversity descriptors [35],
which can offset the costs of multispecies monitoring
efforts [39]. Moreover, borrowing strength allows MSOMs
to estimate site-level occupancy for rarely detected
species, which is often not possible with single-species
models due to the limited number of detections [40,41].
Although Bayesian shrinkage can improve parameter
estimation, estimates for infrequently encountered species
will be pulled more toward the metacommunity mean
because they are estimated with less precision and inform
the community-level mean less than species that are
frequently detected [27,42].

Although most hierarchical detection-based occupancy
models can be used to produce estimates of species richness
and turnover based on incidence, the MSOM framework
easily accommodates replacement of species incidence with
counts of individuals to create a MSAM to estimate abun-
dance-based diversity metrics (e.g., [43–45]). The MSAM is a

Box 1. Multispecies models for estimating occupancy and

abundance

The MSOM is an extension of the single-species, single-season

occupancy model [86] that combines and analyzes the history of

detections and non-detections (denoted by 1s and 0s, respectively)

of all species encountered during replicated surveys at a set of sites

[14]. The hierarchical model includes three levels, one each for

species (i), site ( j), and replicate (k). The first level represents the true

occurrence states (w) within the community of all partially observed

and never observed species. The second level is the ecological

process governing occurrences (z) of partially observed species. The

third level explains the detection history (y) from the replicated

surveys:

wi � Bernoulli ðVÞ � superpopulation process ðdata augmentationÞ;
[I]

zi; j jwi � Bernoulli ðwi�C i; jÞ � ecological process; [II]

yi; j;k jzi; j � Bernoulli ðzi; j � pi; j;k Þ � observation process: [III]

The second and third levels are always present in a single-species

model. The MSOM expands these levels across all observed species

within the same system of linked, hierarchical models. It also

addresses the community of partially observed and never observed

species through addition of the first level. The parameters C

(proportion of sites occupied) and p (probability of detection) are

the same occupancy and detection probability parameters, respec-

tively, used in a single-species model. The parameter V governs the

data augmentation variable w.

Data augmentation is used in MSOMs to estimate the number of

species present in a community (or metacommunity) but not

detected at any site. The detection histories of n observed species

are augmented by m all-zero detection histories that represent

species with unknown identities. The number of all-zero augmented

detection histories, m, should be arbitrarily large without being

computationally unwieldy (see [55] for guidance). An indicator

variable, w, is modeled such that w = 1 for species that were either

observed (total = n) or unobserved but available for sampling. The

total number of unobserved species, x, for which w = 1, is equivalent

to the asymptote of a species-accumulation curve [36]. Conse-

quently, gamma diversity is represented by n + x (where 0 � x � m),

which estimates the total number of species in a sample of sites.

This can be directly calculated by multiplying the posterior estimate

of V by the known quantities n + m.

The structure of the MSAM is similar to that of the MSOM, except

that the detection history comprises observed counts (yi,j,k) given

the true abundances (Ni,j):

wi � Bernoulli ðVÞ � superpopulation process ðdata augmentationÞ;
[IV]

Ni; j jwi � Poisson ðwi�li; jÞ � ecological process; [V]

yi; j;k jNi; j � binomial ðNi; j ; pi; j;k Þ � observation process: [VI]

Instead of a Poisson distribution controlling the ecological

process (Equation V), a zero-inflated Poisson, a negative binomial,

or another distribution suitable for counts can be used.
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multispecies version of the N-mixture model that has been
used to estimate the abundance of individual species
[46–50]. It is structurally similar to the MSOM (Box 1),
but replaces the ecological and observation process in the
MSOM with distributions suitable for counts. Community-
level hyperparameters of the MSAM represent: (i) the
abundance of a species in the metacommunity; and (ii)
the probability of detecting an individual for each species.

Beyond the need for repeated surveys, MSAMs lack the
ancillary data requirements characteristic of distance sam-
pling and capture–recapture methods for estimating abun-
dance [51]. They do, however, require assumptions about
the probability distribution governing the true number of
individuals of each species occurring at each site. More-
over, for each species at a site, the detection of each
individual is assumed to be independent of that of other
individuals. This can lead to overinflation of counts and
contrasts with the approach taken in distance sampling
[21], which models the detectability of groups of individu-
als. However, a beta-binomial distribution can be applied
to address nonindependence of detections of individuals
[52,53].

