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Stop paying attention: the need for explicit stopping in inhibitory control
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Abstract

Inhibitory control, the ability to stop inappropriate actions, is
an important cognitive function often investigated via the stop-
signal task, in which an infrequent stop signal instructs the sub-
ject to stop a default go response. Previously, we proposed a
rational decision-making model for stopping, suggesting the
observer makes a repeated Go versus Wait choice at each in-
stant, so that a Stop response is realized by repeatedly choosing
to Wait. We propose an alternative model here that incorpo-
rates a third choice, Stop. Critically, unlike the Wait action,
choosing the Stop action not only blocks a Go response at the
current moment but also for the remainder of the trial – the
disadvantage of losing this flexibility is balanced by the bene-
fit of not having to pay attention anymore. We show that this
new model both reproduces known behavioral effects and has
internal dynamics resembling presumed Go neural activations
in the brain.

Keywords: Bayesian model, decision-making, stochastic con-
trol theory, inhibitory control, stop-signal task, neural data

Introduction
Humans and animals are often faced with the need to choose,
under time pressure, an action among options with uncertain
consequence. The ability to dynamically withhold or modify
planned actions according changing task conditions is known
as inhibitory control. In psychology and neuroscience, in-
hibitory control has been studied extensively using the stop-
signal task (Logan & Cowan, 1984). In this task, subject per-
forms a default go task on each trial, usually consisting of
two-alternative forced choice (2AFC) discrimination between
two stimuli (e.g. press ”L” for square, press ”R” for circle).
On a small fraction of trials, an additional stop signal occurs
at some time (known as SSD, or stop-signal delay) after the
go stimulus onset, and the subject is instructed to withhold or
stop the go response. When the subject succeeds to stop, the
trial is considered a stop success (SS) trial; otherwise, it is
considered a stop error (SE) trial. Typically the SSD is cho-
sen such that subjects on average only achieve 50% accuracy
on the stop trials.

The classical model for the stop signal task is the race
model (Logan & Cowan, 1984; Boucher, Palmeri, Logan, &
Schall, 2007), which is a mechanistic account that posits a
race to threshold between independent go and stop processes
(See Fig. 1). A stop trial results in SE if the go response
is processed before the stop process. The race model also
defines a subject-specific stop signal reaction time (SSRT),
which is a measure of the average amount of time the ob-
server requires to process the stop signal and cancel the go

response (in practice, it is often calculated as the difference
between mean Go RT and the SSD specific to each subject
for achieving 50% accuracy on stop trials). Although the race
model provides a simple and elegant description of the ba-
sic behavioral phenomena, it is not a normative account of
how the brain ought to treat the stop signal task according to
task demands or behavioral goals. As such, it does not have
a principled basis for predicting how behavior might change
according to changes in task conditions or motivational fac-
tors. It also does not possess the representational richness to
identify the computational functions of all the different brain
areas implicated in the stop-signal task, or to explain the dis-
tinct causes of the myriad inhibitory deficits observed in var-
ious psychiatric conditions (e.g. ADHD, depression, OCD,
drug addiction).

A B CRace Model

GO
STOP

{stop trial, go trial} = 

{left, right} =

{absent, present}

Figure 1: Models for inhibitory control in the stop-signal
task. (A) The classical race mode posits that the behavioral
outcome (go or stop) is determined by a race between two
independent go and stop processes. (B) Bayesian graphi-
cal model for noisy sensory data generation in the rational
decision-making model. (C) The decision of whether/when to
Go, which Go response to select, and whether/when to Stop,
are modeled as sequential decision-making, where the sub-
ject chooses at each moment whether to select a Go or Stop
response, or to wait at least one more time point.

