
UC Irvine
ICS Technical Reports

Title
The utility of knowledge in inductive learning

Permalink
https://escholarship.org/uc/item/5nx103vz

Authors
Pazzani, Michael
Kibler, Dennis

Publication Date
1990-11-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nx103vz
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Tit I e 17 U.S. C.)

The Utility of Knowledge
in Inductive Learning

Michael Pazzani
pazzani@i~. uci.e~

Dennis Kibler
kibler@ics.uci.edu

Technical Report 90-18

June 25, 1990
Revised November 12, 1990

Submitted to Machine Learning.

This research is partially supported by NSF Grant IRI-8908260. We would like to thank
Ross Quinlan for his advice on FOIL, Dan Hirschberg for deriving the new recurrence, and
Cliff Brunk, Tim Cain, Caroline Ehrlich, Ross Quinlan, Wendy Sarrett and Glenn Silverstein
for reviewing a draft of this paper.

The Utility of Knowledge in Inductive Learning

j\fichael Pazzani
pazzani 1&l!ics. uci.edu

Dennis Kibler
ki bler@ics. uci .ed u

Department of Information & Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.
(714) 856-5951

Running Head: Knowledge in Inductive Learning

Abstract

In this paper, we demonstrate how different forms of background knowledge can
be integrated with an inductive method for generating constant-free Horn clause
rules. Furthermore, we evaluate, both theoretically and empirically, the effect that
these types of knowledge have on the cost of learning a rule and on the accuracy
of a learned rule. Moreover, we demonstrate that a hybrid explanation-based and
inductive learning method can advantageously use an approximate domain theory,
even when this theory is incorrect and incomplete.

1 Introduction

.Most existing systems that combine empirical and explanation-based learning
severely restrict the complexity of the language for expressing the concept defini
tion. For example, some systems require that the concept definition be expressed
in terms of attribute-value pairs (Lebowitz, 1986; Danyluk, 1989). Others effec
tively restrict the concept definition language to that of propositional calculus, by1

only allowing unary predicates (Hirsh, 1989; Mooney & Ourston, 1989; Katz, 1989;
Shavlik & Towell, 1989; Pazzani, 1989; Sarrett & Pazzani, 1989). The few sys
tems that allow relational concept definitions (e.g., OCCAM (Pazzani, 1990), IOE
(Flann & Dietterich, 1989), ML-SMART (Bergadano, Giordana, & Ponsero, 1989))
place strong restrictions on the form of induction and the initial knowledge that
is provided to the system. The restricted concept definitions languages that are
usually required by the empirical learning component, reduce the applicability of
the integrated learning system.

A recent advance in concept formation, FOIL (Quinlan, 1989; Quinlan, 1990)
learns constant-free Horn clauses, a useful subset of first-order predicate calculus.
In this paper, we analyze the complexity of FOIL in terms of the size of hypothesis
space generated and tested during learning. We describe how FOIL can be extended
to use a variety of types of background knowledge to increase the class of problems
that can be solved, to decrease the hypothesis space explored, and to increase the
accuracy of learned rules.

We introduce a new learning system called FOCL (First Order Combined Learner)
that uses FOIL's information-based metric to evaluate extensions to a (possibly
null) hypothesis of a concept definition. The extensions may be proposed either by
an inductive component or by an explanation-based component. We demonstrate
that FOCL can utilize knowledge of the predicates, approximate concept definitions
and background predicates to learn Horn clause concept definitions more accurately,
more robustly, and more efficiently than without such background knowledge.

Given a set of a examples and a correct domain theory, the output of FOCL
is similar to that produced by m-EBG (Flann & Dietterich, 1989). Without any
background knowledge, FOCL operates like FOIL. The interesting issues arise when
FOCL is given an incomplete or incorrect domain theory. In this case, some clauses
of a rule may be learned purely analytically, others may be learned purely empir
ically, and some clauses may be learned by a combination of methods (i.e., some
literals of a single clause are added empirically and others are added analytically).

A secondary goal of this paper is to create a taxonomy of various types of back
ground knowledge and show the effect that each type of knowledge has on the size
of the hypothesis space or the portion of the hypothesis space searched. We take a
broad view of prior knowledge that includes typing information, both extensionally
and intensionally defined predicates, and an initial, approximate definition of the
concept to be learned.

2

This taxonomy can be used to illuminate the similarities and differences be
tween the types of background knowledge used in a variety of systems including
COBWEB (Fisher, 1987), CIGOL (Muggleton & Buntine, 1988), and OCCAM
(Pazzani, 1990). We demonstrate the effects of each form of knowledge with a
complexity analysis of FOIL and with a series of experiments on learning concepts
from the domains of list relations and chess end game relations.

We selected list relations primarily to illustrate the mechanism. Chess end
games were selected because this was the most difficult problem on which FOIL
has been tested. In addition, a domain theory for this particular chess problem is
relatively succinct and amenable to systematic experimentation by mutating the
correct domain theory. In fact, FOCL has been tested on a variety of problems,
including a number of standard EBL problems, and a larger problem that includes
a domain theory describing when a student loan is required to be repaid (Pazzani
& Brunk, 1990).

2 Background: FOIL

In this section, we present a brief discussion of FOIL that will allow us to analyze
its complexity and that of FOCL. We begin by introducing some definitions. A
predicate is a Boolean function. Predicates can be defined extensionally, as a list
of tuples for which the predicate is true, or intensionally, as a set of (Horn) clauses
for computing whether the predicate is true. A literal is a predicate or its negation,
i.e., the Boolean function that is the Boolean complement of the predicate. Literals
that are unnegated predicates are called positive literals. Literals that are negation
of predicates are called negative literals. A clause body is a conjunction of literals.
A Horn clause consists of a clause head, which is a predicate, and a clause body. It
has the form P ~ L1 , L2, ... where each Li is a literal. A rule for Pis a collection
of Horn clauses each with the head P.

For completeness, we will define the semantics of a rule. In general, a k-tuple is
a finite sequence of k constants, denoted by <ai, ... , a1:>. The meaning of rule for
a k-arity predicate is the set of k-tuples that satisfy the predicate. A tuple satisfies
a rule if it satisfies one of the Horn clauses that define the rule. A tuple satisfies
a Horn clause if there is a mapping </> of the variables of the head onto the tuple
and an extension </>' of all the variables in the positive literals of the clause body
into constants such that for each literal in the clause body, the bindings resulting
from </>' result in a satisfiable literal. Note that a negative literal is satisfiable if
there does not exist any bindings for.the remaining variables (if any) that make the
predicate satisfiable.

Given positive and negative examples of some concept, and a set of extensionally
defined background predicates, FOIL inductively generates a logical concept defini
tion or rule for the concept. FOIL and FOCL share the restriction that the induced
rule must not involve any constants or function symbols, 1 but does allow negated

1 For some problems, this is not a severe restriction. For example, color(X, red) may be repre-

3

Table 1: FOIL Design I

Let POS be the positive examples.
Let NEG be the negative examples.
Set N ewClauseBody to empty.
Until POS is empty do:

Separate: (begins new clauses)
Remove from POS all examples that satisfy the NewClauseBody.
Reset NEG to the original negative examples.
Reset NewClauseBody to empty.

Until NEG is empty do:
Conquer: (build clause body)

Choose a literal L.
Conjoin L to NewClauseBody.
Remove from NEG examples that do not satisfy L.

predicates. In a restricted way, FOIL also allows the use of the predicate to be
learned. In this way, FOIL can learn some recursive concepts. Like ID3 (Quinlan,
1986), FOIL is a non-incremental learner that hill climbs using a metric based on
information theory to construct a rule that covers the data. Pagallo and Haussler
(1990) introduced the idea of separate-and-conquer to define their GROVE and
GREEDY3 algorithms. Unlike ID3 and like AQ (Michalski, 1980), FOIL uses this
separate-and-conquer approach rather than a divide-and-conquer approach.

The separate stage of the algorithm begins a new clause while the conquer stage
constructs a conjunction of literals to serve as the body of the clause. Each clause
describes some subset of the positive examples and no negative examples. Note
that, in effect, FOIL has two operators: start a new, empty clause, and add a
literal to the end of the current clause. FOIL adds literals to the end of the current
clause until no negative example is covered by the clause, and starts new clauses
until all positive examples are covered by some clause.

In order to define FOIL's algorithm, we need to be a bit more careful about
what an example is. For example, suppose FOIL's task is to learn the relation
grand/ ather(X, Y) given the relations father(X, Y) and parent(X, Y), defined
extensionally. Furthermore, suppose that the current clause (NewClauseBody in
Table 1) is grandfather(X, Y) +-- parent(X, Z). Extensions of this clause can be
achieved by conjoining the body with any of the literals father(XJX)J father(Y;Z)J
father(U, Y), parent(Y;Z), parent(Y, Y), as well as many others. From this example,
we see that to create a literal to extend a clause, not only must a predicate-name

sented as color(X, Y), red(Y), although this representation can greatly increase the search cost.

4

be selected, but also a particular set of variables for the predicate-name. We call
the choice of variables for a predicate-name a variablization of the predicate. If
the variable chosen already occurs in an unnegated literal of the clause (i.e., in
either the head or the current body), then the variable is called old. Otherwise,
the variable is called new. One restriction that FOIL and FOCL place on literals
is that they contain at least one old variable.

If an extension of a clause is formed by conjoining a literal that uses only
old variables, then the new set of positive and negative examples is the subset
of old positive and negative examples that satisfy the additional predicate. As
expected, these examples retain their same classifications as positive or negative.
The situation is much different if the extension of the clause involves new variables.

Suppose FOIL extends a clause grandfather(X, Y) +-- true by conjoining the
literal parent(X, Z), introducing the new variable Z. Now the positive exam
ples consist of those of values <X, Y,Z> such that grandfather(X, Y) is true and
parent(X, Z) is true. To reinforce the notion that these examples are very different
from the original positive examples, and following the language of Quinlan, we will
call these positive tuples. For a given pair <X, Y> there may be zero or more values
of Z such that parent(X, Z) is true. Similarly, the set of negative tuples consists of
those values of <X, Y,Z> such that grandf ather(X, Y) is false, but parent(X, Z)
is true. In effect, an example is an ordered tuple of bindings for the variables of
the clause. When a new variable is introduced, the tuples are extended to include
values for that variable.

With this understanding, we can elaborate the original algorithm in Table 2.
For simplicity, we refer to the original positive examples as positive tuples.