Richness and diversity estimation in the multispecies
detection-based modeling framework
MSOMs have been applied to diversity estimation in two
situations: (i) when all possible species in the metacom-
munity or region were detected at least once during sam-
pling, which can be modeled with the MSOM structure
discussed above [13]; and (ii) where metacommunity or
regional species richness exceeds the total number of
species detected across all sites [31]. To model richness
when the pool of potential species is unknown (a common
occurrence), MSOMs employ ‘data augmentation’ [36,54] to
estimate the number of species never detected during
sampling in addition to those that were detected at least
once (Figure 2). As discussed in Box 1 and illustrated in
Box 2, this is done by augmenting the detection histories of

observed species with an arbitrarily large number of all-
zero records that represent the detection histories of hy-
pothetical, unobserved species. The model then estimates
how many hypothetical species are likely to occur in the
sampling region but were missed by all surveys, in addition
to the number of species that were detected at least once
(see [55] for additional details on data augmentation). The
total number of species estimated by the data-augmenta-
tion process is comparable to the asymptote of the species-
accumulation curve in a homogeneous landscape [36,54],
but allows for the incorporation of detection and occupancy
covariates into the estimation of the asymptote. Thus, data
augmentation provides one way to estimate diversity at
the scale of the metacommunity [32] or region (gamma
diversity).

Any occurrence-based descriptor of diversity and its
associated measures of uncertainty can be derived directly
within the MSOM framework for any subset of samples,
such as sites, groupings of species, metacommunities, or
regions (e.g., [7,8,42]). The multispecies approach retains
the identity of encountered species throughout the model-
ing process and allows estimation of species-specific detec-
tion and occupancy probabilities, which can be derived
from general or group-specific (e.g., taxonomic or function-
al) covariates [42,56]. Currently MSOMs must be written
by the user and run within a programming environment or
precompiled Markov chain Monte Carlo (MCMC) programs
such as WinBUGS [57], Jags [58], or OpenBUGS [59], all of
which use the Bayesian inference Using Gibbs Sampling
(BUGS) language. Statistical programs such as R (http://
www.R-project.org) can often interface with MCMC pro-
grams. Code for various models is available in the BUGS
language (e.g., [7,13,36,41,54]).

There are a limited but growing number of studies that
have applied MSOMs to estimate diversity. Birds have
been the primary target [7,35,54,60], but applications
include amphibians [61,62], freshwater and reef fish
[56,63,64], and invertebrates [31,32,65]. MSOM estimation

Box 2. An example illustrating multispecies modeling

Here we provide a brief overview of the modeling process used to

estimate detection-based community metrics derived from a MSOM

developed by Zipkin et al. [54] (Figure I). Data were collected to

determine the effects of two different management treatments on

breeding-bird diversity. A single-season MSOM was used to account

for species-specific differences in detection and occupancy by site. The

model runs using the freely available software R (http://www.R-

project.org) and WinBUGS [57]. Code and data are available online

(https://sites.google.com/site/communitymodeling/software-code).

Inputs
Temporally and spatially replicated surveys are required to calculate

detection-based community metrics. The number of surveys need not

be the same for all sites. One or more explanatory covariates can be

incorporated at the species, site, or survey level (e.g., Julian day is a

survey-level covariate of detection). Multispecies survey data are

organized into a 3D array: survey (k) � site (j) � species (i). This array

includes the encounter histories for all observed species. An

arbitrarily large number of all-zero encounter histories are appended

to this array in a process known as data augmentation (Box 1).

Continuous covariates are typically standardized, which helps with

overall MCMC performance and simplifies the comparison of

covariate effects when interpreting model output.

Model specification and MCMC sampling
Occupancy (C) and detectability ( p) parameters can be generalized

to vary according to explanatory covariates. This is usually handled as

a linear model on the logit scale, where regression coefficients are

modeled as species-specific random effects derived from a commu-

nity-level distribution. Before initiating MCMC sampling, prior

distributions are specified for the hyperparameters of the commu-

nity-level distributions, for the hyperdistributions themselves, and for

V, the parameter that determines membership in the metacommunity

from the superpopulation (Box 1). In practice, non-informative priors

are often used [36].

