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Abstract 

 

Time Domain Reflectance for Thermal Conductivity of Electronic Materials 

by 

Sorren Victoria Warkander 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Berkeley 

Professor Junqiao Wu, Chair 

 

Electronic materials represent a vast category with wide-ranging properties. Though definitionally, 

their electronic properties are of interest, study of their thermal properties provides additional 

important information. Whether to find materials with desirable thermal conductivity—high to 

dissipate heat or low to limit heat transport—or because the mechanisms underlying heat transport 

provide insight into the fundamental physics of the material, thermal characterization allows better 

understanding of such materials. 

 

In the study of the thermal properties of materials, optical pump-probe methods are a key tool. 

Laser-based measurements allow probing of small areas without requiring microfabrication, and 

the use of pulsed lasers and modulated beams allows measurement of high-speed effects and so 

small sample areas. Time domain thermoreflectivity (TDTR), which uses modulated pulsed laser 

beams, stands as a key tool for measurement of the thermal properties of both bulk and thin film 

samples. This work seeks to provide a detailed introduction to the technique and the mathematical 

analysis required for such measurements, apply TDTR to interesting materials systems, and push 

beyond the limits of traditional TDTR with the development of a transducerless time domain 

reflectance (tTDR) technique which uses the same equipment. 

 

Study of thermal properties can provide new insights into the fundamental properties of materials. 

Metallic vanadium dioxide nanobeams have a much lower thermal conductivity than would be 

expected given their electrical conductivity, implying that electrons are more effective at carrying 

charge than heat.1 This result is not always seen in other sample geometries,2 and TDTR 

measurements allow characterization of thin film samples, allowing further study. Unfortunately, 

the samples measured in this work did not provide high enough electrical conductivity to draw 

conclusions about electronic thermal transport, but this stands as an interesting line of 

investigation.  

 

One category of electronic materials of increasing interest is that of two-dimensional materials, 

whose ultra-thin nature offers new properties and applications. However, it also makes study of 

their thermal properties challenging and makes traditional TDTR infeasible. By contrast, tTDR is 

well suited to characterize their properties, and in this work initial measurements were made on 

suspended molybdenum disulfide. In addition to the fundamental properties of the materials, other 

effects can be engineered. For example, creating bilayers with twists between layers causes the 

development of moiré patterns which have novel properties. Their in-plane thermal conductivities 

are not well characterized, and tTDR provides an avenue for changing that. Preparation of such 
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samples is very challenging, thus far preventing systematic study as a function of twist angle, but 

initial measurements demonstrated that tTDR is an applicable tool for such systems.  

 

Time domain reflectance measurements, both in the form of TDTR and tTDR, are powerful tools 

for the characterization of a wide range of materials, including many electronic materials. This 

work seeks to offer insight into and expand their applications. 
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1 Introduction 

1.1 Motivation 
The thermal properties of materials govern their utility in many applications and act as 

probes for rich understanding of physics. From microelectronics, where nanoscale transistors 

require effective cooling, to the development of thermoelectric power generation, where low 

thermal conductivity is desirable, thermal properties have technological relevance. Additionally, 

they can provide a probe to understand underlying materials physics. For example, careful study 

of thermal conductivity across the metal-insulator transition in vanadium dioxide has been used 

as an indicator for Lorentz number suppression, implying non-quasiparticle behavior of electrons 

in the metallic state.1  

Beyond bulk materials, the field of two-dimensional materials is growing rapidly. These 

materials, which function while atomically thin, offer novel possibilities, and significant effort is 

being applied to their integration in next-generation electronics. This makes understanding of 

their properties, including thermal properties, increasingly relevant. Additionally, from 

extremely high thermal conductivity in monolayer graphene3 to extremely high anisotropy in 

twisted MoS2 heterostructures,4 their thermal properties are themselves of interest. As such, 

additional understanding of these materials and additional tools to build such understanding are 

valuable. 

1.2 Pump-probe techniques 
To characterize the thermal properties of materials, particularly at small length scales, laser-

based methods provide valuable tools. The ability to focus laser spots onto small (micron to sub-

micron scale) areas to provide heating and measurement allows measurement of samples without 

requiring microfabrication of electrodes or other similar processing steps. This allows 

measurements of a wide class of samples, including bulk samples and thin films.  

A common category of laser-based measurement is that of pump-probe techniques, in which 

two laser beams are used. The first, the pump, excites a sample response, and the second, the 

probe, measures it. Excitation is typically caused by light absorption, and measurement can be 

done based on reflected or transmitted intensity, among other properties. From the seminal work 

of Paddock and Eesley,5 which demonstrated the applicability of transient reflectance for 

studying thermal transport, much work has been done to develop new and better methods of 

using pump-probe laser systems to study thermal properties. This dissertation seeks to further 

expand that body of knowledge.  

1.3 Structure of dissertation 
This work focuses on building understanding of time domain reflectivity techniques and 

extending them to new regimes. Chapters 2 and 3 discuss the basic requirements for and theory 

of time domain reflectivity measurements. Chapter 4 describes methods for working with the 

multi-parameter nonlinear model that describes such measurements. Chapter 5 describes 

traditional TDTR measurements of materials near metal-insulator transitions, and Chapters 6 and 

7 describe the development and application of the tranducerless time domain reflectivity 

technique and its applications to bulk and two-dimensional semiconductors.  
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2 TDTR Fundamentals 

2.1 Equipment 
The theory of TDTR can be understood by considering relatively few components, though in 

practice a setup will be significantly more complicated, as shown in Appendix 1 for the system in 

the Molecular Foundry. Figure 1 shows one version of a minimal TDTR setup. To allow time 

domain measurements, a pulsed laser and a mechanical delay stage are required; to set and 

measure at the measurement frequency requires an optical modulator and a lock-in amplifier; and 

to record signal a photodetector must be included. Additionally, there must be some way to 

separate the pump and probe beams after they strike the sample, for example a dichroic mirror or 

short- or long-pass filter for systems which use different wavelengths for the pump and the 

probe.  

 

The basic principle of the measurement is as follows: 

• An ultrafast pulsed laser produces picosecond-scale laser pulses, separated in time by the 

laser repetition time. Most commonly, a titanium sapphire laser is used and produces a 

train of pulses with a wavelength of 800 nm with a repetition time near 12 nanoseconds. 

• Each pulse leaving the laser is split such that some of its intensity is directed to the pump 

line and some to the probe line. In the setup shown in Figure 2-1, this happens inside the 

optical parametric oscillator (OPO), which also upconverts the pump light from 800 nm 

to 565 nm. The OPO allows tuning of the pump wavelength; at the Molecular Foundry 

565 nm is chosen to provide maximum signal. 

• The pulses on the probe line pass through the mechanical delay stage which increases the 

distance they travel by a controlled amount. 

• Meanwhile, the pulses on the pump line pass through the optical modulator. This 

modulator changes transmissivity at a controlled 

frequency (the modulation frequency), which is 

significantly slower than the laser repetition rate. This 

causes the intensity of the train of pump pulses to vary 

at the modulation frequency, as shown schematically 

in Figure 2-2a. 

• The dichroic mirror reflects the pump pulses and 

transmits the probe pulses such that they both strike 

the sample at normal incidence. 

• The pump and probe pulses strike the sample. The 

delay time is defined as the time between the incidence 

of the pump and probe pulses; for positive delay time 

the pump strikes first. The relative incidence of pump 

and probe pulses for positive delay time is shown in 

Figure 2-2b. 

• The pump pulse is absorbed by the sample; the 

probe pulse is reflected off the sample. (In practical 

terms, part of the probe pulse is absorbed, but because 

the train of probe pulses is not modulated, this does 

        

 
 
 
 
  
  
 

        

           

      

             

      

                 

         

            

Figure 2-1: Diagram of a minimal two-color 
TDTR setup. The pump beam is shown at right 
in green and the probe at left in red.  
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not contribute to the TDTR signal. Part of the pump pulse is reflected, but this is optically 

filtered out and so similarly does not contribute to the final signal.) 

• The reflected component of the probe pulse is directed to the photodetector. In systems 

such as that shown in Figure 1, this is done by a beamsplitter.  

• The output from the photodetector is passed to a lock-in amplifier. Because the train of 

pump pulses is modulated at a set frequency, the reaction of the sample to the pump is 

modulated at that frequency. (Figure 2-2c) Thus, selecting the same frequency using the 

lock-in amplifier is equivalent to selecting the component of the sample behavior caused 

by the pump excitation. The lock-in amplifier measures the amplitude and phase of the 

probed response. The amplitude is that of the sinusoidal oscillation in probe intensity, as 

highlighted in Figure 2-2c; the phase is related to the time difference between the 

maximum intensity of the train of pump pulses striking the sample and the maximum of 

the probed signal. 

          

           

         

          

Figure 2-2: Schematic of sample response to 
modulated pulsed excitation. a) The modulated 
pump intensity. b) The sample response to the 
pump, and measurement by the probe. c) The 
measured probe envelope, including measured 
amplitude and phase. 

a b 

c 
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Both the delay time and the modulation frequency can be varied in taking a measurement—

the first allowing time domain thermoreflectivity (TDTR) measurements and the latter their close 

relative, frequency domain thermoreflectivity (FDTR) measurements—as both can have 

significant effects on the signal. To better understand this, we seek a mathematical description of 

the TDTR signal and then discuss its behavior in limiting and realistic cases. 

2.2 Mathematical Description of TDTR 
As described above, TDTR measurements make use of a pulsed laser and optical modulator, 

which leads to sample excitation from a train of pump pulses separated by some repetition time 

and varying in intensity with time. Each incident pulse causes some reaction in the sample, 

which is later measured by the probe pulse. However, for most thermal measurements, the 

repetition time of the laser is shorter than the time required for the sample to return to 

equilibrium, leading to accumulation of the effects of each pulse.6–8 As such, consideration of the 

laser response to a single pulse is insufficient, and the effects of the modulated train of pulses is 

required. We thus seek an expression that captures the relationship between the input parameters 

of delay time and modulation frequency, and the output signal from the lock-in amplifier.  

Following the approach of Schmidt, Chen, and Chen,9 we treat the sinusoidal modulation of 

the pump intensity as the real part of the complex expression 𝑒𝑖𝜔0𝑡, with 𝜔0 the modulation 

frequency. Though the laser intensity can only take positive values, so a more accurate 

expression would be 1 + 𝑒𝑖𝜔0𝑡, the constant offset is rejected by the lock-in amplifier and can be 

ignored. We ignore the amplitude of the modulation—the final amplitude of the signal depends 

on too many factors to be relevant in the circumstances described here and only the normalized 

amplitude will be considered. The signal measured by the lock-in is a wave of the same 

frequency as the pump modulation but has different amplitude and phase, which we write as 

𝐴𝑒𝑖(𝜔0𝑡+𝜙) for A the amplitude and 𝜙 the phase. We express the relationship between the pump 

intensity and the measured signal as a transfer function, the complex number 𝑍(𝜔0, 𝑡𝑑): 

 𝐴𝑒𝑖(𝜔0𝑡+𝜙) = 𝑍(𝜔0, 𝑡𝑑)𝑒
𝑖𝜔0𝑡 (2-1) 

The amplitude of Z and the phase between its real and imaginary components correspond to 

the amplitude and phase measured by the lock-in amplifier during an experiment. It should be 

noted that the raw phase data recorded by the lock-in amplifier depends on the phase delay from 

many components. For consistency, a phase correction is applied to the signal to force the 

measured out-of-phase component to be continuous across zero delay time, with the 

discontinuous behavior caused by the pump showing up entirely in the in-phase signal.10 It is this 

phase corrected data which is further analyzed.  

 

2.2.1 Solution using the time domain response 
The value of Z can then be approached in two ways: by considering the response of the 

sample in the time domain, or by considering that in the frequency domain. The first approach is 

taken by Capinski and Maris,6 who describe the sample response to be the sum of the responses 

to all pump pulses. To follow this approach, we write the intensity of the pump as a modulated 

series of delta functions: 

 
𝐼0(𝑡) ∝ ∑ 𝑒𝑖𝜔0𝑡𝛿(𝑡 − 𝑛 𝜏𝑟𝑒𝑝)

∞

𝑛=−∞

 (2-2) 
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where 𝑒𝑖𝜔0𝑡 gives the modulated intensity of the pump and the pulsed nature of the laser is 

accounted for by the sum over delta functions separated in time by the repetition time of the 

laser, 𝜏𝑟𝑒𝑝. If each laser pulse induces a response ℎ(𝑡) in the sample, the total response can be 

written 

 
∑ ℎ(𝑡 − 𝑛 𝜏𝑟𝑒𝑝) 𝑒

𝑖𝜔0𝑛𝜏𝑟𝑒𝑝

∞

𝑛=−∞

 (2-3) 

where the real part of 𝑒𝑖𝜔0𝑛𝜏𝑟𝑒𝑝 gives the relative power of the nth pump pulse. The sample 

response is measured whenever a probe pulse strikes, which occurs a time 𝑡𝑑 after each pump 

pulse, so the probe intensity can be written 

 
𝐼1(𝑡) ∝ ∑ 𝛿(𝑡 − 𝑚 𝜏𝑟𝑒𝑝 − 𝑡𝑑)

∞

𝑚=−∞

 (2-4) 

The sample response as measured by the probe, i.e. the variation in reflected intensity, is 

given by the product of equations (2-3) and (2-4): 

 
𝑧(𝑡) ∝  ∑  

∞

𝑛=−∞

∑  ℎ(𝑡 − 𝑛 𝜏𝑟𝑒𝑝) 𝑒
𝑖 𝜔0 𝑛 𝜏𝑟𝑒𝑝

∞

𝑚=−∞

𝛿(𝑡 − 𝑚 𝜏𝑟𝑒𝑝 − 𝑡𝑑) (2-5) 

The expected lock-in output can be found finding the component of this response which 

varies at the modulation frequency, given by Schmidt9,10 as  

 
𝑍(𝜔0, 𝑡𝑑) ∝ ∑ ℎ(𝑞 𝜏𝑟𝑒𝑝 + 𝑡𝑑)

∞

𝑞=0

𝑒−𝑖𝜔0(𝑞 𝜏𝑟𝑒𝑝+𝑡𝑑) (2-6) 

where q is restricted to positive values because ℎ(𝑡) ≡ 0 for 𝑡 < 0.  

This equation can be interpreted as stating that the measured signal is determined by the sum 

of the response to a single pulse at delay time 𝑡𝑑, the phase-shifted response to the prior pump 

pulse, now at delay time 𝑡𝑑 + 𝜏𝑟𝑒𝑝, the phase-shifted response to the pulse which preceded that, 

and so on. The use of this approach to build understanding of TDTR signals is described in 

section 2.3.1. 

2.2.2 Solution using the frequency domain response 
The transfer function Z can also be found by considering the response of the sample in the 

frequency domain, by considering the response of the sample to periodic heating. This approach 

is taken by Cahill.7 If the amplitude of the pump signal were purely sinusoidal, i.e. the laser were 

continuous-wave rather than pulsed, simply considering the intensity as 𝐼0(𝑡) ∝ 𝑒𝑖𝜔0𝑡 would be 

sufficient. To find the frequency domain response, we would simply consider the Fourier 

transform: 𝐼0(𝜔) ∝ 2𝜋𝛿(𝜔 − 𝜔0). However, we must account for the pulsed nature of the pump, 

as in equation (2-2). To do so, we treat each pump pulse as sampling the amplitude of the 

sinusoid and apply the sampling theorem, which states that a sampled signal  

 
𝑥𝑝(𝑡) =  ∑ 𝛿(𝑡 − 𝑛𝜏 − 𝑇0)

∞

𝑛=−∞

𝑥(𝑡) (2-7) 

can be written in the frequency domain as  
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𝑋�̃�(𝜔) =
1

𝜏
∑�̃� (𝜔 − 𝑙

2𝜋

𝜏
) 𝑒−𝑖𝑙

2𝜋𝑇0
𝜏

∞

𝑙=−∞

 (2-8) 

where �̃�(𝜔) is the Fourier transform of 𝑥(𝑡) and 𝑇0 is an arbitrary offset between zero time and 

the time of the first measurement.11 Applying this approach (with 𝑇0 = 0), we find the frequency 

domain expression of the pump intensity to be  

 

𝐼0̃(𝜔) ∝ ∑𝛿 (𝜔 − 𝜔0 − 𝑙 
2 𝜋

𝜏𝑟𝑒𝑝
)

∞

𝑙=−∞

 (2-9) 

The sample response is given by the convolution of the pump intensity 𝐼0(𝑡) and the impulse 

response of the sample ℎ(𝑡), which in the frequency domain becomes the product of their 

Fourier transforms: 

 

∑𝛿 (𝜔 − 𝜔0 − 𝑙 
2 𝜋

𝜏𝑟𝑒𝑝
)

∞

𝑙=−∞

�̃�(𝜔) (2-10) 

where �̃�(𝜔) is the Fourier transform of ℎ(𝑡) and so represents the single-pulse frequency 

response of the sample. 

The pulsed nature of the probe serves to measure the sample response at times 𝑡𝑑 + 𝑛𝜏𝑟𝑒𝑝 for 

integer n. To account for this, we again apply the sampling theorem and find that the signal 

measured by the probe is  

 

𝑍(𝜔, 𝑡𝑑) ∝  ∑  

∞

𝑙=−∞

∑  [𝛿 ((𝜔 − 𝑚
2 𝜋

𝜏𝑟𝑒𝑝
) − 𝜔0 − 𝑙 

2 𝜋

𝜏𝑟𝑒𝑝
) �̃� (𝜔

∞

𝑚=−∞

− 𝑚 
2 𝜋

𝜏𝑟𝑒𝑝
)] 𝑒

−𝑖𝑚
2𝜋

𝜏𝑟𝑒𝑝
𝑡𝑑

 

(2-11) 

The lock-in amplifier selects only the component of the signal at 𝜔 = 𝜔0; upon evaluating 

𝑍(𝜔0), the delta function eliminates terms where 𝑙 ≠ −𝑚, so we replace 𝑙 with −𝑚 and 

eliminate one of the sums, finding  

 

𝑍(𝜔 = 𝜔0, 𝑡𝑑) ∝  ∑  𝛿(𝜔 − 𝜔0) �̃� (𝜔 + 𝑚 
2 𝜋

𝜏𝑟𝑒𝑝
) 

∞

𝑚=−∞

𝑒
𝑖𝑚

2𝜋
𝜏𝑟𝑒𝑝

𝑡𝑑
 

 

(2-12) 

which simplifies to 

 

𝑍(𝜔0, 𝑡𝑑) ∝  ∑  �̃� (𝜔0 + 𝑚 
2 𝜋

𝜏𝑟𝑒𝑝
) 

∞

𝑚=−∞

𝑒
𝑖𝑚

2𝜋
𝜏𝑟𝑒𝑝

𝑡𝑑
 (2-13) 

This is the frequency domain equivalent of equation (2-6), and can be shown to be 

mathematically equivalent.10 It can be interpreted as saying that the measured TDTR signal is the 

sum of the frequency response at the modulation frequency (with a phase shift due to the delay 
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time) and the frequency response at all multiples of 
2 𝜋

𝜏𝑟𝑒𝑝
, a frequency set by the laser repetition 

rate. This allows another avenue for understanding TDTR signals, as discussed in section 2.3.2.  

2.3 Fast and slow effects in a model system 
Though the actual response of a sample to a pump pulse is more complicated than an 

exponential decay and will be considered in Chapter 3, considering the signal that would arise 

from a purely exponential single pulse response provides valuable insight.  

2.3.1 Responses in the time domain 
As discussed in section 2.2, the measured signal consists of the amplitude and phase of the 

modulated probe reflectivity, which are represented by those of a transfer function, Z . Here we 

discuss equation (2-6) to build understanding of TDTR signals. From equation (2-6), we see that 

the measured TDTR signal is given by a sum of the responses of the sample to each incident 

pump pulse, adjusted by a phase. Crucially, to understand the TDTR signal, we must consider not 

only the response to the pump pulse which most closely preceded the probe pulse (the 𝑞 = 0 

term), but also any residual effect from previous pulses. Let us consider the limiting cases of fast 

and slow sample responses. 

 

  
Figure 2-3:Schematic “fast” and “slow” sample responses to a single pump pulse, shown in the time domain. a) The 
fast response dies out between pulses of the laser and b) the slow response does not. 

2.3.1.1 Case 1: Purely fast sample response 

We first consider the case of a sample response that decays exponentially with a 

characteristic time significantly shorter than the time between pulses from the laser, as shown in 

Figure 2-3a for the case of a 3 ns exponential characteristic time and a 12.5 ns laser repetition 

rate. In this case, the sample returns to steady state before the next pulse arrives, sometimes 

described as an absence of accumulation effects between laser pulses. Each laser pulse 

independently influences the sample, and the measured TDTR signal is equivalent to the single-

pulse response of the sample. Because the single-pulse response has no dependence on 

a b 
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modulation frequency, this means that the measured signal will be the same across modulation 

frequencies and depend only on delay time. 

2.3.1.2 Case 2: Purely slow sample response 

If the characteristic timescale of the sample response is much longer than the time between 

laser pulses, as shown in Figure 3b for a 200 ns characteristic time and a 12.5 ns laser repetition 

rate, the response to a single pump pulse is nearly the same when measured by the probe pulse 

follows it most closely in laboratory time and when measured by the next probe pulses. 

Equivalently, each probe pulse measures the effect of not just the pump pulse that most closely 

preceded it, but also several pump pulses before that—the response from multiple pump pulses 

accumulates. The small change in the signal over the measurable range of delay times, which is 

usually a few nanoseconds but cannot be longer than the laser repetition rate, means that the 

measured TDTR signal depends only weakly on delay time. As discussed further below, there 

will be a significant dependence on modulation frequency. 

2.3.2 Responses in the frequency domain 
Thus far, the sample response has been viewed in the time domain, with the temporal 

response to a single pulse as the starting point. We now turn to considering the relationship 

between the frequency domain single-pulse response and the measured signal. Applying equation 

(2-13) we can express the measured signal in terms of the sample frequency response, which is 

simply the Fourier transform of the time response. As for the time response, we see that the 

measured signal is determined by the response at the modulation frequency 𝜔0, but also by that 

at multiples of a frequency set by the laser repetition rate, 
2 𝜋

𝜏𝑟𝑒𝑝
. We consider how this applies to 

fast and slow single-pulse responses. 

