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CRUDE DYNAMICAL ATTEMPTS IN SUGAWARA'S THEORY OF CURRENTSy}

Arnulf Rabl
Lawrence Radiation Laboratory .

University of California
Berkeley, California 94720

March 18, 1969

ABSTRACT

As a first step towards solving Sugawara's
theory of currents we explore the possibility that
certain specfral sums might be dominated by a single-
particle state. We sandwich the egquations of
motion for the currents between single—particle
sfates and evaluate the bilinear current terms
by inserting a complete set of_intermediate states.

By approximating the intermediate states by a

single particle we can derive nonlinear equations

for the form factors. When we apply this method to
the energy momentum tensor we find lower bounds for

the particle masses in terms of their form factors.
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I. INTRODUCTiON
Dynamical current theories have recently attracted much
attentioﬂ. A particularlyinterestingand promising example has been
"proposed by H. Sugawarél-in whicﬁ the only fundamental dynaﬁical
variablen are the vector and axial-vector cgrrent octets satisfying the

sU(3) x 5U(3) equal-time commutation relations

[ (, 7,21 = (8,5, 4 ()
B .ifabc Vuc(?i) B(x - y) +1CB8, 8, & 8(x-y) ,
(1.1a)
"9, 2,701 = 1, Vo) = 160 %00 s - )
‘ (1.1p)
A0, RO = 4500, AP = R, A ()] = o

(1.1c)
Sugawara has shown that the energy'momentum tensor @HV is determined
almost uaiquély by Lorentz invariance to be

) = BV, VAL, -8, V) VM) ¢ (7 e )

(1.2)
where C is the constant appearing in the Schwinger term of Eq. (1.la).
_Repeated Lorentz or internal symmetry indices are to be summed over,

throughout this paper. Using the explicit form of the'Lorehﬁz
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generators Pu = dejx QOM and the commutation relations (i.l), one

 .can derive the equations of motion for the currents

auva -0 = HFa* (1.%a)
a \ - a :
au v, (x) - dv VH (x)

2C

R (A CON A OV N PRI CORFSICONI S CB

) a a
du Av (x) - BV Au (x)

L
2¢

We do not concern ourselves veryrmuch with the symmetry bresking, for
which several methods have been prbposed.2-5- Furthermore, in most of
this paper we shall, for simplicity, restrict ourselves to the

Su(2) version, i.e., we omit all axial currents and let the intefnal
~symmetry indices run from 1 to 3 only.

2-9

Whereas several studies of the formal properties and of a

“few experimental consequenceslo-12 of the theory have been éonducted,
~ no one has been able to solve it. Perturbation methods, for example,

3

break down, as shown by Bardakeci and Halpern. In this paper we
; explore the simple (but probably unrealistic) possibility that certain
spectral sums might be dominated by a singlé state, for instance one

pion. This will alow us to derive approximate integral equations for

thevform factors.’

222 (17 °(x), 8 501, ¢ 000, VS0)) . (23e)
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At the center of our investigation lie the equaﬁions of motion

'(1.5) which we sandwich between gingle-particle states, inserting a

]

complete set of intermediate states in the bilinear current terms on

. the righﬁ-hand side. Since the matrix elements of currents can be

expressed in terms of form factors, we obtain an infinite set of
coupled nonlinear integral equations for the form factors. As a first
approximation towards solving these equétions we keep only one sinéle-
particle state on the right—hand side. We have, a priori, no idea
about the validity of such an approximation, and caﬁ present onlj a
weak plausibility argument why the single-particle term might dominate.
For lack of any better technique wé'shall'proceed to see how far this
approximation will carry us.

In the pion case we obfaiﬁ one nonlinear integral equation which
can be solved for the spacelike pion form factor in terms of thefpion
mass and the Schwinger cqnstahﬁ C. Alternatively,’if the form factor

is known, one can interpret this equation as a sum rule whose experi-

~mental success or failure tests the validity of our approximatidn. We
" have tried to solve the pion eguation by iteration on a computer. It
% appears to be an eigenvalue problem, because the iteration algorithm

converges to a not unreasonable solution if we choose C a factor 6 i

tooISmall, but not for the physical value of C ~ 0.02 BEVE sugéested‘

by Nussinov.lg' The‘failure to convérge for the physicél C may be duev

to the hegleét of higher étates. » |
Althdtgh the situation for the pion dbes not 1ook oo bad, the

corresponding approximation for the nucleon form factors (in Section TIIT)
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produces what is probably nonsense by yielding four independent equations
for two form factors. The hope that somehow the inconsisténciés cancel
for the actual values of the form factors is thoroughiy defeated when

we insert the experimental numbers. TIn some of the equatiéns we find
negative quantitiesvon one side and positive ones on the other, énd

not even a different choice of C could éave the situation.

