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Abstract.
Background: A clinical diagnosis of cognitive impairment is traditionally based on a single cognitive exam, but serial
cognitive testing can be sensitive to subtle cognitive changes in asymptomatic individuals and inform cognitive trajectory.
Objective: We evaluated the prognostic utility of identifying longitudinal neuropsychological decline along with single
cognitive exam and Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers in predicting dementia. We also examined
brain volumetric differences based on decline trajectories.
Method: Regression models quantified 12-month neuropsychological decline relative to normative expectations among non-
demented older adults (N = 1,074). Progression to dementia over follow-up (18-120 months) was diagnosed using independent
modes of assessment.
Results: In Cox regression models controlling for age, sex, education, apolipoprotein E4, and baseline cognitive diagnosis,
neuropsychological decline predicted increased dementia risk, χ2 = 69.861, p < 0.001, odds ratio = 2.841, even after correc-
tion for CSF biomarkers (amyloid-�, phosphorylated tau, total tau), χ2 = 26.365, p < 0.001, odds ratio = 2.283. Voxel-based
morphometry analysis indicated smaller hippocampal and medial temporal volume in participants with neuropsychological
decline.
Conclusions: Longitudinal diagnosis of neuropsychological decline improved prognostic accuracy beyond single cognitive
exam diagnoses and AD CSF biomarkers, even in asymptomatic older adults. Older adults with a trajectory of neuropsy-
chological decline exhibit smaller medial temporal and hippocampal brain volume. Longitudinal diagnostic approaches may
benefit selection and randomization procedures for AD clinical trials in asymptomatic individuals.
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INTRODUCTION

The vast majority of age-related dementias involve
insidious cognitive decline that can be difficult to
distinguish from normal aging [1]; thus, identifica-
tion of older adults at risk for dementia presents a
challenge to prevention efforts. It is increasingly rec-
ognized that these insidious declines may occur even
in adults with normal range cognition [2–5]. Single
exam diagnosis of mild cognitive impairment (MCI)
cannot capture these subtle cognitive changes, and is
an inherently unstable diagnosis that is of uncertain
prognostic significance [1].

Consistent with recent changes to diagnostic
guidelines for research, efforts are currently focused
on treating individuals before symptoms emerge,
underscoring the need for tools to assess subtle
cognitive changes in asymptomatic individuals [6].
Detecting cognitive change within normal range
performance requires serial cognitive testing, but
there are several factors complicating interpreta-
tion of serial cognitive exams. Many tests show
substantial practice effects that lead to improved
scores on follow-up examinations [7], and regres-
sion to the mean causes baseline scores more distal
to the mean to trend toward the mean at follow-
up [8]. Although normative-referenced scores are
commonly employed to aid interpretation of raw
neuropsychological scores at baseline, interpreta-
tion of serial exam scores is rarely anchored to
normative data on expected serial exam perfor-
mance in healthy individuals. Use of linear regression
methods to determine expected change on serial
exams in a robustly normal population may aid in
efforts to characterize neuropsychological decline
(NP decline) relative to expectations [8, 9]. Prac-
tice effects and regression to the mean would be
reflected in these norm-referenced NP decline scores,
making a lack of a practice effect a potential indica-
tor of subtle decline, as suggested by prior research
[10, 11].

Numerous studies support the value of decline
on neuropsychological testing in the prediction of
dementia [3, 12], and prior work has related pre-
clinical cognitive decline to biomarker abnormalities
[13–15]. However, the vast majority of studies
have focused on how biomarker-based pathologi-
cal assessments influence preclinical decline [16,
17], or have used methods that cannot operational-
ize NP decline in asymptomatic individuals who
are performing within normal range [3, 12]. To our
knowledge no studies have used a norm-referencing

approach to examine whether longitudinal NP decline
contributes to dementia prognosis beyond single
exam cognitive diagnosis and Alzheimer’s disease
(AD) biomarkers. We sought to determine whether
longitudinal NP decline adds unique prognostic
information and to provide a simple tool to iden-
tify older adults with and without NP decline on
a standard 12-month follow-up examination. We
used linear regression in a robustly normal sam-
ple to generate norm-referenced NP decline scores
representing worse than expected performance at
12-month follow-up [8, 9]. These norm-referenced
scores aid in the interpretation of neuropsycholog-
ical performance over a one-year interval. In order
to determine the value of our specific method, we
also compared our results to the simpler approach
of calculating norm-referenced change scores to
quantify decline over 12 months. Finally, we also
investigated differences in brain volumes between
adults with and without NP decline in order to bet-
ter understand the neuroanatomical basis for NP
decline.