2.3.2.1 Case 1: Purely fast sample response 

A fast response in the time domain corresponds to a broad frequency response, as shown in 

Figure 2-4a. Comparison to the frequencies measured by the laser makes it clear that multiple 

frequencies contribute, up to large values of frequency. This corresponds to fast (high frequency) 

responses being important, which is unsurprising given the defined fast nature of the sample 

response. More instructive is looking at the low frequency behavior, within the range of possible 

modulation frequencies. As shown in Figure 2-4c, the frequency response is nearly flat through 

this range, meaning that, as discussed above, changing the modulation frequency has minimal 

effect on the signal. 

2.3.2.2 Case 2: Purely slow sample response 

A slow response in the time domain corresponds to a sharp frequency response. (Figure 2-4b) 

Because the frequency response drops off more rapidly as frequency increases than in the case of 

a fast sample response, only relatively low frequencies contribute to the signal. This implies that, 

as expected, very little happens over short time scales. Additionally, the larger magnitude of the 

response at the modulation frequency compared to that at other measured frequencies means that 

the response at the modulation frequency more strongly determines the measured signal. 

Looking at the response within the range of accessible modulation frequencies (Figure 2-4d), the 

clear contrast from the fast signal response case is obvious. Unlike in the fast response case, in 

the case of a slow response changing the modulation frequency has a significant impact on the 
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measured signal. This highlights that varying the modulation frequency is a powerful way to 

measure slow sample responses.  

 

 
 

  
Figure 2-4: Schematic “fast” and “slow” sample responses to a single pump pulse, shown in the frequency domain. 
a) The fast response has significant magnitude over a wide range of frequencies; b) the slow response does dies off 
quickly with frequency. c) Zooming in on the low-frequency behavior of a), it is clear that the response has little 
variation within the range of experimentally accessible modulation frequencies. d) Zooming in on the low-
frequency behavior of b) highlights the dependence of measured sample response on modulation frequency. 

2.3.3 Simulated TDTR signal for fast and slow responses 
For easier comparison to experimental data, the TDTR signal that would be generated from a 

sample with a purely exponential response is calculated. The discussion above most clearly 

applies to the magnitude of the TDTR signal. In the case of the magnitude of the signal, the 

strong dependence on delay time for the sample with a fast response (Figure 2-5a) and minimal 

dependence on delay time for that with a slow response (Figure 2-5c) is easily visible. Similarly, 

the magnitude of the TDTR signal for the sample with a fast response does not show a 

dependence on modulation frequency, whereas that for the sample with a slow response changes 

dramatically. The phase signal is less easy to directly interpret as its slope varies with modulation 

frequency for both fast and slow responses, but it should be noted that for small delay times the 

a b 

c d 
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phase signal for the sample with a fast response (Figure 2-5b) is nearly independent of 

modulation frequency, like the magnitude signal, whereas the phase signal for the sample with a 

slow response (Figure 2-5d) depends on modulation frequency at all delay times. Additionally, 

the phase for the sample with a fast response is nearer to 90 degrees, corresponding to a small 

component out-of-phase with the modulation, whereas the sample with a slow response has a 

much smaller phase, indicating a larger out-of-phase component. Out-of-phase components most 

easily arise due to accumulation effects, so it is expected that the sample with a slow response 

would show a larger out-of-phase component.  

 

  

2.4 Model signal from realistic samples 
We now seek to apply our understanding of TDTR signals and their origins to modeling of 

realistic samples. To see the effects of both faster and slower heat transport, we consider two 

materials: silicon, with a thermal conductivity of 148 W/mK,12 and fused quartz, with a thermal 

conductivity of 1.3 W/mK.13 For standard TDTR measurements, such samples would be coated 

with a layer of metal, so we model them as coated with 70 nm of aluminum. The calculation of 

the thermal response of such samples is discussed in Chapter 3, but here we consider the results 

qualitatively.  

c a 

b 

d 

Figure 2-5: Simulated TDTR signal for samples with a,b) the fast response shown in Figures 2-3 and 2-4 and c,d) the 
slow response shown in Figures 2-3 and 2-4. The dependence on delay time is much stronger in the case of the 
fast signal, and the dependence on modulation frequency is stronger in the case of the slow signal. 
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We begin by considering the single pulse responses, as we did for the fast and slow response 

models. For the time domain responses of both aluminum on silicon (Figure 2-6a) and aluminum 

on quartz (Figure 2-6f), there is a moderately fast decay over the first few nanoseconds. 

However, especially in the case of quartz, the decay becomes slower as time increases; ignoring 

the first few nanoseconds, the sample response could be described as slow. Physically, this 

corresponds roughly to initial heat flow in the top (thermally conductive) silicon layer, followed 

by a transition to slower transport across the interface to the substrate and within the quartz. The 

overall frequency domain responses (Figures 2-6b and 2-6g) also show responses on a number of 

timescales. Both show a sharp spike at low frequency, indicating a component of a slow 

response; overall, though, the silicon response is broader than that of the quartz, corresponding to 

the faster response we expect of a more thermally conductive sample. When we focus 

specifically on the range of modulation frequencies accessible in a measurement, we still see a 

behavior with components of both fast and slow responses: for the aluminum on silicon (Figure 

6c), the real part of the frequency response remains significant across the range of modulation 

frequencies, as for the fast sample response shown in Figure 2-4b, though it does decrease with 

frequency and the imaginary part is non-trivial, as for the slow sample response shown in Figure 

4d. The aluminum on quartz sample (Figure 2-6h) shows primarily slow behavior—both real and 

imaginary components are significant, and the real component decays significantly over the 

range of accessible modulation frequencies. From this assessment, the aluminum on silicon 

sample can be expected to react mostly like a sample with a purely fast response but show some 

slow response behavior as well, especially with variations in modulation frequency. The 

aluminum on quartz sample can be expected to have more slow response behavior, particularly 

in modulation frequency dependence, but to also show some fast response behavior, especially at 

small delay times.  

Looking at the simulated TDTR signal in Figures 2-6d-e and 2-6i-j, we see approximately 

this behavior. In Figure 6d, the magnitude of the TDTR signal for the aluminum on silicon 

d 

e 

i 

j 

Figure 2-6: Single-pulse and simulated TDTR data for samples of (a-e) 70 nm Al on Si and (f-j) 70 nm Al on 
quartz. Both show some features of a fast response, but the quartz sample shows some slow response 
signature as well. See main text for full discussion. 
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sample, we see behavior that looks very similar to the modeled fast sample response (Figure 2-

5a), with the exception that there is some dependence of the overall signal on modulation 

frequency. This indicates that there is also a slower component to the sample response, as 

expected. The phase behavior (Figure 2-6e) is somewhat similar to that for the sample with a fast 

response (Figure 2-5b) in that the phase at low delay times is similar across modulation 

frequencies, but the range of phase covered by the signal for the aluminum on silicon sample is 

much larger, likely due to the non-exponential nature of the response. The magnitude of the 

calculated TDTR signal for aluminum on quartz (Figure 2-6i) shows both a fast, delay time 

dependent response, and a distinct dependence on modulation frequency. This indicates, as 

expected, that both fast and slow responses are present. The phase data (Figure 2-6j) is at 1 MHz 

similar to that for a slow sample response (Figure 2-5d), but at 10 MHz differs, and is more 

similar to the response for aluminum on silicon (Figure 2-6e). Higher modulation frequency 

corresponds to measurement less deep in the sample, so it makes sense that the two aluminum-

coated samples would look more similar, and that the slower heat transport in the quartz would 

be less significant at 10 MHz than at 1 MHz. 

2.5 Overview 
In this section, we have focused on understanding of the origin of TDTR signal. The basics 

of the experimental apparatus are discussed, and the significance of the measured signal in terms 

of the underlying sample response is considered. We now turn to further understanding of that 

sample response.  
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3 Heat flow and measurement 

3.1 Physics of laser incidence 

3.1.1 Metals 
In traditional TDTR implementations, samples are coated with a layer of metal, most 

typically aluminum, which then interacts with both the pump and probe lasers. Here we consider 

the effects of these laser incidences and how they contribute to the TDTR measurement. 

3.1.1.1 Pump laser 

The purpose of the incidence of the pump beam of the TDTR setup is to provide a heat 

source at the sample surface, the diffusion from which can be monitored. However, the energy of 

the incident laser beam is not instantaneously converted to heat, but rather undergoes a 

complicated absorption process. Particularly due to the ultrafast pulsed nature of the pump beam, 

it is important to consider the response of the metal to the incident light. 

The initial response of a metal to incident light is driven by electron-photon interactions. In 

response to a laser pulse, electrons are excited to a highly non-equilibrium state in which those 

electrons which absorb photons have significantly more energy than those that do not, making 

the definition of an electron temperature unclear. The absorbed energy causes both diffusive and 

ballistic transport of the hot electrons through the metal which occurs simultaneously with 

scattering between hot and cold electrons.14,15 As electrons scatter with each other, they reach a 

better-defined energy distribution, allowing the definition of an electron temperature (separate 

from the lattice temperature due to slower electron-phonon scattering) by a time hundreds of 

femtoseconds to a few picoseconds after the absorption of the laser pulse. Because of the low 

heat capacity of electrons, this temperature can be very high, e.g. a few thousand Kelvin.15 

Starting simultaneously with the establishment of the electron temperature, but in general 

occurring more slowly, scattering occurs between electrons and the lattice, causing their 

temperatures to equilibrate.16,17. The rate of this equilibration is determined by the electron-

phonon coupling coefficient, which for aluminum is approximately 20 × 1016 W/m3K,18 and in 

typical metals takes hundreds of femtoseconds to a few tens of picoseconds.19 Because of the 

higher heat capacity of the lattice, lattice temperature excursions are much smaller, usually less 

than 10 K in typical TDTR measurements.  

Within tens of picoseconds, the initial response to the laser pulse has died out and only heat 

transport needs to be considered. Because typical TDTR modeling considers only diffusive heat 

transport and neglects differences in electron and lattice temperatures, only delay times greater 

than 100 ps are typically considered for data analysis. For these delay times, the temperature at 

the sample surface is well approximated as resulting from heat transport through the materials 

and interfaces of the sample, as described below.  

Most researchers treat the laser energy as fully absorbed at the surface of the sample. 

Lubner20 follows an approach where the top 10 nm of the aluminum layer, as well as the thermal 

properties of the native oxide layer on top of the aluminum, are condensed to a 1 nm layer with 

10 times the heat capacity in order to account for the finite laser penetration depth. Lubner’s 

approach was taken in this work. 
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3.1.1.2 Probe laser 

The reflection of the probe laser is used to monitor changes in the sample surface 

temperature, which is possible due to a property known as thermoreflectivity. The reflectivity of 

materials has a relatively weak dependence on temperature, typically on the order of dR/dT ~10-

4-10-5 K-1 for common metals such as Al, Au, Cu, and Ni,21,22 but this is easily detectable in a 

TDTR experiment. Several mechanisms underlie the thermoreflectance of metals. A non-

exhaustive list of such mechanisms includes:21 

- Decrease in density due to thermal expansion decrease the plasma frequency and can warp or 

shift electron energy bands. Such shifts in band structure can lead to Fermi level shifts. This 

can lead to changes in reflectivity. 

- The Fermi distribution function becomes less sharp as temperature increases, changing the 

population of electrons available for transitions that originate or terminate at energies near 

the Fermi level. For wavelengths of light corresponding to the energies of these transitions, 

reflectivity will change. 

- The phonon population increases with temperature, which leads to increased electron-phonon 

interactions, decreases electron relaxation times and can lead to changes in electron band 

structure. Again, this leads to changes in reflectivity. 

These effects are in general non-linear with temperature, but for small temperature deviations 

such as those in a typical TDTR measurement a Taylor expansion approach can be taken and the 

reflectivity can be treated as varying linearly with temperature.  

Aluminum is commonly used in TDTR experiments in large part because of its relatively 

high thermoreflectivity, especially near the 800 nm wavelengths typical of titanium:sapphire 

lasers. A combination of two interband transitions is excited by near-800 nm light,23 and changes 

in temperature lead to shifts in the electronic structure that underlies them and so in the 

reflectivity of the probe light.21 This leads to a thermoreflectivity coefficient on the order of 10-4 

K-1.22 Thus, for probing at 800 nm, aluminum-coated samples provide significantly higher signal 

than those coated with other metals.  

We assume that the probe laser penetration depth is shallow enough to model the probe laser 

as measuring the surface temperature of the sample. 

3.1.2 Semiconductors 
This work is not limited to samples which are coated in metal, but also considers the case in 

which the pump and probe laser beams are directly incident on a semiconductor surface. The 

physics underlying the absorption of the pump beam and reflection of the probe are somewhat 

different because of the finite bandgap of the material. These are discussed in Chapter 6. 

3.2 Physics of heat flow 
In solids, conduction is the dominant heat transfer mechanism phenomenon: heat flows in 

response to temperature gradients. This is described by Fourier’s Law, 𝑞 = −�̅̅�𝛻𝑇,24 with the 

proportionality between flux and temperature gradient given by �̅̅�, the thermal conductivity of 

the material, which is a second order tensor which is a function of temperature.25  This is an 

effective phenomenological description but provides little insight into the ties between heat 

transport and other processes.  

To identify such links, it is necessary to move to a microscale view of the solid. We view the 

solid as a network of atoms held together by chemical bonds. At finite temperature, the atoms 

vibrate about their equilibrium positions, and because of the bonds between them, vibrations are 
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transmitted from one atom to its neighbors. Looking at the solid as a whole, such transmitted 

vibrations can be viewed as collective oscillations and called phonons. A reasonable 

approximation of lattice behavior can be made by treating the phonons as particles moving 

through the space occupied by the material.26 They can scatter because of collisions with other 

phonons, defects in the material, or boundaries; the average distance traveled between scattering 

events is denoted as the mean free path, 𝜆. The phonon contribution to the thermal conductivity 

is given by 𝑘𝑝ℎ𝑜𝑛𝑜𝑛 =
1

3
𝐶𝑣𝜆, where 𝐶 is the heat capacity of the material and 𝑣 is the average 

phonon velocity.26 Velocity scales with the strength of the atomic bonding, so materials with 

stronger bonds are generally more thermally conductive; lattice defects and material interfaces 

tend to scatter phonons, reducing 𝜆 and so conductivity. Phononic thermal conductivity varies 

with temperature. At low temperature, the mean free path is determined mostly by impurity and 

boundary scattering and does not change with T, so the thermal conductivity scales like the heat 

capacity of the material, proportional to T3. As temperature increases, phonon-phonon scattering 

becomes more significant, and the mean free path starts to fall. The heat capacity plateaus as 

temperature increases, so the thermal conductivity will also fall.26 

In insulators, conductive heat transport is determined primarily by the behavior of phonons, 

but in materials with mobile electrons, the transport of electrons from one part of the system to 

another carries significant energy. Each electron carries kinetic energy given by its mass and 

velocity, 𝐾𝐸 =
1

2
𝑚𝑣2. The more electrons move, the more energy is transported and the higher 

the thermal conductivity. The ease of electron motion can be quantified by the electron mobility, 

μ. The electrical conductivity, σ, is determined by the product of the mobility, the number of 

mobile electrons, and the amount of charge carried by the electron: 𝜎 = 𝑞𝑛𝜇. If we assume that 

each electron is moving approximately as a free particle, its mean speed will scale as T1/2,26so the 

kinetic energy will scale with T. Because the charge of the electron is temperature independent, 

we expect that the ratio of the electronic thermal conductivity (proportional to kinetic energy) 

and the electrical conductivity (proportion to charge) will be proportional to temperature. This is 

known as the Wiedemann-Franz Law, 
𝜅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝜎
= 𝐿𝑇. The constant L is known as the Lorentz 

number. Its exact value depends on the system under study, but for metals and degenerately 

doped semiconductors, it is usually 2.44*10-8 W Ω K-2 .27 In non-degenerately doped 

semiconductors, the value of L is somewhat lower (called Lorentz number suppression), but the 

proportionality holds.  

Heat transport by phonons and that by electrons coexist, however in insulators and most 

semiconductors thermal conductivity is dominated by phonon behavior and in most metals it is 

dominated by electronic transport.  

3.3 Mathematical description of heat flow in TTR 
To determine the thermal properties of samples, as is the goal of TTR, requires understanding 

how those properties impact the measured signal. This requires understanding how thermal 

properties impact heat flow through a sample, and how that heat flow determines the measured 

response. We begin by discussing the simplest case: a bulk metal. 
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3.3.1 Heat transport in bulk and layered materials with metal surfaces 

3.3.1.1 Bulk metal 

For the purposes of this analysis, we consider only diffusive thermal transport. This 

assumption is valid when the mean free paths of heat carriers are significantly smaller than the 

other length scales in the experiment, such as the laser spot size and depth of heat penetration 

into the sample. In samples with long mean free paths and for experimental conditions that give 

small length scales, ballistic heat transport must also be considered,28 but that is beyond the 

scope of this work. 

To model diffusive thermal transport, we turn to the well-established Fourier model:24  

 
−𝛻 ⋅ (Λ 𝛻𝑇) + 𝑐𝑝

𝜕𝑇

𝜕𝑡
= 0 (3-1) 

where Λ is the thermal conductivity, which is in general a tensor, and 𝑐𝑝 is the volumetric heat 

capacity. We simplify this by considering a material with radial symmetry, where the thermal 

conductivity tensor will be the same in both radial directions. Equation (3-1) can then be 

expanded to 

 
−Λ𝑧

𝜕2𝑇

𝜕𝑧2
− Λ𝑟

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) + 𝑐𝑝

𝜕𝑇

𝜕𝑡
= 0 (3-2) 

where Λz is the thermal conductivity in the z direction (into the material) and Λ𝑟 is the thermal 

conductivity in the radial direction. To solve this equation, we first take the Fourier transform, 

replacing the time derivative with multiplication by ⅈ𝜔: 

 
−Λ𝑧

𝜕2�̃�

𝜕𝑧2
− Λ𝑟

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕�̃�

𝜕𝑟
) + 𝑐𝑝ⅈ𝜔�̃� = 0 (3-3) 

Then, assuming a medium with infinite radial extent, we take the Hankel transform, which 

replaces the derivative in 𝑟 with multiplication by −𝑘2:  

 
−Λz

𝜕2�̃�

𝜕𝑧2
+ Λ𝑟𝑘

2�̃� + 𝑐𝑝ⅈ𝜔�̃� = 0 (3-4) 

which is now a differential equation in terms of only 𝑧, 

 𝜕2�̃�

𝜕𝑧2
=

Λ𝑟𝑘
2 + 𝑐𝑝ⅈ𝜔

Λ𝑧
�̃� (3-5) 

and is solved by 

 �̃�(𝑧, 𝑘, 𝜔) = 𝐴𝑒−𝑞𝑧 + 𝐵𝑒𝑞𝑧 (3-6) 

and equivalent expressions, where  

 
𝑞2 = 

𝛬𝑟𝑘
2 + 𝑐𝑝ⅈ𝜔

𝛬𝑧
 (3-7) 

In the case of an effectively semi-infinite sample (one where the sample thickness is much 

greater than other length scales), we apply the boundary condition that the temperature deviation 

must go to zero as z becomes large: 

 lim
𝑧→ ∞

�̃� = 0 (3-8) 

so  

 �̃�(𝑧, 𝑘, 𝜔) = 𝐴𝑒−𝑞𝑧 (3-9) 

For the purposes of analyzing TDTR data, we need to know how the temperature responds to 

heating. For samples with metal surfaces, we consider only surface heating and surface 

measurement. For a heat source of magnitude Q at the surface, we can write  
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𝑄 =  −Λ𝑧

𝑑�̃�

𝑑𝑧
|
𝑧=0

 (3-10) 

or  

 𝑄 =  Λ𝑧𝑞𝐴 (3-11) 

The quantity we seek is the thermal response, 𝐺 = �̃�/𝑄, which here is  

 
𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘) =

1

𝑞Λ𝑧
 𝑒−𝑞𝑧 (3-12) 

or, at the surface (𝑧 = 0) as measured in traditional TDTR,  

 
𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘) =

1

𝑞Λ𝑧
  (3-13) 

For the purposes of TDTR measurements, the surface heating is provided by the pump beam, 

which is assumed to have a Gaussian radial distribution: 

 𝑝0(𝑟) = 𝐴0𝑒
(−2𝑟2∕𝑤0

2) (3-14) 

where w0 is the 1/e2 radius of the pump laser spot. 

To apply this to our solution for G, we apply a Hankel transform and find 

 
𝑝0(𝑘) =

𝐴0

4𝜋
𝑒−𝑘2𝑤0

2∕8 (3-15) 

In real space, the temperature deviation caused by the pump heating is given by the 

convolution of the pump profile and the sample thermal response, but in the spacial frequency 

domain this becomes multiplication: 

 
�̃�𝑠𝑢𝑟𝑓( 𝑘, 𝜔) =

𝐴0

4𝜋
𝑒−𝑘2𝑤0

2∕8 𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘) (3-16) 

The measured TDTR signal is based on the reflection of the probe beam, which occurs over 

the area of the probe laser spot. We consider a probe spot with a Gaussian profile of radius w1: 

 𝑝1(𝑟) = 𝐴1𝑒
(−2𝑟2∕𝑤1

2) (3-17) 

The measured component of the temperature deviation is then given by the real space 

equation  

 
𝐻(𝜔) = ∫ 𝐴1𝑇𝑠𝑢𝑟𝑓(𝑟)𝑒

(−2𝑟2∕𝑤1
2)

∞

0

𝑟 𝑑𝑟 (3-18) 

We use the fact that 𝑇𝑠𝑢𝑟𝑓(𝑟) can be found by taking the inverse Hankel transform of 

�̃�𝑠𝑢𝑟𝑓( 𝑘), 
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∞

0
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4𝜋
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2∕8 𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘)
∞

0

𝐽0(𝑘 𝑟) 𝑘 𝑑𝑘 

(3-19) 

where 𝐽0 is the 0th order Bessel function of the first kind, and write 

 
𝐻(𝜔) = ∫ 𝐴1 ∫

𝐴0

4𝜋
𝑒−𝑘2𝑤0

2∕8 𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘)
∞

0

𝐽0(𝑘 𝑟) 𝑘 𝑑𝑘 𝑒(−2𝑟2∕𝑤1
2)

∞

0

𝑟 𝑑𝑟 (3-20) 

Switching the order of integration and simplifying, we find 

 
𝐻(𝜔) =

𝐴0𝐴1

4𝜋
∫ 𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘)𝑒−𝑘2𝑤0

2 8⁄ ∫  𝑒(−2𝑟2 𝑤1
2⁄ )

∞

0

𝐽0(𝑘 𝑟) 𝑟 𝑑𝑟
∞

0

𝑘 𝑑𝑘

=
𝐴0𝐴1

16𝜋2
∫ 𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘)𝑒−𝑘2(𝑤0

2+𝑤1
2) 8⁄

∞

0

𝑘 𝑑𝑘 

(3-21) 
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which is generally evaluated numerically.  

