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Abstract

Statistical analysis of ultrahigh-dimensional omics scale data has long depended on univariate hypothesis testing. With
growing data features and samples, the obvious next step is to establish multivariable association analysis as a routine
method to describe genotype–phenotype association. Here we present ParProx, a state-of-the-art implementation to
optimize overlapping and non-overlapping group lasso regression models for time-to-event and classification analysis, with
selection of variables grouped by biological priors. ParProx enables multivariable model fitting for ultrahigh-dimensional
data within an architecture for parallel or distributed computing via latent variable group representation. It thereby aims to
produce interpretable regression models consistent with known biological relationships among independent variables, a
property often explored post hoc, not during model estimation. Simulation studies clearly demonstrate the scalability of
ParProx with graphics processing units in comparison to existing implementations. We illustrate the tool using three
different omics data sets featuring moderate to large numbers of variables, where we use genomic regions and biological
pathways as variable groups, rendering the selected independent variables directly interpretable with respect to those
groups. ParProx is applicable to a wide range of studies using ultrahigh-dimensional omics data, from genome-wide
association analysis to multi-omics studies where model estimation is computationally intractable with existing
implementation.

Key words: ultrahigh-dimensional omics data; parallel computing; sparse regression; latent group lasso; proximal gradient

Introduction
Omics technologies are principal modalities in today’s systems
biology and molecular research. However, since the arrival of
microarray-based gene expression profiling techniques, clinical
omics data sets have been modestly sized in a majority of
biomedical studies. The high dimensionality of data relative
to the small number of samples implied insufficient statistical
information for feature space exploration by the multivariable
statistical models or machine learning methods, undermining
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their utility in the association analysis or diagnosis and progno-
sis of diseases. With increasing throughput and decreasing cost
of experimental platforms, however, the landscape is quickly
transforming from the era of ‘small n, large p’ problems to a new
era of ‘large n, very large p’ problems now. The arrival of the
new era is perhaps best signaled by genome-wide association
studies with genotypes at millions of loci and with a sample
size greater than hundreds of thousands [1], or multi-omics
studies with tens of thousands of tumor biopsies in the Cancer
Genome Atlas (TCGA) [2]. The emergence of large-sample,
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high-dimensional studies provides opportunities for multivari-
able regression modeling to be used in general practice of omics
data analysis.

There are two major challenges to be addressed in this path
forward. First, modeling approaches need to incorporate inter-
pretability of models as a major criterion for success. This is
a practically important point as modern omics technologies
provide data at increasingly high resolutions. Various omics plat-
forms now report multiple variables that collectively represent
an independent physical, chemical, or biological entity, such
as multiple loci of sequence variants under a linkage disequi-
librium block of a genes, various mRNA transcripts of a gene,
or CpG islands in the regulatory regions of a gene. In most
of these cases, multiple variables represent slightly different
aspects of a molecule, and sometimes one data feature may
belong to multiple groups. In searching for the best statistical
model, it will be important to consider the grouping information
in the estimation procedure, especially when a large number of
competing models may attain similarly optimal performance.
Second, most existing software packages require in-memory
storage of full data and computation on central processing units
(CPU), which limits the scale of analyzable problems on standard
computer hardware. The breaking point is yet to be widely
recognized by those who routinely perform omics data anal-
ysis as the computer hardware has improved over time and
univariate analyses are prevalent. Nonetheless, this emerging
reality poses implementation challenges for future development
of biostatistical and bioinformatics tools. In this context, we
address the scalability of large-scale multivariable linear regres-
sion analysis of omics data in this paper, accounting for complex
variable group structures in pursuit of optimal, interpretable
models.

