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Abstract

A theory of potential vorticity (PV) mixing in a disordered (tangled) magnetic field is presented. The analysis is in
the context of G-plane MHD, with a special focus on the physics of momentum transport in the stably stratified,
quasi-2D solar tachocline. A physical picture of mean PV evolution by vorticity advection and tilting of magnetic
fields is proposed. In the case of weak field perturbations, quasi-linear theory predicts that the Reynolds and
magnetic stresses balance as turbulence Alfvénizes for a larger mean magnetic field. Jet formation is explored
quantitatively in the mean field—resistivity parameter space. However, since even a modest mean magnetic field
leads to large magnetic perturbations for large magnetic Reynolds number, the physically relevant case is that of a
strong but disordered field. We show that numerical calculations indicate that the Reynolds stress is modified well
before Alfvénization—i.e., before fluid and magnetic energies balance. To understand these trends, a double-
average model of PV mixing in a stochastic magnetic field is developed. Calculations indicate that mean-square
fields strongly modify Reynolds stress phase coherence and also induce a magnetic drag on zonal flows. The
physics of transport reduction by tangled fields is elucidated and linked to the related quench of turbulent
resistivity. We propose a physical picture of the system as a resisto-elastic medium threaded by a tangled magnetic
network. Applications of the theory to momentum transport in the tachocline and other systems are discussed in
detail.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Astrophysical fluid dynamics (101);
Plasma astrophysics (1261); Solar differential rotation (1996); Solar dynamo (2001); Solar magnetic fields (1503);
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1. Introduction

Turbulent momentum transport is a process that plays a
central role in the dynamics of astrophysical and geophysical
fluids and in the formation of many astrophysical objects.
Examples of phenomena where momentum transport is at center
stage include accretion in both thin and thick disks (Balbus &
Hawley 1998), the generation of differential rotation in the Sun
(Bretherton & Spiegel 1968; Spiegel & Zahn 1992; Mclntyre
2003; Miesch 2005) and other stars (Sweet 1950; Eddington
1988; Vainshtein & Rosner 1991), magnetic dynamos, and
atmospheric phenomena in the solar system and exoplanets
(Ingersoll et al. 1979; Busse 1994; Maximenko et al. 2005).
Despite the importance of turbulent transport for astrophysics, it
is difficult to derive general theories for it. Computational
models are unable to resolve the vast range of spatial and
temporal scales required for a complete description, and also
analysis is usually limited. However, in certain circumstances,
the system can be captured by the development of an asymptotic
procedure that represents the essential interactions.

In some cases, the dynamics of the turbulence is effectively
two-dimensional (2D)—usually due to the rapid rotation and the
strong stratification (i.e., small Rossby number and large
Richardson number; see, e.g., Mclntyre 2003). In these cases,
it is possible to describe the turbulent dynamics using classic S-
plane or quasi-geostrophic models (Pedlosky 1979; Bracco et al.
1998), familiar from geophysical fluid dynamics.

The solar tachocline is one such quasi-2D astrophysical object
(Miesch 2003, 2005; Tobias 2005). The lower tachocline is a thin,
stably stratified layer, thought to sit at the base of the convection
zone (Kosovichev 1996; Basu & Antia 1997; Charbonneau et al.
1999), which is of great interest in the context of the solar dynamo
(Cattaneo & Vainshtein 1991; Parker 1993; Cattaneo 1994,

Tobias & Weiss 2007), since tachocline shear flows can stretch
and so amplify magnetic fields that may be stored there against the
action of magnetic buoyancy by the stable stratification (Schou
et al. 1998). Turbulent transport plays a key role in the tachocline;
indeed, it may be responsible for its very existence—see Spiegel
& Zahn (1992), Gough & McIntyre (1998), and later in the article.
The nature of the turbulent transport in the tachocline is still
uncertain. Even such fundamental questions as whether the
transport is up or down gradient or significantly anisotropic
remain unanswered.

Given the effective 2D structure of the tachocline, it is natural
to treat its dynamics using classical shallow water theory and
formulate its description in terms of potential vorticity (PV)
evolution and transport. In the shallow water picture, the PV flux
governs the turbulent momentum transport, since the Taylor
identity (Taylor 1915) directly relates the PV flux to the
Reynolds force. However, the solar tachocline presents addi-
tional challenges. It is composed of ionized gas and thus must be
treated as a magneto-fluid and modeled, for example, by 3-plane
or shallow water magnetohydrodynamics (MHD; Moffatt 1978;
Gilman & Fox 1997; Gilman 2000). The tachocline supports a
mean azimuthal magnetic field By. This magnetic field breaks
PV conservation in an extremely subtle way (Dritschel et al.
2018). Moreover, Rossby waves couple to Alfvén waves, so the
turbulence has a geostrophic character at some scale and that of
2D MHD at others.

Indeed, the plot further thickens. The solar tachocline is
strongly forced by convective overshoot from the convection
zone. Thus, the magnetic Reynolds number (Rm = VL/7,
where 7 is resistivity) is large. From the Zel’dovich relation for
2D MHD (Fyfe & Montgomery 1976; Gruzinov & Diamond
1996; Diamond et al. 2005b), we can expect the rms magnetic
field (B)!/? to vastly exceed the mean field By in the tachocline,
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where angle brackets () = % f dx% f dt represent the ensemble
average over long space scales and timescales and ~ denotes that
perturbations vary away from the mean. Thus, although the
tachocline is surely magnetized, its field is neither smooth nor
uniform. This points to the topic of PV transport in a tangled
field—the subject of this paper—being crucial for understanding
momentum transport in the tachocline.

Previous studies of flow dynamics for G-plane MHD have
focused on PV transport and jet (zonal flow) formation
(Diamond et al. 2005b, 2007; Leprovost & Kim 2007; Hughes
et al. 2012). Computational studies have noted that even weak
mean magnetic fields can inhibit negative viscosity phenomena
such as jet formation (Miesch 2001, 2003; Tobias et al. 2007;
Giircan & Diamond 2015). Results indicate that for fixed
forcing and dissipation, jets form for BZ /n < (B¢ /1)eri but are
inhibited for BZ /n > (B¢/n)erit. These findings are interpreted
in terms of the classical idea that the mean field, By, tends to
“Alfvénize” the turbulence, i.e., converts Rossby wave
turbulence to Alfvén waves turbulence. For Alfvénic turbu-
lence, fluid and magnetic stresses tend to compete, thus
restricting PV mixing and inhibiting zonal flow formation
(Diamond et al. 2005b). When the freezing-in law (Poincare
1893) is not violated, the strong field—fluid coupling prevents
PV mixing and (loosely put) the 2D inverse energy cascade
(Iroshnikov 1964; Kraichnan 1965; Biskamp & Welter 1989).
When irreversible resistive diffusion is sufficiently large to
break freezing-in, PV mixing occurs.

As noted earlier, these fundamental issues are of great
relevance to the tachocline, since momentum transport is vital
to its formation. Specifically, the tachocline may be thought to
form by “burrowing” driven by large meridional cells. These,
in turn, are driven by baroclinic torque (i.e., Vp x Vp; Mestel
1999). In one leading model—that of Spiegel & Zahn (1992)—
burrowing is opposed by turbulent viscous diffusion of
momentum in latitude. In another model—proposed by Gough
& MclIntyre (1998)—burrowing is opposed by PV mixing and
by a hypothetical fossil magnetic field in the solar radiation
zone.

