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Abstract

We employ self-supervised representation learning to distill information from 76 million galaxy images from the
Dark Energy Spectroscopic Instrument Legacy Imaging Surveys’ Data Release 9. Targeting the identification of
new strong gravitational lens candidates, we first create a rapid similarity search tool to discover new strong lenses
given only a single labeled example. We then show how training a simple linear classifier on the self-supervised
representations, requiring only a few minutes on a CPU, can automatically classify strong lenses with great
efficiency. We present 1192 new strong lens candidates that we identified through a brief visual identification
campaign and release an interactive web-based similarity search tool and the top network predictions to facilitate
crowd-sourcing rapid discovery of additional strong gravitational lenses and other rare objects: github.com/
georgestein/ssl-legacysurvey.

Unified Astronomy Thesaurus concepts: Sky surveys (1464); Strong gravitational lensing (1643); Convolutional
neural networks (1938)

1. Introduction

The identification of rare objects is essential to facilitate a
number of studies in astronomy. In recent years, the rapid
advance of digital sky surveys has increased the size and
complexity of data at an ever-increasing pace, giving
researchers more opportunities to discover and analyze unique
objects. However, this opportunity comes at the cost of an
enormous amount of data to search through, such that relying
on manual inspection of imagery by experts has long been
rendered obsolete. Crowd-sourced classification campaigns
such as the Galaxy Zoo projects (Lintott et al. 2008; Willett
et al. 2013) allow for the visual inspection of a relatively large
number of galaxies (( )105 -( )106 ), but this number still pales
in comparison to the full extent of current and incoming
surveys. For example, the latest data release of the Dark Energy
Spectroscopic Instrument (DESI) Legacy Imaging Surveys
(Dey et al. 2019) includes( )109 galaxies, a number far out of
reach of even the most ambitious crowd-sourcing effort.

While visual inspection of the full data set to find rare
objects is unattainable, the recent success of deep convolutional
neural networks (CNNs; LeCun et al. 2015) for a wide variety
of supervised classification and regression tasks in computer
vision has been shown to be invaluable in conjunction with
crowd-sourced astronomical efforts. Given a sufficient sample
of human-labeled galaxies, such networks can be trained in a
supervised setting to classify images with remarkable accuracy,
which has led to their widespread adoption for sky survey
science (Huang et al. 2020; Walmsley et al. 2020; Vega-Ferrero
et al. 2021). Although powerful, this approach is not without
issues, as it directly relies on the quantity and quality of the
(manually assigned) labels, which tend to be from “more
interesting” galaxies. As such, these labels are biased toward
bright and large objects and generally targeted toward more

common galaxy morphologies. In particular, supervised CNN
classification can prove difficult when the number of known
objects of a particular class is very small, as the quality of the
supervised network degrades considerably without a sufficient
number of labeled samples to learn from (Hayat et al. 2021).
One important class of rare objects is strongly gravitationally

lensed galaxy systems, in which light from background sources
is lensed by an intervening foreground galaxy or galaxy cluster,
magnifying and distorting the appearance of the background
source. As the lensing is a function of gravitational potential, its
strength is dominated by the dark matter content of the lens and
thus can be used to study the dark matter distribution of
galaxies (Gilman et al. 2019). Additionally, the magnification
of background sources allows for the study of high-redshift
galaxy features that would otherwise fall below the detection
threshold of astronomical instruments (Caputi et al. 2021).
When multiple images of the same background source are
observed, the time delay of unique features traversing different
path lengths can provide constraints on the expansion of the
universe (Wong et al. 2020). We refer the reader to Treu (2010)
for a comprehensive review of the subject.
As a result of the scientific value of strong lenses, a large

targeted effort has been undertaken to search for them in
existing sky survey imaging data sets. The primary challenge in
doing so is their scarcity, as we expect only about one in
( )104 galaxies to be strongly lensed (Collett 2015). In recent
years, the search for strong lenses has been dominated by the
use of CNNs trained in a standard supervised learning setup
(e.g., Jacobs et al. 2017, 2019a, 2019b; Petrillo et al. 2017,
2019; Lanusse et al. 2018; Cañameras et al. 2020, 2021; He
et al. 2020; Huang et al. 2020, 2021; Li et al. 2020; Gentile
et al. 2022).4 After assembling the (small) sample of already
known strong lenses (or a set of simulated strong lenses)
and selecting a number of galaxy images that are not lensed,
the CNN is trained in a binary classification setting on the
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training set until the performance on a holdout validation set is
optimized. These studies have succeeded in discovering a
number of new strong lens systems, but even after compiling
all known lenses to date across all surveys, the number of
available training samples is a major limiting factor in
achieving accurate predictions with this approach.

The lack of quality training labels coupled with the
enormous quantity of data coming from current and near-
future sky surveys motivates the need for scalable approaches
capable of learning from unlabeled data. Rather than training
specialized networks for each individual classification or
regression task, learning without labels allows for more
generalized models capable of performing multiple tasks in
parallel while simultaneously benefiting from access to orders
of magnitude more data. A preliminary application of
unsupervised methods to lens identification was done by Cheng
et al. (2020), who applied a convolutional autoencoder to
simulated data and clustered the resulting features to classify
lenses. An exciting alternative to this purely unsupervised
feature learning is the emerging paradigm of self-supervised
learning, which aims to distill or extract useful information
from images without requiring supervision labels for each
sample in the data set (Zhai et al. 2019). Self-supervised
methods can make use of very large unlabeled data sets (e.g.,
Goyal et al. 2021), which would be cumbersome or otherwise
impossible to manually label, and build meaningful embed-
dings or representations by solving contrived tasks during
training that require some high-level understanding of the input
features. The representations produced by self-supervised
models can then be directly used or fine-tuned for machine
learning tasks of interest, and this approach is able to
outperform standard supervised machine learning models,
particularly when the number of data labels available for
supervision is low (Chen et al. 2020a, 2020b, 2020c).
Compared to simpler unsupervised feature learners like
autoencoders, self-supervised models are known to produce
higher-quality representations with far more predictive power
(Donahue et al. 2016; Donahue & Simonyan 2019) that
generalize well to many different tasks (Caron et al. 2021).

The utility of self-supervised models applied to astronomical
imagery was recently showcased by Hayat et al. (2021), who
found that self-supervised pretraining on a large unlabeled set
of Sloan Digital Sky Survey galaxy images improves
performance on tasks like redshift estimation and morphology
classification, and that these performance gains are most
significant when the number of labels for supervised training is
limited. Hayat et al. (2021) also showed that the representation
space learned in self-supervised pretraining is semantically
meaningful and readily provides a similarity metric that can
identify additional examples of a query object, such as an
observational error or anomalous galaxy. As automated strong
lens detection is a problem inherently limited by the number of
labeled examples, self-supervised models are thus an exciting
prospect for quickly identifying new candidates given a large
set of galaxy imagery.

In this work, we apply self-supervised learning to Data
Release 9 (DR9) of the DESI Legacy Surveys (Dey et al. 2019)
to conduct a search for strong gravitational lenses. Strong
gravitational lensing can result in a number of different visual
configurations, including multiple appearances of the same
background galaxy or extended arcs curving toward the central
source, but determining whether the configuration is a true

gravitational lens by visual inspection can be difficult. There-
fore, unless the system is spectroscopically confirmed (or, in
the case of faint lens features, observed at higher resolutions
using other instruments), we often cannot use images to
conclusively determine whether or not a system is truly a
gravitational lens. As such, in this work, we consider strong
lens candidates: images that contain characteristics of strong
gravitational lensing as viewed in the DESI Legacy Survey
imaging. In Section 2, we first give an overview of the images
and strong lens labels used, followed by a description of our
self-supervised model and supervised classifiers in Section 3. In
Section 4, we detail our discovery of 1192 new strong
gravitational lens candidates and present our publicly available
similarity search tool to facilitate the discovery of additional
gravitational lenses beyond those presented here. Lastly, we
conclude in Section 5.