Equation (3-21) is the frequency domain sample response discussed in section 2.2.2. 

3.3.1.2 Layered structures 

For layered samples, like many of those involved in TDTR measurement, heat flow through 

multiple materials and interfaces must be modeled. For example, for a metal-coated sample, heat 

diffuses first through the metal, then through the interface between the metal and the layer 

below, and then through the layer below, and so on for as many layers as present in the sample. 

The conductivity of interfaces is a rich topic29–31 but for our purposes we consider only the 

result that heat flow through an interface can be described as proportional to the temperature 

difference across the interface and so summarized by an interface conductivity, analogous to the 

thermal conductivity of bulk materials.  

Finding the thermal response of a layered sample involves solving the heat equation in all 

layers and matching appropriate boundary conditions at the interfaces. This process can be made 

tractable through a frequency-domain matrix formalism. Two main approaches have been taken 

in the literature.  

Cahill7 builds on the algorithm developed by Feldman,32 which treats temperature flow each 

layer, e.g. layer j, as two traveling thermal waves, one moving in +𝑧 and the other in −𝑧: 

 𝑇𝑗(𝑧) = 𝑇𝑗
+𝑒𝑞𝑧 + 𝑇𝑗

−𝑒−𝑞𝑧 (3-22) 

Feldman and Cahill describe one-dimensional systems where 𝑞2 = ⅈ 𝜔
𝑐𝑝

∧𝑧
 for ω the 

frequency, 𝑐𝑝 the volumetric heat capacity, and ∧𝑧 the thermal conductivity in the direction of 

heat flow. As derived above in section 3.3.1.1 and by Schmidt,33 this can readily be extended to 

include radial conduction by redefining 𝑞 as in equation (3-7).  

Alternatively, Schmidt, Chen, and Chen9 follow the approach developed by Carslaw and 

Jaegar,34 in which the temperature and heat flux at each location are modeled. The two 

approaches involve different arithmetic but yield equivalent results. Here we follow Cahill’s 

approach.  

Equation (3-22) can be made easier to manipulate by representing the temperature in each 

layer with the vector 

 
𝑇𝑗⃗⃗  (𝑧) = (

𝑇𝑗
+𝑒𝑞𝑗𝑧

𝑇𝑗
−𝑒−𝑞𝑗𝑧

) (3-23) 

Several important relationships can then be expressed in matrix form: 

i) Heat flow within a layer, e.g. from point z1to point 𝑧2, can be expressed by matrix 

multiplication: 

At 𝑧1,  

 𝑇𝑗(𝑧1) = 𝑇𝑗
+ⅇ𝑞𝑗𝑧1 + 𝑇𝑗

−ⅇ−𝑞𝑗𝑧1 (3-24) 

so  

 
𝑇𝑗⃗⃗  (𝑧1) = (

𝑇𝑗
+𝑒𝑞𝑗𝑧1

𝑇𝑗
−𝑒−𝑞𝑗𝑧1

) 
(3-25) 

At 𝑧2,  



20 

 

 𝑇𝑗(𝑧2) = 𝑇𝑗
+𝑒𝑞𝑗𝑧2 + 𝑇𝑗

−𝑒−𝑞𝑗𝑧2

= 𝑇𝑗
+𝑒𝑞𝑗𝑧1𝑒𝑞𝑗(𝑧2−𝑧1) + 𝑇𝑗

−𝑒−𝑞𝑗𝑧1𝑒−𝑞𝑗(𝑧2−𝑧1) (3-26) 

meaning that  

 
𝑇𝑗⃗⃗  (𝑧2) = (

𝑇𝑗
+𝑒𝑞𝑗𝑧1𝑒𝑞𝑗(𝑧2−𝑧1)

𝑇𝑗
−𝑒−𝑞𝑗𝑧1𝑒−𝑞𝑗(𝑧2−𝑧1)

)

= (𝑒
𝑞𝑗(𝑧2−𝑧1) 0

0 𝑒−𝑞𝑗(𝑧2−𝑧1)
) 𝑇𝑗⃗⃗  (𝑧1)

≡  𝑼𝒋(𝑧2 − 𝑧1)𝑇𝑗⃗⃗  (𝑧1) 

(3-27) 

where we define  

 
𝑼𝒋(𝑧2 − 𝑧1) ≡ (𝑒

𝑞𝑗(𝑧2−𝑧1) 0
0 𝑒−𝑞𝑗(𝑧2−𝑧1)

) 
(3-28) 

as the operator for translation within a layer.  

ii) Heat flow across boundaries can be written as matrix multiplication. If we consider a 

boundary with negligible thermal resistance at location 𝑧 = 𝜉 between two layers 𝑎 and 

𝑏, as shown in Figure (3-1), we can write temperature and heat flux continuity as 

 𝑇𝑎(𝜉
−) = 𝑇𝑏(𝜉

+) (3-29) 

 
𝛬𝑧,𝑎

𝑑𝑇𝑎

𝑑𝑧
|
𝑧=𝜉−

= 𝛬𝑧,𝑏

𝑑𝑇𝑏

𝑑𝑧
|
𝑧=𝜉+

 
(3-30) 

which are satisfied if  

 
𝑇𝑏
⃗⃗⃗⃗ (𝜉+) =

1

2 𝑞𝑏Λ𝑏
(
𝑞𝑏Λb + 𝑞𝑎Λa 𝑞𝑏Λb − 𝑞𝑎Λa

𝑞𝑏Λb − 𝑞𝑎Λa 𝑞𝑏Λb + 𝑞𝑎Λa
) 𝑇𝑎
⃗⃗⃗⃗ (𝜉−)

≡ 𝚪𝒃𝒂𝑇𝑎
⃗⃗⃗⃗ (𝜉−) 

(3-31) 

where  

 
𝚪𝒃𝒂 ≡

1

2 𝑞𝑏Λ𝑏
(
𝑞𝑏Λb + 𝑞𝑎Λa 𝑞𝑏Λb − 𝑞𝑎Λa

𝑞𝑏Λb − 𝑞𝑎Λa 𝑞𝑏Λb + 𝑞𝑎Λa
) 

(3-32) 

is defined as the matrix operator for moving from layer a to layer b,32 and we have 

dropped the subscript z for simplicity of notation. 

Thermal resistance can also be accounted for by adding terms to this matrix 

expression,32 but in TDTR modeling it is more practical to treat the interface as its own 

extremely thin (e.g. 1 nm) layer with negligible heat capacity.  

iii) Consideration of the boundary conditions surrounding an infinitesimal region of heat 

generation located within a material, e.g. at location 𝑧 = 𝜁, allows relating the 

temperature vectors on the two sides of the heat source: 
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𝑇𝑎
⃗⃗⃗⃗ (𝜁+) − 𝑇𝑎

⃗⃗⃗⃗ (𝜁−) = −
𝑄

2 𝑞𝑎Λ𝑎
(

1
−1

) 
(3-33) 

where Q represents the heating power.32  

 

These tools are used to find the surface temperature of a TDTR sample in response to 

heating. In Figures (3-1) and (3-2) we illustrate this with a 1D sketch, but note that consideration 

of appropriately defined q allows the same approach to be used for 3D radially symmetric 

samples. A model layered structure is shown in Figure (3-2). The left-most layer is taken to have 

an insulated surface (for most TDTR measurements, heat loss to the air is negligible), and the 

right-most layer is taken to be semi-infinite. This assumption is valid when the layer thickness is 

much greater than the penetration depth of the TDTR measurement, which is typically on the 

order of microns to hundreds of microns. We assess how the surface temperature is changed by 

near-surface heating. 

Treating the surface as position 𝑧 = 0, the heat source is considered to be localized at an 

infinitesimal depth at 𝑧 = 𝜖, where 𝜖 is an extremely small value. We now consider the modeling 

of the temperature at each of the marked points, following the procedure laid out by Feldman.32 

For points i and ii, we begin with the boundary condition at the left side of the structure. 

Point i is located to the left of the interface between layer 0 and the air, at 𝑧 = 0−. Applying 

equation (3-22) to the air layer, we find 

 𝑇𝑎𝑖𝑟(𝑧) = 𝑇𝑎𝑖𝑟
+ 𝑒𝑞𝑧 + 𝑇𝑎𝑖𝑟

− 𝑒−𝑞𝑧 (3-34) 

and note that any non-zero value for 𝑇𝑎𝑖𝑟
−  will lead to a temperature which diverges away from 

the structure, which is unphysical. Therefore, we define  

 
𝑇𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑧) = (

𝑇𝑠𝑢𝑟𝑓 𝑒
𝑞𝑧

0
) (3-35) 

where we have used the fact that at 𝑧 = 0−, 𝑇𝑎𝑖𝑟 ≡ 𝑇𝑠𝑢𝑟𝑓. We then evaluate at 𝑧 = 0− to find the 

value of �⃗�  at point i: 

  

 
  

 

Figure 3-1: A 1D sketch of a simple 
layered structure with localized 
heating to which Feldman’s 
algorithm can be applied. 

Figure 3-2: A more complicated layered 
structure with near-surface heating, as in a 
TDTR measurement 
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𝑇𝑖
⃗⃗  = (

𝐴 
0
) ≡ (

𝑇𝑠𝑢𝑟𝑓 

0
) (3-36) 

We next seek �⃗�  at point ii, which we find by applying matrix operator 𝚪𝒂𝒊𝒓,𝟎:   

 𝑇𝑖𝑖
⃗⃗⃗⃗ =  𝚪𝒂𝒊𝒓,𝟎𝑇𝑖

⃗⃗   (3-37) 

Treating the thermal conductivity of air as zero (perfectly insulating), we simplify: 

 
𝚪𝒂𝒊𝒓,𝟎 = 

1

2 𝑞0Λ0
(
𝑞0Λ0 𝑞0Λ0

𝑞0Λ0 𝑞0Λ0
) =

1

2
(
1 1
1 1

) (3-38) 

 
𝑇𝑖𝑖
⃗⃗⃗⃗ =  

1

2 
(
1 1
1 1

) (
𝑇𝑠𝑢𝑟𝑓 

0
) =

1

2
(
𝑇𝑠𝑢𝑟𝑓 

𝑇𝑠𝑢𝑟𝑓
) (3-39) 

We now consider the temperature vectors at points iii-vii. For these, we work from the 

rightmost point (vii) leftward. Point vii is located on the right side of the interface between 

materials N-1 and N. We begin by writing an expression for the temperature in layer N in terms 

of the components of the temperature vector, using equation (3-22): 

 𝑇𝑁(𝑧) = 𝑇𝑁
+𝑒𝑞𝑧 + 𝑇𝑁

−𝑒−𝑞𝑧 (3-40) 

In parallel to the above argument, we note that any non-zero component of 𝑇𝑁
+ will lead to a 

divergence as 𝑧 → ∞. Thus, as above,32 

 
𝑇𝑣𝑖𝑖
⃗⃗⃗⃗ ⃗⃗ = (

0
𝑇𝑏𝑢𝑙𝑘

) (3-41) 

Following the same process we used to find the temperature vector at point ii, we apply 

𝚪𝑵−𝟏,𝑵 to find that at vi, which lies across the interface from vii: 

 
𝑇𝑣𝑖
⃗⃗ ⃗⃗  = 𝚪𝑵−𝟏,𝑵 (

0
𝑇𝑏𝑢𝑙𝑘

) (3-42) 

where all terms of 𝚪𝑵−𝟏,𝑵 are given by the properties of materials N and N-1 and the parameters 

of the measurement.  

We now seek the temperature vector at point v, which lies in material N-1 a distance LN-1 to 

the left of vi, at the interface with material N-2. This is found by applying the operator 

𝑼𝑵−𝟏(𝐿𝑁−1): 

 
𝑇𝑣
⃗⃗  ⃗ = 𝑼𝑵−𝟏(𝐿𝑁−1) × 𝚪𝑵−𝟏,𝑵 (

0
𝑇𝑏𝑢𝑙𝑘

) (3-43) 

where again 𝑼𝑵−𝟏 is fully determined by the properties of material N-1 and the measurement 

parameters.  

A similar process is applied to cross each boundary and move through each layer. For 

example, point iv lies at the right edge of material 0, and the temperature vector there can be 

expressed as 

 
𝑇𝑖𝑣
⃗⃗⃗⃗  ⃗ = 𝚪𝟎,𝟏 × 𝑼𝟏(𝐿1) × 𝚪𝟏,𝟐 × …× 𝑼𝑵−𝟏(𝐿𝑁−1) × 𝚪𝑵−𝟏,𝑵 (

0
𝑇𝑏𝑢𝑙𝑘

) (3-44) 

and point iii lies at 𝑧 = 𝜖+, infinitesimally close to the left edge of material 0, so the temperature 

vector there can be written  

 
𝑇𝑖𝑖𝑖
⃗⃗ ⃗⃗  ⃗ = 𝑼𝟎(𝐿0) × 𝚪𝟎,𝟏 × 𝑼𝟏(𝐿1) × 𝚪𝟏,𝟐 × …× 𝑼𝑵−𝟏(𝐿𝑁−1) × 𝚪𝑵−𝟏,𝑵 (

0
𝑇𝑏𝑢𝑙𝑘

) (3-45) 

For convenience, we define  

 𝑇𝑖𝑖𝑖
⃗⃗ ⃗⃗  ⃗ ≡ 𝑇𝑏𝑢𝑙𝑘 (𝐵

+

𝐵−) (3-46) 
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We now have expressions for the temperature at 𝑧 = 0+ = 𝜖− and 𝑧 = 𝜖+ (points ii and iii), 

which are separated only by the infinitesimal layer of heat deposition. We use equation (3-33) to 

relate these: 

 
𝑇0
⃗⃗  ⃗(𝜖+) − 𝑇0

⃗⃗  ⃗(𝜖−) = 𝑇𝑖𝑖𝑖
⃗⃗ ⃗⃗  ⃗ − 𝑇𝑖𝑖

⃗⃗⃗⃗ = −
𝑄

2 𝑞0Λ0
(

1
−1

) (3-47) 

 
𝑇𝑏𝑢𝑙𝑘 (𝐵

+

𝐵−) − 
1

2
(
𝑇𝑠𝑢𝑟𝑓 

𝑇𝑠𝑢𝑟𝑓
) = −

𝑄

2 𝑞0Λ0
(

1
−1

)  

 

(3-48) 

Separating this into two equations,  

 
𝑇𝑏𝑢𝑙𝑘𝐵

+ − 
1

2
𝑇𝑠𝑢𝑟𝑓 = −

𝑄

2 𝑞0Λ0
 (3-49) 

 
𝑇𝑏𝑢𝑙𝑘𝐵

− − 
1

2
𝑇𝑠𝑢𝑟𝑓 =

𝑄

2 𝑞0Λ0
 (3-50) 

we can solve for 𝑇𝑠𝑢𝑟𝑓: 

 
𝑇𝑠𝑢𝑟𝑓 =

𝑄

𝑞0Λ0
(
𝐵+ + 𝐵−

𝐵− − 𝐵+
) (3-51) 

So, the surface temperature response per unit heating will be 

 
𝐺𝑙𝑎𝑦𝑒𝑟𝑒𝑑(𝜔, 𝑘) =

1

𝑞0Λ𝑧,0
(
𝐵+ + 𝐵−

𝐵− − 𝐵+
) (3-52) 

with 

 (𝐵
+

𝐵−) = 𝑼𝟎(𝐿0) × 𝚪𝟎,𝟏 × 𝑼𝟏(𝐿1) × 𝚪𝟏,𝟐 × …× 𝑼𝑵−𝟏(𝐿𝑁−1) × 𝚪𝑵−𝟏,𝑵 (
0
1
) (3-53) 

This result is used by Cahill for a system where all materials are isotropic.7 

As with the modeling of heat flow in bulk materials, we seek the response, as measured by 

the probe beam, to the heating caused by the pump. Conveniently, the approach is the same as 

for a bulk material, so we can use equation (3-21) and simply replace 𝐺𝑏𝑢𝑙𝑘(𝜔, 𝑘) with 

𝐺𝑙𝑎𝑦𝑒𝑟𝑒𝑑(𝜔, 𝑘): 

 
𝐻(𝜔) =

𝐴0𝐴1

16𝜋2
∫ 𝐺𝑙𝑎𝑦𝑒𝑟𝑒𝑑(𝜔, 𝑘)𝑒−𝑘2(𝑤0

2+𝑤1
2) 8⁄

∞

0

𝑘 𝑑𝑘 (3-54) 

where 𝐴0 and 𝐴1 are the pump and probe intensities and w0 and w1 are the pump and probe spot 

radii. This equation is generally solved numerically, and, plugged into equation (2-13) gives a 

model of the measured signal. 

3.3.2 Heat transport coupled with charge transport 
Modeling for samples where the laser is directly incident on a semiconductor surface is more 

complicated. This case is described in Chapter 6. 

3.4 Summary 
We have discussed the interactions between lasers and our samples and established a method 

for accounting for their frequency responses. Combining this with the results from Chapter 2 we 

have a recipe to move from materials properties and system parameters to measured signal. 

Fitting this model to experimental data allows the determination of materials parameters. 
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4 Determination of sample properties 
As discussed in Chapters 2 and 3, the measured signal in a time domain reflectivity (TDR) 

measurement relates to the properties of the materials that make up the sample, but the 

relationship is complicated. In order to extract materials properties from measured data, a model 

describing the sample is constructed using the equations in Chapter 3, and a non-linear fitting 

algorithm is used to fit to unknown properties, such as the thermal conductivity of the material 

under test.  

4.1 Existing approach: Python curve_fit 
Numerous algorithms for non-linear fitting are available and could be used with TDR data. 

One of the most user-friendly is provided by the Python package SciPy,35 as the function 

scipy.optimize.curve_fit. By default, this function uses the Levenberg-Marquardt algorithm to 

minimize the sum of the squares of the residuals between the model and the data.36–38 Bounds on 

the parameters can be provided, though in most cases in this work they were not and failure to 

find physically reasonable values was seen as a reason to question data validity. Multiple 

parameters can be solved for simultaneously, though solving for too many results in numerical 

instability. The definition of “too many” is discussed below. The function returns several values, 

most relevantly the best fit parameters and an estimated covariance matrix. Though the 

covariance matrix provides one measure of the uncertainty in the fit, curve_fit does not account 

for uncertainty in input parameters other than those being solved for, so the returned matrix alone 

often grossly underestimates the uncertainty. For example, for measurements with small laser 

spot sizes, the uncertainty in measuring the spot size leads to uncertainty in the fitted value. 

Naïve use of curve_fit does not account for this. To account for such errors, parameters subject 

to uncertainty were manually perturbed and fits were found at each parameter value. Combining 

the resulting variance of the output parameters gives an improved estimate of the overall 

measurement uncertainties: 

 
𝛥𝛬𝑡𝑜𝑡 = √∑(∆𝛬𝑖)2

𝑖

 (4-1) 

where 𝛥𝛬𝑡𝑜𝑡 represents the total error reported, and 𝛥𝛬𝑖 is the error resulting from the 

perturbation of each parameter. This, however, does not accurately account for interactions 

among parameter values—that is, whether the uncertainty in two or more parameters affects the 

fit similarly or differently. As such, it is a useful estimate but could be improved upon.  

Though curve_fit is a powerful tool for determining parameters which allow the modeled 

TDR data to match the measured data, questions remain about how to use it well. Here, two main 

questions are addressed: how many parameters can be fit, and how uncertainty in other 

parameters affects the results.  

4.2 Number of fitting parameters 
It is not uncommon for several sample properties in a TDR measurement to be unknown or 

poorly known. For example, typical measurements seek to determine the thermal conductivity of 

a sample material, but the thermal conductance of the interface between the sample material and 

other layers is unlikely to be known. Though it is straightforward to write code to that leaves 

multiple parameters unknown, whether a measurement provides enough information to 

independently determine those properties must be considered in order to get meaningful results. 
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The standard approach to assessing what can be solved for relies on a tool known as a sensitivity 

plot, which summarizes how the modeled data varies with variation in given parameters. 

Generally, qualitative assessment of the sensitivities to different parameters is used to select 

measurement conditions and determine what is appropriate to fit. In this work, the use of Fisher 

information matrices to provide a more quantitative result is proposed.  

4.2.1 Sensitivity plots 
Intuitively, whether two parameters can be independently solved for is determined by 

whether they affect the result in sufficiently different ways. For example, if one parameter affects 

the model only at short delay times and another only at long delay times, both can be determined. 

In practice, the effects are rarely so simple. A sensitivity plot provides a way of viewing how 

strongly a parameter affects the model in various regimes. As shown in Figure 4-1 a-c), the 

simplest way to determine the effect of changing a parameter is simply to perturb it and compare 

the perturbed and unperturbed models. However, this rapidly becomes unwieldy. To better 

summarize such information, the sensitivity to a parameter is defined as  

 
𝑆 =

𝑑 ln(𝑚𝑜𝑑𝑒𝑙 𝑟𝑒𝑠𝑢𝑙𝑡)

𝑑 ln (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)
 (4-2) 

Figure 4-1: For a quartz sample coated with 70 nm of aluminum and measured with a 0.3 MHz modulation 
frequency, the effects on the calculated caused by perturbations in a) substrate thermal conductivity, b) substrate 
heat capacity, and c) interface thermal conductivity can be compactly summarized as lines in d) a sensitivity plot. 

d c 

a b 
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where, for example, the model result is the magnitude or phase of the measured signal. The use 

of the natural logarithm inside the derivative provides normalization, since 𝑑 ln(𝑥) =
1

𝑥
𝑑𝑥, 

which allows improved comparisons between parameters that are valid regardless of units. By 

calculating the sensitivity for various parameters, it is straightforward to view several effects at 

once, as shown in Figure 4-1d. This provides a powerful tool for comparing the effects of various 

parameters—for example, it quickly becomes clear that in relatively thermally insulating 

samples, such as quartz, measurements at high modulation frequencies are nearly identically 

sensitive to heat capacity and thermal conductivity, (Figure 4-2) but at lower modulation 

frequencies the effects are different. (Figure 4-1d) Thus, if both are unknown or uncertain, 

measurement at lower frequency is more helpful. But, as mentioned above, this relies on a 

qualitative assessment of similarity.  

