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Tau Post-translational Modifications:
Dynamic Transformers of Tau
Function, Degradation, and
Aggregation

Carolina Alquezar †, Shruti Arya † and Aimee W. Kao*

Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA,

United States

Post-translational modifications (PTMs) on tau have long been recognized as affecting

protein function and contributing to neurodegeneration. The explosion of information

on potential and observed PTMs on tau provides an opportunity to better understand

these modifications in the context of tau homeostasis, which becomes perturbed

with aging and disease. Prevailing views regard tau as a protein that undergoes

abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated

in Alzheimer’s disease (AD) and other tauopathies. However, the phosphorylation of

tau may, in fact, represent part of the normal but interrupted function and catabolism

of the protein. In addition to phosphorylation, tau undergoes another forms of post-

translational modification including (but not limited to), acetylation, ubiquitination,

glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic

appreciation of how these PTMs regulate tau during health and are potentially hijacked

in disease remains elusive. Recent studies have reinforced the idea that PTMs play

a critical role in tau localization, protein-protein interactions, maintenance of levels,

and modifying aggregate structure. These studies also provide tantalizing clues into

the possibility that neurons actively choose how tau is post-translationally modified,

in potentially competitive and combinatorial ways, to achieve broad, cellular programs

commensurate with the distinctive environmental conditions found during development,

aging, stress, and disease. Here, we review tau PTMs and describe what is currently

known about their functional impacts. In addition, we classify these PTMs from the

perspectives of protein localization, electrostatics, and stability, which all contribute

to normal tau function and homeostasis. Finally, we assess the potential impact of

tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important

position in the biology of neurodegenerative diseases. This review aims to provide an

integrated perspective of how post-translational modifications actively, purposefully, and

dynamically remodel tau function, clearance, and aggregation. In doing so, we hope

to enable a more comprehensive understanding of tau PTMs that will positively impact

future studies.

Keywords: phosphorylation, acetylation, ubiquitination, methylation, sumoylation, glycosylation, glycation,

proteolysis

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.595532
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.595532&domain=pdf&date_stamp=2021-01-07
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aimee.kao@ucsf.edu
https://doi.org/10.3389/fneur.2020.595532
https://www.frontiersin.org/articles/10.3389/fneur.2020.595532/full


Alquezar et al. PTMs as Dynamics Transformers of Tau Homeostasis

INTRODUCTION

Post-translational modifications (PTMs) refer to the
modifications that occur in a protein either shortly after its
translation by ribosomes or after its folding and localization
are complete (1). These modifications are usually catalyzed by
enzymes and involve the addition of chemical groups, sugars,
or proteins to specific residues of the targeted protein. Nearly
all cellular processes can be regulated via PTMs. Therefore,
PTMs provide a means for the natural increase in the proteome
complexity and allow one gene to encode a variety of distinct
protein molecules with distinct functional roles, known as
proteoforms (2). PTMs alter the charge and hydrophobicity
(electrostatics) of a protein, which in turn induces structural
changes that influence protein function, protein-protein
interactions, and protein aggregation (3, 4). In this way, PTMs
also can affect the clearance of proteins by regulating the
functionality of degrons, peptide sequences that target a protein
for degradation (5). Essentially all proteins in eukaryotes,
including the “intrinsically disordered” or “natively unfolded”
proteins that tend to aggregate in neurodegenerative diseases,
are susceptible to PTMs (3, 6, 7). Unlike folded proteins, natively
unfolded proteins do not have a well-defined three-dimensional
structure and exist as an ensemble of dynamically fluctuating
conformations. The lack of tertiary structure makes natively
unfolded proteins more vulnerable to PTMs (8).

Tau is a classic example of a natively unfolded protein (7, 9)
that can be modified by a myriad of PTMs. Tau is a microtubule-
binding protein found in neurons and glial cells, and is primarily
involved in the stabilization of the cytoskeleton (10). Based on
its interaction with microtubules and on the basis of its amino
acid composition, the primary structure of tau can be divided
into an N-terminal projection domain, a proline-rich region, a
repeat region, and a C-terminal domain (11) (Figure 1). Tau
has six different isoforms in human brain that differ from each
other in the number of N-terminal inserts and either contain
or lack one repeat (R2) of the four repeats (R1-R4) present in
the microtubule-binding domain region. Because of its ability to
bind to microtubules, the main function of tau is thought to be
the modulation of microtubule dynamics, which consequently
affects neurite outgrowth, axonal transport, and synapsis (12–
14). Recent studies have shown that tau also interacts with
several cell membranes, including the plasma membrane, the
endoplasmic reticulum, and Golgi (15–17). Tau may also regulate
intracellular signaling cascade via interactions with proteins such
as 14.3.3, Pin-1, and Fyn (18), suggesting a role for tau in cell
signaling (18). Although tau is primarily an axonal protein, it
can be found within neuronal nuclei where it binds to either
DNA or RNA and regulates gene expression (19–21). Under
certain pathological circumstances, tau loses its function as a
microtubule-binding protein and accumulates in the cytosol
of affected cells, forming first “pre-tangles” and then insoluble
cytosolic inclusions or aggregates composed of fibrillar forms of
tau known as neurofibrillary tangles (NFTs).

Diseases associated with the presence of tau inclusions in
the brain are collectively referred to as tauopathies and include
a diverse group of neurodegenerative diseases with distinct

pathological characteristics (Figure 1). Tau-immunopositive
intracellular aggregates are the pathognomonic hallmark of
tauopathies (22). However, the forces driving tau, especially
non-mutant, wild-type tau, into intracellular aggregates are
incompletely understood. The cellular protein homeostasis (or
proteostasis) network is fundamental to the proper functioning
of tau and prevents the accumulation of tau aggregates. In
principle, proteostasis encompasses the entire life cycle of a
protein such as tau, including synthesis, proper folding, post-
translational processing, and degradation. Thus, PTMs are a key
contributor to tau proteostasis and thereby could regulate tau
function, levels, and aggregation.

The same PTMs that regulate tau function also have the
ability to induce alterations in its clearance, conformation, and
aggregation potential (23). However, not all tau PTMs are
“pathological”. Many PTMs have been identified in tau extracted
from healthy brains, suggesting a normal role for PTMs in tau
function (24). Among all tau PTMs, phosphorylation is the
most studied, and traditionally, it was thought that increased
phosphorylation was the trigger for tau intracellular aggregation
(25). However, a growing body of evidence suggests that other
PTMs also considerably regulate tau function and may even
precede phosphorylation in the sequence of events leading to tau
inclusions formation.

In this review, we first provide a synopsis of the many
tau PTMs that impact its function and potentially contribute
to dysfunction (section Effects of PTMs on Tau Function
and Dysfunction). We then fold this information into an
integrated discussion of how PTMs can regulate tau degradation
(section Effect of PTMs on Tau Degradation) and aggregation
(section Effect of PTMs on Tau Solubility and Aggregation). A
rarely discussed but critically important subject, cross-talk, and
competition between PTMs, is considered next (section Cross-
Talk and Competition Between PTMs). Finally, we summarize
strengths and limitations of current approaches to the study
of PTMs (section Approaches and Limitations) and provide
concluding remarks (section Concluding Remarks).

EFFECTS OF PTMs ON TAU FUNCTION
AND DYSFUNCTION

The main role of PTM addition to any protein, including
tau, is to regulate and increase functional diversity usually
by altering electrostatics and/or structure. Approximately 35
percent of the amino acid residues in tau are susceptible to
modification peri- or post-translationally. These residues are
serine (S), threonine (T), tyrosine (Y), lysine (K), arginine (R),
asparagine (N), histidine (H), and cysteine (C). Like other
proteins, tau undergoes PTMs that involve the addition of
small chemical groups or peptides on different side chains of
tau: phosphorylation on S, T, or Y; acetylation, ubiquitination,
SUMOylation, and glycation on K; methylation on K or R;
O-GlcNAcylation on S and T, N-glycosylation on nitrogens,
nitration on Y and oxidation on carbons (Figure 2). Tau can
also undergo protonation on histidine residues and proteolytic
cleavage (or truncation), although these modifications are often
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FIGURE 1 | Post-translational modifications are found throughout tau and associate with all tauopathies. (A) Schematic representation of the structural features of

2N4R tau protein. Tau exists in 6 isoforms generated by the alternative splicing of exons 2, 3, and 10 of the MAPT gene. The isoforms include 0, 1, or 2

amino-terminal inserts (blue rectangles) and three (3R) or four (4R) microtubule-binding potential repeat domains (green rectangles). (B) Pathological and genetic

classification of tauopathies as they relate to post-translational modifications (PTMs). Primary tauopathies fall under the umbrella pathological term frontotemporal

lobar degeneration with tau inclusions (FTLD-Tau) and include Pick’s disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and

frontotemporal dementia with parkinsonism (FTDP-17). Alzheimer’s disease, a secondary or mixed tauopathy, is characterized by the presence of extracellular

inclusions containing Amyloid β (Aβ) protein. Tauopathies are also classified depending on tau isoform composing the intracellular inclusions. PiD is a 3R-predominat

tauopathy, PSP, and CBD are 4R tauopathies and FTDP-17 and AD are 3R:4R tauopathies. The PTMs observed in tau, the targeted residues and the disease where

they have been observed is also shown.

not considered alongside traditional PTMs. The implications of
all of these modifications will be discussed in this section.

