
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Molecular Imaging with Aquaporin-Based Reporter Genes: Quantitative Considerations 
from Monte Carlo Diffusion Simulations

Permalink
https://escholarship.org/uc/item/5p1775jr

Journal
ACS Synthetic Biology, 12(10)

ISSN
2161-5063

Authors
Chowdhury, Rochishnu
Wan, Jinyang
Gardier, Remy
et al.

Publication Date
2023-10-20

DOI
10.1021/acssynbio.3c00372
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5p1775jr
https://escholarship.org/uc/item/5p1775jr#author
https://escholarship.org
http://www.cdlib.org/


Molecular imaging with aquaporin-based reporter genes: 
quantitative considerations from Monte Carlo diffusion 
simulations

Rochishnu Chowdhury1, Jinyang Wan2, Remy Gardier7,#, Jonathan Rafael-Patino7,8,#, 
Jean-Philippe Thiran7,8, Frederic Gibou1,9, Arnab Mukherjee*,2,3,4,5,6

1Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA

2Department of Chemistry, University of California, Santa Barbara, CA 93106, USA

3Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA

4Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA

5Biological Engineering, University of California, Santa Barbara, CA 93106, USA

6Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA

7Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), 
Lausanne, Switzerland

8Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of 
Lausanne (UNIL), Lausanne, Switzerland

9Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

Abstract

Aquaporins provide a unique approach for imaging genetic activity in deep tissues by increasing 

the rate of cellular water diffusion, which generates magnetic resonance contrast. However, 

distinguishing aquaporin signals from the tissue background is challenging because water 

diffusion is influenced by structural factors such as cell size and packing density. Here, we 

developed a Monte Carlo model to analyze how cell radius and intracellular volume fraction 

quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach 
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based on subtracting signals at two diffusion times can improve specificity by unambiguously 

isolating aquaporin signals from the tissue background. We further used Monte Carlo simulations 

to analyze the connection between diffusivity and the percentage of cells engineered to express 

aquaporin, and established a mapping that accurately determined the volume fraction of 

aquaporin-expressing cells in mixed populations. The quantitative framework developed in this 

study will enable a broad range of applications in biomedical synthetic biology, requiring the use 

of aquaporins to noninvasively monitor the location and function of genetically engineered devices 

in live animals.

Graphical Abstract
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MRI; aquaporins; reporter genes; Monte Carlo diffusion simulations; diffusion-weighted imaging; 
tissue microstructure

Introduction

Genetically encoded reporters are essential tools for monitoring molecular signals in living 

systems. In synthetic biology, reporters based on fluorescent and bioluminescent proteins 

provide a natural approach for measuring and optimizing the performance of genetic 

systems1. However, optical reporters are of limited use for tracking genetically engineered 

devices in living animals due to absorption and scattering of light in thick tissue2–4. Unlike 

optical methods, magnetic resonance imaging (MRI) can image deep tissues and generate 

volumetric scans with a high spatial resolution. We recently developed an MRI-based 

reporter that enables imaging of genetic activity in deep tissues5,6. This reporter utilizes 

aquaporin-1 (Aqp1), a channel consisting of a ~ 2.8 nm long and ~ 0.3 nm wide pore7 that 

allows water molecules to diffuse freely albeit selectively across the plasma membrane8,9. In 

contrast to wild-type cells, which restrict water movement owing to the low permeability of 

the plasma membrane, cells engineered to express Aqp1 allow the free exchange of water 

(Fig. 1a). Accordingly, Aqp1 expression increases the molecular diffusivity of water in cells 

and tissues, which can be visualized using an MRI technique known as diffusion-weighted 

imaging10,11. In this technique, pulsed magnetic field gradients create a phase dispersion in 

water molecules, producing a signal that decays in proportion to water diffusivity.
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Although Aqp1 provides a promising tool for monitoring genetic systems using MRI, 

variations in tissue microstructure, such as cell size and intracellular volume fraction, i.e., 

fraction of the total imaging volume occupied by cells, can affect tissue water diffusion12–

17, thereby making it difficult to unambiguously link Aqp1-driven signals with a specific 

genetic output or cell-type. For example, a decrease in intracellular volume fraction as a 

result of cell death or apoptotic shrinkage could lead to an increase in the rate of water 

diffusion in tissues independent of Aqp1 expression18–20. Conversely, an increase in cell size 

owing to swelling or mitotic growth arrest can decrease the rate of water diffusion12,21,22. To 

expand Aqp1 into a broadly useful reporter for biomedical applications of synthetic biology, 

we need a mechanistic framework that predicts how changes in molecular diffusivity 

induced by Aqp1 expression are affected by cell radius, packing density, and the volume 

fraction of Aqp1-expressing cells.

Monte Carlo diffusion simulations, which compute the Brownian motion of water molecules 

in the presence of a dephasing magnetic field gradient, are widely used to investigate 

the correlation between molecular diffusion of water and tissue morphology23–37. For 

example, Monte Carlo simulations have been used to quantify changes in white matter 

diffusivity caused by the swelling and beading of neurites during ischemic stroke33,38. In 

cancer biology, Monte Carlo methods have been used to explore the effects of cell size, 

packing density, and compartment volume fractions on tumor diffusion27,32. We recently 

applied Monte Carlo diffusion simulations to generate ground-truth diffusion datasets, which 

we used to compare the accuracies of various analytical models for estimating tissue 

microstructure using diffusion-weighted MRI36.

In this study, we developed and experimentally validated a Monte Carlo simulator to model 

water diffusion in cells engineered to express Aqp1. We showed that Aqp1 operates as 

an effective reporter over a wide range of cell sizes and volume fractions, driving larger 

changes in molecular diffusivity than those seen in wild-type (viz. non-engineered) cells. 

We also identified the range of cellular radii and volume fractions that lead to nonspecific 

enhancements in molecular diffusivity, thereby making it nontrivial to unambiguously 

discern Aqp1-based MRI signals from the tissue background. We further show that by 

subtracting diffusion coefficients obtained at two diffusion times, Aqp1-expression can be 

specifically detected without interference from the background. Finally, we used Monte 

Carlo simulations to analyze the correlation between diffusivity and the volume fraction 

of Aqp1-expressing cells and demonstrated that a simple log-linear model was sufficient 

to measure Aqp1-expressing cells in mixed-cell populations, thereby combining cell-type 

specificity with quantitative imaging.

Results

Aqp1 generates a substantial increase in diffusivity at long diffusion times

We designed our computational tissue phantom to consist of spherical cells (7.6 μm radius) 

tightly packed to yield an intracellular volume fraction of 0.65. This configuration mimics 

our experimental system comprising lightly centrifuged pellets of Chinese hamster ovary 

(CHO) cells. We used Monte Carlo simulations to compute diffusivities for a range of 

permeability coefficients and diffusion times. Consistent with previous studies of water 
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diffusion in similar geometries39, the diffusivity increases with membrane permeability, 

rising sharply as the permeability crosses 10−2 μm/ms (Fig. 1b). Longer diffusion times 

lead to a decrease in diffusivity as more spins encounter the plasma membrane, which 

restricts water movement (Fig. 1b,c). In contrast, permeable membranes (e.g., due to Aqp1 

expression) do not substantially hinder the free movement of water molecules and thus the 

time dependence of diffusion become less pronounced with increasing permeability (Fig. 

