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Members of the cyanobacterial genus Trichodesmium are well known for their substantial

impact on nitrogen influx in ocean ecosystems and the enormous surface blooms

they form in tropical and subtropical locations. However, the secondary metabolite

composition of these complex environmental bloom events is not well known, nor

the possibility of the production of potent toxins that have been observed in other

bloom-forming marine and freshwater cyanobacteria species. In the present work, we

aimed to characterize themetabolome of a Trichodesmium bloom utilizingMS/MS-based

molecular networking. Furthermore, we integrated cytotoxicity assays in order to identify

and ultimately isolate potential cyanotoxins from the bloom. These efforts led to the

isolation and identification of several members of the smenamide family, including three

new smenamide analogs (1–3) as well as the previously reported smenothiazole A-hybrid

polyketide-peptide compounds. Two of these new smenamides possessed cytotoxicity

to neuro-2A cells (1 and 3) and their presence elicits further questions as to their potential

ecological roles. HPLC profiling and molecular networking of chromatography fractions

from the bloom revealed an elaborate secondary metabolome, generating hypotheses

with respect to the environmental role of these metabolites and the consistency of this

chemical composition across genera, space and time.

Keywords: Trichodesmium, molecular networking, cyanotoxins, harmful algal blooms, metabolomics

INTRODUCTION

Blooms of toxin-producing cyanobacteria (harmful algal blooms, HABs) continue to be a threat
to water resources in the U.S. and across the globe (Carmichael and Boyer, 2016). Research
surrounding these bloom events with respect to cyanobacteria has generally focused on freshwater
planktonic species and a suite of well-characterized toxins, including the anatoxins, saxitoxins and
microcystins (Bláha et al., 2009). However, species of cyanobacteria in the marine realm have been
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a prolific source of exquisitely potent cytotoxic metabolites
(Luesch et al., 2001; Taori et al., 2008; Pereira et al., 2012).
Members of the bloom-forming genus Trichodesmium are an
understudied group of marine cyanobacteria with respect to
toxin production and environmental impact. With respect
to new natural products, the cyclic peptide trichamide
was characterized from a cultured strain of Trichodesmium
erythraeum, although no significant cytotoxicity was observed
against HCT-116 cells and CEM-TART cells when tested at 10
and 50µg/mL, respectively (Sudek et al., 2006). The lipoamides,
credneramides A and B were isolated and characterized
from a field-collected benthic cyanobacterium identified
as a new species of Trichodesmium (Malloy et al., 2012).
These metabolites inhibited spontaneous calcium oscillations
in murine cerebrocortical neurons (Malloy et al., 2012).
Several known cyanotoxins, such as anatoxin, saxitoxin,
microcystins and aplysiatoxins have been reported from
Trichodesmium blooms collected from distinct geographic areas
(Ramos et al., 2005; Detoni et al., 2016; Shunmugam et al.,
2017).

In the current report, we detail the comprehensive metabolic
profiling of a Trichodesmium bloom collected from the western
Gulf of Mexico utilizing MS/MS-based molecular networking
(Watrous et al., 2012; Yang et al., 2013; Wang et al.,
2016) and cytotoxicity assays. In our previous work on this
Trichodesmium bloom, we have utilized cytotoxicity assays,
NMR-guided isolation and MS-guided isolation independently
to characterize chlorinated polyketides and hybrid polyketide
peptides (Bertin et al., 2016, 2017a,b; Belisle et al., 2017).
The current report attempts to describe the Trichodesmium
bloom metabolome more completely, focusing on a networking
tool to cluster molecules based on similarities in the MS/MS
fragmentation patterns (Watrous et al., 2012). Our efforts
ultimately led to the isolation and characterization of three
new members of the smenamide family of molecules (1–
3) and the previously reported smenothiazole A (Figure 1).
Smenamides C and E demonstrated potent neurotoxicity
(1 and 3).

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured using a Jasco P-2000
polarimeter. UV spectra were measured using a Beckman
Coulter DU-800 spectrophotometer. CD spectra were recorded
using a Jasco J-1100CD spectrometer. NMR spectra were
collected using a Bruker 800 MHz NMR instrument. Additional
NMR spectra were recorded on a Varian 500 MHz NMR
instrument. HRESIMS analysis was performed using an AB
SCIEX TripleTOF 4600 mass spectrometer with Analyst
TF software. LC-MS/MS analysis was carried out using a
ThermoFinnigan LCQ AdvantageMax mass spectrometer
with an electrospray ionization (ESI) source. Semi-preparative
HPLC was carried out using a Dionex UltiMate 3000 HPLC
system and Agilent 1100 series system each equipped with a
micro vacuum degasser, an autosampler and a diode-array
detector.