The clustering of PTMs within short sequence motifs and
functional domains suggests that tau function and subcellular
localization could be regulated by a complex interplay between
different PTMs (Figure 3). Since some modifications have been
found only in the tau aggregates associated with disease (26, 27),
it has been suggested that these modifications may be regulating
tau dysfunction. Although a hypothetical sequence of events has
been proposed to occur during the formation of tau inclusions
(28, 29), what remains elusive is which PTMs actually drive
tau self-association vs. those that are simply part of normal tau
function and captured or trapped as “bystanders” in aggregates.
The transformation from healthy (functional) to aggregated
(or pathological) tau is most likely not a consequence of a
single PTM, but rather a combination of the intrinsic structural
alterations and extrinsic cellular conditions that may ultimately
constitute pathogenicity. Below, we describe the PTMs that have
been observed in tau and their potential impacts on tau function
and dysfunction.

Phosphorylation
Protein phosphorylation is one of the most common PTMs
in the proteome (30). Phosphorylation involves the reversible
addition of a phosphate (PO4) group to the polar group
of serine, threonine or tyrosine amino acid residues (31)
(Figure 2). Protein kinases and phosphatases, the enzymes
responsible for phosphorylation and dephosphorylation,
respectively (32), coordinate the phosphorylation status of
proteins. Phosphorylation alters protein electrostatics by
introducing a negatively charged, hydrophilic group, resulting
in an overall more hydrophilic protein. As a consequence
of this increased hydrophilicity, phosphorylation imparts
conformational changes, and regulates some important
protein functions including protein-protein interactions,
signaling cascades, and protein degradation (5, 33).
Phosphorylation is involved in essential cellular functions
such as metabolism and intracellular signaling, and therefore, is
fundamental to several normal cellular processes. However,
abnormal phosphorylation has also been described as
one of the primary causes for the alteration of a variety
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FIGURE 2 | Relative frequency of post-translational modifications on tau. The

2N4R isoform of tau contains 441 amino acid residues, around 35 percent of

which can potentially undergo PTMs. These residues include serine (forty-five),

threonine (thirty-five), tyrosine (five), asparagine (three), arginine (fourteen), and

lysine (forty-four). The most common PTMs in tau are shown on the y-axis of

the bar plot. The x-axis of the plot shows the percentage of amino acid

residues with solid bars showing the sites that have been identified within total

potential sites shown in shaded bars. The functional groups associated with

each PTM are also shown next to each bar. Since all potential phosphorylation

sites have been identified, the shaded bar is completely masked by the solid

bar. Similarly, in case of N-glycosylation, the specific N-glycosylation sites have

not been reported and therefore, only potential sites represented by shaded

bar have been shown.

of structural, functional, and regulatory proteins under
disease conditions.

The longest isoform of tau, known as 2N4R tau, has 85
potential phosphorylation sites (44 S, 35 T, and five Y) (34).
Therefore, almost 20 percent of tau has the potential to become
phosphorylated (Figures 2, 3). Of these sites, ∼20 residues have
been found to undergo phosphorylation in tau extracted from
healthy brains (35, 36). In contrast, around 44 residues, some of
which overlap with residues found in tau from healthy brains,
have been identified as “abnormally” hyperphosphorylated in
individuals with a tauopathy (25). Phosphorylation of serine and
threonine residues is associated with the completion of degrons
(or degradation-signaling motifs) and the subsequent clearance
of tau (for a more extensive discussion about phosphodegrons,
see section Effect of PTMs on Tau Degradation). If tau
degradation is blocked, then these normally transient phospho-
sites would persist, even though they are a part of the normal
metabolism of tau. Thus, the phosphorylation observed in tau
extracted from diseased brains could either occur abnormally
as part of disease pathogenicity or be a found as a normal
event to promote the normal, but interrupted, clearance of
tau. Additionally, it is also possible that many other tau
phosphorylation sites exist that have not been identified in post-
mortem human brainmaterial due to rapid dephosphorylation of
tau (37).

As a dynamic and highly regulated process, tau
phosphorylation requires a balanced interplay of kinases and

phosphatases. Several serine/threonine kinases phosphorylate
tau, including glycogen synthase kinase 3 (GSK3β), cyclin
dependent kinase 5 (cdk5), casein kinase 1 (CK1), cyclic AMP-
dependent protein kinase (PKA), p42/p44 MAPKs (ERKs 1/2),
protein kinase C (PKC), calmodulin-dependent protein kinase
II (CaMKII), the brain-specific kinases 1 and 2, the tau-tubulin
kinases 1 and 2, and somemicrotubule affinity-regulating kinases
(MARKs; also known as PAR1 kinases) (38). Furthermore, tau
can be phosphorylated by tyrosine kinases, such as the SRC
family members (LCK, SYK, and FYN) and the ABL family
members (ARG and ABL1) (39). FYN, SYK, and ABL kinases
phosphorylate tau at the Y18, Y197, and Y394 residues (40),
which have been associated with tau aggregation and AD
pathology (41).

Tau can be dephosphorylated by protein phosphatases (PP)
1, 2A, 2B, 2C, and 5 (25). Among these phosphatases, PP2A
accounts for around 70 percent of all tau dephosphorylation in
the human brain (42). Interestingly, PP2A also dephosphorylates
and modulates the activity of components along the ERK1/2
MAPK cascade that leads to GSK3β activation (43), suggesting
potential feedback cycles. As phosphorylation is one of the most
studied PTMs in tau, the kinase pathways implicated in tau
phosphorylation have been extensively reviewed elsewhere (44).
The regulation of the phosphorylation status of tau is essential to
maintain the biological function of the protein.

The change in tau electrostatics associated with
phosphorylation may have a critical role in the regulation
of tau function, localization, and interaction with other
molecules. The phosphorylation status of tau is developmentally
regulated, implying the significance of phosphorylation in the
regulation of specific function of tau in each developmental
stage (45, 46). Tau phosphorylation inside the microtubule-
binding domain (e.g., S262/S214) and/or the proline-rich (e.g.,
T231) domain reduces the affinity of tau for negatively charged
microtubules (47–50). Binding of tau stabilizes microtubules,
therefore tau phosphorylation regulates neuronal functions such
as axonogenesis and neurite outgrowth (47, 51–53). Additionally,
it has been reported that the specific phosphorylation of tau
by FYN kinases induces the relocation of tau from the axon to
dendrites (54). However, the effects of tau relocation in neuronal
function are not yet well-understood. Additionally, tau interacts
with the kinesin-associated protein JIP1 (JUN N-terminal
kinase-interacting protein 1) only when phosphorylated, thereby
impairing the formation of the kinesin complex that mediates
axonal transport (55).

Since phosphorylation regulates the biological functions
of tau, inappropriate phosphorylation may be an important
contributor to the pathogenesis of tauopathies. The abnormal
phosphorylation in several residues inside the KXGS motif (25)
and the proline-rich domain (47, 56–58) has been identified in
NFTs of tauopathy patients brains. Aberrant tau phosphorylation
at these motifs may pose detrimental consequences for neurons,
such as the impairment of neurite outgrowth (59) and the
deregulation of axonal transport (60, 61), which may lead
to synaptic dysfunction and neurodegeneration (62–64). The
phosphorylation at residues outside of the microtubules-binding
and proline-rich domains does not interfere with the ability of tau
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FIGURE 3 | Tau undergoes diverse post-translational modifications that often compete for the same amino acid residues. Diagram showing the polypeptide chain of

the longest tau isoform 2N4R tau along with individual amino acid residues highlighting different regions/domains. The N-terminal inserts are represented with blue

residue borders, proline-rich domain is represented with purple residue borders, microtubule-binding domains are represented with green residue borders (R1, R3, R4

in dark green, and R2 in light green), and disease-associated amino acid variants are highlighted in red text. The vertical black line between residues is shown for

distinction between two N-terminal inserts and four microtubule-binding repeats. The colored dots represent the PTMs identified in tau (WT and mutant) in vitro and in

vivo. The color code for PTMs is as follows: phosphorylation (light blue), acetylation (pink), methylation (green), glycation (yellow), ubiquitination (red), O-GlcNAcylation

(orange), SUMOylation (dark blue), and nitration (purple). N-glycosylation is omitted as no specific sites have been identified. The KXGS microtubule-binding motifs are

shown in pink boxes. The canonical and potential KFERQ motifs are represented with dark blue and light blue boxes, respectively. The phosphodegron motifs are

highlighted with green boxes.

to bind microtubules. Some of these residues such as S396, S404,
and S422, have been found abnormally “hyperphosphorylated”
in diseased brains (57, 65), and it has been suggested that
phosphorylation at these residues may influence tau aggregation
(66). While substantial published work suggests that tau
phosphorylation may contribute to development of tauopathies,
the exact mechanism behind how phosphorylation regulates tau
function and aggregation in vivo is still unknown. To unravel
the role of abnormal tau phosphorylation in tauopathies, it
will be necessary to better understand the broader impacts of
phosphorylation on normal tau function.

Acetylation
The acetylation of mammalian proteins involves the N-
terminal addition of an acetyl group from acetyl coenzyme
A (Ac-CoA) to the lysine residue of a polypeptide chain

(67) (Figure 2). Acetylation was first described on histone
proteins, therefore the associated enzymes are known as histone
acetyl transferases (HATs) and histone deacetylases (HDACs),
although they are less discriminating in their targets than
their names would suggest (67). Acetylation is considered
an essential modification that plays critical roles in the
function of diverse proteins, including p53 and tubulin (68).
The addition of an acetyl group neutralizes the positive
charge of lysine residues, thereby eliciting its downstream
molecular impacts on protein structure and protein-protein
recognition. Among its functional roles, acetylation is perhaps
best known to regulate gene expression via modification of
histone structure and chromatin accessibility (69). However,
the acetylation of non-histone proteins regulates a range of
cellular processes such as DNA damage repair, cell division,
signal transduction, protein folding, autophagy, and metabolism
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(70). Incorporation of an acetyl group onto lysine residues
prevents other modifications and thus, acetylation also can
block the processes regulated by ubiquitination, SUMOylation,
methylation, and glycation.

