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Abstract of the Dissertation 
 

Integrated wildfire risk management: Measuring risk perceptions, simulating fire severity 

maps, and visualizing fire risk in the California Wildland-Urban Interface 

  

 

 

By 

 

Samrajya Bikram Thapa 

 

Doctor of Philosophy, Environmental Systems Program 

University of California, Merced, 2024 

Dr. Anthony LeRoy Westerling, Graduate Advisor 

 

 

The escalating frequency and severity of wildfires in California have precipitated 

substantial economic losses and social strains, underscoring the imperative to comprehend 

the dimensions of wildfire management. This dissertation amalgamates three pivotal 

research endeavors focusing on different dimensions of wildfire risk: perceptions among 

wildland-urban interface residents, predictions of wildfire burn severity, and visualization 

of uncertainty. The surge in wildfires, coupled with the increasing population moving to 

Wildland-Urban Interface (WUI) areas, highlights the urgency of understanding both the 

physical and human dimensions of wildfire risk management. While various management 

practices involving communities have emerged as favored solutions, barriers to their 

implementation persist. Understanding public attitudes and perceptions regarding these 

practices is essential for successful fire management efforts. 

Furthermore, the warming climate and increasing fuel loads due to fire exclusion, 

compounded by climate change and drought, have led to more frequent, extensive, and 

severe wildfires. Burn severity, a metric that measures the ecological impact of fire on 

vegetation, is crucial for post-fire management. The Composite Burn Index (CBI) emerges 

as a preferred method of characterizing fire effects due to its comprehensive approach, 

offering a systematic and visually intuitive estimation of ecological impacts following a 

fire.  

Effective wildfire severity and risk information to stakeholders is paramount for 

enhancing understanding and promoting resilience. However, conveying complex 

information poses significant challenges. Visualization techniques play a vital role in 

conveying risk information and aiding comprehension of complex wildfire-related 

information. This research introduces a scalable visualization model for a use in predicting 

and managing the complex dynamics of wildfire occurrences. 

This dissertation advances our understanding of wildfire management by 

elucidating the complex interplay between public perceptions, burn severity estimation, 

and risk visualization. By integrating social perspectives with empirical modeling and 

visualization techniques, it offers multifaceted approach to addressing the challenges posed 
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by wildfires in California. The insights garnered from this dissertation are crucial for 

informing policy decisions, guiding mitigation efforts, and fostering community resilience 

in the face of escalating wildfire threats.  

 

  

Keywords: wildfire management, burn severity, risk communication, uncertainty, 

visualization, decision-making 
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Chapter 1 

 

Dissertation Introduction  
 

Recent wildfires in the California have led to substantial economic losses and social 

stresses (Mell et al. 2010; Schoennagel et al. 2017). This surge in wildfires highlight the 

need for understanding the dimension of wildfire management (Absher et al. 2012) 

especially for policies and programs that affect property losses in the WUI. With more 

people moving to the WUI every year, there is a confluence of people and property located 

adjacent to or within areas of extreme wildfire risk. The continuing encroachment of human 

settlements into fire-prone areas and extreme fire seasons in recent years make it urgent 

that we better understand both the physical and human dimensions of managing the risk 

from wildfires.  

  Since local people usually have the most at stake in the event of a major fire, they 

should clearly be involved in mitigation efforts (Treue and Nathan, 2007). Numerous 

management practices such as prescribed fire, mechanical fuel reduction, defensible space, 

etc. are being practiced that directly involve communities (Blanchard and Ryan, 2007; 

Fischer 2011; Jarrett et al. 2009; Kreuter et al. 2008).  Although acceptance of these 

practices has emerged as a favored solution and has increased across diverse geographic 

regions, various barriers to implement these actions remain (Fischer 2011; Kobziar et al. 

2015; McCaffrey et al. 2012). Community members may not perform these risk reduction 

activities due to various key components lacking, such as common goals and shared vision, 

relationships and trust, place attachment, information sharing, and community outreach 

and education (McCaffrey and Olsen 2012; McCaffrey et al. 2013; Shindler 2007; Vaske 

et al. 2007; Winter et al. 2004). Therefore, to develop successful fire management efforts, 

it is necessary to understand public attitudes, perceptions, and beliefs about implementing 

different practices (Bright and Burtz 2006; Gunderson and Watson 2007; Holmes et al. 

2007). Given the increased attention to wildfire risk, a significant body of work from the 

social science perspectives has examined wildfire mitigation behaviors by vulnerable 

community members (Brenkert et al. 2012; Stidham et al. 2011; McCaffrey and Winter, 

2011). While published studies have documented fire management practices to reduce 

impacts of wildfire (McCaffrey and Olsen 2012; Toman et al. 2011) limited research has 

addressed public attitudes and behaviors regarding those management practices to conserve 

ecosystems and protect communities. Limited quantitative exploration of the influence of 

community members beliefs and characteristics on wildfire mitigation behaviors have been 

found in published literature. This study seeks to fill that gap. Such an examination is 

essential because residents and communities make important decisions based on their 

perceptions and locations within a local landscape. Wildfire social science research often 

finds risk perception correlated with risk mitigation behavior but relationships among these 

and related variables are complex.  

 Adding to this complexity are a warming climate compounded by increasing fuel 

loads as a result of fire exclusion, together with climate change and drought, the frequency, 

extent, and severity of the wildfires are surging ((Westerling et al. 2006; Westerling 2016; 

Abatzoglou and Williams, 2016). After wildfire occurrence, a number of key ecological 
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processes (e.g., tree and vegetation mortality, regeneration by seeds and resprouts) gets 

affected to different degrees, depending on the extent and the severity of the fire (Spracklen 

et al., 2009; Cansler and McKenzie, 2014; Hurteau et al., 2014). Understanding the severity 

of fire is especially important for post-fire management. One metric that provides context 

for the biophysical disturbance of vegetation, as well as socio-economic impact of fire, is 

burn severity.  

Burn severity, synonymous with fire severity, measures the ecological impact of 

fire on vegetation, considering the physical changes resulting from combustion and heating 

(Ryan, 2002; Gauthier et al., 2009). Factors influencing burn severity include topography 

(elevation, aspect, slope), weather (wind, temperature, fuel moisture), and fuels (stand 

structure, fuel loads, forest species composition) (Alexander et al., 2006; Miller et al., 2012; 

Prichard and Kennedy, 2014; Preisler and Westerling, 2007; Westerling et al., 2009). 

Climate during the fire year significantly influences burn severity occurrence and extent 

(Keyser and Westerling, 2017; Keyser and Westerling, 2019). Topography affects burn 

severity by modifying biophysical gradients like solar radiation and topographic moisture, 

thereby altering fuel characteristics (Birch et al., 2015; Holden et al., 2009; Parks et al., 

2018). Fuel properties, including composition and availability, also play a crucial role in 

determining burn severity patterns (Finney, 2001; Cumming, 2001). Additionally, factors 

like landscape arrangement and tree size influence burn severity at different scales (Odion 

et al., 2004; Roman-Cuesta, 2002).  

The Normalized Burn Ratio (NBR) is the most commonly used index for measuring 

burn severity (Eidenshink et al. 2007; French et al. 2008; Parsons 2003), a spectral index 

obtained from the ratio between near infrared and short-wave infrared measurements, 

which are sensitive to vegetation and exposed soil cover (Key and Benson 2006). However, 

the Composite Burn Index (CBI) is preferred over the Differenced Normalized Burn Ratio 

(dNBR) method due to its comprehensive approach in characterizing fire effects. CBI 

integrates multiple environmental variables to provide a holistic assessment of burn 

severity at point locations, making it suitable for diverse ecosystems and regions. Unlike 

dNBR, which relies solely on spectral indices and may lack standardized threshold values, 

CBI offers a systematic and visually intuitive estimation of ecological impacts following a 

fire. Additionally, CBI's ability to tabulate severity measurements within specific plots 

allows for a more precise and localized analysis of burn severity, particularly beneficial for 

mapping potential severity in complex landscapes such as urban and wildland-urban 

interface environments. This comprehensive approach enhances the sensitivity of burn 

severity metrics, facilitating better understanding and management of fire risks, 

vulnerability assessments, and resource planning.   

Effective communication of wildfire severity or wildfire risk maps or information 

to various stakeholders/audience is essential for enhancing the understanding and 

promoting resilience in the face of wildfires. However, conveying complex information 

about wildfire severity and risk, particularly uncertainty associated with these assessments, 

poses significant challenges.  

Visualization techniques including static and animated forms, are crucial in wildfire 

risk communication for several reasons. Static visualizations provide a snapshot of data, 

such as maps delineating high-risk areas, which are essential for planning and preparedness 

by illustrating potential impact zones and facilitating strategic decision-making. Animated 
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visualizations add a temporal dimension, showing the progression of a wildfire over time, 

which is invaluable for emergency response and public information as it allows for the 

visualization of fire spread and evolution, aiding in situational awareness and the 

anticipation of future developments. Both static and animated forms play a pivotal role in 

making complex data comprehensible, helping stakeholders and communities to 

understand and respond to the risks of wildfires effectively. These visualization tools not 

only support informed decision-making but also promote engagement and proactive 

measures by vividly illustrating potential risks and the dynamic nature of wildfire events. 

Chapter 1 here is an overall introduction to the dissertation. This dissertation 

synthesizes three distinct research projects focusing on wildfire risk: perception among 

California wildland-urban interface (WUI) residents, prediction of wildfire burn severity, 

and visualization of uncertainty. Integrating these aspects fosters a holistic approach to 

wildfire management. Public perceptions inform policy formulation, while accurate burn 

severity estimation guides mitigation efforts. Effective risk communication enhances 

public awareness and preparedness, ultimately contributing to more resilient communities 

and ecosystems.  

Chapter 2 delves into the perceptions of wildfire management practices, employing 

both qualitative and quantitative methods to gauge community attitudes and support for 

mitigation strategies. The findings from this study provided insights into community 

members’ perceptions of wildfire risk; knowledge and support for the use of wildfire 

management practices; and opinions about their role in wildfire management planning. 

These findings have been documented in a research paper titled “Perceptions of wildfire 

management practices in California wildland-urban interface (WUI)” which has been 

published in “Environmental Advances” journal.  

Chapter 3 introduces a novel methodology for mapping burn severity, utilizing 

empirical modeling and simulation to predict fire outcomes under varying scenarios. 

Through the development of statistical methodology, this study not only estimates the 

probability of various burn severity levels but also identifies key variables influencing 

these probabilities within the wildland-urban interface (WUI) region of northern 

California. Factors such as vegetation type, topography, and weather conditions area 

analyzed to elucidate their roles in shaping burn severity outcomes. This comprehension 

investigation contributes valuable insights to wildfire risk assessment and mitigation 

strategies, aiding in the effective allocation of resources and implementation of targeted 

measures to reduce the impact of wildfire on communities and ecosystem.  

Chapter 4 systematically utilizes data visualization, integrating historical and 

predictive data to construct static and animated maps that reveal the progression and 

potential future patterns or risk of wildfires. By employing models to simulate fire 

presence, absence, and size, this study aims to generate robust visual tools to better inform 

stakeholders, aiding in decision-making processes. The study seeks to enhance 

preparedness and resilience against the increasing threat of wildfires in California, with 

methodologies that could be adapted to diverse ecological and climatic contexts.  

Chapter 5 gives overall conclusion of the dissertation. 
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Abstract  
 

Wildland-urban interface (WUI) regions are exposed to increasing wildfire risk due 

to the effects of accelerating climate change on fuel flammability, as well as a legacy of 

fire exclusion that promoted fuel accumulations in seasonally dry forests of western US. 

State and Federal land management agencies are evolving policies and directing new 

resources to reduce the effects on homes and infrastructure in the WUI through fuel 

reductions and enhanced fire management measures. A widely supported strategy is to 

involve homeowners and their communities in efforts to reduce their exposure to wildfire 

risk by changing the structure and amount of unwanted vegetation around vulnerable 

structures, among other practices. Although these practices can reduce vulnerability to 

wildfires, people are hesitant to implement them for a variety of reasons broadly related to 

the issues of capacity and access to information. Based on Theory of Planned Behavior 

(TPB) conceptual framework, this study identifies salient factors impeding individual 

actions to reduce wildfire risks, and how those factors influenced willingness to participate 

in wildfire mitigation behaviors. This study examined intention to use prescribed fire and 

defensible space among community members as a wildfire management tool. Results from 

this study suggest intentions to undertake these wildfire management practices are 

positively associated socio-economic characteristics, along with knowledge regarding best 

practices, some perceived reasons, or hindrances to implementation, and ability to 

collaborate with others. These research findings have implications for designing and 

implementing policy instruments and improving community members’ decision-making 

regarding practices to mitigate fire risk.  

 

Keywords: Collaboration, Defensible space, Prescribed fire, Theory of planned behavior, 

Wildfire. 
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1. Introduction  
 

Wildfire is undoubtedly one of the most significant and widespread natural 

disturbance agents in the Western United States, especially in California. Anthropogenic 

climate change has contributed to higher temperatures, drier conditions, and earlier 

snowmelt in California, which in turn has increased the risk of wildfire. Along with climate 

change and severe drought, the frequency and extent of wildfires and the area burning at 

high severity are surging (Abatzoglou and Williams 2016; Westerling et al. 2006; Sam et 

al. 2022; Xu et al. 2022). Increasing fuel loads resulting from fire exclusion and other 

management activities, and expansion of human settlements into fire-prone vegetation 

driven by population growth and sprawling development patterns, have both contributed 

to more frequent and costlier large wildfires in recent years (Radeloff et al. 2005; Sam et 

al. 2021; Theobald and Romne, 2007). The occurrence of large, devastating wildfires 

emphasizes the need to comprehend all of their components, particularly in the wildland-

urban interface (WUI), where houses are next to or mixed in with wildland vegetation 

(Radeloff et al. 2005). With more people relocating to the WUI each year, there is a growing 

concentration of people and property next to or inside regions of high wildfire danger 

(Radeloff et al. 2018; Mockrin et al. 2022). As the WUI continues to grow, there is a need 

to develop an understanding of how residents of the WUI can reduce their vulnerability to 

wildfires. Engaging local communities in mitigation measures is one of the best ways to 

control disastrous fires (Fischer 2011; Kreuter et al. 2008; Roberts et al. 2019)). Local 

residents, who generally have the most to lose in the case of a large fire, can positively 

impact mitigation activities in their communities.  

By employing efficient mitigation practices, wildfires can be reduced in intensity 

and severity. Examples of mitigation measures include implementing prescribed fire and 

mechanical fuel reduction (thinning), and creating and maintaining defensible space, in 

ways that directly engage communities (Blanchard and Ryan 2007; Winter et al. 2009). 

These actions alter the kind and amount of undesirable vegetation and are regarded as the 

most effective measures to reduce wildfire severity and its risk to property (Stephens et al. 

2012; Syphard et al. 2014; Shi et al. 2022). Numerous studies indicate communities in fire-

prone WUI areas comprehend the risk of wildfires in their area and, as a response, 

implement at least some risk-mitigation efforts (Brenkert-Smith et al. 2006; Dickinson et 

al. 2015; Kyle et al. 2010; Larsen et al. 2021; Nelson et al. 2004). Although these 

techniques are becoming more widely accepted, there are still a number of obstacles to 

overcome before they can be implemented broadly enough to address the scale of current 

and projected vulnerability to wildfire risks (Fischer 2011; Kobziar et al. 2015; McCaffrey 

et al. 2013).  

Despite the recognized benefits of prescribed fire for wildfire management, there is 

hesitancy among landowners and stakeholders in California to adopt it. The complex 

regulatory framework requires permits from the California Department of Forestry and Fire 

Protection (CAL FIRE), approval from local air quality boards, and confirmation of safe 

weather conditions. Limited access to permits and recognition of local expertise contribute 

to confusion and barriers. Concerns about fire escape, smoke impacts, and liability further 

contribute to hesitancy. Additionally, the lack of resources and expertise, including 

equipment and training, hinders widespread adoption of prescribed fire. Defensible space 
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regulations in many jurisdictions provide specific guidelines for vegetation management 

and fire-resistant construction. They require homeowners to maintain appropriate distances 

between trees and structures and clear dead vegetation. Adequate access, visible addresses, 

and water availability are also mandated. These rules create hesitancy due to the time, 

effort, and cost involved, as well as the perceived interference with property rights. 

While published studies have demonstrated the effectiveness of fire control 

strategies to mitigate wildfire damage (McCaffrey and Olsen 2012; Toman et al. 2011), 

there have been limited studies on public attitudes and actions toward such management 

practices to safeguard ecosystems and populations. A growing body of social science 

research has explored the wildfire mitigation actions of vulnerable community members 

(Brenkert et al. 2012; Stidham et al. 2014; Alcasena et al. 2019). Decisions on reducing the 

risk of wildfires are often influenced by a variety of factors in addition to risk assessments. 