At a high level of abstraction, FOIL is quite simple. It uses hill climbing to add
the literal with the maximum information gain to a clause. For each variablization
of each predicate P, FOIL measures the information gain. In order to select the
literal with maximum information gain, it is necessary to know how many of the
current positive and negative tuples are satisfied by the variablizations of every
extensionally defined predicate. 2

3 Analysis of FOIL

In general, the cost to do a hill-climbing search, such as FOIL and FOCL carry
out, is the branching factor times the depth at which a solution is found. Usually
the branching factor, while not constant, is at least reasonably bounded. In FOIL,

2The information gain metric used by FOIL is

Gain(Literal) = r++ * (log2(Pi/ P1 + N1) - log2(Po/ Po+ No))

where Po and No are the number of positive and negative tuples before adding the literal to the
clause, P1 and N1 are the number of positive and negative tuples after adding the literal to the
clause, and r++ is the number of positive tuples before adding the literal that have at least one
corresponding extension in the positive tuples after adding the literal (Quinlan, 1990).

5

Table 2: FOIL Design II

Let POS be the positive tuples.
Let NEG be the negative tuples.
Set NewClauseBody to empty.
Until POS is empty do:

Separate: (begins new clauses)
Remove from POS all tuples that satisfy the NewClauseBody.
Reset Old to be those variables used in P.
Reset NEG to the original negative examples.
Reset NewClauseBody to empty.
Until NEG is empty do:
Conquer: (refines clause body)

Choose a predicate P.
Choose a variablization of the predicate.
Compute information gain of P and its negation.
Choose literal L with most information gain.
Conjoin the literal with NewClauseBody.
Add any new variables to Old.
Let POS be all extensions of POS that are satisfied by the literal.
Let NEG be all extensions of NEG that are satisfied by the literal.

6

the branching factor grows dramatically, roughly exponentially in the arity of the
available predicates, the arity of the predicate to be learned, and the length of the
clause that is being learned. In this section, we make these statements precise.

To begin, we estimate the cost of adding a single literal to a clause. There
are two reasonable measures we might use to estimate this cost. One measure, we
call the theory-cost, indicates the number of different literals that can be chosen to
extend the body of the given clause. The second measure, called the evaluation
cost, measures the cost of computing the information gain of each literal. Note,
the evaluation-cost is a function of the number of training examples, while the
theory-cost is not.
3.1 Theory-Cost

In order to compute the number of different literals to be considered for evalua
tion, let us first consider the number of different variablizations of a single predicate
P of arity m when the current clause has k old variables. Let this number be v(m, k).
To count the total number of distinct variablizations, it is convenient to count the
number of distinct variablizations that use exactly j positions for old variables. We
use v(m, k,j) to represent this number. Since we require at least one old variable,

i=m
v(m, k) = L: v(m, k,j).

i=l

Now v(m, k,j) is the product of the number of ways of picking j positions, as
signing old variables to them, and number of ways of assigning the new variables
to the remaining positions. Clearly the total number of different ways filling j po-

sitions with old variables is (7) * ki. There remains m - j positions to fill with

new variables. Since the name of a new variable is not important (i.e., they are
dummy variables), we must count them carefully. For example, if Xis an old vari
able and Y and Z are new variables then between(Y, X, Z) and between(Z, X, Y)
are equivalent variablizations of between. ~

We define new(i,j) to be the number of distinct (non-equivalent) ways of filling
i positions with exactly j new variables. We note the following recurrence:3

new(i,j) = new(i - 1,j - 1) + j * new(i - 1,j).

The boundary conditions are:

new(i,0)=0
new(i, 1) = 1
new(i,j) = 0, if i < j

3This recurrence was determined by Dan Hirschberg.

7

Table 3: Growth of v(m, k)
v(m, k) Arity
OLD variables 1 2 3 4 5 6 7 k
1 1 2 3 4 5 6 7 k
2 3 8 15 24 35 48 63 (k + 1) 2

3 10 32 72 136 230 360 532 :=::::: k3
4 37 136 357 784 1525 2712 4501 :=::::: k4

,5 151 622 1863 4684 10375 . 20826 38647 :=:::::ks

6 674 3060 10278 29168 72810 163764 338030 :=::::: k6

vVe define new(i) to be the number of distinct ways of filling i positions with
any number of new variables. By the definition of new(i, j) we have

l=i

new(i) = 2: new(i, l).
l=l

Now the total number of variablizations of a predicate of arity m using j posi
tions for old variables, v(m, k,j), is:

v(m,j) = (7) * kj * new(m - j).

Summing this function as j ranges from 1 tom will give the total number of ways
of variablizing a predicate of arity m. Each non-equivalent predicate variablization
determines two literals, one that is negated and another that is not. The information
gain is computed for each such literal and one with the maximum gain is chosen.
The rapid growth of v(m, k) in both m and k is illustrated by Table 3.

For the full analysis, let Pred(i) be the number of predicates of arity i. Let
Arity be the maximum arity of any predicate. As before, k is the number of old
variables. The total number of literals to be considered is given by:

i=Arity
TheoryCost = 2 * L Pred(i) * v(i, k).

i=l

Because of the complexity of v(m, k), this formula is somewhat difficult to use.
Luckily, there are some simple bounds. Let Old be the maximum number of old
variables. Then

OldArity :::; v(Arity, Old) :::; (Old+ Arity - 1)Arity.

8

Table 4: Definition of Member

member(X, Y) +-- component(X, Z, Y).
member(X, Y) +--component(A, B, Y), member(X, B).

The first inequality is achieved by only using old variables. The second inequal
ity is achieved by counting all distinct variablizations without regard to whether
they are equivalent or not.

These inequalities allow us to generate a worst-case analysis for the theory cost.
Let Pred be the number of predicates. To add a new predicate we may choose
from one of Pred predicates. If the predicate has arity Arity (the worst case), then
we must consider choosing Arity variables from Old old variables and Arity - 1
new variables. A simple upper bound on this cost is: (Old+ Arity - l)Arity.

Consequently, an upper bound of the theory cost is:

TheoryCost :5 2 * Pred *(Old+ Arity - l)Arity (1)

One can make a number of qualitative inferences from this formula. In partic
ular, it shows that additional predicates increase the cost (branching factor) by a
linear amount, while increasing the arity of the predicates increases the size of the
search space exponentially. Also, the amount of work increases exponentially with
the number of distinct variables in the clause.

We have developed this analysis to measure the branching factor at any point in
the search process. Now, let us turn this analysis around and use it to measure the
complexity of learning some rule. Now, we are imagining that FOIL has learned
some rule and we ask, approximately how many candidate rules were generated. In
particular, imagine that we are learning concept of membership. This domain has
3 predicates, null, member, and components, with arities 1, 2, and 3, respectively.
The definition of member is given in Table 4.

Let us concentrate our attention on learning the last conjunct of the second
clause, which is clearly the point at which the branching factor is maximized. At
this point the number of old variables is 4. There are 3 available predicates, one
of each arity from 1 to 3. Using Table 3 we see that the number of extensions is
2 * (1 * 4 + 1 * 24 + 1 * 136).

There are two important points that should be noted. First, the branching
factor is largely due to the predicates with the largest arity. Second, the branching
factor of the last conjunct of the longest clause, measured in the number of distinct
variables, is significantly larger than at other points in the search space.

Putting these observations together yields the following approximation for the
T heoryC ost in learning a rule R. Let Var be the largest number of distinct variables
in any clause of R, excluding the last conjunct. Let M axPred be the number of

9

predicates with largest arity Arity. Then an approximation of the total number of
nodes generated to learn R is:

NodesSearch ~ 2*!vf axPred*v(Arity, Var) :5 2*MaxPred*(Var+Arity-l)Arity.

Now that we know how may literals there are, we turn our attention to estimat
ing cost of evaluating each literal.
3.2 Evaluation-Cost

In the previous section, we computed the number of different extensions of the
current clause. Each such extension needs to be evaluated, and this is the main
computational cost in running FOIL. This requires testing each literal on the current
set of positive and negative tuples. By constructing tables of the number of solutions
for each predicate with some of the values bound, it may be possible to reduce the
cost of finding the number of solutions to problems of the sort Pred(a, X, b, Y) to
a single query. In any case, we suppose that this cost is a linear function of the
number of tuples. This gives us our first estimate of the evaluation cost, namely:

EvaluationCost = TheoryCost * TupleSize. (2)

As the literals in a clause are generated, the number of tuples can vary greatly. If
the extension introduces no new variables, then the number of tuples will decrease,
possibly by a very small amount. For example, it is possible that the extension will
exclude one more negative tuple. In this case, an upper bound on the tuple size
is simply the old tuple size. On the other hand, if the extension introduces new
variables, then the number of tuples may increase dramatically. To estimate the
size of the growth we will introduce a few new concepts.

First, we consider the case when no new variables are introduced by the literal.
We define the density of a predicate to be the proportion of cases when the predicate
is true. For example, suppose the domain is the integers from 1 to 10. Then the
density of the successor(X, Y) predicate is 9/100 and the density of less(X, Y)
is 40/100. The density of a negated predicate is defined analogously. If a literal
introduces no new variables, then the tuple size must decrease as it consists of the
subset of the current tuples which satisfy the literal. In this case, we expect that
the new tuple size will be the density of the predicate times the old tuple size.

Now we consider the case where the literal introduces new variables. We de
fine the power of a predicate to be the maximum number of solutions of the
predicate when one variable is bound. For the predicate less(X, Y) on the do
main of integers from 1 to 10, the _power is 9, which is achieved by less(l, Y)
and by less(X, 10). Similarly, the power of the successor predicate is 1. Since
negative literals do not introduce new variables, we define their power to be 1.
The power of a predicate limits the amount of growth in the tuple size, since
N ewTupleSize :5 OldTupleSize * PowerO f Predicate.

10

We now use the notion of Power to get an upper bound on the growth of the
tuple size. Let Pi, for i = 1 to k be the literals in the body of a clause. Define
growth(Pi) = 1 if Pi uses only old variables and growth(Pi) = Power(Pi) if Pi uses
new variables. Then a conservative estimate for the tuple size is

k

TupleSize::::; II Growth(Pi). (3)
i=l

We can achieve a more reasonable estimate for the expected tuple size. Define
the AveragePower of a predicate to be the average number of solutions of the predi
cate when one variable is bound. Since neither successor(X, 1) or successor(lO, Y)
have any solutions in the domain, the A veragePower of the successor predicate
is 18/20. Over the same domain, the predicate less has A veragePower 4.5. The
importance of the power of a predicate is that, in the worst case, the number of
tuples can increase by no more than the power of the predicate. It is reasonable to
expect that the tuple size would grow by the A veragePower, rather than Power.