Collection, Extraction and Fractionation of
Bloom Material
Samples from a localized bloom of Trichodesmiumwere collected
from Padre Island, Corpus Christi, TX during 9–11 May 2014
as described previously (Bertin et al., 2016, 2017a,b; Belisle
et al., 2017). Briefly, bloom material was collected in 5-gallon
buckets from ca. 0.5-meter water depth and concentrated by
gentle filtration through an 18µm mesh screen. A subsample
of the cell mass was examined microscopically and identified
using Komárek and Anagnostidis (2005) as being dominated
by cyanobacteria of the genus Trichodesmium. The material
was frozen and shipped for further chemical analysis. The
biomass (ca. 14 g dry weight) was repeatedly extracted with 2:1
CH2Cl2:CH3OH and the extracts were combined and evaporated
under reduced pressure (3.95 g). The extract was reconstituted
in hexanes and applied to silica gel (300mL) in a wide fritted
column with a vacuum attachment. The extract was fractionated
using a stepped gradient from 100% hexanes to 100% CH3OH
resulting in nine fractions. Seven of the nine fractions (C-
I) were further analyzed by means of cytotoxicity assays and
MS/MS-based molecular networking. The first two fractions:
100% hexanes (A) and 90% hexanes in EtOAc (B) were intended
to remove hydrocarbons and exceedingly lipophilic substances
from the sample and were not analyzed further.

Molecular Networking
Fractions C-I were subjected to LC-MS/MS analysis with
data collection in data-dependent acquisition mode on a
ThermoFinnigan LCQ AdvantageMax mass spectrometer with
an electrospray ionization (ESI) source. A Kinetex 5µm C18
column (100 × 4.6mm) was used for separation of analytes.
The LC method consisted of a linear gradient from 30 to
99% CH3CN in water + 0.1% formic acid over 17 minutes,
followed by an isocratic period at 99% CH3CN of 3 minutes.
The flow rate was held at 0.6 mL/min. The MS spray voltage
was 5 kV with a capillary temperature of 400◦C. For the
MS/MS component, the CID isolation width was 2.0 and
the collision energy was 35.0 eV. The raw data files were
converted to mzXML format using MSConvert from the
ProteoWizard suite (http://proteowizard.sourceforge.net/tools.
shtml)1. The molecular network was generated using the
online platform at Global Natural Products Social Molecular
Networking website (gnps.ucsd.edu) using parameters detailed in
Table S5. The network was visualized using the Browser Network
Visualizer tool available on the gnps website.

Isolation of 1–3 and Smenothiazole A
Fractions G (100% EtOAc, 104.0mg) and H (75% EtOAc in
CH3OH, 286.9mg) were chosen for further purification based
on the quantity of network ions in these fractions, the molecular
features of these ions (ratio of M+ and M+2 isotope), and
cytotoxicity results of the mixed chromatography fractions.
Fractions G and H were combined based on similarities in
LC-MS/MS profiles and 1H NMR resonances. The combined

1ProteoWizardSoftware Foundation; http://proteowizard.sourceforge.net/tools.

shtml
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FIGURE 1 | Structures of 1-3, smenamides A and B and smenothiazole A.

sample was further fractionated over a 2 g C18 SPE column
eluting with 50% water in CH3CN (13.7mg), 100% CH3CN
(143.2mg), 100% CH3OH (74.5mg) and 100% EtOAc (54.5mg).
The fraction eluting with 100% CH3CN was subjected to
reversed phase HPLC using a YMC 5µm ODS column (250
× 10mm); mobile phase: 65% CH3CN /35% water with
0.05% formic acid added to each solvent, flow 3 mL/min.
Fractions were collected based on UV characteristics and HPLC
fractions were analyzed by HRESIMS for ions of interest from
the molecular network. Further purification was carried out
using the YMC column mentioned above; mobile phase: 80%
CH3CN in water with 0.05% formic acid added to each solvent,
flow 3 mL/min resulted in the isolation of 7.0mg of 1 (tR,
11.5min). A mobile phase of 65% CH3CN in water with 0.05%
formic acid added to each solvent, flow 3 mL/min was used
to isolate 0.6mg of 2 (tR, 26.0min) and 0.3mg of 3 (tR,
21.2min). A final purification was carried out using a YMC
5µm ODS column (250 × 10mm); mobile phase: 80% CH3CN
in water with 0.1% formic acid added to each solvent, flow
3 mL/min and 2.0mg of smenothiazole A was isolated (tR,
5.0min).