4.2.2 Fisher information matrices 
The framework of Fisher information provides a tool to better quantify what can be 

determined from a measurement. The Fisher information provides a value that expresses how 

much information an observable variable (say the amplitude or phase at a given delay time and 

modulation frequency) gives about an unknown parameter (say, the thermal conductivity).39 

Defining the likelihood function for the observable, 𝑋, for a given value of the unknown 

parameter, 𝜃, as 𝑓(𝑋, 𝜃), the Fisher information is given by39  

 
𝐼(𝜃) = 𝐸 [(

𝜕

𝜕𝜃
ln 𝑓(𝑋, 𝜃))

2

| 𝜃] = ∫(
𝜕

𝜕𝜃
ln 𝑓(𝑥, 𝜃))

2

𝑓(𝑥, 𝜃) 𝑑𝑥 (4-3) 

where  𝐸[𝑔(𝑋| 𝜃)] represents the expectation value of 𝑔(𝑋) at a given value of 𝜃, and the 

integration over all possible values 𝑥 of the observable 𝑋 means that the resulting information, 

𝐼(𝜃), is not a function of the measured value 𝑋. However, the units chosen for 𝜃 do matter: if 𝜃 

is multiplied by a constant, the Fisher information will scale as well: 𝐼(𝑎𝜃) = 𝑎2 𝐼(𝜃).39 To 

avoid complications from unit selection, calculations of information in this work were done 

based on parameters normalized to their initial estimates.  

The above definition is valid for a measurement that depends on a single parameter, but the 

result easily generalizes to multi-parameter measurements. For a measurement which depends on 

𝑛 parameters, the scalar 𝐼(𝜃) is replaced with a 𝑛 × 𝑛 matrix with terms given by39 

 
𝐼𝑖,𝑗(𝜃 ) = 𝐸 [(

𝜕

𝜕𝜃𝑖
ln 𝑓(𝑋, 𝜃 )) (

𝜕

𝜕𝜃𝑗
ln 𝑓(𝑋, 𝜃 )) | 𝜃  ] (4-4) 

Figure 4-2: For a quartz sample coated with 70 nm of 
aluminum and measured with a 10 MHz modulation 
frequency, the sensitivity to substrate heat capacity is 
nearly identical to that to substrate thermal conductivity, 
unlike for measurements at 0.3 MHz (as in Figure 4-1). 
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where 𝜃  is a vector of the 𝑛 parameters. This matrix is referred to as the Fisher information 

matrix (FIM). 

An important application of the Fisher information (in scalar or matrix form) is its use in 

defining the Cramér-Rao bound,40,41 which states that the variance of an unbiased estimator 

cannot be lower the inverse of the Fisher information. In the scalar case, this refers to single 

numbers; in the matrix case, the inverse of the FIM provides bounds on the variance-covariance 

matrix for the parameters. Though the topic of selecting unbiased estimators is beyond the scope 

of this work, the bound provides the insight that a large Fisher information is desirable for 

accurate parameter estimation. Higher Fisher information corresponds to lower uncertainty in 

estimated parameters. 

Calculation of the FIM is often used in optimal experiment design, where measurement 

conditions are selected to maximize properties such as the determinant, trace, or value of the 

smallest eigenvalue of the FIM, in order to minimize the variance of one or, usually, several 

parameters.42 In this work, the measurement conditions are taken as given (or rather, chosen for 

experimental convenience) and the FIM is used to assess the information content of the resultant 

data, but the same tools apply. Calculation of the likelihood function needed to find the Fisher 

information matrix requires knowledge of how 𝜃 affects 𝑋—that is, a model of the system. 

Though Chapter 3 lays out such a model, its nonlinear nature means that the likelihood and so 

the Fisher information is a function of the model parameters. This makes use of the Fisher 

information a somewhat circular process, wherein estimates of the parameters must be used to 

calculate it before it can be used to determine what parameters can be fit to. Similarly, if the 

model does not accurately represent the sample, the estimate of the FIM it provides will be 

inaccurate.  

One important implication of the Cramér-Rao bound is that uncertainties can be determined 

only if the matrix is invertible—that is, not singular. In fact, if the matrix is singular, not all 

parameters can be observed simultaneously.43 Definitionally, the matrix is singular if any of the 

eigenvalues are zero. Practically, when calculating from experimental models, eigenvalues may 

be finite but very small, making the matrix near-singular and causing inversion to be unstable. 

For the purposes of this work, a matrix with smallest eigenvalue more than three orders of 

magnitude smaller than the largest eigenvalue is treated as effectively singular. The number of 

non-zero eigenvalues of a matrix is its rank, and for a matrix of dimension n x n to be non-

singular, it must have rank n. The dimension of the FIM is determined by the number of 

parameters involved in the calculation, so for a given FIM the rank, or equivalently the number 

of non-zero eigenvalues, gives the maximum number of parameters that can be determined. An 

FIM with rank less than its dimension may imply that it is possible to solve for combinations of 

the parameters, e.g. the thermal effusivity, just not for each parameter uniquely, e.g. the thermal 

conductivity and heat capacity. 

In the simplest case, the FIM would have no off-diagonal elements, and so neither would its 

inverse, the optimally measured variance-covariance matrix. With actual physical models, this 

tidiness is unlikely, and off-diagonal elements of the FIM are likely to be non-zero. It is 

worthwhile, then, to consider their physical significance. For the FIM of just two parameters, the 

limiting cases of a toy model are presented: 

1)  𝐹𝐼𝑀 =  (
1 𝜀
𝜀 1

) , 𝜀 ≪ 1 →  𝐹𝐼𝑀−1 = (
1 −𝜀
−𝜀 1

) (4-5) 

For small values of the off-diagonal elements of the FIM, the Cramér-Rao bound gives a 

minimum covariance equivalent to minus the value of the off-diagonal element—the 
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magnitudes of the off-diagonal elements correspond to the magnitude of the covariance, 

and when they are zero the parameters are not correlated. 

 

2)  
𝐹𝐼𝑀 = (

1 1 − 𝜀
1 − 𝜀 1

) , 𝜀 ≪ 1 →  𝐹𝐼𝑀−1 =
1

2 𝜀
(

1 −1
−1 1

) (4-6) 

For large values of the off-diagonal elements, the matrix becomes nearly singular, so its 

inverse diverges as 1/𝜀. Additionally, though, the magnitude of the off-diagonal elements 

of the Cramér-Rao bound also approach one—the parameter estimates become very 

strongly correlated when the off-diagonal elements approach the diagonal elements. This 

result generalizes to higher dimensions—larger values of off-diagonal elements 

correspond to more strongly correlated parameter estimates.  

It should be noted that for multiple independent measurements, FIMs add.39 Intuitively, 

multiple measurements, especially at different conditions, should provide more information, and 

mathematically this is true. Thus, a near-singular FIM does not mean that parameters cannot be 

determined at all, simply that the measurement for which the FIM was calculated is insufficient.  

4.2.2.1 4.2.2.1 Examples of the FIM: Aluminum on quartz 

To make the arguments of the previous section clearer, some FIMs for a model system 

consisting of 80 nm of aluminum on a quartz substrate are calculated. The eigenvalues, 

normalized to their largest value for clarity, are presented in Table 4-1, and the FIMs, again 

normalized to the largest diagonal element, are presented in Figure 4-3. From the list of 

eigenvalues, it is immediately apparent that that at the lower modulation frequency it is 

potentially possible to determine at least two of the three parameters considered here, as two of 

the eigenvalues are within an order of magnitude of each other. At the higher modulation 

frequency, the second-largest eigenvalue is already orders of magnitude smaller than the first, so 

it is only possible to determine one of the three values. Looking at the FIMs more directly allows 

insight into several key differences between the two modulation frequencies. First, at high 

frequencies the off-diagonal elements between the thermal conductivity and heat capacity for the 

quartz approach one, implying that those parameters are extremely correlated and trying to solve 

for both will lead to a near-singular FIM. Second, the on-diagonal element for the interface 

thermal conductivity is much smaller at high frequency, implying that uncertainty in that 

parameter will be larger for a low-frequency measurement than for a higher-frequency one 

(compared to the uncertainty in thermal conductivity of quartz, since these FIMs are 

normalized). However, the off-diagonal elements between the thermal conductivity of quartz and 

the interface conductivity are smaller at higher frequency, implying lower correlation between 

these parameter estimates. This information could be used to inform measurement choices—for 

example, if the goal is measurement of thermal conductivity and a significant source of 

uncertainty arises from uncertainty in the heat capacity of quartz, measurement at lower 

frequency is more suitable. If uncertainty in the result is predominantly from uncertainty in 

interface conductivity, measurement at higher frequency might be a better choice, though there 

might not be enough information in the measurement to determine both the interface 
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conductivity and the quartz thermal conductivity without additional measurement. However, as 

highlighted by the additive nature of FIMs, measurement at both frequencies would be more 

powerful still. As shown in Figure 4-3, most values in the normalized FIM for a combined 

measurement at both frequencies are intermediate between those for measurement at either 

modulation frequency. The key result arises when examining the eigenvalues of the combined 

matrix: the third eigenvalue is nearly a factor of four larger than for measurement at either 

modulation frequency alone. As might be expected, simultaneous fitting of measurement at 

different measurement conditions makes solving for multiple parameters more feasible. If it were 

necessary to solve for all three of these parameters, calculation of the FIM could be used to 

determine what measurements would allow such fitting. 

4.2.2.2 FIM: Conclusions 

The FIM is a powerful tool for designing experiments and determining what can be solved 

for within a model. Only a few of its applications are described here—much more can be done, 

and done with greater mathematical rigor, but such calculations are beyond the scope of this 

work. 

4.3 More sophisticated fitting: emcee 
When considering fitting to additional parameters of a TDR model, it becomes desirable to 

find more sophisticated fitting methods. Each parameter considered is a new dimension of 

parameter space to explore, and the interactions among parameters become important to 

consider. To better address these factors, the use of Markov Chain Monte-Carlo (MCMC) 

methods was explored. MCMC methods are widely used, especially for the fitting of 

Eigenvalues, normalized to largest value: 

0.3 MHz 

modulation 

10 MHz 

modulation 

Combined 

measurement 

1 1 1 

0.18 6.7 × 10−3 0.17 

7.6 × 10−4 1.5 × 10−8 2.8 × 10−3 
 

  
      

  
 
 
 
 
      

  
         

  
      

  
 
 
 
 
      

  
         

 
1 000 0 328  0 639

0 328 0 239  0 062

 0 639  0 062 0 579  

0.3 MHz modulation 

 
1 000 0 998  0 100

0 998 0 996  0 100

 0 100  0 100 0 023  
  
      

  
      

  
 
 
 
 
      

  
 
 
 
 
      

  
         

  
         

10 MHz modulation 

Combined measurement 

  
      

  
 
 
 
 
      

  
         

  
      

  
 
 
 
 
      

  
         

 
1 000 0 718  0 325

0 718 0 679  0 084

 0 325  0 084 0 256  

Table 4-1: Eigenvalues of the Fisher information matrix, 
normalized to the largest eigenvalue, for measurement 
of a quartz sample at two modulation frequencies, 
treated either as separate measurements or as one 
combined measurement. Individual measurements, 
especially at low modulation frequency, have smallest 
eigenvalues orders of magnitude smaller than the 
largest. 

Figure 4-3: Fisher information matrices, normalized to the 
largest diagonal element for easier comparison, for 
measurement of a quartz sample at high and low modulation 
frequency, treated as separate measurements or as one 
combined measurement. Measurement at low frequency leads 
to very large off-diagonal terms between thermal conductivity 
and heat capacity of quartz, indicating a high covariance in the 
fitting of those parameters. 
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multiparameter models and noisy data, as they provide an efficient way to determine the 

probability distributions of possible parameter values even for problems with many 

dimensions.44,45 They also make it straightforward to determine how uncertainty in one 

measurement parameter affects the fitting of another parameter (a technique known as 

marginalization over nuisance parameters)—in fact, an MCMC-generated sample automatically 

provides the marginalized distribution.44 

Though selection of the most effective MCMC method would be a rich topic, for the 

purposes of this work the Python package emcee44 was chosen based on accessibility and ease of 

use. It uses an MCMC method similar to that proposed by Goodman and Weare.44,46 

The use of emcee starts with defining a set of “walkers,” each of which is initialized to a set 

of possible parameter values (e.g. thermal conductivity, heat capacity, etc.). In this work, initial 

values were chosen based on random perturbations from an initial guess for each parameter. 

After initialization, each walker then is moved (“stepped”) by a Markov Chain-based method to 

find combinations of parameter values that provide better values of an objective function. The 

objective function should drive the parameter values towards a fit that represents the data. If 

sufficient steps are taken that the walkers can appropriately explore the parameter space, the 

distribution of their locations will provide a sample of the probability distribution of parameter 

values—that is, give estimates for the parameters of the model.44 

When using emcee, the objective function is user-defined, and one appropriate choice is to 

use the log likelihood that the observed data would be measured if the model were correct.47 This 

likelihood depends on both the model prediction—values near the prediction are most likely if 

the prediction is correct—and the noisiness of the system—in a noisy system, values far from the 

“true” value will be recorded more frequently. For this work, noise was approximated as being 

Gaussian, meaning that the likelihood of a given deviation between the model prediction and the 

measured value was given by a normal distribution. The standard deviation of the distribution 

was determined by the scatter of the experimental data, for example by fitting the experimental 

data with a low-order polynomial to account for most of the trend and taking the standard 

deviation of the residuals of that fit. For Gaussian noise with standard deviation 𝜎, the likelihood 

of measuring a value 𝑥𝑛 given a predicted value 𝜇 is 

 
ℒ =

1

√2𝜋𝜎2
ⅇxp (−

1

2

(𝑥𝑛 − 𝜇)2

𝜎2
) (4-7) 

so for a set of values 𝑥𝑛⃗⃗⃗⃗ , the log likelihood can be shown to be 

 

ℒℒ = −
𝑁

2
log(2𝜋𝜎2) −

1

2𝜎2
∑(𝑥𝑛 − 𝜇𝑛)

2

𝑁

𝑛=1

 (4-8) 

Since the noise level 𝜎 was a property of the measurement, not of the model, this meant that 

the first term was constant throughout the fitting and the second, proportional to the sum of the 

squared residuals, was optimized by the emcee fitting. It should be noted that 𝜎 was different 

between measurements, so when multiple data sets were fit simultaneously, not all residuals 

were weighted equally.  

The definition of the objective function can also take other information into account. For 

example, prior knowledge of parameter values can be introduced. Most simply, unphysical 

parameters can be prevented by defining the objective function to be negative infinity (the worst 

possible value) outside of the region of acceptability. More nuance, such as expected values with 

some uncertainty, can also be considered, for example by adding appropriate terms to the 
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objective function to penalize unlikely values. An example of this is discussed below for the case 

of the suspended MoS2 data. 

One of the key values of using emcee is that as well as providing the ability to assess the 

most likely values of parameters, it allows assessment of uncertainty in their values and 

covariance among parameters. Because the distribution of walker locations samples the possible 

parameter space, and walkers are driven towards values that give high likelihood, the distribution 

of walkers gives a good estimate of the distribution of possible parameter values. For parameters 

which do not strongly affect the likelihood, the walkers will only weakly be driven toward the 

maximum likelihood value and will probably remain distributed in a wide range around it; for 

those which do strongly affect the likelihood, the distribution will probably be tighter. The width 

of this distribution gives an assessment of the uncertainty in the fit—the measured data provides 

less information about parameters which do not strongly affect the model, so their uncertainties 

remain higher. More powerfully, since the walkers take on values for all fit parameters 

simultaneously, looking at the distribution of walkers across two or more parameters allows 

estimation of the covariance between them. For example, if walkers that sampled higher values 

of one parameter also sampled higher values of another, it indicates that the estimates of those 

two parameters are positively correlated. In general, parameters with similar sensitivities will be 

correlated, but looking at the sampling of the posterior probability distribution as sampled by 

emcee provides a more direct measurement.  

4.3.1 Example: Monolayer MoS2 with uncertain phase correction 
The methods described above were used to fit the data for suspended monolayer MoS2. 

Several parameters were uncertain, with the property of interest being the thermal conductivity 

of the sample. One recognized source of inaccuracy was uncertainty in the phase correction of 

the measured data: the theory described in Chapters 2 and 3 assumes that the out-of-phase signal 

from the lock-in amplifier corresponds to the real part of the sample response, and the in-phase 

component corresponds to the imaginary part. As discussed, the measured data must be corrected 

such that this is true by adding an appropriate phase offset such that the out-of-phase signal is 

constant across zero delay time. However, with a noisy signal and small changes at zero delay 

time, it can be hard to determine the phase offset with certainty, and this uncertainty can impact 

the fitting result. To account for this, an estimate of the phase offset was made manually as a 

starting guess, but the phase offset for each measurement was allowed to be a fitting parameter. 

To drive the system toward appropriate values, a term was added to the objective function for the 

fit which penalized results with discontinuities in the out-of-phase signal at zero delay time. This 

term was based on the log-likelihood that a given discontinuity would be measured based on the 

noisiness of the signal:  

 
ℒℒ = −

∆𝑌𝑎𝑐𝑟𝑜𝑠𝑠 𝑡=0
2

2𝜎𝑚𝑎𝑔
2

 (4-9) 

where 𝜎𝑚𝑎𝑔 is the standard deviation of the magnitude of the measured TDR signal, and the 

−
1

2
log(2𝜋𝜎𝑚𝑎𝑔

2 ) term that would make the equation the log-likelihood of a Gaussian was 

dropped, since it does not vary with the model parameters. Combined with Equation (4-8), this 

gave an objective function of 

 

−
𝑁

2
log(2𝜋𝜎2) −

1

2𝜎2
∑(𝑥𝑛 − 𝜇𝑛)

2 − 𝑁 ∗
∆𝑌𝑎𝑐𝑟𝑜𝑠𝑠 𝑡=0

2

2𝜎𝑚𝑎𝑔
2

𝑁

𝑛=1

 (4-10) 
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where the phase correction penalty (Equation (4-9)) was multiplied by N in order to have an 

equal effect regardless of the number of time points considered.  

Walkers were then initialized with values near the starting estimates, allowed to explore the 

parameter space, and once they converged, their distribution was assessed to measure the most 

likely parameter values based on the data. The paths of the walkers through parameter space are 

shown in Figure 4-4, and the summary plot of their positions once they had settled (taken to be 

beyond 600 steps) are shown in Figure 4-5a. To visualize the multi-dimensional space, the 

distributions for each pair of parameters are plotted, as well as the univariate distribution for each 

parameter. The pairwise plots allow visualization of the covariances of the parameters—for 

example, the values of  (
𝑑𝑛

𝑑𝑁
)/(

𝑑𝑛

𝑑𝑇
) (labeled dn_coeff) are not strongly correlated with the values 

of the thermal conductivity (labeled kr), but the values of the phase corrections are. This 

indicates that reduction in the uncertainty of the phase correction could further reduce 

uncertainty in the fitted thermal conductivity, and that systematic errors in phase correction could 

lead to erroneous values of thermal conductivity. Figure 4-5b shows the raw data with the fitted 

values of phase correction applied, plotted with the model calculated with the fitted parameters. 

The fitting routine was able to capture the behavior of the measured data.  
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Figure 4-4: Paths of the “walkers” involved in an emcee fit through parameter space. The parameters allowed to 

vary were: a) sample thermal conductivity, b) (
𝑑𝑛

𝑑𝑁
)/(

𝑑𝑛

𝑑𝑇
) , and c-f) the phase corrections for each data set. See text 

for a description of the objective function. For each walker, there is one line on each plot, showing its value for each 
parameter at a given step in the calculation. The x axes show the number of MCMC steps taken. This system was 
treated as having settled to consistent values for steps beyond 600.  

d 

a b 

c 

e f 
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Figure 4-5: a) The corner plot summarizing the distribution of parameters of the walkers shown in Figure 4-4 for 
steps beyond 600. The individual histograms give the distributions for each parameter separately; the other plots 
give the contours of the 2D histograms for each pair of parameters. Some pairs, such as the thermal conductivity 
(kr) and each of the phase corrections (man_phase_corr_i) show stronger correlations than others, such as the 

thermal conductivity and (
𝑑𝑛

𝑑𝑁
)/(

𝑑𝑛

𝑑𝑇
) (dn_coeff). This is identifiable by the distortion of the 2D histogram along a 

line. b) The plot showing the calculated fit (lines) with the experimental data (symbols) with the fitted phase 
corrections applied, showing that the model has found a plausible fit. The shaded regions represent the change in 
the model when the thermal conductivity is changed within its uncertainty, which is extracted from the standard 
deviation of the distribution from a). Note that final fits reported in Chapter 7 also allowed for uncertainty in 
electrical diffusivity and carrier lifetime, giving a slightly different fitted value for thermal conductivity. 

a 

b 
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4.4 Conclusions 
Because time domain reflectance data involves a nonlinear multiparameter model, the 

question of how to best fit the model is not an easy one to answer. Though straightforward 

approaches such as the use of the Python curve_fit package do provide results, they hide many of 

the details of the process, such as the identification of the number of parameters that can be fit. 

Tools such as the Fisher Information Matrix can be used to assess the information content of a 

signal based on the predicted model, and more sophisticated fitting tools such as the Python 

package emcee allow more careful definitions of desired objective functions and can directly 

account for uncertainty in multiple input parameters. This allows clearer, more rigorously 

justifiable outcomes.  
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5 Thermal conductivity near mental-insulator transitions 

5.1 Metals, insulators, and metal-insulator transitions 

5.1.1 Metals vs insulators 
In standard band theory, solids contain some ranges of electron energies which are allowed, 

and others which are forbidden. The distinction between metals and insulators comes from which 

of these levels are occupied. In metals, the transition from the occupied energy states to 

unoccupied states happens within a band of allowed energies, so the energy required to move an 

electron to an unoccupied state is small. In insulators and semiconductors, the lower energy 

bands are full, and a gap separates the highest occupied state from the lowest unoccupied state, 

so an electron must gain sufficient energy to overcome this gap before conduction can occur.26 

For this reason, the electrical conductivity of metals is generally much higher than that of 

semiconductors and insulators. At temperatures near room temperature, the electrical 

conductivity of metals generally decreases with further heating, because electron-phonon 

scattering is increased, whereas in semiconductors and insulators increases in temperature 

generally lead to the availability of more electrons to carry current, increasing electrical 

conductivity. Thus, looking at the change in electrical conductivity with temperature can help 

distinguish metallic from non-metallic behavior.  