Acetylation has recently arisen to challenge the predominance
of phosphorylation as the key PTM on tau. The longest isoform
of tau protein (2N4R) contains 44 lysine residues and thus,
10 percent of the protein has the potential to be modified by
acetylation (Figure 3). Among all HATs implicated in protein
acetylation, p300 and its close homolog CREB-binding protein
(CBP) appear competent to acetylate tau in vitro (71, 72).
Moreover, the histone deacetylase 6 (HDAC6) (36, 73) and
the NAD+-dependent sirtuin 1 deacetylase (SIRT1) (72) are
the major tau deacetylases. Interestingly, these two HDACs
have seemingly opposing effects on tau: while tau deacetylation
by SIRT1 has a protective role against tau accumulation, the
deacetylation of tau by HDAC6 contributes to the increase
of tau phosphorylation and aggregation in vitro (74, 75). Tau
has also been shown to undergo acetyl-coenzyme A–induced
auto-acetylation in vitro (76). However, the role of tau as
acetyltransferase remains somewhat controversial, given that
other groups have not consistently identified tau acetylation in
absence of HAT enzymes (26, 76, 77).

Tau acetylation was first recognized in the context of
neurodegeneration in mouse models of neurodegenerative
disease (72, 78), and subsequently in brain lysates from AD
patients at early/moderate Braak stages (79). The dysregulation
of the HATs and HDACs involved in tau acetylation was also
found in diseased brains (79, 80). However, the underlying
abnormalities of HAT and HDAC activity may be both context
and disease specific. In this regard, while increased p300/CBP
HAT activity was observed in the brains of FTLD-tau patients
(80), p300/CBP levels, and activity were found to be lower in
the frontal cortex and hippocampus of AD patients (81) and
in a mouse model of AD (82). Although these reports failed to
show the effect of p300/CBP dysregulation in tau acetylation,
they suggest that the role of p300/CBP in tau acetylation may
vary between different tauopathies such as FTLD-Tau and AD.
Furthermore, the levels and activity of HDACs have also been
measured in patients’ brains. It has been observed that the
expression of SIRT1 is reduced in AD patients (83, 84) while
the levels of HDAC6 are increased (73), confirming that these
enzymes have opposite effects on tau function and dysfunction.
Altogether, this evidence demonstrates that tau acetylation may
have a key role in tauopathies.

As with phosphorylation, to fully understand the role of
acetylation in tau dysfunction, one must necessarily understand
its role in the normal function of tau. While the neutralization
of positively charged lysine residues by acetylation appears
crucial for regulation of tau, the downstream functional impacts
of this regulation seem to be residue specific. For example,
acetylation at lysine residue K280 weakens the binding of tau
to negatively charged microtubules, potentially destabilizing
microtubule networks (26, 27, 85). This contrasts with acetylation
at K174, which induces tau aggregation without affecting
tau-microtubule binding (79). Finally, HDAC6-regulated tau
acetylation at KXGSmotif-associated K259, K290, K321, or K353

residues suppresses both tau phosphorylation and aggregation
(36). Unlike acetylation of lysine residues that have been
identified only in tauopathy brains (26, 79, 86, 87), the acetylation
at these four residues occurs in normal tau but is reduced in
tauopathy brains (36). Since acetylation has emerged as a key
PTM in the regulation of tau function and dysfunction, mapping
all the acetylation sites on tau in different biological contexts
will help to delineate the ultimate roles and consequences of
each modification.

Acetylation on tau is particularly interesting because many
lysine residues that are targets for acetylation are also
targets for other PTMs, including ubiquitination, SUMOylation,
methylation, and glycation (78, 88, 89) (Figure 3). Therefore, a
potential rivalry between PTMs could exist, where the addition
of one chemical group to a given residue blocks the addition
of another, suggesting multilayered avenues for the regulation
of the biology of the protein (88). While the cross-talk between
PTMs will be extensively discussed in section Cross-Talk and
Competition Between PTMs, below we review the role of other
lysine-associated PTMs in tau function.

Ubiquitination
Covalent modification of proteins with ubiquitin (Ub)
(ubiquitination or ubiquitylation) represents one of the
most common PTMs in mammalian cells (Figure 2). The
small, 76 residues, protein ubiquitin is nearly ubiquitously
found in eukaryotes (ergo its name) and is used to modify
activity, localization, or stability of other proteins (90, 91).
Ubiquitination involves a multi-step process carried out
sequentially by activating (E1), conjugating (E2), and ligating
(E3) enzymes and has been reviewed elsewhere (92). Similar to
acetylation, ubiquitination occurs on lysine residues. In case of
ubiquitination, the C-terminal carboxyl group of a lysine in the
ubiquitin sequence itself is covalently attached to the ε-amino
group on a lysine of the “target” protein. Substrates can be
modified with a single ubiquitin (monoubiquitination) or with
polymeric Ub chains of variable length (polyubiquitination).
The ubiquitin protein contains seven lysine residues. Therefore,
the nomenclature around ubiquitination is based upon which of
these seven lysine residues serves as the initial link to the target
protein (i.e., ubiquitinated chains are called K6, K11, K27, K29,
K33, K48, or K63) (93). The type of ubiquitin chain determines
the biological effects of these modifications. Chains linked
through K6, K27, and K33 are often involved in cell proliferation,
DNA damage repair, and innate immunity (91). Other linkages
are directly related with protein degradation. In this regard,
K48 chains generally target substrates for degradation by the
26S proteasome (94), whereas K63-polyubiquitinated proteins
are directed to the degradation by the autophagy-lysosomes
pathway (93–96).

As a protein rich in lysine residues, tau has a high
susceptibility toward ubiquitination. Out of a total of 44 lysine
residues, 17 residues of the 2N4R tau isoform have been
found ubiquitinated with most of them located in the tau
microtubule-binding domain (78, 97). The main role of tau
ubiquitination appears to be the regulation of tau clearance
by the proteasomal or lysosome-autophagy systems (98). E3
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ligases confer ubiquitin residues to target proteins (99). Among
∼600 E3 ligases encoded by the human genome, only three
appear competent to ubiquitinate tau: the C-terminus of the
Hsc70-interacting protein (CHIP), the TNF receptor-associated
factor 6 (TRAF6), and axotrophin/MARCH7 (100–102). Each
of these E3 ligases ubiquitinates tau through different linkages
and at different residues, suggesting that each ligase modulates
tau degradation by different mechanisms. CHIP ubiquitinates
tau through K48 or K63 linkages and thus, regulates tau
degradation via both proteasomal and autophagy systems (102–
104). On the other hand, the E3 ligase TRAF6 ubiquitinates
tau via K63 linkages (100), suggesting that ubiquitination
mediated by this enzyme may regulate the degradation of
tau in the autophagy-lysosomes pathway only (100, 105–107).
Additionally, in vitro experiments have shown that tau can be
monoubiquitinated by axotrophin/MARCH7 (101). However,
the effect of monoubiqutination by axotrophin/MARCH7 on tau
function and degradation is not yet well-understood.

While E3 ligases attach ubiquitins, deubiquitinases (dUbs)
remove them. The cysteine protease Otub1 is the only dUb
that has been shown to target tau. Outb1 removes the K48
polyubiquitin chains from endogenous tau, preventing tau
degradation in primary neurons derived from a transgenic
mouse model (108) and thus implying an important role in the
regulation of tau ubiquitination.

Ubiquitin has been found in aggregated tau extracted from
the brains of tauopathy patients. However, whether ubiquitin
is causal, contributory, or simply a bystander in aggregation
remains to be seen. Tau isolated from human AD brains has been
shown to be monoubiquitinated at K254, K257, K311, and K317
(109) and polyubiquitinated at K254, K311, and K353 residues
(110). Tau was also found to be ubiquitinated at K290 in a mouse
model of AD (78). Interestingly, insoluble tau from AD brains is
modified predominantly by K48 linkage (110), whereas soluble
tau can also be ubiquitinated via K63 polyubiquitin conjugation
(102), suggesting that soluble and aggregated tau are degraded
by different pathways. While ubiquitin is a component of tau
aggregates found in the brains AD patients (109, 111–113), tau
“pre-tangles” did not exhibit positive ubiquitin immunostaining
(114–116). Moreover, it has been shown that tau phosphorylation
precedes ubiquitination in the NFTs of AD patients and that the
formation of paired helical filaments precedes tau ubiquitination
in vitro (109, 114), suggesting that ubiquitin may be linked
to tau after the formation of the fibrillar inclusions. This
finding potentially supports ubiquitination as a compensatory
response to tau accumulation. In contrast, other groups have
reported that both mono- and polyubiquitination contribute
to the formation of insoluble protein inclusions present in
neurodegenerative diseases (96, 117) and that the induction of tau
ubiquitination in cell cultures increases aggregation (102). The
somewhat contradictory nature of the current literature around
ubiquitination suggests that whether this modification is causal,
consequential, bystander, or context specific in disease remains to
be sorted.

SUMOylation
In SUMOylation, the small ubiquitin-like modifier protein
SUMO is transferred to the terminal amino group of lysine side
chains of the target protein by an ATP-dependent enzymatic
cascade. Analogous to ubiquitination, this SUMOylation cascade
involves an E1 activating enzyme, an E2 conjugating enzyme,
and an E3-type ligase (Figure 2) (118, 119). SUMO groups
can be removed by specific proteases known as SUMO-specific
proteases/isopeptidases (SENPs). Three main SUMO isoforms
are expressed in cells: SUMO1, SUMO2, and SUMO3, of which
SUMO2 and SUMO3 are more similar to each other and are
different from SUMO1 (120).