The Spiegel & Zahn (1992) model ignores the true nature of
2D tachocline dynamics. Gough & Mclntyre (1998) ignore the
effect of magnetic fields in turbulent momentum transport and the
implication of Alfvén’s theorem. Neither tackles the strong
stochasticity of the ambient tachocline field. Recent progress on
this subject has exploited theoretical approaches based on
quasi-linear (QL) theory or wave turbulence theory (Constantinou
& Parker 2018). These are unable to take into account the
stochasticity of the ambient field, i.e., the fact that |B 2| / B > 1
in the tachocline, where fields are strongly tangled.

One indication of the deficiency in the conventional wisdom
is the observation from theory and computation that values of
B¢ well below that for Alfvénization are sufficient to ensure the
reduction in Reynolds stress and thus PV mixing (Field &
Blackman 2002; Mininni et al. 2005; Silvers 2005, 2006;
Tobias et al. 2007; Keating & Diamond 2007, 2008; Keating
et al. 2008; Eyink et al. 2011; Kondi¢ et al. 2016; Mak et al.
2017). This suggests that tangled magnetic fields act to reduce
the phase correlation between i, and i, in the turbulent
Reynolds stress (ii,ii,). Note that, as we will show here, this
effect is one of dephasing, not suppression, and is not due to a
reduction of turbulence intensity. It resembles the well-known
effect of quenching of turbulent resistivity in 2D MHD, which
occurs for weak BO2 but large (B 2> (i.e., large Rm), at fixed drive
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and dissipation (Cattaneo & Vainshtein 1991; Cattaneo 1994).
Thus, it appears that Alfvénization—in the usual sense of the
po(7?) = (B %) / 1o balance intrinsic to linear Alfvén waves—
and the associated stress cancellation are not responsible for the
inhibition of PV mixing in (-plane MHD at high magnetic
Reynolds number. This observation reinforces the need to
revisit the problem with a fresh approach.

In this paper, we present a theory of PV mixing in (-plane
MHD. A mean field theory is developed for the weak
perturbation regime, and a novel model is derived for the case
of a strong tangled field (B) > BJ). The latter is rendered
tractable by considering the fluid dynamics to occur in a
prescribed static, stochastic field. For (B”) < B}, the QL
calculation reveals that PV mixing evolves by both advection
and inhomogeneous tilting of field lines correlated with
fluctuations. The presence of B, converts Rossby waves to
Rossby—Alfvén waves, so the system exhibits a stronger
Alfvénic character for larger By. When turbulence Alfvénizes,
PV mixing is quenched by the balance of fluid and magnetic
stresses. However, the issue is more subtle, since numerical
calculations reported here indicate that magnetic fields affect the
Reynolds stress well before the point of Alfvénization. This
suggests that magnetic fluctuations affect the phase correlation
of velocity fluctuation in the stress, in addition to producing the
competing magnetic stress. By the Zel’dovich theorem, how-
ever, we expect that |B > BZ, so QL theory formally fails. To
address the |B?| > Bg limit, we go beyond QL theory and
consider an effective medium theory, which allows calculation
of PV mixing in a resisto-elastic fluid, where the elasticity is due
to (B 2). The resisto-elasticity of the system acts to reduce the
phase correlation in the Reynolds stress. Physically, fluid energy
is coupled to damped waves, propagating through a disordered
magnetic network. The dissipative nature of the wave-field
coupling induces a drag on the mesoscale flows. We show that
PV mixing is quenched at large Rm, for even a weak By. The
implications for momentum transport in the solar tachocline and
related problems are discussed.

The remainder of this paper is organized as follows.
Section 2 presents and elucidates models and the QL theory
of B-plane MHD. Section 3 details the effective medium theory
of PV mixing in a tangled magnetic field. The phase correlation
in the Reynolds stress and the onset of magnetic drag are
calculated. A physical model of the effective resisto-elastic
medium is discussed. Section 4 presents the conclusions and
discusses the application of the theory, along with future work.

2. Models

In this section, we present the (-plane MHD model and
discuss its relevance to the solar tachocline. The physics of PV
transport in G-plane MHD is described. Both mixing by fluid
advection and magnetic tilting are accounted for.

2.1. Zonal Flow and PV Mixing in 3-Plane MHD Model

The solar tachocline is a thin layer inside the Sun, located at
a radius of at most 0.7 R., with a thickness of <0.04 R,
(Christensen-Dalsgaard & Thompson 2007). Dynamics on this
thin shell can be modeled using the (-plane, following a model
proposed by Rossby (1939), for the thin atmosphere. In this
model, (O is defined as the Rossby parameter, given by

8= Z—J;l% =20 cos(¢0)/a. Here f= 2Qsing, + By is the
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Figure 1. Geometry and computational domain for the local Cartesian model.
The x- and y-axes are local longitudinal and latitudinal directions, respectively.
The z-axis represents the depth of the $-plane. The mean magnetic field By is
zonal direction (x-axis).

angular frequency at latitude ¢, on the [(-plane, y is the
meridional distance from ¢, and € = |€2| is the angular
rotation rate of the planet. The angular frequency f is also
known as the Coriolis parameter. Notice that ¢, increases from
the equator (see Figure 1).

The simplified [-plane MHD model extends the hydro-
dynamic model to include the effects of MHD and comprises
two basic scalar equations:

. 2
(2+u.v)g_ﬁa_¢:_m+yv2g’ )]
ot Ox Hop
%A =B - V)Y + nVA, 2)

These two scalar equations are from the Navier—Stokes
equation and the induction equation, respectively. Here 7, 1,
and p are the magnetic diffusivity, the permeability, and the
density, respectively. The scalar v is the z-component of the
stream function ¥ = (0, 0, %) for 2D incompressible flow, so

that u = (%w, —%1/), 0), and A is the scalar potential for the

magnetic field A = (0, 0, A). We also define the vorticity
¢ = — V%, similar to the relationship between the current and
the potential J/ = —p, V2A. Equations (1) and (2) show that the
vorticity and the potential field A are conserved in (-plane, up
to the Lorentz force, resistivity, and viscosity.

The 2D hydrodynamic inviscid shallow water equation
illustrates physics of the solar tachocline. The PV freezing-in
law describes how the PV is frozen into the fluid. In (-plane
model, the generalized PV that is frozen into fluid is
PV = ( + f, where ( is the vorticity as defined and f is the
Coriolis parameter. This freezing-in of the PV is broken by
body forces, such as the Lorentz force, and by the viscosity. To
illustrate how the PV freezing-in law is broken, we first split
the parameters into two parts, representing two-scale depen-
dences. The shorter length is the turbulence wavelength, and
the longer length is the scale over which we perform the spatial
average. Applying this mean field theory to Equations (1) and
(2) leads to

D _ 8 <‘72gy> 2 =
Dr (€ » p +vV3(() = 0. 3

In this form, we can interpret PV density as a “charge density

element” (( = ppy), floating in the fluid threaded by stretched
magnetic fields (see Figure 2). Using charge continuity

0
— + V- -Jpy =0,
atpPV PV
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O Vorticity X

Magnetic fields

L & 3 3

(a) (b)

Figure 2. Evolution of PV threaded by magnetic field lines in a frame moving
with the flow. Aside from the advection of flow, the distribution of PV charge
density also changed under the influence of inhomogeneous magnetic fields.
(a) PV uniformly distributed in the moving frame. (b) PV distribution is
changed by the tilted magnetic field lines. Dashed circles are undisturbed
vortices. Solid circles are new locations of PV charge density.

and writing the current as
Jpv = Jpv,| + Jpv, L,

we have

0
P =V Jev = V- Jevy

Here perpendicular and parallel currents are
B
Jov,L =vippy and Jpy = EJPV,H,

respectively. The directions parallel () and perpendicular (1) to

the mean magnetic field are along the x- and y-axes, respectively.
We stress here that V| is nonlinear (V| = % + BE%). Thus,

0 Oy
o (B,J
DBI) o).
oy p

0 a .
5<pPV> = _5<”)’PPV> +

The first term in Equation (4) is the contribution to the change
in charge density from the divergence of the latitudinal flux of
vorticity, while the second term is the contribution because of
the inhomogeneous tilting of the magnetic field lines.