In the simplest case, a metal results when a material has a partially filled electron band, and a 

semiconductor or insulator results when some bands are full and others are empty (ignoring 

temperature effects). However, in some materials multiple bands overlap, so even though a naive 

accounting might lead to one being full and the next empty, there is no bandgap between them 

and the material is a metal. In some materials that might be expected to be metals, various effects 

lead to nonmetallic behavior. For example, the presence of a sufficient number of lattice defects 

can lead to the localization of some electron states and, if these replace the conductive states, to 

nonmetallic behavior—an Anderson insulator. Interactions between lattice deformations and 

electrons can lead to the formation of a static periodic deformation. This increases the effective 

unit cell of the material and opens a gap in what would otherwise be one electron energy band, 

leading to a Peierls insulator. Additionally, interactions between electrons can influence their 

behavior, potentially leading to an energy penalty equivalent to the opening of a band gap. 

Depending on the type of interaction, materials in which this occurs are called charge density 

insulators or Mott insulators. In many cases, several of these effects are present and all contribute 

to the development of insulating behavior.48,49  

5.1.2 Metal-insulator transitions 
The most obvious signature of a metal-insulator transition is a substantial change in the 

electrical conductivity of a material. Assessment of the temperature dependence of the electrical 

conductivity, or other confirmation of the band structure, can determine that the material is 

metallic on one side of the transition and not on the other. In some cases, changes in lattice 

structure cause or accompany the transition, for example because changes in electron orbital 

hybridization lead to both structural rearrangement and the overlap of previously separate 

electron bands. In others, the lattice structure is the same on both sides of the transition. 
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Frequently, the insulating state is a Peierls, Mott, Anderson, or charge-density insulator, but this 

is not a requirement.48 

5.2 The metal-insulator transition in vanadium dioxide (VO2) 
One material that has seen substantial research interest in much of the last 50 years is 

vanadium dioxide, VO2. It has a metal-insulator transition at 340 K, which shows some Peierls-

like and some Mott-like behavior. There is an accompanying structural change, from monoclinic 

in the insulating phase to tetragonal in the metal, which is associated with a change in the energy 

of the vanadium d-band electrons.50 The bands which are split across the band gap in the 

insulating state are degenerate and partially filled in the metallic state. Despite the change in 

structure through the phase transition, the phonon contribution to the thermal conductivity is not 

expected to change substantially—a reduction of 13% in the metallic state compared to the 

insulting is expected.1 The electrical conductivity, however, changes by several orders of 

magnitude, from 3*103 S/m in the insulator to 9*105 S/m in the metal. If the Wiedemann-Franz 

Law holds, the electronic contribution to the thermal conductivity would also be expected to 

change dramatically, leading to a sudden increase in the total thermal conductivity upon entering 

the metal phase. Fascinatingly, experimental results showing a range of thermal behaviors have 

been reported: from small decreases in thermal conductivity on entering the metal state in bulk 

samples51 as shown in Figure 5-1a, to no detectable change anywhere in the range of 25 to 85 °C, 

also in the bulk,52 to small to moderate increases in thin films2,53 and nanobeams1 (Figure 5-1 b-

c). The fact that in some samples the thermal conductivity does not increase or increases 

minimally across the transition to the metallic state suggests that there is some mechanism by 

which the electrical conductivity is not reflected in an electronic contribution to the thermal 

conductivity—that is, the Wiedemann-Franz Law does not hold, and the electrons are not 

behaving as quasiparticles, but rather move in a correlated manner. Absent errors in multiple 

experiments, it also appears that this mechanism is not present in all samples, and electronic 

conductivity is proportional to thermal conductivity under certain circumstances. Thus far, it is in 

thin film samples that this appears to be the case, so it is possible that substrate-induced strain or 

grain size effects are relevant, but more systematic study is needed.  

 

Figure 5-1: Thermal conductivity of various VO2 samples. a) The bulk samples measured by Andreev et al51 showed 
a slight decrease of approximately 0.3 W m-1K-1 in thermal conductivity at the transition into the metallic state. 
Circles and triangles represent two different samples. b) Thin film samples showed an increase in thermal 
conductivity of nearly 2 W m-1K-1, comparable to the expected change in κe.2 Similar results were reported by 
Kizuka et al.53 c) Single crystal nanobeams showed a small increase in total thermal conductivity (black line), but far 
less of a discontinuity than expected given the electronic behavior (red line).1 

a b c 
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5.2.1 WVO2 
One way to modify the behavior of VO2 in a controlled manner is through the addition of 

dopants. For example, tungsten (W) doping is known to lower the transition temperature of 

VO2,
54 and is reported to lead to a larger discontinuity in thermal conductivity across the metal-

insulator transition, despite causing a slight decrease in the electrical conductivity of the metallic 

state.1 Though this shows a behavior more similar to that predicted by the Wiedemann-Franz 

Law, Lee et al argue that it does not reflect a restoration of quasiparticle transport.1  

5.3 Measurement of thermal conductivity  

5.3.1 VO2 
Experiments focused on VO2 and WVO2 films, specifically samples consisting of 300 nm of 

VO2 or W0.01V0.99O2, grown by pulsed laser deposition on a silicon nitride coated silicon 

substrate. The electrical behavior of the films was measured by a four point probe measurement 

following the van der Pauw method, and the temperatures for the metal-insulator transition were 

consistent with expectation. For TDTR measurements, 80 nm of aluminum was deposited on the 

sample layer by e-beam evaporation to serve as the transducer layer. The sample was attached to 

a thermal stage with silver paste, and TDTR measurements were taken. A spot size of 

approximately 10 um was used in order to achieve sufficient signal intensity but minimize 

sensitivity to imperfections in spot shape, and a modulation frequency of 9.5 MHz was used to 

maximize sensitivity to the properties of the sample layer. The sample temperature was swept 

across the metal-insulator transition, with TDTR measurements taken at 5 K or 10 K intervals, 

for VO2 and WVO2, respectively.  
In order to determine materials properties from TDTR measurements, the collected data were 

compared to the predictions from a thermal model of the system, and the parameters of the 

model were adjusted to find the best fit. In general, the measured thermal behavior depends on 

the thermal conductivity, heat capacity, and thickness of each sample layer, as well as the 

conductivity of the interfaces between layers.  

The properties of the silicon nitride layer were determined by a separate measurement of a 

control sample with no additional film, and found to be nearly constant with temperature, as 

shown in Figure 5-2. The measured values were used in the fitting for the VO2 and WVO2 

samples. 

In the 9.5 MHz measurements, sensitivity to layers below the sample layer was minimal, 

(Figure 5-3a) so fits were performed to the thermal conductivity of the sample and that of the 

interface between the sample and the aluminum. For temperatures far from the metal-insulator 

transition, satisfactory fits were achieved by assuming that the sample heat capacity would match 

Figure 5-2: Measured thermal conductivity of the 
silicon nitride layer as a function of temperature. 
These results were used in fitting for the VO2 and 
WVO2 samples. 
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the reported literature values for bulk VO2,
55 but for temperatures across the transition, such an 

assumption led to non-physical parameter values.  

Figure 5-3: Sensitivity plots for the VO2 sample measured at a) 9.5 MHz and b) 0.94 MHz. Measurements at higher 
frequencies are more sensitive to layers nearer the surface, so measurement at 9.5 MHz was less sensitive to the 
SiN properties. However, measuring at 0.94 MHz as well allowed simultaneous fitting to thermal conductivity and 
heat capacity. 

To better understand the thermal conductivity behavior during the transition, better 

understanding of the heat capacity behavior in these samples was needed. The 9.5 MHz 

measurements were primarily sensitive to the thermal effusivity of the sample, so the 

conductivity and heat capacity affect the signal very similarly. To make separate determination 

of the two parameters possible, measurements were also made at 0.94 MHz, increasing the 

thermal penetration depth and so by comparison reducing the effective thermal thickness of the 

sample layer. At this frequency, the measurement is substantially more sensitive to the sample 

heat capacity than to its thermal conductivity but is also more sensitive to the properties of 

underlying layers, adding uncertainty to the result. (Figure 5-3b) However, by assuming that 

sample properties should be the same in both measurements and finding the parameters that best 

fit measurements at both frequencies, it is possible to determine values for both heat capacity and 

thermal conductivity of the sample. This was done using the Python package emcee, as discussed 

in section 4.3. 

However, the heat capacities measured by this technique were substantially lower than the 

literature values, though they showed qualitatively similar behavior. (Figure 5-4) This degree of 

deviation from literature values is unlikely to be physical, and likely indicates an inaccuracy in 

the model or fitting method, but approaches such as trying different initial values of parameters 

did not yield improved results. As these are volumetric heat capacities, some drop in heat 

capacity compared to the bulk could be expected if the thin film deposition was not of sufficient 

a b 
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quality to provide a fully dense sample, but this is unlikely to be a large enough effect to explain 

the discrepancy. 

Given the lack of a definitive value for the heat capacity across the MIT, three approaches to 

were used: 1) the use of literature data from the bulk,55 including the very high heat capacity 

across the transition, 2) the use of the same literature data, but the heat capacity across the peak 

estimated by linear interpolation from the two sides to approximately ignore the increase from 

the enthalpy of the transition, and 3) the use of the fitted values for heat capacity. Combined, 

approaches 1) and 2) can be seen to provide bounds on the value of the thermal conductivity, as 

the more gradual transition expected in the polycrystalline thin film compared to a bulk single 

crystal likely leads to a shorter, broader peak in heat capacity as a function of temperature. These 

results are plotted together in Figure 5-5. 

Figure 5-4: fitted heat capacity for the VO2 sample 
as a function of temperature (points) compared to 
literature data (grey line). Though the expected 
increase in heat capacity during the MIT was 
observed, fitted values were overall ~30% smaller 
than literature values.  

 

Figure 5-5: Fitted thermal conductivities for VO2 as a function of temperature, showing results for using 
literature values for the heat capacity and including (upward pointing triangles) or interpolating to avoid 
(downward pointing triangles) the peak in the heat capacity data caused by the phase transition. Since 
the literature data was for a single crystal and the measured film was polycrystalline, it is expected that 
the film heat capacity was between the two values used, and these data points can be seen as providing 
bounds on the thermal conductivity. 
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As mentioned above, the (volumetric) heat capacities found by fitting at multiple 

measurement frequencies were consistently lower than those reported for a bulk sample. Such a 

significant difference is unlikely to be physically reasonable, so values found from approach 3) 

should be used with caution. However, using these values still gave results qualitatively similar 

to those from approach 2), with the exception of the values for 333 K and the highest and lowest 

measured temperatures. This is highlighted in Figure 5-6 which shows the fitted values of the 

thermal conductivity, normalized to the value at 313 K.  

To better see the direct effect of the phase transition, a set of measurements was taken with 

delay time fixed, and temperature increased and then decreased across the transition. This was 

done at modulation frequencies of both 9.5 MHz and 0.94 MHz. In the first case, the 

measurement is sensitive to the thermal conductivity and heat capacity of the VO2, as well as the 

thickness and heat capacity of the aluminum layer. Sensitivity to other properties is significantly 

smaller. In the second case, there is minimal sensitivity to the thermal conductivity of the VO2, 

but due to the larger thermal penetration depth, other parameters such as the thermal conductivity 

of the silicon nitride are also relevant. However, these are expected to vary less with temperature 

than the VO2 properties. Thus, minimal difference is expected between the 0.94 MHz signal in 

the insulating and metallic states. 

As shown in Figure 5-7, the measured ratio of the in- and out-of-plane TDTR signal 

components shows a clear peak across the MIT for both modulation frequencies. This peak is 

attributed to the increased heat capacity across the MIT, which is validated by its being positive 

at higher modulation frequency, where the sensitivity to heat capacity is positive, and negative at 

lower modulation frequency, where the sensitivity to heat capacity is negative. Without 

quantitative accounting for the magnitude of the heat capacity, determination of other properties 

within the MIT is difficult. For both modulation frequencies, no large change in signal from one 

side of the phase change to the other was observed. The heat capacity is expected to be about 

20% higher in the metallic state than in the insulting state, which would cause an increase of a 

Figure 5-6: Comparison of the behavior of the fitted thermal conductivity when using fitted and literature data for 
the heat capacity. Though the lower fitted values for heat capacity led to higher resulting values for thermal 
conductivity, normalization to the value found for 40 °C highlights that the trend in thermal conductivity was 
similar regardless of the choice of heat capacity. 
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few percent in ratio on entering the metallic state in the 9.5 MHz case and a decrease of a few 

percent in the 0.94 MHz case (corresponding to the sign of the sensitivity to heat capacity). In 

the 9.5 MHz case any other difference would likely be due to a difference either in VO2 thermal 

conductivity or the heat capacity of the aluminum transducer. The aluminum heat capacity is 

expected to increase by approximately 3% between 40 °C and 90 °C,56 which would be expected 

to cause a change in ratio of less than the noise level of the measurement. Thus, any change 

could be attributed to changes in VO2 thermal conductivity, and the observation of similar signal 

in the insulating and metallic states suggests that the thermal conductivity of the VO2 was largely 

constant. Minimal change was observed between the behavior at 40 °C and 80 °C at 0.94 MHz as 

Figure 5-7: The ratio of in- to out-of-phase TDTR signal at a delay time of 500 ps and modulation frequency of a) 9.5 
MHz and b) 0.94 MHz, as a function of temperature across the VO2 MIT, as well as the significant values of the 
sensitivity to model parameters at those conditions. The sign of the peak seen across the MIT corresponds to the sign 
of the sensitivity to heat capacity, which is expected to peak during the transition. The small change in signal from one 
side of the transition to the other implies a small change in properties to which there was significant sensitivity—in 
particular, the small change in a) implies a small change in thermal conductivity. 

Significant sensitivities: 
a 

b 

VO2 thermal 
conductivity 

0.31 

VO2 heat capacity 0.40 

Aluminum heat 
capacity 

-0.60 

 

VO2 thermal 
conductivity 

0.03 

VO2 heat capacity -0.26 

Aluminum heat 
capacity 

-0.40 

Silicon nitride 
thermal conductivity 

0.38 
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well—in this case, sensitivity to VO2 thermal conductivity was minimal, but this supports the 

assertion that the aluminum properties did not vary much across that temperature range.  

In short, similar thermal conductivities were observed in the insulating and metallic states for 

this VO2 sample. 

5.3.2 WVO2  
For WVO2, heat capacity was 1) estimated from the same VO2 literature data55 with 

interpolation replacing the peak, and 2) fitted. Again, fitting gave significantly lower heat 

capacities, (Figure 5-8) though the fitted values were similar to those for VO2. 

Using the approximated literature data for heat capacity suggested a fairly constant thermal 

conductivity over the measured temperature range, as shown in Figure 5-9; using the fitted 

values suggested a small decrease in thermal conductivity. In neither case was the difference 

more than 20%. The comparison of results from the two methods of determining heat capacity 

are shown in Figure 5-10. 

  

Figure 5-8: Fitted heat capacity for WVO2 (points) 
compared to literature data for VO2 with interpolation 
replacing the peak caused by the VO2 phase transition 
(gray line). As with VO2, the fitted values were about 30% 
lower than the literature data. 

Figure 5-9: Fitted thermal conductivities 
for WVO2 using the interpolated literature 
data for VO2, as a function of 
temperature. No large change was 
observed during the MIT. 
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5.4 Assessment of the Wiedemann-Franz Law 
In these samples, no substantial change in thermal conductivity was observed across the 

metal-insulator transition in either VO2 or WVO2. 

5.4.1 VO2 
In VO2, the thermal conductivity appeared lessened during the metal-insulator transition, 

between 325 and 345 K. Given that a mix of metallic and insulating domains are likely present in 

this temperature range, an increase in phonon boundary scattering is plausible. The transition 

temperature seen in the thermal results is lower than that determined by the electrical behavior of 

the samples (Tc,electric ≈ 340 K); this effect was also noted by Oh et al., who attributed it to the 

higher sensitivity of the thermal measurement to the presence of a small areal fraction of metallic 

domains.2 The decrease in the thermal conductivity in the insulating state approaching the 

transition was larger than expected from literature data, but some decrease is expected due to 

increased phonon-phonon scattering. However, the magnitude of this drop makes it difficult to 

estimate the expected lattice conductivity in the metallic state.  

More importantly, these samples have a relatively low electrical conductivity in the metallic 

state. The VO2 sample has a conductivity of 3.4*104 S/m, which would correspond to κe of less 

than 0.5 Wm-1K-1 even if the degenerate Wiedemann-Franz Law held. This is well within the 

error of measurement, as shown in Figure 5-11, so no conclusive statement about the validity of 

the Wiedemann-Franz Law in this sample can be made. This low an electrical conductivity is 

surprising for a VO2 film in the metallic state, and likely indicates a problem with the sample 

fabrication. Though these samples were grown according to established recipes, they were grown 

thicker than usual in order to improve the sensitivity of the TDTR measurement, and this may 

have led to lower quality. 

5.4.2 WVO2 
For the WVO2 sample, the metal-insulator transition spans a wider temperature range—only 

the 297 K data point represents behavior in the insulating state, and only the 333 K data point is 

Figure 5-10: Comparison of the 
trend in the fitted thermal 
conductivity of WVO2 with 
different assumed heat capacities. 
Values are normalized to the 
thermal conductivity at 40 °C for 
easier comparison. 
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definitively in the metallic state. This makes it impractical to make statements about the 

insulating and metallic states in general. The W VO2 sample does have a higher electrical 

conductivity in its metallic state at 2.3*105 S/m, corresponding to a possible κe of almost 2 Wm-

1K-1. As shown in Figure 5-12, no corresponding increase in thermal conductivity was seen—the 

measured thermal conductivity at 333 K was not greater than that at 297 K. Thus, it seems 

plausible that some degree of Lorentz number suppression is occurring, but without more 

detailed knowledge of the phonon behavior making a clear statement is impossible.  

Figure 5-11: a) Measured thermal conductivity for VO2 across the phase transition (blue), plotted with the 
expected electronic thermal conductivity if the Wiedemann-Franz Law held, offset by the thermal conductivity at 
45 °C for clarity (red). The expected electronic thermal conductivity is very small. b) The measured electrical 
conductivity of the sample across the phase transition. In both a) and b), the solid red line represents the electrical 
behavior measured as temperature was increased and the dashed red line that as temperature was decreased. 
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5.5 Conclusions 
In these samples, no obvious change in thermal conductivity was seen when the samples 

entered the metallic state from the insulating state. In the case of VO2, however, the electrical 

conductivity in the metallic state was low enough that minimal change was expected. For the 

WVO2 sample, if no Lorentz number suppression was present, a measurable increase in thermal 

conductivity would be expected if the lattice thermal conductivity were constant. However, 

insufficient data were collected to make any assertions about the lattice thermal conductivity, so 

determining whether the near-constant observed thermal conductivity was a result of Lorentz 

number suppression or a drop in lattice thermal conductivity offset by an increase in electronic 
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Figure 5-12: a) Measured thermal conductivity for WVO2 across the phase transition (blue), plotted with the 
expected electronic thermal conductivity if the Wiedemann-Franz Law held, offset by the thermal conductivity at 23 
°C for clarity (red). The measured thermal conductivity does not increase when the electrical conductivity does. b) 
The measured electrical conductivity of the sample across the phase transition. In both a) and b), the solid red line 
represents the electrical behavior measured as temperature was increased and the dashed red line that as 
temperature was decreased. 
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thermal conductivity is not possible. More rigorous conclusions would require measurement of 

samples with higher electronic thermal conductivity across a wider temperature range, as well as 

possibly supplemental techniques to study lattice behavior.  
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6 Transducerless time domain reflectivity measurement of bulk 

semiconductors 
This chapter reproduces the paper “Transducerless time domain reflectance measurement of 

semiconductor thermal properties,” which I published in the Journal of Applied Physics. In it, I 

developed the technique of transducerless time domain thermoreflectance and validated it 

through measurements of silicon and germanium samples.  

6.1 Introduction 
The question of how to effectively and accurately measure the thermal properties of materials 

is a long-standing one. Standard approaches are based on applying heat and monitoring its 

diffusion, then comparing the measured result to a thermal model.57 Local measurements require 

establishing a thermal diffusion length, for example through the use of a modulated heat source. 

For decades, techniques based on heating via a modulated laser beam have been used, with 

measurement of the sample response via the photoacoustic effect,58,59 through photothermal 

deflection,60,61 with piezoelectric transducers,62 or based on reflectivity changes.63–66 In recent 

years, time- and frequency-domain thermoreflectance (TDTR7 and FDTR67, respectively) have 

become the dominant approaches. TDTR and FDTR rely on temperature-driven changes in the 

optical reflectivity of the sample surface,5 allowing monitoring of temperature changes through 

the change in reflected intensity of a second laser beam. By detecting the modulation in 

reflection corresponding to the modulated heating, the thermal response of the sample can be 

determined. 

In their usual applications, both TDTR and FDTR involve the deposition of a thin metal 

transducer layer on the sample to be measured. This transducer is then the only layer that 

interacts with either incident laser beam, acting as both heater and thermometer for the rest of the 

sample. The use of a transducer allows the assumption that the change in reflection is directly 

related to the sample surface temperature, as the primary component affecting the reflectivity of 

metals is the distribution of free electrons, which is temperature dependent.68 With appropriate 

selection of metal and laser wavelength, the coefficient of thermoreflectivity, dR/dT, can be 

substantially larger than in an unoptimized system.21 Additionally, the optical penetration depth 

of the laser in the metal transducer layer is small, allowing heating to be modeled as occurring at 

the surface.  

However, requiring a metal transducer layer adds complexity and can limit measurement. 