In part to overcome some of these challenges, we pre-
viously proposed a normative Bayesian Markov decision
process (MDP) model for stopping (Shenoy & Yu, 2011),
which assumed that subjects maintains a continually evolv-
ing, Bayes-optimal belief state about stimulus properties, and
that they make an moment-by-moment optimal decision be-
tween go and wait by mapping the current belief state to opti-
mal action. We showed that this model accounts for a range of
classical and more subtle behavioral effects in the stop-signal
task, includes the possibility of predicting how experimen-
tal manipulations of different cognitive factors should affect
stopping behavior (Shenoy & Yu, 2011; J. S. Ide, Shenoy,

2705



Yu*, & Li*, 2013; Ma & Yu, 2015, 2016). The model was
also used to successfully identify brain regions involved in
representing and predicting the probability of encountering a
stop signal in healthy human subjects (J. S. Ide et al., 2013),
as well as how that neural representation becomes altered
in users of stimulants such as cocaine and metaphetamine
(J. Ide, Hu, Zhang, Yu, & Li, 2015; Harlé et al., 2014, 2015).

One critical assumption made by the previous model
(Shenoy & Yu, 2011) is that only two possible actions are en-
tertained at each moment within the trial, Go or Wait. A Stop
response is only realized in the model by choosing the Wait
action repeatedly until the response deadline. Essentially, this
model implies that SSRT is an emergent property, that there
is no underlying stop process that terminates in a stop ac-
tion. However, empirical evidence, including neuroimaging
data in humans (Aron et al., 2007) and neurophysiology data
in monkeys (Hanes, Schall, & Patterson, 1998), suggests that
the brain may instead execute an explicit stop action on suc-
cessful stop trials. However, adding a Stop action to the ac-
tion set is non-trivial, because if both Wait and Stop block the
Go action in the current moment in time, but Stop in addition
blocks the possibility of choosing Go in the future while Wait
allows that possibility, then it is always more rewarding to
choose Wait over Stop in order to keep that possibility open.
There must be some additional benefit to the Stop action that
would make it worthwhile to execute. We hypothesize here
that the extra benefit is a certain savings in attentional cost,
such that choosing Stop alleviates the observer from the cost
associated with attending to the sensory input and engaging
with the task for the remainder of the trial.

Specifically, we formulate a novel Bayesian MDP model
for inhibitory control, in which there are three explicit ac-
tions available to the decision-maker: Go, Wait, and Stop. In
addition to the four kinds of behavioral costs included in the
original model – the cost of making the wrong go response,
the cost of not responding on a go trial, the cost of not stop-
ping on a stop trial, and the cost of time incurred proportional
to the total length of the trial – we incorporate an additional
term, the cost of attending to the sensory input, which is ter-
minated by either a Go action, a Stop action, or the expiration
of the response period. Analogous to the stop-signal reaction
time (SSRT) assumed by the Race Model, we define the Stop
RT to be the temporal delay between the onset of stop signal
and the time when the Stop action is chosen.

In the following, we first describe the model, then show
how the model captures a variety of behavioral phenomena
observed in the stop signal task, as well as neural data im-
plicating neurons in the frontal eye field in participating in
the initiation or execution of the Stop action. We conclude
with some discussion of related work and thoughts on future
directions.

The Model
As in the earlier MDP model (Shenoy & Yu, 2011), this MDP
model consists of two key components, a monitoring compo-

nent that formalizes sensory processing as iterative Bayesian
posterior inference based on conditionally iid data, and a de-
cision process that applies an optimal stochastic control pol-
icy. We describe the two components below, and show how
the model behaves on different trial types.

