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Implications of Future Price Trends and Interannual
Resource Uncertainty on Firm Solar Power Delivery
with Photovoltaic Overbuilding and Battery Storage

Guoming Yang, Dazhi Yang, Chao Lyu, Wenting Wang, Nantian Huang, Jan Kleissl, Marc J. Perez,
Richard Perez, and Dipti Srinivasan

Abstract—Generation from solar is inherently variable.
Through a strategic combination of excessive capacity expansion
(i.e., overbuilding) and battery storage, the variable solar genera-
tion can be cost-effectively firmed up, in that, it is able to meet the
required generation target with absolute certainty. Firming up
solar generation implies additional cost, which can be quantified
through the firm kWh premium. This paper proposes a new
model for the optimization of firm kWh premium through either
a mixed-integer linear program or a bilinear program, depending
on whether a generic or detailed battery model is used. The
(bi)linear-program formulation greatly reduces the complexity of
the original iterative approach. Additionally, since the firm kWh
premium is a function of photovoltaic and battery prices, we show
how future price change can affect the economics of firm power
delivery and whether true grid parity can be eventually achieved.
Lastly, the sensitivity of the firm kWh premium to photovoltaic
modeling uncertainty and inter-annual solar resource uncertainty
is analyzed.

Index Terms—Firm power delivery, Firm kWh premium,
Photovoltaic, Battery storage.

NOMENCLATURE

Indexes

i, o Indexes of the sets of charging/discharging
measurement data I and O

t Index of time-period set T

Parameters

Bh Beam horizontal irradiance
Bn Beam normal irradiance
cb, cs Unit investment costs of battery storage and

PV plant
Dh Diffuse horizontal irradiance
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F1, F2 Sky-condition-dependent parameters of the
Perez model

Gc Global tilted irradiance
Gh Global horizontal irradiance
lb, ls O&M cost factor of battery storage/PV plant
Nmax, b Upper bound of Nb

Nmin, b Lower bound of Nb

Pac, Pdc AC and DC power output of the PV plant
Pac, ref AC power output limit of the inverter
Pch, max Maximum charging power of battery
Pdc, ref DC power input limit of the inverter
Pdis, max Maximum discharging power of battery
Pload, t Load demand at time t
PPV, t PV power output
Ps Original rated power of PV plant
Rd Diffuse transposition factor
Rr Transposition factor due to ground reflection
S Tilt angle of PV surface
Sb, ref Nameplate capacity of the battery that is used

to obtain the sample data
Tamb Ambient temperature
Tb, Ts Lifetimes of battery storage and PV plant
Tcel, Tmod Cell and module temperatures
Z Solar zenith angle
εb Battery charging/discharging efficiency
ζ Convergence tolerance of bisection algorithm
ηinv Actual inverter efficiency
ηnorm, ηref Nominal and reference inverter efficiencies
γref Temperature coefficient of the rated power of

the PV modules
ρ Foreground’s albedo
σb Battery self-discharge rate
τ Discount rate
θ Incidence angle
ξb, ξs Capital recovery factors of battery and PV

plant
∆t Unit time interval
∆T, p, q Empirical coefficient of the Sandia model

Variables

b1, b2 Model status in the bisection algorithm
Bch, t, Bdis, t Binary variables denoting the charg-

ing/discharging mode of battery storage
Eb, 1 Available energy of battery storage during time

t = 1
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Eb, t, Eb, t+1Available energy of battery storage at t and
t+ 1

Nb Integer number of batteries in relation to the
battery with a rated capacity of Sb, ref

N∗
b Optimal battery number in the bilinear model

Nmid Auxiliary variable in the bisection algorithm
Pch, t, Pdis, t Charging and discharging power of battery

storage
Pcurt, t Curtailed power of PV plant
Pgrid, t PV power directly injected to the grid
Pin, t Power fed into the battery after the charging

efficiency has been considered
Pout, t Power output from the battery before the dis-

charging efficiency has been considered
Sb Rated capacity of battery storage
SoCt State of charge of the battery
Xs Oversizing ratio of the PV plant
xi, t, xo, t Related to the choice of the charging or dis-

charging measurement data
y1, y2 Objective function values in the bisection al-

gorithm
ηch, t, ηdis, t Charging and discharging efficiencies of the

battery storage

I. INTRODUCTION

RENEWABLES, such as wind or solar, differ from con-
ventional generation by their variable and uncertain na-

ture, in that, they are not dispatchable. To tame such variability
and uncertainty, electric storage [1, 2], geographical smoothing
[3, 4], and demand response [5, 6] are common technologies,
which have hitherto been frontiers of energy research. As these
technologies all seek to firm up the renewable generation, they
can be grouped under the umbrella term of firm power enablers
[7]. The phrase “firm power” refers to the kind of power from
renewables that is able to meet the required generation target,
may it be the load demand or the forecast generation amount,
with 100% certainty. Hence, one may interpret firming up
renewable generation as a means of turning non-dispatchable
power to dispatchable power.

In a nutshell, all aforementioned firm power enablers alter
the generation and load profiles, so as to facilitate the balanc-
ing between the two on a variety of spatial and temporal scales,
which is a problem concerning power system operations at
large. Taking for instance electric storage, its fundamental
operating principle is to store energy when there is a surplus
of renewable generation, and to release the stored energy when
there is a deficit. Stated differently, the role of electric storage
is to shift the generation peaks so as to match the demand
peaks. The operating principles of geographical smoothing and
load shaping are similar, with the former aims at modifying
generation and the latter load.

Nonetheless, each firm power enabler, while being attractive
in its own respect, has disadvantages that can be easily thought
of. Batteries are at present costly. Particularly during the
prolonged periods of energy deficit, such as nighttime or
winter when there is no solar, the required storage capacity to
firm up the generation could be exceedingly high. Under the

current market economics and remuneration frameworks, that
is simply not financially viable. Geographical smoothing, on
the other hand, is passive in nature, as it depends for its success
upon the size and spatial distribution of installed renewable
energy farms, which are not in the system operators’ control.
Last but not least, load shaping requires the coordination
and compliance of individual consumers, who are advised to
change their electricity consumption behavior, which is known
a priori difficult.