2. Data Set

2.1. DESI Legacy Survey

The DESI Legacy Imaging Surveys5 (Dey et al. 2019) cover
approximately 19,721 deg2 of extragalactic sky visible from the
northern hemisphere in three optical bands (g, r, and z). The
survey footprint is split into two components, north and south.
The observations in the north region, δ> 32.375, were
undertaken jointly by the Beijing-Arizona Sky Survey (BASS;
g and r bands) and the Mayall z-band Legacy Survey (MzLS; z
band), while the southern part of the survey, δ< 32.375, uses
data from the DECam Legacy Survey (DECaLS). The DECaLS
program made use of other DECam data, the most significant of
which are from the Dark Energy Survey (DES), which includes
a 5000 deg2 contiguous area in the south Galactic cap.
DECaLS explicitly did not reimage the DES area and instead
incorporated the DES imaging itself. We use the latest data
release, DR9, released in 2021 January. The DR9 does not
contain significant new observations but builds on DR8 by
improving the reduction techniques and procedures used for the
Legacy Surveys. Imaging from the Legacy Surveys is first
reduced through the NOIRLab Community Pipeline6 before
being processed using the Tractor.7 The Tractor identifies
unique sources in the imaging survey, measures a large number
of photometric features, and fits for a number of quantities,
including morphological type.
Our self-supervised approach allows us to learn from the

entire data set and does not require restrictive data cuts to
narrow down objects to those most likely to show features of
strong lensing, such as color or magnitude cuts. Rather, we aim
to use every galaxy in the DESI Legacy Imaging Surveys. We
keep every source in the sweep catalogs (a subset of the
information about each source from the full Tractor catalogs)
that was not identified as a star, i.e., did not have a best-fit
morphological model of point-spread function (PSF) = stellar.
For both the north and south surveys, we compile an initial list
of all non-PSF sources and keep those with a z-band magnitude
(denoted magz) less than 20. This cut was introduced to keep
the data at a more manageable size and to focus on galaxies that
have been included in previous lens searches (Huang et al.
2021). For the south survey, we also include the next 20

5 legacysurvey.org/
6 noao.edu/noao/staff/fvaldes/CPDocPrelim/PL201_3.html
7 github.com/dstndstn/tractor

2

The Astrophysical Journal, 932:107 (19pp), 2022 June 20 Stein et al.

http://legacysurvey.org/
http://noao.edu/noao/staff/fvaldes/CPDocPrelim/PL201_3.html
http://github.com/dstndstn/tractor


million sources with magz> 20, sorted by decreasing
brightness.

For each source in the list, we extracted a 256× 256 pixel
cutout in each of the (g, r, z) bands at 0 262 resolution,
centered at the R.A. and decl. of the source. A very small
fraction of galaxies that existed in the sweep catalogs resulted
in an error when requesting the cutout, so these sources were
excluded from our final catalogs. In total, this resulted in
14,174,203 images from the north survey and 62,272,646
images from the south, 42,272,646 with a magz< 20, for a total
of 76,446,849 images. Sources in, e.g., galaxy clusters can be
separated by less than the angular extent of an image, so
separate images of nearby sources will include overlapping
regions of the sky. The vast majority of galaxies and strong
lenses cover angular extents much less than the full 256 pixel
cutout, so we choose to train all networks on 96× 96 pixel
(25″× 25″) crops. In order to perform the required set of data
augmentations during training, mainly random rotations and
jitter, we save 152× 152 pixel versions to disk, which results
in a data set size of 20 TB. Files are saved in hd5f format and
split into arrays of 1 million images (i.e., each file contains an
image array of size (1,000,000, 3, 152, 152) and the
corresponding sweep catalog information for each source).

2.2. Compilation of Previously Found Lenses

We compiled a list of strong lens candidates from previous
lens-finding campaigns using all candidates from the following
sources.

1. The Master Lens Database8 as of late 2021 July.
2. Huang et al. (2020, 2021) with tables available on their

project website.9

3. A number of previous works with tables published
through the VizieR database10 (Carrasco et al. 2017;
Diehl et al. 2017; Jacobs et al. 2017, 2019a, 2019b;
Pourrahmani et al. 2018; Cañameras et al. 2020).

4. The Survey of Gravitationally lensed Objects in HSC
Imaging Candidate List11 (Sonnenfeld et al. 2018,
2019, 2020; Wong et al. 2018; Chan et al. 2020; Jaelani
et al. 2020).

Some of the above works overlap with the Master Lens
Database, but we included their data tables separately to ensure
all sources were included. We disregard the “quality” labels
indicating the respective team’s level of confidence that each
candidate is actually a lens, as the classification criteria for
these labels are inconsistent throughout the literature. During
publication of this paper, after the conclusion of our lens
search, Rojas et al. (2021) performed an additional supervised
CNN search on the DES region, finding 186 new lens
candidates, and Li et al. (2021) presented 97 new high-quality
strong lensing candidates. We also became aware of another
separate repository of known lenses12 that were already
included in our analysis through the Master Lens Database.

To first determine which of the lens candidates overlap with
our image data set, we cross-match the R.A. and decl. from our
lens candidate list with the approximately 76 million sources in

our DR9 sample and define a match as any lens that has a DR9
source separated by less than the size of our images (96 pixels).
For galaxy clusters with multiple sources near the given lens
position, we flag the nearest source as “the lens” regardless of
whether it is in the center of the cluster. We additionally flag
any DR9 sources that reside near a lens, but are not the closest,
by noting their distance from the lens. To prevent any
ambiguity during training of our networks in Section 3.3, we
make sure not to sample sources that happen to lie near any
labeled lenses, as the lens features may still appear in the
image.
This procedure results in nearly 6000 lens candidates that

overlap with sources in DR9, but by our own lens classification
criteria, the majority do not appear to have clear lensing
signatures in DR9 imaging.13 This discrepancy is potentially
due to limitations in the angular resolution or noise levels of
DR9 or unclear classifications of what constitutes a lens
candidate in the variety of sources compiled. As we explain in
the following section, we train all models only on south sources
with magz< 20. In this subset, we visually inspect the lens
candidates and keep only the ones that, in our opinion, exhibit
distinguishable lensing features in DR9 images. We do not
include images with very faint or ambiguous features. We refer
to this final catalog of 1615 lenses as DECaLS strong lenses,
and we use only this sample for training and validating our
supervised networks.
We show the distribution of lenses on the sky in Figure 1. As

expected, we see a higher density of lenses in the DES region
due to the greater imaging depth and its heightened focus by
previous lens searches. In addition, given our highly subjective
visual selection of often-ambiguous images (which is based on
an already-biased sample of previously discovered lenses), our
training set has likely over- or undersampled certain lens
classes and configurations, which affects the set of newly
uncovered lens candidates. Thus, the lens candidates we
present in this work should not be considered as a
representative sample of all those remaining to be found in
sky survey data sets but rather as a complex combination of the
known sample of lenses available for training, the biases
introduced by the specific subset of humans who examined
them for this work, and the inherent biases of classification
with highly nonlinear models in a class-imbalanced problem.
Rather than assembling a training set of lenses by visual
inspection, one could instead learn from a set of simulated
lenses (Jacobs et al. 2017; Li et al. 2020), although this
procedure does not come without its own set of biases, as the
“true” distribution of lenses is still unknown, and the lensing
profiles used in the simulations may not perfectly reflect reality.
As we are working from a data-driven perspective and have
developed a tool to find lenses given a single example, we
chose to opt for the set of human-classified lenses as they
appear in our imaging in the hope that they include more
outlying examples from those more commonly exhibited in
lensing systems. However, we note that a set of simulated
lenses would allow for very similar investigations.