Monitoring process as Bayesian statistical inference

We use the same Bayesian inference model proposed in
(Shenoy & Yu, 2011) to implement the sensory processing
component, and thus provide only a short overview here.
Fig. 1B shows the graphical model, whereby the two hid-
den variables correspond respectively to the identity of the
go stimulus, d ∈ {0,1}, and whether this trial is stop trial,
s ∈ {0,1}. The priors of d and s, in our model, are P(d =
1) = 0.5 and r = P(s = 1) = 0.25, consistent with general
experimental settings. Conditioned on the go response iden-
tity d, a sequence of iid sensory inputs are generated on each
trial, x1, ... ,xt , ... ,where t indexes time step within a trial.
The likelihoods of the sensory inputs given d are f0(xt) =
p(xt |d = 0) and f1(xt) = p(xt |d = 1), which are assumed
to be Bernoulli distribution with distinct rate parameters qd
and 1−qd , respectively. The dynamic variable zt denotes the
presence/absence of the stop signal. z1 = ... = zθ−1 = 0 and
zθ = zθ+1 = ... = 1 if a stop signal appears at time θ. For
simplicity, we assume that the onset of the stop signal θ fol-
lows a geometric distribution: P(θ = t|s = 1) = q(1−q)t−1.
Conditioned on zt , a stream of iid observations are generated
on each trial. The likelihoods of the the sensory inputs, as-
sociated with the stop signal, are p(yt |zt = 0) = g0(yt) and
p(yt |zt = 1) = g1(yt). We still assume that the likelihood
functions, g0 and g1, are Bernoulli distributions with distinct
parameters qs and 1−qs.

In the recognition model, Bayes’ Rule is applied in the
usual iterative manner way to compute the the sequential pos-
terior probability associated with go stimulus identity, pt

d =
P(d = 1|xt), where xt = {x1,x2, ...,xt} denotes all the data ob-
served so far. Similarly, computing the posterior probability
that the stop signal is already been present, pt

z = P(θ < t|yt),
involves inverting the generative model, which is a simple
version of a hidden Markov model. pt

z then can be used to
compute the posterior probability that the current trial is a
stop trial, pt

s = P(s = 1|yt) = pt
z +(1− pt

z)P(s = 1|θ > t,yt),
where P(s = 1|θ > t,yt) represents the probability that the
stop signal will occur in the future. The belief state at time t
is defined to be the vector bt = (pt

d , pt
s).

Decision process as optimal stochastic control

In each trial, the subject is required to make response to a
go stimulus by a response deadline D, or else the trial termi-
nates and the response is recorded as stop. We define a loss
function that accounts for the cost and penalty structure of the
stop-signal task, and assume that the observer minimizes the
expected value of this loss function in choosing whether to
go, wait, or stop at each moment in time, based on the current
belief state.
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Like the earlier MDP model (Shenoy & Yu, 2011), we as-
sume that there is a basic cost cr per unit time on each trial if
the current trial is not terminated. In addition, the subject has
to pay an extra attentional cost ca per unit time if it decides to
continually collect and process the new coming sensory input.
The subject can explicitly choose the stop action to stop pro-
cessing the sensory information and take the benefit of only
paying the basic cost cr in the rest of trial. Once the stop ac-
tion is instantiated, the subject will no longer choose the go
action again, thus will incur a unit penalty cost for missing a
go option on a go trial. Making response to the go stimulus
will terminate the current trial and save the subject the basic
and attentional costs in the rest trial, but in the price of paying
a unit penalty cost for making a discrimination error on a go
trial or a penalty cost cs for responding on a stop trial. The
subject can also take the wait action to process new sensory
information and update the belief state in the next time step.

Let τr denote the trial termination time and τa the time the
subject is involved in the task, so that τa = τr < D if a go
response is made before the deadline D, {τr = D,τa < D} if
an explicit stop action is chosen, and τa = D if the subject
waits until the deadline. δ ∈ {0,1} represents the possible
binary discriminations produced by making a go response.
We assume the loss function:

l(τr,τa,δ;d,s,θ,D) = (cr + ca)τa1{τr=τa<D}+ cs1{τr<D,s=1}

+1{τr<D,δ 6=d,s=0}+(caτa + crD)1{τr=D}+1{τr=D,s=0}

where the first three terms correspond to the cost for tak-
ing the go action and the last two denote the cost for tak-
ing stop action or waiting until the deadline. The opti-
mal decision policy will minimize the expected loss, Lπ =
E [l(τr,τa,δ;d,s,θ,D)],