In view of the drawbacks of these existing firm power
enablers, another somewhat counter-intuitive technology has
been proposed very recently, that is, overbuilding & proactive
curtailment [8]. The idea central to this enabler is to elevate the
generation profile by expanding the capacity of a plant, such
that most variations in power output take place above the load
profile. Certainly, overbuilding leads to energy excess, which
is to be either stored or proactively curtailed. On appearance,
curtailment is contradictory to the conventional wisdom of
energy utilization, and thus should be minimized. But in fact,
as shown by Perez et al. [8], this counter-intuitive firm power
enabler constitutes an attractive alternative of electric storage;
for that reason, the overbuilt part is known as implicit storage
[9]. The concept of overbuilding & proactive curtailment is
elaborated in Fig. 1, in which the daily energy generation
profiles of both the unconstrained (i.e, “business-as-usual”
installation without battery and overbuilding) and 2x overbuilt
versions of a 1-MW photovoltaic (PV) system are plotted
with respect to the daily energy consumption of a 0.17-
MW constant load (assumed here for simplicity). For the
unconstrained PV plant, i.e., no PV oversizing, much energy
deficit is seen, which needs to be supplied through on-site
electric storage or by other means, whereas for the overbuilt
PV plant, the energy deficit is substantially reduced (although
a much higher curtailment is now evident).

Through the above toy example, one can notice two things.
First, if the variability of the PV production (herein used
to exemplify renewable production) is to be fully resolved
via a battery-only solution, the storage capacity requirement
would be excessively high. Second, if the variability of the
PV production is to be fully resolved via overbuilding, the
overbuilding factor needs to be exceedingly large, such that
even the lowest dip in generation still stays above the load
demand. Clearly then, a combination of these two enablers
is logically attractive. The technical problem of concern is
therefore one of optimization, which endeavors to estimate
the most cost-effective mix of explicit and implicit storage.

In the literature, firm solar power delivery has been dis-
cussed numerous times, but each time under a different sce-
nario [8–12]. These previous works on firm power can be
categorized into two modes, one deals with firm forecasting,
which takes storage and overbuilding as a means to remove the
discrepancies between actual generation and forecast, the other
deals with firm generation, which leverages the same enablers
to remove the discrepancies between actual generation and
load demand. As noted by Perez et al. [10], the difference
between these two modes is only in scale, in that, firm
forecasting represents an entry-level application of firm power,
and firm generation depicts the ultimate ideal in which the
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Fig. 1. (left) The daily energy production (black solid line) of a 1-MW PV system situated in Harbin, China, serving a 0.17-MW constant load (dashed line).
PV energy calculation using the model chain is elaborated in Section III. Whereas the energy deficit (blue shade) needs to be fulfilled through battery storage,
the surplus (orange shade) needs to be either stored or curtailed. (right) The same setup but with a PV oversizing factor of 2, showing much reduction in
energy deficit, and thus much lower demand for batteries.

full load is satisfied by renewables alone, which is a much
harder task. In delivering firm power in real life, various
sources of uncertainty, such as the variable load and the
suboptimal battery dispatch schedule, would trigger additional
overbuilding requirements in the case of firm power delivery,
but that should not concern the present study.

Although some preliminary investigations on firm power
delivery have been conducted, the topic is still in its infancy,
and there are many aspects of it that are still opaque. For
example, the obtaining of the least-cost combination of storage
and overbuilding has only been mathematically described in
the original doctoral thesis from 2014 [12], but not in any
subsequent paper. More importantly, the original approach
involves two nonlinear optimization problems that estimate
the oversizing ratio and storage capacity not only separately
but also through direct search (Nelder–Mead method) and
bisection (Brent method), which as numerical methods are
inefficient. The technique, as a result, is difficult to reproduce
from the extant literature alone. For that reason, we wish
to formalize the procedure for acquiring the optimal firm
kWh premium, which quantifies the overall cost-effectiveness
of firm power generation. Next to that is the lack of in-
depth analysis on the implication of prices of PV and battery
on the optimization results. As prices of PV and battery
are bound to drop in the the future, it is of interest to
understand whether firm solar power can ever achieve true
grid parity, or at least to have a ballpark figure on the price
needed to achieve true grid parity. Another influencing factor
is the choice of PV and battery models, which necessarily
affects the optimization results. To that end, several PV model
chains (a physical PV modeling framework) and two different
battery models (one generic and the other detailed) should be
considered and compared. Last but not least, since PV power is
governed chiefly by the interplay of solar resource availability
and electricity demand, one has to investigate the effects of
inter-annual variability (or equivalently, uncertainty) in solar
resource on firm power delivery.

To summarize, the contribution of this paper is three-fold:
(1) we show for the first time that the optimization problem
concerning firm power delivery can be written into a (bi)linear
program, and a new algorithm for calculating the optimal firm
kWh premium is thereby proposed; (2) the implications of

future price trends of PV and battery on firm power generation
are investigated through an eclectic mix of price scenarios;
and (3) the uncertainty in determining the optimal firm kWh
premium is quantified on two respects, of which one is the
PV and battery physical modeling choice, and the other is the
variability in inter-annual solar resource. The remaining part of
the paper is organized as follows. Section II first discusses the
logic rule governing the operation of a firm solar power plant.
Then, it introduces the measure called firm kWh premium,
as well as how to optimize it. Section III is attributed to
model chain, which is a physical framework for modeling a
PV plant, and is essential for plant siting, design, simulation,
and performance evaluation. The sensitivity of the firm kWh
premium to the choice of the model chain, prices of PV and
battery, as well as to solar resource uncertainty, is analyzed in
Section IV, through a case study. Conclusions follow at the
end.

II. LOGIC RULE OF FIRM POWER DELIVERY AND
OPTIMIZATION OF FIRM KWH PREMIUM

Unlike the unconstrained PV plant, the firm PV plant
is configured with battery storage and a control system to
dynamically limit the PV generation if necessary, namely, to
store or curtail the excess solar power. In addition, the installed
capacity of a firm PV plant is deliberately expanded to increase
the probability of PV generation exceeding load demand.

A. Logic Rule and Cost-Effectiveness Measure of Firm Power

Figure 2 depicts the schematic diagram and flowchart of
the operating principle of a firm PV plant. As can be seen
from the figure, when PV generation is greater than load
demand, excess energy is used to charge the battery. However,
if the battery is full, that surplus of energy is curtailed. When
PV generation is lower than load demand, the firm PV plant
directly delivers all produced power to the load side, and
the energy deficit is made up by battery storage. With these
coordinated strategies, the firm PV plant can supply the system
operators with a contracted amount of PV power, which could
be either the supply of a local load such as a microgrid or a
promised generation amount that is part of a larger power
system. In other words, the generation target can be fully
satisfied, on a 24x365 basis, by the firm PV plant, which,
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Fig. 2. (A) Schematic diagram and (B) flowchart showing the operating principle of a firm PV plant. When PV power exceeds load demand, solar energy
surplus can be either charged or curtailed; when PV power is below load demand, the energy deficit is replenished by the battery storage.

just like conventional generators, can thus be regarded as
dispatchable power sources.