3. Methods

In this section, we describe the machine learning methods
used to sift through our galaxy catalogs and detect new strong

8 http://admin.masterlens.org/index.php
9 https://sites.google.com/usfca.edu/neuralens
10 https://vizier.u-strasbg.fr/viz-bin/VizieR
11 http://www-utap.phys.s.u-tokyo.ac.jp/õguri/sugohi/
12 https://www.astro.rug.nl/lensesinkids/

13 We examine images after converting from nanomaggies to RGB values
using the same transformation as the legacy survey viewer.
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lens candidates. We provide a schematic of our workflow in
Figure 2. The first step in our process is to train a self-
supervised model on a large body of unlabeled data, allowing
the network to see many types of galaxies and learn from the
natural distribution of morphologies and features within the
survey sample. Then, we can take the representations learned
by the self-supervised model and use them to identify new
lenses via similarity searches and automated classification.

3.1. Self-supervised Pretraining on Unlabeled Images

Modern self-supervised learning has been shown to distill
highly information-rich representations from standard data sets
without utilizing any labeled information, with the classifica-
tion performance of a simple linear classifier trained on such

representations rivaling the performance of fully supervised
CNN models (Chen et al. 2020a; Grill et al. 2020; He et al.
2020).14 Such data sets contain a ground-truth label for every
image, allowing for robust measurements of the quality of the
learned representations, as better representations will lead to
increased performance on downstream supervised tasks using
these labels. However, for many scientific data sets, especially sky
surveys, the number of ground-truth labels is minimal compared
to the number of images, and the labels themselves often have
nonnegligible noise or bias. Thus, assessing representation quality
via robust downstream supervised evaluations is much more

Figure 1. The R.A. and decl. of previously identified DECaLS strong lens candidates, with the background shaded by the number of the 3,500,000 galaxies used to
train the self-supervised network in each square-degree region. The gray line at δ = 32.375 denotes the split between the north and south surveys.

Figure 2. Illustration of self-supervised training (left; see Hayat et al. 2021) and its use cases for discovering objects through similarity search (middle) and automated
classification (right).

14 See self-supervised ImageNet linear classification accuracy (https://
paperswithcode.com/sota/self-supervised-image-classification-on) by publica-
tion date.
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challenging, so tuning hyperparameters and choosing data
augmentations for the self-supervised model can be difficult.

Rather than supervised evaluation, Reed et al. (2020) found
that the evaluation on an additional self-supervised task (e.g.,
rotating images and predicting the rotation from the representa-
tions) was strongly correlated with the supervised evaluations
and could be used in place of supervised labels to determine
representation quality. Unfortunately, their strongest results
were for a rotation evaluation task, which is incompatible with
the rotation-invariant representations of galaxies we desire in
this study (as there is no preferential orientation of galaxies on
the sky). A jigsaw task (Noroozi & Favaro 2016) may prove
useful for our data set, but we leave this for future work and
instead evaluate the quality of our self-supervised models
according to their linear classification performance on our
validation set of strong lenses.

To limit the amount of hyperparameter tuning, we closely
follow Hayat et al. (2021) in designing the architecture and
training procedure for our self-supervised model. In this
setting, the backbone of the model is a CNN encoder that
takes an image x as input and produces a lower-dimensional
representation z. The encoder learns to make meaningful
representations by associating augmented views of the same
image as similar and views of different images as dissimilar via
a contrastive loss function. The representations for different
images are maintained in a queue during training, which
extends the number of contrasting examples available to the
model at each training step beyond just those available in a
given minibatch. More details on this approach can be found in
Chen et al. (2020c) and Hayat et al. (2021). We use the same
ResNet50 network and training hyperparameters as Hayat et al.
(2021) but increase the queue length to K= 262,144 to
accommodate our larger training set. As our encoder
architecture is a standard ResNet50, the number and size of
the convolutional kernels and pooling layers results in a
representation vector of 2048 dimensions. This is strictly a
result of the encoder architecture used, and while a representa-
tion of this size has been shown to perform well on downstream
tasks on common curated industry data sets, it is an open
question as to whether it is an optimal size for sky survey data
sets, which often exhibit a smaller degree of image diversity.

The key to successful self-supervised pretraining is to
produce the differing views of each image using a carefully
crafted set of image augmentations that reflect symmetries,
uncertainties, or noise in the data set. These augmentations
must realistically perturb the images, making it nontrivial for
the model to associate augmented pairs of the same image
while still preserving the important features in the input. We
choose the following set of augmentations, applying each of
them in succession to images during pretraining in the order
listed below.

1. Galactic extinction. We first deredden the image accord-
ing to its tabulated E(B− V ) value (Schlegel et al. 1998),
simulating a view of the galaxy with no foreground dust.
Then, we randomly sample a new E(B− V ) value from a
lognormal distribution fit to the data set and artificially
redden the image with this random E(B− V ). Details on
the lognormal E(B− V ) distribution and photometric
conversions between E(B− V ) and transmission can be
found in Appendix B.

2. Rotation/orientation. We randomly flip the image across
each axis with 50% probability, then rotate by a random
angle sampled from  p( )0, 2 .

3. Size scaling. We randomly resize the image to between
90% and 110% of its original size to simulate views of a
galaxy at different distances. We do not account for the
change in redshift or resolution corresponding to such
changes in distance and simply rescale with bilinear
interpolation.

4. PSF blur.We model additional PSF smoothing (on top of
the existing inherent PSF smoothing in the image) by
applying Gaussian blur to each channel. The amount of
blurring (i.e., the width σ of the blurring kernel) is
parameterized by lognormal fits to the PSF distribution
found in the data (see Appendix B for details).

5. Jitter and crop. We translate the image center along each
respective axis by i, j pixels, where ~ -( )i j, 7, 7 ,
before cropping out the central 96× 96 pixels.

6. Gaussian noise. We add additional Gaussian noise to the
image (on top of the inherent noise already present) by
sampling a noise level from lognormal distributions tuned
for each filter channel. The noise in each channel is
uncorrelated, since images are taken at different times
and/or with different telescopes. See Appendix B for
details on how each channel’s noise distribution is
parameterized.

With these augmentations, we perform self-supervised
pretraining on our training set, which was constructed with
the following considerations.
A significant number of the full 76 million images are faint

red galaxies with a spatial size in the image spanning no more
than a few pixels. This dominant class of objects would
introduce a high degree of degeneracy due to the similarity
between samples, which would limit the effectiveness of the
contrastive loss used in self-supervised training. Thus, to
ensure a more diverse sample of galaxy images, we choose to
train on sources with magz< 20 and sample our training set
equally in magz rather than randomly sampling over the full
data set. The magnitude cut (aligning with that chosen by
Huang et al. 2020) removes the dimmest galaxies, which
exhibit the highest degree of visual similarity, and the uniform
magz sampling helps to ensure that the training set is not
dominated by the vastly more numerous dim galaxies.
Although the brightest and most nearby galaxies will not
constitute strong lenses, we do not use a minimum magnitude
cut to remove them from the self-supervised training set; the
goal at this stage is only to learn task-agnostic galaxy
representations from a diverse set of galaxy images that can
later be used for a variety of different downstream tasks. We
show the magnitude distribution of the training sample
compared to the full sample in Appendix B.
In addition to uniform magnitude sampling, we train only on

images from the south region of the survey. The north and
south surveys were observed with different telescopes and
bandpasses; therefore, images from these regions have different
statistical properties. South images have the best signal-to-
noise ratio and angular resolution, and lenses and sharp features
are easier to distinguish. We posit that training using this
higher-quality sample and then simply using the models on the
lower-quality north sample will allow the network to learn a
more information-rich representation than training on both
surveys simultaneously. Careful crafting of region-specific
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augmentations could possibly allow for the combination of
these two data samples in a self-supervised learning approach,
but we leave this for future work.