Figure 2 shows a cartoon of how the PV charge density is
related to “plucking” magnetic lines. In (-plane MHD, zonal
flows are produced by inhomogeneous PV mixing (i.e., an
inhomogeneous flux of PV ‘“charge density”) and by the
inhomogeneous tilting of magnetic field lines (weighted by
current density). In simple words, there are two ways to
redistribute the charge density (in this case, the absolute
vorticity)—one is through advection, and the other is by
bending the magnetic field lines, along which current flows.
These two processes together determine the net change in local
PV charge density.

A second tool that can be brought to bear on understanding
of the physics of PV mixing is the Taylor identity
(i, ¢) = —%(ﬁyﬁxﬁ see Taylor 1915). This can be extended

to the 2D MHD case by deriving the extended Taylor identity,
useful in the context that involves the Maxwell stresses. We
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begin with two scalar fields decomposed as

¢(={¢) + ¢,
A=(A) +A. 5)

Again, scalar fields ¢ and A represent the perturbations of
vorticity and the potential field, respectively, due to waves and
turbulence. For the hydrodynamic case, using the Taylor
identity, which relates the vorticity flux to the Reynolds force,
leads to the derivation of the zonal flow evolution equation:
5w = @00) = ~ S (@),

This equation shows that the cross-flow flux of potential
velocity underpins the Reynolds stress and that the gradient of
the Reynolds stress (a shear force) then drives the large-scale
zonal flow. The link between inhomogeneous, cross-flow PV
transport (i.e., PV mixing) and mean flow generation is
established.

We introduce the extended Taylor identity—an analogous
form for the magnetic field perturbations in MHD:

B, V2A . B,B,
<,Vv >:_<ByJ>:2<y >’
Ho dy g
and therefore
B, B,
9y = —ﬁ{mx@ _ u} V). (6)
ot dy FoP

This equation states that the mean PV transport is determined
by the difference between the Reynolds and Maxwell stresses.
In a perfectly Alfvénized state, the total momentum flux
vanishes, owing to the cancellation of the Reynolds and
Maxwell stresses (p, (#2) = <§2>/u0).

2.2. Validity of QL Theory

We start by analytically deriving the mean PV flux using QL
theory. This calculation employs the linear responses of
vorticity and magnetic potential fields to estimate the evolution
and the relaxation of the flow. Similar calculations can be
found in the QL closure done by Pouquet (1978) and McComb
(1990). Before presenting the QL calculation, we first discuss
its validity. The key to the latter is the dimensionless parameter
—the Kubo numbers (Ku; Kubo 1963)—that quantifies the
effective memory of the flow and the field.

The fluid Kubo number is defined as
ST | T

@)

Ku uid = .
fluid AL AL Teddy
where ¢; is the characteristic scattering length, 7, is the velocity
autocorrelation time, and Teqqy i the eddy turnover time. The
eddy tumnover time iS Teqay = A/, where A is the eddy
size (see Figure 3). In practice, the validity of QL theory
requires small fluid Kubo number Ku < 1. To understand
this, we compare autocorrelation rate (1/7,c = A(— Gk, /k*) =
|—B/k> + 20k} /k*| Ak, + [28kk, /k*| Aky) with decorrela-
tion rate (1/7cqqy = kif) on the 3-plane. This gives T, < Teqdy (OF
equivalently /,. < A)), leading to Kug,g < 1. As a particle
traverses an eddy length, it experiences several random kicks by
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eddies

Ay

Figure 3. Eddy size A, . In this figure, the shear flow is in the left-right
direction. The eddy size is measured perpendicular to the flow.

the flow perturbations, as in a diffusion process. In this limit,
trajectories of particles do not deviate significantly from
unperturbed trajectories. Note that in the case of wave turbulence,
the autocorrelation time (7,.) is sensitive to dispersion. The
autocorrelation time can be expressed as

L LN @®)
Tac dk

However, when the turbulence is strong, we have & > A .
Here particles deviate strongly from the original trajectories in
an autocorrelation time, indicating a failure of QL theory (i.e.,
Kuguia > 1). However, it is clear that G-plane MHD is not a
purely fluid system; hence, the validity of QL theory depends
not only on the fluid Kubo number but also on the magnetic
Kubo number. This can be written as

K
A
LB

By

©))

Kutnae =

o ~ 10)
where ¢, is the deviation of a field line, /. is the magnetic
autocorrelation length, and | B | is the magnetic field intensity of the
wave turbulence. If a particle travels a coherence length A, and
experiences several random kicks in weak magnetic perturbations,
it undergoes a process of magnetic diffusion, which can be treated
using QL theory (Rechester & Rosenbluth 1978). In contrast,
when magnetic perturbations are strong, particle trajectories are
sharply deflected by strong B-induced scattering within an
autocorrelation length.

Our main interest in this paper is the case in the solar
tachocline, where zonal flows and eddies coexist, Rm is large,
and the magnetic field lines are strongly stretched and distorted
by the turbulence. Hence, the fluid Kubo number is modest
(i.e., Kugyg < 1), and the magnetic Kubo number is small
Kumae < 1 (see Table 1). This is done by taking small-scale
fields as spatially uncorrelated (/,. — 0). Details are discussed
in Section 3.

2.3. Mean Field Theory for 3-Plane MHD

We first consider the simple case where the large-scale
magnetic field By is stronger than the small-scale magnetic
fields (i.e., |[B*|/B¢ < 1). Here the fluid turbulence is weak
(restricted by Bp), and the tilt of the magnetic field lines is
small, corresponding to a small magnetic Kubo number. To
construct the QL equations, we linearize Equations (1) and (2),

o~ _ o) By O(V2A) 2
—( + dy—F + fiy = —————— + vV 11
(9t(: Uy By i p O vVee (1D
8354“ — Byit, + VA, (12)
1
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Table 1
Summary of the Properties of Fluid and Magnetic Kubo Numbers
Fluid Magnetic
Operator u-V B/Byuy -V
Ratio a/0 S1 B/By> 1
For QL theory Tac —0 lie — 0
Validity (delta-corre- (uncorrelated tangled
lated flows) fields)
Kubo number in the Kugpig S'1 Kumag <1

model

Note. All models in this paper are set up to make Kubo numbers small to
ensure that the QL theory is valid. This is fulfilled by assuming that flows and
fields are delta correlated in time and space, respectively.

and obtain the linear responses of vorticity and magnetic
potential at wavenumber k, in the zonal direction to be