Smenamide C (1): colorless oil; [α]25D +38.2 (c 0.20, CH3OH);
UV (CH3OH) λmax (log ε) 203 (4.2), 238 (4.0) nm; 1H NMR
(800 MHz, DMSO-d6) and 13C NMR (200 MHz, DMSO-d6),
see Table 1; HRESIMS m/z 467.2661 [M+H]+ (calcd for
C25H40N2O4Cl, 467.2677) and m/z 489.2486 [M+Na]+ (calcd
for C25H39N2O4ClNa, 489.2496).

Smenamide D (2): colorless oil; [α]25D +16.8 (c 0.10, CH3OH);
UV (CH3OH) λmax (log ε) 203 (3.4), 240 (3.3) nm; 1H
NMR (800 MHz, CDCl3) and 13C NMR (200 MHz, CDCl3),
see Table S3; HRESIMS m/z 467.2693 [M+H]+ (calcd for
C25H40N2O4Cl, 467.2677) and m/z 489.2492 [M+Na]+ (calcd
for C25H39N2O4ClNa, 489.2496).

Smenamide E (3): colorless oil; [α]25D +21.9 (c 0.05, CH3OH);
UV (CH3OH) λmax (log ε) 203 (4.1), 235 (3.8) nm; 1H NMR
(800 MHz, DMSO-d6) and 13C NMR (200 MHz, DMSO-d6),

see Table 2; HRESIMS m/z 499.2935 [M+H]+ (calcd for
C26H44N2O5Cl, 499.2939).

Smenothiazole A: colorless oil; [α]23D−5.8 (c 0.10, CH3OH)
UV (CH3OH) λmax (log ε) 202 (3.4) nm; 1H NMR (800 MHz,
DMSO-d6) and

13C NMR (200 MHz, DMSO-d6), see Table S4;
HRESIMS m/z 486.1984 [M+H]+ (calcd for C26H33ClN3O2S,
486.1982).

Cytotoxicity Assay
Neuro-2A cells and HCT-116 cells were added to assay plates
in 100 µl of Eagle’s Minimum Essential Media (EMEM) or 100
µl of McCoy’s 5A media respectively each supplemented with
10% FBS at a density of 5,000 cells/well. Cells were incubated
overnight (37◦C, 5% CO2) and examined microscopically to
confirm confluence and adherence. Mixed chromatography
fractions (C-I) were dissolved in DMSO (1% v/v) and tested at
concentrations of 40 and 4µg/mL with 10µM doxorubicin used
as a positive control. Compounds 1–3 were dissolved in DMSO
(1% v/v) and added to the cells in the range of 100 to 0.1µM
in order to generate EC50 curves. Four technical replicates were
prepared for each concentration and each assay was performed
in triplicate. Doxorubicin was used as a positive control (EC50:
0.043 ± 0.032µM for neuro-2A cells; EC50: 0.071 ± 0.004µM
for HCT-116 cells) and DMSO (1% v/v) was used as a negative
control. Assays were resolved as previously reported (Bertin et al.,
2017b) and EC50 curves were generated using Graphpad Prism
software.

RESULTS

Trichodesmium Bloom-Cytotoxicity of
Chromatography Fractions and Molecular
Network
Several of the chromatography fractions (D–H) derived from
the bloom material showed strong cytotoxicity against neuro-2A
cells at 40µg/mL (Figure S1). Fraction D showed the greatest
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TABLE 1 | NMR data for Smenamide C (1) Z-conformer (800 MHz for 1H NMR;