To gauge the economics of firm PV generation, a measure
called “firm kWh premium,” which is closely related to the
levelized cost of electricity (LCOE), is needed, and it takes
the form:

Firm kWh premium =
Firm PV generation LCOE
Unconstrained PV LCOE

, (1)

where

LCOE =
Equivalent annual cost of generation

Equivalent annual electricity produced
. (2)

As revealed in Eq. (1), the firm kWh premium relates the
LCOE of a firm PV plant to that of an unconstrained PV
plant; it can be regarded as the cost multiplier to firm up PV
generation. To compute LCOE using Eq. (2), one needs to
collect three components: (1) the equivalent annual investment
cost (CapEx), (2) equivalent annual operation and maintenance
(O&M) cost (OpEx), and the equivalent annual electricity
produced.

It should be noted that for unconstrained PV, the equivalent
annual cost is simply the sum of CapEx and OpEx of PV,
whereas for firm PV, its cost includes additional the CapEx
and Opex of batteries. On the other hand, the equivalent
annual electricity produced by unconstrained PV is just its
generation amount, whereas that of firm PV is in fact the
assigned generation target, for it needs to meet that target with
absolute certainty. In summary, the two LCOEs involve four
terms, among which three are fixed. The only variable term is
the equivalent annual cost of firm PV.

B. Formulation of the Optimization Problem

The objective function consists of the equivalent annual
investment cost and O&M cost of the PV plant and battery
storage, which can be described as:

argmin
Xs,Sb,Pch, t

{
csXsPs (ξs + ls) + cbSb

(
ξb + lb

8760∑
t=1

Pch, t

Sb

)}
,

(3)

with

ξs =
τ(1 + τ)Ts

(1 + τ)Ts − 1
, ξb =

τ(1 + τ)Tb

(1 + τ)Tb − 1
, (4)

where subscript s, abbreviated from the word “solar,” denotes
quantities relevant to PV; subscript b, abbreviated from the
word “battery storage,” denotes quantities relevant to battery
storage; subscript t indexes time and takes value from the
integer set {1, 2, . . . , 8760} representing hours in a year; ξ is
the capital recovery factor; c is the investment cost per kW for
PV plant or per kWh for battery storage; l is the O&M cost
factor; T is the lifetime in units of years; Xs is the oversizing
ratio of the PV plant; Ps is the original rated power in kW
of the PV plant; Sb is the rated capacity in kWh of battery
storage; Pch, t is the charging power of battery storage, and τ
is the discount rate.

The first term in Eq. (3) refers to the equivalent annual
cost of PV, whereas the second term shows the equivalent
annual cost of battery storage. Typically, the O&M cost of
battery storage is approximated using the number of full
charge cycles. In other words, lb of the investment cost is
assumed for the cost of a full charge cycle of battery storage.
As expressed in Eq. (4), the capital recovery factors of the PV
plant and battery storage are calculated from the discount rate
and corresponding equipment lifetime.

During firm PV plant operation, some constraints must not
be violated, which include the load demand constraint and the
operation constraints of the PV plant and battery storage:

1) Load demand constraint: The PV plant and battery
storage jointly meet the load demand. Mathematically,

Pload, t = Pgrid, t + Pdis, t, ∀t ∈ T , (5)

where T is the set of time periods; Pload, t is the load demand
at time t; Pgrid, t is the PV power directly injected to the grid;
and Pdis, t is the discharging power. The equality constraint (5)
indicates that load demand must be fulfilled at any instance t.

2) PV plant operation constraint: As shown in Fig. 2 (A),
the energy balance of the PV plant is represented by the
three arrows leaving the PV plant. Stated differently, PV
power generated by the plant comprises three components:
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(1) curtailed power, (2) power directly delivered to the load
side, and (3) power to charge the battery. The relationship is
expressed as:

PPV, t = Pcurt, t + Pgrid, t + Pch, t, ∀t ∈ T , (6)

where Pcurt, t is the curtailed power at time t, and PPV, t

is the PV power output, which can be acquired either by
measurement or through simulation.

3) Battery storage operation constraints (battery model A):
This paper considers and compares two battery models, one
simple (this subsection) and one detailed (next subsection),
as to investigate the effects of battery model on firm kWh
premium calculation. The operation constraints of the generic
battery storage model A are as follows:

0 ≤ Pch, t ≤ Bch, tPch, max, (7)
0 ≤ Pdis, t ≤ Bdis, tPdis, max, (8)

Bch, t +Bdis, t ≤ 1, (9)

Eb, t+1 = (1− σb)Eb, t +∆t

(
εbPch, t −

Pdis, t

εb

)
, (10)

0 ≤ Eb, t ≤ Sb, (11)
Eb, 1 = 0.8Sb, (12)

where ∀t ∈ T applies to all equations with t subscripts;
Pch, max and Pdis, max are the maximum charging and dis-
charging power of battery storage, respectively; Bch, t and
Bdis, t are binary variables denoting the operation mode of
the battery storage, in that, when Bch, t or Bdis, t holds the
value of 1, the corresponding mode is triggered, otherwise
deactivated; Eb, 1, Eb, t, and Eb, t+1 are the available energy
in kWh of battery storage during time t = 1, t, and t + 1,
respectively; σb is the battery self-discharge rate; εb is the
battery charging/discharging efficiency, and ∆t is the unit time
interval, which is 1 h in this case.

Constraints (7) and (8) require that the charging and dis-
charging power of battery storage are lower than their related
maximum values. Constraint (9) guarantees that no simultane-
ous charging and discharging mode can occur. The equality
constraint (10) specifies the energy balance of the battery
storage, that is, the available energy at each hour plus the
charging power times the time step (or minus the discharging
power) is equal to the stored energy at the next hour, while
the self-discharge rate and charging/discharging efficiency are
considered. Constraint (11) requires the available energy of the
battery storage at any instance to be within its rated capacity.
Last but not least, the initial stored energy of battery storage is
set as 0.8 times the rated capacity, as shown in Eq. (12). The
value of 0.8 in Eq. (12) is arbitrarily selected. Choosing a value
too small may fail the optimization, as the first few hours/days
in a year may correspond to no- or low-resource situations
during which power has to be drawn from the battery, and
some initial reserve is essential.