1c). Accordingly, extended diffusion times are optimal for maximizing diffusion-weighted 

contrast induced by Aqp1 expression.

Next, we used diffusion-weighted MRI to measure diffusivities in pellets of both wild-type 

cells and cells in which the Aqp1 reporter was introduced as a transgene using lentiviral 

transduction (Supplementary Fig. 1). Our experimental estimates agreed with diffusion 

coefficients computed from Monte Carlo simulations where we modeled wild-type and 

Aqp1-CHO cells using permeability coefficients of 0.012 and 0.138 μm/ms respectively 

based on previously published estimates40,41 (Fig. 1c). Notably, at a diffusion time of 

100 ms, Aqp1-expressing cells showed a 124 ± 14 % (mean ± s.d., n = 6) increase in 

diffusivity compared to wild-type cells, which aligns well with the 112 % increase predicted 

from our simulations. Longer diffusion times will further enhance the Aqp1-driven increase 

in diffusivity (Supplementary Fig. 2a), though this also sharply decreases the signal-to-noise 

ratio (SNR) in diffusion-weighted images (Supplementary Fig. 2b). Accordingly, in the 

remainder of the study, we use 100 ms as our long diffusion time limit to achieve an optimal 

trade-off between diffusion fold-change and SNR.

Changes in tissue microstructure may elevate diffusion rates, at times overlapping with 
Aqp1-driven changes in molecular diffusivity

We applied the Monte Carlo diffusion framework to explore the effects of tissue 

microstructure parameters, namely cell size (r) and intracellular volume fraction (vf) on 

the diffusivities of wild-type and Aqp1-expressing CHO cells. We varied cellular radii from 

5 to 25 μm to represent both small (e.g., monocytes42) and large cell-types (e.g., adipocytes). 

We set the upper bound of the intracellular volume fraction as 0.67, which corresponds to 

typical packing of cells in pellets and many tissues33,43. For the lower bound on vf, we 

used a value of 0.1 to represent conditions where the intracellular volume is substantially 

reduced by edema or necrosis, for example during tumor therapy44,45. Our specific goal was 

to identify cell sizes and volume fractions that would elevate the rate of water diffusion 

and by doing so create the same effect on MRI readouts as the Aqp1 reporter (Fig. 2a). In 

practical terms, this parameter space represents tissue configurations where Aqp1 signals are 

hard to tell apart from the tissue background. For a fixed intracellular volume fraction, we 

found that wild-type diffusivity was highly sensitive to cell size, increasing by as much as 

122 % as the radius was varied from 5 μm to 25 μm (Fig. 2b). Expression of Aqp1 reduced 

the cell size dependence, producing a 36 % increase in diffusivity over the same size range 

(Fig. 2b). Wild-type cells were also more sensitive to changes in the intracellular volume 

fraction and their diffusivity increased by 177 % (compared to 80 % for Aqp1 cells) when 

the volume fraction was increased over a 5-fold range, while keeping the cell radius fixed 

(Fig. 2c).
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Next, we calculated diffusivities while simultaneously varying both the intracellular 

volume fraction and cell size (Fig. 2d,e). The maximum fold-change in diffusivity of 

Aqp1-expressing cells compared to wild-type cells occurs in the 5 − 7 μm cell radius 

range and for volume fractions greater than 0.65. Importantly, configurations comprising 

large cells and low intracellular volume fractions had diffusivities high enough to overlap 

with Aqp1 signals (Fig. 2d,e). Accordingly, we wondered whether we could use the 

distinct time-dependence of diffusivity in wild-type and Aqp1-expressing cells (Fig. 1c) 

to unambiguously locate Aqp1-based signals in the parameter space where Aqp1-driven 

diffusivity changes are masked by elevations in background tissue diffusion. Notably, in 

sharp contrast to Aqp1-expressing cells, the diffusivity of wild-type cells changes rapidly 

with diffusion time (Fig. 1c). Accordingly, we explored how the difference in simulated 

diffusivities between 20 ms and 100 ms ΔD = D20 − D100) changes as a function of radii 

and intracellular volume fractions (Fig. 2f,g, Supplementary Fig. 3). Strikingly, the ΔD
metric successfully differentiated between wild-type and Aqp1-expressing cells for nearly 

all combinations of radii and volume fractions tested (Fig. 2f), indicating that difference 

imaging at two diffusion times provides a unique approach for accurately identifying 

expression of the Aqp1 reporter regardless of changes in microstructure parameters.

Monte Carlo simulations allow mapping of Aqp1 volume fraction in mixed cell populations

In many applications of reporter gene technology, such as tracking cell therapies and 

monitoring transcriptional activity, only a subset of cells may express the reporter at a 

given time. In these scenarios, the ability to quantify the fraction of reporter-expressing 

cells permits a richer description of the underlying biological process. To this end, we 

hypothesized that the dependence of molecular diffusivity on the volume fraction of Aqp1-

cells (vAqp1) in a mixed population could be used for quantitative imaging of reporter gene 

expression (Fig. 3a). To test this idea, we analyzed the relationship between diffusivity 

calculated by our Monte Carlo simulations and vAqp1 in mixed populations comprising CHO-

Aqp1 cells interspersed with wild-type cells in varying ratios. We found that a simple 

log-linear function quantitatively describes the dependence of molecular diffusivity on vAqp1

(Fig. 3b, Supplementary Fig. 4). Next, we constructed a mixed-cell mosaic by randomly 

sampling pixels from experimental diffusion maps of cell populations comprising varying 

ratios of Aqp1-expressing to wild-type CHO cells (Supplementary Fig. 5, Fig. 3c). We used 

the log-linear mapping between diffusivity and vAqp1 (Fig. 3b) to classify each pixel in the 

mosaic into one of four groups mirroring the percentage of Aqp1-labeled cells contained 

in the pixel (Fig. 3d). Using this approach, we were able to convert the mixed-cell image 

into a 4-level classification of Aqp1 volume fraction achieving an accuracy of 79.67 % on 

entirely unseen experimental data (Fig. 3e, Table 1). We further tested this approach on a 

cell mixture consisting of CHO-Aqp1 cells mixed with a different cell-type, Jurkat T-cells. 

We simulated Jurkat cells as spheres with a radius of 5 μm and validated that the simulated 

diffusivity matched with experimental measurements in cell pellets (Supplementary Fig. 

6). As before, we generated mixed-cell mosaics from diffusion maps of pellets comprising 

CHO-Aqp1 cells mixed with Jurkat cells in varying ratios (Fig. 3f). Finally, we used the 

log-linear mapping between simulated diffusivity and vAqp1 for the CHO-Aqp1 and Jurkat 
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mixture (Fig. 3b) to perform a 4-level classification of all pixels in the mosaic image, 

achieving an accuracy of 78.15 % (Fig. 3g,h, Table 2).