Deposition of the transducer is a permanent modification of the sample surface, removing the 

possibility of in-situ measurements. In interpreting results, additional parameters such as the 

thickness and heat capacity of the transducer and the thermal interface conductivity to the sample 

become important. The conductivity of the transducer-sample interface must be high enough 

compared to the conductivity of the sample for the measurement to be sensitive to sample 

properties. For ultra-thin samples or measurements of in-plane conductivities, the transducer acts 

as a thermal short and suppresses the sensitivity of the measurement to the properties of interest, 

especially for samples with relatively low thermal conductivities.69 Thus, a technique that does 
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not require a transducer layer is desirable. Key differences between measurements with and 

without a transducer are highlighted in Figure 6-1. 

 

Figure 6-1: a) In a transducer-coated sample, light absorption happens near the surface of the material, whereas b) 
in an uncoated semiconductor sample, light penetrates into the material. c) In a coated sample, heat must diffuse 
through the transducer to reach the sample, and no charge carriers are generated. d) In an uncoated sample, heat 
and charge carriers are both generated and diffuse directly in the sample. 

Others have pursued the goal of transducerless thermoreflectivity measurements.  Wang et 

al.68 and Qian et al.69 demonstrated the feasibility of FDTR measurements on uncoated samples; 

however, their thermal model breaks down at short delay times and in materials with long carrier 

diffusion lengths. Tanaka et al.70 use a TDTR-like setup, but use a thermal model that is only 

valid for time scales shorter than those used in many TDTR measurements. By using overlapped 

pump and probe beams, we avoid the complex optical systems required for the beam-offset 

techniques of Fournier et al.57 and Hurley et al.64. In this paper, we demonstrate the usage of 

standard TDTR instrumentation and measurement technique to determine thermal conductivities 

of semiconductors without the use of a transducer layer. We anticipate that such a technique can 

extend the range of samples which can practically be measured using existing TDTR equipment. 

6.2 Transducerless measurements 
The mechanism of TDTR measurements is described in detail elsewhere.7 TDTR is a pump-

probe method in which an ultrafast pulsed laser is divided into two beams, both of which are 

directed to a sample. Our TDTR setup uses a 565 nm pump beam and an 800 nm probe beam. 

The pump beam is modulated, typically at a frequency of 0.1-10 MHz, and the probe beam is 

passed through a mechanical delay stage, temporally separating the incidences of the pump and 

probe beams by some delay time—in our setup, up to 3 ns. This allows measurement both over 

the fast (picosecond to nanosecond) timescale of the delay stage and over the slow (microsecond) 

timescale of the pump modulation. 

In transducerless time domain reflectivity measurements, both pump and probe beams are 

incident directly on the semiconductor sample. We highlight the key processes that occur when a 

pump pulse strikes our samples in Figure 6-2. In our experiments, the pump beam photon energy, 

hν, is greater than the bandgap of our samples, Eg, and the pump has a non-zero penetration 

depth. When a pump pulse is absorbed, electron-hole pairs with energy hν are generated 

throughout a volume of the sample corresponding to the region of absorption. Within a few 
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picoseconds, excited carriers thermalize to the lattice temperature and relax to the band edge,71,72 

releasing thermal energy (hν – Eg). Over the next tens of picoseconds to hundreds of 

nanoseconds, the photogenerated carriers and the generated heat diffuse into the sample, and the 

carriers recombine. Assuming primarily non-radiative recombination, this leads to an addition 

source of thermal energy Eg for each recombination event, serving as an additional distributed 

heat source. Beyond the photocarrier lifetime, the population of carriers returns to its background 

level, leaving only the thermal energy which continues to diffuse. At long enough timescales, 

sufficient spreading of the thermal pulse has occurred that the sample can be treated as having 

returned to equilibrium. Crucially, for intermediate time scales (nanosecond to microsecond, 

depending on carrier recombination time), the continued heating arising from carrier 

recombination means that proper treatment of the sample temperature requires consideration of 

both generation and diffusion of heat and the behavior of the photoexcited charge carrier 

population. Accordingly, we coin the term transducerless time domain reflectance (tTDR), 

highlighting that changes in optical reflectance are modulated both thermally and electronically, 

as opposed to only thermally as in TDTR. As with traditional TDTR, the sensitivity of the 

measurement to sample responses across multiple timescales is beneficial—we are able to 

measure thermal effects both at short delay times, where the sample response is strongest, and at 

long times when electronic effects are diminished. Additionally, though we do not explore it in 

this work, we anticipate that the sensitivity of tTDR to both thermal and electronic effects could 

be used to probe links between variations in thermal and electronic properties of materials. 

Figure 6-2: Schematic of the processes occurring after a pump pulse strikes a semiconductor sample. a) Electron-
hole pairs are generated near-immediately; b) carriers thermalize rapidly, generating heat; c) heat diffuses and 
carriers diffuse and recombine, generating more heat; d) heat continues to diffuse after carriers have fully 
recombined. 

Various authors have approached the problem of describing coupled thermal and carrier 

behavior following laser incidence. Stearns and Kino62 and Fournier et al.60 solve for the special 

case with near-surface carrier generation.  Sablikov and Sandomirskii59 solve for the carrier 

concentration in the sample and the surface temperature caused by a non-zero pump penetration, 

but do not give an expression for temperature below the surface. Tanaka et al.73 extend the model 

of Sablikov and Sanomirskii to temperature as a function of depth, but do not consider heat 

generation from carrier recombination. All these authors assume that the laser spot is large 

enough to treat its lateral dimensions as infinite, which eliminates the possibility of measuring 



51 

 

sample anisotropy. Yang, Ziade, and Schmidt74 and Qian et al.69 consider spots with finite lateral 

dimensions and non-zero pump penetration, but model only the thermal diffusion from the initial 

laser incidence, neglecting carrier effects. Here, we consider the full case where the pump laser 

has a finite size, penetrates into the sample, and generates free charge carriers which recombine 

as a further heat source. 

6.2.1 Carrier and temperature behavior 
The behaviors of both the excited carriers and the temperature field are governed by diffusion 

equations. As discussed above, the temperature field depends on the carrier concentration; in 

principle, the carrier population is also a function of temperature. However, we assume that the 

temperature excursions of our samples are small enough that the population of carriers generated 

due to increased temperature is small compared to the photoexcited population, making this 

effect negligible and allowing the carrier equation to be solved separately from the temperature 

equation. To validate this assumption, we find an upper bound on the per-pulse heating by 

assuming the full energy of the pump beam is converted to heat in the volume in which it is 

absorbed. For the experimental parameters used in this work, we expect approximately 2 K of 

temperature rise for germanium and 0.2 K for silicon, corresponding to an increase in intrinsic 

carrier concentration of 21012 cm-3 and 1 108 cm-3, respectively.75,76 Additionally, we assume 

that the photocarrier population is large enough to dominate over the background doping, so that 

the total electron and hole populations are similar, that is N ≈ P. For our measurements, the pump 

energy per pulse was approximately 10-10 J, corresponding to an initial photoexcited carrier 

concentration of approximately 1.01019 cm-3 in germanium and 1.41019 cm-3 in silicon. Figure 

6-3 highlights the degree to which the photoexcited concentration outweighs carrier 

concentrations from due to both temperature changes and the light doping of the samples 

measured. 

 

Figure 6-3: Carrier concentrations in germanium and silicon samples. With the experimental parameters used in 
this study, the density of photoexcited carriers far exceeds the intrinsic carrier concentration, the background 
doping of the sample, and the population of carriers generated due to the increase in sample temperature, 
validating the assumptions of our model. The background doping for the silicon sample is shown as a range 
because the sample was too resistive to directly measure the doping level. 

A full treatment of the recombination of excited carriers would require consideration of one, 

two, and three phonon processes, yielding 

 𝜕𝑁𝑟𝑒𝑐𝑜𝑚𝑏

𝜕𝑡
= −𝛾1𝑁 − 𝛾2𝑁

2 − 𝛾3𝑁
3 (6-1) 



52 

 

where γ1, γ2, and γ3 are the carrier recombination rates for linear, two-body, and Auger processes, 

respectively.70 Considering the full form of this equation is not mathematically feasible, but 

given the relatively high photoexcited carrier concentrations of our measurements, we expect 

Auger recombination to dominate at small delay times. Following the approach of Tanaka et 

al.,70 we approximate  

 𝜕𝑁𝑟𝑒𝑐𝑜𝑚𝑏

𝜕𝑡
= −

𝑁

𝜏
 (6-2) 

with  

 𝜏 = 1 ∕ 𝛾3𝑁0
2 (6-3) 

with N0 being the initial carrier concentration.  
We begin by considering the impulse response of the sample. Each laser pulse is short 

enough to be modeled as a delta function in the time domain, so, considering a Gaussian pump 

laser spot with penetration depth 1 ∕ 𝛼 and radius w0, we write the intensity in the sample as 

 𝐴𝑝𝑢𝑚𝑝 = 𝐴0ⅇ
(−2𝑟2∕𝑤0

2)ⅇ−𝛼𝑧𝛿(𝑡) (6-4) 

where A0 is a constant coefficient representing the incident intensity of the pump laser. 

The excess carrier concentration caused by the laser, N, is described by a diffusion equation 

with generation due to the laser spot and loss due to recombination. Carrier motion caused by 

driving forces other than diffusion is assumed to be negligible. To confirm this, we estimate the 

current density caused by thermoelectric effects as  

 𝐽𝑆 = 𝑆𝜎𝛼𝛥𝑇 (6-5) 

with S the Seebeck coefficient, σ the electrical conductivity of the sample, α the absorption rate 

of the pump laser, and ΔT the temperature deviation caused by the laser incidence. The diffusion 

current density is estimated from the electrical diffusivity, D, the absorption rate of the pump 

laser, α, and the concentration of photoexcited carriers, ΔN, as 

 𝐽𝐷 = 𝑒𝐷𝛼∆𝑁 (6-6) 

with e electron charge. For our germanium and silicon samples, we expect JS to be 2105 A/m2 

and 1103 A/m2,77,78 whereas JD will be 4108 A/m2 and 1109 A/m2, showing that diffusion 

dominates carrier motion. 

For modeling carrier diffusion, we assume in-plane diffusivity, Dr, to be independent of 

direction, but allow it to be different from the out-of-plane diffusivity, Dz, yielding  

 
−𝐷𝑧

𝜕2𝑁

𝜕𝑧2
− 𝐷𝑟

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑁

𝜕𝑟
) +

𝜕𝑁

𝜕𝑡
=

−𝑁

𝜏
+

𝐴0

𝜋𝑤0
2 𝛿(𝑡)𝑒−2𝑟2∕𝑤0

2
𝑒−𝛼𝑧 

(6-7) 

where τ is the time constant of carrier recombination.  

Assuming a semi-infinite material with surface recombination velocity s at its free surface, 

we find boundary conditions 

 𝑙ⅈ𝑚
𝑧→∞

𝑁 = 0 (6-8) 

 
𝐷𝑧

𝜕𝑁

𝜕𝑧
|
𝑧=0

= 𝑠𝑁|𝑧=0 
(6-9) 

We convert the partial differential equation to an ordinary differential equation in z by taking 

the Hankel transform (in r) and Fourier transform (in t), eliminating the derivatives in r and t, 

respectively, and replacing 𝛿(𝑡) with a one: 

 
−𝐷𝑧

𝑑2𝑁

𝑑𝑧2
+ 𝐷𝑟𝑘

2𝑁 + i𝜔𝑁 =
−𝑁

𝜏
+

𝐴0

4𝜋
ⅇ−𝑘2𝑤0

2∕8ⅇ−𝛼𝑧 (6-10) 

This is solved by 
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𝑁(𝑧, 𝜔, 𝑘) =

𝐴0

4𝜋𝐷𝑧
ⅇ−𝑘2𝑤0

2∕8
1

𝑞2 − 𝛼2
(ⅇ−𝛼𝑧 −

𝑠 + 𝐷𝑧𝛼

𝑠 + 𝐷𝑧𝑞
ⅇ−𝑞𝑧) (6-11) 

with  

 𝑞2 = (𝐷𝑟𝑘
2 + i𝜔 + 1/𝜏) ∕ 𝐷𝑧 (6-12) 

Equations (6-11) and (6-12) represent the frequency response of the excess carrier 

concentration, in the Hankel transform domain. 

The excess temperature, T, is described by a diffusion equation with generation due to both 

the laser spot and carrier recombination. We treat the thermal conductivity as constant with time, 

neglecting variation caused by the pump incidence. For the germanium and silicon samples 

studied here, the increase in thermal conductivity due to increased carrier concentration was 

estimated from the Wiedemann-Franz Law to be less than 0.5%.  

As we did for the electrical diffusivity, we assume that in-plane thermal conductivity 𝛬𝑟 is 

independent of direction but not necessarily identical to out-of-plane conductivity 𝛬𝑧, and write: 

 
− ∧𝑧

𝜕2𝑇

𝜕𝑧2
−∧𝑟

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) + 𝑐𝑝

𝜕𝑇

𝜕𝑡

=
𝐸𝑔

𝜏
𝑁 +

𝐴0

𝜋𝜔0
2 (ℎ𝜈 − 𝐸𝑔)𝛿(𝑡)ⅇ−2𝑟2∕𝑤0

2
ⅇ−𝛼𝑧 

(6-13) 

where cp is the heat capacity of the sample, Eg is the bandgap, and hν is the energy of a pump 

photon. 

With the same assumptions as above, the boundary conditions are 

 𝑙ⅈ𝑚
𝑧→∞

𝑇 = 0 (6-14) 

 
− ∧𝑧

𝜕𝑇

𝜕𝑧
|
𝑧=0

= 𝐸𝑔𝑠𝑁|𝑧=0 (6-15) 

and following the same approach of taking Hankel and Fourier transforms and then solving the 

ODE, find 

 𝑇(𝑧, 𝜔, 𝑘)  =
𝐴0

4𝜋 ∧𝑧
ⅇ−𝑘2𝑤0

2∕8(ⅇ−𝑧𝛼𝐶1 + 𝑒−𝑞𝑧𝐶2 + ⅇ−𝑞𝑡ℎ𝑧𝐶3) (6-16) 

where 
 𝑞𝑡ℎ

2 = (∧𝑟 𝑘2 + 𝑐𝑝i𝜔) ∕∧𝑧 (6-17) 

 
𝐶1 =

−(𝐸𝑔 − ℎ𝜈)

𝑞th
2 − 𝛼2

+
𝐸𝑔

𝐷𝑧𝜏(𝑞th
2 − 𝛼2)(𝑞2 − 𝛼2)

 (6-18) 

 
𝐶2 =

𝐸𝑔

𝐷𝑧𝜏(𝑞2 − 𝑞th
2 )(𝑞2 − 𝛼2)

𝑠 + 𝐷𝑧𝛼

𝑠 + 𝐷𝑧𝑞
 (6-19) 

 
𝐶3 =

−1

𝑞𝑡ℎ
[
−𝛼(𝐸𝑔 − ℎ𝜈)

𝑞𝑡ℎ
2 − 𝛼2

+
1

(𝑞2 − 𝛼2)𝐷𝑧𝜏
(−𝐸𝑔𝑠𝜏 +

𝑠 + 𝐷𝑧𝛼

𝑠 + 𝐷𝑧𝑞
(𝐸𝑔𝑠𝜏 +

𝐸𝑔𝑞

𝑞2 − 𝑞th
2 )

+
𝐸𝑔𝛼

𝑞th
2 − 𝛼2

)] 

(6-20) 

Equations (6-16) - (6-20) give the frequency response of the excess sample temperature, in 

the Hankel transform domain.  
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To highlight the types of solutions generated by equations (6-11) and (6-16), we calculate the 

delay time dependencies for the response to a single pump pulse and plot the resulting solutions 

in Figure 6-4. At zero delay time, the depth profiles of both the temperature and the carrier 

distributions match that of the pump spot, and as time increases carriers and heat diffuse into the 

sample, but at different rates. Additionally, carrier recombination both in the bulk and at the 

surface decreases the total carrier concentration and increases the total temperature deviation. At 

long enough delay times, the carrier concentration will decay to zero and the total temperature 

deviation will plateau. 

Figure 6-4: Plots of the results of a) equation (6-16) and b) equation (6-11) for a germanium sample, transformed 
to the time domain for a single laser pump pulse. At zero delay time, curves match the exponential behavior of the 
pump distribution, but diffuse into the sample as time passes. Additionally, the carrier concentration dies away 
and more heat is generated by recombination, as shown by c) the changing area under the curve. 
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6.2.2 Reflectivity 
We now consider the effect of the probe beam. We assume it to be Gaussian in the transverse 

direction with radius w1 and have penetration depth δ1 into the sample, allowing its intensity to 

be described by 

 𝐴𝑝𝑟𝑜𝑏𝑒 = 𝐴1ⅇ
(−2𝑟2∕𝑤1

2)ⅇ−𝑧∕𝛿1 (6-21) 

where A1 is a constant coefficient representing the incident intensity of the probe laser. 

The total reflectivity is a function of the complex refractive index, �̃� = 𝑛 + ⅈ𝜅, in the entire 

volume addressed by the probe. We first consider the z dimension.  

To properly address the reflectivity of the sample to the penetrating probe beam, it is 

necessary to solve Maxwell’s equations in the material. We seek to consider the effects of both 

carrier concentration and temperature, so we begin by assessing the response to an arbitrary 

parameter affecting �̃�, which we denote 𝜙(𝑧, 𝜔). For such a parameter, we expect a change in 

reflection 79  

 
𝛥𝑅(𝜔) = ∫ 𝑓(𝑧)𝜙(𝑧, 𝜔) ⅆ𝑧

∞

0

 (6-22) 

where 𝑓(𝑧) is a sensitivity function consisting of an exponentially damped oscillation caused by 

the interference of reflections from the surface and within the sampled depth:79 

 
𝑓(𝑧) = 𝑓0 (

𝜕𝑛

𝜕𝜙
𝑠ⅈ𝑛 (

4𝜋𝑛𝑧

𝜆
− 𝜃)+

𝜕𝜅

𝜕𝜙
𝑐𝑜𝑠 (

4𝜋𝑛𝑧

𝜆
− 𝜃)) ⅇ−𝑧∕𝛿1 (6-23) 

 
𝑓0 = 8

2𝜋(𝑛2(𝑛2 + 𝜅2 − 1)2 + 𝜅2(𝑛2 + 𝜅2 + 1)2)1∕2

𝜆((𝑛 + 1)2 + 𝜅2)2
 (6-24) 

 
𝑡𝑎𝑛 𝜃 =

𝜅(𝑛2 + 𝜅2 + 1)

𝑛(𝑛2 + 𝜅2 − 1)
 (6-25) 

where λ is the probe wavelength and 𝜃 ∈ [0,
𝜋

2
]. For the semiconductors under study here, 

𝜕𝜅

𝜕𝜙
≪

𝜕𝑛

𝜕𝜙
, so, to a good approximation, 

 
𝑓(𝑧) = 𝑓0 (

𝜕𝑛

𝜕𝜙
sin (

4𝜋𝑛𝑧

𝜆
− 𝜃)) ⅇ−𝑧∕𝛿1 (6-26) 

which is plotted in Figure 6-5. 

 
Figure 6-5: The result of equation (6-26), sensitivity of the reflectivity of the sample to deviations in carrier 
concentration and temperature, as a function of depth. θ is taken to be zero, corresponding to the case of 

negligible κ and 
𝜕𝜅

𝜕𝜙
, and all other parameters are those of germanium probed at 800 nm. 
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We now consider how to define 𝜙(𝑧, 𝜔).  In semiconductors, the refractive index is affected 

by both the carrier and thermal distributions,70  

 
𝛥𝑛 =

𝜕𝑛

𝜕𝑇
∆𝑇 +

𝜕𝑛

𝜕𝑁
∆𝑁 (6-27) 

so instead of the single parameter ϕ we must consider both N and T, yielding 

 
𝛥𝑅(𝜔, 𝑘) = ∫ 𝑓0 𝑠ⅈ𝑛 (

4𝜋𝑛𝑧

𝜆
− 𝜃) (

𝜕𝑛

𝜕𝑁
∆𝑁(𝜔, 𝑧, 𝑘)

∞

0

+
𝜕𝑛

𝜕𝑇
∆𝑇(𝜔, 𝑧, 𝑘)) ⅇ−𝑧∕𝛿1 ⅆ𝑧 

(6-28) 

This adds two additional unknown parameters to the system: 
𝜕𝑛

𝜕𝑁
 and 

𝜕𝑛

𝜕𝑇
. The first, 

𝜕𝑛

𝜕𝑁
, can be 

estimated from the semiconductor Drude equation,80 

 ⅆ𝑛

ⅆ𝑁
=

−𝜆2ⅇ2

2𝜋𝑛𝑚∗𝑐2
 (6-29) 

where λ is the probe wavelength, e the charge of an electron, 𝑚∗ the ambipolar effective mass of 

the charge carriers, and c the speed of light. 

The second term, 
𝜕𝑛

𝜕𝑇
 is a result of several effects, including Fermi smearing, electron-phonon 

collisions, and bandgap shift, and is best estimated from empirical data.70 However, due to the 

number of difficult-to-estimate initial coefficients of our equation, we fit a normalized version of 

the signal such that only the ratio 
𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
 is relevant to the final result, and can be determined in 

the data fitting process. In most semiconductors, 
𝜕𝑛

𝜕𝑇
  is positive, unlike 

𝜕𝑛

𝜕𝑁
, so 

𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
  is expected 

to be negative.70 

We now consider the lateral extent of the probe. The probe measures a weighted average of 

the area it strikes.7 Taking the Hankel transform of equation (6-21) and combining with the 

Hankel domain solution 𝛥𝑅(𝜔, 𝑘), we find 

 
𝛥𝑅𝑝𝑟𝑜𝑏𝑒(𝜔) = ∫ 𝛥𝑅(𝜔, 𝑘)ⅇ−𝑘2𝑤1

2∕8𝑘 ⅆ𝑘
∞

0

 (6-30) 

Combined with equations (6-11) - (6-12), (6-16) - (6-20), and (6-28), equation (6-30) gives 

an expression for the frequency dependence of the measured reflectivity.  