These efforts result in a curated subset of 3.5 million images,
and we are able to train the model in just 8 hr on eight NVIDIA
Tesla V100 GPUs. After the self-supervised pretraining phase,
our CNN encoder was applied to all 76,446,849 images from
both the south (DECaLS) and north (MzLS/BASS) regions of
DR9 to distill features from each image into a representation
vector z of length 2048. This procedure extrapolates beyond the
training data to both objects of lower magnitude (south images
with magz> 20) and images with inherently different statistical
properties (north images), yet we will show that the models
nevertheless exhibit strong generalization properties outside of
the distribution seen during training. We believe this general-
izability simply stems from the high degree of image similarity
between magz= 20 objects and those slightly dimmer than the
cutoff and from the overall similarity of the north images
compared to the south. The north images exhibit a higher level
of noise and slightly different colors (specifically in the z band),
and they have the same pixel size and the same range of
morphologies, features, and shapes as those in the training set
from the south. Although subtle selection effects are possibly
introduced by applying our models outside of the training set,
we find a significant number of lenses in these regions, thus
showing that the models have useful generalization abilities for
the applications of this paper.

In the following sections, we describe how these representa-
tions are used to search the data set for objects similar to known
lenses and then demonstrate their ability to directly reveal new
lens candidates via automated classification.

3.2. Image Similarity Search in Representation Space

A powerful advantage of self-supervised pretraining is the
ability to provide a measure of semantic similarity between any
two images. Given the symmetries and noise inherent to the
data set, a notion of similarity is difficult to construct in pixel
space, as noise levels and image rotations drastically change
the individual pixel values while leaving the semantic
information in the image unchanged. Rather than operating in
the pixel space, the representations we distill from each image
in the data set retain the overall information, such as the size
and relative orientation of the galaxies, the number of sources,
the clustering, and the color, while removing the noise and
symmetries described by the data augmentations (for a
visualization of how galaxy properties are organized in the
representation space of a self-supervised model, see Hayat
et al. 2021). While we find that the representations contain
information highly relevant to lens identification, it is important
to note that the self-supervised pretraining is task agnostic, and
not a single lens label has been used during training. We can
utilize the similarity search to uncover additional rare objects of
any type, not only strong gravitational lenses.

The contrastive loss in self-supervised pretraining encourages
semantically similar images to have similar representations, so we
can easily define a similarity metric in representation space
(which is a lower dimensionality than the input images). We
choose to measure similarity between any two images xi and xj by
the cosine similarity (normalized scalar product) of their

representation vectors zi and zj:

=( ) · ( ) ( )z z z z z zsimilarity , . 1i j i j i j   

For each of the 42 million images in the south region of DR9
with magz< 20, we calculate the 999 most similar images and
save the resulting “similarity array” (size ∼42 million × 1000)
for later reuse. Computations are performed on eight GPUs
using Facebook AI Research’s Faiss15 library for efficient
similarity search.16 To avoid unnecessary computations, we did
not compute the full N×N similarity matrix (N= 42 million),
but for each source, we limited the search to sources within a
magnitude range of 0.5 in the r band. We found that this
resulted in nearly equivalent results as the full search, as the
model naturally learned that brighter galaxies do not have
significant similarity to dimmer ones. The precomputed
similarity array allows for rapid similarity searches of any
image in the data set; given a query image, the most similar
images are immediately available to examine (see Stein et al.
2021 for a discussion of additional use cases for our similarity
search tool).

3.3. Automated Classification of Strong Lenses

We perform automated classification of strong lens candi-
dates through two different supervised methods, both of which
rely on a pretrained self-supervised model. The first approach is
to simply perform linear classification directly on the self-
supervised representations, and the second is to fine-tune the
self-supervised model for classification.

3.3.1. Training and Validation Sets

As described in Section 2.2, our efforts in compiling a list of
known lenses from the literature and cross-matching them with
our DR9 galaxy images yielded a total of 1615 well-defined
lens images in the south region. We use a random selection of
70% (1130) of these lenses for training and save the remaining
30% (485) for validation. We do not train on any images from
the north region or on sources with magz> 20 and only use
these for lens searching. Unlike some previous supervised
CNN lens identification works, we do not hand-select the
nonlens samples to visually resemble different types of galaxy
and cluster morphologies. Hand selection is labor intensive and
can artificially inflate the occurrence of specific galaxy types in
the training set as compared to the full data set that we will be
performing the lens search on. Instead, we simply select
nonlens samples randomly from the full data set, excluding
those with a lensing galaxy near the central galaxy and those
flagged as lenses in other data sets but hard to distinguish
visually in DR9 imaging. This approach allows for greater
coverage of the survey with minimal manual effort and allows
us to build training and validation sets that actually reflect the
scarcity of lensed galaxies ( -( )10 4 ) expected in the data.
Our random selection of nonlenses from the true data

distribution introduces a small amount of class leakage, where
undiscovered lenses are mislabeled, but the effects of this
leakage are marginal due to the rarity of lenses. To confirm this,
we experimented with using an initial linear model to predict

15 https://github.com/facebookresearch/faiss
16 While we calculated the cosine similarity without employing any of the
compression techniques available in Faiss, we found that it still outperformed
its NumPy equivalent on CPU and benefited from an additional speed-up
on GPU.
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labels for the training and validation nonlenses and then
visually examined the images with the highest predictions to
identify and remove this contamination. However, the level of
contamination was small (∼40 of the 4 million “nonlenses”
were later found to be lens candidates), and retraining the linear
classification model with these more accurate labels returned
highly similar predictions, so we kept the original training and
validation labels.

To construct a realistic validation set reflecting the scarcity
of strong lens populations, we selected 10,000 nonlenses for
every lens. This differs from many strong lens searches in the
literature, which instead sample validation sets using the same
lens-to-nonlens ratios (denoted lens:nonlens) as they selected
for their training set (e.g., 1:1, Jacobs et al. 2019b; or 1:33,
Huang et al. 2020). Using a more equal ratio will significantly
inflate the performance metrics calculated across these valida-
tion sets compared to the true data (1:10,000) when under-
taking the search for new lenses. The optimal model as
measured using a 1:1 validation set is not necessarily optimal
on a true 1:10,000 population and is likely to flag a significant
number of false positives. Thus, we constructed our validation
set to instead represent a likely realistic fraction of lenses in the
universe. We treat the lens:nonlens ratio in the training set as a
hyperparameter and search over different settings to determine
the optimal level of class imbalance. We present our findings
for this search in Section 4.2.

3.3.2. Model Evaluation

By searching for rare objects, we are performing a
classification task in a scenario with several specific character-
istics. Namely, our data set is highly class-imbalanced, and we
have limited time to manually assess predicted lens candidates
for quality, so we opt for slightly different performance metrics
than those canonically used in classification. As our goal is to
identify the greatest number of lenses in a limited amount of
human time, we decided to restrict our time spent visually
inspecting the top network predictions to a few hours. After
performing an initial test to see how many images three of the
authors could classify per unit time, we estimated our
“classification rate” to be ∼10,000 images in a few hours.
Thus, if our training set was an unbiased sample of the lenses in
the universe, an optimal model would maximize the number of
known lenses in the top N= 104 predictions and minimize the
number of false positives; for practical purposes, we are
unconcerned with the network performance on the rest of the
data set. Our human classification procedure does not include a
detailed examination of each image but rather a fast scan of 500
images laid out in a 5× 100 grid, devoting approximately
0.5–1 s to each individual image. This procedure leads to a lens
candidate selection biased toward more distinct lensing
characteristics and configurations and likely misses a number
of lower-quality candidates, but it allows for a rapid rate of lens
finding.