. i 0 "
G=— R 22\ 12 (“vg@ + ﬂ”)’)’
; —Po X
w+ vk + (uop)w+i7/k2
4, = S Bk )
K\ —w — ink?

where k = k2 + kf. From these, the dispersion relation for the
ideal Rossby—Alfvén wave follows

(W — wg + kD) (w + ink?) = A, (13)

Here wy is Alfvén frequency (wy = Bok, / [lop) and wg is
Rossby frequency (wg = —3k,/k*). We also derive the QL
evolution equation for mean vorticity:

9 o(,. = B, VA
2= -Lao+ BT Lovng. as
ot dy HoP

Using the Taylor identity, the averaged PV flux

() = (ﬁyZ) + (B,V?A)/11yp) can be expressed with two
coefficients, the fluid and magnetic diffusivities (Dg,q and
Dmag):

0 Oy = 9 Dy — Doy 2
E<C> - _5@1) = ay[ (Dﬂu1d Dmag) ay <PV>)

5)

Note two aspects of Equation (15). One is that the anisotropy
and inhomogeneity of vorticity flux (i.e., 6%(()) lead to the
formation of zonal flow. For a not fully Alfvénized case
(Dinag < Dria), zero PV transport occurs when %(C )y =—0.

This states that 3 provides the symmetry breaking necessary
to define zonal flow orientation. The second aspect is the
well-known competition between Reynolds and Maxwell
stresses that determines the total zonal flow production. These
two diffusivities are related to the Reynolds and Maxwell
stresses by

g 0

Diia—PV = (a4, 16
fl day 8y(u ity) (16)
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B.B
magiPV = i( - y)- (17)
dy Ay pop

D

To calculate the turbulent diffusivities, we express terms ﬁyZ
and B“y’kv% in Equation (14) as summations over compo-

nents in the k-space, i.e., ﬁyZ:Zkﬁ:ka. Thus, from
Equation (2.3),

—1i

- 0
~ 3% ~ 12
uy’ka = — |ity| PV, (18)
212 —By ks 0
w + ivk® + VT y
272
% ~ —Bi k> e~
By VA, = (w2 +on;k_4]u;fkgk, (19)

Equation (19) links the magnetic and fluid diffusivities such
that

B2j2
DmugiPVZ ! (70]% )DﬂuidiPV’

dy pop \w* + ke dy
leading to
1 Bik?
Do = —| ———2— | Dauia- 20
ag /Lop(w2+772k4] fluid ( )
Hence,

Dpuia = Y, Copidl iyl
k

1
— s
Dpag = Z Ck,magl ”y,kl >
HoP k
where the phase coherence coefficients C; are given by
W2 k2
vk? 4 AT
w®+n%k
G ia = — FERVE (2D
2 wi 2 2
w 1 - —"4— vk WA—S——>7
( W2+712k4> + ( + sz+7/2k4)
2 2
2 Zs wink?
wA(w2+772k4 + W%+ 22
Ck,mag = (22)

2 2 2 2°
2 WA 2 2 nk
w 1 - —4— vk WAr—S——>7
( w2+ r]zk“‘) T ( T Aw2+n2k4)

Note that, in the term vk% + wink®/(w? 4+ n%**) of
Equation (21), which defines the width of the response function
in time, the resistive and viscous damping rates nk> and vk?
should be taken as representing eddy scattering (as for
resonance broadening) on small scales. Also, notice that the
mean magnetic field modifies borth PV diffusivities, via w3
contributions. Comfortingly, on one hand, we recover the
momentum flux of 2D fluid turbulence on a (-plane when we
let the large-scale mean magnetic field vanish (By = 0). On the
other hand, when the mean magnetic field is strong enough
(w > wg), the fluctuations are Alfvénic. In this limit
W~ wy > nk? > vk?  (ie., magnetic Prandtl number
Pm < 1), we have Dpyg =~ Dy and the vorticity flux

WA

2
vanishes, i.e, T = 0 + O((M) ) This is the well-known

“Alfvénization” condition, for which the Reynolds and
Maxwell stresses cancel, indicating that the driving of the
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zonal flow vanishes in the Alfvénized state. There, the MHD
turbulence plays no role in transporting momentum.

2.4. Transition Line and Critical Damping

The above results corresponds to the lower-right, strong
mean field regime in Figure 4 of Tobias et al. (2007). We can
also explain the physics of the transition line seen in Tobias
et al. (2007) B-plane simulations, which has weak mean field
and is strongly perturbed by MHD turbulence. This transition
line, set by Bg /7, separates the regimes for which large-scale
magnetic fields inhibit the growth of zonal flow from those
where zonal flows form. We propose that the transition occurs
when the wave becomes critically damped. Guided by the
parameters from Tobias et al. (2007), we focus on the transition
regime where the dominant mode is at the Rossby frequency
(W ~ wg > wy > nk? > vk?). Our goal is to find the dimen-
sionless transition parameter (\), which characterizes this
transition boundary for a particular case (dimensionless
parameters 1 = 10~ and 3 = 5) in the Tobias et al. (2007)
simulation. Starting with the linear dispersion relation
(Equation (12)), we decompose the frequency into real and
imaginary parts (W = wy + iwim), leading to

1
wre ~ —(wn + Jwi + 4wd) (23)

and

nk?(wg — Jwk + 4w}) 24)
Wim ~ —
2wk + 4w’

in this parameter space. The transition parameter \ is equal to
the damping ratio of an oscillatory system, and A = 1 indicates
that the system is critically damped (this occurs when
Wre = Wim). Thus,

oo | W R
Wre 4wi\[w% + 4wi‘

Equating real and imaginary parts (A = 1) of the frequency
therefore gives the transition boundary. In the limit wg > wy,
the transition parameter reduces to

2
- nkzwA
A~ 3

WR

<1, (26)

indicating that the wave is underdamped (see Figure 4). More
details are given in Appendix A. Our results closely match the
transition line from Tobias et al. (2007) (see Figure 4).

2.5. Cessation of Growth via Balance of Turbulent Transport
Coefficients

In this section, we are interested in the regime where zonal
flow growth ceases. To this end, we define a critical growth
parameter as

D uid — Dma
N = wid T mag 27

Diia
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Figure 4. Scaling law for the transition between the forward cascades (circles)
and inverse cascades (plus signs) from Tobias et al. (2007). The line is given by
B¢ /n = 0.4. The critical transition (A = 1) based on our model predicts a
corresponding mean field (By ~ 7.4 x 1073) in the case of = 10~*, labeled
by a blue circle. Our result sits close to the transition line in simulation results.
The prediction for the critical growth parameter X = 0 is By ~ 8.4 x 1074, and
the associated B, is an order of magnitude smaller than the one associated
with A = 1.

From this criterion we have

Bik;

N=1-— 0%
top(W? + 177k*)

(28)

When X = 0, the fluid and magnetic PV diffusivities balance,
and the growth of zonal flow vanishes, which is certainly the
case for the fully Alfvénized state (i.e., N = 0). Figure 4 shows
the predicted magnetic field for which ¥ = 0 is an order of
magnitude smaller than that for A\ = 1. This is because Rossby—
Alfvén waves still survive as an underdamped Alfvén wave
after the growth of zonal flows is turned off. When X > 0, the
Maxwell stress is not strong enough to balance the Reynolds
stress, so zonal flows are still driven by the Reynolds force.