4) Battery storage operation constraints (battery model
B): Since the generic battery model A may be deemed as
overly ideal, which may leads to an over-confident battery
utility, many detailed battery models have recently emerged
to capture/reflect the real operation behaviors of the battery

[13, 14]. To that end, a measurement-based battery stor-
age model B, which was proposed by Gonzalez-Castellanos
et al. [15] and has been applied to the energy dispatch
optimization of a microgrid [16], is additionally considered
in this work. This battery model leverages a sampling-based
approach on the charging/discharging measurements to allow
an accurate portrait of the working of the battery. Before
further explanation, the meaning of some symbols is given
first. Pin, t represents the power fed into the battery after the
charging efficiency has been considered at time t, whereas
Pout, t specifies the power output from the battery before
the discharging efficiency has been considered at time t;
SoCt is the state of charge (SoC) of the battery at time
t, which is defined as the ratio of available energy at that
time to its rated capacity. Vector

(
ŜoCch, i, P̂ch, i, P̂in, i

)
, i ∈ I,

is the 3-dimensional representation of the battery charging
measurements, whereas the discharging measurements are
recorded as

(
ŜoCdis, o, P̂dis, o, P̂out, o

)
, o ∈ O. I and O are

the sets of battery charging and discharging measurements,
respectively. The main idea of this battery model is that the
two sample sets are used to span the feasible region of battery
operations. In other words, an arbitrary battery operation point(
SoCt, Pch, t, Pin, t

)
or
(
SoCt, Pdis, t, Pout, t

)
can be expressed

as a convex combinations of the corresponding sample set.
Constraints of battery model B can be expressed as follows:

Eb, t+1 = Eb, t + Pin, t∆t− Pout, t∆t, (13)

Pin, t =
∑
i∈I

xi, tNbP̂in, i, (14)

Pch, t =
∑
i∈I

xi, tNbP̂ch, i, (15)

Pout, t =
∑
o∈O

xo, tNbP̂out, o, (16)

Pdis, t =
∑
o∈O

xo, tNbP̂dis, o, (17)

SoCt =
∑
i∈I

xi, tŜoCch, i +
∑
o∈O

xo, tŜoCdis, o, (18)∑
i∈I

xi, t = 1, 0 ≤ xi, t ≤ 1, (19)∑
o∈O

xo, t = 1, 0 ≤ xo, t ≤ 1, (20)

Eb, t = SoCtSb, (21)
Sb = NbSb, ref, (22)

0 ≤ Nb ≤ Nmax, b, (23)
0 ≤ Eb, t ≤ Sb, (24)
Eb, 1 = 0.8Sb, (25)

where ∀t ∈ T applies to all equations with t subscripts;
xi, t is the weight assigned to the ith charging measurements,
which decides a specific battery charging point, and is to be
determined by the optimization. Similarly, xo, t is the weight
assigned to the oth discharging measurements. Sb, ref is the
nameplate capacity of a unit of battery of concern, which was
used to obtain the sample measurements. Here, the obtained
battery parameters are assumed to be linearly scalable to any
capacity of the battery, thus Nb indicates the integer number
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of batteries that are installed in the firm PV plant. In addition,
Nmax, b is the upper bound of Nb.

Two aspects separate battery model B from battery model A:
(1) in model B, the maximum charging power and maximum
discharging power depend upon the available energy in the
battery; and (2) in model B, the battery charging efficiency
(ηch, t) and discharging efficiency (ηdis, t) are time-varying.
The former aspect is due to the fact that Eqs. (14–15, 18–
19) limit the feasible region of

(
SoCt, Pch, t, Pin, t

)
using

the charging measurements, and similarly Eqs. (16–18, 20)
limit the feasible region of

(
SoCt, Pdis, t, Pout, t

)
using the

discharging measurements. Since the efficiencies of the battery
are defined as ηch, t = Pin, t/Pch, t and ηdis, t = Pdis, t/Pout, t,
they are implicitly built into the model. This model not only
captures the time-varying nature of the charging/discharging
efficiencies, and it further allows a linear energy balance
formula, as shown in Eq. (13). Next, the relationship between
Eb, t and SoCt is represented in Eq. (21). Constraint (22) gives
the value of the rated capacity of the battery. Constraints (23)
imposes that the value of Nb should be lower than its max-
imum value. Finally, Eqs. (24–25) are the same as those of
the generic model A. It should be noted that all variables
mentioned in this work are non-negative, including Pdis, t and
Pout, t, although these two variables are sometimes default to
take a negative sign.

C. Solution method
When the generic battery model A is used, the optimization

problem, which includes Eqs. (3–12), can be written into a
mixed-integer linear program, and thus the objective function
can be directly optimized using standard mathematical solvers,
such as Gurobi, which is available in many language includ-
ing Python. On the other hand, if the detailed battery model
B is considered, the proposed model, which corresponds to
Eqs. (3–6, 13–25), is changed to be a bilinear programming
problem due to the existence of the bilinear terms in Eqs. (14–
17, 21). The bilinear terms present as a challenge to the
optimization problem. McCormick envelopes and a bound-
tightening relaxation algorithm, which have been applied to
the optimization models in power systems [17], may be used
to handle the bilinearity. However, the optimality of the model
is not guaranteed. Hence, we propose next an alternative
algorithm to solve the bilinear program.

It worth noting that when the integer variable Nb is fixed, the
bilinear program collapses into a linear program (LP), which
can then be solved by Gurobi easily. On this point, if the LP
model is run Nmax, b times, each corresponds to a particular
Nb value, and the smallest one among the Nmax, b number of
solutions guarantees the optimality of the bilinear program;
this constitutes an exhaustive search approach in terms of
Nb. A clear drawback of exhaustive search is that it is time
consuming. In view of that, this work proposes to replace the
exhaustive search with the bisection method, which is much
faster than the former while maintaining optimality. In other
words, the proposed algorithm combines bisection and LP, and
its pseudocode is detailed in Algorithm 1.