200 MHz for 13C NMR, DMSO).

Position δC, type δH (J in Hz) HMBC COSY

1 169.3, qC

2 93.7, CH 5.28, s 1, 4, 10

3 180.3, qC

4 57.6, CH 4.75, t (5.3) 1, 2, 3, 5, 6, 10 5a, 5b

5a 38.6, CH2 1.72, m 3, 4, 7, 8 4, 5b

5b 1.59, m 3, 4, 7, 8 4, 5a

6 24.2, CH 1.66, m 4, 5, 7, 8 7, 8

7 24.0, CH3 0.85, d (6.6) 5, 8 6

8 23.3, CH3 0.87, d (6.6) 5, 7 6

9 59.7, CH3 3.87, s 3

10 170.6, qC

11 131.7, qC

12 13.9, CH3 1.77, s 10, 11, 13

13 141.9, CH 5.59, d (9.8) 10, 11, 12, 14, 15, 16 14

14 32.2, CH 2.45, m 11, 13, 15, 16, 17 13, 15, 16a, 16b

15 20.4, CH3 0.94, d (6.6) 14, 16, 18 14

16a 34.9, CH2 1.49, m 17, 18 14, 17a, 17b

16b 1.35, m 17, 18 14, 17a, 17b

17a 32.1, CH2 2.22, m 14, 16, 18, 19, 20 16a, 16b, 17b

17b 2.10, ovlpa 14, 16, 18, 19, 20 16a, 16b, 17a

18 142.8, qC

19 112.6, CH 6.04, s 17, 18, 20

20a 27.4, CH2 2.12, m 17, 18, 19, 21, 22 21

20b 2.07, ovlp 17, 18, 19, 21, 22 21

21 24.8, CH2 1.56, m 20, 22 20a, 20b, 22

22 46.7, CH2 3.26, m 20, 21, 23, 24 21

23 35.9. CH3 2.94, s 22, 24

24 169.9, qC

25 22.1, CH3 1.97, s 23, 24

aOverlapping signals.

potency at 4µg/mL. Examination of the molecular network
showed that compounds from cluster 3 were major ions in
fraction D (Figure 2). However, these metabolites were not
isolable following further purification procedures. The majority
of the metabolites in the molecular network were found in
fractions F–I. We identified Cluster 2 as a molecular cluster
of interest due to the number of ions in the cluster and the
M+ and M+2 ratio indicating a single chlorine atom in each
of these metabolites (cf. Figures 2, 3). Additionally, fractions
G and H showed potent cytotoxicity against neuro-2A cells;
thus, our subsequent purification efforts centered on these two
fractions. HPLC analysis indicated abundant metabolites in the
combined G+H HPLC pre-fraction (Figure S2) and repeated
chromatography resulted in the isolation of 1–3 as optically active
colorless oils.

Structure Characterization of 1–3
HRESIMS analysis of 1 gave an [M+H]+ of m/z 467.2661,
suggesting a molecular formula of C25H39N2O4Cl and a
requirement of 7 degrees of unsaturation. Examination of the
1H NMR spectrum of 1 showed several resonances with split
signals in a 1:1 ratio, a phenomenon observed in several

TABLE 2 | NMR data for Smenamide E Z/E-conformersa (3) (800 MHz for 1H

NMR; 200 MHz for 13C NMR, DMSO).

Position δC, type δH (J in Hz) HMBC COSY

1 170.3, qC

2 94.2, CH 5.31, s 1, 3, 4

3 180.8, qC

4 58.1, CH 4.63, m 1, 2, 3, 5, 6, 10 5

5 39.2, CH2 1.72, m 3, 4, 6, 7, 8 4

6 24.0, CH 1.76, m 4, 5, 7, 8 7, 8

7 24.3, CH3 0.84, d 5, 6, 8 6

8 22.9, CH3 0.86, d 5, 6, 7 6

9 59.5, CH3 3.86, s 3

10 175.8, qC

11 42.7, CH 3.95, m 10, 12, 13 12, 13

12 14.4, CH3 0.90, d (6.8) 10, 11, 13 11

13 74.3, CH 3.73, m 10, 11, 15 11, OH-13

OH-13 4.40, m 11, 13, 14 13

14 34.3, CH 1.48, ovlpb 13, 15 15

15 12.9, CH3 0.81, d (6.2) 13, 14, 16 14

16a 31.5, CH2 1.48, ovlp 13, 14, 15, 17 16b, 17a

16b 1.26, m 13, 14, 15, 17 16a, 17b

17a 28.1, CH2 2.25, m 16, 18, 19 16a, 16b

17b 2.13, m 16, 18, 19 16a, 16b

18 143.0 [142.8], qC

19 112.3 [112.6], CH 6.04 [6.06], s 17, 18, 20 20

20 31.6 [31.4], CH2 2.02 [2.07], t (7.5) 18, 19, 21, 22 21

21 25.4 [26.5], CH2 1.55 [1.63], m 20, 22 20, 22

22 46.9 [48.9], CH2 3.24 [3.23], m 20, 21, 23, 24 21

23 35.1 [33.2], CH3 2.94 [2.79], s 22, 24

24 173.0 [172.7], qC

25 26.3 [25.7], CH2 2.27 [2.29], m 24, 26 26

26 9.7 [10.1], CH3 0.97 [0.98], t (7.4) 24, 25 25

aE-conformer NMR values of 3 in brackets.
bOverlapping signals.