In Section iV we derive sum rules from the energy @omentum
tensor qu. We obtain a lower bound for the vacuum expecfation value
(O|9u¥[0> :'A_guv in terms of - C and the pion form factor, and. show ’
that A -Would diverge if the o meson were stable. Finally we apply E
the one-particle approximation. to (n(p [ ]n(p)) = 2p P, (2n) ’ and
- find two eguations; one is a rigorous 1nequa11ty relating the form
factor af the pion to its mass, whereas the other is an equation which
cannot possibly be satisfied by the one-pion term alane. The correspond-
< ing sum rule fof the nucleoﬁ mass and nucleon form factors can bé
compared with experiment and is badly violated. This_as well as the
© experience with the nucleoﬁ form factors in Section III indicateé that

- the one-particle approximation is unsuitable, even as a first ansatz.
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II. THE PION FORM FACTOR

A. Derivation Of The Integral Equation

Let us sandwich the equation of motion (1.3b) between pion

states normalized according to

g , (é.l)

(a(p', 1)|x(e, 1)) = 273, 8(s" -p) 8,

and insert a complete set of intermediate states 1 = E: |n)(n|
n .

between the currents on the right-hand side. The relation

o [v(x)|p) = TP (hiivio)p)

,allowé us to cancel the coordinaté dependence on both sideé of the

13

equation, and we obtain

g (aer, 1)V *xlp, 1)) - 1 q (e, )]V *|x(p, 1))

eabc Z . b c. | .
= 750 {x(p', l')iVu [n){nlv "[x(p, 1))

¢ oy 101 Sl alv Plae, 1)), (2:2)

where we have set q =p' - p and V = V(0). Graphically the situation
can be represented by Fig. 1. The pion form factor F(t) ~is defined |

by
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. 1'ai
(e AV ) (e, 1)) = == (p' + ), F(t) ,
v ' . (2rx) v

2

with t = (p' - p) (2.3)

"It 1s pure isovector, since the expectafion value of the hypercharge.
part of the electromagnetic current between pion states vanishes. The
boundary condition is, of.course, F(0) = 1, representing 5 unit
electric charge.

With the assumption that a single pion saturates the right-hand

side of Eq. (2.2) we find

, Y 1 &n o '
(b,p, -pp) F(t) = o o ‘/‘gno [(p' + n)H (n +p)

- (0 ), (n v p) JR(s) Bly)

with t, = (p' - n)2 and: t, = (n - p)2 . (2.4)

“Let us note briefly that this approximation-is gauge—invariént, because
the contribution of each state on the right-hand side of Eq. (2.2)
"vanishes separétely-when mulﬁiplied by oq¥ (by antisymmetry).

| To evaluate Eq. (2.4) we éhoose the special frame in which

~p=(m 0) and q = (v, G2); as a consequence

«
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| | A
p = (m+v, @), v=-t/(em), Q=% [t - )7,

’ b = (n-p)2-2n(m-n) , (2.5)
l - : - O b . .

(] . -
t, = (p' - n)2 =t = 2wy + Qan ,

‘“where n now stands for the length of the three-vecfor

. l . . ) "
= 53 [tl(tl - l#me)]2 , and z = cos(f, §). We also see that

and F(t are azimuthally symmetric. In this frame the index

o)

pair pu =0, v =3 gives us the only ngntrivial equation

© 1 ‘ ' .
2 ;
1 n dn y : :
F(t) = —=——ovo0 dz(m + n, - = nz) F(t;) F(t,) ,
C8En)fcm ‘/; Ty J[;_ 0 Q e

(2.6)

while all other index combinations yield only O = O. The ﬁost_'

convenient mass units are those for which m = 0.5 or

i

0.28 BeV = 0.0783 BeVg. Then the Schwinger

1 =om=ba = -

constant is12 C

= 0.02 BeV2 = 0.25, and the integral equation reads
o 1 }
1 - s t - %
F(t) = — dt; n F(tl) . dz @ -t - [t = 1] n2'>
: )—l-(g:r{) . L