Discussion

Here, we quantitatively assessed the performance of Aqp1 as a reporter gene in simulated 

tissue configurations comprising cells of different radii, volume fractions, and proportions 

of Aqp1-expressing cells. Our study revealed four major findings that we anticipate will 

be used to guide the design and analysis of future experiments involving Aqp1 to track 

cells, genetic function, and molecular signals in living organisms. First, we found that 

Aqp1 is robust to cell size variations, making it a suitable reporter for cells of different 

sizes. This prediction is reinforced by a growing body of literature showing that Aqp1 

operates as a viable reporter across distinct cell-types, such as tumors, neurons, and glial 

cells46–48. Second, this study emphasizes the importance of accounting for volume fraction 

when interpreting MRI signals generated by Aqp1, especially when a large reduction 

in cell density is expected, such as during tumor therapy. Third, we demonstrate that 

subtracting diffusivities at short (20 ms) and long diffusion times (100 ms) provides a 

unique approach for disambiguating Aqp1 signals from the nonspecific effects of tissue 

microstructure on water diffusion. With continued technical advances that increase the SNR, 

for example, higher-field magnets (18 T is now commercially available for preclinical 

imaging), cryogenically cooled coils, and machine learning-based SNR recovery techniques, 

the long time limit can be further extended beyond 100 ms, which would further improve 

the separation between Aqp1-expressing cells and the background. Finally, we observed 

that diffusivity was quantitatively linked to the volume fraction of cells expressing Aqp1, 

suggesting that Aqp1 can be used as a genetic indicator to measure transcriptional activity or 

the percentage of reporter-expressing cells in mixed populations.

The current study has limitations, which suggest potential avenues for future research. First, 

the two-compartment model employed here, similar to those used in past diffusion modeling 

studies26,31,34,39, could be amended to include additional water pools for subcellular 

structures such as the nucleus and extracellular structures such as the vasculature27,32,49. 

Such multicompartment models could help in analyzing how Aqp1 behaves in systems 

where nuclear and/or vascular volume fractions vary, which could in turn modify intra- 

and extracellular diffusion coefficients. Our framework can also be readily adapted to 

incorporate varying levels of Aqp1 expression achieved in different cell types or transgene 

expression systems by selecting an appropriate radius and permeability coefficient, which 

are easily measured experimentally. Second, our tissue phantoms can be tailored to 

accurately reflect realistic geometries derived from the histology of engineered tissues 

expressing Aqp150. Although we expect that the correlations found in this study will 

hold for even more complex tissue morphologies, histology-derived meshes can be useful 

for exploring the context-dependent behavior of Aqp1 in realistic in vivo settings. To 

this end, Monte Carlo diffusion simulations have the advantage of easily integrating new 

experimental data, which is expected to grow as diffusion MRI technology continues to push 

the boundaries of sensitivity and resolution51 and Aqp1-based reporters are more broadly 

adopted by the scientific community. Finally, Monte Carlo simulations could be used to train 

learning algorithms to generate spatial maps of gene expression and cell density based on 
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Aqp1 reporter signals measured in biological tissues50. To do so, the diffusion signal must 

be represented by a more comprehensive feature vector, likely including additional metrics 

derived from multishell diffusion-weighted imaging experiments52. These efforts should be 

bolstered by machine learning models that use multi-shell diffusion tensor data to compute 

tissue microstructure parameters53–56.

In summary, this study presents a quantitative framework to analyze Aqp1 in a variety of 

tissue settings and lays the foundation for integrating Aqp1 with computational modeling to 

accurately locate and map spatiotemporal profiles of gene expression and cell-based devices 

in vertebrates.

Methods

Monte Carlo diffusion simulations

We modeled cells as packed spheres and dispersed N = 105 particles (representing 

diffusing water spins) evenly in the intra- and extracellular compartments, in proportion 

to the relative volume of each compartment. We performed two-compartment diffusion 

simulations with a time step (τ) of 19.682 μs using the open-source Monte Carlo Diffusion 

and Collision Simulator developed in26 and later extended to permeable substrates36. 

The total number ofparticles (N) and step size (τ) were chosen to ensure accuracy and 

convergence of the simulation runs26. Using these parameters, the standard deviation of 

simulated diffusivity is less than 2 % of its mean across all simulations. Briefly, at each 

time step τ = 19 μs , we randomly displaced a spin i  by a distance (xi  computed 

from Einstein’s diffusion equation assuming diffusion coefficients of 1 μm2/ms and 2 

μm2/ms for the intra- and extracellular compartments, respectively. Upon encountering 

the cell membrane, a water molecule can undergo an elastic reflection25 or pass through 

the membrane with a probability that depends on the permeability coefficient (κ), which 

quantifies the rate of water permeation through the cell membrane57. The relation between 

this probability and κ is is calculated as described in prior work50. At the desired diffusion 

time (Δ), we sum the total phase dispersion of by all spins in the ensemble to compute 

the diffusion coefficient (D) as follows: D = −
ln e− q

2 ∑xi
2

q Δ . Here, q represents the diffusion-

weighting defined as q = γgδ 2 where γ = 42.57 MHz/T , δ is the gradient duration, 

g is the gradient strength. The values of Δ, δ, and g were based on the experimentally 

defined diffusion-weighted MRI parameters (see below). We first investigated the change 

in diffusivity as a function of membrane permeability for a fixed cell radius (r = 7.6 μm) 

and volume fraction (vf = 0.65). This radius was chosen to be consistent with the effective 

size of CHO cells58 and the volume fraction approximates lightly centrifuged cell pellets 

as well as many physiological tissues. We investigated three scenarios: (1) vf = 0.65, 

5 μm ≤ r ≤ 25 μm (2) r = 7.6 μm, 0.10 ≤ vf ≤ 0.67 (3) concurrently varying both r and 

vf within the aforementioned limits. For each condition, we tested two permeability 

coefficients corresponding to wild-type (0.012 μm ms−1  and Aqp1-expressing CHO cells 
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(0.138 μm ms−1 . The permeability values are based on previously published estimates 

obtained in wild-type CHO cells and CHO cells stably transfected to express Aqp140.

Mixed-cell Monte Carlo simulations were performed in the same manner as described 

above, but by varying the number of Aqp1-expressing and wild-type CHO cells to achieve a 

desired Aqp1 volume fraction (vf, Aqp1). For mixed-cell experiments involving CHO and Jurkat 

cells, the latter were modeled as smaller spheres (r = 5 μm) with κ = 0.005 μm/ms59,60. 

We packed spheres of two different radii (rCHO = 7.6 μm, rJurkat = 5 μm) to obtain a total 

intracellular volume fraction of 0.65, as described previously61, while adjusting the number 

of bigger spheres to obtain the desired volume fraction of CHO cells.