MATERIALS AND METHODS

Participants

Data were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). Participants were recruited
from more than 50 sites across the United States
and Canada. Inclusion criteria include: age 55–91
years, permitted medications stable for 4 weeks,
study partner accompanying participant to visits,
Geriatric Depression Scale <6, Hachinski Ischemic
Score ≤4, adequate visual/auditory acuity, good gen-
eral health, 6th grade education or work history
equivalent, and fluent English or Spanish. Exclu-
sion criteria were any significant neurological disease
or head trauma history. This study was conducted
according to Good Clinical Practice guidelines,
the Declaration of Helsinki, US 21CFR Part 50-
Protection of Human Subjects, and Part 56- Insti-
tutional Review Boards, and pursuant to state and
federal HIPAA regulations. All participants and/or
authorized representatives provided written informed
consent.

We included 1,074 older adults enrolled in ADNI-
1, ADNI-Grand Opportunity, and ADNI-2 who
were dementia-free at baseline, remained dementia-
free at 12-month follow-up, and underwent variable
follow-up with serial neuropsychological and clinical
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exams (18–120 months from baseline). A subset
(n = 755) also underwent baseline lumbar puncture
for quantification of cerebrospinal fluid (CSF) AD
biomarkers.

AD biomarkers and genetic data

Roche Elecsys immunoassays determined CSF
amyloid-� (A�1-42), phosphorylated tau (P-tau), and
total tau (T-tau) in pg/mL, following Roche Study
Protocol at the UPenn/ADNI Biomarker Laboratory
[18]. Biomarker abnormality was determined by pub-
lished cutoff values: A�1-42 (<964 pg/mL) and P-tau
(>23.2 pg/mL) [19].

Apolipoprotein E (APOE) �4 carrier status was
determined from blood samples and classified by the
presence of one or more copies of the APOE �4
allele.

Neuropsychologically-defined MCI diagnosis

Cluster analysis of ADNI neuropsychological
measures was used as previously described to obtain
empirically-derived groups of baseline cognitively
normal and MCI participants for our analysis [20, 21].
Briefly, participants who were ADNI-diagnosed cog-
nitively normal at baseline and 12-month follow-up,
and remained normal for all available follow-
up (12–120 months), were used as a robust
norm-reference group (n = 294). Linear regression
calculated age- and education-corrected z-scores for
the entire sample based on the norm-reference group.
These z-scores were cluster analyzed with Ward’s
method using squared Euclidean distance. Consis-
tent with prior studies [20], tests of memory were
the Rey Auditory Verbal Learning Test (RAVLT)
delayed recall and retention total correct; tests of
attention/executive function were Trail Making parts
A and B, completion times; and tests of language
were Animal Fluency total correct score and the
Boston Naming Test (BNT) spontaneously correct
score. To replicate previously reported groupings, a 4-
cluster solution and the existence of a cluster-derived
normal group was confirmed (see Supplementary
Figure 1).

Participants from the robust normal group were
combined with the cluster-derived normal group to
form the cognitively normal (CN) group (n = 651)
and all MCI groups were combined as a sin-
gle cluster-derived MCI group (n = 411). Twelve
participants were not diagnosed due to missing
data.

Quantification of neuropsychological (NP)
decline

Performance at baseline and 12-month follow-up
was used to identify NP decline averaged across
tests of memory, attention/executive function, and
language function. Test scores by domain were as
follows: memory, AVLT trials 1-5 total score, AVLT
trials 6 and 7 average; attention/executive function,
Trails A and Trails B; language function, Animal
Fluency and Vegetable Fluency.