. Q

. -1

X F(ty) (2.7)

H
™3
ct
N
ct
1
=
-
ST
.

with t2 =1t + tl - 2ttl + QQng,‘ :Q

. 1
and n = [tl(tl - 1)]=
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i A priori we have no idea about the validity of our single-
i _

l . iy e s
particle approximation, and we can only give a weak plausibility argu-

| . : .
ment why the off-diagonal terms might be less important. The charge

J[>d5x Voa(ﬁ, t) is diagonal and hence the terms (anOa(O)ln(p)>,
(n| # pion, which occur in the off-diagonal contributions, venish at
n=rp (this is in the integration range), whereas

() [Vg*(0) 2(p)) = 1" *H(2n) ™ (n'+ ), FL(n - 9)] does not.

This might suppress.the off-diagronal contributions in the range where
they are presumably most important, i.e., at small-momentum transfer.
 Al§o, we may note that the "kernel" of the diagonal term in Eq. (2.7),;
{1 - t - [t/(t - l)]éT nz} is greater than 1 throughout the range of
integration, whereas onevcan show that the corresponding off-diagonal

terms will have kinematic zeroes and sign changes due to the difference

in masses.

B. Solution Of The Integral Equation

In view ofAthe uncertain basis of our approximation.and for
lack-of sufficient understanding of nonlinear integral equations we
do not delve into mathematical details or rigor. We restrict ourselves
to a few'simple observations»and then try to obtain a numerical
solution by iteration on a computer.

First we can show, under reasonable continuity aﬁd convergence
assumptions to allow interchange of limit and integration, that

F(t) »f (-t)7 as t - -« , S '(2..8')

With f and 7Y some coq;?ants, Y > 3/2 to assure convergence. At

t > -o Eq. (2.7) becomes
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0 ]
1 1
1 = 1i dt, F(t,) n dz F(t,)
by w0 F(E) L(2x)° © 1 ’
ot
X {l - b (; . 1) nz] ’
where t. —t[1l - 2t. + 22<£l(t ))2] = t k(z, tl) s

~and taking'the limit inside the integral,

| 0 1
1 = ——4L7§—— dt, F(tl) n dz (1 - t - nz) lim ° g Ek
L{ox)® ¢ e ' -1 ‘ t— =co

In order for g(k) = lim F(tk)/F(t) to exist, ¢(k) must satisfy
2(K%) = [4(x)]*, which bas the solution g(k) = k', and this in turn
implies 1im F(t) = fg(-f)fr-. {

We might wonder about the uniqueness of the solution. Suﬁpose

F and G are two solutions of F ='J(/’dtl dz K F(tl) F(te) with

-the same boundary condition F(0) = 1 = ¢(0) - and differing infinitesi-

‘mally, F(t) = G(t) + €(t); then one can easily show that e has to

obey the homogeﬁeous linear integral equation

jfdtl J[dz Kle(ty) @ (t ) + e(t,) G(t )] subject to €(0 j =

. Setting E = max|e(t)]|, we find |¢| < J[/ﬁt dz]K[lG(t ) + G(t ).
"If G is small enough to render Jgrdtl dle[IG(tl) + G(tg)I <1,.
then we have ’Jé(t)[ < E, which is a contradiction. Hence € =0,

and the solution is, if not unique, at least discrete.
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Of physical interest is the analytiCity of F. At first
glance one might expect square root branch pointé at t =0 and at
t=1-= hme. The exact forﬁ factor should,‘of course, be analytic in
the cut t plane, with a cut from Lm> to +w. A careful evéluation of
the limits t -0 and t -1 in Eg. (2.7) shows, however, that these
square root singﬁlarities cancel and that a solution whigh is analytic
at t =0 and t =1 is consistent. To see how this comes about,
consider the point t =1 and lét t=1+1n+ie, 17 and é small

v and real and £ = 1M + ie. Then

o 1
F(l+n+’-)=————]-'——-— dt. F(t,) d
. u(zﬂ)g C . ( P 1 ’

X FLL - b+ 202(8)7] [1 - b - ng/(8)2] . (2.9)