Reagents

Dulbecco’s Modified Eagle Media (DMEM), sodium pyruvate, doxycycline hyclate, 

and penicillin-streptomycin (104 units/mL penicillin and 10 mg/mL streptomycin) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Roswell Park Memorial Institute 

media (RPMI 1640), sterile phosphate buffered saline (PBS), TrypLE, and Gibco™ fetal 

bovine serum (FBS) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). 

MycoAlert® Plus Mycoplasma Detection Assay was purchased from Lonza.

Cell culture

Chinese hamster ovary (CHO) cell lines were genetically engineered to express human 

aquaporin-1 (hAqp1) exactly as described in our previous work. Both wild-type and Aqp1-

expressing CHO cells were cultured at 37 °C in a humidified 5 % CO2 incubator using 

DMEM supplemented with 10 % FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin. 

Jurkat cells were grown as suspension culture using RPMI medium supplemented as before.

In vitro MRI

Approximately 24 h before imaging, cells were treated with doxycycline hyclate (1–10 

μg/mL) to activate Aqp1 expression. Adherent CHO cells were harvested by trypsinization, 

centrifuged at 350 x g, and resuspended in 200 μL sterile PBS in 0.2 mL tubes. For the 

mixed cell experiments, the two cell types were cultured separately and 10 μL of the cell 

suspension was loaded in a disposable hemocytometer to count cells using a bright field 

microscope. Based on the cell counts, appropriate volumes of the two cell types were mixed 

to achieve a desired volume fraction of Aqp1-expressing cells. The cells were mixed by 

gentle pipetting, centrifuged, and transferred to 0.2 mL tubes. The 0.2 mL tubes were 

centrifuged at a low speed (500 x g for 5 min) to form compact pellets. The pellet-containing 

tubes were housed in a water-filled agarose (1 % w/v) phantom for imaging. MR images 

were acquired using a 66 mm diameter coil in a Bruker 7T vertical-bore scanner. Diffusion-

weighted images were acquired in the axial plane using a stimulated echo sequence with 

the following parameters: echo time, TE = 18 ms, repetition time, TR = 1000 ms, gradient 

duration, δ = 5 ms, gradient separation, Δ = 20, 50, 80, 100, 200, and 300 ms, matrix size 

= 128 × 128, field of view (FOV) = 5.08 × 5.08 cm2, slice thickness = 1–2 mm, number of 

averages = 5, and 4 nominal b-values: 0, 400, 600, and 800 s/mm2. The b-value determines 

the extent of diffusion-weighting applied to the polarized water molecules and is classically 
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defined as b = γδG 2 Δ − δ
3 , where γ = 42.57 MHz T −1 is the proton gyromagnetic ratio 

and G is the magnitude of the gradient pulse. Although the same set of nominal b-values 

was used at all diffusion times, the effective b-values changed substantially owing to the 

contribution of imaging gradients to the diffusion weighting via cross terms62. Typically, 

the effective b-values in our MRI scanner rang from 46 − 2900 s mm−2 for Δ values from 

20 to 300 ms.

Diffusion-weighted intensity was determined using region of interest (ROI) analysis in Fiji 

(NIH) and the slope of the logarithmic decay in mean intensity versus effective b-value 

was used to calculate the diffusivity. To generate pixel-wise diffusion maps, a diffusion 

coefficient was computed for each pixel. Least-squares regression fitting was performed in 

Matlab (R2022b) or Python v3.9.

Pixel-wise classification of mixed-cell populations based on Aqp1 volume fraction

We binned individual pixels from experimental diffusion maps (acquired at Δ = 100 ms) 

of mixed-cell pellets into one of nine groups (0, 10, 20, 30, 40, 50, 60, 80, and 100 

%) based on the known Aqp1 volume fraction (vAqp1) of the pellet. The ensuing dataset 

comprises approximately 3744 pixels (4 replicates x 104 pixels per image x 9 vAqp1 values) 

representing noisy experimental data for a range of Aqp1 volume fractions. We denoised 

diffusivity values in each bin using a Gaussian filter (σ = 3 , similar to how experimental 

diffusion maps are commonly smoothed. From each bin, we sampled 64 pixels with 

replacement and distributed them randomly in a 24 × 24 grid to construct a “mixed-cell” 

ADC image. We modeled the dependence of the simulated ADC (Δ = 100 ms) on vAqp1 using 

a log-linear function of the form log ADC = avAqp1 + b. We used the resulting log-linear 

mapping to classify each pixel in the mixed-cell ADC image into one of four levels: 

absent (vAqp1 < 10 %), low (10 % ≤ vAqp1 < 30 %), medium (30 % ≤ vAqp1 ≤ 70 %), and high 

(vAqp1 > 70 %). This discretized 4-level classification was deemed appropriate, given that 

experimental ADC maps are inherently noisy, particularly at the long diffusion times 

needed to maximize Aqp1-based contrast. To evaluate the performance of the model, we 

repeated the 4-level classification on 100 randomly generated sets of mixed-cell images 

and computed the confusion matrix using the precision_recall_fscore_support package from 

sklearn.metrics in Python.

Statistical analysis

Experimental data are summarized by their mean and standard deviation obtained from 

multiple (n ≥ 4) biological replicates defined as measurements performed with distinct 

cell samples. Quality of model-fitting was judged based on the regression coefficient and 

inspection of the 95 % confidence intervals and coefficients of determination. All tests are 

2-sided and a P  value of less than 0.05 taken to indicate statistical significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Chowdhury et al. Page 9

ACS Synth Biol. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

We thank Dr. Harun F. Ozbakir, Dr. Jason Yun, and Dr. Thomas Oerther (Bruker BioSpin GmbH) for several helpful 
discussions and optimization of imaging protocols. This research was supported by the National Institutes of Health 
(R35-GM133530, R03-DA050971, and R01-NS128278 to A.M.), the U.S. Army Research Office via the Institute 
for Collaborative Biotechnologies cooperative agreement W911NF-19-D-0001-0009 (A.M.), a NARSAD Young 
Investigator Award from the Brain & Behavior Research Foundation (A.M.), and a UC Santa Barbara Office of 
Research Early-Stage Seed Grants (A.M. and F.G). This project has also been made possible in part by a grant 
from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation. All MRI 
experiments were performed at the Materials Research Laboratory (MRL) at UC, Santa Barbara. The MRL Shared 
Experimental Facilities are supported by the MRSEC Program of the NSF under Award No. DMR 1720256; a 
member of the NSF-funded Materials Research Facilities Network. We acknowledge the use of the NRI-MCDB 
Microscopy Facility and the Resonant Scanning Confocal supported by NSF MRI grant 1625770.