Based on these initial estimates, we use only the top
N= 1139 predictions on our validation set to evaluate model
quality. This particular value of N was chosen by scaling down
the total number of images we expect to visually classify (104)
to adjust for the difference in size between the validation set
(4.85 million galaxies) and our full search size (which we
initially scoped to contain ∼42.5 million images in the south
survey). This procedure is in contrast to the standard approach
of choosing a probability cutoff cp to manage the trade-off

between precision and recall, as our “cutoff” ctop N is simply
determined such that the number of samples above the cutoff is
N= 1139. Then we can easily assess model quality by
computing the precision,

=
+

( )( )Prec
TP

FP TP
, 2Ntop

where TP and FP are the number of true positives (the number
of true lenses) and false positives (the number of nonlenses) in
the top N predictions of the model, respectively. We note that
the choice of N= 1139 is of little consequence to the chosen
model’s utility; i.e., we found that the model that maximizes
the number of lenses in the top 1139 predictions will be the
same model that maximizes the number of lenses in the top
2000 predictions. Thus, for consistency, we choose to fix
N= 1139 throughout the experiments of this paper regardless
of the exact final search size or number of lenses in the final
validation set.

3.3.3. Linear Classification

As shown in Hayat et al. (2021) for classification of galaxy
morphologies, linear classification on self-supervised represen-
tations of images achieves superior performance to full
supervised training of a CNN when the amount of labeled
data is small. This is despite the fact that the self-supervised
representations have only been trained to group similar images
together and have not been explicitly trained to pick out
properties of any specific objects, like strong gravitational
lenses. As we will demonstrate using a similarity search,
unlabeled images that are predicted as a high probability of
being a lens reside near the labeled samples (i.e., known lenses)
in self-supervised representation space. Thus, the 2048-
dimensional representation space can be partitioned into binary
class predictions (nonlens and lens) by a simple linear classifier
of the form = +ˆ W zy bT , where ŷ is the predicted lens
probability, z is the representation vector, W is a 2048-
dimensional vector of weights, and b is a bias. We also
experimented with classifying representations using a random
forest classifier but found this more complex nonlinear model
to be prone to overfitting, and all configurations tested
performed worse on the validation set.
We train our linear classifiers in PyTorch (Paszke et al. 2019)

using a binary cross-entropy loss function with LBFGS
optimization. Our final model is the epoch that achieves the
largest number of true positives in the top 1139 predictions on
the validation set, as explained in the previous section. The
simplicity of the model and the low dimensionality of the
representations allows for training to proceed rapidly on a
single CPU in a straightforward single-batch gradient descent,
and training on the 4.5 million samples of the 1:4000 training
set only requires 5–10 minutes on a CPU (45 s per epoch),
compared to many hours on multiple GPUs in a supervised
CNN setup. This has the potential for a significant impact
beyond the strong lens classifier application demonstrated here.
Rather than requiring both the access to computational facilities
to host the full image data set and perform multi-GPU training
and the machine learning expertise to train complicated CNN
models in parallel, self-supervised representation learning
reduces the problem to one that can be solved with minimal
computing resources and computational background, opening
the door to crowd-sourced “citizen science” efforts like those

7

The Astrophysical Journal, 932:107 (19pp), 2022 June 20 Stein et al.



employed for galaxy morphology studies (e.g., Lintott et al.
2008; Willett et al. 2013).

3.3.4. Fine-tuned Self-supervised Classification

While linear classification on the self-supervised representa-
tions achieves high-quality classification results, we can instead
attach a fully connected layer on the 2048-dimensional output of
the self-supervised encoder CNN and fine-tune the network in a
supervised setup using the available lens labels. By applying a
smaller learning rate to update the CNN encoder parameters and a
larger learning rate on the linear classification head, we can train
the linear classifier from a random initialization while only
marginally modifying the CNN parameters optimized during the
self-supervised learning phase. This can improve the classification
results beyond those achievable with linear classification on the
original self-supervised representations, but the effect can be
small in the few-label regime (Hayat et al. 2021) and can overfit
with a small number of labels for a highly class-imbalanced task.
However, there is evidence that fine-tuning a self-supervised
network improves model robustness over purely supervised
learning (Hendrycks et al. 2019).

Works focusing on supervised CNN classification of strong
lenses utilize minibatch gradient descent due to memory
constraints introduced by large CNN models and image
dimensionality, with minibatches of size ∼128 images. Each
minibatch requires instances of both classes to efficiently learn
and cannot be completely dominated by the negative class
(nonlens). Therefore, to ensure that each minibatch, on average,
has a few lenses, either the class imbalance in the training set must
be chosen to be much less than the true data (e.g., 1:1, Jacobs
et al. 2019b; or 1:33, Huang et al. 2020) or oversampling
techniques that sample lenses more often than their nonlens
counterparts must be employed. Our linear classifier, trained with
a single large batch, does not have these requirements, and we can
easily train with a high degree of class imbalance. To use the
same training set as the linear classifier, we oversampled lenses
during fine-tuning to ensure a nonzero average number of lenses
in each batch. This oversampling factor is an additional
hyperparameter of the training setup that we explore during
training to optimize the model performance on the validation set.

Training was conducted in PyTorch using a binary cross-
entropy loss. We augmented images at each training epoch with
jitter/crop, random rotations, Gaussian noise, and Gaussian
blur; thus, each sampled version of a given lens will have
different realizations of the augmentations. We trained using
eight NVIDIA Tesla V100 GPUs for 40 epochs with a batch
size of 512 using the SGD optimizer. We implemented a
learning rate of 0.01 for the classification head and 0.001 for
the remaining network parameters as in Hayat et al. (2021).
Training requires approximately 1 hr per epoch. Note that this
does not take into account the computing time required for self-
supervised pretraining, which does not need to be undertaken
separately for each supervised hyperparameter setup.

4. Results

4.1. Identification of Lens Candidates via Similarity Search in
Representation Space

To assess our self-supervised model quality and search for new
strong lens candidates in the DESI Legacy Surveys, we first
employed a number of similarity searches using some of the known
lenses identified in previous searches. We demonstrate this

approach in Figure 3. For an illustrative example, we select three
lenses from the training sample, each of different brightnesses and
morphologies, and use the interactive similarity search tool we
publicly provide to query for the 1000 most similar images. The
first query image is a bright single central source with an extended
and nearly complete lens arc, the second is a medium-brightness
central cluster producing a small blue double-image arc, and the
third is a single dim central galaxy producing an arc. For each
query, we visually examine the 512 most similar images, requiring
only a few minutes, and flag any strong lens candidates. We find a
total of 83 strong lens candidates given only three labeled queries—
a significant number, considering we have used only three
examples, and our training sample of 1615 lenses constitutes all
of the high-quality lenses in the south survey discovered to date. Of
the 83 candidates found, to our knowledge, 53 of them have not
been previously discovered. Compared to the probability of finding
one strong lens in 10,000 images expected from a random sample
of galaxies, self-supervised similarity search has immediately
increased the lens frequency to ∼one in 20 (83:512× 3 versus
1:10,000), a factor of 500 speed-up. We found that some candidates
were picked up by separate similarity searches of known lenses.
The most similar objects returned by the search do not