 

6.2.3 Voltage signal 
As described above, the measured tTDR signal is given by the reflection of a modulated 

pulsed laser. The reflection is directed to a photodetector, which provides a voltage signal which 

is sent to a lock-in amplifier set to the modulation frequency, f. This means that the signal 

samples the frequency response of the sample at ±f as well as at frequencies shifted by multiples 

of the frequency of the laser repetition rate, 1/τrep:
7 

 

𝛥𝑉(𝑡𝑑𝑒𝑙𝑎𝑦) =
ⅆ𝑉

ⅆ𝑅
∑ (𝛥𝑅 (

𝑚

𝜏𝑟𝑒𝑝
+ 𝑓)

∞

𝑚=−∞

+ 𝛥𝑅 (
𝑚

𝜏𝑟𝑒𝑝
− 𝑓)) 𝑒𝑥𝑝(2𝜋ⅈ𝑚𝑡𝑑𝑒𝑙𝑎𝑦 ∕ 𝜏𝑟𝑒𝑝) 

(6-31) 
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where ΔV is the measured voltage signal, and 
𝑑𝑉

𝑑𝑅
 is the responsivity of the the photodetector-

amplifier system. By combining equations (6-30) and (6-31) we find the predicted tTDR signal. 

An example of the depth profiles of T and N and their combination into the final signal is shown 

in Figure 6-6. 

Figure 6-6: Schematic of temperature profile and carrier concentration effects on the recorded tTDR signal, based 
on a germanium sample measured with a modulation frequency of 1 MHz. Both a) the temperature and b) the 
carrier concentration affect c) the refractive index, and multiplying the refractive index deviation by d) the 
sensitivity and integrating gives e) the measured signal. The real part of the signal is influenced by both the single-
pulse response and the modulation-frequency response, and the imaginary part primarily by the modulation-
frequency response. 
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Table I: Parameters affecting 𝛥𝑉(𝑡𝑑𝑒𝑙𝑎𝑦) after normalization 

Symbol Property Function of 

Λz, Λr Thermal conductivities Sample 

cp Heat capacity Sample 

Dz, Dr Electrical diffusivities Sample 

s  Surface recombination velocity Sample 

Eg Bandgap Sample 

τ Carrier lifetime Sample and measurement 

α Pump absorption rate Sample and measurement wavelength 

δ1 Probe absorption depth Sample and measurement wavelength 

n  Index of refraction at probe wavelength Sample and measurement wavelength 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄   Ratio of carrier signal to temperature signal Sample and measurement wavelength 

w0, w1 Pump and probe spot radii Measurement 

ω Modulation frequency Measurement 

hν Pump photon energy Measurement 

λ Probe wavelength Measurement 

6.3 Results 
We validate our time-domain approach to tTDR measurements by confirming our ability to 

measure known samples. Here we focus on germanium and silicon, both indirect-bandgap 

semiconductors with bandgaps below the energy of our 565 nm pump and 800 nm probe beams. 

We assume that carrier recombination happens primarily through non-radiative mechanisms, 

validating our assumption that each recombination event releases thermal energy Eg. We 

measure [100] wafers of both materials. 

As is typical for TDTR, we perform measurements at a range of modulation frequencies and 

fit our results for each frequency independently. Optical penetration depths and refractive 

indexes were determined by ellipsometry, and comparison to literature values shows good 

agreement. Electronic diffusivity was determined through Hall effect measurements for 

germanium and as a fitting parameter for silicon. In both cases, diffusivities were found to be 

lower in our samples than in the literature, more notably for germanium, which we attribute to 

lower purity of our samples than those studied elsewhere. The range of diffusivity considered for 

germanium spans the standard deviation of the values found through repeated Hall measurement, 

and for silicon the range covers the values found from fitting at different modulation frequencies. 

Data fitting for silicon is described in more detail below. Literature values are used for heat 

capacities81 with an assumed 10% uncertainty, and spot sizes are measured by analysis of photos 

of the laser spot. For the germanium sample, a lower magnification objective was used than for 

silicon, leading to a larger spot size, and the spot size was determined from a photo of the 

reflected laser, leading to uncertainty from setting the camera focus; for the silicon, the camera 

was placed in the sample location, minimizing this uncertainty. Multiple images were taken of 

each laser spot and the range of spot sizes found was used in calculating error bars on thermal 

conductivity. 

Assessment of these parameters leaves the carrier recombination time, the surface 

recombination velocity, the ratio 
𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
, and the thermal conductivity to be determined. Though 
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we are unable to fit to all of these parameters simultaneously, only a narrow range of values was 

found that gave consistent results at all modulation frequencies, and these were used in the final 

fitting to thermal conductivity. We analyze the total magnitude of our tTDR signal, normalized 

to that just before the pump arrival. 
 

Table II: Values of parameters used for fits. Ranges listed were used in the calculation of error bars and are the 
smaller of the assumed uncertainty of the measurement in which the value was found or the maximum range in 
which it was possible to find a good fit to the experimental data. See text for further description of ranges used 
and commentary on comparison to literature values. 

Parameter Value for 

Ge 

Range for 

Ge 

Literature 

values for 

Ge 

Value for 

Si 

 

Range for Si Literature 

values for 

Si 

cp 

(J/m3K)81 
1.70106  1.53106 to 

1.87106 

1.70106 1.66106  1.49106 to 

1.83106 

1.66106 

D (m2/s) 5.310-6  5.2510-6 to 

5.3510-6 

7.710-3 [82] 7.310-4 6.610-4 to 

7.910-4 

3.510-3 [83] 

s (m/s) 80  72 to 104 0.8[84] 125 124 to 133 87 to 

500[85] 

τ (s) 110-5 510-7 to 

110-2 

710-7 [86] 910-8 8.610-8 to 

9.610-8 

310-9 [87] 

α (1/m) 4.4107 - 4.5107 [88] 7.1105 - 7.1105 [88] 

δ1 (m) 2.310-7 - 2.010-7 [88] 9.710-6 - 9.710-6 [88] 

n 4.72 - 4.71 [88] 3.69 - 3.69 [88] 
𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
 

(m3K) 

-5.7210-

26 

-6.1810-26 

to -5.2610-

26 

-610-25 

[89,90] 

-7.5410-24 -12.310-24 

to -8.6910-

24 

-910-25 

[90,91] 

Effective 

spot size 

(m) 

2.110-5 1.6810-5 to 

2.5210-5 

- 7.610-6 7.3710-6 to 

7.8310-6 

- 

6.3.1 Germanium 
Best-fit values for germanium properties were found through an iterative fitting procedure, 

starting with expected literature values. The carrier recombination time and surface 

recombination velocity were perturbed in turn until high quality fits with consistent values across 

modulation frequency were found. The signal at small delay time is more sensitive to the ratio 
𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
 than that at longer delay time, so fits to the first nanosecond of data were used to 

determine 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄ , and fits to the full dataset were used to determine the thermal conductivity.  

The significantly larger best-fit surface recombination velocity compared to the literature 

value for germanium is not surprising, as surface recombination is very sensitive to surface 

quality and our sample received no special surface treatment. The carrier recombination time 

estimated from the literature assumes a carrier concentration equal to that immediately following 
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the pump incidence; the lower carrier concentration at longer delay times would lead to a longer 

recombination time, explaining the difference to our measured value. We repeated our 

measurements at laser powers lower than those reported here and did not see a significant 

difference in normalized signal, despite the expected dependence of carrier recombination time 

on pulse energy, due to the weak dependence of the final signal on the recombination time. The 

calculated literature value of 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄  relies on both estimation of 

𝜕𝑛

𝜕𝑇
 based on data measured at 

longer wavelengths and on the validity of the Drude model for 
𝜕𝑛

𝜕𝑁
, meaning that the difference 

from it to the best-fit value is not significant.  

Once best-fit values for all parameters (as listed in Table II) were determined, uncertainties 

were assessed. Because of the numerical complexity of the model, our ability to consider the 

simultaneous effects of multiple parameters, for example through the Monte Carlo method, was 

limited, and error bars were estimated based on the effects of each parameter individually. The 

uncertainties for the carrier recombination time and the surface recombination velocity were 

found by changing the value of each parameter individually until the model failed to find a good 

fit to the data, defined as a doubling of the residuals of the fit or a difference of more than 40% in 

values found for different modulation frequencies. The range of  
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄  considered was that 

given by the fits for different modulation frequencies. The effect of the uncertainty in each input 

parameter was determined by repeating the fitting to thermal conductivity with that parameter 

modified to the limits of its uncertainty, and recording the resultant change in fitted value, ΔΛi 

for parameter i. The magnitudes of the error bars are found as  

 
𝛥𝛬𝑡𝑜𝑡 = √∑(∆𝛬𝑖)2

𝑖

 
(6-32) 
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Figure 6-7: Fitting results for germanium. a) Fitted values of thermal conductivity. Error bars are found by 
perturbing input parameters within their uncertainties. b) Overall fit of model to total magnitude of recorded tTDR 
data for each modulation frequency. The large signal at small delay times is caused by the dominance of the carrier 
response at those times. 

Fitting results for the germanium sample are shown in Figure 6-7. Our average fitted thermal 

conductivity of 60 W/mK matches the value found by Maycock,92 and aligns well with the result 

we measured by standard TDTR of 51-57 W/mK. Over the tens of picoseconds to nanoseconds 

of delay time typical of a TDTR measurement, the model is a good fit. 

As discussed above, the measured tTDR signal is a combination of thermal and carrier 

effects. In Figure 6-8 we examine the relative components of the thermal and electrical signal for 

germanium. The measured signal is explained primarily by the thermal behavior at long delay 

times, but at short delay times the carrier behavior is also relevant. 
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Figure 6-8: Calculated thermal and carrier contributions to the magnitude of total tTDR signal recorded for the Ge 
sample at a) 10 and b) 0.3 MHz. The total signal is the absolute value of the sum of the (positive) thermal 
contribution and the (negative) carrier contribution. The carrier effect is more significant at higher modulation 
frequency, but the thermal signal is larger except at very small delay times. 

6.3.2 Silicon  
Fits for the silicon sample, shown in in Figure 6-9, were found through a similar procedure to 

those for the germanium sample. However, in contrast to the case for germanium, for silicon the 

signal is dominated by the carrier response (Figure 6-10), due to the much higher value of 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄  

for the silicon sample. We attribute this to silicon having a weaker dependence of refractive 

index on temperature than germanium for measurements at 800 nm. Because of the dominance 

of the carrier response, we were only able to find fitting values for the thermal conductivity for 

the measurements at the lowest modulation frequencies, where the sensitivity to the thermal 

properties is strongest. We used the data collected at higher modulation frequency to determine 

the electrical diffusivity, carrier recombination rate, and surface recombination velocity by a 

similar iterative procedure to that used for the germanium fitting, and then fit 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄  and the 

thermal conductivity based on the low frequency data. Error bar calculations for the silicon 

sample were performed as for the germanium sample. 

The best-fit value of the surface recombination velocity was within the range expected from 

the literature. As in germanium, the fitted carrier recombination rate was lower than expected 

from Auger recombination based on the initial carrier concentration, which we attribute to the 

lower carrier concentration at longer delay times. We did not observe a significant dependence of 

our signal on laser pulse energy, but this does not rule out a dependence of carrier recombination 
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time on pulse energy as the final signal is not very sensitive to recombination time, especially 

when that time is larger, as occurs at lower pulse energies. Our estimate of 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄  for silicon is 

similar to that for germanium, whereas our observed values are quite different, which highlights 

the limitations of our method for estimating 
𝜕𝑛

𝜕𝑁

𝜕𝑛

𝜕𝑇
⁄ .  

 

 

 
Figure 6-9: Fitting results for silicon. a) Fitted values of thermal conductivity. Error bars are found by perturbing 
input parameters within their uncertainties. We attribute the larger error bars at 0.1 MHz to the larger instrument 
noise at low frequency. b) Overall fit of model to total magnitude of tTDR data for low modulation frequencies, 
where thermal conductivity was the fitting parameter. c) Overall fit of model to total magnitude of tTDR data for 
higher modulation frequencies, where carrier properties were fit. 
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Figure 6-10: Calculated thermal and carrier contributions to the total tTDR signal recorded for the Ge sample at a) 
10 and b) 0.3 MHz. The total signal is the absolute value of the sum of the (positive) thermal contribution and the 
(negative) carrier contribution. The carrier effect dominates in both cases, but the thermal effect is non-negligible 
at low modulation frequency. 

Despite the larger uncertainty caused by the lower sensitivity to thermal conductivity and 

higher noise in our system at low frequency, our average fitted result for the thermal conductivity 

of silicon of 148 W/mK compares well to the literature value of 149 W/mK67 and to our result 

from standard TDTR of 140 W/mK. We highlight that our consideration of photoexcited carriers 

allows our model to describe the behavior of this sample, unlike the model presented by Qian et 

al, which fails to fit their experimental data for silicon.69 We anticipate that laser wavelengths 

other than those used here may allow measurement with lower uncertainty: a shorter pump 

wavelength would provide more thermal energy per incident photon, without increasing the 

initial carrier density, and a different probe wavelength might provide a higher 
𝜕𝑛

𝜕𝑇
 and so more 

sensitivity to thermal changes.  
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6.3.3 Sensitivity analysis 
To better understand the properties of our model, we perform a quantitative sensitivity 

analysis. Defining the sensitivity to a parameter x as 𝑆𝑥 =
𝜕 ln𝑅

𝜕 ln 𝑥
 and comparing the relative 

sensitivities of various parameters, we can establish how strongly each parameter influences our 

result. Results for Ge and Si at high and low modulation frequency are shown in Figure 6-11. 

Figure 6-11: Sensitivity plots for a) Ge at 10 MHz modulation frequency, b) Ge at 0.3 MHz, c) Si at 10 MHz, and d) Si 
at 0.1 MHz. 

For the germanium sample, the sensitivity to thermal conductivity is higher than that to other 

parameters except for the spot size and heat capacity. At low delay times and high frequencies, 
𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
 has a significant impact on the signal, but this sensitivity is decreased at larger delay 

times. Sensitivity to carrier lifetime is negligible, implying that surface recombination occurs 

significantly faster than bulk recombination in this sample. Though the sensitivity to spot size is 

larger than that to thermal conductivity, the fact that it is nearly constant with delay time and we 

fit to normalized data means that uncertainty in spot size has minimal effect on the fitting result. 

As long as the heat capacity of the sample is well known, fitting to the thermal conductivity will 

be reliable.  
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By contrast, the sensitivity to thermal conductivity in the silicon sample is very small—

indeed, negligible at high frequency. As shown in Figure 6-10 and indicated by the high 

sensitivity to  
𝜕𝑛

𝜕𝑁
∕

𝜕𝑛

𝜕𝑇
, the sample response is determined primarily by the carrier response, not 

the thermal one. To have any confidence in a value measured for the thermal conductivity, we 

took advantage of the minimal sensitivity to thermal properties at high frequency and fit to the 

carrier diffusivity, carrier recombination rate, and surface recombination velocity, increasing our 

confidence in our input for fits at low frequencies. Thus, even though the fits at 0.1 MHz and 0.3 

MHz are still dominated by the carrier properties, we have sufficient confidence in the values of 

those properties to determine a thermal conductivity. 

6.4 Conclusions 
The dominant noncontact methods of measuring thermal conductivity, TDTR and FDTR, 

generally require the use of a metal film transducer. However, the use of a transducer 

complicates the measurement and can restrict access to or reduce sensitivity to certain material 

properties of interest. In this paper, we demonstrate that time domain transient reflectivity 

measurements of the thermal properties of semiconductors can be made without the use of a 

transducer. We present a model for both the carrier and thermal responses to heating with, and 

measurement by, laser spots of finite dimension and non-zero penetration depth. We show that 

the model accurately describes the signal from direct measurements of germanium and silicon 

samples. Though we do not explore fully the possibility in this work, we anticipate that this 

result will be easily extended to the measurement of samples which cannot easily be measured 

with a transducer, for example, ultra-thin films or suspended membranes. 
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7 Transducerless measurements of two-dimensional materials 

7.1 Motivation 
Measurement of in-plane properties of ultra-thin materials, such as suspended two-

dimensional (2D) materials, is very challenging. Measurements are limited by the practicalities 

of sample fabrication, which require working with small areas of fragile membranes. 

Additionally, the small thermal conductance of ultrathin membranes means that the presence of 

any additional material for heat application or temperature sensing is likely to provide a thermal 

short, necessitating non-contact measurements. Though traditional TDTR is generally considered 

a non-contact method, it does require the presence of a metal transducer. Deposition of such a 

layer would be likely to damage a suspended 2D sample and, more importantly, the typical tens 

of nanometers of metal thickness would conduct far more heat than the material under study, 

making measurements insensitive to sample properties. Most existing work has instead used 

Raman thermography.  

Raman thermography measures thermal conductivity by using a laser to heat the sample 

directly, and either the same or a second laser to record the Raman spectrum of the heated 

sample. Shifts in Raman peaks with temperature are used to detect temperature variation. In the 

case of one-laser Raman measurements (the same laser acts as heater and thermometer), the 

relationship between input laser power and measured temperature is recorded and compared to a 

thermal model. Knowing the heat input into the system requires precise knowledge of the optical 

absorption of the sample under study, and assumptions must be made about the degree to which 

thermal resistance comes from intrinsic properties compared to interfaces, etc. This problem is 

somewhat overcome by two-laser Raman thermography, which uses separate pump and probe 

lasers to heat the sample and measure the temperature, respectively.93 This allows the probe laser 

to be swept in position with respect to the pump laser, allowing mapping of the temperature 

profile and the use of more detailed modeling. However, both techniques are limited to materials 

with Raman active modes with appropriately temperature-sensitive properties. Additionally, the 

non-modulated nature of the measurement means that the pump laser power must significantly 

exceed that of the probe laser to avoid artifacts from probe heating. Coupled with the fact that 

Raman peaks do not shift strongly with temperature (for example, Reparez et al93 relied on a 

peak shift of 0.022 cm-1/K to monitor temperature in silicon membranes), this requires pump 

powers large enough to heat the sample by typically 10s and sometimes 100s of Kelvin.  

Transducerless time domain reflectance measurements provide another avenue for 

measurement of in-plane properties of ultra-thin samples. They avoid the problems caused by the 

introduction of a transducer layer and do not require capturing or fitting to Raman spectra. By 

using a modulated pump beam, the effects of probe heating do not directly appear in the 

measurement—so long as the steady-state heating of the sample is low enough not to alter the 

result, the probe power is irrelevant. Though some information about the electronic properties of 

the sample is required, they offer an additional tool for characterization of 2D materials and can 

be done with existing TDTR setups.  
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7.2 Physics 
Much of the physics underlying tTDR measurements of two-dimensional (2D) materials is 

similar to that underlying measurements of bulk materials, so the model of 2D materials was 

built from that for bulk materials. Key differences are highlighted here. 

In a suspended 2D material, there is no relevant depth dimension. For the materials under 

study, much of both the pump and the probe intensity was transmitted through the material, so 

the laser intensity was taken to be constant through the material, and heat and charge transport 

were taken to be entirely in the lateral direction. This makes properties such as the out-of-plane 

electrical diffusivity and thermal conductivity irrelevant. Additionally, the material is thin 

enough that the self-interference of the probe beam described for bulk materials does not occur, 

and the probe beam can be taken to measure the temperature throughout the depth of the 

material. (Because the material is thin and the pump also heats throughout its depth, there is no 

z-dependence of temperature, so the average temperature is the same as the temperature at any 

depth.) Additionally, surface recombination becomes indistinguishable from bulk recombination 

as the surfaces and the bulk become close together. For 2D materials, only the total 

recombination rate was considered, and it should be understood to include recombination from 

multiple sources, including surface effects. 

Many 2D materials, including the MoS2 studied here, have energetically favorable exciton 

states even at room temperature. As such, the lowest energy states that carriers relax to following 

laser excitation are likely to be excitons rather than free electrons and holes at the band edge as 

in bulk Si and Ge. This has minimal implications for modeling the system, as exciton diffusion 

and recombination are, from the perspective of the resulting heat, not very different from free 

carrier diffusion and recombination. The main difference is that the exciton binding energy 

reduces the energy released during recombination, so instead of the bandgap, the expected 

energy released by the lowest-energy exciton (in MoS2, the A exciton)94 was used in the thermal 

model.  

Complicating matters is the fact that the suspended area of the sample is not much larger than 

the other length scales in the problem (e.g. spot size, thermal penetration depth), so treating the 

sample as a semi-infinite suspended membrane led to modeling results that failed to match the 

measured data for any physically plausible parameter values, as shown in Figures 7-1 and 7-2. 

However, the small thickness of 2D materials leads to two convenient effects: 1) the in-plane 

thermal conductance in the membrane is relatively small compared to the conductance between 

the supported area and the substrate; and 2) the heat capacity of the membrane is small compared 

to that of the volume of substrate thermally near its supported regions. Together, these effects 

mean that treating the substrate as maintaining a constant temperature and enforcing a constant 

temperature boundary condition at the edge of the suspended region is a reasonable 

approximation. To confirm this, the thermal resistance from the edge of the laser spot, taken to 

be the 1/e2 radius, to the edge of the suspended region was compared to that from the edge of the 

suspended region to the bulk silicon. (Figure 7-3) Even for a ring as narrow as 100 nm 
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transmitting heat to the bulk, the thermal resistance from the edge to the bulk (steps 2 and 3 in 

Figure 7-3, treated as in series to provide a worst-case estimate) was an order of magnitude less 

than that within the suspended region (step 1 in Figure 7-3), indicating that once heat entered the 

supported region of the sample it was quickly transported to the bulk silicon—that is, the silicon 

was an effective heat sink.  

The finite spacial domain of the suspended region slightly modifies the mathematical 

analysis used in Chapter 6. The Hankel transform approach for solving the diffusion equations 

must be replaced with a Bessel series approach, where the variable 𝑘 takes on discrete values in 

order to meet the constant temperature boundary condition at 𝑟 = 𝑟𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑, which is met when 

𝐽0(𝑘𝑛 𝑟𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑) = 0 for 𝐽0 the Bessel function of order 0. For example, the heat diffusion 

equation in the radial direction,  

Figure 7-2: attempting to fit low frequency data 
without accounting for heat sinking required very 
high thermal conductivity values (here, 500 W/mK) 
and led to poor fitting of higher frequency data 

Figure 7-1: Comparison of fit assumptions at 0.1 and 3 
MHz. Shown are calculations assuming an infinitely large 
thermally insulated region (dash-dot line), a finite 
thermally insulated region and infinite electrically 
insulated region (dashed line), and finite thermally 
insulated and electrically insulated regions (solid line), as 
well as experimental data (symbols). Changing the 
boundary conditions for carriers led to only small changes 
in the fit; changing them for temperature led to very 
different results, especially at low frequency. 