Lπ = (cr + ca)E [τa]P(τa = τr < D)+ csrP(τr < D|s = 1)
+ (1− r)P(τr < D,σ 6= d|s = 0)
+ (caE [τa]+ crD)P(τr = D)+(1− r)P(τr = D|s = 0)

It is computationally intractable to directly minimize Lπ over
the policy space. Fortunately, Bellman’s dynamic program-
ming principle provides an iterative relationship between the
optimal state-value function and optimal action-value func-
tion. The Bellman optimality equation for optimal state-value
function, V t(bt), is

V t(bt) = ca + cr +min
a
[
∫

P(bt+1|bt ;a)V t+1(bt+1)dbt+1]

where a ranges over all possible actions. In our alterna-
tive model, the action space is {go,stop,wait} associated with
three optimal action-value functions (also called Q-factors),
Qt

g(bt), Qt
s(bt), and Qt

w(bt), respectively. Using the Bell-
man optimality equation for optimal action-value function-
Q(b,a) = E

[
ca + cr +V (bt+1)|bt = b,at = a

]
, we can ob-

tained the three Q-factors

Qt
g(b

t) = (1− pt
s)min(pt

d ,1− pt
d)+ cs pt

s

Qt
a(b

t) = cr(D− t)+(1− pt
s)

Qt
w(b

t) = ca + cr +1{D>t+1}E
[
V t+1(bt+1)|bt]

bt+1

+ 1{D=t+1}(1− pt
s)

V t(bt) = min(Qt
g,Q

t
s,Q

t
w)

Note that, in our model, the optimal state-value function and
action-value functions only account for the future cost after
the current time step, regardless of how much cost has been
paid before, since only the expected futures costs matter in
adjudicating among the action options. The optimal state-
value function is the smallest of three optimal action-value
functions. The optimal policy chooses the action correspond-
ing to the smallest Q-factor at each time step. The value of
discrimination response,δ, is 1 if pt

d > 0.5 and 0 otherwise.
Since the subject can no longer update the belief state nor
take any action at the deadline, the optimal state-value func-
tion can be initially computed at D as V t(bD) = 1− pD

s . The
recursive relationship between the optimal action-value and
state-value functions in Bellman optimality equation allows
us to the compute the optimal state-value functions and Q
factors backwards in time from t = D−1 to t = 1.

In the last section, we showed that the belief state bt+1 is
a deterministic function of bt and the observations. Thus,
given V t+1, we can compute E

[
V t+1(bt+1)|bt

]
by averaging

over all possible next observations xt+1,yt+1.

E
[
V t+1(bt+1)|bt]= ∑

xt+1,yt+1

p(xt+1,yt+1|bt)V t+1(bt+1(bt ,xt+1,yt+1))

p(xt+1,yt+1|bt) = p(xt+1|pt
d)p(yt+1|pt

s)

p(xt+1|pt
d) = pt

d f1(xt+1)+(1− pt
d) f0(xt+1)

p(yt+1|pt
s) = (pt

z +(1− pt
z)h(t +1))g1(yt+1)

+ (1− pt
z)(1−h(t +1))g0(yt+1)

In the simulations, we discretize the space of pt
d and pt

z each
into 200 bins.

Results: Model Simulations
Fig. 2A shows the simulated evolution of belief state in the
model for different trial types: (1) go trial (Go), where no
stop signal appears, (2) stop success trial (SSS), where a stop
signal is successfully processed by taking an explicit stop ac-
tion, (3) stop error trial (SE), where a go response is made
on a stop trial. Similar to (Shenoy & Yu, 2011), in SSS trials,
the go stimulus happens to be processed slowly while the stop
signal is being processed quickly, thus leading to successful
stopping; conversely, on SE trials, the go stimulus happens to
be processed quickly while the stop signal is being processed
slowly. Note that the difference in these belief state trajecto-
ries across SSS and SE trials is solely due to sensory noise in
the observation generation process.