References

(1). Gilad AA; Shapiro MG Molecular Imaging in Synthetic Biology, and Synthetic Biology in 
Molecular Imaging. Mol Imaging Biol 2017, 19 (3), 373–378. 10.1007/s11307-017-1062-1. 
[PubMed: 28213833] 

(2). Schuerle S; Furubayashi M; Soleimany AP; Gwisai T; Huang W; Voigt C; Bhatia SN Genetic 
Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS 
Synth. Biol 2020, 9 (2), 392–401. 10.1021/acssynbio.9b00416. [PubMed: 31922737] 

(3). Bricco AR; Miralavy I; Bo S; Perlman O; Korenchan DE; Farrar CT; McMahon MT; Banzhaf W; 
Gilad AA A Genetic Programming Approach to Engineering MRI Reporter Genes. ACS Synth. 
Biol 2023, 12 (4), 1154–1163. 10.1021/acssynbio.2c00648. [PubMed: 36947694] 

(4). Helmchen F; Denk W. Deep Tissue Two-Photon Microscopy. Nat Methods 2005, 2 (12), 932–940. 
10.1038/nmeth818. [PubMed: 16299478] 

(5). Mukherjee A; Davis HC; Ramesh P; Lu GJ; Shapiro MG Biomolecular MRI Reporters: Evolution 
of New Mechanisms. Progress in Nuclear Magnetic Resonance Spectroscopy 2017, 102–103, 
32–42. 10.1016/j.pnmrs.2017.05.002.

(6). Mukherjee A; Wu D; Davis HC; Shapiro MG Non-Invasive Imaging Using Reporter Genes 
Altering Cellular Water Permeability. Nat Commun 2016, 7 (1), 13891. 10.1038/ncomms13891. 
[PubMed: 28008959] 

(7). Sui H; Han B-G; Lee JK; Walian P; Jap BK Structural Basis of Water-Specific Transport through 
the AQP1 Water Channel. Nature 2001, 414 (6866), 872–878. 10.1038/414872a. [PubMed: 
11780053] 

(8). Benga G. The First Discovered Water Channel Protein, Later Called Aquaporin 1: Molecular 
Characteristics, Functions and Medical Implications. Molecular Aspects of Medicine 2012, 33 
(5), 518–534. 10.1016/j.mam.2012.06.001. [PubMed: 22705445] 

(9). Verkman AS; Mitra AK Structure and Function of Aquaporin Water Channels. American Journal 
of Physiology-Renal Physiology 2000, 278 (1), F13–F28. 10.1152/ajprenal.2000.278.1.F13. 
[PubMed: 10644652] 

(10). Bammer R. Basic Principles of Diffusion-Weighted Imaging. European Journal of Radiology 
2003, 45 (3), 169–184. 10.1016/S0720-048X(02)00303-0. [PubMed: 12595101] 

(11). Merboldt K-D; Hanicke W; Frahm J. Self-Diffusion NMR Imaging Using Stimulated Echoes. 
Journal of Magnetic Resonance (1969) 1985, 64 (3), 479–486. 10.1016/0022-2364(85)90111-8.

(12). Harkins KD; Galons J-P; Secomb TW; Trouard TP Assessment of the Effects of Cellular 
Tissue Properties on ADC Measurements by Numerical Simulation of Water Diffusion. Magnetic 
Resonance in Medicine 2009, 62 (6), 1414–1422. 10.1002/mrm.22155. [PubMed: 19785014] 

(13). Xu J; Does MD; Gore JC Quantitative Characterization of Tissue Microstructure with Temporal 
Diffusion Spectroscopy. Journal of Magnetic Resonance 2009, 200 (2), 189–197. 10.1016/
j.jmr.2009.06.022. [PubMed: 19616979] 

(14). Bihan DL Molecular Diffusion, Tissue Microdynamics and Microstructure. NMR in Biomedicine 
1995, 8 (7), 375–386. 10.1002/nbm.1940080711. [PubMed: 8739274] 

Chowdhury et al. Page 10

ACS Synth Biol. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(15). Nilsson M; van Westen D; Ståhlberg F; Sundgren PC; Lätt J. The Role of Tissue Microstructure 
and Water Exchange in Biophysical Modelling of Diffusion in White Matter. Magn Reson Mater 
Phy 2013, 26 (4), 345–370. 10.1007/s10334-013-0371-x.

(16). Pilatus U; Shim H; Artemov D; Davis D; van Zijl PC; Glickson JD Intracellular Volume and 
Apparent Diffusion Constants of Perfused Cancer Cell Cultures, as Measured by NMR. Magn 
Reson Med 1997, 37 (6), 825–832. 10.1002/mrm.1910370605. [PubMed: 9178232] 

(17). Norris DG The Effects of Microscopic Tissue Parameters on the Diffusion Weighted Magnetic 
Resonance Imaging Experiment. NMR Biomed 2001, 14 (2), 77–93. 10.1002/nbm.682. 
[PubMed: 11320535] 

(18). Galons J-P; Altbach MI; Paine-Murrieta GD; Taylor CW; Gillies RJ Early Increases in Breast 
Tumor Xenograft Water Mobility in Response to Paclitaxel Therapy Detected by Non-Invasive 
Diffusion Magnetic Resonance Imaging. Neoplasia 1999, 1 (2), 113–117. [PubMed: 10933044] 

(19). Anderson NT; Weyant KB; Mukherjee A. Characterization of Flavin Binding in Oxygen-
Independent Fluorescent Reporters. AIChE Journal 2020, 66 (12), e17083. 10.1002/aic.17083.

(20). Moffat BA; Chenevert TL; Lawrence TS; Meyer CR; Johnson TD; Dong Q; Tsien C; Mukherji S; 
Quint DJ; Gebarski SS; Robertson PL; Junck LR; Rehemtulla A; Ross BD Functional Diffusion 
Map: A Noninvasive MRI Biomarker for Early Stratification of Clinical Brain Tumor Response. 
Proc Natl Acad Sci U S A 2005, 102 (15), 5524–5529. 10.1073/pnas.0501532102. [PubMed: 
15805192] 

(21). Jiang X; Li H; Zhao P; Xie J; Khabele D; Xu J; Gore JC Early Detection of Treatment-Induced 
Mitotic Arrest Using Temporal Diffusion Magnetic Resonance Spectroscopy. Neoplasia 2016, 18 
(6), 387–397. 10.1016/j.neo.2016.04.006. [PubMed: 27292027] 

(22). Moseley ME; Cohen Y; Mintorovitch J; Chileuitt L; Shimizu H; Kucharczyk J; Wendland MF; 
Weinstein PR Early Detection of Regional Cerebral Ischemia in Cats: Comparison of Diffusion- 
and T2-Weighted MRI and Spectroscopy. Magnetic Resonance in Medicine 1990, 14 (2), 330–
346. 10.1002/mrm.1910140218. [PubMed: 2345513] 

(23). Fieremans E; Novikov DS; Jensen JH; Helpern JA Monte Carlo study of a two-compartment 
exchange model of diffusion. NMR in Biomedicine 2010, 23 (7), 711–724. 10.1002/nbm.1577. 
[PubMed: 20882537] 

(24). Yeh C-H; Schmitt B; Bihan DL; Li-Schlittgen J-R; Lin C-P; Poupon C. Diffusion Microscopist 
Simulator: A General Monte Carlo Simulation System for Diffusion Magnetic Resonance 
Imaging. PLOS ONE 2013, 8 (10), e76626. 10.1371/journal.pone.0076626.