always share the same morphologies and colors as the labeled
query but feature “similarity” in a variety of characteristics.
This result is most apparent in the first query presented of a
bright central galaxy with an extended purple arc, where the
most similar lenses returned display a wide variety of arc
colors, arc sizes, and central source clustering but overall
exhibit hard-to-quantify similar visual characteristics. As such,
the 512 most similar objects we chose to visually inspect was
an arbitrary cutoff, and additional lens candidates are likely to
be uncovered by extending beyond this number.
Similarity search can benefit supervised classification tasks

in a number of ways, as a single label is sufficient to search for
additional lens candidates, compared to the many hundreds or
thousands required at a bare minimum for supervised training.
Supervised classification is biased toward predicting the correct
answer on the most common type of labels, and the predictive
performance on rare occurrences suffers. Conversely, similarity
search can be used to help rapidly identify additional members
of less common examples but may not guarantee the same
degree of completeness as a full automated classification, as the
new lens candidates by construction exhibit a high degree of
visual similarity to the few labeled images provided. Thus, to
maximize completeness, the techniques can be employed in
tandem. Importantly, similarity search does not need to focus
on finding additional lenses and can instead be used to
construct a more robust training sample of nonlenses. For
example, ring galaxies, spiral galaxies, or galaxy mergers were
commonly flagged as false positives by a number of previous
lens-finding studies due to their scarcity and similar appearance
to gravitational lenses. While these objects are not as rare as
strong lenses, when randomly sampling nonlenses, they occur
infrequently in smaller training sets, and the network can
mistake them for lenses. With a similarity search, one can
rapidly identify additional examples for these objects and
include them in the training set to reduce the number of false
positives during inference.
With such results, the computational simplicity of a

similarity search approach makes it a very attractive option
for identifying new lenses, but it is worth highlighting the
limitations. Most notably, similarity search does not perform as
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well for images with distinct nonlens features offset from the
central source that are unrelated to lensing, such as bright
foreground stars or galaxies. For these cases, the most similar
images returned are those that also include similar foreground
features, and the “similarity focus” has been drawn away from
the lensing characteristics we are interested in. This is expected,
as our self-supervised model is not given any explicit learning
signal on what constitutes lensing features. One potential work-
around for this effect is to include such foreground effects as
data augmentations in self-supervised pretraining—for exam-
ple, by randomly adding bright foreground objects to a given
view of the original image—which would make representations
more invariant to these features. We leave this for future
investigation.

We invite readers to explore our publicly available, web-
based interactive similarity search tool and try to discover
additional strong lenses beyond those presented here.17

4.2. Training Automated Lens Classification Models

Given the large class imbalance between lensed and nonlensed
images in the true data, it is critical to consider the balance of
lenses and nonlenses in the training data for classification models.
A sample with no class imbalance will include only a minimal
number of negative examples (due to the small number of positive
labels), which will not nearly cover the full distribution of
galaxies in the data set and will result in a larger number of false
positives on the validation data. Alternatively, training using a
significant class imbalance can result in poor convergence, where
the model does not predict any images as belonging to the
positive class with any high degree of certainty.
Using the 1130 labeled lenses set aside for training, we

sample six distinct training sets with increasing class
imbalance, testing ratios of 1:1, 1:10, 1:100, 1:1000, 1:4000,
and 1:10,000. When increasing the number of nonlenses, we
sample additional galaxies while keeping those already
included in smaller training sets (e.g., all representations from
the 1:1 training set are also included in the 1:10 set). As shown

Figure 3. Similarity search for the discovery of new strong lens candidates, achieved without using a single label for training. We queried three images of previously
discovered lenses (left), and on the right, we display a sample of new strong lens candidates selected from the top 512 most similar images to each query, ordered by
decreasing similarity score. Strong lens candidates with a red border are previously undiscovered. Using only three labeled data samples and ∼10 minutes of visual
inspection, we identified 83 strong lens candidates, 53 of them previously undiscovered.

17 github.com/georgestein/ssl-legacysurvey
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in Figure 4, we find a clear correlation between the lens-to-
nonlens training ratio and the performance of the linear
classifier on the validation set. When training with a much
smaller degree of class imbalance than exists in the real data
(1:1 through 1:100), we find that while the performance on the
training set seems impressive, the performance on a realistic
validation set suffers, and the model predicts a significant
number of false positives. As we increase the lens-to-nonlens
ratio, we find lower performance on the training set but much
higher performance on the validation data, demonstrating the
advantage of training with class imbalances similar to those
expected in the true data. An increase of precision
(Equation (2)) from 0.14 (1:1) to 0.20 (1:4000) corresponds
to a nearly 50% decrease in the manual inspection time
required to find a given number of strong lens candidates.
Ratios of 1:4000 and 1:10,000 give us our best results, and
between the two, performance is comparable. Thus, for our
remaining automated lens classification models, we use the
1:4000 ratio, as it is faster to train.

With the training set finalized, linear classification proceeds
in a straightforward manner. For fine-tuning, we need to
additionally determine the optimal lens oversampling factor. As
explained in Section 3.3.4, oversampling is required to ensure
that each minibatch of 512 samples includes both positive and
negative instances. We varied the oversampling factor to ensure
that each minibatch, on average, contains (1%, 2.5%, 5%, 10%)
of its samples from the positive class (lens) and found that 5%
achieved the best performance on the validation set. This
corresponds to an oversampling factor of 40, such that during
an epoch, each lens is seen 40 times (with different
augmentations applied for each sample), while nonlenses are
only seen once per epoch. Linear classification required a few
minutes on a CPU, while fine-tuning used 36 hr on eight GPUs.

We show the predicted lens probability over the validation set
of the linear classification and fine-tuned models in Figure 5. The
results of linear classification and fine-tuning are quite similar,
with roughly half the true lenses in the validation set receiving
probabilities above the N= 1139 cutoff (dotted vertical black
lines) determined by the number of images that we have time to
visually inspect. For both models, we find a clear correlation
between the visual quality of the lens candidates and the predicted
lens probability. Images with clear features of strong gravitational

lensing, such as distinctive arcs, are almost always given a high
predicted lens probability, while lens candidates with faint
features are given low predicted values. We also find great
agreement between the predictions of the linear classifier and fine-
tuned models for individual image/representation pairs; both
models identify similar lenses.
In the right panel of Figure 5, we estimate the number of

images that one needs to visually inspect in order to find a
given fraction of lenses, assuming that our validation set is
representative of the true distribution and there is one lens in
every 104 galaxies. The initial validation set will contain a
number of undiscovered lenses that introduce a certain degree
of mislabeling, and we later confirm that a significant number
of the “nonlenses” with a high predicted lens probability are in
fact previously undiscovered strong gravitational lenses. From
the figure, we see that the linear classifier and fine-tuned
network perform nearly perfectly on the top 10% of lenses and
identify 50% and 60% of the lenses above the manual
inspection cutoff, respectively. As we extrapolate to the full
DECaLS magz< 20 sample, the fine-tuned network slightly
outperforms the linear classifier if inspecting the top 104

predictions (0.02% of the total), but the linear classifier in fact
performs better than the fine-tuned if inspecting more than the
top 105 predictions (0.2% of the total) due to slight overfitting
of the fine-tuned model. These estimates do not account for any
undiscovered lens configurations that do not have similar
examples in the labeled data set.