Linear regression models were used to calculate
NP decline based on the set of robust norm-reference
controls described above. Prediction equations were
developed using linear regression models with base-
line neuropsychological performance as a predictor
of future performance at 12-month follow-up. Demo-
graphic factors were not used in regression models,
but instead were included as covariates in Cox regres-
sion models predicting progression to dementia. All
normative regression models were visually inspected
for linearity. Where outliers were observed, model
fit was examined with and without outliers. All data
were retained in statistical models, except for one
subject in the robustly normal sample who exhibited
an influential outlier on Trails A.

We used the linear regression model (Equation 1)
assuming that baseline performance (X) can predict
future performance (Y) using the intercept (a) and
slope (b) of a robust normal sample with a random,
normally distributed error term (�). Linear regression
models from the robust normal sample yielded equa-
tions predicting 12-month performance from baseline
performance (Equations 2–7).

Eq. 1 Y = a + bX + ε

Eq. 2 Predicted AVLT Trials 1–5
total = 13.214 + (0.720 × Baseline AVLT
Trials 1–5 total)

Eq. 3 Predicted AVLT Trials 6-7 aver-
age = 3.270 + (0.645 × Baseline AVLT
Trials 6-7 average)

Eq. 4 Predicted Trails A (log) = 0.589 +
(0.598 × Baseline Trails A (log))

Eq. 5 Predicted Trails B (log) = 0.656 +
(0.643 × Baseline Trails B (log))

Eq. 6 Predicted Animal Fluency = 8.410 +
(0.623 × Baseline Animal Fluency)

Eq. 7 Predicted Vegetable Fluency = 4.464 +
(0.687 × Baseline Vegetable Fluency)

For our measure of NP decline, we calculated
the discrepancy between actual performance at 12-
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month follow up (Yo) and predicted performance
based on regression models from the robustly normal
sample (Ŷ ). This discrepancy was then standard-
ized by the standard error of the estimate

(
Sy.x

)

from the robustly normal regression model (Equa-
tion 8) [8]. The following lists Sy.x for each prediction
equation: Equation 2 = 7.7950; Equation 3 = 2.7855;
Equation 4 = 0.10087; Equation 5 = 0.13741; Equa-
tion 6 = 4.0650; Equation 7 = 3.2700.

Eq. 8 NP declinez−score = Yo−Ŷ
Sy.x

Diagnosis of AD dementia

Our primary study outcome was progression to
AD dementia. In order to avoid circularity, demen-
tia diagnostic criteria did not include any of our
predictive NP decline markers described above. We
used the ADNI study criteria based on modes of
assessment that are independent of our NP decline
measure. Specifically, participants diagnosed with
dementia had to 1) have memory complaints, 2) score
between 20–26 (inclusive) on the Mini-Mental State
Examination (MMSE), 2) have a Clinical Demen-
tia Rating (CDR) 0.5 or 1.0, 3) score <8 for 16
or more years of education, <4 for 8–15 years of
education, or <2 for 0–7 years of education on the
Logical Memory II subscale (Delayed Paragraph
Recall) from the Wechsler Memory Scale-Revised
(maximum score of 25), and 5) meet the National
Institute of Neurological and Communicative Dis-
orders and Stroke-Alzheimer’s Disease and Related
Disorders Association (NINCDS/ADRDA) criteria
for probable AD [22].

Statistical analyses

Hierarchical Cox regression analyses evaluated
the predictive utility of NP decline in identifying
those at risk for more rapid progression to dementia
over all follow-up, and all findings were confirmed
over fixed 48-month follow-up. We also examined
progression to MCI or dementia over all follow-
up among cognitively normal older adults. The first
model included all participants and corrected for age,
sex, education, APOE �4 carrier status, and baseline
cognitive diagnosis (first step in regression model),
before examining incremental model improvement
beyond baseline NP performance with the addition
of NP decline (second step in regression model). The
second model included individuals with biomarker
data and corrected for age, sex, education, APOE

�4 carrier status, baseline cognitive diagnosis, and
CSF A�1-42, P-tau, and T-tau (first step in regres-
sion model), before examining incremental model
improvement beyond biomarkers and baseline NP
performance with the addition of NP decline (sec-
ond step in regression model). NP decline and CSF
A�1-42 values were reflected prior to modeling in
order to yield unidirectional odds ratios for all mark-
ers (higher indicates greater risk).