(25). Szafer A; Zhong J; Gore JC Theoretical Model for Water Diffusion in Tissues. Magnetic 
Resonance in Medicine 1995, 33 (5), 697–712. 10.1002/mrm.1910330516. [PubMed: 7596275] 

(26). Rafael-Patino J; Romascano D; Ramirez-Manzanares A; Canales-Rodríguez EJ; Girard G; Thiran 
J-P Robust Monte-Carlo Simulations in Diffusion-MRI: Effect of the Substrate Complexity and 
Parameter Choice on the Reproducibility of Results. Front Neuroinform 2020, 14, 8. 10.3389/
fninf.2020.00008. [PubMed: 32210781] 

(27). Gilani N; Malcolm P; Johnson G. An Improved Model for Prostate Diffusion Incorporating 
the Results of Monte Carlo Simulations of Diffusion in the Cellular Compartment. NMR in 
Biomedicine 2017, 30 (12), e3782. 10.1002/nbm.3782.

(28). Gilani N; Malcolm P; Johnson G. A Monte Carlo Study of Restricted Diffusion: Implications for 
Diffusion MRI of Prostate Cancer: A Monte Carlo Study of Restricted Diffusion: Implications 
for Diffusion MRI of Prostate Cancer. Magn. Reson. Med 2017, 77 (4), 1671–1677. 10.1002/
mrm.26230. [PubMed: 27059769] 

(29). Hall MG; Alexander DC Convergence and Parameter Choice for Monte-Carlo Simulations of 
Diffusion MRI. IEEE Trans Med Imaging 2009, 28 (9), 1354–1364. 10.1109/TMI.2009.2015756. 
[PubMed: 19273001] 

(30). Karunanithy G; Wheeler RJ; Tear L; Farrer NJ; Faulkner S; Baldwin AJ INDIANA: An in-Cell 
Diffusion Method to Characterize the Size, Abundance and Permeability of Cells. J Magn Reson 
2019, 302, 1–13. 10.1016/j.jmr.2018.12.001. [PubMed: 30904779] 

(31). Lee C-Y; Bennett KM; Debbins JP Sensitivities of Statistical Distribution Model and Diffusion 
Kurtosis Model in Varying Microstructural Environments: A Monte Carlo Study. Journal of 
Magnetic Resonance 2013, 230, 19–26. 10.1016/j.jmr.2013.01.014. [PubMed: 23428968] 

Chowdhury et al. Page 11

ACS Synth Biol. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32). Lee C-Y; Bennett KM; Debbins JP; Choi I-Y; Lee P. The Relationship between Diffusion 
Heterogeneity and Microstructural Changes in High-Grade Gliomas Using Monte Carlo 
Simulations. Magnetic Resonance Imaging 2022, 85, 108–120. 10.1016/j.mri.2021.10.001. 
[PubMed: 34653578] 

(33). Baron CA; Kate M; Gioia L; Butcher K; Emery D; Budde M; Beaulieu C. Reduction of 
Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times. Stroke 
2015, 46 (8), 2136–2141. 10.1161/STROKEAHA.115.008815. [PubMed: 26152297] 

(34). Xing S; Levesque IR A Simulation Study of Cell Size and Volume Fraction Mapping for Tissue 
with Two Underlying Cell Populations Using Diffusion-Weighted MRI. Magn Reson Med 2021, 
86 (2), 1029–1044. 10.1002/mrm.28694. [PubMed: 33644889] 

(35). Tachibana Y; Duval T; Obata T. Monte Carlo Simulator for Diffusion-Weighted Imaging 
Sequences. Magn Reson Med Sci 2021, 20 (2), 222–226. 10.2463/mrms.bc.2020-0013. 
[PubMed: 32418924] 

(36). Gardier R; Villarreal Haro JL; Canales-Rodríguez EJ; Jelescu IO; Girard G; Rafael-Patiño J; 
Thiran J-P Cellular Exchange Imaging (CEXI): Evaluation of a Diffusion Model Including Water 
Exchange in Cells Using Numerical Phantoms of Permeable Spheres. Magnetic Resonance in 
Medicine n/a (n/a). 10.1002/mrm.29720.

(37). Grussu F; Bernatowicz K; Casanova-Salas I; Castro N; Nuciforo P; Mateo J; Barba I; Perez-
Lopez R. Diffusion MRI Signal Cumulants and Hepatocyte Microstructure at Fixed Diffusion 
Time: Insights from Simulations, 9.4T Imaging, and Histology. Magnetic Resonance in Medicine 
2022, 88 (1), 365–379. 10.1002/mrm.29174. [PubMed: 35181943] 

(38). Budde MD; Frank JA Neurite Beading Is Sufficient to Decrease the Apparent Diffusion 
Coefficient after Ischemic Stroke. Proc Natl Acad Sci U S A 2010, 107 (32), 14472–14477. 
10.1073/pnas.1004841107. [PubMed: 20660718] 

(39). Li H; Jiang X; Xie J; McIntyre JO; Gore JC; Xu J. Time-Dependent Influence of Cell Membrane 
Permeability on MR Diffusion Measurements. Magn Reson Med 2016, 75 (5), 1927–1934. 
10.1002/mrm.25724. [PubMed: 26096552] 

(40). Farinas J; Kneen M; Moore M; Verkman AS Plasma Membrane Water Permeability of Cultured 
Cells and Epithelia Measured by Light Microscopy with Spatial Filtering. J Gen Physiol 1997, 
110 (3), 283–296. 10.1085/jgp.110.3.283. [PubMed: 9276754] 

(41). Zhu F; Tajkhorshid E; Schulten K. Theory and Simulation of Water Permeation in Aquaporin-1. 
Biophys J 2004, 86 (1), 50–57. [PubMed: 14695248] 

(42). Dannhauser D; Rossi D; De Gregorio V; Netti PA; Terrazzano G; Causa F. Single Cell 
Classification of Macrophage Subtypes by Label-Free Cell Signatures and Machine Learning. 
Royal Society Open Science 2022, 9 (9), 220270. 10.1098/rsos.220270.

(43). Anderson AW; Xie J; Pizzonia J; Bronen RA; Spencer DD; Gore JC Effects of Cell Volume 
Fraction Changes on Apparent Diffusion in Human Cells. Magnetic Resonance Imaging 2000, 18 
(6), 689–695. 10.1016/S0730-725X(00)00147-8. [PubMed: 10930778] 

(44). Egeland TAM; Gaustad J-V; Galappathi K; Rofstad EK Magnetic Resonance Imaging of Tumor 
Necrosis. Acta Oncologica 2011, 50 (3), 427–434. 10.3109/0284186X.2010.526633. [PubMed: 
20950229] 

(45). Fukukura Y; Kumagae Y; Fujisaki Y; Nakamura S; Dominik Nickel M; Imai H; Yoshiura T. 
Extracellular Volume Fraction with MRI: As an Alternative Predictive Biomarker to Dynamic 
Contrast-Enhanced MRI for Chemotherapy Response of Pancreatic Ductal Adenocarcinoma. 
European Journal of Radiology 2021, 145, 110036. 10.1016/j.ejrad.2021.110036.