According to past research, a number of crucial factors, including shared goals and a 

similar vision, relationships and trust, a place attachment, information sharing, and 

community outreach and education, may influence whether residents take part in these risk 

reduction activities (Winter and Fried 2000; Vaske and Kobrin 2001; McGee 2007; Alam 

2011; McCaffrey and Olsen 2012; McCaffrey et al. 2013; Paveglio et al. 2015; Stasiewicz 

and Paveglio 2022). As a result, understanding public attitudes, perceptions, and opinions 

about different approaches is critical to developing successful fire management measures 

(Bright and Burtz 2006; Gunderson and Watson 2007). This research employs a conceptual 

framework to identify key factors that influence willingness to participate in wildfire 

mitigation behavior. To our knowledge, there have been limited research to predict future 

behavioral trends in wildfire mitigation. This gap is noteworthy given the large number of 

resources dedicated to mitigating effects of wildfires over the last several decades. 

Considering the fact that communities and individuals base significant decisions on their 

perceptions and placements within a local landscape, such an examination is essential. 

Theoretical studies have provided a variety of viewpoints, but the discipline has yet to 

agree on a single theory or collection of ideas to explain the phenomena. The Theory of 

Planned Behavior (TPB) (Ajzen 1991) provides a useful context to examine individual-

level components to understand the dynamics of mitigation activities, with a growing focus 

on measuring beliefs, attitudes, and intentions. 

 

1.1. Theoretical framework 
 

This study utilized TPB for predicting public attitudes toward fire management 

decisions. TPB asserts that behavior is influenced by the intention to perform specific 

behaviors. These intentions in turn are influenced by attitudes, subjective norms, and 

perceived behavioral control (Ajzen 1991, Wang and Ritchie 2010). The main idea is, 

whether one actually implements management activities around their residence in WUI 

depends on their intention to do so. While the literature is relatively limited, the TPB is 

being used to measure and identify some factors associated with wildfire mitigation 

behavior. Homeowners’ attitudes, subjective standards, and perceived behavioral control 

were used by Bates et al. (2009) to explain why people intended to protect their houses and 

the environment from wildfires. The same framework has been applied in the wildfire 

mitigation field to understanding landowners’ acceptance and intentions to approve fuel 
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management practices, government policies focused on mitigation behaviors (Winter et al. 

2002; Winter et al. 2009), and how knowledge predicts homeowners’ attitudes, subjective 

norms, and perceived behavioral control in the context of protecting the environment and 

home against wildfires (Bates et al. 2009). Previous studies have found that individual 

socio-demographic variables such as age, gender, education, income, past experience with 

wildfires significantly influence perceptions and behavioral intentions regarding wildfire 

management practices (Joshi and Arano 2009, Thapa 2023). However, to the best of our 

knowledge, TPB has not been applied extensively to predict behavior in use of wildfire 

management practices. In trying to map behavioral intentions, the TPB can be used as a 

basis for predicting public attitudes towards wildfire management decisions. 

The first part of the TPB model (Figure 1) emphasizes the significance of 

individual, sociodemographic, and informational background factors in shaping an 

individual’s beliefs (behavioral, normative, and control), which in turn influence three 

predictors of behavioral intention (attitude toward the behavior, subjective norm, and 

perceived behavioral control) (Fishbein and Ajzen 2010). Individuals’ opinions about the 

potential benefits or drawbacks of engaging in the behavior are known as behavioral 

beliefs. An individuals’ attitude toward engaging in an action is determined by their 

behavioral beliefs. In context of wildfire practices, attitudes can include beliefs about the 

importance of taking steps to prevent or manage wildfires, as well as perceived benefits 

and costs of doing so. For example, if an individual has positive attitude toward wildfire 

prevention, they may be more likely to take action to reduce the risk of wildfires. 

Individuals who hold normative beliefs consider that the opinions of important 

figures in their lives would determine whether they participate in a certain behavior or not. 

The subjective norm, or social pressure, to engage in or refrain from engaging in an action, 

is determined by normative beliefs (Fishbein and Ajzen 2010). This may include the beliefs 

and expectations of family members or community about the importance of taking action 

to prevent or manage wildfires. For example, if an individual’s social network believes that 

wildfire prevention is important, they may feel more pressure to engage in those practices 

themselves.  

Control beliefs are beliefs about individual’s attempts to engage in the behavior. 

Perceived behavioral control is based on control beliefs, which take into account any 

barriers that may need to be overcome as well as the availability of knowledge, skills, 

opportunities, and other resources needed to carry out the behavior (Fishbein and Ajzen 

2010). For example, if an individual feels that they have the knowledge and resources 

necessary to implement management practices, they may be more likely to engage on those 

behaviors. 

Together, attitudes, subjective norms, and perceived behavioral control can help 

explain and predict an individual’s behavior related to wildfire management practices. 

Interventions and strategies aimed at promoting these practices may target one or more of 

these factors, such as by providing education and resources to increase perceived 

behavioral control, or by using social norms to promote positive attitudes and subjective 

norms related to wildfire prevention and management. The framework used here can assist 

community residents, other stakeholders, including wildfire and natural resource 

professionals in understanding collective action to address wildfire risks. 
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Figure 1: Conceptual framework regarding implementation of fire management practices 

 

In this study we propose the following objectives: to assess community members’ 

(1) perceptions of wildfire risk; (2) knowledge and support for the use of wildfire 

management practices; and (3) opinions about their role in wildfire management planning 

in the wildland-urban interface. To assess model stability, we hypothesize that:  

1. H1: There is a significant interest in usage of wildfire management practices 

2. H2:  Intent to apply wildfire management practices depends on sociodemographic 

characteristics, place attachment, potential for collaboration, reasons for not 

implementing (barriers), and relevant knowledge.
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2. Methods 
 

2.1. Participants and procedures 

 
 

Figure 2 California Wildland Urban Interface 

(generated with data available from http://silvis.forest.wisc.edu/data/wui-change/) 

 

http://silvis.forest.wisc.edu/data/wui-change/
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This study integrated multi-method forms of primary data collection. Data 

collection initially started with key informant interviews (KIs) in Mariposa County, 

California (Appendix 1). The goal of KIs was to gather data from a diverse group (District 

Supervisors, Fire Safe Council, CalFire) who represented various interest groups. Ten on-

site KIs were conducted in the study area. Data was collected until saturation was achieved 

(i.e., when subsequent interviews supplied recurring information without contributing new 

knowledge to existing information). This led the foundation to the development of a multi-

page standard survey questionnaire (Appendix 2) which was reviewed and approved by the 

University of California Institutional Review Board (IRB). Web-based survey was 

employed to gather information about wildfire knowledge, different management practices, 

along with attitudes, normative influences, and perceived behavioral controls regarding 

wildfire mitigation efforts. The responses qualified for this analysis were collected from 

residents who identified themselves as homeowners/landowners in the WUI from different 

parts of California. While debates on the definition and implications of the term WUI exist 

(Stewart et al. 2007; Caggiano et al. 2020; Carslon et al. 2021), we define WUI as an area 

where human settlements and natural vegetation meet each other, and because of this the 

risk to community life and property from fire and associated hazards is collective, without 

making a distinction between the intermix and interface zones. The state’s expansive area 

includes wide range of geographical and climatic attributes. With valleys, cliffs, and steep 

ridges, the area has terrain that can increase the intensity of wildfires. Wildfire is a concern 

throughout the state, often incurring millions of dollars in containment and suppression 

costs annually. The survey was open statewide because of these inherent risks and the 

associated opportunities for studying wildfire mitigation behaviors. This provides the 

ability to examine behaviors across differing community dynamics.  

 Sampling assured that gender, age, education, and income characteristics were 

included and represented. To check for potential bias, respondents were asked compared 

with general population. For the most part, the demographic profile of respondents was 

similar to that of California’s population (CPS 2020). These data show that, overall, survey 

respondents were older than the general population. This study purposefully sampled 

respondents over 18 years of age or over. Median annual income of survey respondents 

was approximately similar to that of general population. Survey respondents tended to have 

less education than general population. In terms of gender, proportion of survey 

respondents were slightly higher to that of the general population. 

 

Table 1:  Mean values for population and sample 

Variable Population Sample 

Age (years) 37 46 

Gender   

        Male 50% 55.7% 

        Female   50% 44.3% 

Annual household income $78,672 $82,500 
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The survey originally recorded 247 responses, of which only 183 were qualified, 

excluding partial responses. General survey questions include: (1) attitudes of residents 

toward wildfire; (2) behaviors and attitudes toward wildfire risk management practices; (3) 

residents meanings associated with local landscapes; (4) various constraints to the use of 

different practices; and (5) interest in participating in collaborative fire management 

arrangements. 

 

2.2. Relevant variables 
 

The conceptual model was operationalized to measure knowledge, attitudes, place 

attachment, and barriers to the use of management practices, as well as to account for 

socioeconomic characteristics. Measured socioeconomic characteristics consisted of age, 

gender, education, and annual household income. ‘Age’ was the age of the respondents as 

a continuous variable in years. ‘Gender’ referred to the respondent’s gender (0, female; 1, 

male). ‘Education’ referred to respondents’ level of education, originally with five 

categories, however, ‘Education’ was recoded as a dummy variable (0, all others; 1, more 

than high school graduate) to check whether advance education impacted the dependent 

variable. ‘All others’ included ‘Less than high school’, ‘high school (or equivalent) 

graduate’, or ‘other’. ‘Income’ originally had six different categories ranging from less than 

$25,000 to more than $150,000. Responses were recoded to a dummy variable (0, less than 

$75,000; 1, more than $75,000). Respondents were asked if they were familiar with the 

concepts of prescribed fire (PF Knowledge) and defensible space (DS Knowledge). These 

responses were coded to a binary format: 0, no (never heard of it); and 1, yes. Following 

measurement of PF and DS knowledge, respondents were asked to what extent they were 

interested in implementation of prescribed fire and defensible space (PF and DS Interest), 

the dependent variable in the analysis. A four-point scale (not at all, not much, some, a lot) 

was recoded to a dummy variable: 0 (not at all, not much) and 1 (some, a lot). Respondents 

were asked about their level of attachment to the place where they live. The scale included 

six emotional attachment measures and four functional measures (Williams and Vaske 

2003). Responses were recorded in five-point Likert scales (1, strongly disagree; 2, 

disagree; 3, agree; 4, somewhat agree; and 5, strongly agree). A summative scale (Place 

Attachment) was created from items by averaging the 10 measures to measure agreement 

(Williams and Vaske 2003). Similarly, respondents were asked for their reasons for not 

implementing prescribed fire or defensible space. The scale included six measures (liability 

issues, costs, parcel size, coordination, technical knowledge). Responses were recorded in 

five-point Likert scales (1, strongly disagree; 2, disagree; 3, agree; 4, somewhat agree; and 

5, strongly agree). A summative scale (Barriers) was created from these items by averaging 

5 measures (as described above) to measure agreement with reasons for not implementing 

wildfire management practices. Also, respondents were asked if they were interested in 

coordinating (Collaboration) with individuals, private organizations, and government 

entities to implement management practices. Responses were based on 5 five-point Likert 

scale (1, strongly unlikely; 2, unlikely; 3, likely; 4, somewhat likely; and 5, strongly likely). 

Responses were recoded to 0 (strongly unlikely, unlikely) and 1 (likely, somewhat likely, 

strongly likely).  
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2.3. Analysis 
 

A Chi-square test was used to test the first hypothesis i.e., to determine if there were 

significant associations between pairs of categorical variables. Chi-square tests provided a 

picture of the association between two variables. If the proportion of individuals in the 

different columns varied significantly, the two variables were dependent (i.e., there is 

contingency). If there was no contingency, the two variables were considered independent. 

To explore the other hypothesis, a binomial logistic regression model based on our 

conceptual framework was used. Based on one or more continuous or categorical 

independent variables, this model was used to estimate the likelihood that an observation 

would fall into one of the two categories of a dichotomous dependent variable. A positive 

coefficient for an independent variable meant the independent variable had a positive 

impact on the likelihood that the dependent variable would occur, whereas a negative 

coefficient meant the independent variable had a negative impact. Reflecting the 

components of the conceptual model, the set of indicators were entered in successive stages 

to observe changes in the model.  

There are some limitations of this research. Findings are based on small sample 

along the California wildland urban interface. A higher response rate could boost our 

confidence in extrapolating beyond the study population. Despite this limitation, the results 

of this survey should provide useful insights for land use managers and planners in WUI 

areas. Future studies might employ a different method to scale up to a larger population 

over the range of the fire prone WUI in California. Studies such as these aid in the 

development and implementation of successful regional policies to increase community 

engagement in wildfire risk mitigation. 

3. Results 
 

3.1. Interest in fire management practices 
 

More than half of the respondents were familiar with the term defensible space 

(68%) and prescribed fire (60%). Of the respondents supportive of one or more of these 

practices, 77% of the respondents had an interest in defensible space practices. A Chi-

squared test revealed association between ‘Gender’ and ‘DS Knowledge’ variables with an 

interest in defensible space. Male were 19% more interested in defensible space practice 

than female respondents (p=0.001). Respondents with higher defensible space knowledge 

were 22% more interested in defensible space practice than respondents with a lower level 

of knowledge (p=0.003). Similarly, 72% of the respondents had an interest in prescribed 

fire. A Chi-square result revealed association between ‘Gender’ and ‘PF Knowledge’ 

variables with an interest in prescribed fire. Male respondents were 16% more interested 

in prescribed fire than female respondents (p=0.018). Respondents with greater knowledge 

regarding prescribed fire were 21% more interested in prescribed fire practice than 

respondents with a lower level of knowledge (p=0.001). Results are in line with what we 

had initially anticipated in terms of the increased interest in using various fire management 

techniques (hypothesis 1). Despite an increase in interest in wildfire management practices, 

results also highlight different reasons for not implementing different practices. Sixty-nine 
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percent of participants collectively reported liability to be the primary reason. Concern 

about costs was recognized as another reason by 62% of respondents. Fifty-six percent 

reported technical capacity/knowledge as other reason followed by coordination (51%).  

 

3.2. Intent to apply fire management practices. 
 

3.2.1. Intent to practice prescribed fire. 

 

A logistic regression model was employed where variables were entered in 

successive stages as predictors of support for use of prescribed fire. Model I with only 

‘Socio-economic’ characteristics explained only 13% of the variance in support of 

prescribed fire. Three of the four predictive variables in model I were significant: Age, 

Gender, and Income. Model II introduced PF Knowledge which together with socio-

economic characteristics explained 29% of the variance in support for prescribed fire. Place 

Attachment was introduced in model III which resulted in model explaining more of the 

variance in the dependent variable (R2 = 0.32). Model IV included the ‘Barriers’ variable, 

which increased the explained variance to 37%. The final model (Table 1) introduced 

‘Collaboration’ which increased the variance explained in the dependent variable higher to 

43% for the full model. All models were statistically significant. Four of the eight 

predictive variables in our final models were significant: Age, PF Knowledge, Barriers, 

and Collaboration. Young age respondents are 31% more interested in implementing 

prescribed fire than their counterparts (p=0.025). Similarly, respondents with higher 

knowledge regarding prescribed fire are almost three times more interested in applying 

prescribed fire than those without knowledge (p=0.018). In addition, as the ‘Barriers’ score 

increased, respondents are 34% less likely to prefer prescribed fire (p=0.028). Finally, 

respondents who are interested in collaboration with others are 70% more interested in 

applying prescribed fire in comparison to the respondents who were not interested in 

collaboration (p=0.001). Variables such as Education, Gender, Income, and Place 

Attachment were not found statistically significant in the analysis. 
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Table 2: Exp(B) value and Odds Ratio derived from logistic regression for Prescribed 

Fire final model. 

Variable  Intent to apply Prescribed Fire  

 B Odds Ratio P-value 

Socio-economic    

      Age -0.013 1.312 0.025* 

      Education 0.239 1.737 0.602 

      Gender -0.093 0.497 0.801 

      Income 0.294 1.218 0.440 

PF Knowledge 0.667 2.765 0.018* 

Place Attachment 0.143 1.152 0.532 

Barriers 0.443 0.661 0.028* 

Collaboration 0.529 1.708 0.001* 

Nagelkerke R2 0.43   

*   Significant at p <0.05 

 

 

3.2.2. Intent to practice defensible space. 

 

Predictive variables were entered in successive stages to predict intention to 

practice defensible space. Model I with only ‘Socio-economic’ characteristics explained 

only 17% of the variance in interest in defensible space implementation. Model II 

introduced ‘DS Knowledge’ as a predictor variable which increase variance explained to 

36%. ‘Place Attachment’ was added in Model III which explained 40% of the variance in 

the dependent variable. Adding ‘Barriers’ resulted in Model IV explaining slightly more of 

the variance (R2 = 0.43) in support of defensible space. The final Model (Table 2) added 

‘Collaboration’ which increased the variance explained in the dependent variable slightly 

to 49%. All models were statistically significant with models improving most after 

inclusion of DS Knowledge (Model II). The final model (Table 2) had five significant 

predictive variables: Age, Income, DS Knowledge, Barriers, and Collaboration. Younger 

respondents are 46.7% more interested in practicing defensible space than their 

counterparts (p=0.005). Household with higher income are 44.2% more interested in 

applying defensible space (p=0.021). Respondents with more knowledge of defensible 

space are more than three times more interested in using it as a management practice than 

those with little or no knowledge (p= 0.003). As the 'Barriers' score increases, respondents 

are 24% less likely to favor defensible space (p=0.028). Finally, individuals who are 

interested in collaborating with others are more than two times as interested in using 

defensible space than those who are not (p=0.001). Variables such as Education, Gender, 

and Place Attachment were found to have no significant correlation in the analysis.   