Define he AverageGrowth(Pi) to be density of Pi if Pi uses only old variables and
AveragePower(Pi) if Pi uses new variables. This yields the following approximation
for the tuple size:

k

TupleSize ~II AverageGrowth(Pi)· (4)
i=l

The importance of these estimates indicates that in order to reduce the evalua
tion cost, we should prefer predicates that have low average power and low density.
A predicate like successor, which has power of 1, is guaranteed not to increase the
tuple size. Of course, we always prefer predicates that most increase the information
gain. In Table 12, we illustrate the accuracy of these approximations.

Our general conclusions from this analysis are that the number of literals to
add to the erid of a clause grows exponentially with the arity of the predicates and
the number of variables, which is likely to be proportional to clause length. The
number of examples can also grow, but this growth is bounded by the power of
the predicate. Consequently, one might choose predicates with low power when
representing a domain.

In the subsequent sections, we will show how that by adding knowledge, we can
reduce, sometimes dramatically, these costs. Somewhat surprisingly, this analysis
will also show that sometimes large amounts of knowledge will have very little effect
on reducing the search space.

4 FOCL

FOCL extends FOIL in a variety of ways. Each of these extensions affects only
how FOCL selects literals to test while extending a (possibly empty) clause under
construction. These extensions allow FOCL to take advantage of domain knowl
edge to guide the learning process. One class of extensions allows FOCL to use

11

constraints to limit the search space. A second type of extensions allows FOCL
to use intensionally defined predicates (i.e., predicates defined by a rule instead of
a collection of examples) in a manner similar to the extensionally defined predi
cates in FOIL. A collection of intentionally defined predicates is identical to the
domain theory of EBL (Mitchell, Keller, & Kedar-Cabelli, 1986). A final exten
sion allows FOCL to accept as input a partial, possibly incorrect rule that is an
initial approximation of the predicate to be learned. If this rule is defined in terms
of extensionally defined predicates, it is analogous to a partial concept definition
constructed by an incremental inductive learning system. If this rule is defined in
terms of intensionally defined predicates, it is analogous to the target concept of
EBL. Indeed, when we discuss explanation-based extensions to FOCL, we will use
the terms "non-operational" and "intensionally defined" as synonyms. Similarly,
the extensionally defined predicates correspond to the observable facts (or the op
erational predicates) of EBL. The goal of FOCL, like FOIL, is to create a rule (i.e.,
a set of clauses) in terms of the extensionally defined predicates, that covers all of
the positive examples and none of the negative examples.

In the following sections, we describe these extensions in more detail and eval
uate the effect of each extension on the number of literals tested by FOCL or the
accuracy of FOCL. To illustrate these extensions, we use two domains. The first
domain, that of learning the member predicate, illustrates how a simple recursive
concept can be learned. FOIL is provided with positive and negative examples of the
member predicate (e.g., member(b, [a, b, c]) notmember(a, [b, c]) and the component
predicate (e.g., component(a, [b,.c], [a, b, c]) and learns the correct recursive defini
tion for member, as given in Table 4.

The second domain is much more complicated and was introduced by Muggleton
et al. (1989). This domain suggests that FOCL can handle moderately-sized realis
tic domains. Several hundred examples are used to build a concept description that
varies from four to eleven clauses, depending upon the extensional predicates that
are provided. The predicate or concept to be learned is illegal(A, B, C, D, E, F).
That is true if a chess board containing a white king and rook and black king is in
an illegal state. A state is illegal if either king is in check or more than one piece
occupies the same space. A and Bare the position of the white king (rank and file),
C and D are the white rook's position, and E and F are the black king's position.
The ranks and files are represented by a number between 1 and 8. In this example,
the operational predicates used are between(X, Y, Z) (the value of Y is between the
values of X and Z), adjacent(X, Y) (the value of Xis either one greater or one less
than the value of Y) and equal(X, Y) (the values of X and Y are equal).

Where appropriate, we present two sorts of experiments with this domain. First,
we present experiments using a large number of examples that enables FOCL to
learn a concept description that is extremely accurate(> 99%) and we measure the
effect of the knowledge on the size of the hypothesis space searched. Second, we

12

present experiments using a smaller number of examples and evaluate the impact
of the knowledge on the accuracy of the rule learned.
4.1 Zero Knowledge Differences in FOIL and FOCL

The goal of our analysis and experimentation is to· gain an understanding of the
impact of each type of knowledge on acquiring Horn clause theories. However even
when FOCL is provided with no knowledge, it has some differences with FOIL that
we should mention.

As noted in Section 3, the theory-cost and the evaluation-cost grows exponen
tially in the number of distinct variables. Consequently, to lessen this cost, in
FOCL, we have introduced an iterative widening search strategy4 that is analogous
to iterative depth-first search (Korf, 1985). FOCL first attempts to learn a clause by
introducing no free variables. If that fails (because a situation is encountered where
no variablization of any predicate has positive gain), an attempt is made to learn
the clause by allowing an additional free variable. On each failure, an additional
free variable is allowed until the number of free variables exceed the maximum arity
of any predicate. There is a small cost for using iterative widening search when it
is not needed. However, when iterative widening reduces search, there is a major
benefit.

Additionally, there are three features of FOIL that we do not consider in this
paper. First, FOIL contains a limited form of backtracking to allow it to solve some
problems that cannot be solved with hill climbing alone. It is difficult to estimate
how often this backtracking is needed. All of the examples in this paper can be
solved without backtracking. Second, FOIL contains a branch-and-bound prun
ing heuristic that allows it to .::i,, Jid testing the variablizations of some predicates.
This operates by computing the maximum possible information gain of a predicate
variablization from the information gain of a more general variablization (i.e., a
variablization can be more specific than another by replacing a new variable with
an old variable). It is difficult to analyze the impact of the pruning heuristic on the
number of literals tested. In the worst case, it will have no impact, and it will never
affect the accuracy of the hypothesis. Since this heuristic is not compatible with
the iterative widening search, we do not make use of it. Finally, FOIL contains an
information-based stopping criteria that allows it to learn from noisy data. We do
not consider noisy data in our analysis or experiments.

Now we will describe the extensions and modifications of FOIL that permit
various forms of background knowledge to be exploited. We also evaluate the benefit
that these extensions have. After we have considered each of these extensions
separately, we present the complete FOCL algorithm.

4It is also similar to the iterative broadening technique (Ginsberg & Harvey, 1990) where
heuristics are used to order the nodes expanded. In our case the heuristic is to favor nodes
'Yith few new variables. Their analysis was for constant branching factor and the success of the
method relied on having enough goal nodes. In our case, the branching factor is dependent on
the extension chosen.

13

4.2 Single Argument Constraints
Type constraints provide a useful and inexpensive way of incorporating a sim

ple form of background knowledge. FOCL can easily take advantage of typing
information. 5 Typing is implemented by associating a type for each argument of a
predicate. For example, the predicate illegal(A, B, C, D, E, F) has a type definition
of illegal(rank, file, rank, file, rank, file). A type can then be associated with a
variable the first time it is used in a clause and all other uses of that variable in
the clause must be consistent with that type.

Introducing typing may require introducing additional predicates. In the illegal
example, the predicate adjacent is overloaded in that it can compare ranks or com
pare files. However, it should never be used to compare ranks to files. Therefore, we
add the predicate adjacent..:rank(X, Y) with the type adjacent.Iank(rank, rank).
Similarly, adjacenLfile(A, B) is used to compare files.

Typing reduces the search space by avoiding testing literals where the types of
old variables conflict with the usage of these variables as arguments to a predicate.
More precisely, let us assume that a domain has T types and, in the best case, these
types are distributed equally among the variables. Then, with typing, theory-cost
is reduced to approximately TheoryCost = Pred *(Var+ Max)/TMax, a savings
of yMax. This shows that, in the best case, typing can reduce the search space by
an exponential amount. In practice, the reduction, though significant, is less than
the best case.

In the chess domain, typing information was used to ensure that the predicates
between, equal, and adjacent were only applied to either all ranks or all files.
The benefit of typing is illustrated by the fact that FOCL using typing tests 3240
literals and 242,982 tuples as compared to 10,366 literals and 820,030 tuples for
FOCL without typing when learning illegal from 641 randomly selected positive
and negative training examples, of which 233 were positive and 408 were negative.

In addition to reducing the size of the search space explored, typing can also
improve the accuracy of the hypothesis produced. The effect of typing on the hill
climbing search is to eliminate some literals that may (coincidentally) have the
maximum information gain. For example, in the chess domain, it can occur that a
literal that violates the typing constraints has the maximum information gain (e.g.,
the rank of the white king is equal to the file of the black king). Typing prevents
FOCL from considering these literals. We ran 10 trials of FOCL both with typing
and without typing on 10, 20, 40, 60, 80, 100, 150, and 200 randomly selected
training examples and measured the accuracy at each point on 1000 randomly
selected training examples. Figure 1 shows the mean accuracy plotted as a function
of the number of training examples.

5Quinlan {1990) mentions how type constraints may be used (in combination with the closed
world assumption) to generate negative examples of the predicate to be learned from the positive
examples. However, type constraints are not used to eliminate literals from consideration.

14

================ Figure 1 ================
With a small number of examples, typing improves the accuracy of the resulting

hypotheses produced by FOCL. As the number of examples increases, the effect
of typing on accuracy is reduced. This occurs because it is unlikely in a larger
training set for a predicate variablization that does not obey the typing restriction
to have the maximum information gain. However, typing is still useful since it is
an inexpensive way to reduce the number of literals tested.
4.3 Multiple Arguments Constraints

A second type of a constraint involves inter-argument constraints, the relation
ship between the arguments of a predicate. For example, equal(X, X) is trivially
true and between(X, X, Y) is trivially false. Such expressions should not play a part
in a concept definition and, therefore, it is wasteful to test hypotheses including
these literals.

One case we have implemented indicates that for some predicates it is necessary
for all of the variables in one literal to differ. The definition of each predicate may
contain .a unique_variables declaration to indicate whether or not this predicate
requires all variables to differ. Providing such constraints on literals when FOCL
learns illegal further reduces the size of the hypothesis space explored. Like typing,
inter-argument constraints reduce the number of variablized literals that must be
tested.