2.6. Comparison of Theory with Numerical Calculations

In order to assess the validity of our theory, we compare our
analysis with results derived from numerical experiments of
driven, magnetized turbulence on a doubly periodic [-plane.
The numerical results form a small subsection of a much larger
unpublished study originally performed by S. M. Tobias et al.
(2019, in preparation). The setup of the model is the same as
that described in Tobias et al. (2007). Namely, we consider a (-
plane in a domain O < x,y < 27w using pseudospectral
methods (see, e.g., Tobias & Cattaneo 2008).

We achieve a steady state of magnetized turbulence by driving
the vorticity equation (with v = 1077) with a small-scale forcing
in a band of horizontal wavenumbers 15 < k,, k, < 20. The
simulations are started from rest, and a small-scale flow is driven
initially. Eventually, if the magnetic field is weak enough,
correlations in the small-scale flow begin to drive a zonal flow
via a zonostrophic instability (Srinivasan & Young 2012). In this
case, as time progresses, the zonal flows may grow and merge
until a statistically steady state is achieved, with the number of
zonal flow jets depending on the Rhines scale (Rhines 1975;
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Figure 5. Average Reynolds stresses (orange line) and Maxwell stresses (blue
line) for =5, n = 10~*. For the cases of toroidal and poloidal mean field,
fully Alfvénization happens when By intensity is larger than By = 10~ and
By = 6 x 1072, respectively. The yellow shaded area is where zonal flows
cease to grow, following our prediction of the transition parameter A = 1. This
is where the random-field suppression on the growth of zonal flow becomes
noticeable.

Diamond et al. 2005b) and the zonostrophy parameter (Galperin
et al. 2008; Tobias & Marston 2013). Indeed, the final state of
zonostrophic turbulence on a (-plane (including the number and
strength of the jets) may be sensitive to the precise initial
conditions. The hysteresis may occur between states; see
Marston et al. (2016).

If the magnetic field is large enough, then the zonostrophic
instability switches off, as shown numerically on a (-plane
(Tobias et al. 2007; Durston & Gilbert 2016) and on a spherical
surface (Tobias et al. 2011). Theoretically, this suppression of
the zonostrophic instability has been described via a straight-
forward application of QL theory (Tobias et al. 2011;
Constantinou & Parker 2018), though, as we will show here,
this approach does not capture the relevant physics.

Hydrodynamically, for the parameters compared with the
theory here, 3 =5, v = 1075, = 1077, the final state shows
the coexistence of turbulence with strong jets on the scale of the
computational domain. As the magnetic field (either toroidal or
poloidal) is increased, eventually it becomes significant enough
to switch off the driving of the zonal jets. A simplistic argument
would put this down to the magnetic energy of the small-scale
magnetic field (and hence the resultant Maxwell stresses
opposing the formation of jets) becoming comparable to the
Reynolds stresses that drive the jets. However, Figure 5 shows
the Reynolds and Maxwell stresses versus the large-scale field
and demarcates where the waves are critically damped (A = 1).
One sees that the Reynolds stress already drops by an order of
magnitude, even though By, is not strong enough to Alfvénize the
system. This indicates that suppression of zonal flow occurs at
values of B, below the Alfvénzation limit. We conjecture that
this suppression is due to the influence of magnetic fields on the
cross-phase in the PV flux (i.e., the Reynolds stress). We now
develop a physical but systematic model of PV mixing in a
strongly tangled magnetic field.
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Figure 6. The large-scale magnetic field is distorted by the small-scale fields.
The system is the “soup” of cells threaded by sinews of open field lines.

3. PV Mixing in a Tangled Magnetic Field—Beyond QL
Theory

Between the two extremes of the mean field discussed in
Section 2.3, we are interested in the case of the solar tachocline,
where the stretching of mean field by Rossby wave turbulence
generates B and the large-scale magnetic field is not strong
enough to Alfvénize the system but remains nonnegligible (i.e.,
|B 2| > BO2 but By = 0). In this case, the large-scale field lines of
the near-constant field will be strongly perturbed by turbulence.
Thus, the magnetic Kubo number is large, for any finite
autocorrelation length. Understanding the physics here requires a
model beyond simple QL theory. Here we develop a new,
nonperturbative approach that we term an “effective medium”
approach. Zel’dovich (1983) gave a physical picture of the effect
of magnetic fields with |B 2| > B¢. He interpreted the “whole”
strongly perturbed problem as consisting of a random mix of two
components: a weak, constant field and a random ensemble of
magnetic cells, for which the lines are closed loops (V - B = 0).
Assembling these two parts gives a field configuration of
randomly distributed cells, threaded by sinews of open lines (see
Figure 6). Wave energy can propagate along the open sinews
and will radiate to a large distance if the open lines form long-
range connections. As noted above, this system with strong
stochastic fields cannot be described by the simple linear
responses retaining B, only, since |B > B;.

Thus, a “frontal assault” on calculating PV transport in an
ensemble of tangled magnetic fields is a daunting task. Facing a
similar task, Rechester & Rosenbluth (1978) suggested
replacing the “full” problem with one where waves, instabil-
ities, and transport are studied in the presence of an ensemble
of prescribed, static, stochastic fields. Inspired by this idea, we
replace the full model with one where PV mixing occurs in an
ensemble of stochastic fields that need not be weak—i.e.,
|B 2| / BO2 > 1 allowed. This is accomplished by taking the
small-scale fields as spatially uncorrelated (/,o — 0), i.e., with
spatial coherence small. In simple terms, we replace the “full”
problem with one in which stochastic fields are static and
uncorrelated, though possibly strong. This way, the magnetic
Kubo number remains small—Kutyn,e = loc|B|/(ALBy) < 1—

even though |B 2| > B¢. By employing this ansatz, calculation
of PV transport in the presence of stochasticity for an ensemble
of Rossby waves is accessible to a mean field approach, even in
the large perturbation limit. Based on this idea, we uncover
several new effects, including the crucial role of the small
tangled field (By) in the modification of the cross-phase in the
PV flux and a novel drag mechanism that damps flows.
Together, these regulate the transport of mean PV (Kadomtsev
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Table 2

Notation
Scale Magnetic Potential Field A Vorticity ¢
Zonal flow scale (A) = Ay ¢
Wave perturbation A ¢
Random-field average A ¢
Stochastic field Ast

& Pogutse 1979). We stress again that these effects are not
apparent from simple QL calculations.

3.1. The Tangled Field Model

We approach the problem with strongly perturbed magnetic
fields (B?| > B$) by considering an environment with
stochastic fields (By,) coexisting with an ordered mean toroidal
field (By) of variable strength. Notations are listed in Table 2.
The mean toroidal field is uniformly distributed on the 8-plane,
while the stochastic component is a set of prescribed, small-
scale fields taken as static. These small-scale magnetic fields
are randomly distributed, and the amplitudes are distributed
statistically.

We order the magnetic fields and currents by spatial scales as

potential field A = Ag + A + Aq
magnetic field B = By + B + By
magnetic current J =0 + J + J, (29)

where Jy = 0 for By is a constant.
The waves are described hydrodynamically by

stream function v = (3) +
flow velocity u = (u) + @
vorticity ¢ = (¢) + ¢ (30)

where, as before, the () is an average over the zonal scales
(1/k,ona1) and fast timescales. For the ordering of wavenumbers
of stochastic fields kg, Rossby turbulence krosshy, and zonal
flows k,ona1, respectively, we take the scale of spatial average
larger than that of Rossby waves. A length scale cartoon is
given in Figure 7.