Results from this study suggest intent towards PF and DS would be positively 

influenced by age and income, along with knowledge regarding both practices, some 

perceived reasons for not implementing those practices, and collaboration with others 
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(hypothesis 2). These findings were fairly consistent with our initial expectations. Results 

support the hypothesis of a causal chain between variables of our conceptual model. 

 

Table 3: Exp(B) value and Odds Ratio derived from logistic regression for Defensible 

Space final model. 

Variable  Intent to apply Defensible Space  

 B Odds Ratio P-value 

Socio-economic    

      Age -0.117 1.467 0.005* 

      Education 0.332 1.411 0.186 

      Gender 0.293 1.329 0.218 

      Income 0.417 1.442 0.021* 

DS Knowledge 0.722 3.469 0.003* 

Place Attachment -0.235 1.126 0.232 

Barriers 0.344 0.766 0.011* 

Collaboration 0.566 2.114 0.001* 

Nagelkerke R2 0.49   

*   Significant at p <0.05
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4. Discussion 
 

The TPB provides a useful framework for understanding the role of collective 

actions in shaping intentions to apply adaptive management practices in the context of 

wildfires. Collective actions can build on an adaptive approach to wildfire management 

practices by influencing attitudes, subjective norms, and perceived behavioral control, 

which in turn can increase intentions to apply adaptive management practices. By working 

together, communities can create a supportive environment that encourages the adoption 

of these practices, ultimately leading to more effective and sustainable wildfire 

management. While the models guided prediction of intentions to implement fire 

management practices, the inclusion of additional factors enriches the conceptual 

framework of beliefs, attitudes and intentions. The results suggest that respondents were 

interested in using prescribed fire and defensible space as a management tool as explained 

by age, annual income, knowledge of prescribed fire and defensible space, barriers, and 

collaboration. This increased interest might be attributed to the idea that some of the 

distinctive qualities of defensible space and prescribed fire make them preferable to other 

methods. In terms of demographic characteristics, age was negatively significant in both 

regression models. Younger respondents were more interested and were more likely to 

implement prescribed fire or defensible space practices. This finding is similar to other 

studies that have found a negative association between age and acceptance of forest 

management practices (Joshi and Arano 2009). Surprisingly, education and gender were 

not significant predictors of mitigation practices despite their importance in wildfire 

management in previous research.  

Results from this study are in line with studies that have shown that understanding 

the role of prescribed fire and defensible space is crucial for reducing the effects of 

wildfires (Kreuter et al. 2008; Morton et al. 2010; Piatek et al. 2010; Ryan 2012; Thapa 

2019) and can be an important determinant for risk perception and mitigation. This study 

suggests that educational efforts to increase knowledge can significantly raise interest and 

support for management programs. An increased level of knowledge contributes to 

understanding of risk and benefits of the practice required in management efforts. Prior 

research claimed knowledge gained from experts was favorably related to both structural 

and vegetation mitigation behaviors (Sharp et al. 2013; Dickinson et al. 2015). Other 

studies have supported this claim with associations between fire-related information and 

mitigation behavior (Brenkert-Smith et al. 2012; Champ et al. 2013; Hall and Slothower 

2009). 

In general, the attachments that individuals have to a place is important for public 

acceptance of management practices. Previous studies have illustrated how the 

relationships people have with a particular place influence environmental attitudes and 

interest in using management practices (Alam 2011; Gobster et al. 2022; Stedman 2003, 

Williams and Vaske 2003). Contrary to other results, however, this study did not find place 

attachment to be a statistically significant indicator of intention and support for wildfire 

management practices. For one possible explanation, Paton et al. (2006) discovered that 

persons with high environmental values and a sense of attachment to the environment did 
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not favor mitigation strategies like prescribed fire that affected the ecosystem, regardless 

of how they felt about safety. This may be the situation because individuals are concerned 

about changing the landscape and altering the environment when mitigation requires 

modifying the area's surroundings. (Absher et al. 2009; Brenkert-Smith et al. 2006). 

Another explanation could be individuals might have experienced large and damaging 

wildfires, and because of place attachment’s temporal quality, it is possible to feel less 

attached to place or environment and not develop an emotional connection. However, 

further study is required to determine how to make use of WUI inhabitants’ place 

attachment to promote better mitigation and planning.  

Implementation of prescribed fire and defensible space is challenging. This 

research identified multiple factors such as ‘liability’, ‘technical capacity’, ‘costs’, and 

‘coordination’ as the major reasons for not implementing management practices. Literature 

has documented liability as a major reason for not using either prescribed fire or defensible 

space (Bailey et al. 2019; Kobziar et al. 2015; Kreuter et al. 2008; Morton et al. 2010). This 

earlier research revealed significant worries among landowners and organizations over 

litigation resulting from an escaped fire or smoke issue. Also, another reason may be 

inability to dispose of excess vegetation material which may produce highly flammable 

litter generated from creating and maintaining defensible spaces. Results also highlight 

technical capacity as an important reason, which is similar to lack of technical knowledge 

and ‘need for assistance’ as reported by Jarrett et al. (2009) and Kreuter et al. (2008). 

According to the findings, demand for defensible space and prescribed fire is rising but 

technological capability is not. This is due to a lack of technical service providers and burn 

specialists available in the area. Cost is often considered to be a critical reason for not 

implementing practices. This finding was consistent with results from Fischer (2011), 

Kobziar et al. (2015) and Thapa (2022), which found management costs at a regular interval 

were higher than that what homeowners preferred. Lack of financing from nonprofit 

organizations and government agencies for projects like prescribed fire or defensible space 

might be one contributing factor for this. Another factor that might be influenced by 

variations in risk perceptions is the cost-benefit analysis done by homeowners. 

Homeowners balance the expected benefits of their greater protection against the 

anticipated costs of mitigating (in terms of time and money), and they only decide to do so 

if the expected benefits outweigh the anticipated costs. 

Intent towards applying different fire management practices was also influenced by 

interest in collaboration with various entities, a result which is consistent with previous 

studies (Kobziar et al 2015; Kreuter et al. 2008; McCaffrey and Olsen 2012; Gan et al. 

2015; Thapa et al. 2018). This study suggest collaboration with peers may influence 

perceptions regarding prescribed fire and defensible space use. Collaboration can vary 

from information sharing, coordinating services, and sharing of services between 

homeowners and landowners as well as agencies and organizations. Numerous potential 

advantages of collaborative planning have been reported in prior research, including 

decreased conflict, the discovery of innovative solutions, increased agreement among 

varied interests, and increased capability to achieve goals (Bihari and Ryan 2012; Brummel 

et al. 2010; Reams et al. 2005). One reason could be that collaboration works toward 

educating the public, local communities, and decision-makers about the benefits of 

practices, and enhances communication between officials, fire-managers, and homeowners 
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(Ryan and Hamin 2006). Additionally, if participants are dedicated to continuing their 

engagement throughout the completion of the plan, project, or activity, collaboration 

produces long-term advantages. Social support from peers to engage in fire risk mitigation 

activities may contribute to the willingness to see projects through to completion.  

 

5. Conclusions 
 

This study verified the applicability of using the conceptual model to assess 

respondent intentions and behaviors towards wildfire mitigation using prescribed fire and 

defensible space. The results are in line with our initial predictions regarding the increased 

interest in wildfire management practices. According to the results, some demographic 

characteristics, knowledge regarding management practices, some perceived reasons for 

not implementing prescribed fire or defensible space, and collaboration with other 

homeowners, local organizations, or non-profit organizations, all influence intentions to 

use prescribed fire and defensible space practices. The findings from this study add to our 

deeper understanding of the factors that influence decision-making and suggest a need for 

future research to further understand other factors. The findings of this study have 

implications for designing and implementing policy instruments as well as enhancing 

community members’ decision-making regarding practices to reduce fire risk. This 

research suggests implementing a range of measures, such as establishing a framework or 

a law for wildfire response and recovery that includes provisions for mutual aid agreements 

between local governments and increased funding for firefighting resources, aimed at 

improving wildfire prevention and response. This research also suggests, future research 

should consider additional factors such as prior experience, professional trust, incentive 

programs, environmental concerns, and the accuracy of individuals’ assessment of their 

exposure to and vulnerability to wildfire risk, all of which could influence individuals’ 

intention to apply risk mitigation practices. The findings suggest that additional efforts 

should be made to increase public awareness and knowledge of prescribed fire and 

defensible space in order to expand the use of these strategies for wildland fire 

management. These findings should be tested and expanded upon in future studies, with a 

focus on how the public perceives fire management practices.
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Chapter 3 

A methodology for estimating burn severity in Northern 

California’s Wildland-Urban Interface 
 

 

Abstract 
 

This study introduces a novel methodology for simulating wildfire burn severity 

maps at a 30-meter resolution across Northern California, leveraging empirical data and 

probabilistic modeling to assess the influence of key environmental factors. By applying 

conditional binomial logistic regressions within a generalized additive model (GAM) 

framework, this research evaluates the contributions of biomass, climate variables, and 

topography to estimate burn severity probabilities. Notably, this study utilized the 

composite burned index (CBI) for more accurate severity measurement and circumvents 

traditional method limitations. Through a series of iterative convolutions and the 

incorporation of a wind-distance weighting metric, this study adeptly simulates the spatial 

clustering of high-severity wildfire patches, mirroring the contagious nature of wildfire. 

 Key findings underscore the significant impact of both live and dead biomass, 

alongside climate and topographic factors, on burn severity. The analysis leveraged Akaike 

Information Criterion (AIC) scores to refine model accuracy, demonstrating that the 

inclusion of the wind-distance metric significantly improved model fit, as evidenced by 

substantial reductions in AIC scores across all models. Additionally, this study applied 

FRAGSTATS metric to evaluate the spatial clustering and distribution of high severity 

patches. Results confirmed that the simulation approach effectively replicated observed 

spatial patterns of burn severity, with specific iterations of the model producing high-

severity patch distributions remarkably similar to historical data. This alignment between 

simulated and observed spatial patterns of burn severity underscores the effectiveness of 

the methodology in capturing the true nature of wildfire impacts. The approach 

demonstrated in this study provides a robust framework for generating realistic burn 

severity maps, facilitating the exploration of future wildfire scenarios and their potential 

impacts on landscapes and communities. 

 

 

 

Keyword: Burn severity, Simulation methodology, GAM, CBI, Wind-distance weight 

metric, AIC, FRAGSTATS 
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1. Introduction 

 
In the western United States, wildfire is undoubtedly one of the most important and 

extensive natural disturbance causes. Wildfires in California are becoming more frequent, 

as well as larger and more severe, because of climate change and drought (Westerling et 

al. 2006, Abatzoglou and Williams 2016, Westerling 2016). So too are the ecological, 

social, and economic consequences. Increasing fuel loads due to fire exclusion and other 

management actions, arson ignitions, and population growth-driven spread of human 

settlements into fire-prone vegetation have resulted in increasingly frequent and costly 

wildfires (Graham 2003, Radeloff et al 2005, Theobald and Romme, 2007, Abatzoglou and 

Williams 2016, Goss et al 2020). This has raised the risk of massive destructive flames 

wreaking havoc on human settlements and ecosystems. Depending on the length and 

severity of the wildfire, a variety of essential ecological processes (e.g., tree and vegetation 

mortality) are impacted to varying degrees (Spracklen et al 2009, Cansler and McKenzie 

2014, Hurteau et al 2014). As a result, several areas are paying more attention to post-fire 

management (Ferreira et al 2015, Lasanta et al 2018). For post-fire management, it is 

extremely important to know how severe a fire is. Burn severity is one metric that helps 

put biophysical disruption of vegetation, as well as the socioeconomic consequences of 

fire, into context.  

Burn severity is defined as the magnitude of ecological impacts of fire on vegetation 

(amount of physical change), through combustion and heating (Ryan 2002, Gauthier et al 

2009). The differenced Normalized Burn Ratio (dNBR) is the most used index for 

measuring burn severity (Eidenshink et al 2007, French et al 2008, Parsons 2003). The 

dNBR is a spectral index obtained from the ratio between near infrared and short-wave 

infrared measurements, which are sensitive to vegetation and exposed soil cover (Key and 

Benson 2006). Most burn severity mapping applications to date have subtracted a post-fire 

NBR image from a pre-fire NBR image in an absolute change detection methodology to 

derive the dNBR. However, several problems make burn severity identification difficult 

using dNBR. Some limitations are: there are no defined dNBR threshold values by severity 

class, resulting in a wide range of burn severity interpretations (Kolden et al 2015); 

furthermore, burned vegetation patches are frequently mistaken for non-vegetated surfaces 

in terms of spectral appearance (e.g., rocks and bright soils). Recognizing the need for a 

systematic approach that could be used across several ecosystems and regions, the 

composite burn index (CBI) was developed as a method to visually estimate the ecological 

impacts of fire (Key and Benson 2006). In this study, we used a burn severity metric that 

incorporates CBI field measurements to map potential burn severity within northern 

California (Xu et al 2022).  

The extent of burn severities depends on various factors namely topography 

(elevation, aspect, slope), weather (wind, temperature, fuel moisture), and fuels (stand 

structure, fuel loads, forest species composition) (Ryan 2002, Alexander et al 2006, Miller 

et al 2012, Prichard and Kennedy 2014, Preisler and Westerling 2007, Westerling et al 

2009). Keyser and Westerling (2017 and 2019) found that fire year climate is important to 

estimating burn severity and area burned. Topography affects biophysical gradients such 

as solar radiation and topographic moisture, changing the composition and availability of 
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fuel (Birch et al 2015, Holden et al 2009, Parks et al 2018). A body of studies have 

identified the role of fuels and their influence on burn severity patterns. On the one hand, 

some factors may have a positive influence on one component while having a negative 

impact on another. When climatic circumstances are not extreme, topographic, 

physiographic, and fuel characteristics, for example, may have a substantial influence on 

the severity, but when they are extreme, there may be disagreement (Bigler et al 2005, 

Bradstock et al 2010, Parks et al 2011). The distribution of burn severity, on the other hand, 

is non-linear function of the different factors that influence fire regimes (Parisien et al 2005, 

Salis et al 2014). The system’s non-linearity may enhance certain influences while 

dampening others.  

In this study, we introduce a methodology that combines empirical modeling and 

simulation to aid in the mapping of burn severity for future projections of fire under 

different scenarios. Previous wildfire models have used a process-based approach to 

simulate the effects of different factors on fire spread and its effect (Finney 2001, Lasslop 

et al. 2014, Hurteau et al. 2019). However, such an approach requires high resolution data 

and can be computationally costly, limiting its use for regional assessments of climate 

change impacts that explore many scenarios. This paper proposes a more efficient, 

probabilistic simulation technique that uses empirical modeling to iteratively cluster high 

severity patches and create burn severity maps. Our simulation process aims to capture the 

randomness of burn severity while also accounting for the contagious properties of high 

severity patches. Burn severity maps are the result of a complex combination of factors 

such as weather, climate, topography, and biomass. Thus, this study aims to address what 

variables influence probabilities of burn severity in a wildland urban interface region in 

northern California. This study also aims to identify how biomass simulated at different 

spatial scales influences burn severity classifications. In this study, we describe models to 

conditionally estimate probabilities of burn severity at 30 meters, which will better inform 

management decisions and better aid fire management. The methodology described here 

will build on the framework developed for application in California’s 5th Climate 

Assessment for simulating long-term statistical forecasts of wildfire.   

 

2. Methods 

 
2.1. Data collection 
 

Our study area covered interior northern California, excluding the northern Sierras 

and the Northern Coast (Klamath and Mendocino Forests) (Figure 3). Wildfire burn 

severity was obtained from the Wildfire Burn Severity Emissions (WBSE) dataset. WBSE 

transforms dNBR values to CBI categories to overcome known issues from classified 

product of Monitoring Trends in Burn Severity (MTBS) (Kolden et al 2015, Picotte et al 

2020). CBI values were converted from dNBR values using the linear and Sigmoid B 

regression models developed by Picotte et al (2021) at a 30-meter scale and operationalized 

by Xu et al (2022). CBI values were classified into five severity classes; unburned, low, 

moderate, high, and grass burned. Unburned and grass burned categories were grouped 
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together. WBSE data were obtained for all fires from 1984 to 2020 at 30 meters. To 

efficiently test our model, we randomly sampled roughly 10% of the entire WBSE dataset 

in our desired region at 30 m, giving us n = 4790478 pixels in our modeling dataset. 