Fig. 2B shows the simulated evolution of different Q-
factors, or the expected cost of taking the three actions (Go,

2707



Time(steps)
0 10 20 30 40

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
Belief State

pd(GO)
pz(GO)
pd(SE)
pz(SE)
pd(SSS)
pz(SSS)

Time(steps)
0 10 20 30 40

C
os

t

0

0.2

0.4

0.6

0.8

1

1.2
Action Cost

Go(GO)
Stop(GO)
Wait(GO)
Go(SE)
Stop(SE)
Wait(SE)
Go(SSS)
Stop(SSS)
Wait(SSS)

A B

Figure 2: Mean Belief state and Q-factors. (A) Evolution of
the average belief states pd (solid line) and pz (dashed line)
for different trials-Go(green):go trials, SSS(blue): stop tri-
als successfully stopped by choosing explicit stop action, SE
(red): stop error trials. In SE trials, the go stimulus is pro-
cessed faster than the stop signal, but the converse in SSS
trials. We also assume that d = 1 for all trials in the fig-
ure for the purpose of simplicity. The onset of stop signal
is θs = 17 time steps(solid vertical line). The dashed ver-
tical line represents the SSRT with current parameters. (B)
Go(solid line), Stop(dashed line) and Wait(dotted line) cost
for the same classification of trials. In SSS trials, the go costs
significantly overpass the wait cost until the stop cost drops
below the wait cost. In contrast to SSS, SE trials shows a
rapidly decreasing go cost which dips below the wait cost be-
fore the stop cost decreases sufficiently, leading to stop errors.
Although the average go cost never falls below the average
wait cost, each individual trajectory will cross over at differ-
ent time due to the stochasticity of observations. We adopt
most of the paramters used in (Shenoy & Yu, 2011): qd =
0.68, qs = 0.72, q = 0.2, r = 0.25, D = 50 steps, cs = 0.2, cr =
0.002, ca = 0.002. Unless otherwise stated, there parameters
are used in all the subsequent simulations.

Wait, Stop), over time on different trial types. In SSS trial, the
go cost decreases slowly and never drops below the wait cost,
while the stop cost drops rapidly after the onset of the stop
signal and eventually below both the wait and go costs. The
go cost in the SE trial shows the converse, dipping below the
wait cost before the stop cost has decreased sufficiently (Qg
does not look like it dips below Qw in the average trajectory,
but it does do so on every individual trial, but at different mo-
ments, such that the average looks like it does not do so). In
Go trials, the stop cost is large and continuously increasing,
while the go cost is small and continuously decreases until it
dips below Qw.

Results: Model Comparison to Behavioral Data
Here, we show that the model reproduces behavioral phenom-
ena observed in relation to the stop signal task, including all
those demonstrated by the earlier MDP model (Shenoy & Yu,
2011).

A classical behavioral phenomenon is that SE frequency
increases in an approximately logistic fashion as a function
of SSD (inhibition function), which is captured by both the

race model and the earlier MDP model (Shenoy & Yu, 2011);
Fig. 3A shows that our model also captures this effect. Our
model also capture the effect that the stop error decreases with
the stop error penalty cs, with the effect present at almost the
whole range of SSD.

Additionally, it is known that subjects have slower Go re-
action time (RT), lower SE rate, and faster SSRT when the
relative of a stop error is increased via experimental design
(Leotti & Wager, 2009), a phenomenon shown to naturally
arise when cs is increased in the earlier MDP model (Shenoy
& Yu, 2011); Fig. 3B-D shows the new model also captures
this. As cs, the parameter specifying the stop error cost in
the model, varies from low to high, our model simulation
shows that (Fig. 3B) subjects can be expected to respond
faster, (Fig. 3C) make fewer errors , and (Fig. 3D) have longer
stopping latency (Stop RT). Note that Stop RT is analogous
to SSRT in the race model, but instead of being estimated
jointly from the Go RT distribution and the stop error rate as
a function of SSD, Stop RT is computed directly by taking the
difference between the Stop action time and the Go stimulus
onset. The effects associated with Go RT and Stop error rate
are generally robust for different setting of ca and cr.