If we assume that F(té) can be expanded about t

N
il
-
.

v F(tg) = F[l'_ tl + 2nz(§)%]:=F(l - tl) +'2nz(g)%.F’(l - tl) o

1 _ 1
then all odd powers of (&)2 cancel because J[ dz 2% = 0 for
- J] v

odd n, and we obtain
0 1
dtl~F(tl)n dg
-00 ) B -1

-1

F(L + 1+ ie) = —
: u(2ﬂ) C

2

X L@ - t) FQ - t)- 2022 P11 - £) + Oln + 1)1
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On the other hand the aSSﬁmption of a cut from t = hmgi to. +w also
seems to be consistent, since Eq. (2.9) would be linear in the discon-
tinuity across the cut. iHowever, the equation by itself doés not seem
to possess a driving mechanism to produce such a cut.

We have written an iterative computer program which calculates

F(n+l) = ‘/)[F(n) F(n)v and renormalizes to F(n+l)(0) =1 after each

i L
step by diviaing F by [FP)(0)13. We started from a dipole
 formula F(O)(t) = (t - l-)"2 and found the algorithm to converge to

‘iwithin 1% after five or six iterations. However, whether the function

thus obtained is a solution turns out to depend on C. For{the physicallg
value C = 0.02 BeVE, F(n+l)(0) converges to 0.25 instead of 1. On
the other hand, by choosing C by a factor 1/6 too small, we were
able to obtain a solution (it is si@ilar to the input (t - l)-g but
larger and decfeasing more slowly at infinity).' This experience
suggests that Eq. (2.7) may pfesent an eigenvalue problem with C: as
ﬁhe eigenvalue. The failufe to converge for the physical value of the
Schwinger constant could of course be due to our neglect of the off-
diagonal terms in Eq. (2.2).

The alternative interpretation of Eq. (2.7) would_be’to iﬁsert

the expefimental data for the pion form factor and see to what extent

~ the ohe-pion term saturates it. Unfortﬁnately the SIOW'coﬁQergenCe

of Eq. (2.7), coupled with the lack of experimental information at

large It], precludes such an approach for the pion.lh
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IITI. THE NUCLEON FORM FACTORS
For the nucleon we take Eq. (2.2) with nucleons instead of
pions, keeping only the one-nucleon state on the right-hand side. We

introduce the form factor combinations which turn out to be most

~ convenient here, f = F2I=l and g = FlI:l + QMFQI:l, via the standard

definition
(o', sV 2(0)|p, =)

= (207 Ak, )y, &(t) - (@' <), B(®)T ulp, 8) , (3.1)

with t = (p' - p)g-. We find

u' - + 2 - flu
u [(quLl q“rv)g (qupv qypu)]

o0 o 1 21
_ 1 5 nndn az d¢
2(2x)’ ¢ o 0 -1 o

x ully g, - (0" +n) £,] (A + wlr g

(0 +0), 7]

(n + P)v fl}}u P

(3.2)

- Irg, - (e + n')u £.104 + M) g

where we have used the obvious abbreviations u = u(p, s), f - f(t),

f, = f(tl), £, = f(tg), ete. To evaluate Eq. (3.2) we'chbése the same
h.frame and the saﬁe}notation as in the pion problem (see Eq. 2.5).
‘After a great deal of tedious algebra we find four independent nontrivial

'equations (in contrast to the pion case, which gave us only one):
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(a) for p=0; v =3, : v, (3.3a)

g+ (1 -1t)f = ffglgg - 'Ijglfg[(l - t'l)2 - n222 - 2t - 2Qnz ]
- fj f_lgz[(l - tl)g - "ngzg] + (1 - ﬁ)ffflfg(l -ty o+ % nz)z; |

(b) for pu=0, v=12, : ' : (3.3b)
. | Q ‘ _n2 5 |

_tg = -/fglgg(l - 2 nz) +ff glfé[t'l(t + - 1) - —2—(1 -z7)
(t + ty - nz +‘ | flggf(l - tl) - -2—-v(l -2z27) + E(tl - 1)nz]

| + tjfflfg{?;-(_l - 22)] 3

:'(C) for pu =3, v=12, ' (5-50)