High spatial resolution (30 m) gridded climate data were retrieved from colleagues 

at Scripps institution of Oceanography, developed for California’s State Climate 

Assessment. The work presented here is intended to be used with the Fifth California State 

Climate Assesment.  

For this study, we used biomass products generated through simulations using the 

LUCAS (Land-use and Carbon Scenario Simulator) models. The LUCAS model is a 

simulation model that predicts changes in land use and land cover classes. It incorporates 

a stock and flow model to simulate carbon dynamics within a scenario-based framework. 

The simulated data represents standing carbon stocks in different vegetation pools. Three 

biomass products simulated via the LUCAS model were used in this study. Firstly, biomass 

data was obtained from the United States Geological Survey (USGS) (Sleeter et al 2017), 

which was simulated at a spatial resolution of 1km. To align with our modeling goals, we 

used a nearest neighbor approach to rescale it from 1km to 30m. Secondly, biomass data 

that was simulated at 30 m spatial resolution was obtained from the First Street Foundation 

as a byproduct of Research and Development is not used in their annualized Fire Factor 

(FF) Product. This biomass dataset employed the 2016 vintage of the canonical U.S. Forest 

Service (USFS) LANDFIRE fuels dataset (version 2.0) at a 30-meter resolution to assess 

combustible fuels sustaining wildfires throughout the United States. It also involved the 

refinement of the v2.0 LANDFIRE dataset (2014) through the incorporation of 

disturbances spanning from 2011-2023. Additionally, this dataset addresses the 

transformation of fuel classifications within the WUI specifically focusing on conversion 

of non-burnable classes to burnable classes (First Street Foundation 2023).  These two 

biomass layers are a snapshot of tons of aboveground carbon per hectare and are a static 

measure of the amount of biomass in a given location. Thirdly, data from an annualized 

biomass simulation was used, which characterizes carbon annually in aboveground 

biomass pools. It takes into account changes in vegetation growth and mortality (including 

fire and beetle kill events) over time, providing a more dynamic measure of biomass in a 

given location. Biomass layers consist of both live and dead organic pools, which were 

aggregated during model construction. Aboveground biomass was aggregated into two 

classes: ‘Live Heavy ’(merchantable wood and other wood) and ‘Dead Heavy ’(snag 

branch, snag stem, leaf litter, decomposed litter, down branches, and down stems). All 

three biomass products were tested to identify if differences in spatial resolution of 

simulated vegetation would affect fire severity model fit and fire severity simulation 

outcomes. 
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Figure 3: Northern California study region with burn severity maps between 1984 to 

2020 

[Northern California study region with burn severity maps between 1984 to 2020. The 

entire study site had 320 fires. Shaded area are forested regions (Sierra, Klamath and 

Mendocino)]  

 

Topographic data which include elevation, slope, and aspect were downloaded 

from the USDA Forest Service project LANDFIRE. A‘ northness ’variable was calculated 

from aspect. Aspect is the direction that a slope is facing and ranges from 0 to 360 degrees, 

with 0 degrees being due north. To calculate ‘northness’, the aspect value was first 

converted to radians, then the cosine of that angle was taken. The result was a value 

between -1 and 1, with values of 1 indicating cells that face due north and values of -1 

indicating cells that face due south. Existing vegetation type (EVT) was also downloaded 

from LANDFIRE. ‘EVT ’is a classification of land cover and vegetation types based on 

LANDFIRE biophysical settings. 

We also used a metric called WindDist (Di) developed by Sam et al. (2022) to better 

understand the clustering of high severity in wildfires. This variable captures the inverse 

distance between pixel of interest, and neighboring high severity pixels in response to wind 
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direction. Di is calculated using an inverse-distance wind-weighted approach that considers 

neighboring 30-meter pixels that were burned at high severity, up to ten pixels away in all 

directions and as close as 5 pixels away in all directions. 

 The Di metric was used in simulations by first generating a random selection from 

a joint probability model without Di to create a raster of pixel predictions of high severity 

burn patches for a given fire. Di was then calculated for all pixels based on a set of high 

severity candidate pixels, and a new raster generated those accounts for proximity to these 

pixels and wind direction. The simulation included three iterations of clustering, each 

increasing the clustering of high severity pixels into patches. At each step, binary rasters 

were generated from estimated probabilities, and convolution was used to smooth the 

images by applying a weighted smoothing kernel based on distance from a given pixel and 

the mean monthly wind direction at the time of the fire. A threshold was set on the 

continuous raster of 0 to 1 pixel to match a desired fraction in an observed burn severity 

class. Convolution occurred at each step, and tolerance limits were tested for precision in 

matching observed severity fractions of and computational costs when simulating burn 

severity pixels. 

 

2.2. Statistical Model Development and Simulation 
 

We investigated the relationship between various factors on burn severity using 

conditional binomial logistic regressions in the form of a generalized additive model 

(GAM) framework to estimate the probabilities of burn severity at 30m. GAMs are useful 

in identifying non-linear relationships and do not require a priori knowledge of the shape 

of smoothed functions of the predictor variables, which can identify the types of effects 

and non-linear relationship between variables (Wood 2001). We estimated probabilities of 

any given 30 m pixel burning in one of four severity classes: low, moderate, high, and 

unchanged (grass and unburned). We used a stepwise approach to determine the model 

with the optimal set of covariates, based on the lowest Akaike Information Criterion (AIC) 

(Akaike 1974). We used a stepwise method of adding smooth functions to variables to 

capture best fit while removing variables or smooth functions that caused high degrees of 

collinearity. This approach aimed to reduce overfitting and develop the most predictive 

models for each severity classification. The models with lowest AIC scores were 

considered. In this study, all the analyses were performed in the R computing environment, 

with GAM regression using the package “mgcv”.  

The models developed in this study follow three steps (Table 1). The first model 

estimates the probability of a pixel burning at low, moderate, high, or not at all; the second 

model estimates the probability of a pixel burning at moderate or high, given that it did in 

fact burn; and the third model estimates the probability of high severity, given that it was 

not moderate or low burned area.  We employed interactions to add finer specificity of the 

biomass variables. Multiple iterations were required to simulate 30 m burn severity maps. 

The first iteration of these models uses climatic, biomass, and topographic data as 

explanatory variables. The first iteration then uses the severity probabilities to apply a first 

pass and create a raster of all pixels of fire. The second and third iteration adds a calculated 

Di from high severity neighbor variable which is dependent on the outcomes of the first 

iteration of models. The simulation had three iterations (iteration 0 to iteration 2) of 
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clustering, where each additional iteration increased clustering of high severity pixels into 

patches. 

 

Table 4: Explanatory variables that were selected for each of the individual models. 

  Predictors 

Northern California  

Presence of any 

Severity 

(LMH) 

(Elevation, LiveHeavy) + (Slope, northness) + thousand-hour 

dead fuel moisture + (LiveHeavy, EVT)  

Given it burned, M or 

H 

(MH) 

(Elevation, Liveheavy) + (Slope, northness) + (LiveHeavy, 

EVT) + (DeadHeavy, EVT) + Temperature 

Given it was M or H, 

H 

(H) 

(Slope, northness) + (Elevation, LiveHeavy) + (LiveHeavy, 

EVT) + (DeadHeavy, EVT) + thousand-hour dead fuel 

moisture 

Successive 

Iterations* 

Added IDwW variable  

LMH model Yes 

MH model Yes 

H model Yes 

 

 

To simulate high severity pixels, we followed a multistep approach. First, we 

estimated probabilities and generated binary rasters with values of 0 or 1 for each step 

within every iteration. To achieve smoother images, we employed a technique known as 

convolution. This involved applying a weighted smoothing kernel to the binary raster, 

converting it to a continuous raster with values ranging from 0 to 1. The smoothing kernel 

was defined by the distance from a given pixel and the mean monthly wind direction at the 

time of the fire event, summed across neighboring pixels at different focal windows. We 

tested focal window size of 5 x 5 pixels to observe the effects of smoothing on neighboring 

pixels. Through this process, we were able to selectively choose non-random pixels, setting 

a threshold on the raster with continuous values ranging from 0-1, that matched a desired 

proportion of observed burn severity class. The convolution process was repeated for each 

step of the simulation.  

We also conducted tests to determine the tolerance limit of thresholding, which 

refers to the level of precision required for the convolution output to match the predicted 

severity fractions of the simulated fire map. To test the tolerance limit, we used two-percent 

tolerance when simulating burn severity pixels. Level of tolerance affects the degree of 

clustering of pixel of any given severity. We chose two-percent tolerance level as an 
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acceptable due to evidence of strong levels of spatial dependence in burn severity in our 

analyses (after Sam et al 2022). That is, areas close together were more likely to burn at 

similar levels of burn severity than those at distant. Also, when running simulation, the 

tolerance level has significant implications for both accuracy with which we match the 

predicted severity fractions of the simulated fire map and the computational resources 

required for the simulations. This decision is particularly crucial when a large number of 

simulations are required. Therefore, it is essential to carefully choose an appropriate 

tolerance level to ensure both accuracy and efficiency in the simulation process.    

 

2.3. Simulation testing 
 

In order to evaluate the effectiveness of the smoothing iterations and the focal window 

size, we calculated the following metrics: Ripley’s reduced second moment function K(r) 

(K function) for multivariate spatial patterns using the ‘spatstat’ package in R (Baddeley et 

al. 2016, R Core Team 2021), and FRAGSTATS metrics of patch size distributions 

(McGarigal and Marks 1995) using the ‘landscapemetrics’ package in R (Hesselbarth et al. 

2019, R Core Team 2021). Here, we specifically compared the K(r) calculated from the 

observed image to the K(r) calculated from iterated simulations to ensure that we were 

capturing similar levels of observed high severity clustering. Additionally, we also 

calculated a high severity patch metric (patch count) for the observed burn severity map 

and for each iteration of simulation. Comparing patch statistics between the observed map 

and our simulated maps allowed us to test the size of our focal window and the number of 

iterations of smoothing in our simulation technique. 

 

3. Results: 
 

We incorporated data from over 320 fires to describe and explain the probability of 

burn severity. For the burn severity models, we tested for a total of 45 variables. Results 

from burn severity models show that certain annual climatic variables, along with biomass 

and topographic variables influence probabilities of burn severity. All the models were 

statistically significant. The results showed both, the independent and combined effects of 

the variables, note that even where certain variables were not explicitly included in a given 

severity model, they still affect a model that relied on a prior modeling step incorporating 

the variable. Model specifications varied between each severity class, and important drivers 

of each specific model changed (Table 1). The low severity model is conditioned on 

estimating high and moderate severity whereas moderate severity is conditioned on 

estimating high burn severity. Our results highlight substantial variation across models with 

spatially different biomass variables. Inclusion of Di in model increased performance and 

improved AIC scores (Table 5).  
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Table 5: AIC scores for each model with and without Di metric. 

Model AIC without Di AIC with Di Change in AIC 

LUCAS 1 km    

LMH model 58151 55380  -2771 

MH model   242179 193051 -49128 

H model   117779 56408 -61371 

    

FF 30 m    

LMH model 52739 51770 -969 

MH model 232129 189309 -42820 

H model 109138 54635 -54503 

    

LUCAS Annual    

LMH model 56602 55353 -1249 

MH model 241964 192793 -49171 

H model 119783 56702 -63081 

Negative change in AIC score represents improved model fit. 

 

In this study, the number of convolution iterations involved was determined by a 

visual comparison of the simulated fire severity maps with the observed maps. Clustering 

was evaluated using Ripley’s K statistics and the FRAGSTATS patch metric. For our 

analysis, a focal window size of 5x5 was used, and high severity patch counts were 

compared. This focal window was chosen because it yielded patch counts similar to 

historical observations when combined with a single iteration of smoothing (Table 6).  
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Table 6: High severity patch count with 5x5 focal window 

5 x 5 Focal Window Observed Iteration 0 Iteration 1  Iteration 2 

LUCAS 1 km 263194 762177 310223 139532 

FF 30 m 263194 697453 264435 135140 

LUCAS Annual 263194 645428 255715 113845 

 
High severity patch counts with 5x5 focal window and iterations of clustering technique. A high severity 

patch count is counted as two or more contiguous high severity pixels. 

 

Across all three sets of empirical models, we see that the FF 30 m and LUCAS 

annual fit models led to more overall clustering of patches as we see a decrease in patch 

number per simulation iteration. In both cases one iteration of smoothing yielded similar 

patch numbers with a focal window of five.  

During simulations using different biomass datasets, we observed that our method 

could adequately replicate the high burn severity for all sets of biomass models. However, 

FF 30 m model came closest (Figure 4). In most scenarios, either iteration one or two 

captured an appropriate amount of clustering. To test the visual acuity and explore Ripley’s 

K further, we only used the FF 30 m set of simulations for the rest of the study. By limiting 

the analysis to this dataset, we were able to evaluate severity across all classes and ensure 

that the evaluation was consistent across the different simulations.  
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Figure 4: Spatial maps of observed vs predicted burn severity classes (Iteration 01) of 

each biomass model. 

To assess the performance of our modeling approach, we utilized Ripley’s K-

function to compare the point pattern distributions of high severity clustering across all sets 

of models and iterations. By evaluating the K-statistics at each iterative step, on average 

we found, iteration one produced the most comparable results to observed burn severity 

maps (Figure 5). To further evaluate the accuracy of iteration one, we assessed the distance 

r of K(r) at four different distances (3km, 6km, 12km, and 21km), allowing for 

comprehensive comparisons across our simulated maps. Figure 5 illustrates that for all four 

tested distances, iterations one was found to be closer to historical fire severity maps, 

indicating that our approach can effectively replicate areas of high burn severity.  
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Figure 5: Log-log scale of Ripley’s K (observed) x-axis and K(Iteration) y-axis 

Figure 5: Log-log scale of Ripley’s K (observed) x-axis and K(Iteration) y-axis where the 

different colored points correspond to different iterations (Iteration 0, red; Iteration 1, blue, Iteration 

2, green). Equality line shown in black. Each image represents k(r) at different distances, the top left 

image r = 3km, top right r =6km, bottom left r = 12km, bottom left r = 21 km.  (FF 30-m model) 
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We simulated burn severity maps (Figures 6 and 7) and visually assessed the 

results. Our observations revealed that iteration 1 and iteration 2 provided similar maps to 

the historical ly observed ones. Additionally, the application of Ripley’s K function plots 

to each sample fire captured the desired clustering amount via one or two iterations of 

convolution. We found that iteration 1 provided the closest approximation on average to 

the historical clustering of high severity patches. Here in this study, Di metric was 

incorporated after iteration 0 into the empirical models, resulting in improved clustering 

performance. This increase in performance was observed in iteration 1 and is reflected in 

tables 5 and 6 as well as in Figures 6 and 7. 
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             (a) BUTTE 

 

 
Figure 6:  Analysis of the 2015 Butte Fire burn severity shows clustering patterns across 

iterations, closely mirroring the observed data as compared to Random Poisson Model 

Figure 6: The Butte fire in 2015 saw large amount of high severity patches. Burn 

severity maps from left to right are observed, iteration 0, iteration 1, iteration 2. 

The bottom plot is a K(r) plot where solid black line is the observed function, and 

dotted line represents different iterations. Dotted black line is a random Poisson 

function for comparison. As the dashed lines match the solid (observed) line, at 

difference distances r, we observe similar levels of clustering to the observed burn 

severity map. 
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(b) CARR 

 

 
Figure 7: The Carr fire in 2018 saw large amount of high severity patches. Same as 

Figure 6. 
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4. Discussions 
 

Our approach to simulating burn severity maps involved utilizing empirical data to 

inform probabilistic modeling of burn severity and clustering of high severity patches. Our 

analyses provided strong evidence that the probability of various burn severities was 

influenced by a combination of biomass (live and dead biomass), weather and topographic 

variables. Previous studies have demonstrated the significance of biomass and vegetation 

type in relation to fire frequency (Cumming 2001) and burn severity (Collins et al. 2007, 

Hall et al. 2008, Boucher et al. 2016) in the wildland urban interface (WUI). 