NP decline was examined as a continuous mea-
sure in all Cox regression analyses. To visualize
improved prediction of dementia with addition of NP
decline, post-hoc receiver operating characteristics
(ROC) curve analysis was conducted and a cutoff
yielding optimal dementia prediction was used to
bisect the sample into those without NP decline (NP-)
versus those with NP decline (NP+).

In order to determine whether our NP decline
indicator was superior to simple change score cal-
culations, we compared our results to those derived
from a simple normalized change score approach.
We also conducted additional analyses to ensure
study findings were not biased by the inclusion of
the robustly normal sample in all models. First, we
divided our robustly normal sample into two roughly
equal samples using a binary random number gener-
ator. Second, we re-calculated NP decline using half
of the robustly normal sample. Finally, we replicated
our primary analysis of NP decline as an independent
predictor of progression to dementia after excluding
the half of the robustly normal sample we used to
generate the NP decline scores.

All statistical analyses were conducted in SPSS
version 24. Significance tests were two-tailed and
used a cutoff of p < 0.05. False discovery rate (FDR)
cutoff at 0.05 was used to ensure control for multiple
comparisons and reduce type 1 error for all a priori
tests.

Neuroimaging acquisition, processing, and
analyses

A subset of 1,061 participants from the ADNI
study underwent 3D T1-weighted brain MRI
at baseline. Scans were downloaded from the
online ADNI database (http://adni.loni.usc.edu/).
Images were acquired across 64 sites on Siemens,
GE, and Phillips scanners at 1.5T or 3T mag-
net strength. T1-weighted sequences were either
magnetization prepared rapid acquisition gradient
echo (MP-RAGE) or inversion recovery spoiled
gradient recalled (IR-SPGR). Specific scanning

http://adni.loni.usc.edu/
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Table 1
Demographics and clinical characteristics

Demographics Mean ± SD or n, %

N 1074
Age (y) 73.6 ± 7.0 55-90 year range
Sex (# of men, %) 471, 43.7%
Education (y) 16.2 ± 2.7 6-20 year range
APOE �4 carriers (n, %) 436, 59.5%
Cluster-derived MCI diagnosis 411, 38.7%

CSF Biomarkers (n = 755)
A�-Ptau- (n, %) 276, 36.4%
A�+Ptau- (n, %) 148, 13.7%
A�-Ptau+(n, %) 120, 11.1%
A�+Ptau+(n, %) 214, 19.9%

Neuropsychological Markers
Memory Baseline 12-month Follow-up

AVLT Trials 1-5 (words recalled) 38.9 ± 11.3 38.7 ± 12.4
AVLT Trials 6 & 7 avg (words recalled) 6.1 ± 3.9 6.1 ± 4.4

Executive Function
Trails A (log-transformed seconds) 1.55 ± 0.16 1.54 ± 0.16
Trails B (log-transformed seconds) 1.95 ± 0.20 1.95 ± 0.21

Language
Animals (# correctly named) 18.8 ± 5.4 18.7 ± 5.7
Vegetables (# correctly named) (n = 495) 12.7 ± 4.1 12.4 ± 4.5

parameters for each scanner can be viewed online
(http://adni.loni.usc.edu/methods/documents/mri-pro
tocols/). Prior to analyses, images were individually
checked for quality and aligned along the anterior
and posterior commissures.