cyanobacteria metabolites with methylated tertiary amides such
as smenamides A and B and kalkitoxin (Wu et al., 2000; Teta
et al., 2013). The split signals were determined to be the result
of two conformers in the E and Z configuration at the tertiary
amide functionality in 1. This phenomenon was observed for
all three new metabolites (1–3); in the structure characterization
for each of these compounds, the data for the Z conformer
is discussed. NMR data tables in the Supporting Information
provide information on the E conformer. While the multiple
conformers presented difficulties in NMR interpretation, three
partial structures of 1 (a–c) were characterized initially based
on 1H-1H COSY spin systems followed by HMBC correlation
analysis (Figure 4). In the first partial structure (a), a moderately
deshielded diastereotopic methylene group (H-20a, δH 2.12; H-
20b, δH 2.07) was correlated by COSY to a second methylene
group (H2-21, δH 1.56) which itself was correlated by COSY
to a third methylene group (H2-22, δH 3.26). This latter
deshielded methylene was correlated by HMBC to C-23 (δC
35.9) and the C-24 carbonyl (δC 169.9). The singlet methyl
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FIGURE 2 | Full MS/MS-based molecular network of Trichodesmium bloom. Previously identified molecules trichothiazole, tricholides A and B and unnarmicin D are

noted. Cluster 2 (red box) shows new metabolites 1-3 (m/z 467.161, 467.161 and 499.117, respectively).

FIGURE 3 | MS/MS-based molecular networking cluster identifying 1–3 and smenamides A or B. Nodes are labeled with parent m/z values. Edges are labeled with

cosine scores. Node size is relative to ion count.

(H3-25, δH 1.97) showed an HMBC correlation to C-24 and
characterized the western half of 1 with an N-methyl acetamide
functionality. In the second partial structure of 1 (b), another
moderately deshielded diastereotopic methylene group (H-17a,
δH 2.22; H-17b, δH 2.10) showed COSY correlations to the H-16
methylene (H-16a, δH 1.49; H-16b, δH 1.35). H2-16 showed

COSY correlations to the H-14 methine (δH 2.45), which itself
showed COSY correlations to a doublet methyl (H3-15, δH 0.94)
and olefinic proton (H-13, δH 5.59). A singlet methyl (H3-12,
δH 1.77) and H-13 showed HMBC correlations to a quaternary
carbon (C-11, δC 131.7) and the C-10 carbonyl (δC 170.6)
extending the polyketide chain of 1. The C-11–C-13 olefin was
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FIGURE 4 | Select 2D NMR correlations of compounds 1–3.

assigned E geometry based on the 13C chemical shift of C-12
(δC 13.7) compared to δC 20.1 for the Z geometry (see below).
The two sets of moderately deshielded methylenes (H2-20 and
H2-17) showed HMBC correlations to the quaternary carbon
at C-18 (δC 142.8). A deshielded methine singlet (H-19, δH

6.04) also showed an HMBC correlation to C-18, supporting an
exomethylene vinyl chloride bridge connecting partial structures
a and b. The configuration of the vinyl chloride was assigned
as Z based on NOE correlations from H-19 to H2-17 and H2-
16. The chemical shift of C-10 was consistent with that of an
amide functionality and COSY correlations from H-4 to H-8
supported the assignment of a leucine residue in the third partial
structure. However, the chemical shift at C-3 was somewhat
deshielded for that of a standard amide or ester carbonyl (δC
180.3). An O-methyl singlet (H3-9, δH 3.87) was correlated to C-
3 by HMBC supporting the presence of a methoxy functionality.
Additionally, H-2 (δH 5.28) was correlated to C-3 and the C-1
carbonyl by HMBC. HMBC correlations fromH-2 and H-4 to C-
10 connected the third partial structure to the remainder of the
molecule, establishing an isobutyl-methoxypyrrolinone moiety
and satisfying the final three degrees of unsaturation required by
the molecular formula. The structure of 1 was established as a
highly functionalized linear polyketide-peptide of the smenamide
family (Teta et al., 2013). While the correlations and chemical
shifts described above relate to the Z conformer of 1, NMR data
for the E conformer were also analyzed, and are listed in Table S1.