The bisection algorithm takes the convergence tolerance
(ζ), the minimum (Nmin, b) and maximum (Nmax, b) battery

Algorithm 1 bisection–LP hybrid solver
Input: the values of ζ (ζ > 0), Nmin, b, and Nmax, b
Output: the optimal battery number (N∗

b )
1: initial the value for Nmid, b ← (Nmin, b +Nmax, b) /2
2: repeat
3: Solve LP to obtain y1 and b1 for Nb = Nmid, b
4: Solve LP to obtain y2 and b2 for Nb = Nmid, b + 1
5: if b1 = 2 then
6: if y1 < y2 then
7: Nmax, b ← Nmid, b
8: else if
9: then Nmin, b ← Nmid, b + 1

10: end if
11: else if
12: then Nmin, b ← Nmid, b
13: end if
14: Nmid, b ← (Nmin, b +Nmax, b) /2
15: until (Nmax, b −Nmin, b <= ζ and b1 = 2)

numbers as inputs, and outputs the optimal battery number
(N∗

b ), in concert with the procedure and outcome of the LP.
Before the iteration starts, the intermediate variable (Nmid, b),
which is equal to the mean of Nmin, b and Nmax, b, is initialized
on line 1. Lines 2–15 give the details of the loop. The LP
solver used here is able to output two quantities, namely,
the optimal objective function value, and a so-called model
status variable, which indicates the convergence status of the
program. In line 3, an LP model is solved when Nb = Nmid, b,
after which the objective function value (y1) and model status
(b1) obtain. Similarly, another LP is solved in line 4 for the
case of Nb = Nmid, b+1. It is noted that two LPs per iteration
are needed, since the difference of y1 and y2 is used to judge
the sign symbol of the derivative value at Nmid, b. Moreover,
the model status variables (b1 and b2) are necessary to ensure
the LP solutions are unique and feasible. In other words,
the algorithm completes when the model status variables take
the value of “2,” which, as defined by the solver, indicates
an optimal solution (“1” corresponds to “loaded” and “3”
corresponds to “infeasible,” etc.). The algorithm terminates
until the difference of Nmin, b and Nmax, b is lower than the
convergence tolerance, while b1 = 2 is true, see line 15.

III. PHYSICAL MODEL CHAIN FOR PV POWER MODELING

Firm power delivery can be realized on both existing the
PV plant and new PV plant. In the case of the former, one
needs to expand the original installed capacity according to
the historical power measurements collected on-site. However,
during the planning and design of a new firm PV plant,
historical data is not available, and one must simulate the
PV power output via, e.g., satellite-derived irradiance data
and energy meteorology models [18]. Converting satellite-
derived irradiance (and other auxiliary variables such as air
temperature and wind speed) to PV power is not a trivial task,
for it involves a sequence of models, each established upon
intricate scientific or engineering principles, see [19–21] for
discussions. Since these models are used in cascade, where the
output of one model is the input of another, this framework
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of irradiance-to-power conversion is called the model chain.
Figure 3 shows the schematic of the simplified model chain
used in this work.

Time and location

GHI

Albedo

Wind speed

Temperature

Solar positioning

Separation

Transposition

PV module

Cell temperature

Inverter model

PVWatts loss model

PV power outputInput

Model chain

Output

Fig. 3. A schematic diagram of a basic model chain, which utilizes global
horizontal irradiance (GHI), albedo, wind speed, temperature, time, and
location as inputs, and yields the PV power.

The input of this model chain consists of five elements.
First, time and location information is used to compute the
angles describing the sun’s position relative to observers on
both horizontal and tilted surfaces; this stage is known as
solar positioning. Several algorithms are available, and among
them, there is a general trade-off between computation speed
and accuracy. Since speed is not a concern for the present
simulation, the algorithm of Reda and Andreas [22] is herein
used, which is the most accurate one to date. Solar positioning
yields the zenith angle (Z) and incidence angle (θ), which are
required by separation and transposition models.

In separation modeling, global horizontal irradiance (GHI)
is split into a beam component and a diffuse component based
on the closure relationship:

Gh = Bh +Dh = Bn cosZ +Dh, (26)

where Gh, Bh, and Dh are GHI, beam horizontal irradiance
(BHI), and diffuse horizontal irradiance (DHI), respectively;
Bn is the beam normal irradiance, which differs from Bh by
a factor of cosine of zenith. Hundreds of separation models
have been proposed in the literature, and their performance is
inhomogeneous across geographical locations, time periods,
and sky conditions [23]. For instance, a rational strategy is
to treat clear- and cloudy-sky conditions separately, which is
also the approach adopted here. For clear-sky conditions, the
REST2 model [24] directly estimates the clear-sky beam and
diffuse components, whereas for cloudy-sky conditions, the
DISC model [25] is used.

With the estimated Bn and Dh, the transposition model
converts the horizontal irradiance components to the global
tilted irradiance (GTI):

Gc = Bn cos θ +RdDh + ρRrGh, (27)

where Gc is the GTI on the tilted collector surface; Rr =
(1− cosS) /2 is the transposition factor due to ground re-
flection, where S is the PV tilt; ρ is the foreground’s albedo,

which can be obtained through either measurement or remote
sensing; and Rd is the diffuse transposition factor, which
can be estimated via different options [26]. Among the many
options, the 1990 version of the Perez model [27] is widely
regarded as the most accurate one, it is therefore used in this
paper. More specifically, the Perez model states:

Rd = (1− F1)
1 + cosS

2
+ F1

max(0, cos θ)

max(0.087, cosZ)
+ F2 sinS,

(28)
where F1 and F2 are sky-condition-dependent parameters that
can be looked up from Tables 1 and 6 of [27].

Whereas GTI is the most influential factor affecting the PV
output, the cell temperature (Tcell) is the next-important one.
Estimating cell temperature is known a priori to be linked
to ambient temperature. Besides that, heat removal through
convection reduces cell temperature, and thus wind (mostly
wind speed, and to some extent, wind direction) is also taken to
be a second-order variable during cell-temperature modeling.
Similar to the previous stages in the model chain, there are
numerous available cell temperature models. Without loss of
generality, the Sandia model [28] is considered here:

Tcell = Tmod +
Gc

1000 W/m2∆T, (29)

Tmod = Gc exp(p+ qV ) + Tamb, (30)

where Tmod and Tamb are module and ambient temperature,
respectively; V is wind speed; ∆T , p and q are empirical
coefficients for the different encapsulation–mounting combina-
tions. For example, for glass/polymer modules with open-rack
mounting, ∆T = 3◦C, p = −3.56, and q = −0.075.