, : i . o)
2
-tg = -2 ﬁglgEtl + ff glf2 [-—g—(l +27) - Qnz + ttl‘(l + %—Z-)]

i

, [ .2 r o '
+ ff £.8, {-2—-(1 +2°) 4 %(tl - l)nz}f tf[flfz [%—(1 - 22)] 5

+

O

(d) for p=1,v =2, : Ny : (3.3d) -

o f[ élgg(tl i _& nz) +ffglf2[.n;(l - ZE)J

e [jf. 18, [raf'(l - 22_)}
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We have employed the natural mass units 1 = 2M = 1.88 BeV = 3.53 BeV2,

and jf stands for
lv

-—————2—.—- dt, n dz
2(2r)” C

-c0 -1

We would have liked two equations for the two form factors,
but found, élas, four inconsistent ones. To see to what extent ﬁhe
physical form factors satisfy these equations we have inserted the

famous dipole fitlu

6 P(t) G (t) -2
D oM oM - ; A
% (®) Ty b [l (0.71 Bev)® ] ’ o)

-t
' S 1 = —
The G's are related to the F's by GE = Fl + S F2 and

Gy = Fy + 2M F,, and the I-spin decomposition is

M 22

P FI=O + FI:l

We have taken the liberty of neglecting GEn altogether, which is

justifiable in view of its smallnesé compared with the experimgntal

- uncertainties in GM?. We have evalﬁated Eqgs. (%.3) for séveralvvalues
of t from O to -lO'BeV2 and found that the one-nucleon térm, although
generally of the right order of magnitude, fails to saturate the

equations; in some cases even the sign comes out wrong.
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Iv. SUM RULES FROM Guv

A. The:Vacuum Expectation Value
By Lorentz invariance the energy momentum tensor has the

vacuum expectation value

<0|@“V|O> = Ahg,, - | : (k.1)

13
- AR A DR ZE: [ <olu ¥ n)|® (h.2)
’ : n

Noting the positive definiteness of all contributions, we obtain a

" lower bound by keeping only the two-pion state, fhe lowest lying state

allowed by the positive G parity of the vector cufrent; (For
simplicity we consider only the SU(2) part of the theory.) We can

relate this expression to an integral over the timelike région of the

. pion form factor when we realize that

v *[x () «“(2')) = () |v,*1n"(p))

1080 S 2
= o) (p' + p)H F(t) with t = (p' + p)
21 ' .

After some algebra and trivial angular integration we find
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f 0 00 : 1
. _ 5
6 E'Edp' p_dp :
A >/ Aeﬂ = —T-— ’ . D dz
(@x)"Cc jo 2 0 0 -1
o > '
| X (g - 2)TIF(H)T | (4.3)

with t = 2(ni2 +DyPy - Pp'z) and =z = cos(P, B')

Power counting suggests that F(t) has to decrease faster than
£7% with a > 3/2 as t —+e in order for this integral to converge.
However, a finite lower bound for A may not be very meaningful, since

A is likely to be infinite. For in the chiral version of the theory

the single pion state contributes

2

2 a’p 8, b 2 . 3
A= 7 E fz-po [olay " ()" e < fdppo ,
a,b :

-which diverges if the pion decay constant, defined by

a| b X . : .
<O|§“ |n (p)) = FjT pu 6ab , does not vanish. Avnonzero Fﬂ re%glres,
of course, some symmetry breaking to make M AH +v 0.8’15_ A similar
argument shows that a stable rho-meson would give a divergent

contribution to A.

B. Sum Rule For The Pion Mass

In this section we use the fact that

e ) - 2P ey ee, , mD)

9]
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if we normalize according to Eq. (2.1). Strictly speaking this rela-

tionholds for the truncated tensor © = O - Ag . The wvacuum
53% uv My

expectation contribution to the pion mass, Aguv'Epoéj(Q - R), is

“ singular but spurious; it is precisely the. contribution of the

disconnected diagrams in the sum over intermediate states

E: <ﬁ(p)|Vu|n)(n|VV|n(p)). Hence we hope that we may forget about the
subtraction of the vacuum expectation valué if we consistently neglect
. 13 :

all disconnected diagrams.