(46). Li M; Liu Z; Wu Y; Zheng N; Liu X; Cai A; Zheng D; Zhu J; Wu J; Xu L; Li X; Zhu 
L-Q; Manyande A; Xu F; Wang J. In Vivo Imaging of Astrocytes in the Whole Brain with 
Engineered AAVs and Diffusion-Weighted Magnetic Resonance Imaging. Mol Psychiatry 2022, 
1–8. 10.1038/s41380-022-01580-0.

(47). Zhang L; Gong M; Lei S; Cui C; Liu Y; Xiao S; Kang X; Sun T; Xu Z; Zhou C; Zhang S; Zhang 
D. Targeting Visualization of Malignant Tumor Based on the Alteration of DWI Signal Generated 
by HTERT Promoter–Driven AQP1 Overexpression. Eur J Nucl Med Mol Imaging 2022, 49 (7), 
2310–2322. 10.1007/s00259-022-05684-1. [PubMed: 35044495] 

Chowdhury et al. Page 12

ACS Synth Biol. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(48). Zheng N; Li M; Wu Y; Kaewborisuth C; Li Z; Gui Z; Wu J; Cai A; Lin K; Su K-P; Xiang 
H; Tian X; Manyande A; Xu F; Wang J. A Novel Technology for in Vivo Detection of Cell 
Type-Specific Neural Connection with AQP1-Encoding RAAV2-Retro Vector and Metal-Free 
MRI. NeuroImage 2022, 258, 119402. 10.1016/j.neuroimage.2022.119402.

(49). White NS; Dale AM Distinct Effects of Nuclear Volume Fraction and Cell Diameter on High B-
Value Diffusion MRI Contrast in Tumors. Magn Reson Med 2014, 72 (5), 1435–1443. 10.1002/
mrm.25039. [PubMed: 24357182] 

(50). Lee H-H; Fieremans E; Novikov DS Realistic Microstructure Simulator (RMS): Monte Carlo 
Simulations of Diffusion in Three-Dimensional Cell Segmentations of Microscopy Images. J 
Neurosci Methods 2021, 350, 109018. 10.1016/j.jneumeth.2020.109018.

(51). Johnson GA; Tian Y; Ashbrook DG; Cofer GP; Cook JJ; Gee JC; Hall A; Hornburg K; Qi 
Y; Yeh F-C; Wang N; White LE; Williams RW Merged Magnetic Resonance and Light Sheet 
Microscopy of the Whole Mouse Brain. Proceedings of the National Academy of Sciences 2023, 
120 (17), e2218617120. 10.1073/pnas.2218617120.

(52). Caruyer E; Lenglet C; Sapiro G; Deriche R. Design of Multishell Sampling Schemes with 
Uniform Coverage in Diffusion MRI. Magn Reson Med 2013, 69 (6), 1534–1540. 10.1002/
mrm.24736. [PubMed: 23625329] 

(53). Nedjati-Gilani GL; Schneider T; Hall MG; Cawley N; Hill I; Ciccarelli O; Drobnjak I; 
Wheeler-Kingshott CAMG; Alexander DC Machine Learning Based Compartment Models 
with Permeability for White Matter Microstructure Imaging. NeuroImage 2017, 150, 119–135. 
10.1016/j.neuroimage.2017.02.013. [PubMed: 28188915] 

(54). Palombo M; Ligneul C; Najac C; Le Douce J; Flament J; Escartin C; Hantraye P; Brouillet E; 
Bonvento G; Valette J. New Paradigm to Assess Brain Cell Morphology by Diffusion-Weighted 
MR Spectroscopy in Vivo. Proceedings of the National Academy of Sciences 2016, 113 (24), 
6671–6676. 10.1073/pnas.1504327113.

(55). Rensonnet G; Scherrer B; Girard G; Jankovski A; Warfield SK; Macq B; Thiran J-P; 
Taquet M. Towards Microstructure Fingerprinting: Estimation of Tissue Properties from a 
Dictionary of Monte Carlo Diffusion MRI Simulations. NeuroImage 2019, 184, 964–980. 
10.1016/j.neuroimage.2018.09.076. [PubMed: 30282007] 

(56). Nilsson M; Alerstam E; Wirestam R; Ståhlberg, F.; Brockstedt, S.; Lätt, J. Evaluating the 
Accuracy and Precision of a Two-Compartment Kärger Model Using Monte Carlo Simulations. 
Journal of Magnetic Resonance 2010, 206 (1), 59–67. 10.1016/j.jmr.2010.06.002. [PubMed: 
20594881] 

(57). Zhang RB; Verkman AS Water and Urea Permeability Properties of Xenopus Oocytes: 
Expression of MRNA from Toad Urinary Bladder. Am J Physiol 1991, 260 (1 Pt 1), C26–34. 
10.1152/ajpcell.1991.260.1.C26. [PubMed: 1987778] 

(58). Han Y; Liu X-M; Liu H; Li S-C; Wu B-C; Ye L-L; Wang Q-W; Chen Z-L Cultivation 
of Recombinant Chinese Hamster Ovary Cells Grown as Suspended Aggregates in Stirred 
Vessels. Journal of Bioscience and Bioengineering 2006, 102 (5), 430–435. 10.1263/jbb.102.430. 
[PubMed: 17189170] 

(59). Voos P; Fuck S; Weipert F; Babel L; Tandl D; Meckel T; Hehlgans S; Fournier C; Moroni 
A; Rödel F; Thiel G. Ionizing Radiation Induces Morphological Changes and Immunological 
Modulation of Jurkat Cells. Frontiers in Immunology 2018, 9.

(60). Ross PE; Garber SS; Cahalan MD Membrane Chloride Conductance and Capacitance in 
Jurkat T Lymphocytes during Osmotic Swelling. Biophys J 1994, 66 (1), 169–178. 10.1016/
S0006-3495(94)80754-4. [PubMed: 8130336] 

(61). Skoge M; Donev A; Stillinger FH; Torquato S. Packing Hyperspheres in High-Dimensional 
Euclidean Spaces. Phys. Rev. E 2006, 74 (4), 041127. 10.1103/PhysRevE.74.041127.

(62). Jelescu IO; Grussu F; Ianus A; Hansen B; Barrett RLC; Aggarwal M; Michielse S; Nasrallah 
F; Syeda W; Wang N; Veraart J; Roebroeck A; Bagdasarian AF; Eichner C; Sepehrband F; 
Zimmermann J; Soustelle L; Bowman C; Tendler BC; Hertanu A; Jeurissen B; Verhoye M; 
Frydman L; van de Looij Y; Hike D; Dunn JF; Miller K; Landman BA; Shemesh N; Anderson 
A; McKinnon E; Farquharson S; Acqua FD; Pierpaoli C; Drobnjak I; Leemans A; Harkins KD; 
Descoteaux M; Xu D; Huang H; Santin MD; Grant SC; Obenaus A; Kim GS; Wu D; Bihan DL; 
Blackband SJ; Ciobanu L; Fieremans E; Bai R; Leergaard T; Zhang J; Dyrby TB; Johnson GA; 

Chowdhury et al. Page 13

ACS Synth Biol. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cohen-Adad J; Budde MD; Schilling KG Recommendations and Guidelines from the ISMRM 
Diffusion Study Group for Preclinical Diffusion MRI: Part 1 -- In Vivo Small-Animal Imaging. 
arXiv April 21, 2023. 10.48550/arXiv.2209.12994.