For group comparisons of grey matter volumes,
voxel-based morphometry (VBM) analyses were
conducted in Matlab using SPM12 and the DARTEL
toolbox, as previously described [23, 24]. Briefly,
T1-weighted images were first segmented into grey
and white matter tissue classes using SPM12’s uni-
fied segmentation procedure, followed by the creation
of a study-specific DARTEL template. Images were
then iteratively aligned to the template, spatially nor-
malized, and smoothed with an 8 mm full-width at
half-maximum isotropic Gaussian kernel. Voxel-wise
t-tests were used to compare participants with and
without NP decline, stratified by baseline cognitive
diagnosis (CN NP- versus CN NP+and MCI NP-
versus MCI NP+). All analyses controlled for age,
sex, education, APOE �4 carrier status and total
intracranial volume. Resulting grey matter maps were
visually inspected in SPM and regions of volumet-
ric difference were identified via labels from the
built-in Neuromorphometric atlas (http://www.oasis-
brains.org and http://neuromorphometrics.com). The
cluster level significance threshold was set at p < 0.05
with family-wise error (FWE) rate correction for mul-
tiple comparisons.

RESULTS

Participants

Table 1 displays the ADNI sample demographic
and clinical characteristics for all non-demented par-
ticipants at baseline and 12-month follow-up exam.

NP decline predicting dementia risk beyond
baseline cognitive diagnosis

There were 221 patients who progressed to demen-
tia (see Supplementary Table 1 for all events by
month of follow-up and cognitive diagnosis). NP
decline significantly improved the model and was
linked to approximately 2.8-fold increased risk for
future dementia after controlling for age, sex, educa-
tion, APOE �4 carrier status, and cognitive diagnosis
(change from first step in the regression model:
χ2 = 69.861, p < 0.001, odds ratio = 2.841; Table 2
displays the model; Supplementary Table 2 provides
MMSE, CDR, and Logical Memory Story A delayed
free recall scores for all 4 participant groups).

ROC analysis indicated an optimal cutoff for
predicting dementia of z = –0.5716, approximately
corresponding to the 28th cumulative percentile,
for the cognitively normal group, and z = –0.4270,
approximately corresponding to the 33rd percentile,
for the MCI group. Findings were confirmed in the

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://www.oasis-brains.org and http://neuromorphometrics.com
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Table 2
Cox regression model for neuropsychological (NP) decline predicting future dementia

beyond baseline diagnosis

Wald p Odds Ratio 95% Confidence Interval
Lower Upper

Age 7.351 0.007 1.029 1.008 1.051
Sex 1.077 0.299 0.862 0.650 1.141
Education 1.292 0.256 1.027 0.981 1.076
APOE �4 60.352 <0.001 3.086 2.322 4.100
Cognitive Diagnosis 58.977 <0.001 3.447 2.513 4.727
NP decline 73.206 <0.001 2.841 2.236 3.608

Fig. 1. Neuropsychological decline predicts dementia beyond cog-
nitive diagnosis. Cox regression models predicting progression to
dementia over all follow-up among those who were cognitively
normal (CN) without neuropsychological decline (CN NP-, dashed
blue line) versus CN with neuropsychological decline (CN NP+,
solid blue line), and MCI patients without neuropsychological
decline (MCI NP-, dashed red line) versus MCI with neuropsy-
chological decline (MCI NP+, solid red line). See Supplementary
Table 2 for subject numbers, MMSE, CDR, and Logical Memory
Story A delayed free recall scores by participant subgroup.

same analysis with a fixed 48-month follow-up to
ensure no bias was introduced by variable follow-up
interval (Supplementary Table 3). Figure 1 displays
results of Cox regression stratified by cognitive diag-
nosis and optimal NP decline cutoff (N = 1,074).
Findings were also confirmed in two additional post-
hoc analyses that used random number generators to
identify a subsample of robustly normal participants
used to generate prediction equations. These partici-
pants were excluded from the test sample used in Cox
regression analyses examining NP decline as a pre-
dictor of future dementia. Both analyses replicated
the original study findings (Supplementary Table 4).

Additional analyses focused on the ADNI cogni-
tively normal subgroup demonstrated that NP decline
predicted progression to either MCI (by ADNI crite-
ria) or dementia over all follow-up in those who were
cognitively normal by ADNI criteria at both baseline
and 12-month follow up (Supplementary Table 5).