The value of inter-argument constraints is illustrated by the fact that FOCL,
using typing and inter-argument constraints, tests 1296 literals and 109,350 exam
ples as compared to 3240 literals and 242,982 examples for FOCL using only typing
when learning illegal from 641 randomly generated training examples.

This unique variables inter-argument constraint does not affect the accuracy
of the resulting hypotheses. A trivially true or trivially false predicate cannot
have positive information gain. Nonetheless, like variable typing, it is an effective
constraint for reducing the number of literals that are tested by the inductive com
ponent of FOCL. These constraints reduce CPU time as well as the theory-cost
and evaluation-cost. For example, without these constraints, FOCL took 866 CPU
seconds on an Apple Macintosh II computer running Common Lisp. With these
constraints, 179 CPU seconds were consumed during learning illegal.

We have also implemented a second inter-argument constraint: commutativity.
For example, it is not necessary to test adjacent.J"ank(Y, X) since this has the same
meaning and information gain as adjacent.J"ank(X, Y). Binary predicates may be
declared to be commutative, reducing the number of literals explored. In the illegal
example, adjacent and equal are commutative. Adding this knowledge reduces the
number of variablization of commutative predicates by half. Therefore, a total of
711 literals were tested with this additional knowledge. Note that commutativity
does not affect accuracy, but merely avoids testing equivalent variablizations of the
same literal.

15

4.4 Operational Initial Rules
In the next sections, we consider ways in which background knowledge can

improve upon inductive learning. First, we will consider the case where the back
ground knowledge is a (possibly incorrect) partial, operational rule that approx
imates the concept to be learned. For the subsequent discussion we regard an
operational predicate as one that is given extensionally. If a predicate is defined
by other predicates, we say the definition is non-operational. Such an initial rule
might be provided by a teacher, or, in an incrementallearning system (e.g., Widmer,
1990), learned from an initial subset of the examples.

The extension to FOCL to use a partial, operational Horn clause rule is straight
forward. In FOIL, the information gain of a literal is computed as a function of the
original and extended positive and negative tuples covered by the literal. A clause
is merely a conjunction of literals. Therefore, the information gain of a clause is
simply a function of the number of tuples covered by the conjunction of literals.
When deciding to add a new literal, FOCL computes the information gain of each
clause in the initial concept. In theory-mode, if any clause has positive information
gain, the conjunction of literals is added to the clause under construction. Theory
mode has a bias in favor of the initial rule. In information-mode, FOCL compares
the information-gain of each clause to that of all variablized extensionally defined
predicates. The literal (or conjunction of literals) with the maximum gain is added
to the end of the (possibly null) current clause. If the current clause covers some
negative tuples, additional literals are added to rule out the negative tuples.

The analysis of the complexity of FOIL provides insight into the benefit of
including an operational partial rule for the predicate to be learned. In general,
search in FOIL is dominated by the last literal of the clause with the largest number
of variables. This means that a partial rule that is nearly complete, but omits the
last literal of the clause with the largest number of distinct variables, reduces the
search by only a negligible amount.

The following experiments support this analysis. We gave FOCL three partial
definitions of the member function, namely:

1. member(X, Y) ~ component(X, Z, Y).
2. member(X, Y) ~ component(X, Z, Y).

member(X, Y) ~ component(A,B, Y).
3. member(X, Y) ~ component(X, Y, Z).

The first two definitions are partial and correct. The second clause of the second
partial definition must be extended by adding an additional literal. The last partial
definition is incorrect. FOCL tests 268, 228 and 308 literals and considers 20,140,
12,167 and 23,358 tuples with the above partial concept definitions as compared
to FOIL's 308 literals and 23,057 tuples. Note that the correct partial definitions
given do not significantly reduce the number of literals tested because the majority

16

of the work is needed to add the last literal to the last clause of member. The in
correct partial definition does not increase the number of literals tested but slightly
increases the number of tuples tested since it must check the possibility that the
advice may have some advantage.

In general, a partial operational concept definition reduces search in FOCL since
FOCL saves the work needed to generate this partial definition. However, since
this search is dominated by the last literal of the clause with the largest number
of distinct variables, a partial definition that does not contain this clause does not
save a significant amount of work.
4.5 Non-Operational Predicates

Next, we consider domain theories using non-operational predicates, i.e., ones
defined in terms of operational and other non-operational predicates. Systems
such as CIGOL (Muggleton & Buntine, 1988) make use of (or invent) background
knowledge of this form. For example, if an operational definition of the predicate
between(X, Y, Z) is not provided, it could be defined in terms of the operational
predicate less_than by: between(X, Y, Z) +- less_than(X, Y), less_than(Y, Z).

One advantage of the non-operational predicates is illustrated by the fact that
between(X, Y, Z) may have positive information gain, while less_than(X, Y) and
less_than(Y, Z) may have negative gain. Therefore, FOIL's hill-climbing search
may not learn a concept that involves less_than(X, Y), less_ihan(Y, Z). More gen
erally, non-operational predicates allow the hill-climbing search to take some larger
steps that can allow the hill climber to solve problems that cannot be solved with
smaller steps.

Note that it would be computationally prohibitive to consider all conjunctions
of length two of the operational predicates. In general, this would more than square
the theory-cost. Non-operational predicates provide information on what particular
combinations of operational predicates may be useful and allow FOCL to simulate
a selective look-ahead.

Non-operational predicates are evaluated in the same manner as operational
predicates in FOCL. The information gain of all variablizations of non-operational
predicates is computed in a manner similar to that used by FOIL with operational
predicates. Computing the information gain of a non-operational literal requires
counting the number of positive and negative tuples (and extensions of these tuples
if the variablization includes new variables) covered by the literal.6 If the literal
with the most gain is non-operational, then the literal is operationalized and the
operational definition is added to the clause under construction. Note that, unlike
operational predicates, the computation of the information gain of non-operational
predicates involves a Prolog proof.

6The Prolog predicate setof can be used to find all extensions of a tuple. For example, if the
current tuple is (1 2 3 4 5 6) (corresponding to the variables A, B, C, D, E, and F) then the
extensions of this tuple for the literal between(A, G, E) requires finding all bindings of G such
that between(I, G, 5) is true.

17

Table 5: Operationalization

Procedure: Operationalize(Predicate, Pos, Neg)
Initialize ClauseBody to the empty set.
For each clause in the definition of Predicate

compute_gain(clause, Pos, Neg).
For the clause with the maximum gain,

for each literal T in the clause,
if T is operational, add T to ClauseBody
else add operationalize(T, Pos, Neg) to ClauseBody.

The operationalization process in FOCL differs from that of EBL in that it
is guided by an information gain metric over a set of both positive and negative
examples rather than by the proof of a single positive example. As in EBL, the
operational definition for a predicate may specialize the predicate if the domain
theory is disjunctive (i.e., if there are multiple clauses for any non-operational
predicate). In EBL, the predicates that are the leaves of the proof tree of the single
training example are used as the operational definition. In FOCL, the information
gain metric is used to determine how to expand a proof tree, as in Table 5.

The compute_gain function uses Prolog to prove a clause (i.e., a conjunction
of operational and non-operational literals). The operationalization process uses
the information gain metric to select which clause of non-operational rule should
be expanded. The result of this process is that an operational specialization of a
non-operational literal is selected that covers many positive tuples and few negative
tuples.

Due to its reliance on hill-climbing search, FOIL and FOCL are unable to
learn a completely correct definition of illegal using only less_than, equal and
adjacent. When FOCL is also given a non-operational definition of between in
terms of less_than, it finds a completely correct definition in terms of the opera
tional predicates less_than, equal and adjacent.

A disadvantage of using non-operational predicates in this manner is that each
additional non-operational predicate, particularly those with many arguments, in
creases the search space. This has the undesirable consequence that the more one
knows, the slower one learns. This became obvious when we added rules from a
domain theory of chess to FOCL. These rules indicate facts such as a king is in
check if there is an opposing rook in the same file as the king and there is not
another piece between the rook and king. Table 6 contains a definition of these
predicates for FOCL.

With this domain theory, FOCL tested 3063 literals and 283,602 tuples to find
an operational concept definition as opposed to 1296 literals and 109,350 tuples

18

when just the operational predicates are searched when learning illegal under the
same conditions reported previously. This experimental finding agrees with the
analysis of FOIL presented in Section 3. In particular, the number of predicates
increased, so the number of literals tested increased.

A positive effect of a domain theory is that it might provide the right predicates
to allow a hill-climbing search to find the concept description. On the negative side,
it increases the search space and can decrease the accuracy. This can occur if the
predicates present in the domain theory are irrelevant to the task. A variablization
of these irrelevant predicates may have the maximum information gain, and be
used as literals in a clause. This problem is not limited to just non-operational
predicates.

To demonstrate this, we added the irrelevant predicates odd(X), prime(X),
successor(X, Y), plus(X, Y, Z), times(X, Y, Z), square(X, Y), cube(X, Y), and
greater(X, Y). We ran 10 trials of FOCL, both with extra irrelevant predicates
and without extra irrelevant predicates on 10, 20, 40, 60, 80, 100, 150, and 200
randomly selected training examples. Then we measured the accuracy on 1000
randomly selected training examples. Figure 2 shows the mean accuracy plotted as
a function of the number of training examples. When learning with extra irrelevant
predicates, especially greater and successor, FOCL learned concepts that were not
as accurate on test data. The original operational predicates, equal, between and
adjacent were carefully chosen because these concepts are useful in learning about
rooks attacking kings, kings attacking kings, and blocking a rook from attacking a
king. When less care is taken in selecting predicates, or if the relevant predicates
cannot be determined beforehand, more data is needed to create accurate hypothe
ses. In this manner, the available predicates in a Horn clause learner are analogous
to the attributes used by a propositional learning program. In summary, irrelevant
predicates can increase the amount of work, by a linear amount, and increase the
number of training examples required to achieve a given accuracy.

============ Figure 2 ============
4.6 Non-Operational Initial Rules

In the previous section, we pointed out how adding background knowledge in the
form of a domain theory can increase the ability of FOCL to find solutions. However,
increasing the size of the domain theory may increase the search space explored by
the learning program and decrease the accuracy of the resulting hypothesis. In
explanation-based learning, the search for a concept definition is facilitated by
providing the learning system with an overly general concept description or target
concept. The target concept is assumed to be a correct, non-operational definition
of the concept to be learned and the domain theory is assumed to be correct. In
FOCL, we relax the assumptions that the target concept and the domain theory
are correct. Because FOCL makes use of multiple training examples, it has the
potential for learning a correct rule in spite of these inaccuracies.