SUMO is predominantly found in the nucleus and thus,
SUMOylation plays a crucial role in many nuclear processes
such as gene expression, genome stability (121), DNA damage
response (122), protein trafficking (123), and cell cycle control
(124). SUMOylation has emerged as an essential regulator
of neuronal function with a growing evidence suggesting
that SUMOylation of proteins inside and outside the nucleus
plays an important role in neurodegenerative diseases (125).
Alterations in protein SUMOylation are observed in a wide
range of neurological and neurodegenerative diseases including
tauopathies (126–128), and several extranuclear disease-
associated proteins including tau have been shown to be directly
SUMOylated (125).

In vitro studies have demonstrated that tau can be
SUMOylated. Specifically, it has been found that tau is
monoSUMOylated in vitro at the K340 residue, which is
located within the microtubule-binding domain (128, 129).
Tau becomes available for SUMOylation only after it is released
from microtubules (129), suggesting that SUMOylation may
be a secondary PTM that occurs after phosphorylation and/or
acetylation. However, little is known about how SUMOylation
interferes with the formation of tau inclusions in tauopathies.
Tau SUMOylation at K340 inhibits tau ubiquitination and the
subsequent proteasome-dependent degradation, suggesting that
SUMOylation may block tau degradation and therefore induces
tau accumulation and aggregation (128). In contrast, previous
evidence indicates that the inhibition of the proteasome pathway
stimulates tau ubiquitination and eliminates tau SUMOylation
(129), suggesting that SUMOylated tau can be degraded by
other pathways such as autophagy. In this context, a more
recent study has demonstrated that SUMO1 labels lysosomes in
oligodendrocytes from PSP patients containing tau inclusions
(127), an indicator that SUMOylation may be regulating
autophagy-lysosomes pathway in tauopathies. Additionally, the
activation of autophagy-lysosomes pathway appears to reduce
tau SUMOylation, tau inclusions and cortical atrophy associated
with the rTg4510 mouse model of tauopathy (130). Despite
the role of SUMOylation in tau function and dysfunction not
being completely understood, substantive evidence support
SUMOylation competing with ubiquitin for lysine residues in
tau, with consequences on tau clearance in the proteasome
and/or autophagy-lysosomes systems.

Frontiers in Neurology | www.frontiersin.org 7 January 2021 | Volume 11 | Article 595532

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Alquezar et al. PTMs as Dynamics Transformers of Tau Homeostasis

Methylation
Methylation is a biochemical process that involves the transfer
a methyl group (CH3) to DNA or protein targets (Figure 2).
DNA methylation was discovered contemporaneously with the
discovery of DNA as genetic material (131, 132). On DNA,
methylation is regarded as an epigenetic means of regulating
gene expression through blocking transcription factor binding or
recruiting transcriptional repressors (133). Protein methylation
was first described in histones. This was followed by decades
of limited interest until the physiological role for protein
methylation was documented in the late 1990s and non-histone
proteins were also found to be methylated (134). Currently,
methylation is fourth on the list of PTMs in terms of overall
abundance in the proteome, with more than 18,000 methylation
sites described in ∼7,400 proteins (135). The N-methylation of
histone and non-histone proteins occurs primarily on lysine and
arginine residues. In the process of DNA or protein methylation,
methyl groups from an S-adenosyl methionine (SAM) donor are
conferred by methyltransferases and removed by demethylases
(136). Lysine residues can be methylated up to three times,
resulting in a mono-, di-, or trimethyl-lysine, which each give
rise to distinctive biological consequences. Indeed, although
the methyl group is one of the smallest post-translational
modifications, each methylation event removes a proton from
the ε-amino group and thereby decreases the hydrogen-bonding
potential of lysine. Therefore, methylation also increases the
hydrophobicity and bulkiness of lysine side-chains. Based on the
electrostatic properties of methylation, this PTM has been shown
to regulate different aspects of proteins function such as protein–
protein and protein–nucleic acid interactions, protein stability,
subcellular localization, and enzyme activity, which in turn
affect essential cellular processes including transcription, protein
synthesis, signal transduction, and metabolism (137, 138).

Tau methylation is a relatively recent discovery (89). Results
from mass spectrometric analyses show that several lysine
residues are methylated on tau extracted from either healthy
individuals or AD patient brains (89, 139–141). Moreover,
in mouse models tau is also methylated at arginine residues
R126, R155, and R349 (78). The number of methyl residues in
tau protein is relatively low compared to other modifications
such as phosphorylation and acetylation (140). Tau from
both healthy and AD patient brains can be mono and
dimethylated (141, 142). Interestingly the methylation status of
tau changes qualitatively with aging and disease progression
(89, 140, 143). Inherent in this finding is the possibility
that aging alone, rather than disease per se, dictates tau
methylation, analogous to the “Aging Clock” described for DNA
methylation (144).

Until now, the specific enzymes involved in tau methylation
have not been identified, and the exact role of methylation
in tau function and pathogenesis is unclear. Methylation
changes the electrostatics of tau protein. Given that tau is
methylated within the KXGS motifs, regions that are essential
for interactions with microtubules, lysine methylation may
suppress tau’s microtubule-binding function (139). Since tau
aggregates from AD patients are methylated (89), it has also been
suggested that methyl residues can bind to tau after aggregation

and perhaps impair ubiquitination and UPS-mediated
degradation (89). Future investigation of site-dependent
tau methylation in vivo, and determination of its relationship
to the DNA methylation “Aging Clock”, would advance our
understanding of the role of this modification in tau function
and pathology.

Glycosylation and Glycation
Glycosylation involves the addition of carbohydrate chains to
proteins and lipids, of which we will focus on the former. Protein
glycosylation is classified into two subtypes depending on the
type of reaction involved: enzymatic glycosylation and non-
enzymatic glycosylation (aka glycation). Enzymatic glycosylation
typically occurs on secreted proteins or those that remain
in membrane-bound organelles, hence this process occurs in
the endoplasmatic reticulum (ER)/Golgi system. In addition,
a specialized enzymatic glycosylation called O-GlcNAcylation
occurs almost exclusively on cytoplasmic and nuclear (non-
secreted) proteins (145). Given that the addition of sugar
groups has steric effects on proteins, both enzymatic and non-
enzymatic glycation have been described to play a major role
in determining the structure and stability of proteins (146).
However, while enzymatic glycosylation is an important PTM
that exerts functional effects on glycoproteins, glycation typically
results in dysfunctional or defective biomolecules (146, 147).
Both enzymatic and non-enzymatic glycosylation of tau function
are discussed below.

Enzymatic Glycosylation
Enzymatic glycosylation is a process in which glycosyltransferase
enzymes attach activated sugar donor groups (monosaccharides)
to proteins via covalent, glycosidic linkages (148–150). Sugar
groups are linked to either asparagine (N-glycosylation) or
serine/threonine (O-glycosylation) residues (Figure 2) (146). N-
glycosylation begins as a co-translational event in the ER.
There, the oligosaccharyltransferase enzyme adds an immature
polysaccharide to a nascent polypeptide chain. After the further
maturation of this polysaccharide, the resulting glycoprotein
is transferred to the Golgi apparatus, where the sugar groups
acquire an even more complex structure during a process called
“terminal glycosylation” (149). Conversely, O-glycosylation is
achieved post-translationally in the cis-Golgi compartment (151).
N- and O-glycosylation also differ in the linker-residue of
the targeted protein. N-glycosylation is characterized by the
enzymatic addition of N-glycans to asparagine residues in the
sequence N-X-S/T (where X is any amino acid except P or D),
being X any amino acid except proline (149). O-glycosylation
occurs on S/T residues with a β-turn in the proximity of a
proline residue, however the O-glycosylation domains are not
exactly defined (152). Both N- and O-glycosylation impact the
structure, stability, folding, oligomerization, and solubility of
glycoproteins (143, 153, 154).

Some proteins can additionally undergo a specialized and
highly dynamic form of O-glycosylation called O-GlcNAcylation
or O-GlcNAc. O-GlcNAcylation differs from other types of
glycosylation in that the glycan is not further processed after
the addition of a single GlcNAc to S/T residues. It also occurs
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almost exclusively on intracellular (nuclear and cytoplasmic)
rather than secreted proteins (151). O-GlcNAcylation is highly
regulated by two enzymes, O-GlcNAc transferase (OGT) and
O-GlcNAcase (OGA) that add and remove sugar groups,
respectively (145). Because O-GlcNAcylation affects S/T residues,
many known O-GlcNAcylation sites are nearby or overlapping
with phosphorylation sites and thus it has been suggested that
these two post-translational modifications can regulate each
other (145, 155–159).

Enzymatic glycosylation may contribute to tauopathies by
modifying proteins other than tau, such as APP and the β-
site APP-cleaving enzyme 1 (BACE1). APP and BACE1 have
been found to be O-glycosylated (160–162) and N-glycosylated
(163, 164) in tauopathy patients’ brains. Tau also has the potential
to be modified by N-glycosylation and by the specialized form
of O-glycosylation, O-GlcNAcylation (165, 166). Interestingly,
to date tau has been found to be N-glycosylated only in AD
subjects (167–169), while O-GlcNAcylation levels are relatively
elevated in brains from normal controls (155, 166, 170). To date,
at least five O-GlcNAc sites have beenmapped in tau (T123, S208,
S238, S400, and one of S409/412/413) (171–173) and all of them
are also susceptible to phosphorylation. Therefore, it has been
speculated that O-glycosylation may compete with or protect
from phosphorylation (155, 174). Since tau O-GlcNAcylation is
decreased in diseased brain (155, 170), it has been suggested that
this PTMs has a protective role. This hypothesis is potentially
supported by the fact that that O-GlcNAcylation increases
the interaction of tau with microtubules (175), increases tau
degradation (166), and suppresses tau aggregation (171, 175,
176).