Our results highlight those aggregates of live and dead biomass had a stronger 

influence than individual carbon pools in high severity classification. Including dead 

biomass in our model backs up previous research that has shown fuel load to be the most 

critical variable in determining burn severity (Birch et al 2015, Fang et al 2015, Estes et al 

2017, Parks et al 2018). The association between greater biomass (i.e., both live and dead), 

and high burn severity is a straightforward interpretation. Greater biomass is related to 

higher total surface fuel loads (van Wagtendonk 2006, Lydersen et al 2015), potentially 

contributing to higher fire intensity and perhaps severity, and simulated accumulations of 

dead biomass from bark beetle and drought induced tree mortality (Wayman and Safford 

2021) lead to increases in simulated large, severe fires. Dead biomass also was influential 

for moderate burn severity. For low burn severity, live biomass had a significant influence 

and dead biomass had an indirect effect. These relationships can be explained by vegetation 

characteristics. Fire severity is connected to how quickly fuels can regenerate, accumulate 

and desiccate, and as droughts become more intense as a result of climate change (Keyser 

and Westerling 2017, Robins et al 2021), increased mortality and more rapid desiccation 

increase the probability of high severity patches. 

In California, there is a projected decrease in fuel moisture due to a drying trend 

caused by temperature increase, which is expected to affect all types of fuel. Our study 

found that thousand-hour dead fuel moisture, which represents the overall dryness of 

available dead biomass at the time of the fire, had impact on high burn severity. A decrease 

in thousand-hour deal fuel moisture may increase likelihood of frequent and severe 

wildfires. This result aligns with previous research in the western US, suggesting that hot 

and dry climatic conditions can decrease fuel moisture, leading to severe fire conditions. 

One explanation for this may be that heavy fuels might not ignite easily, but when they dry 

out significantly and start to burn, they release a lot of heat and contribute to severe fire 

conditions. 

Studies in the western US revealed that high temperature exacerbates droughts, 

leading to increased water deficit and higher burn severity (Williams et al 2014, 

Abatzoglou et al 2017, Crockett and Westerling 2018). Williams et al. (2014) and 

Abatzoglou et al. (2017) predicted a continued exponential rise in vapor pressure deficit 

due to rising temperatures. Crockett and Westerling (2018) linked increased burned area 

and high severity burned area to drought and beetle induced mortality, with drought 

exacerbated by increasing temperatures and precipitation variability. Our results also 

support a link between burn severity and temperature. Higher temperatures directly impact 

the flammability of fuels, making them more susceptible to ignition in hot and dry 

conditions.  
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Topography, particularly elevation and aspect, played crucial roles in determining 

burn severity probabilities. Our study found that higher elevations were associated with 

lower burn severity, while low to mid elevations had a greater amount of moderate and 

high burn severity. This may be due to deeper soils and greater water holding capacity at 

lower elevations, which support higher densities of biomass. Aspect (northness) was also 

influential, with south-facing slopes being more exposed to fire risk due to receiving more 

solar radiation and having less moisture availability, resulting in drier vegetation.  

Our approach to simulating burn severity maps improved upon previous methods 

that rely on process-based fire simulations (Finney 2001, Lasslop et al. 2014, Hurteau et 

al. 2019), and extend work done by Sam et al (2022) from the montane forests for which 

they modeled fire severity, to the lower, drier elevations with more varied vegetation and 

significant wild land-urban interface development that characterize our study area. We 

demonstrate a computationally efficient technique that utilizes empirical modeling of burn 

severity and incorporates the Di wind-distance weighting metric to cluster high severity 

patches in large fires. Taking into consideration the contagious characteristics of high 

severity fires, our simulation method can generate contiguous high severity clusters that 

exhibit a remarkable similarity to actual burn severity maps. This demonstrates substantial 

progress in our capacity to simulate fire severity at high spatial resolutions across various 

severity classifications using statistical models. 

 

5. Management Implications: 
 

This study can be used to make rapid estimates of severity and its statewide impacts 

and be used to inform management decisions. We suggest that the modeling framework 

used in this study will help researchers and managers to understand the relationship 

between burn severity and environmental variables and predict areas most at risk of high 

severity fire, allowing for proper mitigation and restoration strategies that reduce the 

negative effects of fire. Based on our results, strategically targeting fuel reductions can lead 

to less severe fire effects when fire does occur, especially on lower and warmer landscape 

and in dry forests that experienced frequent fire historically. Simulating realistic burn 

severity maps helps managers to explore the effects that fires can have on the landscape 

and allow to better understand potential changes to ecosystem function and services caused 

by fire. By creating realistic burn severity maps in the wildland urban interface that 

consider environmental factors and their relationship to burn severity, we gain insight into 

factors driving more severe impacts from fires, and provide a tool that allows managers to 

explore large numbers of both scenarios (climate, fuels, development footprint) and 

potential outcomes for each scenario (because many monte carlo simulations can be 

repeated at low cost). 
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6. Conclusions : 
 

In this study we utilized a conditional wildfire burn severity modeling framework 

to simulate wildfire burn severity maps at 30 m resolution. Through the use of conditional 

binomial general additive models and iterative convolutions, we identified key factors that 

influence historical burn severity classes at 30 m, including biomass, climatic variables, 

and topographic variables. This approach enabled us to explore drivers of all severity 

classes and generate realistic burn severity maps comparable to historically observed maps. 

This technique applied is computationally efficient and provides valuable insights for 

planning and mitigating wildfire hazards in the future.  

Differences in the temporal and spatial resolution of simulated biomass influenced 

simulated wildfire severity. The FF 30-meter LUCAS snapshot and the LUCAS 1 km 

annually resolved biomass both improved the AIC scores compared to models using 

LUCAS 1 km snapshot biomass and produced burn severity maps more statistically and 

visually similar to historical severity maps. These models performed well even when 

applied to reconstruct fires outside of the estimation sample. As a result, we expect that a 

single statewide severity mapping model framework could be developed for California 

with similar skill to subregional models such as that presented here or by Sam et al (2023).  

This study will help better inform monitoring and management of potential high 

burn severity risks in urban and wildland-urban interface regions, which are subject to fast 

biophysical changes under climate and anthropogenic factors. The methodology used in 

this study aims to add a more detailed representation of statistical wildfire for simulations 

under different scenarios. Estimation from this study will aid in the development of fire 

risk maps, vulnerability assessments, and resource planning. The findings of this study will 

aid fire managers in identifying areas of concern based on burn severity data, that can then 

be incorporated into management procedures to assist, minimize, and reduce wildfire's 

negative consequences. 
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Chapter 4 

Developing effective wildfire risk visuals: A comparative study of 

static maps and animated simulations. 
 

 

Abstract 

 

This study explores the application of advanced visualization techniques to 

enhance understanding and management of wildfire risks exacerbated by climate change. 

As wildfires increase in frequency, size, and severity due to shifting climate conditions, 

effective risk communication becomes crucial. Utilizing static and animated visualization 

methods, this study integrates historical data and projections to develop a comprehensive 

wildfire susceptibility map and dynamic temporal progressions of wildfire incidence.  

The methodology combines Fire Presence/Absence Model and Fire Size Model 

with high resolution data from the LUCAS and Global Climate Model (GCM), assessing 

fire risk across five California counties. The integration of these models facilitates robust 

simulations of wildfire scenarios, contributing to detailed static and animated 

visualizations that depict the spatial and temporal dynamics of fire spread. 

Results indicate a significant risk in wildfire risk and its coverage, projected to 

worsen by 2041-2050. These findings highlight the critical influence of climate factors 

such as temperature, drought conditions, and vegetation changes on wildfire behavior or 

spread. The study’s visual tool successfully conveys complex data. This research 

underscores the necessity of advanced visual communication strategies in managing 

increasing wildfire risks, proposing a model that could be adapted for global application 

in diverse ecological and climatic contexts.  

 

1. Introduction 

Climate change and drought conditions are leading to an increase in frequency, size, 

and severity of wildfires (Westerling et al. 2006; Abatzoglou and Williams 2016; 

Westerling 2016). Climate-ecosystem interactions are inherently dynamic systems 

characterized by complex interactions between various atmospheric and environmental 

factors (Raymond 2020; Abbass et al. 2022). These interactions give rise to intricate 

feedback loops and nonlinear behaviors, making it challenging to predict with absolute 

certainty how they evolve over time. Climate change further complicates these dynamics, 

altering temperature patterns, precipitation levels, and atmospheric conditions (Bonebrake 

and Mastrandrea 2010; Ebi et al. 2021; Clarke et al. 2022). As a result, wildfire behavior 

and its predictions become unavoidably uncertain. Factors such as changing vegetation 

dynamics, shifting wind patterns, and varying moisture levels greatly influence wildfire 

behavior, making it difficult to precisely predict their occurrence, intensity, and spread 

(Stephens et al. 2007; Miller and Safford 2012; Billmire et al. 2014; Keyser and Westerling 

2019; Sam et al. 2022; Garner and Kovacik 2023). Understanding and managing wildfire 
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risks in the modern context necessitate advanced technological tools that can communicate 

complex data effectively and efficiently.  

 Effective risk communication is vital for fostering public understanding, 

preparedness, and resilience in the face of escalating wildfire occurrences (Bradley et al. 

2014; Cheong et al. 2016; Ma et al. 2023). Therefore, it is imperative to employ advanced 

visualization techniques that transparently convey the wildfire risk information to 

stakeholders and the public, facilitating informed decision-making and adaptive response 

strategies. Data visualization plays a crucial role in modern scientific research as a 

methodological approach for visually representing intricate datasets, thereby enhancing 

comprehension and facilitating decision-making processes (Aerts 2003; Platts and Tan 

2004; Padilla et al. 2015; Padilla et al. 2018; Perdana et al. 2018; Li 2020; Vazquez-Ingelmo 

2024). Through the utilization of images, diagrams, and animations, data visualization 

effectively converts both abstract and concrete data into comprehensible formats, thereby 

aiding in the exploration, management, and interpretation of extensive datasets. A common 

finding in the literature is that different visual representations of the same information can 

lead to performance differences for a wide variety of tasks (Dull and Tegrden 1999; Aerts 

2003; Dong and Hayes 2012; Ajayi 2014; Dambacher et al. 2016; Alhadad 2018; Casenti 

et al. 2019). Furthermore, empirical studies have demonstrated that different visual 

representations of the same dataset can yield performance variations across diverse tasks, 

highlighting the impact of visualization techniques on cognitive processes and decision-

making (Heer and Bostock 2010; Cheong 2016; Abdul-Rahman et al. 2019; Eberhard 

2021). The growing interest in data visualizations has given rise to two main areas of study: 

first, exploring the trends and elements that contribute to the success of these visualizations 

(Ojo and Heravi, 2018, and second, examining how data visualizations affect the way 

readers learn and perceive information (Oh et al. 2018).  

Effective data visualization not only enhances data comprehension but also 

promotes informed decision-making by conveying complex information in a 

comprehensible manner. Visualizations, which are external visual representations 

systematically linked to the information they convey (Bertin, 1988; Stenning & 

Oberlander, 1995), play a crucial role in conveying information. In recent times, there has 

been a growing interest in conceptualizing and addressing risk using various visualization 

techniques. Visualization techniques encompass a variety of methods, including textual, 

static, and dynamic visualizations, which enable stakeholders to comprehend complex data 

and information more intuitively (Pang et al. 1997; Aerts et al. 2003; Thomson et al. 2005; 

Sanyal et al. 2009, Hullman et al. 2019; Padilla et al. 2020; Kamal et al. 2021). By 

transforming raw data into graphical representations, visualization techniques facilitate the 

identification of patterns, trends, and relationships with datasets, empowering decision-

makers to make timely and well-informed choices. Effective risk visualization plays a 

pivotal role in minimizing the adverse consequences of natural disasters (Bradley et al. 

2014; Hanson et al. 2020; Heydari et al. 2021; Khumairoh et al. 2021). The unique 

characteristics of wildfires, including their rapid escalation, unpredictability, and potential 

for long-term ecological impact, necessitate visual communication approaches that go 

beyond traditional methods. Visual communication, with its ability to convey complex 

information quickly and intuitively, emerges as a promising avenue for enhancing public 

understanding of wildfire risks. 
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While several studies have assessed the impact of different types of visualizations 

on decision making, relatively few have systematically compared visualizations to other 

representations, such as numerical or verbal representations. In one of the few studies to 

do so, Cheong et al. (2016) compared visual and numerical representations of uncertainty. 

In this study, participants were given a wildfire evacuation task in which they saw maps or 

numerical probabilities indicating the likelihood that their house would be in the burn zone 

of a wildfire. They found that participants were more likely to evacuate when shown the 

numerical information, making the correct decisions more often. However, when 

participants had to make decisions under time pressure, their performance was significantly 

worse for the numerical information than for the visualization.  

A wildfire mapping is a form of risk communication that relies upon imminent 

danger and fear of injury or loss of property as the primary motivations for protective action 

during a crisis situation (Lundgren and McMakin 2009). The process of receiving and 

understanding risk communication messages and making a decision to take protective 

action is quite complex. While risk is conceptualized in various ways in the physical and 

social sciences, its definition in risk and hazards research often involves at least two basic 

components: the probability that a hazardous event will occur and the probability of 

consequences or impacts stemming from that event (Bostrom et al. 2008; Haimes 2009).  

Static visuals play a vital role in wildfire risk visualization providing clear and 

actionable information to both decision-makers and the public. They are essential tools for 

mapping areas where wildfires pose significant risks to structures and other developments, 

guiding emergency responses and informing preventive strategies (Joslyn and LeClerc 

2013). These maps integrate spatial data to delineate the fire risk areas which is critical for 

effective wildfire risk assessment (Liu et al. 2020; Chuvieco et al. 2023). Moreover, static 

maps aid in communicating complex information such as current and projected risk 

conditions in an understandable format, enhancing risk map comprehension (Lindell 2020). 

Through simplification of complex geographical and climatic data, static maps ensure that 

vital wildfire risk information is accessible and utilizable by a broad audience (Wood 

2021). 

Similarly, animated maps serve as a dynamic tool in wildfire risk visualization, 

enhancing the comprehension and utility of geographic information. These maps provide 

animated sequences that depict the progression of wildfires over time offering an 

invaluable resource for both emergency responders and public information. By integrating 

data on fire size, fire severity, spread patterns, and hazard conditions, animated maps 

facilitate a more interactive and engaging approach to understand wildfire dynamics 

(Harrower and Fabrikant 2008; Cinnamon et al. 2009; Shipley et al. 2013). This 

visualization method improves situational awareness and decision-making by visualizing 

changes as they occur, allowing for timely and effective responses. For instance, the use of 

map animation enhances the ability to track wildfire risk and predict future risks based on 

current and forecasted conditions, thereby supporting protective action planning and risk 

communication (Harrower and Fabrikant 2008; Lindell 2020). Furthermore, animated 

maps can be tailored to show specific elements to such as fire size and burned area, making 

them a versatile tool in risk management (Ghorbanzadeh et al. 2019; Engeset et al. 2022; 

Li et al. 2022).  
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Previous research on wildfire risk and susceptibility mapping has made significant 

strides in understanding and predicting wildfire risk using static and dynamic models. 

However, there are several gaps that this research aims to address more comprehensively. 

Previous studies such as those by Malik et al. (2021) and Brown et al. (2021) have 

developed wildfire risk maps based on various parameters like coarser vegetation, terrain, 

and climate date. However, there is a need for deeper integration of datasets, with finer 

spatial scales. This study intends to employ newer, more robust climate models and 

integrate them with finer spatial scales variables to refine the predictive accuracy of 

wildfire risks. While static maps only provide snapshots of susceptibility, they often lack 

the dynamic progression essential for understanding the temporal trends. This study not 

only explore susceptibility mapping but also extend the models into dynamic 

visualizations. By developing animated visualizations of wildfire incidences, this study not 

only provide the risk representation of fire but also project future trends of wildfire risk. 

By addressing these gaps, this study not only enhance the understanding of wildfire 

risks through more advanced statistical modeling techniques but also improve the utility of 

data produced. The ultimate goal is to create visual tools that are not just reflective of 

current conditions but are also predictive, helping to mitigate future wildfire risks. To 

achieve this goal, this research has following objectives: 

 

Objective 1: Create a comprehensive static wildfire susceptibility map, comparing 

historical wildfire data with projected, to assess changes in wildfire risk over time. 

 

Objective 2: Develop a dynamic temporal progression of wildfire incidence through 

animated visualizations, to elucidate temporal patterns and trends in wildfire risk. 

 

By addressing these objectives, the study aims to enhance understanding of how wildfire 

risks are evolving due to changes in climate patterns and vegetation dynamics, by 

integrating historical data with future projections. This comprehensive mapping will allow 

policymakers and communities to better prepare for and mitigate the impacts of wildfires. 

This study will provide a visual tool that can dynamically represent changes in wildfire 

risks over time, aiding in more effective communication of risk to stakeholders and enable 

more informed decision-making processes. 
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2. Methods: 

2.1.Site Selection: 

 

Five counties of California (Figure 8) were selected for this study, several factors 

were carefully considered to ensure a comprehensive and representative examination of 

wildfire risk. Specifically, the selected counties were chosen based on their similar levels 

of wildfire risk, historical incidences of wildfires, and population density of the west slope 

of southern Sierra Nevada foothills.  