4.3. Searching for New Strong Lens Candidates

After the linear classification and fine-tuned models were
trained using the DECaLS magz< 20 training sample, we
applied them to the remainder of the DECaLS magz< 20
sources and the full north data set. Although the magz> 20
sample was dimmer than any data seen during training, we
found that both models extrapolated well and resulted in
accurate predictions upon visual inspection. The north survey
was observed with different instruments and bandpasses and
had higher noise levels than the south, thus introducing a train-
test discrepancy to such experiments. Nevertheless, as we will
demonstrate in the following section, models trained only on
south images and applied to the north survey also resulted in
the detection of a number of new strong lens candidates.
Using the linear classification and fine-tuned models, a

combination of authors J.B., T.M., and G.S. inspected

1. ∼25 similarity searches using lenses selected from the
training set,

2. the top ∼7500 predictions over the 43 million DR9 south
galaxies with magz< 20,

3. the top ∼3000 predictions over the 20 million DR9 south
galaxies with magz> 20, and

4. the top ∼5000 predictions over DR9 north.

After an initial test, where all three authors examined an identical
set of predictions to ensure consistency between visual classifica-
tions, the samples outlined above were split into chunks, and there
was little overlap of galaxies inspected by the different authors.
The top linear classification and fine-tuned predictions had a
significant overlap, and the linear classification model received
the most attention. Fine-tuned predictions were inspected after the
linear classification to identify any missed lenses in the first pass
or any that did not make the linear classification cutoff. We
discarded any overlapping lens candidates that resulted from

Figure 4. Linear classification precision as a function of the lens:nonlens ratio
used for training. Validation is set at 1:10,000 to approximate the class
imbalance expected in the full survey. As we increase the lens-to-nonlens ratio,
we find lower performance on the training set but much higher performance on
the validation data, demonstrating the advantage of training with class
imbalances similar to what is expected in the true data.
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nearby galaxies of the same cluster being independently identified
as lenses by different methods.

Extrapolating from Figure 5, we expect that in the south
magz< 20 sample, we have identified 50%–60% of the lenses,
and 30%–40% remain. Approximately 20% of the remaining
lenses are likely to be in the top 100,000 predictions, which is
an achievable number to manually inspect. This is supported by
the fact that we continued to find a number of high-quality
lenses after the 7000th highest prediction. The lens candidates
remaining to be discovered will likely not be configurations
with extremely distinct extended arcs, as we found that those
were generally predicted with the highest probabilities in our
validation sample. The number of remaining lenses in the south
magz> 20 or north samples is more difficult to estimate, but we
expect it is greater than the fractions quoted above.

We separated our new strong lens candidates into two groups
based on their quality. During the lens search outlined above,
the authors assigned each lens candidate either a tentative A or
B grade, which a single author, G.S., refined into the final lens
classifications to achieve consistency. Grade A lens candidates
are highly likely to be strong gravitational lenses, as they
exhibit distinct lens features such as large extended arcs or
clear multiple images. Grade B galaxies exhibit fainter features
than grade A and are more ambiguous, with common false
positives such as ring galaxies. Nevertheless, grade B lenses
still display likely features of gravitational lensing. To include
galaxies as either grade A or B strong lens candidates, we erred
on the side of caution and attempted to exclude candidates that
displayed characteristics of gravitational lensing but were
difficult to differentiate from projection or noise effects. As
there are no distinct criteria for lens classification, the small
number of nonexpert galaxy inspectors likely introduced biases
to the type of lenses identified in this work and possibly passed
over certain groups of objects. For this reason, we make the
network predictions and similarity search tool public and
available for anyone to examine.

4.4. Catalog of New Strong Lens Candidates

We compiled the lens candidates discovered through
similarity search, linear classification, and fine-tuning into a
single catalog consisting of a total of 1192 new strong lens
candidates. Table 1 outlines the number of candidates split by
lens grade and survey region. The majority of new lens
candidates are from the south survey and have magz< 20. This
is expected, as the south survey, specifically the DES region,
has a lower noise level than the north and was also the subset of
the data used to train the models. We display the 404 grade A

lens candidates in Figures 6–8, split by survey region, and
show the B candidates in Appendix A.
The most common grade A lens configurations are arcs

separated by at least a few arcseconds from the central source(s),
more extended arcs separated by a smaller angular distance from
a central source, and duplicate background galaxies. We also find
numerous Einstein crosses and other rare lens configurations. The
majority of the central galaxies have a red or orange appearance,
but we also find a number of lensing features around blue central
galaxies. The diversity of lens candidates discovered here
demonstrates the power of a purely data-driven self-supervised
approach capable of learning from every single galaxy in the
survey. Our method did not require any cuts on the galaxy or lens
sample used; thus, we are able to easily identify lens candidates
covering the full variety of appearances. In contrast, the majority
of previous studies subsample the data set to include only
luminous red galaxies by introducing hand-selected color and
magnitude cuts, which, given their redshift distribution and
masses, are the most likely type of galaxy to lens background
sources (Turner et al. 1984). Targeting only a subsample of the
full range of gravitational lenses in the universe will only allow
for classification of the given specific lens type and not generalize
outside of the limited distribution of data used for training.
Figure 9 illustrates the distribution of the new strong lens

candidates on the sky in R.A. and decl., with the background
shaded by the number of observations used to construct DR9
images. We find that the DES region (depicted clearly in the
bottom left as the dark gray region with decl. < 5°) contains the
highest density of new lenses. This region was imaged to the
greatest depth and thus contains the lowest level of noise, which
means that lenses should be more visually distinct and easy to
identify. This low noise level also means that the DES region has

Figure 5. Predicted probability of image containing a lens over the validation set. The vertical dotted black lines designate the predictions over the portion of the
survey that we expect to visually inspect in a few hours.

Table 1
New Strong Gravitational Lens Candidates Split by Survey Region and Lens

Grade

Grade Survey New Lens Candidates

South magz < 20 316
A South magz > 20 47

North 41
All 404

South magz < 20 583
B South magz > 20 131

North 74
All 788

Total 1192
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been the focus of the majority of recent previous lens-finding
works; thus, many of the lenses have already been found.
Nevertheless, in this work, we find a large number of lens

candidates in this region that were not identified in any other
search. The most significant number of lenses discovered in
DESI Legacy Survey data was achieved by Huang et al. (2021),

Figure 6. South survey grade A lens candidates with magz < 20.
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who used the previous data release, DR8, which had incomplete
coverage below δ≈−32°. Although in Figure 1 we see a much
greater density of training samples above this line than below, we
do not find the same with our new lenses. This means we are not
simply finding lenses in regions of the sky that have not been
searched; rather, we are identifying lenses missed by previous
works. It is also clear that the north region is the least densely
populated due to both the increased level of noise and the fact
that our models were trained on the south images but applied to
the north, even though the north images used slightly different
photometric bands. We find no distinct correlations between the
sky distribution and the lens grade, photometric redshift, or z-
band magnitude.

We summarize the distribution of magnitudes, photometric
redshifts, and the source morphology of the lenses in Figure 10,
split by survey region. We find that the newly discovered lenses
closely resemble the training set, with the exception of the
magz> 20 south lens candidates, which are, by definition, dimmer
than the set used for training. The majority of newly discovered
lens candidates are elliptical galaxies (deVaucouleurs= “DEV”),
and a number are around spiral galaxies (exponential= “EXP”).
Round exponential galaxies with a variable radius (“REX”) and
Sérsic profiles (“SER”) are more rare, but we still find a number
with these morphological types.
This new catalog of 1192 strong gravitational lens candidates

is summarized in the data tables in Appendix A.

Figure 7. South survey grade A lens candidates with z-band magnitude >20.

Figure 8. North survey grade A lens candidates.