The absolute configuration of 1 (4S, 14R) was determined
to be identical to that of smenamide A by comparison of the
CD spectrum of 1 to that of naturally occurring smenamide A
(Caso et al., 2017). The spectra were nearly identical in sign and
magnitude.

HRESIMS analysis of 2 gave an [M+H]+ of m/z 467.2693,
suggesting a molecular formula of C25H39N2O4Cl, identical to
that of 1. Examination of 1H NMR, multiplicity-edited HSQC,
and HMBC spectra of 1 and 2 showed that the two molecules
were nearly identical (cf. Tables S2 and S3). 13C NMR differences
were most pronounced at C-12 (δC 13.7 in 1; δC 20.1 in 2) and
C-13 (δC 142.7 in 1; δC 135.9 in 2). These chemical shifts and the
NOE correlations between H3-12 and H-13 in 2 supported the
Z configuration of the C-11–C-13 olefin in 2 and established 2

as a geometric isomer of 1. The absolute stereochemistry of 2 is

proposed to be identical to that of 1 based on similarity in optical
rotation values.

HRESIMS analysis of 3 gave an [M+H]+ of m/z 499.2935,
suggesting a molecular formula of C26H43N2O5Cl, and a
requirement of 6 degrees of unsaturation. The examination of
1H and 13C NMR data and the placement of m/z 499 in the
same molecular network cluster as smenamide C and D (1 and
2), suggested that 3 was a close structural analog. The reduction
in degrees of unsaturation in 3 compared to 1 was due to the
presence of a secondary alcohol at C-13 (H-13, δH 3.73; C-13,
δC 74.3) in 3 and a methine at C-11 (H-11, δH 3.95; C-11,
δC 42.7). The H-11 and H-13 methine protons were correlated
by COSY and H-13 also showed a COSY correlation to H-14
(δH 1.48). Additionally, the C-25 methyl resonance of the acetyl
group in 1 and 2was not present in 3. COSY correlations between
a methylene at H-25 (δH 2.27) and a methyl triplet at H-26
(δH 0.97) supported an N-methylpropanamide functionality in
3 and completed the planar structure of smenamide E (3). The
secondary alcohol of 3 was resistant to acylation with Mosher’s
acid chloride and the configuration of this position could not be
determined by chemical derivative formation. Therefore, in the
current report, we report only the planar structure for this new
metabolite.

During the attempt to isolate the compound with an m/z
530 from Cluster 2 in the network (Figure 3), we isolated
a peptidic compound with spectrometric and spectroscopic
characteristics consistent with that of the previously reported
cytotoxin smenothiazole A (Esposito et al., 2015). Analysis of
NMR data, optical rotation value, and CD spectra (negative
Cotton effect at 234 nm, Figure S35) confirmed its identity.

Cytotoxicity of 1–3
Smenamides C and E (1 and 3) showed greater cytotoxicity to
neuro-2A cells than to the human colon cancer cell line HCT-
116. Smenamide E (3) showed the greatest potency to neuro-
2A cells with an EC50 value of 4.8 ± 0.6µM (EC50: 18.6 ±

1.8µM against HCT-116 cells). Smenamide C (1) showed similar
selective potency (EC50 neuro-2A: 7.2± 3.1µM; EC50 HCT-116:
20.9 ± 2.1µM). Interestingly, smenamide D (2), the geometric
isomer of smenamide C (1), did not show cytotoxicity against
either cell line.
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DISCUSSION