19

Table 6: Partial Domain Theory for Chess

Predicate to be learned: illegal(A, B, C, D, E, F)
Type: (rank file rank file rank file)
p OS : (5 3 1 8 1 6) (3 7 5 6 1 6) .. .
Neg : (3 8 6 1 8 5)(8 6 4 1 1 8) .. .

Non Operational Predicates:
same_loc(Rl, Fl, R2, F2) +- equal..rank(Rl, R2), equaLfile(Fl, F2).
type: (rank file rank file), unique_variables.
king_attack..king(Rl, Fl, R2, F2) +- adjacent..rank(Rl, R2), adjacent_file(Fl, F2)
king_attack..king(Rl, Fl, R2, F2) +- adjacent..rank(Rl, R2), equaLfile(Fl, F2)
king_attack..king(Rl, Fl, R2, F2) +- equal..rank(Rl, R2), adjacenLfile(Fl, F2)
type : (rank file rank file), unique_variables.
rook_attack..king(Rl, Fl, R2, F2, R3, F3) +- equal..rank(R2, R3),

king_noLbetween_file(Rl, Fl, R2, F2, F3).
rook_attack..king(Rl, Fl, R2, F2, F3, R3) +- equaLfile(F2, F3),

king_noLbetween..rank(Rl, Fl, R2, F2, R3).
type : (rank file rank file rank file), unique_variables.
king_not_between_file(Rl, Fl, R2, F2, F3) +- not(equal..rank(Rl, R2)).
king_noLbetween_file(Rl, Fl, R2, F2, F3) +- equal..rank(Rl, R2),

not(between_file(F2, Fl, F3)).
type : (rank, file, rank, file, file), unique_variables.
king_noLbetween..rank(Rl, Fl, R2, F2, R3) +- not(equaLfile(Fl, F2)).
king_noLbetween..rank(Rl, Fl, R2, F2, R3) +- equaLfile(Fl, F2),

not(between..rank(R2, Rl, R3)).
type: (rank, file, rank, file, rank), unique_variables.

Operational Predicates:
between..rank(rank, rank, rank), unique_variables.
Pos : (1 2 3)(1 2 4)(1 2 4) ... (2 3 4), (2 3 5) ... (6 7 8)
equal..rank(rank, rank), unique_variables.
Pos: (1 1)(2 2)(3 3)(4 4)(5 5)(6 6)(7 7)(8 8)
adj acent..rank(rank, rank), unique_variabl es.
Pos : (1 2)(2 1)(2 3)(3 2)(3 4) ... (7 8)

20

Table 7: Chess Target Concept

il/egal(Rl, Fl, R2, F2, R3, F3) +-- sameJoc(Rl, Fl, R2, F2).
il/egal(Rl, Fl, R2, F2, R3, F3) +-- sameJoc(Rl, Fl, R3, F3).
illegal(Rl, Fl, R2, F2, R3, F3) +-- sameJoc(R2, F2, R3, F3).
illegal(Rl, Fl, R2, F2, R3, F3) +-- king_attack...king(Rl, Fl, R3, F3).
illegal(Rl, Fl, R2, F2, R3, F3) +-

rook_attack..king(Rl, Fl, R2, F2, R3, F3).

When a non-operational initial rule is provided to FOCL, it is treated in a
manner similar to an operational rule (i.e., a rule using just extensionally defined
predicates). In particular, it is possible to compute the information gain of a con
junction of extensionally and intensionally defined literals, by using a Prolog style
proof process to determine which examples (and extended examples) are covered
by each clause of the initial rule. In theory-mode, FOCL operationalizes a clause
provided that it has positive information gain. In information-mode, it is compared
to the induced literal with the maximum information gain. 7 If a clause of the initial
rule is non-operational and has maximum gain, it is operationalized in the manner
described in Section 4.4.

Table 7 shows a representation of a initial non-operational rule (target concept)
for illegal.

In theory-mode, when FOCL is provided with a correct non-operational target
concept and the domain theory of the previous section, it finds a correct oper
ational definition of illegal by testing 72 literals. In contrast, with the correct
domain theory, but no target concept, FOCL tests 3063 literals. The reason for
this savings is that with no target concept, FOCL must test every variablization
of every predicate. When provided with a target concept, the proof structure de
termines which variablizations are tested. For example, only 3 variablizations of
same_/oc are tested. At this point in the computation, there are 6 variables and
same_loc has arity 3. Consequently, by Table 3 there are 10,278 different variabliza
tions. Without the target concept, the constraint of typing, unique variables, and
iterative widening search reduces this number to 36. Similarly, only one variabliza
tion of rook_attack..king is tried during operationalization instead of the 163, 764
needed without any constraints.

7In our experience, the mode does not have a significant effect on the accuracy of the hypotheses
produced by FOCL unless the domain theory is extremely inaccurate (i.e., less than 60% accurate).
When the domain theory is more accurate, theory-mode results in less search than information
mode. When the domain theory is less accurate, theory-mode results in more search because the
operationalized concepts tend to be overly specialized and more clauses are needed to cover the
training examples.

21

Note that typing, unique variables, and iterative widening are not needed by the
analytic learning component, since the domain theory and target concept control
the selection of predicate variablizations. A good domain theory will not violate
typing, use predicates trivially, or introduce unnecessary new variables.

In addition to reducing the search space, a correct target concept and domain
theory will, of course, improve the accuracy. We ran 10 trials of FOCL, both with
a correct domain theory and target concept and without this knowledge on 10, 20,
40, 60, 80, 100, 150, and 200 randomly selected training examples, and measured
the accuracy at each point on 1000 randomly selected training examples. Figure 3
shows the mean accuracy plotted as a function of the number of training examples.
As expected, the correct target concept and domain theory improve the accuracy
of the resulting hypothesis.

================ Figure 3 ================
In the current implementation of FOCL, a domain theory and target concept

does reduce the CPU time, although not as dramatically as typing and inter
argument constraints. A total of 512 CPU seconds on an Apple Macintosh II
were consumed using purely explanation-based learning as compared to 866 sec
onds using induction with no constraints. The current implementation makes use
of a backward chaining rule interpreter implemented in Common Lisp that runs at
approximately 500 logical inferences per second. An analysis of the time consumed
indicates that a major portion of the time is spent "proving" operational predicates.
For example, proving between(6, 7, 8) requires attempting to unify this literal with
112 facts. Some sort of indexing could considerably speed up the explanation-based
portion of FOCL. In the inductive portion of FOCL, facts are stored in hash tables
that allow constant time retrieval.
4. 7 Learning Non-Operational Concept Definitions

A relatively minor modification to FOCL also allows it to learn non-operational
concept definitions that can be used as target concepts for EBL(Pazzani & Brunk,
1990). Presented with a domain theory, but no target concept, FOCL searches for
all variablizations of all operational and non-operational predicates. As discussed in
Section 4.4, FOCL then operationalizes any non-operational predicate variabliza
tion. By simply eliminating this operationalization process, FOCL can induce a
non-operational concept definition. For example, FOCL learns a non-operational
definition of illegal that is identical to that in Table 6.
4.8 Summary of FOCL

Now that we've explained each of the individual pieces of FOCL, we show how
they fit together in Table 9. This is a high level design that emphasizes the differ
ences with FOIL without going into too many of the details. FOCL extends FOIL
in several ways. First, there are const.raints on the inductive process so that not all
variablizations of a predicate need to be checked. Second, FOCL can compute the
information gain of intensionally defined predicates (in addition to extensionally de-

22

Table 8: FOCL Specification
Given:

1. The name of a predicate of known arity.
2. A set of positive tuples.
3. A set of negative tuples.
4. A set of extensionally defined predicates.
5. (optionally) A set of intensionally defined predicates.
6. (optionally) A set of constraints (e.g., typing) on the intensional and

extensional predicates.
7. (optionally) An initial (operational or non-operational) rule.

Create: A rule in terms of the extensional predicates such that no clause covers any
negative examples and some clause covers every positive example.

fined predicates). Third, FOCL can operationalize intensionally defined predicates
by finding an operationalization specialization that covers many positive and few
negative examples. Fourth, FOCL can compute the information gain of an initial
(operational or non-operational) rule for the concept to be learned and decide to
use this in favor of induction. In this view, the value of an initial rule (i.e., target
concept) is that it indicates the variablizations of a non-operationally predicate
that are likely to be useful. Table 9 shows an outline of the FOCL algorithm. For
simplicity, the algorithm is specialized to FOCL in theory-mode and we do not con
sider the case where FOCL is instructed not to operationalize intensionally defined
predicates. 8

The ability of FOCL to deal with incomplete and incorrect domain theories
comes from having a uniform information gain metric that is applied to both in
ductively formed or analytically formed literals. The only difference between induc
tively formed and analytically formed literals is that the search for an analytically
formed literal is more directed. The decision about whether to use inductive or
explanation-based techniques to extend a clause is based on the usefulness in pro
ducing an accurate hypothesis, as measured by the information metric.

5 Incorrect and Incomplete Domain Theories

FOCL is capable of utilizing incorrect and incomplete domain theories. FOCL
tolerates such theories because the literals proposed by analytic methods are tested
by an information-based metric to make sure they have positive gain (or the max
imum gain). If an analytical extension is not selected, then FOCL selects literals
inductively.

8 Note that to avoid conjoining two different clauses of an initial rule, the InitialRule is set to
empty if it is used to add literals to a clause. It is reset on the start of a new clause, so that other
clauses may be used.

23

Table 9: Design of FOCL

Let P be the predicate to be learned.
Let POS be the positive tuples.
Let NEG be the negative tuples.
Let IR in the initial rule.
Let Body be empty.

Until POS is empty
Call LearnClauseBody.
Remove from POS those tuples covered by Body.
Set Body to empty.

Procedure LearnClauseBody:
If a ClauseBody of IR has positive gain,

Select it, (*1)
Operationalize it (if necessary), (*3)
Conjoin it with Body,
Update POS and NEG,
Call ExtendBody (*2)

Else
Choose best literal,
Operationalize it (if necessary),(* 3)
Conjoin result with body,
Update POS and NEG,
Call LearnClauseBody.