Neural Representation of action value
In this section, we show how internal computational com-
ponents of the MDP model compares to neural responses
observed in the frontal eye field (FEF) region of the mon-
key cortex during an oculomotor version of the stop-signal
task (Hanes et al., 1998). FEF is known to be important for
the planning and execution of eye movements and is under
strong top-down cognitive control. It has two known sub-
populations of neurons, ”movement” neurons and ”fixation”
neurons, which are respectively more active on go and stop
trials, and which have been postulated to be instantiating the
go and stop processes in the race model (Hanes et al., 1998).

Fig. 4 A and B show the spike density function of fixation
and movement neurons, respectively. The go (no-stop-signal)
trials (thin solid lines) are latency-matched to canceled trials
(thick solid lines) with saccade latencies that are long enough,
e.g greater than the SSD + SSRT, such that they would have
been canceled if a stop signal had been presented. During
canceled stop (SS) trials Fig. 4A, the activity of fixation neu-
ron is significantly enhanced after the onset of the stop signal
and peaks around the SSRT, diverging from its weak response
in go (no-stop-signal) trials. Fig. 4 B shows that the activity
of movement neuron also diverge on go (no-stop-signal) trial
as compared to SS (canceled) trial around SSRT. These neu-
ron data imply that these neurons may encode computations
leading to the cancellation and execution of the go response.

We hypothesize that fixation neurons may encode the ex-
plicit Stop action in our model, while movement neural activ-
ities may reflect the formation of the decision to Go. Fig. 4C
shows the simulated distribution of Stop RT on successfully
stopped trials in which the models takes an explicit stop ac-
tion. Stop RT shows a peak right near the SSRT, which

2708



SSD
0 10 20 30 40

St
op

 E
rr

or
 R

at
e

0

0.2

0.4

0.6

0.8

1
Inhibition Function

Low
Median
High

Low Median High

Ti
m

e(
St

ep
s)

0

5

10

15

20
GO RT

Low Median High

Fr
ac

 E
rr

or

0

0.2

0.4

0.6

0.8
Stop Error

Low Median High

Ti
m

e(
St

ep
s)

10

12

14

16

18
Stop RT

C

BA

D

Figure 3: Influence of reward/motivation on stopping behav-
ior. Results are averaged over 50 simulated subjects, each
performing 10000 go and stop trials. Error bars (s.e.m.) are
too small to be observed. (A) Model simulation produces an
inhibition function (frequency of SE as a function of SSD)
similar as that observed in behavioral data. Stop error (SE)
decreases as the stop error penalty cs increase (low = 0.2, me-
dian = 0.4, high = 0.6), with the effect present at almost the
whole range of SSD. (B) When cs is increased, the model re-
sponds slower in go trials, (C) make fewer stop errors (SSD =
17), and (D) exhibit shorter stopping latency (Stop RT). Stop
RT is analogous to SSRT in the race model, here computed
explicitly by taking the difference between the onset of stop
signal and the time the decision maker chooses the stop ac-
tion.

closely resembles the fixation neuron activity in canceled
trial, implying that the fixation neurons may activate when
an explicit stop action is chosen in SS trials. Fig. 4D shows
the trajectories of 1−Qg: the negative expected cost, or the
expected reward, associated with the Go action in our model.
The qualitative similarity between the expected Go reward
and the activity of movement neurons suggests that the move-
ment neuron may encode moment-by-moment estimate of Go
action values.