As before we work in the pioh rest frame, For p=v =0 we

3 |
o) .
(in.lﬁ - = E E o], ) |® (4:5)

the index 1 being summed with Euclidean metric. Since each state

find

-~ contributes a positive definitive amount we obtain a rigorous inequality

for the pion mass,

n° > ———%—-— dn'ne(m + nO)IF(tl)|2 , with %, = om(m - ny),
(2rn)" C 0 ' : : R
(4.6)

' in terms of the spacelike pion form factor. Unfortunately the integral

converges slowly, and for lack of experimental data at large -t this

relation is not very useful. It does, however, provide us with a new

power bound, t_g, for the form factor at infinity, if the integral is

_to converge. This bound is stronger than the exponent -3/2 found in

Section II. The difference is due to the symmetry in the Lorenti
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indices of euv contrasted With'thg antisymmetry in the eqﬁation of motion.

Equation (L4.4) implies some more relations. For u =0, v =n,

and p =m % n =y, we get only 0 =0, but for p=v =m vwe find -

o

0 = dn n {(m + no)2 - ?5._} lF(tl)|2 + higher states . (L.7)

%0

As the pion term is strictly greater than zero, this relation cannot
possibly be satisfied by the pion alone. (The alternative F(t) =
‘Lwould contradict the boundary condltlon F(O) required by the fact

that the pion has I-spin = 1. )

.C. Sum Rule For The Nucleon Mass

Let us repeat the steps of Section IV B with the nucleon which
16 |

‘satisfies

P -
(n(, o)]o, IN(p, 8)) = —E¥— (n.8)
(2n)” M '

the difference from Eq. (4.4) being due to the different normalization

: -1 L o
for fermions (N(p', s )lN(p,us)) = M7 p, 8(p' - p) 8,1y + We find
the lower bound for the nucleon_mass17

(o0
dn n2

PN
2(2x)° ¢ o)

(b(2ny - 1) |e(t))]|?

- zz[(M + no)2 + n2] g(t)f(t)) + (M+n )[(M + no)9 + nEI !f(tl)lzi

(4.9)

&7
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v : 2 /e :
The convergence requirement that g be bounded by t B/L and f by

:ft-5/2 is satisfied by the dipole form factors by an extra tl/g, thus

-2

-assuring convergence of Eq. (4.9) like ert t"°. We have integrated

Eq. (4.9) with the dipole fit,lh_and the result, which should be geod to

about 10%, disagrees strongly: the lower bound turns out to be 1.7

times as great as the nucleon mass itself.17 Alternatively, to satisfy

Eq.-{h.9) C would have to be very much larger than 0.02 BeVg, which
we ha&e used.12

The symmetry breaking of Bardakci, Frishman, and Halpern;
(Ref. 2) might conceivably offer a way out of this dilemma. They add
(in their Eq. k.3) to @uv a term g, (c + @ ag? - fm 2o+ pfm
where the —f m 20 term produces PCAC as in the o model. Since the
quentity c + ¢ ¢ f 2m 2 isa ¢ number 1£ could be omitted.
Now the ‘—fﬂmﬂ%I term, evaluated between nucleon states, might be

negative enough to yleld a reasonable lower bound for the nucleon

mass when added to the right-hand side of Eq. (4.9).
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V. CONCLUSIONS

In this paper we tested the bné-particle approximation as é
first step towards solving Sugawara's théory.‘ The most sfraightforward
result, a nonlinear integral equation fbr the pion_form factof, do%s
not appear to ha&e a solution for the physical value of the Schﬁinger
constant. The other equations, derived by keeping only single particle
states, fare even worse: they are inconsistent with each other. - All
this indicates fhat the contributions of the higher-mass stétes are
essential,>even for the first ansatz. The algebraic,complications due
. to the spin of these higher states would be frohibitive.
.. An interesting consequence of the sum rule (4.6) fof the pion
mass.is the fact that @ﬂg is stricfly greater than zero.. Since the
inequality‘(h.6) holds in the chiral symmetric theory as well;.this'
shows that the pion cannot be a Goldstone boson.

That the pion caﬁnot be a Goldstone boson in this theory has

‘already been shown by Dashen and Frishm.an,l5 This of course leads to
:igreat difficulties in explaining PCAC and hadronic mass spectra,
puttingbthe entire burden for these phenomena on the symmetry-breaking
dynamiés. Such is not impossible318.§f course, but would lose the

19

eleganée of the Goldstone approach. On the otherlhand, it does have

the ring of the "old fashioned" bootstrap idea, in which the pion mass
sets the scale for the strong interactions and has no zero mass limit,

PCAC arising dynamically in a way relateéd to the smallness of the pion

mass.