Procedure ExtendBody:
While NEG is non-empty

Choose best literal. (*3)
Operationalize it.
Conjoin it with Body.
Update POS and NEG.

Notes:
*1: takes advantage of good priori clauses.
*2: allows correction of old clause bodies.
*3: allows use of non-operational predicates.

24

Table 10: Domain Errors

Deleted Clause:
rook_attack...king(Rl, Fl, R2, F2, R3, F3) - equal.Jank(R2, R3,),

king_noLbetween_Jile(Rl, Fl, R2, F2, F3).

Added Clause:
king_attack_king(R1,F1,R2,F2}-knight_move(R1,F1,R2,F2}.

Deleted Literal:
Changed: king_attack...king(Rl, Fl, R2, F2) -

equal.Jank(Rl, R2), adjacenLfile(Fl, F2)
To: king_attack_king(R1,F1,R2,F2}-equal_rank(R1,R2}.

Added Literal:
illegal(R1,F1,R2,F2,R3,F3)-same_/oc(R1,F1,R2,F2},

adjacent_rank(F 1,F3).

To illustrate how FOCL learns in spite of incorrect domain theories, we simul
taneously introduced four errors into the correct domain theory for illegal. The
errors are indicated in Table 10.

These errors correspond to indicating that rooks may only attack in files, kings
may also move like a knight, kings may attack anywhere in the same rank, and two
pieces may occupy the same square provided the black king is in an adjacent rank.
With these four errors, the domain theory correctly classified 76.2% examples when
tested on 10,000 training examples. Appendix I provides an edited trace of FOCL
operating with this domain theory (in theory-mode). FOCL tests 705 literals to
generate this definition. Analysis of the definition, confirmed by testing on 10,000
training instances, indicates that the concept acquired is 100% correct.

To create an operational definition for illegal, FOCL first computes the infor
mation gain of each given clause for illegal. In this case, rook_attack...king has the
highest information gain, and is operationalized. Since there is only one clause for
rook_attack...king in this incorrect domain theory, it is selected for operationaliza
tion. This clause uses one operational predicate equaLJ ile and one non-operational,
king_noLbetween.Jank. There are two clauses for king_not_between.Jank and the
clause with the maximum information gain is operational. Therefore, the first clause
for illegal is created entirely with explanation-based methods in FOCL. This clause
indicates that a chess board is in an illegal state if the white rook and black king are
in the same file, and the white king is not in the same file. The positive examples
that are satisfied by this clause are removed and the same process is repeated. Note

25

that since the set of positive tuples is reduced, the information gain of the clauses
for illegal is different when learning the first and second clause.

The second clause operationalizes king_attack..king. The most common way
for this to occur is for the two kings to be in adjacent ranks and adjacent files.
The third clause also operationalizes king_attack..king. This time the operational
ization indicates that the kings are in the same file and adjacent ranks. If the
domain theory was correct and complete, this process would be repeated until all
positive examples are covered by at least one operational clause. Clauses would
be created in a greedy manner by selecting the operationalization that covers the
most positive examples (i.e., if no operationalization covers any negative examples,
then the operationalization that covers the most positive examples has the highest
information gain). However, since an incorrect domain theory will misclassify some
negative examples, and an operationalization of an incomplete theory will fail to
cover some positive examples, it is also necessary to use the inductive component.
Clause 4 provides one example where both the inductive and the explanation-based
components are needed.

In Clause 4, FOCL operationalizes king_attack..king again. However, the clause
with the maximum information gain is the clause with the deleted literal. This
indicates that a king attacks a king if they are in the same rank. Because some
negative examples are covered by this clause, the clause is extended. FOCL first
tries to operationalize another conjunct of the target concept. However, in this case,
there is no conjunct since the target concept is a single literal. Next, FOCL uses the
inductive techniques of FOIL to extend this clause. It computes the information
gain of every variablization of every operational predicate and selects the literal with
the maximum gain, adjacent_file(F3, Fl). This excludes all negative examples and
the clause added indicates that a chess board is in an illegal state if the kings are
in the same rank and adjacent files.

Clause 5 is learned by operationalizing sameJoc. It indicates that a chess board
is in an illegal state if the two kings are on the same square. Clause 6 is learned by
operationalizing rook_attack..king. It covers the case that is less common than the
first clause. In this case, the white rook and black king are in the same file. The
white king is in this file, but not between the rook and black king.

Clause 7 is learned entirely by inductive techniques. It indicates that a chess
board is illegal if the white rook and black king are in the same rank, and the white
king is not in that rank. Note that after the first literal is added inductively, FOCL
again tries to operationalize the target concept. In this case, no operationalization
of the target concept has positive information gain when extending this clause.
However, it can occur that the first literal of a clause is learned inductively, and
some of the remaining literals are learned via explanation-based techniques.

After the set of positive examples that matches this clause is removed, a clause
of the target concept now has positive information gain (king_attack..king). Once

26

that clauses had at least 2 terms, a .25 probability of at least 3, etc. This
modification will cause the rule to make errors on negative training examples.

We train FOCL on a large number of training examples, and in all cases, the
resulting hypothesis is greater than 99% accurate. In each case, we measure the
amount of search that is required to create a hypothesis.

In the first set of experiments, each perturbation operator was applied individ
ually. Figure 5 plots the accuracy of the resulting domain theory (averaged over
10 trials on either the positive or the negative training tuples as appropriate ac
cording to the type of modification) and the number of literals tested by FOCL
in theory-mode for each operation as a function of the number of modifications to
the domain theory. (There were fewer than 10 modifications possible for deleting
clauses or literals.) Note that FOCL is able to exploit extremely inaccurate domain
theories to constrain the search for a concept definition.

================ Figure 5 ================
The easiest problem for FOCL occurs when additional clauses are added to the

domain theory. This problem can be solved entirely by explanation-based means.
A subset of the possible operationalizations of the target concept are chosen in a
greedy manner to cover the positive examples and exclude the negative examples.
The more difficult problems for FOCL occur when the inductive component of
FOCL is required to make up for an inadequate domain. Induction is needed when
no subset of the possible operationalizations of the domain theory will result in a
correct hypothesis.

We also ran experiments in which all of the above modifications were performed
simultaneously on the domain theory, yielding a domain theory that misclassifies
both positive and negative tuples. Figure 6 plots the accuracy of the domain
theory and the number of literals expanded by FOCL in theory-mode, FOCL in
information-mode, and FOCL with no domain theory, when the domain theory was
modified by adding or deleting clauses and literals as a function of the number of
modifications to the domain theory (averaged over 10 trials).

================ Figure 6 ================
The results of adding and deleting clauses and literals indicate that FOCL in

information-mode with an incorrect and incomplete domain theory generally ex
plores a smaller portion of the search space than FOCL without a domain the
ory until the domain theory falls below 70% accuracy. In contrast, FOCL with
out information-mode requires more search than FOCL with information-mode
when the domain theory is accurate. However, when the domain theory becomes
extremely inaccurate, FOCL without information-mode requires less search than
FOCL with information-mode and only slightly more search than FOCL with no
domain theory. This occurs because there is small overhead to checking the in
formation gain of operationalizing the domain theory, but a major benefit when
the operationalization of the domain theory has greater information gain than any

29

Table 11: Predicate Densities

Predicate Density
equaLrank .125

not equaLrank .875
adjacent..rank .25

not adjacent..rank .75
between..rank .32

not between..rank .68

inductively learned literals.
Now that we have given experimental support for the utility of various semantic

constraints, we also give experimental support for the estimates of the tuple size,
as developed in Section 3. To verify our estimate, we consider the task of learning
the illegal predicate. We trace the tuple size as each literal is selected and compare
it with the tuple size predicated by equation 4. This comparison is given in Table
4.9

As before, we can compute the density of the various background predicates
which are given in Table 11.

An identical table of densities exists for the predicates involving files.
Using Table 4, we can compare the predicted values for the tuple growth. These

results are from one entire episode of FOCL learning illegal using the background
predicates in Table 11. In Table 12, we give a trace of FOCL learning illegal and
compare the actual tuple size with the predicted tuple size.

As Table 12 indicates, the estimates are reasonable. This analysis assumed
no interaction between the predicates and no intelligent choice of predicates .. In
the ranks marked t, the achieved tuple size is much less than the predicated one.

9The definition learned for illegal is:

illegal(A,B,C,D,E,F) :- equaLrank(E, C),not(equaL.rank(C, A)).
illegal(A,B,C,D,E,F) :- equal..file(F, D),not(equal..file(D, B)).
illegal(A,B,C,D,E,F) :- adjacent..file(F, B),adjacent..rank(E, A).
illegal(A,B,C,D,E,F) :- equal..rank(E, A),adjacent..file(F, B).
illegal(A,B,C,D,E,F) :- equal..file{F, B),adjacent..rank(E, A).
illegal(A,B,C,D,E,F) :- equal..file(D, B),equal..rank(C, A).
illegal(A,B,C,D,E,F) :- equaL.rank(E, A),equal..file(F, B).
illegal(A,B,C,D,E,F) :- equal..file(F, D),not(between..rank(E, A, C)).
illegal(A,B,C,D,E,F) :- equal..rank(E, C),not(between_file(F, B, D)).

30

Table 12: Predicted versus Actual Tuple Size

initial predicate predicted actual
641 equal..rank 80 98
98 not equal..rank 86 87

554 equaLfile 69 75
75 not equaL:file 66 67

487 adjacentJile 122 102
102 adjacent..rank 25.5 24
463 equal..rank 58 70
70 adjacent Ji.le 17.5 16

447 equalJile 56 71
71 adjacent..rank 18 13

434 equal Ji.le 53 56
56 equal..rank 7 8

426 equal..rank 53 54
54 equalJile 7 8

t418 equalJile 52 6
6 not between..rank 4 5

t413 equal..rank 52 7
7 not betweenJile 5 5

31

In these two cases, the sample is not a mixture of positive and negative cases,
but nearly entirely negative. In these two case, the bias of FOCL is to select the
predicate that picks out the few positive instances.