Model output of posterior estimates and summary analyses
The model returns posterior estimates for species-specific occupancy

and detection probabilities and the species-specific effects of

covariates. Posterior distributions for any derived community-level

metrics can also be returned. In an MSOM, these metrics can include

richness of the metacommunity, richness of individual sites, or

richness of sets of sites, as well as richness of different functional

groups at those spatial levels. Similarity indices of beta diversity can

be also be derived [7]. These estimates can be used in summary

analyses to investigate relationships with covariates or to compare

metacommunities.
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of beta-diversity indices has been done only with the
Jaccard and Sørensen indices [7,41,54,63], but the ap-
proach could be applied to any of the large number of
beta-diversity indices used with occurrence-based data
(e.g., complementarity).

Abundance-based estimates of diversity from MSAMs
are in their infancy. Only two studies have extended the

N-mixture model to a multispecies framework to evaluate
communities. Yamaura et al. [66] modeled community
responses of birds and bees to land-use change, using
guild-level hyperparameters and data augmentation to
differentiate estimated abundances and species richness
between early successional and mature forest species.
Chandler et al. [67] modeled abundance-based estimates
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of the Chao–Jaccard similarity index and Shannon diver-
sity to compare the conservation values of competing agri-
cultural systems in a tropical forest landscape. Although
diversity estimation with MSAMs has been very limited to
date, these models could be used to estimate directly any
abundance-based diversity metric, including Hill numbers
[68], by including them as derived quantities in the model
(Box 2). An advantage of this approach is that posterior
distributions calculated by the MCMC algorithm can be
used to describe straightforwardly the uncertainty associ-
ated with the estimates of these diversity metrics.

Comparison of detection-based estimators of diversity
with traditional estimators
Compared with detection-based estimators of diversity,
traditional approaches for estimating diversity have limit-
ed ability to incorporate or accommodate the survey-, site-,
and species-level processes that differentially affect the
detection of species or individuals (Figure 1). The most
popular species-richness estimators, the Jackknife [69]
and Chao estimators [70,71], correct for bias due to sam-
pling effort and species’ rarity by extrapolating the pro-
portion of species encountered infrequently to species
encountered more frequently to estimate the number of
undetected species [31,72,73]. Although this reduces bias
compared with uncorrected species counts, mathematical
methods for incorporating additional features of the study
design, such as site- or survey-specific covariates affecting
species’ detection (Figure 1), are not straightforward or
often not possible [36]. Beta-diversity indices of community
similarity are frequently calculated without correcting for
imperfect detection [73] and their performance in the face
of undetected species is variable [45,74]. The Chao–
Jaccard/Sorensen index [45,73] is one of the few beta-
diversity estimators that corrects for sampling bias by
estimating the contribution of undetected species using
the probability that individuals drawn randomly from the
sample belong to a species shared by the two assemblages,
based on species’ relative abundances or occurrences.

Critically, this index assumes that the detection rate of
species is driven primarily by relative abundance and that
detectability does not otherwise differ among observers,
species, or sites [73], factors that often affect detection
(Figure 1) and that can be accommodated in MSOMs
and MSAMs. Alpha- and gamma-diversity indices, such
as the Shannon–Wiener and Simpson indices and Hill
numbers, which combine richness and relative abundance
[75,76], face estimation issues similar to beta diversity.
Chao and Shen [77] and Chao et al. [68] developed indices
and estimators to correct for sampling bias in the Shan-
non–Wiener index and Hill numbers, respectively. They
improve diversity estimation, but appear unable to correct
for most site- and species-level causes of imperfect detec-
tion. None of the traditional estimators of diversity is able
to differentiate whether the estimated number of unde-
tected species represents: (i) species that were detected at
other sites; or (ii) species that were not detected in the
sample as a whole (Figure 2).

Direct comparisons of traditional- and detection-based
estimates of species diversity are limited. Two studies
compared the second-order Jackknife estimator to a simple
MSOM that was built without site- or survey-level covari-
ates [40,63]. Both models assumed that species identity
was the only factor contributing to variation in detectabili-
ty [40]. MSOM richness estimates were more precise than
the second-order Jackknife estimator and generated com-
parable estimates across surveys with dual observers [40].
Jackknife estimates of richness at the site-level were
sometimes erratic, generating reasonable estimates for
some sites but unreasonably high, inaccurate estimates
for others [40,63] (Figure 3A). These differences might
reflect more efficient use of data by MSOMs compared
with the Jackknife technique. However, comparisons of
the methods have not been extensive and this is an area
with ample opportunity for further evaluation. Diversity
estimates from MSOMs and MSAMs could be compared
with estimates from traditional methods using the same
simulated and ‘exhaustively sampled’ real-world datasets.
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Figure 3. Examples of improved inferences for species richness estimation from multispecies occupancy models (MSOMs). (A) Comparison of bird species richness

estimated from MSOMs versus the traditional Jackknife estimator. Estimators match well when richness is low, but Jackknife estimates diverged at higher richness values

and are likely to represent an overestimation. Data taken from Table 1 in [36]. (B,C) Conclusions about change in species richness over the past century for birds of the Sierra