PV models, which convert GTI, cell temperature, and other
PV system design parameters into DC output, can be classified
into two types [19]. Empirical models form one category,
whereas those that adopt physical modeling of an equivalent
circuit form the other. Physical models are able to trace out the
entire I–V curve of the system, but require system design to
be known. In contrast, empirical models do note require that
and can offer acceptable accuracy. In this work, the empirical
PVWatts model [29] is used:

Pdc = Ps
Gc

1000 W/m2 [1 + γref (Tcell − 25◦C)] , (31)

where Pdc is the DC power output of the PV plant, and γref
is the temperature coefficient of the rated power of the PV
modules with a unit of %/◦C.

Before injection to the grid, DC power needs to be converted
to AC power. With the input of the DC power calculated by
the preceding part of the model chain, the PVWatts inverter
model [29] is taken for DC–AC conversion:

ηinv =
ηnorm

ηref

(
−0.0162ς − 0.0059

ς
+ 0.9858

)
, (32)

Pac = min (ηPdc, Pac, ref) , c (33)

where ηinv = Pdc/Pdc, ref, Pdc, ref = Pac, ref/ηnorm, ηinv is
the actual inverter efficiency, ηnorm is the nominal inverter
efficiency, ηref is the reference inverter efficiency, Pdc, ref and
Pac, ref are respectively the DC power input limit and AC power
output limit of the inverter, and Pac is the AC output of the
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PV plant. It is worth mentioning that any AC power exceeding
Pac, ref is truncated, of which the action is known as inverter
clipping.

At this stage, the AC power output has been acquired.
Nevertheless, to simulate PV power in a more realistic way,
one still needs to factor in various losses, such as snow
loss, wiring loss, or shading loss. Modeling physical losses
exactly also requires design information, and the outcome is
not always superior to simple empirical approaches. Hence,
the PVWatts loss model [29] is considered to lump the various
losses.

IV. A CASE STUDY ON FIRM GENERATION

A. Case Study Parameters

The principle of firm power delivery and model chain
construction described in the previous two sections are general,
and can be applied to any location insofar as the solar resource
data, modeling parameters, and load profiles are available.
Without loss of generality, the firm PV plant is assumed to
be situated in Harbin (45.76◦ N, 126.64◦ E), China. The DC
rated power (Ps) is set to be 1 MW. The firm PV plant is
intended to serve a 0.17-MW constant load all year round.
This constant load is chosen for not just simplicity but also
its ability to conservatively isolate the effect of the load
profile on the results. Employing the physical model chain, the
power output (Ppv, t) of the firm PV plant is simulated with
the TMY dataset downloaded from National Solar Radiation
Database (NSRDB) [30]. TMY, which is composed of individ-
ual monthly data from different years each characterizing the
median weather condition of the month, is ubiquitously used in
solar engineering, design, and bankability studies. However, it
should be noted that when actual load profile is used in concert
with TMY dataset, the time synchronization between the two
must be ensured, i.e., for each TMY month, the same-month
load data must be used.

TABLE I
PARAMETER SETTING OF THE CASE STUDY.

Par. Value Source Par. Value Source
cb 137 $/kWh [31] cs 833 $/kW [32]
lb 0.02% [8] ls 1% [8]

Nmax, b 20 000 – Nmin, b 0 –
Pac, ref 0.833 MW [33] p −3.56 [28]

q −0.075 [28] S 45.76◦ –
Sb, ref 5.32 kWh [34] Tb 15 years [35]
Ts 30 years [35] εb 95% [21]
ζ 1 – ηnorm 97.5% [33]
ηref 96.37% [29] γref −0.45%/◦C [33]
σb 0.01% [21] τ 8% [21]
∆t 1 hour – ∆T 3◦C [28]

With the location and unconstrained PV capacity fixed,
the basic PV plant design information needs to be sought.
To do so, we solicit different parameter values from various
credible sources, see Table I. For instance, following the
conventional wisdom, a DC/AC ratio of 1.2 is used, which
implies an AC rated power (Pac, ref) of 0.833 MW. The nominal
inverter efficiency (ηnorm) is 97.5% [33], and the reference
inverter efficiency (ηref) is 96.37% [29]. The temperature

coefficient of the rated power of the PV modules (γref) is
taken to be −0.45%/◦C. As for losses, the default values
for soiling loss, snow loss, wiring loss, and other losses
are assumed to be 2%, 3%, 2%, and 3%, respectively. The
irradiance-to-power conversion is implemented in the open-
source pvlib-python package [33], from which the details
of the selected PV modules and inverter can also be retrieved.

Besides the parameters used for model chain, one also has
to set the parameters of the optimization model for the firm
kWh premium estimation, see Table I. From Statista, it is
sourced that the average investment cost per kW (cs) of the
PV plant was 883 $/kW worldwide in 2020 [32], and the
average investment cost per kWh (cb) of lithium battery storage
worldwide was 137 $/kWh in the same year [31]. Based on
[35], the lifetime of PV (Ts) and battery (Tb) are respectively
set to be 30 and 15 years. If battery storage was charged at
the maximum power, it is assumed that it would take 4 h to go
from empty to the full-charge state, namely, Pch, max×4 h = Sb.
The same rule is applied to Pdis, max. Consistent with [21], a
conservative discount rate (τ ) of 8% is used, the self-discharge
rate (σb) is taken to be 0.01%, and the charging/discharging
efficiency (εb) is 95%. The O&M cost factor (ls) is 1.0%
for the PV plant on a yearly basis and 0.02% for battery
storage (lb) per full charge cycle, following [8]. Besides, the
actual charging/discharging sampled points used by Ref. [34]
come from a battery storage with a rated capacity (Sb, ref) of
5.32 kWh. In the bisection algorithm, the minimum (Nmin, b)
and maximum (Nmax, b) battery numbers are respectively set as
0 and 20 000 (i.e., the highest battery capacity is 106.4 MWh),
wheres the convergence tolerance (ζ) is one (i.e., batteries are
discrete).

B. Optimization results

Results using battery model A: Recalling the objective
function (3), in principle, both the oversizing ratio Xs and the
rated capacity of battery storage Sb, as well as the intermediate
variables such as Pch, t can be optimized simultaneously when
the generic battery model A is employed. For investigation
purposes, however, one may wish to examine the variation
of the firm kWh premium with the oversizing ratio. In such
situations, it is possible to fix Xs at a range of values, e.g.,
{1, 1.01, . . . , 10} with a step size of 0.01, and optimize Sb

for each Xs value. In any case, once with Xs and Sb found,
the optimal firm kWh premium can be calculated via Eqs. (1)
and (2) after considering the annual solar energy yield and
annual constant load. Figure 4 (A) illustrates the value of
the firm kWh premium for the PV system of concern as a
function of Xs when the battery constrains are Eqs. (7–12);
the contributions from the PV plant and battery storage are
broken down for visualization.