6 Comparison to Related Work

In this section, we compare FOCL to a variety of related work on either learning
relational concepts or combining empirical and inductive learning methods, focusing
on the types of knowledge exploited by the systems to constrain learning and how
this knowledge is used.
6.1 IOU

IOU (Mooney & Ourston, 1989) is a system that is designed to learn from
overly general domain theories. IOU operates by first forming a definition via a
process similar to m-EBG (Flann & Dietterich, 1989) for the positive examples.
Next, IOU removes any negative examples from the training set that are correctly
classified by the results of m-EBG. Finally, IOU deletes those features that are
not used in the result of m-EBG from the remaining negative and all positive
examples, and runs an induction algorithm on the features. The final concept is
formed by conjoining the result of induction over the unexplained features with
the result of m-EBG. Due to the limitations of its induction algorithm, IOU is
limited to training examples expressed as attribute-value pairs as opposed to the
more general relational descriptions typically used by EBL algorithms. As already
mentioned, FOCL allows Horn clause descriptions of the background knowledge.
In addition, the provided target .concept need not be correct or overly general.
6.2 A-EBL

The A-EBL system (Cohen, 1990) is also designed to handle overly general
domain theories. It operates by finding all proofs of all positive examples, and uses
a greedy set covering algorithm to find a set of operational definitions that cover all
positive examples and no negative examples. Unlike IOU, A-EBL will not specialize
the result of m-EBG, unless required, to avoid covering any negative examples.

A similar set covering behavior occurs in FOCL when dealing with overly gen
eral domain theories caused by having superfluous clauses (see Figure 5). However,
FOCL is not required to find every proof of every positive example. Furthermore,
due to its induction component, FOCL can learn from overly specific domain the
ories as well as overly general theories caused by a clause lacking a precondition
(i.e., a missing literal), in addition to overly general domain theories caused by
extra clauses.
6.3 EITHER

Like FOCL, the EITHER system (Ourston & Mooney, 1990) is one of the few
systems designed to work with either overly general or overly specific domain theo
ries. Furthermore, unlike FOCL, EITHER revises incorrect domain theories, rather
than just learning in spite of incorrect domain theories. EITHER contains specific
operators for generalizing a domain theory by removing literals from clauses, and

32

by adding new clauses and operators for specializing a domain theory by adding
literals to a clause. Due to its induction component and the algorithm EITHER
uses to assign blame for proving a negative example or failing to prove a positive
example, EITHER is restricted to using propositional domain theories and training
examples represented as attribute-value pairs.
6.4 ML-SMART

In many respects, FOCL is similar to ML-SMART (Bergadano & Giordana,
1988). ML-SMART also is designed to deal with both overly general and overly
specific domain theories. The major differences between ML-SMART and FOCL
are involved with the search control strategy. FOOL uses hill climbing while ML
SMART uses best-first search. The best-first search may allow ML-SMART to solve
some problems that cannot be solved with hill climbing, at the cost of retaining
all previous states. However the cost of running a best-first algorithm is very high,
being proportional to depth Branching Factor. As we have already indicated by our
analysis in Section 3, the branching factor grows exponentially in the length of the
clauses. This means that ML-SMART will run in doubly exponential time and,
therefore, is restricted to relatively small problems.

ML-SMART has a number of statistical, domain independent, and domain de
pendent heuristics for selecting whether to extend a rule using inductive or de
ductive methods. In contrast, FOCL applies a uniform information-gain metric
to extensions. The heuristics in ML-SMART have not been subject to systematic
experimentation of the type we performed in Section 5.5. As a consequence, it is
unclear how well they de~l with various types of incomplete and incorrect domain
theories.

Finally, ML-SMART is only able to use its domain knowledge for explanation
based learning. In contrast, FOCL can either use domain knowledge in inductive
learning, by searching for non-operational predicate variablizations. As a conse
quence, ML-SMART cannot learn target concepts.
6.5 FOIL

The goal of this research has been to measure the effects of adding various types
of knowledge to FOIL, rather than to produce a system that performs better than
FOIL. Nonetheless, direct comparison of FOIL and FOCL is possible.

Although very similar, FOCL has a slightly different control strategy from FOIL.
In particular, FOCL attempts to constrain search by using variable typing, exploit
ing inter-argument constraints, and uses an iterative-widening approach to adding
new variables. FOIL contains an admissible pruning heuristic that conflicts with
the iterative-widening approach. Using variable typing, inter-argument constraints,
and iterative-widening, FOCL learned the illegal concept by testing 1296 literals.
With a domain theory, this number is reduced to 72 literals. Using the same num
ber of examples and its pruning heuristic, FOIL requires considering 5166 literals
to find a similar definition.

33

The typing constraints of FOCL have proved useful in improving the accuracy
of the resulting hypotheses. Since these do not conflict with the pruning heuristic,
they can easily be incorporated by FOIL to also reduce the search space.

The stopping criteria used by FOIL to learn from noisy data, may also be useful
in stopping the learning process when there are a large number of irrelevant pred
icates and a small number of examples. For example, Figure 2 shows that adding
irrelevant predicates decreases the accuracy of FOCL. We ran a version of FOIL
provided by Quinlan on the same 60, 100, 200, and 641 training examples, learn
ing illegal both with and without 20 irrelevant predicates. The accuracy of the
resulting hypotheses were 92.9, 96.4, 97.4 and 99.3 with only relevant predicates
and 86.1, 90.2, 96.1, 99.0 with irrelevant predicates added. With fewer than 200
examples, FOIL typically underfit a concept, yielding a rule that was not consistent
with all the training examples. This is due to the stopping criterion that partially
mitigates the effects of introducing irrelevant predicates into the concept descrip
tion. However, the accuracy of the results of FOIL does decrease when operational
predicates are introduced.

7 Conclusions

In this paper we have described a concept learner, FOCL, that combines induc
tive and analytic learning in a uniform manner. The resulting program employs a
number of different types of knowledge. In particular, it advantageously uses both
inconsistent and incomplete theories. We provided both a mathematical and an
experimental evaluation of FOCL.

From our mathematical analysis, we can draw a number of important conclu
sions about the complexity of learning rules and the value of different sorts of
knowledge. Some of these conclusions are summarized here:

• The branching factor grows exponentially in the arity of the predicate to be
learned.

• The branching factor grows exponentially in the arity of the available predi
cates.

• The branching factor grows exponentially in the number of new variables
introduced.

• The number of available predicates increases the branching factor by a linear
amount.

• The difficulty in learning a rule is primarily determined by the difficulty in
learning the longest Horn clause, where length is measured in the number of
new variables.

34

• The difficulty in learning a rule is only linearly proportional to the number
of clauses in the rule.

• Partial operational rules that do not include the longest clause barely reduce
the search in finding the rule.

• Typing knowledge provides an exponential decrease in the amount of search
necessary to find a rule.

In addition to supporting the theoretical claims made above, our experimental
evidence suggests a number of other important conclusions.

• Non-operational predicates aid by improving the shape of the hill-climbing
landscape.

• Any method (argument constraints, semantic constraints, typing, symmetry,
etc.) that eliminates fruitless paths will decrease the search cost and increase
the accuracy.

• The uniform evaluation function applied to literals learned by induction or
by explanation-based methods allows FOCL to tolerate domain theories that
are both incorrect and incomplete.

• Irrelevant background predicates marginally slow learning and marginally de
crease accuracy, since the system has more opportunities to make incorrect
decisions. In this respect, irrelevant predicates in Horn clause learning are
similar to irrelevant attributes in propositional learning.

• Iterative widening reduces the cost of search while maintaining the accuracy
of the resulting rule.

• A domain theory that consists of rules that are overly general by virtue of
having superfluous clauses is the easiest to tolerate. In this case, only a
subset of the operationalizations are needed and the information-gain metric
of FOCL selects, in a greedy manner, operationalizations that cover positive
examples. Other forms of incomplete and incorrect domain theories require
FOCL to use induction to overcome domain theory errors.

Acknowledgements

This research is partially supported by NSF grant IRI-8908260. We would like to
thank Ross Quinlan for his advice on FOIL, Dan Hirschberg for deriving the new
recurrence, and Cliff Brunk, Tim Cain, Caroline Ehrlich, Ross Quinlan, Wendy
Sarrett and Glenn Silverstein for reviewing a draft of this paper.

35

References

Bergadano, F., & Giordana, A. (1988). A knowledge intensive approach to con
cept induction. Proceedings of the Fifth International Conference on Machine
Learning (pp. 305-317). Ann Arbor, MI: Morgan Kaufmann.

Bergadano, F., Giordana, A., & Ponsero, S. (1989). Deduction in top-down induc
tive learning. Proceedings of the Sixth International Workshop on Machine
Learning (pp. 23-25). Ithaca, NY: Morgan Kaufmann.

Cohen, W. (1990). Abductive explanation-based learning: A solution to the multi
ple explanation-problem (ML-TR-29). New Brunswick, NJ: Rutgers Univer
sity.

Danyluk, A. (1989). Finding new rules for incomplete theories: Explicit biases for
induction with contextual information. Proceedings of the Sixth International
Workshop on Machine Learning (pp. 34-36). Ithaca, NY: Morgan Kaufmann.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2, 139-172.

Fiann, N., & Dietterich, T. (1989). A study of explanation-based methods for
inductive learning. Machine Learning, 4, 187-226.

Ginsberg, M., & Harvey, W. (1990). Iterative broadening. Proceedings of the
Eighth National Conference on Artificial Intelligence (pp. 216-220). Boston,
MA: Morgan Kaufmann.

Hirsh, H. (1989). Combining empirical and analytical learning with version spaces.
Proceedings of the Sixth International Workshop on Machine Learning (pp.
29-33). Ithaca, NY: Morgan Kaufmann.

Katz, B. (1989). Integrating learning in a neural network. Proceedings of the
Sixth International Workshop on Machine Learning (pp. 69-71). Ithaca,
NY: Morgan Kaufmann.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 1, 11-46.

Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive
Science, 10.

Michalski, R. (1980). Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2, 349-361.

36

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-based learning:
A unifying view. 11,fachine Learning, 1, 47-80.

Mooney, R., & Ourston, D. (1989). Induction over the unexplained: Integrated
learning of concepts with both explainable and conventional aspects. Pro
ceedings of the Sixth International Workshop on Machine Learning (pp. 5-7).
Ithaca, NY: Morgan Kaufmann.

Muggleton, S., Bain, M., Hayes-Michie, J., & Michie, D. (1989). An experimental
comparison of human and machine learning formalisms. Proceedings of the
Sixth International Workshop on Machine Learning (pp. 115-118). Ithaca,
NY: Morgan Kaufmann.

Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates
by inverting resolution. Proceedings of the Fifth International Workshop on
Machine Learning (pp. 339-352). Ann Arbor, MI: Morgan Kaufmann.