A procedure to calculate the mean effect of the stochastic

fields is to average over the random field, within a window of
length scale (1/|kavg)):

F= [ar® [aBy - P, s, )F. 31)

Here R, is the probability distribution function for the random
field, F is the arbitrary function being averaged, and dR” refers to
integration over a region containing random fields. This
averaging region is larger than the scale of the stochastic field
but smaller than the magnetic Rhines scale (lyr = +/va.«r/0,
where vy o is the Alfvén velocity with stochastic small-scale

fields and is defined as vy ¢ = 1/B_S%/ Lop; see Zel’dovich
1957; Vallis & Maltrud 1993) and the Rossby scale. Thus,

we have kg > Kayg 2 kMR 2 krossby > kzonat (see Figure 8;
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Zonal flow

Ranaom-field
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Random fleld Rossby Wave
Figure 7. Length scale ordering. The smallest length scale is that of the random
field (Iy), which looks like a soup of SpaghettiOs. The random-field averaging
region is larger than the length scale of random fields but smaller than that of
the Rossby waves.

Zonal fl Rossb Magpnetic Stochastic-Field Stochastic
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Figure 8. Multiscale ordering. The magnetic Rhines scale separates the
regimes of large and small length scale. MHD turbulences dominate the system
on a smaller length scale and are composed of Alfévn waves and eddies. In this
regime, wavenumbers k from high to low are ordered as ky > kayg. On a larger
length scale, however, Rossby waves dominate. Here the scale ordering from
high to low wavenumber is krossby > Kzonal-

Tobias et al. 2007). With this random-field average method, we
smooth the effect of small-scale random fields and thus can
consider mean field effects of this stochastic system (with the
assumption that small-scale magnetic fluctuations are spatially
uncorrelated). In this way, the method maintains Ku < 1 for
|Bg|/By > 1 by taking [,, — 0. It thus affords us a glimpse of
the strong (but random) field regime.

The novelty and utility of the random-field average method
is that it allows the replacement of the total field due to MHD
turbulence (which is difficult to calculate) by moments of
the distribution of a static, stochastic magnetic field, which
can be calculated. This is based on the tacit assumption
that the perturbation in magnetic fields on the Rossby scale
has a negligible effect on the structure of the imposed random
fields and its stress-energy tensor. Put simply, (B)? =~ B2
(i.e., first-order correction term vanishes, upon averaging),
where By, is the averaged total field, regulated by Rossby
waves.

Thus, averaging over the random fields simplifies the
analytical model, and we can treat the collective effects of the
tangled magnetic field without loss of generality. We note
here that in the random-field average method, the large-scale
field remains the same after averaging ( By, = By). This is
because the mean field is on the zonal length scale, which is
larger than the average length scale (lona > lavg) Moreover,
the averaged random field in a selected region dR” is zero
(By; =0, i=x,Y), since the length scale of the stochastic
fields is smaller than that of the averaging scale (I < luyg).
Finally, since we assume that random fields are spatially
uncorrelated ([, — 0), we have zero -correlation after
averaging in the x- and y-directions By By, =0 (see
Appendix B).
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3.2. Analysis and Results from the Tangled Field Model

We apply random-field averaging to the vorticity equation
first, so as to deal with the nonlinear magnetic term. This yields

(B-V)V?A
Hop

D5 500 _ 27
o ﬁax + V2L (32)

However, we do not apply the random-field average to the
induction equation at this stage, as A is static, so that the
induction equation for stochastic fields reduces to

ViAy = —L(By - V)0 (33)
n

We hold, nonetheless, the general induction equation for
mean field, such that %AO = By - Vi) + nV?A,. Combining
Equations (32) and (33), we have

0; 00 _ 1 0 =0

EC - Ox nuopa_( Styayw)
By 0A9) | vV2C. (34)
fop  Ox

Next, we consider the vorticity wave perturbation after applying
the random-field average:

2 0
0 BS[) 6\¢

dy NP

0 ~ 0=
EC + Biy + MyaC
2% "
_Bo 9(V~Ao) + vV2C (35)

pop  Ox

Equation (35) is formally linear in perturbations and allows us
to calculate the response of the vorticity in the presence of
tangled fields, namely,

~ —i - 6 —
&= i = + 8]
w+ ll/k2 lle)k» 7B()kx ay
Hopnk® " pigp (W ink?)

(36)

The effective medium Rossby—Alfvén dispersion relation can
be derived from this Equation (36) and is given by

iBZ k2 B2k2
w— wp + —2L 4 ik |(w + ink?) = Boks (37)
1o pk? Hop

With By = 0, we recover the standard Rossby—Alfvén waves
described in Section 2.3. Now, the average over the zonal
scales and the assumption that zonal flows are still noticeable
(%(} — 0) give us the mean, “double-averaged” vorticity
equation:

0 = 0 = 1 0 — -
50 =-5 O Wopgﬁ B, ) = (w)] +vVA(D),

(38)

where term I here is the mean PV flux such that
T = (#,0) = —DPV( @ + ﬁ) Integrating Equation (38)

Chen & Diamond

in y yields

() = (T) — ——(BZ)(w) + v92(w). (39

ot Nhto P

In addition to the mean PV flux, note the drag term
<32 ) (uy) that results from the (J; x By) force. The

ngp \SLY

mean-square random-field effect (Biy) appears both in the

mean flux (') and in the drag.

We now discuss both effects. First, the mean PV flux (T') is
affected by both large- and small-scale fields. The mean PV
flux as a function of both large scale mean field By and the

mean-square stochastic field le y may be expressed as

—Zwy,kﬁck(iz + ﬂ), (40)
k 3)’

where the resonance function (phase coherence) C;, which
defines the effective decorrelation time 7., is

2 .9 B2 1.2
2 wA'r]k le.yk\'
Ck _ vk + w2+ %kt ;Lopnkz
N w2 2 2.2 BZ k2 2"
2 L S 2 wank st,yKy
w (1 Wi+ r]2k4> + (Vk + w? +n%k* + ,m/kz)
(4D
Observe that both Bgt v and B¢ tend to reduce T for a fixed level

(a ) Compared with Equation (22), an additional term due to

the mean-square stochastic field BSt vk / o prk? plays a role in
the cross-phase by modulating the prefactor C; that enters the
PV diffusivity. The scaling indicates that the zonal flow can be
suppressed by the stochastic field effect in the cross-phase.

Moreover, when the mean field is weak (Bi < B2), the cross-
phase effect is dominant. This is consistent with the observed
drop of the Reynolds stress when the mean field is weak (see
Figure 5)

Note that if we turn off the large-scale magnetic field, eddy
scattering (resonance broadening) appears both via the
turbulent viscosity vk®> and via the stochastic field Bq%ykyz,
leading to the modification of the phase coherence C.. As
stochastic fields become stronger, so does the eddy scattering
effect. Note that this effect on the PV flux originates via the
Reynolds stress and not the Maxwell stress because of our
a priori postulates of a preexisting ambient stochastic field and
the ansatz By B, = 0, which lead to zero Maxwell stress by
construction. However, even though the Maxwell stress
vanishes, the mean-square random fields (B 2) can still modify
the cross-phase of the (fluid) Reynolds stress. Thus, we see that
large- and small- scale magnetic fields have synergistic effects
on the mean PV flux T.