In our previous work on Trichodesmium blooms and their
natural products, we have utilized cytotoxicity assays, NMR-
guided isolation, and MS-guided isolation (Bertin et al., 2016,
2017a,b; Belisle et al., 2017).We have previously characterized the
cytotoxic polyketide trichophycin A, the polyketides trichotoxins
A and B, and the moderately cytotoxic polyketide-peptide
trichothiazole (Bertin et al., 2016, 2017b; Belisle et al., 2017). In
the current network, we did observe an m/z value consistent
with trichothiazole (Figure 2). The node was in Cluster 1
(m/z 342) and showed an identical MS/MS fragmentation
pattern to that of trichothiazole. However, we did not observe
nodes for trichophycin A or trichotoxins A and B. It should
be noted that the macrocyclic polyketide-peptides tricholides
A and B and unnarmicin D (Bertin et al., 2017a) also
clustered in the network (Figure 2, Cluster 4). It may be that
some metabolites in the bloom metabolome do not ionize
well by ESI+ or give informative fragments during MS/MS
acquisition; this represents a limitation in the implementation
of MS/MS-based networking to describe bloom metabolomes.
Thus, the metabolite information gained in the network may
be somewhat biased toward peptides and hybrid polyketide-
peptides. Nevertheless, taking into account the limitations of
this approach, molecular networking was a remarkable tool
for visualizing a complex metabolome rich in metabolites with
intriguing structural elements and cytotoxicity to neuro-2A
cells. Analyzing fractions C-I using the networking procedure
identified 93 nodes that were members of 13 clusters. This
approach allowed us to isolate and characterize three new
members of the smenamide family (1–3). Furthermore, within
the smenamide cluster, we tentatively identified the known
compound smenamide A or B (double bond isomers of each
other at m/z 501). This later node in Cluster 2 (Figure 3)
showed an identical MS/MS fragmentation pattern to that of
smenamide A/B from published data and the HRESIMS analysis
supported this identification (Figure S36) (Teta et al., 2013). Both
of these known metabolites are very potent cytotoxins with IC50

values around 50 nM against Calu-1 cells (Teta et al., 2013).
Smenamides C and E (1 and 3) were less potent cytotoxins than
smenamide A and B, possibly due to the replacement of the
phenylalanine amino acid unit with leucine (1, 3). Intriguingly,
smenamide D (2) was not cytotoxic to either the neuro-2A and
HCT-116 cell lines and we speculate that the cis configuration
in the middle of the polyketide chain may affect binding of
2 to its molecular target. Smenothiazole A showed nanomolar
levels against multiple cell lines and was previously isolated
from a marine sponge; however, the authors indicate a likely
cyanobacterial origin (Esposito et al., 2015). This is the first report
of smenothiazole A from a bloom of Trichodesmium.

Overall, the networking procedure has identified new target
molecules for isolation such as those in Cluster 1 (Figure 2). A
comprehensive characterization of the chemical space within the
bloom material is challenging as the metabolic composition of
the sub-fractions we have generated are all nearly as complex as
that of the sub-fraction fromwhich 1–3were isolated (Figure S2).

The networking tool significantly improves the efficiency of our
isolation and characterization workflow.

We did not identify anatoxins, saxitoxins or microcystins
during the course of this analysis. This may be due to our focus
on lipophilic metabolites, low abundance of these compounds
in our samples, or a lack of informative MS/MS fragments.
Trichodesmium blooms are complex events harboring a diverse
array of microorganisms (Capone et al., 1997). Thus, the
unequivocal identification of the producing organisms of the
toxic metabolites described in this current work and other
studies from environmental collections will ultimately require
pure cultivation of producing organisms, the identification of
biosynthetic gene clusters of toxic molecules, or the localization
of metabolites to particular cell types (Simmons et al., 2008).
In the original isolation and characterization of smenamides A
and B, the authors suggest that a cyanobacterial symbiont is the
true producer of the sponge-derived compounds (Teta et al.,
2013). The present report supports this observation, as certain
structural features such as the exomethylene vinyl chloride
moiety are characteristic of cyanobacterial metabolism (Kan
et al., 2000; Edwards et al., 2004; Nunnery et al., 2012). To the
best of our knowledge, the N-methyl propanamide functionality
in 3 has not previously been reported in a polyketide-
peptide from cyanobacteria, and represents a biosynthetically
intriguing unit because these organisms are not known to
produce propionate. Conceivably, it may derive from an S-
adenosylmethionine (SAM)-mediated methylation of an acetate
precursor, the proposed first building block in the production of
these smenamide-type natural products. This would be a similar
biosynthetic transformation to that involved in producing the
t-butyl group in apratoxin A which employs a combination of
two SAMmethyl transferases to incorporate these methyl groups
(Grindberg et al., 2011; Skiba et al., 2017).

The identification of these neurotoxic metabolites (1 and 3)
and the other more potent smenamides and smenothiazole A
from a Trichodesmium bloom raises important questions as to
their ecological role during these events. It will be important to
characterize these bloom-associated metabolites in a longitudinal
sense to evaluate their ongoing contribution to HABs.
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