Chowdhury et al. Page 14

ACS Synth Biol. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Monte Carlo simulations of water diffusion in cells with varying plasma membrane 
permeability.
a, Engineering cells to express Aqp1 makes their membrane more permeable to water 

molecules than wild-type (viz. non-engineered) cells. b, Molecular diffusivity (D) increases 

with membrane permeability. Longer diffusion times lead to a decrease in diffusivity 

as a larger number of water molecules encounter the plasma membrane, which restricts 

free movement of water molecules. The dashed vertical lines correspond to permeability 

coefficients of wild-type (WT) and Aqp1-expressing CHO cells. c, Diffusivity decreases 

more markedly with diffusion time in wild-type cells (less permeable) than in cells 

engineered to express Aqp1 (more permeable). Therefore, long diffusion times are ideal 

for maximizing the Aqp1-driven fold change in diffusivity. However, given the diminishing 

SNR at long diffusion times, we used 100 ms to achieve an optimal trade-off between the 

fold change in diffusivity and SNR. The solid lines represent the simulated diffusivities 

for a synthetic substrate consisting of spherical cells of radius 7.6 μm packed to yield 

a total intracellular volume fraction of 0.65. Wild-type and Aqp1-expressing cells were 

modeled using permeability coefficients of 0.012 and 0.138 μm/ms, respectively. Circles 

denote experimental data obtained from pellets of CHO cells at 7 T. Error bars represent the 

standard deviation (n ≥ 5 biological replicates).
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Figure 2: Effect of cell size and intracellular volume fraction on diffusivity.
a, Changes in tissue microstructure, such as reduced intracellular volume fraction (vf) or 

larger cell radius (r), can increase diffusivity (D) similar to Aqp1 expression. b, Simulated 

diffusivity at 100 ms for a fixed volume fraction (vf = 0.65  increases with cell radius in 

both Aqp1-expressing and wild-type cells, but Aqp1 expression reduces the size dependence 

of diffusivity. c, Simulated diffusivity (100 ms) for a given cell size r = 7.6 μm) shows 

an inverse correlation with intracellular volume fraction in Aqp1-expressing and wild-type 

cells. d, Heatmap showing the combined dependence of diffusivity (100 ms) on cell size and 

intracellular volume fraction in wild-type and e, Aqp1-expressing cells. In the region marked 

as 1, Aqp1 signals are difficult to distinguish from the tissue background because wild-type 

diffusivities fall within the same range of diffusivities observed in Aqp1-expressing cells. 

f, Heatmap showing the dependence of differential diffusivity, viz. ΔD = D20 ms − D100 ms, 

on cell size and intracellular volume fraction in wild-type and g, Aqp1-expressing cells. 

The ΔD metric significantly reduces the overlap (region of overlap marked as 1 in the 

heatmap) between cell populations expressing Aqp1 and wild-type cells, thereby providing 

a reliable readout of Aqp1 expression that is unaffected by tissue microstructure parameters. 

The color-bars represent molecular diffusivity of water (D) or differential diffusivity (ΔD) 

in units of um2/ms. Wild-type and Aqp1-expressing cells were modeled with permeability 

coefficients of 0.012 and 0.138 μm/ms, respectively.
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Figure 3: Imaging of mixed-cell populations using Aqp1.
a, Diffusivity (D) of a mixed-cell population increases when more Aqp1-expressing cells 

are present. b, The relationship between diffusivity and volume fraction of Aqp1-expressing 

cells (vAqp1) can be modeled by a log-linear function for mixed populations containing 

Aqp1-expressing CHO cells and either wild-type CHO or wild-type Jurkat cells. c, A 

representative example of a 24 × 24 pixel mixed-cell mosaic created using randomly 

chosen pixels from experimental diffusion maps of cell populations comprising varying 

fractions of CHO-Aqp1 cells mixed with wild-type CHO cells. Each pixel in the image 

corresponds to an experimentally determined diffusion coefficient. d, The mapping between 

diffusivity and vAqp1 is used to distinguish pixels into one of four levels reflecting the volume 

percentage of Aqp1-expression: absent (vAqp1 < 10 %), low (10 % ≤ vAqp1 < 30 %), medium 

(30 % ≤ vAqp1 ≤ 70 %), and high (vAqp1 > 70 %). e, Pixels that are classified correctly are 
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shown in a lighter shade, whereas those that are classified incorrectly are shown in black. f, 
Representative example of a 24 × 24 pixel mixed-cell mosaic created from diffusion maps 

of mixed populations comprising varying fractions of CHO-Aqp1 cells mixed with wild-type 

Jurkat cells. g, Each pixel was classified into one of four levels, reflecting the volume 

percentage of Aqp1-expressing cells. h, Correctly classified pixels are shown in a lighter 

shade, whereas those that are classified incorrectly are shown in black. The color-bars in c 

and f represent diffusivity in μm2/ms. All diffusivity values correspond to a diffusion time of 

100 ms.
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Table 1:

Voxel-wise classification of Aqp1 volume fraction in mixed-cell populations comprising Aqp1-expressing and 

wild-type CHO cells. Error represents the standard deviation from applying the log-linear classification model 

on n = 100 mixed-cell images constructed by randomly sampling voxels from experimental diffusion maps.

Aqp1-level Specificity Recall Precision

Absent < 10 %) 0.953 ± 0.005 0.529 ± 0.040 0.583 ± 0.031

Low (10 − 30 %) 0.935 ± 0.006 0.383 ± 0.027 0.626 ± 0.028

Medium (30 – 70 %) 0.759 ± 0.014 0.975 ± 0.005 0.835 ± 0.008

High (> 70 %) 0.996 ± 0.002 1.0 0.967 ± 0.017
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Table 2:

Voxel-wise classification of Aqp1 volume fraction in mixed-cell populations comprising Aqp1-

expressingCHO cells mixed with wild-type Jurkat cells. Error represents the standard deviation from applying 

the log-linear classification model on n = 100 mixed-cell images constructed by randomly sampling voxels 

from experimental diffusion maps.

Aqp1-level Specificity Recall Precision

Absent < 10 %) 0.973 ± 0.003 0.885 ± 0.028 0.806 ± 0.017

Low (10 − 30 %) 0.984 ± 0.004 0.504 ± 0.020 0.898 ± 0.022

Medium (30 – 70 %) 0.805 ± 0.010 0.828 ± 0.006 0.842 ± 0.007

High (> 70 %) 0.892 ± 0.004 1.0 0.538 ± 0.009
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