 
 

Figure 8: Study area with 5 counties 

 

 

2.2.Data overview 

 

This study utilizes a comprehensive set of data from multiple sources to assess fire 

risk and simulate wildfire scenarios accurately.  

For this study, biomass products were generated using the Land-use and Carbon 

Scenario Simulator (LUCAS) models. LUCAS is designed to forecasts shifts in land use 

and cover categories and employs a stock and flow model to simulate carbon dynamics 

under various scenario frameworks. The output from these simulations provides data on 

the standing carbon stocks in various vegetation types. This dataset provides detailed 

records of vegetation from 1985-2020. For projections post-2020, data from the year 2020 

are extrapolated to remain static, serving as a baseline for future simulations.  
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Topographic data were downloaded from project LANDFIRE which includes 

elevation, slope, and aspect for understanding the geographical factors that influence the 

fire behavior.  

Climatic data were sourced from UCLA and bias-corrected by Scripps, this dataset 

is integrated using the EC-Earth3-Veg Global Climate Model (GCM). The data was aligned 

to a 3km Teale Albers grid and includes semimonthly aggregates of climate variables. 

 

2.3.Simulation   

This study employed a comprehensive methodology for simulating wildfire 

scenarios (creating fire lists), integrating two primary models: the Fire Presence/Absence 

Model and Fire Size Model. The Fire Presence/Absence Model utilizes variables such as 

dead fuel moisture content (fm1000, fm100), minimum relative humidity (rh_min), 

maximum 10-meter windspeed (wspd10mean), wet/dry status, mean elevation, summed 

southwest aspect (SWAspect), and mean slope percentage logarithm (SlopePercentLog). 

Conversely, the Fire Size Model focuses on variables critical for predicting the extent and 

severity of fire, including minimum wind speed (wspd10mean), mean precipitation 

(precip), and mean of the maximum daily temperature (tmax).  

Data from these models were aggregated by location, year, and iteration, spanning 

over 2000 simulation/iterations to ensure the robustness of the results. The spatial 

allocation of fire data employed a circular fire expansion model, with each fire grown 

algorithmically from its centroid. This was visualized through raster layers for each 

simulated year, which compile all fire instances to depict the comprehensive impact and 

potential reoccurrence of fires across susceptible landscapes. Fire lists were then integrated 

with the EC-Earth3-Veg climate model to provide both historical and projected climate 

data, which were treated as projections to maintain consistency with future scenarios.  

 

 

2.4. Analysis and visualization 
 

2.4.1. Static Visualization 

Maps were created using geospatial analysis techniques in R environment. The data 

comprised of raster images obtained from series of simulations conducted. Each raster layer 

corresponds to a single layer from 2011-2020 and 2041-2050. These raster layers were 

converted into data frames, allowing for manipulation and aggregation of data. The values 

in each raster layer represented the burned area in hectares for each pixel, covering entire 

state of California. The data frames were then merged based on the coordinates (x,y) to 

create a comprehensive dataset covering the entire study area. From this merged dataset, 

new variables were derived, total sum of burned area, the sum was then divided by 2000 

(number of iterations), and then again by 10 (number of years), to create a decadal average. 

These variables provided insights into the spatial and temporal patterns of wildfire 

occurrences over desired two decades. To visualize the decadal average of burned areas, 

the merged dataset was transformed into a raster layer using ‘rasterFromXYZ’ function, 

with a specified coordinate reference system (CRS). This raster layer was then masked to 

the study area boundary using the ‘mask’ function to focus the analysis on the relevant 
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geographic extent (Figure 9 and Figure 10). In the final step, the raster layer was plotted 

alongside the study area, providing spatial context to the data.  

 

2.4.2. Animated Visualization 

Animations were created by leveraging the functionalities of the ‘magick’ and 

‘raster’ packages in R environment. The process of generating the wildfire animation 

involved several key steps. Initially, a color palette was established to visually encode the 

wildfires, with shades of grey representing historical wildfires and red denoting current 

wildfire (Figure 11 and Figure 12), to provide clear visual differentiation and aid in the 

interpretation of the animation. Spatiotemporal wildfire data (generated by series of 

simulations) was retrieved and organized, resulting in a series of raster images 

corresponding to different time points. A custom plotting function was then defined to 

sequentially render these images into geographical backdrop. Nested loops were then 

employed to overlay each raster image onto the background map to manage the temporal 

progression of the animation. Fine-tuning of temporal dynamics, including adjustments to 

parameters such as frame duration to ensure smooth transitions between frames and 

maintain consistency throughout the animation. Additionally, the spatial extent and 

resolution of the animation were carefully considered to balance detail with 

comprehensibility. Finally, the ‘saveGIF’ function was utilized to export the animated 

visualization, encapsulating the spatiotemporal evolution of wildfire.  

 

3. Results and Discussions: 
 

Each mapped visuals showed different likelihood of being impacted by a fire across 

study region. Figure 9 and Figure 10 are the visual output from a complex wildfire 

simulation. The comparative analysis of the average area burned by wildfires over two 

distinct periods, 2011-2020 and 2041-2050, reveals significant changes in the wildfire 

patterns and risk. The first period (2011-2020) shows concentrated areas of high burned 

area, particularly in the Southwest of Stanislaus County where coloration indicates an 

average area burned exceeding 25-30 hectares. The rest of the region displays a moderate 

burned area, with average ranging from 5-15 hectares, as depicted by yellow to orange 

gradient. 

In contrast, the projections for the period 2041-2050 indicate an alarming increase 

in intensity of wildfires and its burned area. The region that previously exhibited the highest 

burned area now shows an even greater average burned area, suggesting that wildfire 

events have become more severe over time. Additionally, the overall distribution of burned 

area has expanded, with a more extensive spread into previously moderate zones. This 

change is evident by the broadening of the red coloration and the enlargement of areas 

shaded orange, indicating and increase in the average area burned across the landscape. 

These results suggest that not only have wildfire occurrences increased, but the severity, as 

measured by area burned, has also intensified, which could be indicative of the broader 

impacts of climate change on wildfire behavior and ecosystem vulnerability. 
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Figure 11 and Figure 12 serves as a dynamic visual aid to illustrate the 

progression and spatial distribution of wildfire incidences over two distinct periods, 

2011-2020 and 2041-2050. The animations are presented in a simple two-dimensional 

color scheme, with boundaries representing specific geographical region. The animations 

show accumulative points of wildfire incidents in two different categories: “All previous 

year Fire” indicated by greyscale and “Current Year Fire” marked by color red. In the 

first decade, 2011-2020, the occurrence of wildfires was relatively sparse and localized, 

as indicated by minimal wildfire footprints. Conversely, the projection for the decade 

2041-2050 illustrates a significant increase in large wildfires. The large footprints of the 

wildfires indicate a more aggressive fire regime, with a notable concentration of wildfires 

occurring within the central region of the mapped area. This intensification aligns with 

predictions of increased wildfire activity under changing climate conditions, underscoring 

the influence of temperature, elevations, dryer conditions, and potential shifts in 

vegetation patterns.  

 

Figure 9: Average area burned in the year 2011-2020                

 
Figure 10: Average area burned in the year 2041-2050                
Figure 10: Average area burned in the year 2041-2050 
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The findings from this study underscore significant transformation in wildfire risk 

across the designated region between two distinct periods, 2011-2020 and 2041-2050. 

These transformations reveal not only an intensification in wildfire risk but also an 

expansion of affected areas, indicating a profound shift in fire ecology possibly driven by 

climate changes. The findings of this study resonate with and are supported by a wealth of 

research in the fields of wildfire modeling and risk management. 

Firstly, the increasing wildfire risk and severity are closely linked to climate 

change. According to a study by Vilar et al. (2018), their models predict a rising trend in 

wildfire occurrences across different regions, emphasizing the need for robust predictive 

tools that incorporate regional climate variabilities. Similarly, a report by Environmental 

Protection Agency (EPA) (2022) highlights that climate change has not only lengthened 

the wildfire season but also increased the frequency and total area burned, corroborating 

our observations of escalating wildfire risks from our models. Moreover, the study by 

Gutierrez (2021) specifically examined the response of wildfire incidents to changing daily 

temperature extremes, projecting an increase in fire number by the 2040s due to rising 

summer temperatures. This is particularly relevant to our projections for 2041-2040, where 

we observe an increase in size of wildfires, signaling a shift towards more aggressive fire 

regimes as global temperatures continue to climb.  

 Collectively, these studies offer a robust scientific foundation supporting our 

analysis and projections. By integrating historical data with predictive modeling, this study 

contributes to the deeper understanding of how wildfire risks are evolving and underscores 

the importance of policymaking to safeguard both natural ecosystems and human 

communities from the impending increase in wildfire occurrences.  

 

 

Figure 11: Temporal progression of wildfire 
incidence from 2011-2020. 

Figure 12: Temporal progression of wildfire 
incidence from 2041-2050. 
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4. Future research 

 

The findings from this study lay a solid foundation for future research in the field 

of risk communication, particularly concerning natural disasters like wildfires. Future 

investigations could expand on the comparative analysis of static and animated visuals to 

assess their potential in enhancing risk perception and decision-making processes. Future 

studies should consider diversifying the demographic and geographic scope of participants 

to include a wider range of socio-economic backgrounds, educational levels, and cultural 

contexts. This expansion would provide a more comprehensive understanding of how 

different communities perceive and react to wildfire risks, potentially uncovering unique 

challenges and needs that could inform more tailored communication strategies.  

The results from this study will be used (second phase) (Appendix 3 and Appendix 

4) to investigate the effectiveness of two distinct visualization techniques in 

communicating wildfire risk information and explore their impact on risk perception. This 

study will utilize static image representations and dynamic animations to convey wildfire 

risk data. To measure effectiveness, further study will focus on: Comparative effectiveness; 

Risk perception and decision making; Accuracy of understanding. Specifically, future 

study will; 1) assess how well static and animated visuals convey wildfire risk information; 

2) determine the impact of communication methods on stakeholders’ risk perception and 

decision-making; and 3) identify possible misunderstanding/misinterpretation using 

different risk communication forms. 

 

5. Conclusions 

 

This study has addressed wildfire risks through the application of advanced 

visualization techniques and data analysis methods. By comparing historical wildfire data 

with projected trends, this study has created a static wildfire susceptibility map and 

developed animated visualizations to dynamically represent wildfire progression. These 

tools have enhanced the understanding of temporal and spatial patterns in wildfire activity 

or patterns, as demonstrated by the results. 

The study findings indicate an increase in the frequency, intensity, and geographical 

spread of wildfires over time, especially projecting a severe rise in these parameters by 

2041-2050. This transformation underscores the profound impact of climate change on 

wildfire dynamics and emphasizes the critical need for innovative strategies in risk 

communication and management. The combination of static and animated mapping 

techniques not only improve situational awareness but also facilitate a more interactive 

approach to understand and manage wildfire risks. In conclusion, by advancing the 

methodologies for visualizing and analyzing wildfire risks, this study contributes 

significantly to the field of wildfire science. This study offers a promising pathway for 

enhancing the resilience of societies to the growing threat of wildfires, ensuring that 

communities can better prepare for, respond to, and recover from these increasingly 

frequent and natural disasters.   
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Chapter 5 

Dissertation Conclusion 
 

 The escalating threats posed by wildfires, exacerbated by climate change and the 

expansion of the WUI, necessitate an integrated approach to wildfire management, 

combining community involvement, advanced modeling, and effective risk 

communication. The study presented in this dissertation illuminate the multifaceted nature 

of wildfire risks and the crucial elements required to foster a comprehensive wildfire 

management strategy.  

 The study underscores the significance of understanding community perceptions 

and attitudes towards wildfire management practices. Findings reveal a general interest in 

adopting wildfire management practices, such as defensible space and prescribed burning, 

contingent on socioeconomic characteristics, knowledge level and perceived barriers. 

These insights highlight the need for targeted education programs and policy interventions 

to enhance community engagement in wildfire mitigation efforts, addressing barriers and 

leveraging collaborative opportunities. 

 The development of novel methodology in this dissertation for estimating burn 

severity in Northern California’s WUI represents a significant advancement in our ability 

to predict wildfire outcomes. By incorporating factors such as biomass, topography, and 

weather conditions, this approach enables a more precise analysis of burn severity patterns, 

facilitating improved resource allocation and mitigation strategies. The methodological 

innovation underscores the importance of empirical modeling and simulation in enhancing 

our understanding of wildfire dynamics and informing post-fire management decisions. 

 Other study of this dissertation represented a significant step forward in wildfire 

risk management by integrating advanced visualization techniques with comprehensive 

data analysis. The development of static and animated visualizations has allowed for a 

deeper understanding of wildfire risks, illuminating the increasing threat posed by climate 

change. These visualization tools have proven to be crucial in improving situational 

awareness and facilitating proactive wildfire management. As the frequency and intensity 

of wildfires are projected to escalate, particularly by 2041-2050, this research underscores 

the urgency of adopting innovative communication and management strategies.    

 The convergence of social, scientific, and communicative aspects of wildfire 

management within these studies advocates for an integrated approach to addressing 

wildfire risks. By combining insights into community perceptions, advancing burn severity 

prediction methodologies, and utilizing effective risk visualization techniques, we can 

foster a more informed, prepared, and resilient response to wildfire threats. This integrated 

strategy not only enhances our understanding of wildfire dynamics but also empowers 

communities and policymakers to implement effective mitigation and preparedness 

measures. 

 In conclusion, the insights gleaned from these comprehensive studies provide a 

robust foundation for advancing wildfire management practices. By fostering an integrated 

approach that encompasses community engagement, scientific innovation, and effective 

visualization, we can enhance our collective resilience to the escalating threat of wildfires. 

Future efforts should focus on bridging the gap between research findings and practical 
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applications, ensuring that the insights gained from these studies inform policy decisions, 

community practices, and communication strategies aimed at mitigating wildfire risks and 

enhancing public safety.  
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Appendix 

APPENDIX 1: KEY INFORMANT INTERVIEW QUESTIONS 

(Chapter 2) 
 

Name: 

Title: 

Time in position: ________ years 

Length of time in community: ______ years 

State and County: 

Email:  

 

A. Opening Questions 

• Please tell us your name and, and how long you have been a resident here. 

• Please tell us if you have personally experienced an emergency situation 

involving wildfire. 

 

B. Introductory Questions (Framing the wildfire issue/Problem Issue) 

 

i. When you think of wildfires, what comes to mind? 

ii. What have your experiences been with wildfires? 

iii. In your experiences, what do you think are the impacts of a wildfire, broadly? 

• Impacts forest ecosystems 

• Impacts human health 

• Impacts human safety 

• Impacts private property 

• Impacts public property 

• Impacts local economy 

• Impacts communities 

• Impact water quality 

• Impact air quality 

• Impact wildlife 

 

iv. Were you impacted by the 2018 Ferguson Fire? How were you impacted?  

• How was the community impacted 

(For example: House was burnt, roads were closed, schools were closed, etc.) 

 

 

C. Key Questions 

1. Do you see wildfire as a problem? 

2. How do various groups in your community view the wildfire problem-issue? 

3. To whom do people attribute responsibility for the wildfire problem-issue and/or 

possible measures to reduce risk or threats, as they see them? 
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4. Do you think community members are actively managing the fuels/vegetation? 

b. How common is it for community members to get involved in fire and fuel 

management practices? What kind of practices? 

c. Has the use of different management practices increased or decreased? 

 

5. Motivations to apply different practices (these questions are general or too broad/ 

make these questions specific to one practice) 

i. What conditions would need to exist in your community, in order for you and 

others to develop a productive dialog on wildfire issues and/or any actions to 

reduce community risks? [Example:  sense of participation for productive 

outcomes, access to information or knowledge, etc. (There could be many 

other types of conditions)]. 

ii. What would it take to get community involved in applying different practices? 

 

iii. Should the community members have more protection from liabilities 

associated with those practices? Why or why not? 

iv. How well do community get along with government agencies? 

• What have government agencies done to promote fire management practices? 

If nothing has been done, why do you think so? 

v. Would one community be interested in working with a nearby community 

with similar effects from wildfire? 

• What would be the benefits/ challenges to this? 

 

6. Fire Education Needs and Preferences 

i. Are you aware of any educational programs for community about wildfire 

and management practices to mitigate the effect of wildfires? [what kind of 

awareness programs] 

ii. What do members of your community need to know to begin talk 

productively about the wildfire issues and potential measures to improve 

community safety? 

iii. Where do people prefer to obtain information about community issues of this 

nature? (Radio, TV, newspaper, workshops, etc.) 

iv. Are you, or others you know, willing to be a part of a monitoring group that 

would visit sites where efforts are being made to reduce wildfire risks in your 

community as a part of a learning dialogue? 