Discussion
In this work, we presented a novel Bayesian Markov Deci-
sion Process model of inhibitory control in the stop-signal
task. The key difference between this model and our earlier
Bayesian MDP model (Shenoy & Yu, 2011) is that the ear-
lier model only allowed two actions, go and wait, with the
stop response only implicitly realized when the observer re-
peatedly chooses the Wait action until the response period
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Figure 4: Neural representation of action values. (A) Average
firing rate of a fixation neuron in the frontal eye field (FEF)
of a monkey performing a saccade version of stop-signal task
peaks at the time of the behaviorally measured SSRT (Hanes
et al, 1998), suggesting fixation neurons encode a Stop action
signal. (B) Movement neurons in the FEF diverge, between
stop-success trials (Canceled) and go trials (No Stop Signal),
at a time close to SSRT, suggesting participation in the de-
cision process for the Go response. (C) In our model, the
distribution of Stop RT in SS trials peaks near the SSRT as
fixation neurons do, while (D) the expected reward (1 - ex-
pected cost) of taking the Go action diverge around SSRT on
SS/Go trials, much as movement neurons do.

expires. Here, we formally introduce an additional Stop ac-
tion, the existence of which has long been postulated based
on neuroimaging data in humans and neurophysiology data
in monkeys. We also posited an extra attention cost asso-
ciated with being engaged in the task, and which is spared
when the stop action is taken. We showed that the new model
can reproduce all the behavioral effects captured by the pre-
vious model. In addition, our model simulations indicate that
previously observed activities of “movement” neurons in the
monkey frontal eye field are consistent with their encoding
the moment-by-moment valuation of the Go action, while the
“fixation” neural activities may encode an explicit Stop ac-
tion.

We can relate the present model to the classical race model,
as the go action is typically chosen in our model when the ex-
pected go cost dips below the cost of waiting, and the stop
action is typically chosen when the stop cost dips below the
cost of waiting. Notably, the cost of waiting is fairly con-
stant over the time course of the trial and stable across trial
types (go, SS, SE), so that it can be thought of as the common
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threshold that the go cost and stop costs race to reach first in
order to determine the response outcome. However, this is not
an independent race between go and stop processes, as orig-
inally envisioned in the race model (Logan & Cowan, 1984).
Rather, it is closer to an interactive version of the race model
that posits a late mutually inhibitory interaction between the
stop and go processes (Boucher et al., 2007), except here,
there is no direct antagonism between the two processes, but
rather a common input (increasing sensory evidence that a
stop signal is present) that drives the two processes in two
opposite directions (suppressing the go process and acceler-
ating the stop process). This leads to another notable differ-
ence between this model and the race model: the race model
assumes the go process to be identical between go and stop
trials, and uses that assumption to estimate the SSRT. In the
present model, the go process is suppressed by the (late) on-
set of a stop signal, and thus the process splits into a bimodal
distribution of termination times, such that there is an early
mode that escapes the stop signal’s suppressive influence and
which ends in slightly faster average SE RT than Go RT, and
a late mode that gets suppressed by the stop signal. Because
of this, the true stopping latency can afford to be, and is in-
deed found to be, much later than the estimated SSRT. This
may explain why the FEF neural response diverges between
correct go and stop trials apparently too late to participate in
executing the stop action (Hanes et al., 1998). This is because
the race model’s assumption of an unchanging go process (be-
tween go and stop trials) may be leading it to systematically
under-estimate the true stopping latency. The current model
would interpret FEF ”fixation” neurons are signaling or relay-
ing the decision to stop, while the FEF ”movement” neurons
are encoding the expected value of executing the go response.

One implication of the current work is that contextual
changes in the attentional state of the observer, or the costs
associated with paying attention to the task, should have sys-
tematic consequences on the observer’s readiness and timing
in executing a stop action. In particular, the model predicts
that if the attention cost is raised, for example due to the pres-
ence of a dual task siphoning away cognitive resources, then
the stop action should be chosen more readily, which would
both have a behavioral consequence and be reflected in the
neural dynamics. A productive line of future experimental
work would be to test these predictions empirically by ma-
nipulating attentional costs. While the proposed model of in-
hibitory control, and the earlier MDP model that preceded it
(Shenoy & Yu, 2011), may not be fully correct in describ-
ing the cognitive and neural processes underlying inhibitory
control, they exemplify a powerful modeling framework for
hypothesizing neural computations in the context of behav-
iorally defined goals and computations, which can then be
tested experimentally by changing experimental conditions or
behavioral objectives.
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