Nevada are reversed when raw species counts are corrected for detectability using a MSOM. Uncorrected counts (B) suggested species richness increased between surveys

conducted by Joseph Grinnell and colleagues from 1911 to 1929 and resurveys conducted by Tingley and Beissinger from 2003 to 2009, whereas MSOM estimates (C)

accounting for detectability differences showed that richness declined. (B) and (C) adapted from Figure 1 in [7].
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To date, no study has compared beta-diversity indices of
any kind with estimates corrected for heterogeneous de-
tectability derived from a MSOM or MSAM.

We do know, however, that richness estimated with
MSOMs and MSAMs is always greater than when estimat-
ed from raw species counts [31], because MSOMs supple-
ment raw species counts with the expected number of
undetected species [36]. Using raw counts to measure
species diversity can mask temporal trends that are
detected with MSOM estimation [7] (Figure 3B,C) or alter
the explanatory power of ecological covariates [54].

Concluding remarks: the future of diversity metrics
Producing accurate estimates of species richness and di-
versity requires accounting for factors that affect imperfect
detection (Figure 1) and recognizing the categories of
detected and undetected species at surveyed sites
(Figure 2). Hierarchical multispecies models that incorpo-
rate both the detection process and the occurrence state
provide a promising way forward, because they lead to a
more process-driven estimate of diversity through the
delineation of the biological and sampling processes. How-
ever, detection-based estimators of diversity generally
require multiple surveys at a site to estimate detectability,
make assumptions about the closure of populations and
about the veracity of species identification [78], and are
still relatively new so their limitations and performance
need further evaluation (Box 3). Moreover, these hierar-
chical models are relatively complex and beyond the expe-
rience of many potential users. Although the software that
runs them is freely available and example code for com-
monly used models is found on the Internet, more user-
friendly implementations of MSOMs and MSAMs would
facilitate their use and acceptance. A package that fully
implements these models within the R environment would
be a strong first step toward this goal. Above and beyond
this, the development of specialized software to run these
models would increase the ease of implementation and
encourage widespread use, much like EstimateS (http://
purl.oclc.org/estimates) did for traditional measures of
species diversity or Presence (http://www.mbr-pwrc.usgs.
gov/software/presence.html) did for single-species occu-
pancy models.

Although the use of detection-based estimators of di-
versity is increasing, further innovations that address
various issues already incorporated into single-species
occupancy models are needed. As discussed in Box 3, this
includes correcting for false positives [78,79] and evaluat-
ing model performance and issues relating to closure.
Regarding the latter, Sólymos et al. [80] recently proposed
a ‘conditional-likelihood model’ of abundance estimation
that avoids the closure assumption and need for multiple
surveys at a site by adjusting detection error through
covariates that affect detection and occupancy. It per-
formed well against simulated data sets, but remains to
be applied in a multispecies framework. Another impor-
tant advance was the development of a dynamic, multi-
season MSOM that models change in occupancy between
sampling periods as local colonization and extinction
parameters, which provides a method to calculate beta
diversity and evaluate metacommunity dynamics [32].

When applied to European butterflies, it illustrated the
potential of MSOMs to evaluate competing theories of
metacommunity ecology [81]. Similarly, development of
MSAMs offers more than just the ability to improve esti-
mation of abundance-based measures of diversity. They
create new opportunities for evaluating the shapes and
functional forms of species-abundance distributions
[82,83] and offer applications to niche ecology [84,85]
and neutral theories [1,2].
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95 O’Hara, R.B. and Sillanpää, M.J. (2009) A review of Bayesian variable
selection methods: what, how and which. Bayesian Anal. 4, 85–117

Review Trends in Ecology & Evolution February 2014, Vol. 29, No. 2

106