 

 

D. Ending Questions 

• Moderator will provide a summary of the comments regarding the key questions. 

o Are there any other important points that we might have missed? And 

would you like to add any other significant points? 

o Are there any other factors that you think are important in terms of 

preparing a community for emergency like wildfire? 
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APPENDIX 2: SURVEY INSTRUMENT (Chapter 2) 
 

Thank you for your participation in this survey. The study is being conducted by faculty 

and researchers at the University of California, Merced Department of Environmental 

Systems. Your participation is essential to ensure that opinions and actions of community 

members are represented. For the study to be valid, we need to know about the full range 

of opinions and situations of the respective community. While your participation is 

voluntary, you can help us very much by sharing your experiences and opinions. 

 

 

GENERAL QUESTIONS 

 

1. Do you own, lease and/or manage home and land? 

 Yes   

(i) Own   (ii) Lease            (iii) Rent 

 

 No  

If your answer is no, please stop here and you can exit the survey. Thank 

you for your time. 

 

2. Please indicate the approximate total number of acres you own, lease and/or 

manage: 

 Less than 1 acre      26- 50 acres 

 1-5 acres       51- 100 acres 

 6-10 acres       More than 100 acres 

 11-25 acres 

 

3. How long have you owned, leased and/or managed this land? 

 Less than 5 years 

 6- 10 years 

 11-15 years 

 16- 30 years 

 More than 30 years 

 

4. What is the primary uses and goals for this land?  

(Please check all that apply) 

 Office site       Hunting 

 Primary Residence  (Zip code: ___________)  Timber production 

 Secondary Residence     Wildlife habitat 

 Recreation       Not currently in use 

 Other – Please specify: 

_______________________________________________ 
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5. What management techniques have you employed in your land? 

(Please check all that apply) 

 Landscape improvement     Timber 

harvesting/removal 

 Bush-hogging/mowing     Prescribed burning 

 Defensible space      Trail improvement 

 Timber stand improvement    Other – Specify: 

____________ 

 

 

WILDFIRE QUESTIONS 
 

Specific to this survey, “WILDFIRE” is defined as a fire that occurs naturally (e.g., 

lightning strike), fire that was set for management purposes that becomes uncontrolled, 

fire set with malicious intent (e.g., arson) or fire due to negligence/accident. 

 

1. In what extent are you familiar with the term “Wildfire”? 

(i) Not at all (ii) Not much  (iii) Some (iv) A lot 

 

2. In your opinion, how would you rate the level of risk from wildfire on this land? 

(i) Very Low (ii) Low   (iii) Average 

(iv) High  (v) Very high  (vi) Don’t know 

 

3. What factors influenced how you rated your wildfire danger? 

(Please check all that apply) 

  Number of trees, grass or other fuels located on the property 

  Proximity of trees and/or fine fuels to structures located on the property 

  Proximity to local fire suppression units/fire stations 

  Proximity to local bodies of water such as ponds, lakes, streams, and water 

bodies 

  Other – please specify in the space provided here: 

________________________ 

      

__________________________________________________________________ 

 

4. Regarding wildfire damage, what are your specific concerns?  

(Please check all that apply) 

   Loss of human life     Damage to structures 

  Loss of wildlife     Loss of timber 

  Loss of wildlife habitat    Damage to soils (e.g. Erosion) 

  Loss of land – related income from timber sales and/or business (e.g. tourism) 

  Other – Please specify: 

_____________________________________________ 
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5. Have you ever experienced wildfire on or nearby this land? 

 Yes 

 No 

 

 

6. If you answered Yes to question 5, what was the source of wildfire(s)? 

(Please check all that apply) 

 Lighting strike        Arson 

 Brush pile or leaf burns that became uncontrollable    Unknown 

 Prescribed burn that became uncontrolled 

 Negligence (e.g. campfire left unattended) 

 Other – Please indicate: ___________________________________________ 

 

 

7. Since owning this land, what is the closest a fire has come to it?  

 On the property      Up to the property line 

 Within 1 mile      Between 1 and 5 miles 

 Between 5 and 10 miles     Not sure 

 

 

8. Since owning this land, have you noticed changes nearby in “number of fires”? 

 Yes      No     Not sure 

 If Yes is it increasing or decreasing? __________________ 

 

 

9. Since owning this land, have you noticed changes nearby in “the size of fires”?  

 Yes     No     Not sure 

 If Yes is it increasing or decreasing? __________________ 

 

 

10. Since owning this land, have you noticed changes nearby in “accumulation of 

flammable weeds, brush, and other fuel loads”? 

 Yes     No     Not sure 

 If Yes is it increasing or decreasing? __________________ 

 

11. Since owning this land, have you noticed changes nearby in “risk of fire to 

houses in community”? 

 Yes     No     Not sure 

 If Yes is it increasing or decreasing? __________________ 
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12. Experience with Fire (Please check all that apply) 

Experience with fire This 

year 

1 

year 

ago 

2 

Years 

ago 

3-5 

years 

ago 

Over 

5 

years 

ago 

Never 

Have you ever been evacuated 

from house due to wildfires? 

      

Has your property ever been 

damaged by wildfire? 

      

Have you ever been evacuated 

from a previous home due to 

wildfire? 

      

Has wildfire ever damaged a 

previous home of yours? 

      

 

 

13. Future chance of Wildfire  

What is your best 

guess about the 

chance of wildfire 

happening in the 

next 5 years?  

Very 

unlikely 

to 

happen 

Unlikely 

to 

happen 

Likely 

to 

happen 

Very 

likely 

to 

happen 

Certain 

to 

happen 

Not 

sure 

A wildfire will occur 

in your community 

      

A wildfire in your 

community will reach 

your property 

      

A wildfire in your 

property will reach 

your house 

      

A wildfire that 

reaches your house 

damages it 

      

A wildfire that 

damages your house 

will destroy it 
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PRESCRIBED FIRE QUESTIONS 
 

“Prescribed Fire” is the specific use of fire to accomplish a management objective under 

low risk environmental conditions. In contrast, wildfire can occur under any set of 

conditions and carries a high risk of causing property damage. 

 

1. To what extent are you familiar with the term “Prescribed Fire”? 

(i) Not at all (ii)    Not Much         (iii) Some         (iv) A lot 

 

2. To the best of your knowledge, what is your level of agreement on the effects of 

prescribed fire? SCALE – (1) Strongly Disagree   (2) Disagree    (3) Somewhat 

Agree      (4) Agree   (5) Strongly Agree      (9) Don’t know/ No opinion 

 

Effects of Prescribed Fire 1 2 3 4 5 Don’t 

know 

(1) Endangers wildlife/ human life       

(2) Removes accumulated material on 

the ground to prevent wildfire 

      

(3) Maintains natural balance in the 

ecosystems 

      

(4) Easily gets out of control and 

becomes wildfire 

      

(5) Improves access to forested lands       

 

 

3. What is your perception of the manageability of prescribed fire? SCALE – (1) 

Strongly Disagree   (2) Disagree    (3) Somewhat Agree      (4) Agree   (5) 

Strongly Agree      (9) Don’t know/ No opinion 

 

Prescribed fire 1 2 3 4 5 Don’t 

know 

(1) Rarely burn at the intensity planned       

(2) Rarely harm desirable timber when 

properly executed 

      

(3) Rarely stay confined to the targeted 

area 

      

(4) Are not really “controlled” at all, and 

successful burns are merely good 

luck 

      

(5) Are fast and efficient methods for 

achieving a variety of land 

management goals 
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4. Have you or your neighbors used prescribed fire on your respective land? 

 (Please check all that apply) 

 Yes, I have 

 No, I have not. 

 Yes, my neighbors have. 

 No, my neighbors have not. 

 Don’t know 

 

5. If you answered YES to previous question, did the prescribed fire have the desired 

management outcome? 

(i) Yes, prescribed fire went as planned 

(ii) No, at least one prescribed fire produced undesirable result 

Please explain briefly: 

_______________________________________ 

(iii) Don’t know 

 

6. Are you aware of any laws in your state regarding the use of prescribed fire? 

(i) Yes      (ii) No 

 

 

7. Of the following who do you trust to implement a prescribed fire on private 

property. 

(i) The property owner who is not a state-certified prescribed burn manager 

(ii) The property owner who is a state-certified prescribed burn manager 

(iii) A public forester who conducts the burn as part of a wildfire fuel reduction 

program 

(iv) A forester who is a state-certified prescribed burn manager. 

 

8. In your opinion, who should be responsible for conducting prescribed fire? 

(Please check all that apply) 

 The landowner     Local government 

 State of California     The Federal Government 

 Private land management consultants  Other (specify) 

 

 

9. To the best of your knowledge, how would you describe the degree of legal 

responsibility of people who conduct prescribed fire? 

(i) Insufficient (needs to be stricter) 

(ii) Sufficient 

(iii) Too strict (limits the amount of burning needed) 

(iv) Don’t know 
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10. How important are the following factors in your decision NOT to implement a 

prescribed fire? Please indicate if each of the following issues are (1) Very 

unimportant, (2) Unimportant, (3) Somewhat important, (4) Important, (5) 

Very important, and (9) Don’t know 

Factors 1 2 3 4 5  Don’t 

know 

(1) Property size not big enough        

(2) Lack of technical 

knowledge/assistance/equipment 

       

(3) Prefer to use herbicides        

(4) Use mechanical methods only        

(5) Issues with smoke        

(6) Potential liability        

(7) Cost-related issues        

 

 

 

DEFENSIBLE SPACE QUESTIONS 
 

A “defensible space” is an area around a building in which vegetation, debris, and 

other types of combustible fuels have been treated, cleared, or reduced to slow the 

spread of fire to and from the building. 

 

In what follows, the inner zone includes the house and 30 feet around it. 

 

The outer zone extends from the 30-foot inner zone to 100 feet from the house. 

 

1. To what extent are you familiar with the term “defensible space”? 

(i) Not at all (ii)    Not Much        (iii) Some         (iv) A lot 

 

2. Is there good road access to your house so that fire engines could easily pass other 

vehicles? 

(i) Yes  (ii) No   (iii) Don’t know 

 

3. Do you have water supply for fire (hydrant, tank, pond, ditch) within 30 feet of 

your house?  

(i) Yes  (ii) No   (iii) Don’t know 
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4. About maintaining defensible space. SCALE – (1) Strongly Disagree   (2) 

Disagree    (3) Somewhat Agree      (4) Agree   (5) Strongly Agree      (9) Don’t 

know/ No opinion 

 

 1 2 3 4 5 Don’t 

know 

I am (or could be) good at doing defensible 

space actions 

      

I am (or could be) good at hiring competent 

people to do them for me 

      

I do most defensible space actions as part of my 

routine 

      

 

 

 

Defensible space in inner zone (the house and 30 feet around 

it) 
 

5. Does your house have? 

 

Q. Does your house have? Yes No Don’t 

know 

Does 

not 

apply 

 If No, do 

you plan to? 

(Yes/No) 

Fire Resistant Roof (tile, 

cement, asphalt) 

      

Fire-resistant sliding (cement 

fiberboard, brick) 

      

Sparks arrester or chimneys       

Vents covered with mesh       

 

6. Did you spend money during 2017 and 2018 on your house specifically to reduce 

fire risk? 

 Yes    No   If Yes, How much: 

$______________ 
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7. What is in the inner zone around your house? 

 None Little Some Most  Lots All 

Green lawn       

Rock/sand/other non-

flammable 

landscaping materials 

      

Invasive species and 

weeds 

      

Leafy trees       

Bushes        

Shrubs       

 

 

8. When have you done the following in your inner zone? 

(Please check all that apply) 

 2019 2018 2017 2016 Earlier  Don’t 

plan 

to 

Plan 

to 

Clear brush and 

pruned 

overgrown 

shrubs and trees 

        

Clear leaves and 

needles from 

rood and gutters 

        

Clear out grass 

and invasive 

species 

        

Clear wood piles 

and other scrap 

wood 

        

Maintain a green 

lawn 

        

Prune low 

hanging branches 

        

 

 

Defensible Space in the Outer Zone (30 feet to 100 feet beyond 

house) 
 

9. During 2017 and 2018 wildfire did your outer zone include… 



 75 

 

During 2017 and 

2018 wildfires did 

your outer zone 

include … 

None Little Some Most  Lots All 

Green lawn       

Rock/sand/other non-

flammable 

landscaping materials 

      

Dead trees and shrubs       

Leafy trees       

Heavily overgrown 

bushes  

      

Shrubs       

 

 

 

10. When have you done these in your outer zone?  

(Please check all that apply) 

 2019 2018 2017 2016 Earlier  Don’t 

plan 

to 

Plan 

to 

Clear dead trees 

and shrubs from 

this area 

        

Prune or trim trees, 

shrubs and plants 

        

Clear brush and 

dead grasses 

        

Maintain a green 

and well-watered 

landscape 

        

Install fire-resistant 

landscaping (rock, 

sand)  

        

 

 

 

 

 

11. About “defensible space”, why not do more to your house or property? SCALE –             

(1) Strongly disagree,   (2) Disagree,    (3) Somewhat Agree,  (4) Agree,  (5) 

Strongly Agree,        (9) Don’t know/No opinion 



 76 

 

 1 2 3 4 5  Don’t 

know 

(1) Already done enough to the house        

(2) My inner zone already protects the 

house well 

       

(3) My outer zone already protects the 

house well enough 

       

(4) Defensible space on nearby properties 

is enough to protect my house 

       

(5) Would be pointless, risk is too high 

from surrounding properties 

       

(6) It would cost more than I could gain        

(7) The outer zone around my house is 

not in my property 

       

 

 

12. Does any of the following factors affect your choice to do more defensible space 

practices? Please indicate if each of the following issues are (1) Very unimportant, 

(2) Unimportant, (3) Somewhat important, (4) Important, (5) Very important, 

and (9) Don’t know 

 
13. Would you be more likely to work on defensible space if? 

SCALE – (1) Very unlikely   (2) Unlikely    (3) Somewhat likely     (4) Likely   

(5) Very likely      (9) Don’t know/ No opinion 

Factors 1 2 3 4 5  Don’t 

know 

(1) Expense or cost        

(2) Too little time        

(3) Don’t tend to think about the risk of 

wildfire damage very much 

       

(4) Don’t want to make my house less 

attractive 

       

(5) Don’t want to make my landscape less 

attractive 

       

(6) Changing landscape may reducing my 

privacy 

       

(7) Concern about wildlife habitat        
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 1 2 3 4 5  Don’t 

know 

(1) Your nearest neighbor does        

(2) Other neighbors do        

(3) Respected community members do        

(4) Insurance rates are low to maintain         

(5) You knew where to start        

(6) You knew which actions would be most 

effective for you 

       

 

 

Attitudes about wildfire management 
 

1. Indicate your level of agreement.  

SCALE – (1) Strongly Disagree   (2) Disagree    (3) Somewhat Agree      (4) Agree   

(5) Strongly Agree      (9) Don’t know/ No opinion 

Factors 1 2 3 4 5  Don’t 

know 
(1) Risks of an escaped fire associated with 

prescribed fire are negligible if fire 

managers follow established guidelines 

       

(2) Benefits of prescribed fire outweigh the 

potential harm of an escaped prescribed 

fire 

       

(3) A large commitment [agency] to reduce 

heavy fuels would help reduce the need 

for aggressive fire suppression in the 

future 

       

(4) When fire threatens homes and other 

private property, managers should only 

try to protect those structures when the 

probability of success is high 

       

(5) Whether or not a fire management 

strategy achieve its objectives is largely 

determined by the actions of managers 

and fire crews. 

       

(6) Letting a fire burn, rather than 

aggressively suppressing a fire, is a good 
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way to reduce the costs of managing 

wildland fires. 

(7) Limiting the amount of resources used to 

suppress a fire is likely to increase a 

fire’s potential damage 

       

(8) Limiting the amount of resources used to 

suppress a fire is likely to reduce the 

risks of injury or fatalities for firefighters 

       

(9) It is the responsibility of individual 

private landowners to take actions that 

reduce the risk of fire on their property, 

like creating “defensible space” 

       

(10) It is the responsibility of the Forest 

Service to invest in large-scale 

suppression efforts to protect private 

property within fire-prone areas. 

       

 

 

 

 

 

2. How important are the following factors when deciding how to manage a fire?  

SCALE- (1) Very unimportant, (2) Unimportant, (3) Somewhat important, (4) 

Important, (5) Very important, and (9) Don’t know 

 

Factors 1 2 3 4 5  Don’t 

know 
(1) Reducing heavy fuel loads        

(2) Encouraging beneficial effects of fire for 

wildlife habitat, plant life, and ecological 

values 

       

(3) Minimizing damage to ecological values        

(4) Protecting private property        

(5) Ensuring the safety of firefighting personnel        

(6) Total cost of suppression efforts        

 

 

PLACE ATTACHMENT 
 

“Sense of Place” Items Strongly 

Disagree 

Disagree Somewhat 

Agree 

Agree Strongly 

Agree 

Not 

sure 
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(1) I would rather live 

somewhere else 

      

(2) I have no particular feeling 

[love] for this place 

      

(3) I do not really feel like I 

am from this place 

      

(4) I (always) feel like I belong 

here 

      

(5) I am emotionally attached 

to this place 

      

(6) I wouldn’t substitute any 

other place for doing what 

I do here 

      

(7) I identify with the goals of 

this (community) 

      

(8) I identify with the lifestyle 

and values of the people 

who live here 

      

(9) I have (am willing to) 

invest(ed) my heart and 

soul in this place 

      

(10) I would make (have made) 

personal sacrifices to save/ 

protect/ preserve/ maintain 

this place. 