Comparison of study results using regression-
based norms (Table 2) to those of normalized simple
difference scores revealed an apparent superiority
of regression-based norming (OR 1.959, p < 0.001
for simple difference versus OR 2.841, p < 0.001,
for regression approach), but normalized difference
scores were also predictive of future decline (Supple-
mentary Table 6)

NP decline predicting dementia risk beyond
biomarker profiles

There were 134 patients who progressed to demen-
tia (see Supplementary Table 7 for all events and
censored cases for each month of follow-up). NP
decline significantly improved the model and was
linked to greater than 2.2-fold increased risk for
future dementia after controlling for age, sex, edu-
cation, APOE �4 carrier status, cognitive diagnosis,
and CSF A�, P-tau, and T-tau (change from first
step in the regression model: χ2 = 26.365, p < 0.001,
odds ratio = 2.283; Table 3 displays the model). ROC
analysis indicated an optimal cutoff for predicting
dementia of z = –0.5808, approximately correspond-
ing to the 28th cumulative percentile, for the
cognitively normal group, and z = –0.5051, approx-
imately corresponding to the 30th percentile, for the
MCI group. Figure 2 displays results of Cox regres-
sion stratified by cognitive diagnosis, AD biomarker
profile and optimal NP decline cutoff (n = 703 with
complete data and follow-up >12 months). Findings
were confirmed in the same analysis with a fixed
48-month follow-up (Supplementary Table 8).
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Table 3
Cox regression model for neuropsychological (NP) decline predicting future

dementia beyond AD biomarkers

Wald p Odds Ratio 95% Confidence Interval
Lower Upper

Age 2.217 0.136 1.021 0.994 1.048
Sex 0.502 0.479 1.146 0.787 1.668
Education 0.749 0.387 1.027 0.966 1.092
APOE �4 1.980 0.159 1.336 0.893 1.998
CSF A�1-42 30.352 <0.001 1.002 1.001 1.002
CSF P-tau 0.362 0.547 0.982 0.925 1.042
CSF T-tau 2.107 0.147 1.005 0.998 1.012
Cognitive Diagnosis 25.956 <0.001 2.933 1.939 4.436
NP decline 27.321 <0.001 2.283 1.675 3.112

Baseline brain volumetric analysis

Figure 3 displays FWE corrected results of VBM
analysis comparing brain volumes at baseline CN
participants without NP decline to those with NP
decline (Fig. 3A), as well as MCI patients with-
out NP decline versus with NP decline (Fig. 3B)
(see Supplementary Tables 9 and 10 for coordinates
and other cluster details). Findings indicated smaller
brain volume specifically within the hippocampus of
CN participants with NP decline relative to those
without NP decline, and smaller volumes within the
hippocampus and medial temporal lobes of MCI par-
ticipants with NP decline relative to those without NP
decline.

DISCUSSION

Asymptomatic older adults performing below
expectations at follow-up exhibit more rapid pro-
gression to dementia, regardless of demographic
factors, APOE �4 carrier status, or biomarker sta-
tus. Our linear regression-based approach was able to
detect subtle cognitive changes that presaged ultimate
risk for dementia, even in asymptomatic individu-
als showing normal range performance. The same
approach identified pernicious cases of MCI with
more rapid progression to dementia. Including lon-
gitudinal classification of NP decline in addition to
baseline diagnosis and biomarker status will improve
estimation of proximal dementia risk, particularly in
asymptomatic cases. Notably, asymptomatic partic-
ipants showing NP decline progressed to dementia
at a rate similar to MCI patients showing no NP
decline. This finding is consistent with the notion of a
continuum of neuropsychological performance span-
ning the normal-to-mildly impaired range [2, 6, 25,
26], and that the addition of quantitative information

regarding longitudinal decline improves our ability
to classify individuals who are performing near diag-
nostic thresholds.