Figure 7-3: Steps used in the assessment of the heat sinking of the sample edges: 
thermal resistance from the laser spot to the edge of the suspended region (1) was 
found to be an order of magnitude less than thermal conductance from the edge of 
the suspended region to 100 nm from the edge, plus the thermal resistance across 
the interface into the silicon substrate, so the edges of the suspended region were 
treated as being at a constant temperature. 
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for 𝑘𝑛 such that 𝐽0(𝑘𝑛 𝑟𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑) = 0 

Note that equation (7-2) depends on the behavior of 𝑁 at the corresponding value of 𝑘𝑛. 

However, the above discussion focused on the boundary conditions for the heat diffusion 

equation, not the carrier diffusion equation. In the simplest mathematical case, the same type of 

boundary condition would apply for both—here, a fixed carrier concentration condition to match 

the fixed temperature condition. Though the silicon acts as an effective heat sink, it may be less 

effective as a carrier sink, especially given the presence of the native oxide layer. To account for 

this, two approaches were taken and compared. First, the spacial domain for the carrier diffusion 

equation was taken to be infinite, corresponding to an MoS2 flake much larger than the 

dimensions of the measurement and well-insulated (electrically) from the silicon, and the carrier 

diffusion equation solved using a Hankel transform. This solution was converted back to real 

space, as shown in Figure 7-4, where it could be seen that most of the excess carrier population 

existed in the suspended region of the sample. In order to solve the heat diffusion equation, the 

Bessel series of this real space solution was calculated, providing 𝑁(𝑘𝑛) as required. This result 

was compared to that found by requiring 𝑁(𝑟 ≥ 𝑟𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑) = 0, which allowed treatment of the 

carrier diffusion equation similar to that shown above for the temperature equation and provided 

𝑁(𝑘𝑛) directly. As shown in Figure 7-1, these two results were nearly identical at low 

modulation frequency and deviated slightly at higher frequency, but well within the experimental 

uncertainty bounds. Because of the reduced computational intensity of the second approach, it 

was used for finding the final fitted results.  

 

Figure 7-4: Distribution of in- and out-of-phase (real 
and imaginary) parts of the function describing 
carrier population, for the high and low frequency 
components of the measurement, when an infinite 
spacial domain is assumed. Regardless of frequency, 
most of the carrier density is found to be within the 
suspended region.  
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7.3 Measurement of suspended MoS2 

MoS2 monolayers were exfoliated from a mineral sample by tape exfoliation onto PDMS. 

Monolayers were visually identified by light microscopy, and then dry transferred onto a pre-

prepared silicon substrate with 4.8 micron diameter holes, which had been cleaned with acetone, 

isopropanol, and DI water and dried under dry nitrogen. The yield from this process was quite 

low, as monolayers tended to tear at the edges of the holes, but one sample was successfully 

prepared and studied via tTDR. To avoid overheating of the sample, low laser powers were used, 

with long averaging times per data point in order to reduce noise. The tTDR signal is 

proportional to the product of the absorbed pump power and the thermoreflected probe power, 

both proportional to the intensity of the beams. The steady state heating of the sample is 

proportional to the sum of the absorbed pump power and the absorbed probe power. It is 

desirable, then, to maximize the product of the powers while minimizing the sum. This would be 

done by using matching pump and probe powers except that the probe interacts with the sample 

much more weakly than the pump, so a probe power of 120 μW was used with a pump power of 

30 μW. It is expected that this led to steady state heating of a few 10s of Kelvin along with a 

smaller temperature deviation at the modulation frequency. A 100x 0.95 NA objective was used 

to focus the laser spots onto the sample. The spots were aligned with the suspended membrane 

first by eye using the system camera, and then the position of the sample was adjusted to 

maximize the total signal at negative delay time and low modulation frequency, where it arises 

primarily from heating. Since the center of the membrane was more insulated from the substrate 

than the edges, it should provide the maximum signal. Measurements were then taken and are 

shown in Figure 7-5.  

Fitting to the raw data was done as described in section 4.3. Laser spot sizes were found by 

analyzing images of the spots captured by the system camera. Heat capacity was taken from the 

literature to be 2.0 J/m3K.95 Diffusivity and carrier lifetime were taken from literature values as 

0.06 cm^2/s and 18 ns, respectively,96 though in this fitting they were allowed to vary within a 

factor of two of those values, and fit as 0.058±0.016 cm2/s and 18.5±1.6 ns. The ratio of the 

strength of the measured carrier effect to the thermal effect was also treated as a fitting parameter 

and was found to be −9.1 × 10−26 ±  2.7 × 10−27 m-3/K-1.  

The fitted value of 25 W/m K is lower than previous literature reports of 35-84 W/mK97–100 

from Raman thermography and transient grating spectroscopy. However, given the large scatter 

in existing work, this value is not unreasonable. Further work, such as the study of additional 

samples or a temperature-dependent measurement, would strengthen this result.  

Figure 7-5: Measured data and fitted model for 
monolayer MoS2. Error bars on the symbols 
represent the uncertainty in the calculated phase 
correction, and shaded regions the effect of 
perturbing the thermal conductivity within its 
uncertainty.  
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7.4 Moiré structures 
When two or more lattices are stacked and are not matched, whether in lattice constant or in 

angle, a moiré structures is formed. This provides a superlattice with longer-range periodicity 

and can lead to the development of new properties. Because of the large moiré lattice constant, a 

many-atom unit cell is created, corresponding to a very small Brillouin zone. This leads to the 

formation of new electronic, exitonic, and phononic states.101,102 Moiré structures in 2D materials 

have seen significant interest since the demonstration of a magic angle in twisted bilayer 

graphene, where the flattening of the electronic bands leads to exotic behavior including 

superconductivity.103 Most of the investigations of the properties of moiré structures have 

focused on electronic and optical properties, with little focus on thermal properties. Those works 

which have studied thermal properties have largely explored out-of-plane conductivity, which 

has been shown to be dramatically suppressed by twist,4 but systematic study of in-plane 

properties is lacking, despite the clear introduction of in-plane periodicity. In this work, steps 

were taken toward characterization of the in-plane thermal properties of MoS2 homobilayers. 

Phonon thermal conductivity is determined by the frequency and velocity of the phonon 

modes, i.e. Λ =
1

3
∫ 𝜏 𝑣2𝐶𝜔 𝑑𝜔 for 𝜏 the relaxation time of the phonon mode, 𝑣 its velocity, and 

𝐶𝜔 the specific heat per unit frequency. Note that 𝜏, 𝑣, and 𝐶𝜔 are generally all functions of 𝜔.26  

Many of the phonon properties are expected to be affected by twist. The reduction in size of 

the Brillouin zone leads to band folding, leading to the presence of many optical phonon bands. 

Because of the low group velocity of optical phonons, they carry little heat, so the presence of 

many optical phonon bands typically leads to reduction in thermal conductivity. Additionally, the 

presence of many bands increases the number of available channels for phonon-phonon 

scattering. Smaller twist angles lead to larger moiré lattices and so more band folding, so may 

lead to lower thermal conductivity than large twist angles. 

Additionally, some of the phonon modes of MoS2 are directly affected by the twist angle. For 

example, low-frequency Raman measurements have shown that the shear and layer-breathing 

modes which exist in an untwisted bilayer are not present for twists above about 3°, though a 

different layer-breathing mode appears in twisted samples.104 Even lower energy shear modes, 

with dispersion relationships comparable to those of the intrinsic acoustic phonon modes, have 

been computationally predicted.105 The dispersions of these modes, including their velocities, are 

functions of twist angle, with lower velocity at smaller twist angle.105 Such low-energy modes 

may well contribute to heat transport and would also be expected to have lower thermal 

conductivity at lower twist angle.  

Molecular dynamics has been applied to predicting the in-plane conductivity of graphene and 

MoS2.
106,107 In both cases, suppression of thermal conductivity with twist is expected, but in 

graphene a critical angle with minimal thermal conductivity is predicted, and such a result is not 

seen in MoS2. (Figure 7-6 a-b) In graphene, MD simulation suggests this is related to increased 

wrinkling at the critical twist angle,106 but it is not clear why MoS2 would not be subject to 

similar behavior.  
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Figure 7-6: a) MD calculated thermal conductivity of twisted bilayer graphene vs commensurate lattice constant, 
showing a minimum near 13 degrees of twist. Figure taken from Li and Lake.106 b) MD calculated thermal 
conductivity for twisted bilayer MoS2 vs moiré lattice constant, showing a monotonic decrease. Figure taken from 
Mandal et al.107 c) Raman thermography measurement of thermal conductivity of twisted bilayer graphene vs 
moiré lattice constant, showing a minimum near 11 degrees of twist. Figure taken from Han et al.108 

Two studies have reported experimental values for the in-plane thermal conductivity of 

twisted bilayer graphene, both using Raman thermography. Li et al.109 measured a single twisted 

sample (34° twist) across a range of temperatures. At room temperature, they saw a roughly 25% 

suppression in thermal conductivity compared to an untwisted bilayer. Han et al.108 measured 

five samples at twist angles of 0°, 2°, 11°, 27°, and 30° and saw a minimum thermal conductivity 

in the 11° sample, with an approximately 20% reduction compared to the 0° sample. (Figure 7-

6c) This minimum angle corresponds well to the MD prediction of a minimum near 13°, though 

the predicted thermal conductivities varied between the MD calculation and the measurement. 

Similar studies of MoS2 are lacking.  

7.4.1 tTDR for moiré structures 
Moire structures were assembled by exfoliation and stamping. Tape exfoliation from a bulk 

crystal was used to generate monolayers on a PDMS stamp, which were identified by optical 

a b 

c 
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microscopy. These were then stamped over a hole in the substrate, with the desired twist applied 

between the first and second transfer. This was an extremely low-yield process, particularly due 

to tearing of the monolayers at the edges of the holes. This severely limited the number of 

available samples for tTDR measurement.  

Visually promising samples included those at 5, 10, and 30 degree twists as well as a native 

bilayer. Unfortunately, high-quality data was only recorded from the sample with a 10 degree 

twist, but all are briefly discussed here. Fitting properties other than thermal conductivity were 

taken to be the same as those of the monolayer. Some uncertainty in the carrier diffusivity and 

lifetime and in (
𝑑𝑛

𝑑𝑁
)/(

𝑑𝑛

𝑑𝑇
)  were accounted for by allowing them to be fit parameters, but terms in 

the emcee objective function were added to drive them toward Gaussian distributions matching 

those from the monolayer fit. (See Section 4.3 for discussion of the objective function.) 

7.4.1.1 Native bilayer 

The native bilayer sample was one of the first suspended samples measured, before 

calculations of the heating of the suspended area were done. As such, it was subjected to higher 

laser power than other samples and was damaged. Some data was collected before the damage 

was obvious, (Figure 7-7) but the high laser fluence led to qualitatively different results—e.g. the 

carrier effect appeared to affect the reflectivity similarly to the thermal effect, rather than 

opposite it as in all other measured semiconductor samples. This could be mathematically 

modeled, and the effect could originate due to shifts in exciton absorption peaks caused by 

intense light, but certainly this behavior indicates results that are hard to compare to other 

measured data. Additionally, the steady state laser heating was significant enough that it is hard 

to determine what the effective sample temperature was during the measurement. As such, these 

results are not very meaningful.  

Figure 7-7: Measured data and fitted model for native 
bilayer MoS2. These data were collected at much 
higher laser power, leading to qualitatively different 
results than found in lower-power measurements. 
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7.4.1.2 5 degree twist 

The sample prepared with a 5° twist was measured at a similar laser power to that used for 

the monolayer. It provided sufficient signal at modulation frequencies of 1 MHz and below; 

signal was very weak at higher frequency. However, the measured data, shown in Figure 7-8, 

consistently had significantly lower phases than the other samples at all measured modulation 

frequencies. This would most easily be explained by a very low thermal conductivity (<1 

W/mK). It is possible that this indicates a partially damaged sample, in which case assuming that 

the electronic properties are the same as in the other samples is also unreasonable. Regardless, 

without additional samples to validate the response, it seems likely that this result is due to 

problems in the fabrication rather than due to the moiré structure.  

7.4.1.3 10 degree twist 

Raw data for the 10° sample was qualitatively similar to that for the monolayer sample, 

showing little trend with decay time but a stronger trend with modulation frequency. Signal at 10 

MHz modulation was too weak to be meaningful, but that for 3 MHz and below was usable and 

is shown in Figure 7-9. The fitted thermal conductivity of 27.5 W/mK was slightly higher than 

the 24.9 W/mK measured for the monolayer. Reported thermal conductivities of untwisted 

bilayer MoS2 are generally larger than those of the monolayer, an effect attributed to decreased 

boundary scattering in the thicker samples,100,110 though some reports show the opposite trend.97 

Figure 7-8: Measured data and fitted model for 
bilayer MoS2 with a 5° twist. The much lower 
measured phase than in other measurements could 
only be fit by assuming extremely low thermal 
conductivity, and even then the fit was not very good. 

Figure 7-9: Measured data and fitted model for 
bilayer MoS2 with 10° twist. Error bars on the 
symbols represent the uncertainty in the 
calculated phase correction, and shaded regions 
the effect of perturbing the thermal conductivity 
within its uncertainty.  
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Seeing a slight increase from the monolayer to a twisted bilayer is believable but does not 

provide any direct information on the effect of the twist.  

7.4.1.4 30 degree 

Measurements from the 30° sample yielded weaker signal than those from the 10° sample. 

Possibly the optimum focus and laser position for measurements were not found—small 

adjustments to sample positioning were seen to make a large difference in signal intensity. 

Regardless, an attempt was made to fit the measured data, as shown in Figure 7-10, and the 

model captured some of the behavior of the data. However, the fitted result of 4.7 W/mK was 

dramatically different from the other measured values, and without more certainty in the data this 

seems an unlikely result.  

7.4.2 Moiré structures: Conclusion  
Attempts were made to measure several twisted bilayer structures, and the measurements of 

the sample with 10° twist worked well. This demonstrates the possibility of using tTDR to study 

moiré structures but is insufficient data to make comments on their effects. Future work should 

also include measurements of the temperature dependence of the thermal conductivity of both 

untwisted and twisted samples to better elucidate the phonon behaviors. Additional 

characterization through other techniques suitable for measuring the lowest energy phonon 

branches, such as Brillouin-Mandelstam spectroscopy111 has been suggested for similar 

systems.105 Comparison between such measurements of low-energy phonon branches and 

thermal conductivity measurements would provide valuable insight into the underlying 

mechanisms governing the dependence of thermal conductivity on twist angle. 

7.5 Conclusion 
The tTDR method provides a new tool for measuring the thermal conductivity of ultrathin 

materials such as monolayer and bilayer MoS2. The model for a bulk material can be readily 

adapted to the 2D case and is shown to fit measured data. Though further validation would be 

beneficial, this is a promising result. Additionally, twisted bilayer structures were measured, 

though sample fabrication limitations prevented systematic study as a function of twist angle.  

  

Figure 7-10: Measured data and fitted model for 
bilayer MoS2 with 30° twist. As is evident, data 
were much noisier for this sample than for the 
monolayer and 10° samples, so this fit result does 
not seem reliable. 
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8 Summary and outlook 
This work strives to further the applicability of TDR techniques, both through better 

understanding of what can be measured and through new technique development. The key 

contribution of this work is the development of tranducerless time domain reflectivity 

measurements. These are a novel tool for measuring semiconductor thermal properties and make 

existing TDTR equipment usable for systems which for which it would otherwise not be useful, 

such as measuring suspended two dimensional semiconductor samples. The demonstration that 

the technique can be used for such samples, including moiré structures, motivates further 

attempts to leverage it to better understand such materials systems.  

There are certainly many open questions. Chapter 4 describes the use of more sophisticated 

fitting methods for TDR data, but more rigorous mathematical frameworks to guide such efforts 

would be a significant contribution.  

Chapters 5 describes attempts to study materials near their metal-insulator transitions, but 

clear results about Lorentz number suppression were not available because the samples studied 

showed relatively small changes in electrical conductivity, so negligible changes in thermal 

conductivity were expected. Study of samples with higher electrical conductivity in the metallic 

state would allow a clearer assessment of Lorentz number suppression and allow investigation of 

factors such as grain size and orientation on the degree of suppression measured. Additionally, a 

systematic study of the effects of doping with tungsten or other materials known to affect the 

metal-insulator transition, such as titanium, could provide additional information about the 

origins of such suppression. Direct measurement of lattice properties across the transition, for 

example by inelastic x-ray scattering, would allow more rigorous decoupling of the electronic 

and lattice contributions to the total thermal conductivity and allow for more accurate 

determination of the Lorentz number. 

Chapters 6 and 7 discuss the development and application of tTDR, but most of its potential 

applications have not been explored. It is a powerful tool for measurement of any semiconductor 

sample with electronic properties that can be separately measured, for example through Hall 

effect measurements, or fit simultaneously with thermal properties as was done for MoS2. It is 

particularly applicable to ultra-thin samples or others where coating with a metal transducer layer 

is infeasible. Though this work has discussed measurements as a function of delay time, the same 

analysis applies to measurements as a function of modulation frequency, whether with pulsed or 

continuous-wave lasers. Transducerless frequency domain reflectivity measurements would be a 

straightforward extension of this work.  

As discussed in Chapter 7, moiré structures are a rich field, and their in-plane thermal 

properties are poorly understood. This work made only small inroads towards changing that. 

With higher-yield sample preparation, measurements as a function of twist angle for MoS2 and 

other 2D semiconductors could be performed, and the effect of the moiré lattice structure 

assessed. The analysis presented for tTDR on suspended 2D materials assumed a circular 

suspended region with effective heat sinking at the edges, but otherwise the details of the 

substrate have minimal effect, and other measurements could be performed on the same or 

adjacent regions to that used for tTDR. Very similar sample geometries are used for Raman 

thermography, allowing the possibility of direct comparison between the techniques. 

Additionally, appropriate substrates could be suitable for both tTDR and transmission electron 

microscopy, allowing direct measurement of twist angle and observation of the structure of 

measured samples. Other optical measurements, for example of photoluminescence lifetime, 
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could provide an estimate of the exciton lifetime in the samples. Such coupled measurements by 

different techniques could provide exciting insight into the relationships between multiple 

properties of samples under study. 

The field of thermal measurements is a rich one, and the thermal properties of electronic 

materials will remain technologically relevant. This work offers improvements to the existing 

techniques and paves the way for more advances.  
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Appendix 1: TDTR at the Molecular Foundry 
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Number Name Function 

1 Ti:sapphire laser Generates ~140 fs laser pulses at 800 nm 

2 Optical parametric 

oscillator 

Tunes laser output to a variety of wavelengths, here 800 nm and 

565 nm 

Pump line 

3 Electro-optic 

modulator 

The electro-optic modulator, (Conoptics M350-160, driven by a 

Conoptics 25D amplifier) provides a modulation envelope on 

laser pulses, varying the intensity sinusoidally at a tunable 

frequency from 100s of kilohertz to 10 MHz 

4 Micrometer stage Allows adjustment of the length of the pump path, allowing more 

precise matching to the probe path 

5 Pump beamblock Allows computer-controlled blocking of the pump beam, for 

example for measuring signal offsets before measurement 

6 Pump neutral 

density filter 

Allows control of the pump beam power 

7 Pinhole and 

associated optics 

Two lenses focus light through a pinhole and then recollimate it, 

improving the roundness of the laser spot 

8 Dichroic mirror Reflects the pump beam to the sample while allowing the probe 

beam to pass through 

Probe line 

9 Probe beamblock Allows computer-controlled blocking of the probe beam 

10 Probe neutral 

density filter 

Allows control of the probe beam power 

11 Beam expander Two lenses expand and recollimate the beam at a larger radius, 

reducing divergence through the delay stage 

12 Delay stage By physically moving two corner-cube mirrors, the length of the 

probe path can be precisely set, allowing sweeping delay time 

during measurement 

13 Fiber launch setup An objective lens focuses the output beam from the delay stage 

into an optical fiber, which is mounted on a computer-controlled 

stage to allow optimization of transmission through the fiber 

14 Single-mode optical 

fiber 

The single-mode fiber provides the same output beam profile and 

radius regardless of the input profile, meaning that changes in 

spot shape and size as the delay stage moves can be ignored 

15 Focusing optics The output from the fiber is collimated for transmission to the 

sample 

16 50/50 beamsplitter Incoming light from the single-mode fiber is split, half to the 

sample and half to the reference collimator, allowing monitoring 

of probe intensity. Reflected signal from the sample is also split, 

half to the signal collimator for detection, and half discarded 

17 Reference 

collimator and fiber 

After the reference beam passes through a neutral density filter, a 

parabolic mirror couples it into an optical fiber which takes it to 

the photodetector. The neutral density filter is adjusted before 

each measurement to match the power of the reference signal to 

that from the sample 
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Sample and measurement 

18 Objective lens A microscope objective focuses the pump and probe beams and 

light from the illumination system onto the sample. Changing the 

objective allows control of the laser spot size 

19 Sample The sample to be measured is mounted on an xyz stage, allowing 

positioning to areas of interest 

20 Illumination and 

viewing system 

An LED (20a) is mounted on a 50:50 beamsplitter, such that (half 

of its) light is directed toward the laser beam path. On the beam 

path, a 92:8 beamsplitter reflects ~8% of the LED light to the 

sample (while transmitting ~92% of the laser power). Viewing of 

the sample and the laser spot is possible through a camera (20b) 

which is also mounted on the 50:50 beamsplitter such that a 

fraction of the reflected light from the sample is directed to it. 

21 Short pass filter Blocks any pump light that passes through the dichroic mirror, 

ensuring that the measured signal is based entirely on the probe 

reflection 

22 Signal collimator 

and fiber 

A parabolic mirror couples the probe light reflected off the sample 

into an optical fiber that takes it to the photodetector 

23 Photodetector A balanced photodetector (Thorlabs PDB435A) subtracts the 

signal and reference intensities, reducing noise, and passes the 

result to the lock-in amplifier 

24 Lock-in amplifier The lock-in amplifier (Zurich Instruments HF2LI) selects the 

component of the measured signal at the frequency at which the 

pump beam is modulated, allowing measurement of the response 

of the sample to the pump heating and rejecting noise at other 

frequencies. 

 

 