Second, the mean-square stochastic fields also set the
magnetic drag that modifies the evolution of vorticity, given by
Equation (39). The physics of this drag can be elucidated via an
analogy between random fields and a tangled network of
springs (Montroll & Potts 1955; Alexander et al. 1981). From
the second term in Equation (39), we can infer a drag constant
& (Firag < — 0 (uy)). In the absence of rotation (5 = 0), one can
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Figure 9. Site-percolation network. Schematic of the nodes-links-blobs model (or SSAG model; see Skal & Shklovskii 1974; De Gennes 1976; Nakayama et al. 1994).

This depicts the resisto-elastic medium formed by small-scale stochastic fields.

write down the dispersion relation and find

BI k} Bk
wz—i—i(a—&—nkz)w—[&-&-L =0, (42)
drag+dissipation HoP HoP

effective spring constant
. . _ 2 2 .
where the drag coefﬁ.ment isa= .Bst’yky / o pnk?. This shows
that the effective spring constant is set by the mean field and

the stochastic field (K = (Bsiy ky2 + B3k?) / top)- In the typical
case where the mean-square stochastic field is dominant, the
drag constant can be approximated as a ~ K/nk?, i.e., the
effective drag force is given by the ratio of the effective
elasticity (K) to the dissipation (nk?). This implies that the
tangled fields and fluids define a resisto-elastic medium (Brenig
et al. 1971; Kirkpatrick 1973; Harris & Kirkpatrick 1977). This
dissipative character of the medium is due to the fact that for
our system gAsl = 0 (i.e., static stochastic fields), so inductive
effects vanish.

A way to visualize the dynamics of vorticity in this system,
dominated by strong stochastic fields, is to again think of the
PV as “charge density” ppy, following from the same
understanding discussed in Section 2.1. The mean vorticity
evolution is now given by

0 0, 1 0
+

(ppy) = —— (il Ppy) .
ko p Oy

il —— g —
8t ay (<B§l,)> 8_)/ <7/)>), (43)

where the second term of Equation (43) is obtained from the

term £%<BS‘J“> and substituting Jy, = —By V1)/n. This states
that in this strong magnetic turbulent case, the charge density is

also redistributed by the drag of small-scale stochastic fields,
which form a resisto-elastic network (see Figure 9). Since
(B*)/B} ~ Rm, the drag due to the small-scale field is larger
than that of the mean field.

All in all, mean-square random fields can influence the
evolution of zonal flow not only by changing the phase
correlation of PV flux but also by changing the structure of
the resisto-elastic network. As mean-square random fields are
magnified, the PV flux drops, while the drag is enhanced.

10

3.3. Transition Parameters for Tangled Fields

Following the same logic as in Section 2.3, we examine the
growth of zonal flow and the properties of waves, under the
influence of strong stochastic fields. We derive the dimension-
less transition parameter A, which quantifies the criticality of
damped waves. A regime where the intensity of the stochastic
field is strong enough that the mean field, resistivity, and
viscosity are negligible (wg ~ wie > wy > k2 > vk? ~ w?)
is identified. For this case, we have w, ~ wr and wj, ~
—w? /nk?, where Alfvén frequency of collective random fields

is defined as wy = ,/?%’ykyz / fop. Thus, the transition

parameter for this regime is (see Equation (26))

)\ = Wim — wg{ — wgt ZI\Z/IR (44)
Wre nk 2WR kil '

where @ is the typical eddy velocity and /g is the magnetic
Rhines scale. When A = 1, the wave is critically damped.

The critical growth parameter (), which defines the growth
of zonal flow, is now given by (see Equation (26))

() — o (B3,) {u)
0 . 45)

From Equation (39) one should notice that the zonal flow stops
growing when the drag force cancels the PV flux

(T) = ﬁ(BS%yMux), ignoring the viscosity). This corre-
U LU >

sponds to X' = 0, where (T') is quenched by (BZ ).

Finally, one might ask how this suppression of PV flux
relates to the related phenomenon of the quenching of turbulent
magnetic resistivity (1) in a weak mean field system
(Zel’dovich 1957). The answer can be shown by looking into
the PV diffusivity derived from Equation (40) in a weak mean
field system (By — 0):

N =

B2 k2
vk? “‘p'nk"z
_ ~ 2 Hop?
Dpy =Y iyl — (46)
B2 k2
k w2+ Vk2—|— S,y >
o pmk®
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Recall the form of the quenched turbulent resistivity (Gruzinov
& Diamond 1994, 1996):

~ Te,k
T I
K 1+ Rm@’;f>

. Te,
= Jal——, (47)
k

VA, st
I+

where v3 , = B, / tiop and v3o = B3 /1o p. This is based on

the Zel’dovich relation By, ~ RmB; (Zel'dovich 1957) in a
high magnetic Reynolds number system. To compare these
two diffusivities Dpy and 1), one can rewrite the expression of

Dpy as

a/w?

TT (/2R (48)

Dpy = ) iyl
3

where o = B2 k2 / w,pnk? is the effective drag coefficient.

st.y "y
The term a/w? in the numerator defines the effective
decorrelation time 7. This leads to the inference that both the
PV diffusivity and the turbulent magnetic resistivity in a weak
magnetic field are reduced by the effect of mean-square random

fields K Though differences arise from different assump-

tions about the small-scale magnetic field (for PV, B is static;
for 7, the analysis considers dynamic B; see Fan et al. 2019),
the basic physics of these two quenching effects is fundamen-
tally the same.

4. Conclusion

In this paper, we have developed and elucidated the theory
of PV mixing and zonal flow generation, for models of
Rossby—Alfvén turbulence with two different turbulence
intensities. Our most novel model considered the large
fluctuation regime (B*)/B¢ > 1)—where the field is tangled,
not ordered. For this, we developed a theory of PV mixing in a
static, stochastic magnetic field. It is striking that this model
problem is amenable to rigorous, systematic analysis yet yields
novel insights into the broader questions asked.

Our main results can be summarized as follows. First, we
have defined the magnetic Kubo number and demonstrated the
importance of ensuring Ku < 1 for the application of QL
theory to a turbulent magnetized fluid. In this regime, we have
derived the relevant QL model for turbulent transport and
production of jets and shown the utility of the critical damping
parameter in determining the transition between jet drive and
suppression by the magnetized turbulence.

A striking result is that numerical experiments show how
magnetic fields may significantly reduce the Reynolds
stresses, which drives jets, well before the critical mean field
strength needed to bring the Maxwell and Reynolds stresses
into balance, i.e., before Alfvénization. This is important and
demonstrates that the magnetic field acts in a subtle way to
change the transport properties—indeed, even more subtle
than was previously envisaged. The explanation of this
effect required the development of a new model of PV
mixing in a tangled, disordered magnetic field. This tractable
model has Kup,e < 1, because the tangled field is delta
correlated and allows the consideration of strong stochastic

11
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fields B2 / B¢ > 1. We use a “double-average” procedure over
random-field scales and mesoscales that allows treatment of
the wave and flow dynamics in an effective resistive-elastic
medium.

We identify two principle effects as the crucial findings:

1. A modification (reduction) of the cross-phase in the PV
flux by the mean-square field B2. This is in addition to
wi effects, proportional to Bj, which appears in QL
theory. Note that this is not a fluctuation quench effect.