Ourston, D., & Mooney, R. (1990). Chaining the rules: A comprehensive ap
proach to theory refinement. Proceedings of the Eighth National Conference
on Artificial Intelligence (pp. 815-820). Boston, MA: Morgan Kaufmann.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learn
ing. Machine Learning, 5, 71-100.

Pazzani, M. (1989). Explanation-based learning with weak domain theories. Pro
ceedings of the Sixth International Workshop on Machine Learning (pp. 72-
7 4). Ithaca, NY: Morgan Kaufmann.

Pazzani, M. J. (1990). Creating a memory of causal relationships: An integration
of empirical and explanation-based learning methods. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Pazzani, M., & Brunk, C. (1990) Detecting and correcting errors in rule-based
expert systems: An integration of empirical and explanation-based learning.
Proceedings of the Workshop on Knowledge Acquisition for Knowledge-Based
System. Banff, Canada.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1989). Learning relations: Comparison of a symbolic and a connec
tionist approach (Technical Report). Sydney, Australia: University of Sidney.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learn
ing, 5, 239-266.

37

Sarrett, W., & Pazzani, M. (1989). One-sided algorithms for integrating empirical
and explanation-based learning. Proceedings of the Sixth International Work
shop on Machine Learning (pp. 26-28). Ithaca, NY: Morgan Kaufmann.

Shavlik, J., & Towell, G. (1989). Combining explanation-based learning and ar
tificial neural networks. Proceedings of the Sixth International Workshop on
Machine Learning (pp. 90-93). Ithaca, NY: Morgan Kaufmann.

Widmer, G. (1990). Incremental knowledge-intensive learning: A case study based
on an extension to Bergadano & Giordana 's integrated learning strategy (Tech
nical Report). Austrian Research Institute for Artificial Intelligence.

38

Appendix I A trace of FOCL

king_attack_king(Rl,Fl,R3,F3)
rook_attack_king(Rl,Fl,R2,F2,R3,F3)
same_loc(Rl,Fl,R2,F2),adjacent_file(Fl,F3)
same_loc(R2,F2,R3,F3)
same_loc(Rl,Fl,R3,F3)

+
+
+
+
+

OPERATIONALIZING rook_attack_king(Rl,Fl,R2,F2,R3,F3)

61. 6
124.1

0.0
18.9
11. 6

OPERATIONALIZING equal_file(F2,F3),king_not_between_rank(Rl,Fl,R2,F2,F3)
OPERATIONALIZING king_not_between_rank(Rl,Fl,R2,F2,F3)

equal_file(Fl,F2),not_between_rank(R2,Rl,R3)
not(equal_file(Fl,F2))

+
+

0.135
1. 2 99

CLAUSE 1 illegal(Rl,Fl,R2,F2,R3,F3) :-equal_file(F2,F3),not(equal_file(Fl,F2))

king_attack_king(Rl,Fl,R3,F3)
rook_attack_king(Rl,Fl,R2,F2,R3,F3)
same_loc(Rl,Fl,R2,F2),adjacent_file(Fl,F3)
same_loc(R2,F2,R3,F3)
same_loc(Rl,Fl,R3,F3)

OPERATIONALIZING king_attack_king(Rl,Fl,R3,F3)

+ 70.7
+ 14.8
+ 0.0
+ 1. 8
+ 14.8

CLAUSE 2 illegal(Rl,Fl,R2,F2,R3,F3) :-adjacent_rank(Rl,R3),adjacent_file(Fl,F3)

CLAUSE 3 illegal(Rl,Fl,R2,F2,R3,F3) :-adjacent_rank(Rl,R3),equal_file(Fl,F3)

king_attack_king(Rl,Fl,R3,F3)
rook_attack_king(Rl,Fl,R2,F2,R3,F3)
same_loc(Rl,Fl,R2,F2),adjacent_file(Fl,F3)
same_loc(R2,F2,R3,F3)
same_loc(Rl,Fl,R3,F3)

OPERATIONALIZING king_attack_king(Rl,Fl,R3,F3)
adjacent_rank(Rl,R3),adjacent_file(Fl,F3)
equal_rank(Rl,R3)
knight(Rl,Fl,R3,F3)
adjacent_rank(Rl,R3),equal_file(Fl,F3)
BEST CONDITION equal_rank(Rl,R3)

between_file(Fl,F2,Fl)
between_file(Fl,F2,F3)

equal file(F3,Fl)
adjacent_file(F3,Fl)

+
+
+
+
+

+
+
+
+

+
+

+
+

23.9
13.1
0.0
0.0

17.5

0.0
26.7
-0.1
0.0

0. 0; 0.0
-3.26; - 4. 6

10.17; - 6.1
20.34; - -10.2

CLAUSE 4 illegal(Rl,Fl,R2,F2,R3,F3) :-equal_rank(Rl,R3),adjacent_file(F3,Fl)

CLAUSE 5 illegal(Rl,Fl,R2,F2,R3,F3) :-equal_rank(Rl,R3),equal_file(Fl,F3)

CLAUSE 6 illegal(Rl,Fl,R2,F2,R3,F3) :-equal_file(F3,F2),equal_file(Fl,F2)
not(between_rank(R2,Rl,R3))

king_attack_king(Rl,Fl,R3,F3)
rook_attack_king(Rl,Fl,R2,F2,R3,F3)
same_loc(Rl,Fl,R2,F2),adjacent_file(Fl,F3)
same_loc(R2,F2,R3,F3)
same_loc(R1,F1,R3,F3)

between_file(Fl,F2,F3)

equal_rank(R3,R2)
BEST CONDITION equal_rank(R3,R2)

king_attack_king(R1,Fl,R3,F3)

between_file(Fl,F2,F3)

equal_rank(Rl,R2)

+
+
+
+
+

+

+

+

+

+

-1. 0
0.0
0.0
o.o
0.0

5.5; -5.0

192.4; - -25.3

-2.1

0. 9; -0.9

-2.2; 2.6

CLAUSE 7 illegal(Rl,Fl,R2,F2,R3,F3) :- equal_rank(R3,R2),not(equal_rank(Rl,R2))

king_attack_king(Rl,F1,R3,F3)
rook_attack_king(Rl,Fl,R2,F2,R3,F3)
same_loc(Rl,Fl,R2,F2),adjacent_file(Fl,F3)
same_loc(R2,F2,R3,F3)
same_loc(Rl,Fl,R3,F3)

OPERATIONALIZING king_attack_king(Rl,Fl,R3,F3)

adjacent_rank(Rl,R3),adjacent_file(Fl,F3)
equal_rank(R1,R3)
knight(Rl,Fl,R3,F3)
adjacent_rank(Rl,R3),equal_file(Fl,F3)

BEST CONDITION equal_rank(Rl,R3)

between_file(Fl,F2,F3)
equal_rank(R3,R2)

BEST condition equal_rank(R3,R2)

between_file(Fl,F2,F3)
between_file(F2,Fl,F3)

+
+
+
+
+

+
+
+
+

4.5
0.0
o.o
0.0
0.0

0.0
9.0
o.o
o.o

+ 4.4; - -1.6
+ 13.5; 0.0

+
+

1.9; - -1.1
0.0; 2.4

CLAUSE 8 illegal(Rl,Fl,R2,F2,R3,F3) :-equal_rank(Rl,R3), equal_rank(R3,R2),
not(between_file(F2,Fl,F3)).

CLAUSE 9 illegal(Rl,Fl,R2,F2,R3,F3) :-equal_file(F2,Fl),equal_rank(R2,Rl)

1.0

0.9

>- 0.8 u
ro
'-::;,

0.7 u
u
<

0.6

0.5
0 100

Number of Examp 1 es

Type
no type

200

Figure 1. The effect of variable typing on the accuracy of the FOCL.

1.0

0.9
>-u
ro 0.8 '-::;,
u
u
< 0.7 + 23 predicates 3 predicates

0.6
0 100 200

Number of Examples

Figure 2. The effect of adding irrelevant predicates on the accuracy of the FOCL.

1.0 l'!I l'!I ;-;:. 0.9

>- 0.8 u
ro
'-
::'.)

0.7 u
u
< + No OT

0.6 + Correct OT

0.5
0 100 200

Number of Examples

Figure 3. The effect of adding a correct domain theory and target concept on the accuracy of the
FOCL.

1.0

0.9

>- 0.8 u
ro
'-
::'.)

0.7 u
u
<

0.6

0.5
0

+ no Ot
+ Bad Ot

100
Number of Examples

200

Figure 4. The effect of adding a domain theory that is 76.2% accurate on the accuracy of the
FOCL.

1200

"C 1000 (I)
......
en
(I)

f- 800
en + +Clause
ro ... +Literal L.. 600 (I) - Clause

......! - Literal .._
400 0

L..
(I)

.0
200 E

~ :::;,
l!I l!I z l!I m m l!I l!I

0
0 2 4 6 8 10

Number of Modifications

1.0
+ + clause

>- ... + literal
L.. 0.8 ... - clause 0
(I)

- literal .c ...
f-
c 0.6
ro
E
0
0

0.4 .._
0

>-u
ro 0.2 L..
:::;,
u
u
~

0.0
0 2 4 6 8 10

Number of Modifications

Figure 5. Upper: The effect of modifying a domain theory by individually adding literals,
deleting literals, adding clauses and deleting clauses on the amount of search required by FOCL
in theory-mode to learn an accurate concept. Lower: The accuracy of the modified domain
theory.

"O
Cl>
(/)
Cl>
I-

!E.
('l:J

'-
Cl>
_J

._
0

'-
Cl>
.0
E
:::i
z

>-
'-
0
Cl>

.i:::.
I-
c::
('l:J

E
0
0 ._
0

>-u
('l:J

'-
:::i
u
u
<

1800

1600

1400

1200

1000

800

600

400

200

0
0 5

1.0

0.9

0.8

0.7

0.6

0.5
0 5

...... no OT info-mode
-0- theory-mode

10 15

Number of Mod1f1cat1ons

10 15

Number of Mod1f1cat1ons

20

+ Pos
.... Neg

20

25

25

Figure 6. The effect of modifying a domain theory by combinations of adding literals, deleting
literals, adding clauses and deleting clauses on the accuracy of the domain theory and on the
amount of search required by FOCL with no domain theory, FOCL in theory-mode and FOCL in
information-mode to learn an accurate concept.

ll
3 1970 00802 9198