Despite tau being N-glycosylated, the exact residues have not
been identified. Furthermore, the relevance of N-glycosylation
in tau function is a matter of debate since tau is a cytosolic
protein, but the N-glycosylation process occurs in the ER-Golgi
system (177). Therefore, tau N-glycosylation is thought to be
associated with aberrant subcellular localization of tau. However,
the mechanisms and consequences behind tau relocation are still
elusive. It has been proposed that N-glycosylation precedes and
accelerates tau phosphorylation (169), either by suppressing tau
dephosphorylation (178) and/or inducing tau phosphorylation
by protein kinase A (PKA) (169, 178). While a direct impact
of tau N-glycosylation on microtubule polymerization and
stability has not been observed (167), the removal of N-
glycans and phosphate groups of tau seems to restore its
microtubule polymerization activity (164). Although little is
known about the role of N-glycosylation in tau biology, this
evidence suggests that aberrant N-glycosylation of tau may be
involved in neurodegenerative disease pathogenesis.

Glycation or Non-enzymatic Glycosylation
Glycation (or non-enzymatic glycosylation) is a PTM in which
sugars or sugar-derived metabolites are covalently attached to
the side chain of lysine residues (Figure 2). The glycation
process involves a set of chemically heterogeneous modifications
that lead to the formation of advanced glycation end-products
(AGEs) (179). AGEs are produced by the irreversible cross-link
between glycated and non-glycated proteins and are considered

glycotoxins with significance in aging and age-related diseases
(180–182). Both early stage glycation and AGEs have been shown
to impair protein activity. Moreover, AGEs deposition has been
shown to correlate with age and disease progression in AD (183).
Although the study of AGEs is an active area of investigation in
the field of aging research (184), it is still unknown how proteins
are selected to be glycated and the biological role of glycation in
neurodegeneration is not well-understood (185).

Thirty-two lysine residues in 2N4R tau have been identified in
vitro as potential glycation sites (186, 187) (Figure 3). Although
most of these sites were detected in both 3R and 4R isoforms,
K280 and K281 are absent in the 3R tau, and this difference
seems sufficient to slow the glycation of 3R relative to 4R isoforms
(186, 187). In AD, glycation has been detected in aggregated tau
purified from human AD brains but not in soluble tau (188).
The molecular functions for glycation, the sites of these reactions
and whether or how they contribute to tau aggregation remain
subjects for debate. Since the glycation of tau in microtubule
binding domains reduces tau affinity for microtubules in vitro
(189), it has been suggested that glycation sterically blocks
tau-microtubule interactions. Glycation may also induce the
accumulation of tau by blocking the ubiquitination of tau at
lysine residues and consequently its degradation (189, 190).
Furthermore, the late glycosylation product known as AGEs have
also been found colocalized with pathological tau aggregates in
the brain of sporadic AD cases (191). Similarly, AGEs colocalize
with NFTs from PSP, PiD, and ALS patients (180, 191). Although,
the role of glycosylation in tau function is not well-understood,
evidence presented here implies that this PTM can play an
important role in tauopathies.

Proteolysis
Proteolysis refers to the breakdown of proteins into peptides and
amino acids through the hydrolysis of peptide bonds via the
action of proteases. Most proteases are highly specific and cleave
their protein substrates from the N-terminus (aminopeptidases),
C-terminus (carboxypeptidases), or more centralized regions
(endopeptidases) of a protein. Furthermore, based on their
catalytic mechanisms for substrate hydrolysis and the residues
associated with their active sites, proteases are categorized into six
types: aspartyl, cysteine, glutamic, metallo, serine, and threonine
proteases. Proteolysis is a critical modification that can lead to
alterations in protein function with important outcomes in many
biological processes including signaling pathways and apoptosis.
It can regulate the concentration of a protein, transform a
protein into an active form, or process a protein to provide the
amino acids required to synthesize a different protein. Proteolysis
also plays an important function in removing damaged or
unnecessary proteins from cells.

Several cytosolic proteases responsible for tau proteolysis
have been identified, including caspases, calpains, and thrombin
(192). Caspases are a family of evolutionarily conserved cysteine-
dependent proteases that cleave proteins after specific aspartic
acid residues (193). These proteases play a crucial role in
important biological process such as apoptosis and inflammation
(194). Thirteen different caspases have been described in humans,
and their functional classification is reviewed elsewhere (193).
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The role of proteolysis in tau function is incompletely
understood. Tau proteolysis could be protective and may
promote the removal of abnormal tau or could favor the
abnormal accumulation of cleaved tau in the cell (195). It is also
possible that tau cleavage is neither protective nor damaging,
but is merely a bystander effect of tau accumulation. The
proteolytic cleavage of tau has been observed both in vitro
and in vivo (192, 195). Prior research on tau proteolysis has
also shown that the proteolytic cleavage of tau precedes its
aggregation in vitro (196–198). Furthermore, the N-terminal
truncation of tau has been shown to alter the cellular
localization of the protein from the cytosol to the nucleus
(199), indicating a possible link between proteolysis and tau
localization. Given that it has been shown that tau fragments
induce death in cultured neurons (200), it has been suggested
that tau cleavage may induce neurodegeneration. However, the
toxic nature of tau fragments has not been demonstrated in
vivo and therefore, it remains unclear if these fragments are
indeed toxic.

The in vitro cleavage of tau by caspase-3,−7,−8, and less
efficiently by caspases-1, and−6 resulting in the formation of
an N-terminal fragment, tau1-421 (Tau-C3) (198, 201, 202)
has been demonstrated. Tau-C3 fragment has been observed
in AD brains (198) and interestingly, the active forms of both
caspase-3 and caspase-6 are elevated in AD brains compared to
control brains (203–205). While the exact function of Tau-C3
fragment is unknown, it has been shown that Tau-C3 fragment
induce toxicity in neuronal cultures (201, 206, 207), and that
the caspase-mediated tau cleavage precedes tangle formation in
tau transgenic mice (Tg4510) (208). However, whether caspase-
mediated cleavage of tau is toxic or protective for the neurons still
remains a matter of debate.

While the proteolytic cleavage of tau by caspases has
been extensively studied, the cleavage of tau by calpains
and thrombin remains elusive. Calpains are calcium-activated
cytosolic cysteine proteases implicated in a variety of calcium
associated cellular functions like cell proliferation, migration,
invasion, apoptosis, and signal transduction (209). Dysregulation
of calcium homeostasis has been proposed to induce abnormal
activation of calpains in a number of neurodegenerative diseases
(209). The cleavage of tau by calpains, has been demonstrated
in vitro and in neuronal cultures (210, 211). According to a
recent study, calpain-mediated cleavage events are considered a
part of normal tau protein processing (212). However, there are
studies that have suggested that calpain-mediated proteolysis of
tau may induce toxicity, as seen in cell cultures and a Drosophila
tauopathy model (210, 213). Thrombin is a cytosolic serine
protease that is expressed within neurons and astrocytes (195).
The cleavage of tau by thrombin has been shown in vitro and in
cell models of tauopathy (214, 215). Based on cell culture-based
studies, thrombin cleavage products of tau are believed to be
potentially pathogenic (216, 217). However, due to contradictory
reports and lack of in vivo evidence for tau proteolysis mediated
by these enzymes, the relevance of thrombin, and calpains in tau
function remains unclear. Naturally, tau cleavage also occurs in
the proteasome and lysosomes, which will be discussed further in
section Effect of PTMs on Tau Degradation.

Other PTMs
In addition to the PTMs discussed above, several other post-
translational modifications occur on tau, which are less well-
recognized. Below, we discuss three different tau PTMs that fall
in this category: protonation, oxidation, and nitration.

Protonation
Protonation involves enzyme-independent, rapid, and reversible
addition or removal of protons. Protonation adds a positive
charge to otherwise uncharged amino acid side chains and
therefore can lead to dynamic changes in protein conformation
and function (218). The optimum protonation state of a protein
is critical to its functioning. Dysregulation in local pH can lead to
disruption in the protonation state of a protein and has recently
been shown to have implications with neurodegenerative diseases
(219, 220). Among several protein sites that can participate in the
protonation/deprotonation process, only a few can significantly
undergo this modification within the normal cytosolic pH range.
Histidine side chains, with a nominal pKa of ∼6.5, are among
the most attractive residues for protonation within cytosolic
pH range.

Tau contains highly-conserved histidine residues near the
C-terminus of each microtubule-binding tau repeat (Figure 3)
(221). These residues have been proposed to act as pH
sensors and influence tau–microtubule interaction within the
physiological intracellular pH range (221). The histidines are
positively charged at pH <7.5 and show increased tau-
microtubule binding (221). However, at pH >7.5, histidine
residues in tau are deprotonated and bind microtubules with
lower affinity (221). Furthermore, it has been proposed that
a highly conserved histidine residue, H299 (Figure 3), near
the R2 C-terminus seems to contribute to tau–microtubule
binding. The labile nature and minimal molecular weight change
of protonation renders it difficult to detect by traditional
approaches, such as mass spectroscopy or gel electrophoresis,
used to detect PTMs. Nonetheless, given its effects on protein
structure, solubility and function, protonation should be
considered as a post-translational protein modification like the
others in this review.