2. A magnetic drag, which is proportional to (B2), on the

mean zonal flow. The scaling of (B2) / 7 resembles that of
the familiar magnetic drag in the ‘“electrostatic” limit,
with B2 replacing BZ. Note that the appearance of such a
drag is not surprising, as stochastic fields are static,
SO gAst — 0.

The picture discussed in this paper is analogous to that of
dilute polymer flows, in which momentum transport via
Reynolds stresses is reduced, at roughly constant turbulence
intensity, leading to drag reduction. The similarity of the
Oldroyd-B model of polymeric liquids and MHD is well
known (Oldroyd 1950, 1951; Bird et al. 1987; Rajagopal &
Bhatnagar 1995; Ogilvie & Proctor 2003; Boldyrev et al.
2009). A Reynolds stress phase coherence reduction related to
mean-square polymer extension is a promising candidate to
explain the drag reduction phenomenology.

More generally, this paper suggests a novel model of
transport and mixing in 2D MHD turbulence derived from
considering the coupling of turbulent hydrodynamic motion to
a fractal elastic network (Broadbent & Hammersley 1957;
Rammal & Toulouse 1983; Rammal 1983, 1984; Mandelbrot
& Given 1984; Ashraff & Southern 1988). Both the network
connectivity and the elasticity of the network elements can be
distributed statistically and can be intermittent and multiscale.
These would introduce a packing fractional factor to Cy in the
cross-phase, i.c., (B%) — p(B?) in Cj, where 0 < p < 1 are
the probabilities of sites. This admittedly crude representation
resembles that of the mean field limit for “fractons” (Alexander
& Orbach 1982). Somewhat more sophisticated might be the
form (B 2) — (p — p.)|B<, where p, is the magnetic activity
percolation threshold, and ~, e are scaling exponents to be
determined (Stanley 1977). We also speculate that the back-
reaction (at high Rm) of the small-scale magnetic field on the
fluid dynamics may ultimately depend heavily on whether or
not the field is above the packing “percolation threshold” for
long-range Alfvén wave propagation. Such a long-range
propagation would induce a radiative damping of fluid energy
by Alfvénic propagation through the stochastic network.

We also note that this study has yielded results of use in
other contexts, most notably that of magnetized plasma
confinement where the field is stochastic, as for a tokamak
with resonant magnetic perturbations (RMPs). Indeed, recent
experiments (Schmitz et al. 2019; Kriete et al. 2019; Neiser
et al. 2019) have noted a reduction in shear flow generation in
plasmas with RMPs. This reduction causes an increase in the
low /high confinement regime power threshold.

Finally, in the specific context of modeling tachocline formation
and dynamics, this analysis yields a tractable model of PV
transport, which can incorporate magnetic effects into hydro-
dynamic models. In this paper, we ignore the perturbation of
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random fields B (see Appendix B). Here B ? can be replaced by
(B2) and be estimated using the Zel’dovich value B ~ Bg Rm.
The model suggests that the “burrowing” due to meridional cells
that drives tachocline formation will be opposed by relaxation
of PV gradients (not shears!) and the resisto-elastic drag. The
magnetic-intensity-induced phase modification will reduce PV
mixing relative to the prediction of pure hydrodynamics. Thus, it
seems fair to comment that neither the model proposed by Spiegel
& Zahn (1992) nor that by Gough & Mclntyre (1998) is fully
“correct.” The truth here is still elusive, and “neither pure nor
simple” (apologies to Oscar Wilde).
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discussions and a critical reading of the manuscript. We also
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and the 2019 Aix Festival de Théorie. This research was
supported by the US Department of Energy, Office of Science,
Office of Fusion Energy Sciences, under award No. DE-FG02-
04ER54738.

Chen & Diamond

Appendix A
Details of QL Theory Predictions

Here we investigate the corresponding prediction of transition
parameter A = 1 from Equation (24) and compare it to the
transition line in Tobias et al. (2007). First, we find A = 2.87 x
10719 and 8.04 for By=5 x 103 and By =1 x 1072,
respectively. These spectra of velocities and field are from this
paper. The peak of wavenumber in the spectra from the top left to
the bottom right is k ~ 3.6, 4, 23.5, and 25.5 (see Figure 10). We
obtain four transition parameters for these four spectra with
different mean field B, and find that the transition (A\ = 1) occurs
when5 x 1073 < By < 1 x 1072, The corresponding regime of
magnetic intensity for the occurrence of the transition is shaded
yellow (see Figure 5). We also plot k, versus By and assume that
the wavenumber is a linear function of By, and hence the prediction
of transition is narrowed down to magnetic toroidal field
By ~ 7.4 x 1073. This result is consistent with the simulation
from Tobias et al. (2007) (see Figure 4). Similarly, if we were to
check the critical growth parameter X' = 0 with the same method,
we would find out that the zonal flow stops growing at
By ~ 8.5 x 107*, which is at magnitude of an order lower
than \ = 1.

—— B, B, —_— Uy —— Uy
1072 1072
m By =107 /W
10~ 7 b“““eﬂwv*\ 1071 f
106 / \ 10 j\/ y it
10781 s 1078 //
) 7”y,_,‘,,:»,:f—-‘-‘-—"'“‘""‘" .
10-10 7" 10-10 /
1
10—12 - 10—12 / -
100 10! 10? 10° 10" 102
k k
1072 1072
By=10""
1074 1074 i
1076 /2/ . 10-6 f
10—8 / 10—8 i——&asgk
10-10] 10710 *47 \§ ll
10—12 10—12 *% \T -
10° 10! 10? 100 10! 10?
k k

Figure 10. Spectra for v,, vy, By, and B, for an imposed toroidal field with (Bx> (defined as By) = 1074, 5 x 1073 s 10’2, and 10! for B=5andn= 1074,

12



THE ASTROPHYSICAL JOURNAL, 892:24 (14pp), 2020 March 20

Appendix B
Collective Random Magnetic Fields

We check the validity of the assumption for ignoring
changes in random fields on the small, stochastic scales (/i) due
to Rossby wave straining, after applying the random-field
average method. Here we turn off the mean field (By = 0) and
consider the random fields only (By = 0 + B + By). As the
Rossby wave may perturb the small-scale random field, we can
write the total magnetic field as

Bt = By + B, (49)

where By, is the total random field including the effect of the
Rossby turbulence, By, is stochastic fields, and B is the change
of the magnetic field induced by By, Also, the linear response
of collective fields (0B, ) and the random fields (6B) has the
relation

6Bar _ 6By

— 50
Biot B c0

Note that collective fields B, are at Rossby wave scale
(krossby) after applying the random-field average method.
Combining Equations (49) and (50), we have

6By

Biot = By + ——=Bio.

51
6Bt oY

Since the magnetic field is dominated by random fields, the
average total field is small (By,; — 0), rendering the second term
on right-hand side of Equation (51) small. Equation (51)
indicates that the collective field at Rossby scale (B ) is not
large enough to alter the structure of the random fields (B — 0).
Thus, we can approximate the total magnetic field as the small-
scale stochastic field By, ~ By. This suggests that the
perturbation of the Rossby wave has a minor influence on
random fields. So, the averaged magnetic stress tensor remains
unchanged:

2
OBy —— —
—StBtot) ~ Bs%'

tot

(52)

Bt%)l = (Bst +

This indicates that the random-field energy is fixed under the
influence of the Rossby turbulence, as described by
the random-field average method. Thus, one can simplify the
calculation by ignoring the perturbation of random fields B.
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