Figure 9. The R.A. and decl. of the new strong lens candidates, with the background shaded by the average number of observations across the three photometric bands
in each square-degree region. The gray line at δ = 32.375 denotes the split between the north and south surveys.
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5. Conclusion

In this work, we demonstrated the first direct application of
self-supervised machine learning for finding rare objects in large
astronomical data sets, finding 1192 new strong gravitational lens
candidates in the DESI Legacy Imaging Surveys. After training
the self-supervised model on a large body of unlabeled data, we
presented three different methods for the discovery of strong
lenses—similarity search, linear classification, and fine-tuning—
each with their own distinct advantages over a standard supervised
classification setup. The similarity search tool provides an avenue
to rapidly identify additional lenses given just a single labeled
sample (see Figure 3), which is orders of magnitude less labeled
data than would be required to train even the simplest supervised
network. Additionally, as the self-supervised model was only
trained to distinguish the natural distribution of morphologies and
features within the survey sample, it is not limited to identification
of a specific class of object but can be used to facilitate the
discovery of any object(s) that exist in the data set.

Linear classification and fine-tuning the self-supervised net-
work both proved extremely useful for the automated classifica-
tion of new strong lens candidates. Although supervised fine-
tuning slightly improved the classification results over the fraction
of the data set we visually inspected, it is important to consider
and contrast the computational resources, the human time
investment, and the machine learning expertise required to
perform the two types of automated searches and what this
means for survey science. Supervised training of the CNN in a
distributed GPU setup provides a number of barriers to rapid
scientific discovery; it requires a nonnegligible machine learning
background, access to a machine capable of storing the full image
data on disk (2.5 TB for the training and validation set images and
19 TB for the full DESI Legacy Survey sample used in this work),
and access to top-of-the-line GPUs for days just for the final
network training (which does not including the time required for
hyperparameter searches). Linear classification provides a com-
pelling alternative; it requires only CPU access and minimal or

computational background, and the distilled representations can fit
on any modest machine (76 GB for the training and validation sets
and 579GB for the full survey sample).
Using a combination of the three methods, we conducted a fast

visual inspection campaign of ∼18,000 DESI Legacy Survey
images, from which we identified 1192 new strong lens candidates.
This is a significant number when compared to previous supervised
CNN studies, despite comparatively little time dedicated to visual
identification. For example, using more restrictive data cuts of the
DESI Legacy Survey DR8 that prefilter galaxies not likely to be
lenses, Huang et al. (2020) found 335 new candidates in ∼50,000
inspections, and Huang et al. (2021) found 948 new candidates in
38,679 inspections of their main ResNet model. We emphasize that
direct comparisons between our study and such previous works are
difficult due to two competing effects, and as such, these numbers
are stated here only as a guideline. On one hand, previous lens
searches that utilized previously discovered lenses as their training
sample (rather than a simulated sample, e.g., Jacobs et al. 2017, in
which lenses are adequately numerous but may lack full realism)
generally had a smaller number of labeled lens candidates to train
their models, which limits their classification performance. On the
other hand, previous searches had a greater number of undiscov-
ered high-quality lenses in the unmined data, and the number of
remaining lenses distinguishable at the resolution of the DESI
Legacy Surveys has diminished with each successive lens search
(Huang et al. 2020, 2021).
We expect that a nontrivial number of lenses in our catalog, on

the order of 30%–40% based on the validation set experiment,
remain undiscovered. However, they can be discovered by
subsequent similarity searches or inspections of network predic-
tions that fell outside of our limited labeling campaign. For this
reason, we are releasing the similarity search tool and the network
predictions to facilitate the identification of additional strong
lenses through crowd-sourcing.18

Figure 10. New strong lenses by central source magnitudes, photometric redshifts from Zhou et al. (2021), and the central lens morphology from the Tractor fits.

18 Predictions and the location of the similarity search tool can be found at
github.com/georgestein/ssl-legacysurvey.
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While the lens search was highly successful, perhaps this is
the most important result of this work; the self-supervised
model was trained in a generalized task-agnostic way requiring
no labeled samples, yet the resulting representations enabled
rapid and easy discovery of specific and rare objects. We
emphasize that this greatly reduces the barrier to entry for
working with modern survey data sets and creates the potential
to open up a number of collaborative avenues that were
previously unavailable. Rather than each team working alone to
perform classification or regression tasks on survey data sets—
applying for time on large GPU computing systems, down-
loading massive data sets, learning to train models in parallel,
etc.—the initial model training can be undertaken separately
and easily shared to allow for rapid scientific investigations that
are not hindered by computational resource requirements.
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Appendix A
Strong Lens Catalog and Additional Lens Candidates

We provide the 1192 new lens candidates identified in this work
in data tables at github.com/georgestein/ssl-legacysurvey and
display the grade B lenses in Figures 11–14. Due to the fainter lens
features of grade B lenses compared to grade A, it is likely that the
grade B catalog contains a larger fraction of false positives. For
this reason, we recommend that follow-up observations and
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investigations start with the grade A catalog before moving onto
the B. During the writing of this paper, after the conclusion of our
lens search, Rojas et al. (2021) performed an additional supervised

CNN search on the DES region, finding 186 new lens candidates
after examining their top 76,582 network predictions. We have not
checked for overlap with our new lens candidates.

Figure 11. South survey grade B lens candidates with z-band magnitude <20.
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Figure 12. South survey grade B lens candidates with z-band magnitude <20.
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Appendix B
Data Augmentations

To design the data augmentations, we fit to measured
distributions of the Gaussian noise level, point-spread smooth-
ing, and extinction in images from the south survey sample
with magz< 20, as this was the sample used to train the self-
supervised model. Distributions were fit separately in the g, r,
and z bands, and the augmentations were considered to be
uncorrelated across bands. This is a reasonable approximation
given that each image is compiled from a number of different
observations taken at different times.

To determine the level of Gaussian noise in the DR9 images,
we used the noise equivalent area calculated using the blob-
masked version outlined at legacysurvey.org/dr9/nea/,

s
p= ( )1

4 psfdepth
psfsize

2.3548
, B1

pix
2

2
⎡
⎣

⎤
⎦

where psfsize is in units of pixels (0 262), and σpix is the
estimated Gaussian noise level in each pixel. The standard
deviation of the PSF was calculated by

s = ( )psfsize

2.3548
, B2PSF

where psfsize is again in units of pixels, and the extinction was
given in the sweep catalogs. Examining the histogram of the
values measured from the 43 million galaxies, we found that all
of them are well described by a lognormal distribution
separately in each band for the Gaussian noise and PSF.
Fitting a lognormal distribution to each with scipy. stats.
lognorm.fit, we get the following fit parameters (shape ≡ σ,
loc ≡ μ, scale ≡ α), which can be used to get the probability
density through

Figure 13. South survey grade B lens candidates with z-band magnitude >20.

Figure 14. North survey grade B lens candidates.
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and we show the best-fit parameters in Table 2.
Each image in the data set already has a certain level of

Gaussian noise and Gaussian blur applied during the observa-
tion process, so to add noise on top of what is already in the
image, we do not want to directly sample from the fit
distributions. Instead, from the power-law distributions, we
sample an initial noise level in the image, σi, and a desired
noise level in the image, σf, and apply a differential noise,
s s s= -f i

2 2 . If σf is smaller than σi, we do not apply the
augmentation for that sample in that band.

Figure 15 displays the z-band magnitude of the 3,500,000
galaxy sample used for training the self-supervised model
compared to the full distribution.
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Table 2
Measured Lognormal Fit Parameters to the Data Distributions for Each of the (g, r, z) Bands

Augmentation Shape Loc. Scale

Gaussian noise (0.2264926, 0.2431146, 0.1334844) (−0.0006735, −0.0023663, −0.0143416) (0.0037602, 0.0067417, 0.0260779)
PSF (0.2109966, 0.3008485, 0.3471172) (1.0807153, 1.2394326, 1.1928363) (1.3153171, 0.9164757, 0.8233702)
Extinction 0.67306 0.001146 0.03338

Note. See Equation (B3).
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