Oxidation
Like protonation, protein conformation is also sensitive to
oxidation-reduction (redox) changes. Redox homeostasis is
achieved by the regulation of appropriate levels of reactive
oxygen (ROS) and nitrogen (RNS) species, that are considered
important physiological regulators of intracellular signaling
pathways (222). The dysregulation of ROS is a major contributor
to oxidative damage and it has been proposed that age-related
accumulation of oxidized proteins may contribute to the aging
process (223). However, the importance of protein oxidation
in the progression of aging still remains poorly understood.
Cysteine residues are the prime amino acid that can exist in
oxidized or reduced states. The unique properties of cysteine
side chain allows it to undergo various oxidative PTMs, which
can potentially have diverse regulatory effects. The oxidation of
cysteine residues leading to disulfide bond formation is one of the
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well-established mechanisms underlying the redox regulation of
protein conformation and hence its function.

On tau, there exists a pair of cysteine residues that can
undergo oxidation (Figure 3). While the effect of oxidation on
tau function is unknown, its role in tau aggregation has been
studied in vitro (224) and is discussed in section Effect of PTMs
on Tau Solubility and Aggregation of this review. Tau oxidation
has only been described in vitro, and therefore the status of
oxidized tau in vivo remains unclear.

Nitration
Nitration involves the addition of nitrogen dioxide (NO2) onto
tyrosine residues. The mechanism underlying protein nitration is
not clear but it most likely involves the presence of ROS/RNS-
like peroxynitrite and therefore nitration can also occur during
oxidative damage (225). Several lines of evidence suggest a role of
nitration in physiological processes like signal transduction (226,
227). Additionally, increased protein nitration has been identified
in a large variety of diseases and have also been implicated in the
process of aging (227).

The 2N4R tau isoform has five tyrosine residues, and the
nitration at four of them has been shown in vitro: Y-18, Y-
29, Y-197, and Y-394 (Figure 3). These studies have shown that
residues Y-18 and T-29 are more susceptible toward nitration
than residues Y-197 and Y-394. The nitration of tau at Y-
197 has been observed in the healthy brain and therefore has
been proposed to have important physiological functions (228).
However, the nitration of Y-18, Y-29, and Y-394 has only been
observed in AD or other tauopathies (229). It is believed that
nitration of these tyrosine residues alters tau conformation and
reduces its ability to bind to microtubules (230). While there are
some interesting insights on tau nitration, most of these studies
are based on in vitro experiments. Therefore, studies focusing on
this PTM will provide additional useful insights into its role in
tau pathobiology.

EFFECT OF PTMs ON TAU DEGRADATION

Protein degradation is important for the maintenance of
proteostasis and for preventing the accumulation of misfolded
or aggregated protein species (231). There are two major
protein degradation systems in the cell: the ubiquitin-proteasome
system (UPS) and the autophagy-lysosomes pathway (231).
Both protein degradation pathways are key effectors of the
proteostasis network and are strongly influenced by PTMs.
Protein clearance is highly regulated and utilizes ubiquitin
as a tag for direct protein degradation in both proteasomal
and autophagy systems. However, other PTMs also affect the
process of protein degradation indirectly. This is the case for
phosphorylation and acetylation, both of which can modify
amino acid sequences known as degrons, which are important
for protein degradation.

A subset of degrons are regulated by phosphorylation and
thus are called phosphodegrons (232, 233). Phosphodegrons
are short linear amino acid sequences, D/E-S/T-GXX-S/T-P or
LL-S/T-PXX-S/T-P, where the phosphorylation of S/T residues
promotes protein clearance through stimulation of subsequent

ubiquitination and proteasomal degradation (232, 233). Proteins
can also contain other motifs that promote degradation by
the autophagy-lysosomes system. These pentapeptide motifs
are known as KFERQ motifs as they are composed of
one or two positively charged residues (K, R), one or two
hydrophobic residues (I, L, V, F), one negatively charged
residue (D, E), and one bookending glutamine (Q) (234).
“Canonical” KFERQ motifs are complete without modification
while “potential” KFERQ motifs require completion via a
PTM such as phosphorylation (235) or acetylation (234, 236)
(Figure 3).

Tau homeostasis is typically maintained via degradation by
both UPS and autophagy-lysosome systems (96, 110). Yet at some
point in the pathobiology of tauopathies, the local concentration
of tau must increase to favor the formation of fibrils, oligomers,
and aggregates. Does self-association of potentially abnormally
modified tau lead to damage and subsequent impairment of
protein degradation systems? In this model, tau accumulation
is causal for neurodegenerative disease. Or, alternatively, does
tau accumulation result from decreased efficiency or failure of
the protein degradation systems? In this case, tau accumulation
is a consequence of other pathobiology in neurodegeneration.
This type of binary, chicken, or egg approach to the genesis of
tauopathies may be over-simplifications of a complex, biological
milieu that combines aspects of both tau accumulation as cause
and consequence. Nonetheless, the answers to these questions are
key, as they dictate certain nodes to target for disease therapy. In
this section, we will delineate the pathways for tau clearance and
describe how PTMs could play active roles in these processes.

Tau Clearance by the
Ubiquitin-Proteasome Pathway
The UPS pathway is responsible for the clearance of soluble,
intracellular proteins (237, 238). The proteasome is a highly
organized and complex molecular machinery responsible for
the selective and efficient degradation of client proteins, whose
basic science and function has been reviewed elsewhere (239–
242). The 26S proteasome is responsible for the majority of
protein clearance in mammalian cells and degrades proteins
that are tagged with polyubiquitin chains (195). Therefore,
the fact that tau is a target of ubiquitination (as discussed
above) (109, 110) suggests that it can be degraded by
the proteasome.

While ubiquitination is the proximal signal for protein
degradation in the UPS, other PTMs such as phosphorylation are
often required for tau ubiquitination to occur (243). For example,
tau phosphorylated at proline-directed serine/threonine sites
is selectively ubiquitinated by CHIP (103, 243), and thus
phosphorylation in these sites increases tau ubiquitination
and UPS-mediated degradation. Given that tau has six
phosphodegron sequences (Figure 3), phosphorylation also
regulates the ubiquitination and degradation of tau through this
means (233). Phosphorylation of tau degrons is highly regulated
by different kinases such as cdk5 and GSK3β (244), which work
together in order to phosphorylate tau at specific residues and
prepare the molecule for ubiquitination and degradation (245).
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However, phosphorylation of tau at alternative sites prevents
ubiquitination and clearance. As a case in point, phosphorylation
of tau at the KXGS motifs in the C-terminal microtubule
binding repeat domains seems to prevent the ubiquitination and
degradation of tau (243).

The dysfunction of the UPS and its related PTMs are
associated with the development of tauopathies. Insoluble tau
aggregates isolated from human AD brains contain proteasome
subunits (246). Ubiquitin ligases such as CHIP and TRAF6 also
colocalize with tau in AD brains (102, 103). Ubiquitinated tau
is a component of NFTs (246). Further, a recent study from our
group showed that the PSP-related A152T tau variant increases
tau phosphorylation at threonine 153, potentially interfering
with recognition of the local phosphodegron and thereby UPS
degradation (233). Impairment of UPS activity has also been
observed in postmortem human AD brains (246–250). While
together these data implicate the UPS in tauopathies, they
nonetheless represent correlative, rather than causal evidence.
To our knowledge, no studies have established UPS failure
as necessary and sufficient in promoting tau accumulation,
aggregation, neuronal loss, and neurodegeneration.

Tau Clearance by Autophagy
Autophagy is the process by which unnecessary or damaged
cellular components are proteolytically degraded in the
endosomal-lysosomal pathway. Based on the mechanisms
by which the substrate is delivered for degradation, there
are three major types of autophagy: chaperone-mediated
autophagy (CMA), endosomal microautophagy (e-MI), and
macroautophagy. Long-lived proteins or protein aggregates
that are too large to be processed through the proteasome are
typically degraded via autophagy (242). Tau, being a long-lived
protein, is anticipated to be degraded in lysosomes (242) and
indeed, it has been shown that both soluble and insoluble tau
can be degraded by the three forms of autophagy (251, 252).
Furthermore, it has been observed that the use of autophagy
inhibitors, such as ammonium chloride (NH4Cl), chloroquine,
and 3-methyladenine (3-MA), as well as the inhibition of
lysosomal proteases, delays tau clearance, and enhances
tau accumulation (253–255), confirming the importance of
autophagy in tau degradation.

Not only is tau cleared by autophagy, but PTMs play
distinct roles in modulating these processes. Within the amino
acid sequence of the tau protein are found two KFERQ
motifs (336QVEVK340 and 347KDRVQ351) (Figure 3). These
consensus sequences direct tau toward either chaperone-
mediated autophagy or endosomal-microautophagy (252, 256).
In addition to the two canonical KFERQ motifs, tau contains
four potential KFERQ motifs that can become canonical in the
presence of phosphorylation, acetylation, or a combination of
both (Figure 3) (KFERQ finder) (234), emphasizing that PTMs
play an important role in the degradation of tau by these
two systems. CMA-mediated protein degradation is a selective
form of protein clearance in which the KFERQ motifs are
recognized by the Hsc70 chaperone. Upon recognition, the
proteins are transported to the lysosomal lumen after binding to
the lysosome-associated membrane protein-2 (LAMP-2) (257).

Tau protein can be efficiently degraded by CMA as long as the
KFERQ motifs are not blocked by PTMs (252).