It is evident from Fig. 4 (A) that, when Xs = 1, i.e., no
oversizing, an exceedingly high firm kWh premium of 20.49 is
required to firm up the generation. However, with just a small
fraction of overbuilding, there is a drastic decrease in the firm
kWh premium—when Xs = 1.77, the firm kWh premium
sees a five-fold reduction, reaching just 4.18. As more PV is
overbuilt, the premium starts to increase quasi-linearly. These
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observations can be explained as follows: To firmly meet the
0.17-MW constant load, the duration and magnitude of the
load–supply mismatch sharply collapses (cf. Fig. 1) and then
saturates with further increasing Xs. Consequently, one can
conclude that the saved cost of excess battery storage can
well cover the additional cost of PV overbuilding, as to reach
an optimal combined use of the two firm power enablers. To
summarize, the least cost of firm PV power under the current
simulation setup in the case using the simple battery model A
can be achieved with an additional 0.77 MW PV overbuilding
and a battery storage with a rated capacity of 8.85 MWh.
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Fig. 4. Firm kWh premium of the PV system of concern as a function of
the PV oversizing ratio in cases using the generic battery model A (top) and
measurement-based battery model B (bottom). The blue and orange areas mark
the cost contributions from battery and PV, respectively. When firm power is
delivered via a battery-only solution, its firm kWh premium is high (point A
in figure). In contrast, when an optimized multiplier of PV is overbuilt, the
firm kWh premium drops to a nadir value (point B), owing to the substantially
smaller battery. As the PV oversizing ratio increases further, the firm kWh
premium rises quasi-linearly due to effects of diminishing returns.

Result comparison under the two battery models: As can be
observed from Fig. 4, the variation pattern of the firm kWh
premium of the PV system with respect to the PV oversizing
ratio under the scenario using the simple battery model A
is nearly the same as that in the case using a more realistic
battery model B. Particularly, the optimal firm kWh premium
for the former model is 4.18, whereas the corresponding value
is 3.96 for the latter model. This shows that the high intricacy
of the battery model does not alter the firm kWh premium
much, since the difference between the two optimal values
is only 0.22. Regarding the higher value of the optimal firm
kWh premium in the case with generic battery model, it may
be due to an over-pessimistic assumption about the battery
charging/discharging efficiency. More specifically, a constant
battery efficiency of 0.95 is assumed for battery model A,
whereas the average charging and discharging efficiencies
calculated empirically from the real operation profiles are 0.99
for the measurement-based battery model B. The main reason
why the efficiency of the battery model B is nearly close to one
is that the values of the SoC of the battery are almost always
above 0.05, as shown in Fig. 5 (B), which avoids the low-
efficiency charging/discharging behaviors. Figure 5 also shows
that there are not many hours when the SoC values of the

battery exceed 0.5 for both battery models. If battery activities
during these periods are replaced by the existing dispatchable
units such as gas turbines, the rated capacity of the battery
could be halved, which would further reduce the above optimal
firm kWh premium. In the following subsections, although
battery model B can characterize the battery performance more
accurately than battery model A, only model A is used, since
there is only a marginal difference in firm kWh premiums
calculated by the two battery models.
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Fig. 5. State of charge of the battery: (A) generic battery model A, and (B)
measurement-based battery model B.

C. Influence of the choice of the model chain on firm kWh
premium

The PV power output in this work is simulated using the
physical model chain, which consists of disparate component
models, each with numerous variants. That is to say, even
with the same weather inputs, diverse PV generation behaviors
might be observed if different model chains are selected. In
this regard, the impact of the choice of the model chain
on the firm kWh premium is demonstrated here. Note that
separation model and transposition model are the two most
essential steps in model chain [19], and separation model can
be skipped in this work since the weather dataset already
contains GHI, BHI, and DHI. Consequently, we only consider
model chains with different options of transposition models,
with other component models remain the same as described
in Section III. Five transposition models, namely, King model,
Reindl’s 1990 model, Klucher’s 1979 model, Hay & Davies’s
1980 model, and Perez’s 1990 model [33], are considered.
The results on the calculated firm kWh premium are listed in
Table II.

Evidently, there are differences in the results. However, the
gap between the highest and lowest firm kWh premium values
is only 1.67%, and that between the highest and lowest annual
PV productions is 1.64, which are both negligible in view of
other larger sources of uncertainties, such as the interannual
variability in solar resource, see below. Therefore, the choice
of transposition models does not incur significant differences
on the firm kWh premium and annual solar energy yield. From
this finding, one may further infer that the choice of model
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TABLE II
FIRM KWH PREMIUM AND ANNUAL PV PRODUCTION OF THE PV SYSTEM
OF INTEREST UNDER FIVE VARIANTS OF TRANSPOSITION MODELS, EACH

WITH A DIFFERENT SKY DIFFUSE IRRADIANCE MODEL.

Sky diffuse Firm kWh Annual PV
irradiance models premium production (MWh)

King model 4.12 1638
Reindl’s 1990 model 4.15 1620

Klucher’s 1979 model 4.12 1616
Hay & Davies’s 1980 model 4.15 1611

Perez model 4.18 1636

chain is not a sizable source of uncertainty in firm power
delivery optimization.

D. Sensitivity of the Firm kWh Premium to Solar and Battery
Costs

The firm kWh premium can be considered as the cost
multiplier to firm up PV generation with respect to the
cost of unconstrained PV. Although the optimal firm kWh
premium of 4.18 under the current PV–battery price structure
is already substantially lower than that of the battery-only
solution, which is 20.49, this 4x multiplier in cost is still not
acceptable, for the PV plant owners need to quadruple their
total investment. Currently, unconstrained PV has reached grid
parity in many parts of the world, but firm PV would again
make solar a less competitive option than conventional thermal
generation. Hence, this section investigates how future price
trends of PV and battery can affect the firm kWh premium
and LCOE, and whether or not true grid parity of PV can
be eventually achieved. In this regard, a sensitivity analysis
on the firm kWh premium and LCOE in response to the
unit investment costs of battery storage (cb) and PV (cs)
is conducted. More specifically, cb is selected from the set
of {20, 30, . . . , 180} in steps of 10 $/kWh, whereas cs is
drawn from the set {100, 120, . . . , 1000} in steps of 20 $/kW.
Our choice takes regular intervals on the prices, from their
current levels (833 $/kW for PV and 137 $/kWh for battery,
which have been provided in Section IV), to some ideally low
levels (100 $/kW for PV and 20 $/kWh for battery), in that,
the considered scenarios are designed to cover “all” possible
scenarios [36, 37]. Figure 6 plots the heat maps of the optimal
firm kWh premium and LCOE of firm PV for different pairs
of cs and cb values.