Prior studies have found that cognitively normal
older adults who are biomarker positive for both CSF
A� and P-tau are at increased risk for AD dementia
[27]. According to recent research recommenda-
tions for neurocognitive staging of AD, these AD
biomarker positive individuals without NP decline
are Stage 1 and those with NP decline are Stage 2
[6]. The present study findings suggest that Stage 2
patients are at far greater risk for future dementia than
Stage 1. Notably, older adults showing AD biomarker
abnormalities are at increased risk for dementia, but
the majority of that risk applies only to those who also
exhibit NP decline. This may be due to the fact that
current AD biomarkers do not account for a host of
other co-morbid pathological factors likely contribut-
ing to overall dementia risk, including premorbid
brain vulnerabilities and co-morbid brain pathologies
[28]. Recent autopsy series have demonstrated that
the most common form of dementia is due to multiple
pathologies [29], and over 200 different combinations
of pathology were observed in a large autopsy series
[30]. Cognitive reserve and other genetic, psycholog-
ical and environmental factors are also known to limit
the relationship between underlying pathology and its
clinical manifestation [31, 32]. The resulting impact
of NP decline on prognostic accuracy has enormous
clinical consequences in terms of targeting treatment
toward those at the greatest risk and limiting iatro-
genic effects in those at low risk. As demonstrated,
use of NP decline with AD biomarkers may improve
prognostic accuracy in asymptomatic patients.

The current conceptualization of Stage 3 neu-
rocognitive decline includes both abnormal baseline
performance and evidence of longitudinal decline [6],
consistent with a tradition that makes no distinction
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Fig. 2. Neuropsychological decline predicts dementia beyond AD biomarkers. Cox regression models predicting progression to dementia
over all follow-up by cognitive diagnosis without neuropsychological decline (CN dashed blue; MCI dashed red) versus those cognitive
diagnosis with neuropsychological decline (CN solid blue; MCI solid red) for each biomarker profile, including normal AD biomarkers, A�-
Ptau- (A: n = 276, MMSE = 28.7[1.4]), AD pathophysiology, A�+Ptau- (B: n = 148, MMSE = 28.4[1.6]), suspected non-AD pathophysiology,
A�-Ptau+(C: n = 120, MMSE = 28.5[1.5]), and AD, A�+Ptau+(D: n = 214, MMSE = 27.7[1.8]). Mean[SD].

between progressive and non-progressive forms of
MCI [33]. Although an individual’s absolute level
of cognitive ability at baseline is likely to be a
more powerful predictor of imminent dementia risk,
as suggested by the greater odds ratios for base-
line diagnosis versus decline status, this baseline
ability presents an incomplete picture of an individ-
ual’s overall risk in that it contains no information
on cognitive trajectory. Premorbid cognitive ability,

cultural/ethnic background, and linguistic variability
limit the ability of baseline exams to optimally pre-
dict risk for dementia [34]. These factors may be less
salient when evaluating within-subject variance from
baseline to follow-up, suggesting NP decline may
have value in evaluating more diverse populations.
However, this remains an open question for future
studies to evaluate using more ethnically diverse
samples.
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Fig. 3. Neuropsychological decline linked to baseline hippocampal and medial temporal lobe volume. Results of voxel-based morphometry
analysis after FWE correction are displayed as t-maps overlaid onto a template T1 image for anatomical reference. Findings from two-sample
t-tests show a consistent pattern of smaller hippocampal volume in CN participants with NP decline versus CN without NP decline (A) and
smaller hippocampal and medial temporal volume in MCI patients with NP decline versus MCI without NP decline (B).

There are no operationalized criteria for cognitive
decline as described in the research recommenda-
tions for diagnosis and staging of neurocognitive
decline in AD [6]. Subjective reports of cognitive
decline are prone to errors [35] and reliable infor-
mants are not always available or able to notice
subtle cognitive changes. For these and other rea-
sons, serial neuropsychological data may be the
favored method for establishing cognitive trajecto-
ries. However, the known influence of practice effects
and regression to the mean makes clinical judg-
ments based on raw score changes extremely difficult
[7]. The present study demonstrates that the use of
regression-based norming practices can aid in the
interpretation of serial neuropsychological test data.
We also provide normative regression equations and
optimal cutoff values for ascertaining the presence
or absence of NP decline, which may be of clinical
and investigational value in patients and participants
similar to those studied as part of ADNI. Although
more research is needed across different popula-
tions and test batteries, the present approach provides

a relatively simple framework that may be readily
applied in clinical and research settings. This prac-
tice is analogous to the widely adopted method of
norm-referenced demographic corrections, but adds
a norm-referencing method for neuropsychological
change over 12 months. Future studies may help
determine whether regression, mixed modeling, sim-
ple change scores, or other approaches are the most
appropriate for obtaining norm-referenced decline
metrics, but the present study findings suggested
regression-based methods may be superior to simple
change scores.