In addition to initiating CMA, the binding of Hsc70 to
KFERQ motifs also targets cytosolic proteins for selective
degradation by e-MI. This form of protein degradation occurs
in late endosomes/multivesicular bodies instead of lysosomes
and involves sequestering substrate proteins into intraluminal
vesicles budding in toward the lumen of multivesicular
endosomes (234, 256). Unlike CMA, in mammals, the presence
of KFERQ motifs is necessary but not sufficient for e-MI (256).
In addition to protein cargo delivery by Hsc70, the e-MI pathway
relies on the ESCRT (endosomal sorting complexes required
for transport) I and III complexes that are required for the
formation of vesicles which internalizes the cytosolic cargo (256).
A recent study has analyzed the influence of two different
PTMs, oxidation and phosphorylation, on the e-MI-dependent
degradation of tau (251). A substantial decrease in the association
and internalization of tau in late endosomes via e-MI was
observed upon oxidation of mutant tau, which suggests that the
oxidation of tau at C291/C322 is a prerequisite for completing
the internalization of tau through e-MI (251). Moreover, in
the same study, the authors found that phosphorylating tau at
S262, S293, S324, and S356 inside microtubule-binding domains
diminishes its degradation by e-MI (251). In contrast, another
study showed e-MI mediated degradation of total tau and of
specific phosphorylated species (258). Thus, PTMs regulate the
clearance of tau degradation by both CMA and e-MI.

Non-soluble, larger or aggregated species of tau are cleared
via macroautophagy, a form of autophagy that involves the
sequestration of cytoplasmic cargo into double-membrane
vesicles known as autophagosomes, which fuse with the lysosome
to degrade its contents (259). Several reports have confirmed
that tau aggregates can be degraded by macroautophagy. For
example, the aggregates generated by the overexpression of the
tau repeat domain with an FTD-17 mutation (TauRD1K280)
(252) as well as the proteolytically cleaved tau isoform D421
(Tau-C3) (260) are degraded by macroautophagy in cell models
of tauopathy. Interestingly, tau phosphorylated at KXGS motifs
escapes degradation by the UPS but is efficiently degraded
by macroautophagy (252), suggesting the that wild type tau
can also be degraded by macroautophagy. As PTMs contribute
to tau aggregation (see section Effect of PTMs on Tau
Solubility and Aggregation), they likely regulate tau clearance
via macroautophagy.

Failure of tau degradation by the autophagy-lysosomes
pathway has been linked to tauopathies. For example, there
are several studies suggesting a defect in macroautophagy in
tauopathy patients (261–263). Furthermore, it has been shown
that tau in NFTs colocalizes with lysosomes and lysosomal
markers in human AD, CBD, and PSP brains (263–267),
suggesting that tau is directed toward macroautophagy but
fails to be degraded. Moreover, evidence from mouse and
Drosophila models of FTLD-Tau indicates that the microtubule
destabilization associated with the abnormal phosphorylation
of tau leads to the disruption of the axonal vesicle transport
by impairing the dynein-dynactin complex, vesicle trafficking,
and autophagic flux (268, 269). Alterations in CMA may
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also contribute to tauopathies, since it has been described
that tau carrying the FTD-related mutation P301L reduces
tau’s susceptibility for degradation by CMA (251). Overall, the
regulation of the autophagy-lysosomes pathway seems to be
essential for maintaining tau homeostasis in health and disease,
and PTMs in tau influence the autophagic degradation of tau in
multiple ways.

EFFECT OF PTMs ON TAU SOLUBILITY
AND AGGREGATION

The degradation pathways discussed above represent a major
component of the proteostasis network and ensure that, under
normal conditions, tau is maintained in an optimally functional
state (231). However, in tauopathies, there is a breakdown in
tau homeostasis that in turn leads to aberrant accumulation,
misfolding, and aggregation of tau (45, 242, 270). Recent studies
suggest that PTMs contribute in sometimes surprising ways to
altering tau solubility and thereby promoting its aggregation.

Various biophysical techniques have demonstrated that
under physiological conditions, tau exists in a “natively
unfolded” or “intrinsically disordered” state (45, 271, 272).
Despite being intrinsically disordered, tau shows a preference
for global interactions between its negatively charged N-
terminus and positively charged repeat domains, leading
to an energetically favored “paperclip” like conformation
(273). In contrast to soluble tau, tau aggregates are
composed of β-sheet rich structures known as amyloid
fibrils (274–277). Amyloid fibrils are highly heterogeneous
in nature and are not easily amenable to study via
traditional methods used in structural biology. Recent
breakthroughs in cryo-electron microscopy (cryo-EM)
technology, however, have made it possible to determine
high resolution three-dimensional structure of tau amyloid
fibrils (278, 279). Determination of the atomic structures
of tau aggregates may provide a better understanding of
the mechanisms underlying their formation, spreading,
and clearance.

To date, cryo-EM has elucidated the structure of tau filaments
isolated from brains of patients with several different forms
of tauopathies (279–284). According to these studies, each
tauopathy is associated with a unique tau filament fold (279). The
origin of such structural specificity is not yet known, but could
emanate from PTMs (279). For example, tau is phosphorylated at
S262 in tau filaments extracted from AD and CBD brains, but
not in the filaments of PiD patients (11). Consistent with this
phospho-modified residue contributing to aggregate structure,
S262 is present in the tau filament core in PiD but not AD (279).
Therefore, distinctive patterns of post-translational modification
in different tauopathies may underlie not only the structural
specificity of amyloids observed in cryo-EM structures, but could
even contribute to selective vulnerability to these diseases.

To understand the fundamental role of PTMs in tau
aggregation, it is important to account for the influence of
PTMs over the charge composition and distribution within a
polypeptide chain. The net charge on any protein is dependent

on the content of ionizable groups. Net charge is 0 when
the pH of the surrounding environment equals that protein’s
isoelectric point (pI). Similarly, net charge is positive at a pH
below pI, and is negative at pH above its pI. Tau contains
around 29 percent charged residues, has low hydrophobicity and
has a low net charge of +2 at physiological pH. While tau is
overall slightly positively charged, the amino-terminal residues
(including the two N-terminal inserts) are more negatively
charged, themicrotubule-binding repeat region is predominantly
positive, and the distal carboxy-terminal residues are mostly
neutral (285). Such asymmetric distribution of charges has
been proposed to play a crucial role in tau interactions with
microtubules and other binding partners (45). It may also explain
the inability of tau to undergo aggregation in vitro without
polyanionic aggregation inducers (286–288). The inducers of tau
aggregation are not typically present in neurons but their effect
may be achieved through the masking of charged residues in tau
via PTMs.

PTMs that make tau more negatively charged are
phosphorylation, acetylation, and nitration. These PTMs, when
present in themicrotubule-binding domains, have been proposed
to initiate tau aggregation by first weakening its interaction with
negatively charged microtubules (26, 45, 289, 290) The reduced
affinity of tau toward microtubules upon these modifications
would increase the “free” pool of soluble modified tau molecules
that might have a higher tendency to self-assemble into
aggregates, as has been observed in case of phosphorylated
tau (189, 291). The aggregation might be further promoted by
electrostatic interactions between negatively charged, modified
tau and positively charged, unmodified tau. The effects of
phosphorylation on tau aggregation, however, seem to be
site-dependent. For example, phosphorylation sites close to the
N-terminus tend to prevent tau aggregation but phosphorylation
sites in the vicinity of the C-terminus and microtubule-binding
region seem to accelerate filament formation in vitro (285).
A similar site-dependence has been observed in tau nitration,
where depending on the residues that are modified, nitration
can either promote or inhibit tau aggregation (230, 289).
Interestingly, the core of tau filaments isolated from tauopathy
patients contains multiple lysine residues that are susceptible to
acetylation (280, 281, 283). Since the microtubule binding region
constitutes a major part of the core of tau filaments, acetylation
of lysine residues in this region likely plays an important role in
the assembly of tau filaments.

Unlike phosphorylation, acetylation, and nitration that alter
the charge of tau, methylation preserves the positive charge
on lysine residues for a neutral effect on net charge of
the protein. The role of methylation in tau aggregation is
controversial and it is unclear whether tau methylation induces
tau aggregation or has a protective role. While some studies have
remarked that methylation at lysine residues facilitates abnormal
protein aggregation (292, 293), further experimentation using
recombinant tau has shown opposite results, demonstrating that
methylation reduces the tendency of tau toward aggregation and
promotes tubulin assembly (141). Interestingly, the methylation
status of tau changes from dimethyl- to monomethyl-lysine
with aging and disease (140). Therefore, it is possible that high
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stoichiometry (number of methyl groups/protein molecule) of
methylation reduces the propensity of tau toward aggregation in
vitro and promote tubulin assembly (140).

Another important modification in tau that does not affect
charge but can affect tau aggregation is oxidation. The oxidation
at one of the two cysteine residues C-322 (present in R3 repeat)
(Figure 3) seems to promote tau aggregation into paired helical
filaments (224). However, aggregation is inhibited under reduced
conditions, upon mutation of cysteine to alanine and upon the
formation of an intramolecular disulfide bond between C-322
and C-291 (224, 294).

While the PTMs described above involve the addition
of small chemical groups to tau, other PTMs involve the
addition of large sugar groups (glycosylation and glycation)
and protein macromolecules (ubiquitination and SUMOylation)
(Figure 2). These large molecules can have profound steric
effects on the native conformation of tau and therefore can
strongly influence misfolding and aggregation. The mechanisms
by which glycation and glycosylation regulate tau solubility
and aggregation are poorly understood. Glycation appears to
promote the polymerization and stabilization of aggregated tau
(295). Additionally, the N-glycosylation of tau is thought to be
associated with maintaining the structure of NFTs (167). On the
other hand, O-GlcNAcylation has been proposed to protect tau
against aggregation (175). In fact, a study on tau peptides has
shown that O-GlcNAcylation in proline-rich sequences favors a
more disordered or extended conformation of tau (296).