From Fig. 6 (A) one can observe that the lowest firm kWh
premium occurs when the PV cost is high and battery cost
is low—with cs = 1000 $/kW and cb = 20 $/kWh, the
premium is just 1.88. This low value stems from how the
firm kWh premium is defined: The more expensive PV is
relative to battery, the smaller relative cost is needed to firm up
generation. That said, the real insights come from Fig. 6 (B),
where the reduction of LCOE is evident with a decrease in
either cs or cb. The red line in the figure marks the current
average feed-in tariff of China, which is 5.10 ¢/kWh [38, 39].
If the LCOE of firm PV falls below that number, firm PV
becomes truly competitive. The LCOE of firm PV at present
day is 21.65 ¢/kWh, which is 4.2 times that of the average
feed-in tariff. To reach below 5.10 ¢/kWh, and based on the
simulation, one requires a combination of cs < 250 $/kW and

cb < 40 $/kWh. The differences between the current and future
prices of PV and battery are to be narrowed by technological
advancements and radical changes in energy policies.

E. Effects of Inter-annual Variability on the Firm kWh Pre-
mium

The analysis on the firm kWh premium is conducted thus far
with the TMY dataset. Since TMY is a dataset that portrays the
most typical weather regime of a location, the corresponding
results can also be regarded as typical. Notwithstanding, it is
well known that solar resource exhibits inter-annual variability,
in that, resource availability varies somewhat from one year to
another. Hence, to ensure the long-term validity of firm power
delivery, one has to consider not just the typical scenario but
also the worst-case scenario. On this point, the optimization
of the firm kWh premium is repeated with weather data from
each individual year during a ten-year (2011–2020) period. In
other words, this section seeks to examine the robustness of
firm power delivery. The result is shown in Fig. 7.

It can be seen from Fig. 7 that the firm kWh premium
computed using the TMY dataset is in fact lower than that of
most individual years. This result can be easily understood, as
the TMY dataset does not contain those small-probability pro-
longed low-resource periods, which can drive up the premium
significantly. For instance, over this 10-year period, the highest
premium of 6.87 takes place in 2013, which is much higher
than the TMY premium of 4.18. What this case study reveals
is that if we are to design a firm power plant based just on
TMY data, it is very likely that the designed plant fails to meet
the firm power delivery requirement in practice. This finding
is contradictory to the current industrial practice where TMY
is acceptable and thus universally used for plant design and
bankability studies. Rather, the design of the firm power plant
should not rely on TMY, but the worst-case scenario, which
can only be realized if long-term weather data is available.
In a more general sense, when actual load is in use, the
worst-case scenario corresponds, for example, to highest-load–
lowest-resource months/year. However, since such worst-case
scenario occur rather infrequently over the lifetime of the firm
PV system, it may be more economic to engage other failsafe
devices as opposed to overbuilding more PV and/or installing
more batteries.

To put this inter-annual concern in a practical operational
perspective, the concept of supply-side flexibility has been
introduced and applied by Perez et al. [10]. Supply-side
flexibility assumes that a small fraction (typically < 5%) of
electrical demand is met by conventional thermal generation,
thereby removing extreme event contingencies. Flexible power
such as that from spinning reserve is applied any time when
storage runs out. In a recent investigation Remund et al. [40]
showed that even if very expensive 100% renewable e-fuels
are used in lieu of standard natural gas to power thermal
generation, the impact on the bottom-line electricity cost is
negligible, while the impact on the bottom-line premium can
be far reaching, removing extreme overbuild/storage contin-
gencies.
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Fig. 7. Firm kWh premium of the PV system of concern over a period of
10 years (2011–2020). The two horizontal lines indicate the 10-year-average
premium (orange) and the premium calculated from the TMY dataset (blue).

V. CONCLUSION

Intermittency, variability, and the non-dispatchable nature
present the greatest challenges in matching the properties of
solar PV power to convention thermal power. Firm power
enablers, which are technologies that can help PV power
to meet the targeted load with 100% certainty, are of great
interest. Among various enablers, the combination of battery
storage and PV overbuilding seems particularly attractive,
in that, they are neither passive as geographical smoothing
is, nor to they require consumers to change their electricity
consumption as in demand response.

Although firm power delivery has been studied previously,
this paper proposes a new mathematical optimization model
for calculating the firm kWh premium, which is an indicator
of the cost-effectiveness of firm power enablers. To char-
acterize the operation behaviors of the battery, two models
are considered, one generic and the other detailed, which
render the aforementioned optimization model either a mixed-
integer linear program or a bilinear program. Since the bilinear
problem is hard to solve, an alternative algorithm is presented
to ensure optimality. Besides, the effects and implications on
the firm kWh premium due to (1) future price trends of PV
and battery, (2) the choice of model chain, and (3) inter-annual
variability in solar resources, are analyzed and investigated.

From the optimization results, it is found that the lowest
firm kWh premium under the present-day cost structure at
the selected northern China location is around 4.18 when
the generic battery model is employed. Despite the five-
fold reduction as compared to the premium of a battery-

only solution, this value is still too high for firm PV to be
considered as truly competitive in electricity markets. Besides,
granularity in battery modeling and the choice of the model
chain are found to have only a marginal effect on the firm
kWh premium. To drop the LCOE of firm PV below grid
parity, the unit investment costs of PV and battery need to be
lower than 250 $/kW and 40 $/kWh, respectively. The practice
of using TMY dataset to analyze the firm kWh premium, as
it is used ubiquitously for standard solar resource assessment
and bankability studies, is found inadequate, since it does not
contain the worst-case weather scenario for strictly 100% PV
applications. To remedy the situation, historical weather data
over a long period of time such as a decade is thought essential
to arrive at an accurate estimate of the firm kWh premium. In
practice, however, a small amount of supply-side flexibility can
lead to economically acceptable 100% renewable firm power
operations.
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