N

v

»



0

§

=21~ , UCRL-18813

ACKNOWLEDGMENTS
I am indebted to Professor Marﬁin B. Halpern for suggesting
this problem, and for his advice and encouragement. I should aléo
like to.thank Ron Christensen for.discussions and for help with the

computer programming.



10.

A1,

13.

-02- UCRL-1881%

FOOTNOTES AND REFERENCES

This work was supported:in pdrt by the U.S. Atomic Energy Commission.

H. Sugawara, Phys. Rev. 170, 1659 (1968).

K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev. 170, 1353
(1968). |

K. Bardakci and M. B. Halpern, Phys. Rev. 172, 1542 (1968).

C. M. Sommerfield, Phys. Rev. 176, 2019 (1968).

H. Sugawara, Phys. Rev. Letters 21, 772 (1968).

D. J. Gross and M. B. Halpern, Berkeley preprint Sept. 1968.

H. Sugawara and M. Yoshimura, Phys. Rev. 173, 1419 (1968).

W. Bierter and K. Bitar, Nuovo Cimento Letters 1, 192 (1969).

B. Sakita, Wisconsin preprint, Sept: 1968.

D. J. Gross, Phys. Rev. Letters 21, 308 (1968).
C. G. Callan and D. J. Gross, Phys. Rev. Letters 21, 311 (1968).
S. N. Nussinov, Léwrence Radiation Laboratory Report UCRL-18396.

Aug. 1968, finds a lower bound for the Schwinger constant

"C 2 0.0115 BeVg, and suggests the value C = gpe/mp2 = 0.025 or

0.018 BeV® (depending oh the uncertainty in the rho-width) using

vWeinbérg's vector current sum rule [S. Weinberg, Phys. Rev. Letters

- 18, 507 (1967)1.

Both in the equations‘gf motion and in Q“v there are ﬁroducfs of

operators at the same point, a notoriously dangerous situation in

‘field theory. §. Coleman, D. .J. Gross, and R. Jackiw (Harvard

University preprint, Jan. 1969) argue that one should separate the

currents by a small distance €, subtract the vacuum expectation

W



P

s

1k,
- 15.

. 16.

17,

=

'-25- UCRL~18813

value, and then. take the:limit‘ € - 0. In a four-dimensional

Sugawara model'for'férmibns'they have found that the Schwinger

constant is singular like ¢® in this limit. However, the explicit

€ process is modeifdepehdent, and we cannot find one Withoﬁﬁ solving
the theory anywéy. In fact we have to search for an e _proéess
during an approximate solutiqn. In our approach we ignore these
complications because everything remains regular in the 1imit when-
we relate the products of gurrents to products of form factofs and
neglect all'disconnected terms. We can hope,.wiih Nussinov (Ref.
12), that such singularities»&rise Just from the disconhecteq terms

and from the vacuum expectation values, and cancel each other.

For a good review and list of references on electromagnetic form

factors see, e.g., R. Wilson, Phys. Today, Jan. 1969, ﬁ- h7-53.

R. F. Dasben and Y.:Frishman, Institute of Advanced Stﬁdies preprint,
Dec. 1968. R N

Our sum rule for_thefnuéleon:mass involves fofm factors and is quite

different from the one derived by D. J. Gross (Ref. 10) in terms of

_scattering amplitudes.

The factor 3 in the numerator of the coefficient multiplying the

integral of Eq. (h.9) comes from the - su(2) theory,.wheré

 § _(Ta)e = 3. .In the SU(3) version it would be replaced by

:?; (xa‘)2 = 8, and the discrepancy would be 8/3 as bad.
a= : )



18.

19.

-ok- ' UCRL-18813

S. Fubini and G. Furlan, Massachﬁsetts Institute of Tecﬁnology
preprint, Jan. 1969.

R. F. Dashen, Institute of Advaﬁced_sfudiés preprinf, Jan. i969,
and R. F. Dashen and M. Weinstein, Institutévof Advanced Stﬁdies

preprint, Jan. 1969.

\‘7



-25- | UCRL-18813

FIGURE CAPTTONS

Fig. 1. iThe‘equation of motion for the currents, when inserted between

D

single-particie'states, becomes a relation between form factors.
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