Despite the advantages of using neuropsycho-
logical markers as risk indicators for dementia,
such an approach has also been understandably
criticized for circularity since neuropsychological
markers are often also used to arrive at a diagno-
sis of dementia. For this reason, the present study
used independent modes of assessment to ascertain
dementia diagnosis as the criterion measure. Thus,
it is unlikely that shared methods variance alone can
account for the study findings. The face validity of
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neuropsychological markers as indicators of cog-
nitive impairment should not preclude their use
as prognostic instruments, particularly since these
markers predict progression over lengthy follow-up
intervals in patients who are initially asymptomatic.
Ultimately NP decline demonstrates considerable
utility in predicting who will progress to dementia,
indicating critical value for clinicians and scientists
working with this population.

Prior work has demonstrated correlations between
hippocampal volume and both AD biomarkers [36,
37] and cognitive decline [37] during the early stages
of the disease. Consistent with these findings, older
adults with NP decline exhibited smaller regional
baseline brain volumes than those without NP decline
in a pattern that was remarkably specific to the hip-
pocampus and surrounding medial temporal regions.
Although medial temporal regions are traditionally
associated with memory functions and most attempts
to identify preclinical decline have focused predom-
inantly on memory measures [38], we chose to use
tests that also assessed executive function and seman-
tic fluency. Recent studies have suggested more
widespread impact of preclinical AD across neu-
ropsychological domains [2]. Consistent with these
findings, research recommendations acknowledge
that AD-related cognitive impairment may involve
widespread versus specific cognitive domain impair-
ment [6, 25]. This may be particularly true for NP
decline versus single exam findings since subthresh-
old declines may occur across domains. Increased
reliability is another advantage of global compos-
ites that average scores across domains, which may
improve the likelihood of detected subtle cognitive
changes. Future studies should use longitudinal and
multimodal imaging to identify additional structural
and functional characteristics of early NP decline,
improving our understanding of the neuropathology
underlying progressive forms of cognitive impair-
ment.

Single exam diagnosis or biomarker-only evalu-
ations are not likely to yield accurate prediction of
when an individual will progress to dementia. Inclu-
sion of asymptomatic individuals with no NP decline
in clinical trials may require much larger samples and
greatly extended follow-up due to high variability in
progression rates. This leads to increased costs and
delayed progress toward predicting and preventing
dementia, as well as exposure of low risk individu-
als to potentially detrimental medication side effects.
If additional studies can establish widely accepted
standards for establishing cognitive trajectories, trial

design may be improved by adding cognitive tra-
jectory to single exam diagnoses to further classify
participant risk.

Study limitations include the ADNI sample
being comprised of relatively highly educated and
demographically homogenous individuals recruited
from over 50 sites across the US and Canada
with variable sampling bias and methodology, and
inclusion/exclusion criteria that limited comorbid
neuropathological factors. Extension of the present
study findings in larger community-based samples
may further support the predictive utility of NP
decline as a prognostic supplement to biomarkers
and baseline cognitive diagnosis. Another potential
limitation was the inclusion of robustly normal partic-
ipants in both the generation of NP decline prediction
equations and the testing of those equations as pre-
dictors of future dementia. However, we were able
to replicate the main study findings in sub-analysis
that excluded the robustly normal participants used to
generate the equations, alleviating concern that circu-
larity may have influenced our results. An additional
concern may be raised regarding the application of
normative regression equations to both cognitively
normal and MCI cases since these two groups would
have different anticipated cognitive trajectories. We
chose to use normative models for both groups in an
effort to not only predict future dementia in patients
who are initially normal, but also to improve the prog-
nostic value of MCI diagnosis, an inherently unstable
category. Future studies will also evaluate whether
use of 3 time-points further improves evaluation of
NP decline, determine the degree to which individual
tests contribute to overall decline prediction, and fur-
ther characterize heterogeneity in patterns of decline
across MCI subtypes.
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