Like sugars, the effects of ubiquitin and SUMO addition to
tau on aggregation propensity have not been extensively studied.
However, both mono- and polyubiquitination can contribute
to the formation of insoluble tau inclusions (96, 117). In
addition, a recent cryo-electron microscopy (cryo-EM) and
mass spectrometry-based study performed on tau filaments
isolated from the brains of tauopathy patients, has proposed that
incorporation of ubiquitin into tau filaments mediates specific
inter-protofilament packing by providing additional contacts
between tau molecules in each protofilament via ubiquitin chains
(282). SUMOylation is analogous to ubiquitination and has been
shown to decrease the solubility of tau (128). However, the
mechanisms by which SUMOylation reduces tau solubility and
most likely promotes its aggregation, remain unknown.

Overall, PTMs on tau critically influence the assembly of
natively unfolded tau into highly ordered β-sheet rich aggregates.
It is likely that PTMs drive this process by altering the distinctive
charge distribution on tau. It is worth emphasizing that while
PTMs undoubtedly affect tau solubility and intermolecular
interactions, the effect of PTMs on processes such as protein
localization and degradation would also contribute, in a discrete
and upstream manner, to when, how and why tau aggregation
events occur.

CROSS-TALK AND COMPETITION
BETWEEN PTMs

The PTM code hypothesis proposes that the combination
of PTMs in proteins generates a dynamic “code” that can

be translated into complex biological consequences (297).
This hypothesis may apply to tau since it undergoes many
modifications, often targeting the same amino acid residue
(Figure 3). Such heterogeneity and competition between PTMs
suggest that tau function and aggregation could be a consequence
of the combination of several PTMs and/or the substitution of
one PTM by another at the same position. In this regard, and
based on the evidence described above, it is likely that while some
PTM ensembles are essential for the regulation of tau function
and degradation, others are more deterministic for formation of
tau aggregates (Figure 4).

One level at which competing biological outcomes can be
coded is via competition of different PTMs for the same
amino acid. For example, S and T residues are modified
by phosphorylation and O-GlcNAcylation. O-GlcNAcylation
in some S/T residues protects tau from phosphorylation and
thus blocks the effects of phosphorylation, which impacts
microtubule-binding affinity and aggregation propensity, on
these residues (155, 165, 298).

Perhaps even more interesting are lysine residues, which are
susceptible to five different PTMs—acetylation, ubiquitination,
methylation, SUMOylation, and glycation. Each one of these
modifications have potentially different consequences for tau
structure, function and aggregation. Since ubiquitination occurs
on lysine residues, other lysine-based PTMs may prevent
ubiquitination and therefore impair tau degradation (128, 139).
In fact, many lysine residues that competent for ubiquitination
are also targets for other PTMs (Figure 3). For example, K254
residue in tau can undergo ubiquitination and methylation. In
fibrillar tau, K254 was found to be primarily methylated and
ubiquitinated to a lesser extent, suggesting that methylation may
block UPS-mediated tau degradation and lead to an increase in
tau levels (89). Like methylation, acetylation could potentially
prevent lysine ubiquitination, resulting in the insufficient
turnover endogenous tau (72). The veritable log jam of PTMs
that can be found on lysine residues marks this amino acid as
a particularly interesting and likely important site at which cells
orchestrate the biological outcomes they wish to achieve with tau
and other proteins.

In addition to competition, crosstalk between PTMs can also
be achieved through cooperativity. Some studies suggest that
certain PTMs make tau more amenable to other modifications.
In vitro tau SUMOylation seemingly enhances phosphorylation
at residues such as T231 and S262 (128). Other studies have
shown that tau methylation at K267 may result in subsequent
and possibly abnormal phosphorylation of tau at S262 (89).
It has also been proposed that N-glycosylation precedes
tau phosphorylation (299). In each of these cases, though,
a reasonable alternative interpretation is that SUMOylation,
methylation, or N-glycosylation may impair tau clearance,
enhancing the half-life of tau in the cytosol, and thus, providing
more opportunities for phosphorylation.

On the other hand, phosphorylation can also affect the
propensity of tau for other PTMs. For example, in specific
experimental conditions the in vitro phosphorylation
of tau in the microtubule binding domain activates tau
autoacetyltransferase activity and therefore promote its
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FIGURE 4 | Post-translational modifications on tau impact tau function, degradation, and aggregation. PTMs can both promote and inhibit tau function, clearance,

and aggregation. A non-exhaustive list of examples are illustrated here. In many cases, it is likely that cross-talk and competition between PTMs results in the specific

and dynamic regulation of tau.

acetylation (76). Furthermore, a protective role of the
switch between tau phosphorylation and acetylation has
been described. The acetylation of tau at KXGS motifs
inhibits phosphorylation and thus prevents the detachment
of tau from microtubules and its aggregation (34, 247).
Additionally, the phosphorylation of tau at S422 seems to
precede and block the cleavage of tau at D421 by caspase-3 (300),
suggesting that phosphorylation at S422 could be a protective
mechanism for the inhibition of the caspase-mediated cleavage
of tau.

Taken together, the current literature suggests that crosstalk,
combinations, and competition between PTMs play a
critical role in tau function, degradation, and aggregation.
An old truism states that “We are the company we keep.”
If so, then future studies dedicated to documenting and
decoding ensembles of tau PTMs will rise in importance
in regards to understanding and developing interventions
for tauopathies.

APPROACHES AND LIMITATIONS

The complete understanding of the role of PTMs in tau
function and dysfunction is obstructed by several limitations
in the methodology and models used. Historically, PTMs were
identified using immunochemistry-based approaches. Using this
method, several phosphorylation sites were identified and thus,
a large number of anti-phospho tau antibodies are available
(301). While immunochemistry methods are routinely used and
are highly effective for the characterization tauopathies, they do
not provide a comprehensive and quantitative description of
PTMs, nor do they distinguish between single molecules with

many PTMs vs. many molecules with single PTMs (302). Some
of these problems can be solved by the use of quantitative
mass spectrometry (MS) and nuclear magnetic resonance (NMR)
spectroscopy, which provide a more detailed description of
PTMs and allow the simultaneous analyses of a variety of
PTMs (89, 110, 303–308). However, most of these methods are
biased toward the peptides of highest intensity, and prevent the
accurate determination of site-specific stoichiometry, associated
site-specific dynamics and identification of labile PTMs like
protonation (302). The high percentage of PTM sites in tau adds
to the complexity, making it incredibly challenging to design and
carry out such studies. To overcome some of these challenges,
analytical methods including one known as FLEXITau (Full-
Length Expressed stable Isotope-labeled tau) have been recently
developed (309). This method allows for unbiased analyses of
tau PTMs in a more quantitative manner. In this regard, a study
using FLEXITau has reported 95 PTMs on tau isolated from
postmortem human tissue from AD and has demonstrated that
these modifications occur in an ordered manner and lead to tau
aggregation (310).

The choice of models to use for studying PTMs also influences
the understanding of the effect of PTMs in tau biology. The vast
majority of PTMs have been identified in vitro, using biochemical
assays where purified tau protein was incubated with specific
enzymes (71) or using tau/enzymes overexpression systems in
cell models (128). Some PTMs have also been confirmed or
identified in vivo using tauopathy mouse models. However, most
of these models are based on the expression of mutant forms
human tau, and whether those findings and insights into PTMs
extends to wild-type tau and sporadic tauopathies remains to be
seen (79).
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Tau PTMs have also been studied in post-mortem human
brains using immunochemistry techniques and cryo-EM (282).
It is important to keep in consideration that some PTMs can
be lost or degraded during the process of brain extraction,
fixation, storage, and analysis. Therefore, it is possible that in
studies performed on human brain extracts, some tau PTMs may
not be identified because of the caveats associated with brain
preparation processes (37).

The cross-talk between PTMs is very important for the
regulation of function, structure, and degradation of the proteins.
Many studies on tau PTMs have focused only on one type of
modification. Extrapolation of results obtained from single PTM
studies lack context in regard to cross-talk and competition.
As a result, a major caveat of many studies is the inability to
differentiate between causes, consequences and bystander effects
of these PTMs. The understanding of and solution to these
limitations may enable the discovery of a “PTM code” in tau that
will help to define sensitive biomarkers and lead to insights into
disease pathobiology. In addition, unravelling the specific effects
of PTMs in tau biology will pave the road toward new therapeutic
approaches for tau-related neurodegenerative diseases.

CONCLUDING REMARKS

PTMs are essential to the normal function of tau and therefore
alterations in the pattern of PTMs has the potential to lead
to tau dysfunction, accumulation, and abnormal aggregation.
PTMs exert their function either through altering protein
electrostatics or conferring steric alterations. Among all tau
PTMs, phosphorylation has been studied most extensively and

historically, was thought to hold primacy in regulating tau
function and pathogenesis of tauopathies. However, increasing
evidence suggests that many other PTMs contribute to dynamic
regulation of tau. Cross-talk and competition between PTMs, in
particular at lysine residues, introduce an intriguing new layer of
complexity to orchestration of tau function and dysfunction. At
the same time, combinatorial ensembles of PTMs may emerge as
a means by which cells achieve differential biological outcomes
involving tau. As a robust and fast-moving area of investigation,
tau post-translational modification will likely impact the basic,
pre-clinical, and clinical-translational aspects of tau biology in
interesting ways for years to come.
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