      

 

 

 

 

 

 

 

 

 

 

 

SOCIODEMOGRAPHICS 
 

1. In what year were you born? _____ (year) 
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2. Gender?  

(i) Male 

(ii) Female 

(iii) I do not wish to say 

 

3. What is your race/ethnicity? 

(i) African American 

(ii) Caucasian 

(iii) Asian 

(iv) Hispanic/ Latino 

(v) Native American 

(vi) Other (Specify) 

(vii) I do not wish to say 

4. What was the last level of education that you completed? 

(i) Less than High School 

(ii) High School (or equivalent) Graduate 

(iii) Some College or Post-High School Trade School 

(iv) College Graduate 

(v) Graduate School or other Post College Degree 

(vi) Other (Specify) 

(vii) I do not wish to say 

 

5. Including yourself, how many individuals live in your household who are: 

(i) 18 years of age or less?  ________ 

(ii) 19 to 59 years of age? ________ 

(iii) 60 years of age and older? ________ 

 

6. How long have you owned or rented your property in the community? ______ 

years 

 

7. What kind of home do you live in? 

(i) Single family home 

(ii) Mobile home/trailer 

(iii) Townhouse/duplex 

(iv) Apartment 

(v) Other (specify) 

 

 

 

8. How do you describe yourself politically? Would you say you are? 

(i) Liberal 

(ii) Moderate Liberal 

(iii) Conservative 

(iv) Moderate Conservative 

(v) Refused 
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(vi) Don’t know 

 

9. What was your total household income (before taxes) in 2018? Would you say: 

(i) Less than $15,000 

(ii) $15,000 but less than $25,000 

(iii) $25,000 but less than $50,000 

(iv) $50,000 but less than $75,000 

(v) $75,000 but less than $100,000 

(vi) $100,000 but less than $150,000 

(vii) $150,000 or more 
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APPENDIX 3: STATIC VISUALIZATON SURVEY 

INSTRUMENT (Chapter 4) 
 

BLOCK 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Important Information about the survey –  
PLEASE READ! 

 
Welcome to our research survey. We are exploring perceptions of wildfire risk across 
five counties of California State, as shown in the map. The purpose of this survey is to 
better understand whether people like you would benefit from new types of 
information in wildfire risk. This study uses modeling techniques to predict wildfire 
risks and examines how visual representation of this data might influence public 
perception. Specifically, the survey focuses on wildfire maps that shows historical and 
future fire risk. It may be costly to develop new information, and we want to make 
sure it is worthwhile to do so. 
 
You do not need any special knowledge about wildfire and its risk to respond to any 
of the questions. We want to learn about how you interpret and use wildfire risk 
information, and what are your opinions about the presented information. 
 
Two scenarios will be presented for your consideration: First reflects the historical 
wildfire risk simulation from year 2011-2020; and second reflects the projected 
wildfire risk simulation in near future (2041-2050).  
 
We will use your responses to guide future research related to wildfire risk 
communication to provide better information for you, so your responses are very 
important for us. All your responses will remain anonymous. None of the information 
or opinions you provide can be linked back to you, so please respond as honestly as 
you can.  
 
                   Thank you for taking the time to complete the survey! 
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Figure showing the 5 counties selected to create various maps to include in survey 

 

In this study, you will be randomly assigned with different scenarios depicting wildfire risk 

and communication method. Your task is to provide feedback on how well the presented 

method communicates the uncertainty and severity of wildfire risk. Your participation will 

play a crucial role in enhancing wildfire risk communication strategies, ultimately 

contributing to better preparedness and safety measures for communities like yours. 
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BLOCK 2 
 

General Information 
 

1. In what year were you born? _____ (year) 

 

2. Gender:  

a. Male 

b. Female 

c. Non-binary 

d. Prefer not to say 

 

3. What is the highest level of education you completed? 

a. Some high school 

b. High school graduate 

c. Some college 

d. College graduate 

e. Postgraduate 

 

4. How often do you use maps or visual data in your daily life or profession? 

a. Never 

b. Rarely 

c. Occasionally 

d. Frequently 

e. Always 

 

5. How would you assess your ability to read and interpret digital maps? 

a. Very poor 

b. Fair 

c. Good 

d. Very Good 

e. Excellent 
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Block 3 

Scenario (Static Image) 

Part A 

 

Description: 

The image provided here showcases information regarding the average area burned due to 

wildfires from the year 2011 to 2020. The area represented here are measured in hectares. 

This image incorporates a color scale to represent different ranges of hectares burned. The 

scale ranges from 0 to 30, with colors transitioning from Green, Light-green, Yellow, 

Brown, and finally Red. Each color represents a specific range of hectares burned. The map 

creation process involved simulating historical fire occurrences over 2000 times. These 

simulations considered various factors contributing to wildfires. After simulation, the 

average burned area was calculated based on these 2000 simulations, providing a 

comprehensive overview of wildfire impact over the specified period. 

 

 
 

1. Did the visual representation increase your concern about wildfires? 

(Hypothesis 1.1) 

a. Yes 

b. No 

c. Unsure 

 

2. Did your perception of wildfire risk change after viewing the visual? 

(Hypothesis 1.1) 

a. Decreased significantly. 

b. Decreased slightly. 

c. No change. 

d. Increased slightly. 

e. Increased significantly. 
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3. In your opinion, how severe do you perceive the risk of wildfire to be after 

viewing the visual? (Hypothesis 1.1) 

a. Not severe 

b. Slightly severe 

c. Moderately severe 

d. Quite severe 

e. Extremely severe 

 

4. Did the visuals make you feel that wildfire risks are an urgent issue? 

(Hypothesis 1.2) 

a. Yes 

b. No 

c. Unsure 

 

5. How urgent do you feel it is to prepare for wildfires after viewing the visuals? 

(Hypothesis 1.2) 

a. Not urgent at all 

b. Slightly urgent 

c. Moderately urgent 

d. Very urgent 

e. Extremely urgent 
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Block 4 
Scenario (Static Image) 

Part B 

 
Description: 

The image provided here showcases information regarding the projected average area 

burned due to wildfires from the year 2041 to 2050. The area represented here are measured 

in hectares. This image incorporates a color scale to represent different ranges of hectares 

burned. The scale ranges from 0 to 30, with colors transitioning from Green, Light-green, 

Yellow, Brown, and finally Red. Each color represents a specific range of hectares burned. 

The map creation process involved using climate model future projections to simulate 

wildfire occurrences. These simulations were conducted 2000 times to account for 

variability. These simulations considered various factors contributing to wildfires. After 

simulation, the average burned area was calculated based on these 2000 simulations, 

providing a comprehensive overview of wildfire impact over the specified period.  

 

 
 

1. Did the new visual representation increase your concern about wildfires? 

(Hypothesis 1.1) 

a. Yes 

b. No 

c. Unsure 
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2. In your opinion, how severe do you perceive the risk of wildfire to be after 

viewing the new visual? (Hypothesis 1.1) 

a. Not severe 

b. Slightly severe 

c. Moderately severe 

d. Quite severe 

e. Extremely severe 

 

3. Did your perception of wildfire risk change after viewing the new visual? 

(Hypothesis 1.1) 

a. Decreased significantly. 

b. Decreased slightly. 

c. No change. 

d. Increased slightly. 

e. Increased significantly.  

 

4. Did the new visuals make you feel that wildfire risks are an urgent issue? 

(Hypothesis 1.2) 

a. Yes  

b. No 

c. Unsure 

 

5. After viewing new visual, how urgent do you feel it is to prepare for 

wildfires? 

(Hypothesis 1.2) 

a. Not urgent at all 

b. Slightly urgent 

c. Moderately urgent 

d. Very urgent 

e. Extremely urgent 

 

6. Did the new visual affect your perception of the need for immediate action? 

(Hypothesis 1.2) 

a. Decreased significantly. 

b. Decreased slightly. 

c. No change. 

d. Increased slightly. 

e. Increased significantly. 
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BLOCK 5 

 
1. How easy was it to interpret the visual? (Hypothesis 2.1) 

a. Very difficult 

b. Difficult 

c. Easy 

d. Very easy 

e. Extremely easy 

 

2. How clear is the information presented in visual? (Hypothesis 2.1) 

a. The information was very complex, and I did not understand it all. 

b. The information was somewhat complex, and I had some difficulty understanding it. 

c. The information was moderately complex, and I mostly understood it. 

d. The information was simple, and I understood it without any difficulty. 

e. The information was very simple, and I completely understood it. 

 

3. How effectively do you think the visuals communicated the risk information? 

(Hypothesis 2.1) 

a. Not effective at all 

b. Slightly effective 

c. Moderately effective 

d. Very effective 

e. Extremely effective 

 

4. How confident are you that you correctly understood the risk levels shown in the 

visuals? (Hypothesis 3.1) 

a. Not very confident 

b. Slightly confident 

c. Moderately confident 

d. Very confident 

e. Extremely confident 

 

5. How would you rate the understandability of wildfire risk information? 

(Hypothesis 3.1) 

a. Least understandable 

b. Somewhat understandable 

c. Moderately understandable 

d. Very understandable 

e. Extremely understandable 
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APPENDIX 4: DYNAMIC VISUALIZATON SURVEY 

INSTRUMENT (Chapter 4) 

 

BLOCK 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Important Information about the survey – PLEASE READ! 

 

Welcome to our research survey. We are exploring perceptions of wildfire risk across 

five counties of California State, as shown in the map. The purpose of this survey is to 

better understand whether people like you would benefit from new types of 

information in wildfire risk. This study uses modeling techniques to predict wildfire 

risks and examines how visual representation of this data might influence public 

perception. Specifically, the survey focuses on wildfire maps that shows historical and 

future fire risk. It may be costly to develop new information, and we want to make 

sure it is worthwhile to do so. 

 

You do not need any special knowledge about wildfire and its risk to respond to any of 

the questions. We want to learn about how you interpret and use wildfire risk 

information, and what are your opinions about the presented information. 

 

Two scenarios will be presented for your consideration: First reflects the historical 

wildfire risk simulation from year 2011-2020; and second reflects the projected 

wildfire risk simulation in near future (2041-2050).  

 

We will use your responses to guide future research related to wildfire risk 

communication to provide better information for you, so your responses are very 

important for us. All your responses will remain anonymous. None of the information 

or opinions you provide can be linked back to you, so please respond as honestly as 

you can.  

 

                   Thank you for taking the time to complete the survey! 
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Figure showing the 5 counties selected to create various maps to include in survey 

 

In this study, you will be randomly assigned with different scenarios depicting wildfire risk 

and communication method. Your task is to provide feedback on how well the presented 

method communicates the uncertainty and severity of wildfire risk. Your participation will 

play a crucial role in enhancing wildfire risk communication strategies, ultimately 

contributing to better preparedness and safety measures for communities like yours. 
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BLOCK 2 
 

General Information 
 

6. In what year were you born? _____ (year) 

 

7. Gender:  

a. Male 

b. Female 

c. Non-binary 

d. Prefer not to say 

 

8. What is the highest level of education you completed? 

a. Some high school 

b. High school graduate 

c. Some college 

d. College graduate 

e. Postgraduate 

 

9. How often do you use maps or visual data in your daily life or profession? 

a. Never 

b. Rarely 

c. Occasionally 

d. Frequently 

e. Always 

 

10. How would you assess your ability to read and interpret digital maps? 

a. Very poor 

b. Fair 

c. Good 

d. Very Good 

e. Excellent 
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Block 3 

Scenario (Animated Visual) 

Part A 

 

Description: 

The animation provided here showcases information regarding wildfire risk in the study 

region between the years 2011 to 2020. Each sequential frame within the animation 

delineates a distinct fire perimeter, with subsequent frames overlapping the preceding ones. 

The utilization of distinct colors in animation serves to signify the current and preceded 

frames. The creation of the animated map involved simulating historical fire incidents 

numerous times, wherein a multitude of contributing factors to wildfire occurrence were 

carefully considered. Following these simulations, the resultant fire perimeters were 

generated, providing an all-encompassing depiction of the wildfire landscape over the 

specified time period.  

 

 
 

6. Did the visual representation increase your concern about wildfires? 

(Hypothesis 1.1) 

a. Yes 

b. No 

c. Unsure 

 

7. Did your perception of wildfire risk change after viewing the animation?  

(Hypothesis 1.1) 

a. Decreased significantly. 

b. Decreased slightly. 

c. No change. 

d. Increased slightly. 



 94 

e. Increased significantly. 

 

8. In your opinion, how severe do you perceive the risk of wildfire to be after 

viewing the visual? (Hypothesis 1.1) 

a. Not severe 

b. Slightly severe 

c. Moderately severe 

d. Quite severe 

e. Extremely severe 

 

9. Did the visuals make you feel that wildfire risks are an urgent issue? 

(Hypothesis 1.2) 

a. Yes 

b. No 

c. Unsure 

 

10. How urgent do you feel it is to prepare for wildfires after viewing the visuals? 

(Hypothesis 1.2) 

a. Not urgent at all 

b. Slightly urgent 

c. Moderately urgent 

d. Very urgent 

e. Extremely urgent 
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Block 4 
Scenario (Animated Visual) 

Part B 

 
Description: 

The animation presented here offers a comprehensive portrayal of wildfires spanning from 

2041 to 2050. Similar to the previous timeframe, each frame depicts a distinct fire 

perimeter, overlapping with subsequent frames for continuity. Unique colors in the 

animation signify different frames (current and previous all other frames), aiding in visual 

comprehension. To simulate future wildfires, advanced wildfire statistical models were 

employed, incorporating various environmental, topographical, and vegetation factors 

influencing fire occurrence. These models project potential fire occurrences based on 

anticipated climate conditions. Through these projections, simulated fire perimeters for the 

specified timeframe were generated, providing insights into the potential wildfire 

landscape in the future. 

 

 
 

7. Did the new visual representation increase your concern about wildfires? 

(Hypothesis 1.1) 

a. Yes 

b. No 

c. Unsure 



 96 

 

8. In your opinion, how severe do you perceive the risk of wildfire to be after 

viewing the new visual? (Hypothesis 1.1) 

a. Not severe 

b. Slightly severe 

c. Moderately severe 

d. Quite severe 

e. Extremely severe 

 

9. Did your perception of wildfire risk change after viewing the new visual?  

(Hypothesis 1.1) 

a. Decreased significantly. 

b. Decreased slightly. 

c. No change. 

d. Increased slightly. 

e. Increased significantly.  

 

10. Did the new visuals make you feel that wildfire risks are an urgent issue?  

(Hypothesis 1.2) 

a. Yes  

b. No 

c. Unsure 

 

11. After viewing new visual, how urgent do you feel it is to prepare for 

wildfires? (Hypothesis 1.2) 

a. Not urgent at all 

b. Slightly urgent 

c. Moderately urgent 

d. Very urgent 

e. Extremely urgent 

 

12. Did the new visual affect your perception of the need for immediate action? 

(Hypothesis 1.2) 

a. Decreased significantly. 

b. Decreased slightly. 

c. No change. 

d. Increased slightly. 

e. Increased significantly. 
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BLOCK 5 

 
6. How easy was it to interpret the visual? (Hypothesis 2.1) 

f. Very difficult 

g. Difficult 

h. Easy 

i. Very easy 

j. Extremely easy 

 

7. How clear is the information presented in visual? (Hypothesis 2.1) 

a. The information was very complex, and I did not understand it all. 

b. The information was somewhat complex, and I had some difficulty 

understanding it. 

c. The information was moderately complex, and I mostly understood it. 

d. The information was simple, and I understood it without any difficulty. 

e. The information was very simple, and I completely understood it. 

 

8. How effectively do you think the visuals communicated the risk information? 

(Hypothesis 2.1) 

a. Not effective at all 

b. Slightly effective 

c. Moderately effective 

d. Very effective 

e. Extremely effective 

 

9. How confident are you that you correctly understood the risk levels shown in 

the visuals? (Hypothesis 3.1) 

a. Not very confident 

b. Slightly confident 

c. Moderately confident 

d. Very confident 

e. Extremely confident 

 

10. How would you rate the understandability of wildfire risk information?  

(Hypothesis 3.1) 

a. Least understandable 

b. Somewhat understandable 

c. Moderately understandable 

d. Very understandable 

e. Extremely understandable 
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