In high-dimensional data, regularization of linear regression
model seeks a simpler model via sparsity-inducing penalization.
Traditionally, scalability in penalized regression models has been
tackled by screening variables that do not contribute to explain-
ing the variance in responses and applying the fitting procedure
only to the remaining variables via coordinate descent [3–5].
Coordinate descent updates a single regression coefficient at a
time, hence the per-iteration computational cost is low in case
of separable penalties like the plain least absolute shrinkage and
selection operator (lasso) [6, 7]. The R package glmnet [8] has
been widely used for this purpose. Recently developed snpnet
package [9, 10] combines a large-scale screening rule and glmnet
to analyze compressed SNP data. The Julia package MendelIHT.jl
pursues the same goal with iterative hard thresholding [11].
For omics data analysis, more structured penalties reflecting
known information on predefined genomic regions, pathways or
gene ontologies (GO) are desirable as discussed above, and the
variable groups may even be overlapping. The R package grpreg
implements a block coordinate descent (BCD) method for non-
overlapping group penalties, where each group corresponds to
a variable block updated for each iteration [12]. Its extension,
grpregOverlap, supports overlapping groups [13].

However, the scalability of these (block) coordinate descent-
based methods is limited since they are inherently sequential:
each coordinate update depends on the preceding coordinates.
A sweep of the entire coordinates takes a long time if the number
of variables is large. Even if a screening rule is employed in each
iteration, the number of variables screened out is small when
the penalization level is low. Since it is customary to select a
model from the entire regularization path obtained by varying
the level of penalization, per-iteration screening may not reduce
the computational burden in such a case.

A viable alternative for the scalability bottleneck is to employ
an easily parallelizable optimization algorithm and run it on
a parallel/distributed computing environment. Ideally, if all
the coordinates can be updated simultaneously, then a sweep
over all coordinates takes the same time as a single coordinate
update. Even if only a group can be updated simultaneously
at a time, the benefit of parallelization is large if the average
group size is reasonably big. Recent advances in big data
sciences have made such algorithms available, and the suitable
computing environments, e.g. graphics processing units (GPUs)
and cloud computing, a commodity [14]. Evidence has shown
that computing the entire regularization path in a parallelized
fashion does not take much more time than it takes to solve a
single penalized regression problem of the same size, without
the help of a screening rule [15].

Motivated by these considerations, here we present a new
software package for fitting regularized linear regression models
on high-dimensional clinical omics data, embodying an efficient
optimization strategy and capability for parallel/distributed
computing options. The implementation, called ParProx, fits
latent group lasso penalized regression models for survival
analysis or sample classification. During model fitting, variables
are regularized by non-overlapping or overlapping group
penalties specified by the user and the variables in the same
group are penalized jointly to reflect known group information.
More importantly, we implemented ParProx in the high-
performance programming language Julia to allow for parallel
computation with GPUs or distributed computing over cloud
environments (Amazon Web Services, Google Cloud Platform,
Microsoft Azure, etc.) natively, which enable the modeling for
ultrahigh-dimensional data sets.

We demonstrate regression modeling of clinical omics data
using ParProx through three application studies. In the first
application, we present GPU-based computing to fit a Cox regres-
sion model of somatic mutation counts for overall survival out-
come in 9707 patients in TCGA [2, 16]. Here we create muta-
tion counts of ∼56 000 DNA sequence segments in the codons
and regulatory regions as independent variables and define
sets of the sequence segments belonging to individual genes or
gene pairs that are interaction partners at the protein level as
variable groups for penalization in the group lasso regression.
In the second application, we obtain a gene expression-based
logistic regression model for pathological complete response
(pCR) to neoadjuvant chemotherapy for breast cancer as binary
outcome, using ∼12 000 mRNA-level measurements of genes as
independent variables and membership of individual genes to
pathways/GO terms as the overlapping variable groups for struc-
tured regularization [17–20]. In the last application, we present
a Cox regression analysis of 377 liver cancer patients using DNA
methylation status of CpG islands in and out of coding regions
as covariates. Each methylation probe represents a CpG island on
the genome, and the probes present in the genomic location near
a gene form a variable group. As certain chromosomal regions
are densely populated by multiple genes, some probes belong
to two or more adjacent genes and thus create overlap in the
variable groups, i.e. between adjacent genes. The methylation
array platform used by TCGA contains as many as >865 000
probes originally, but we have trimmed this data to 289 509
probes for demonstration purposes. Each of these three data sets
takes up to 4.3 gigabytes of memory even after trimming. Unless
carefully managed, this size of data may cause serious issues in
memory allocation during reading and modifying data entries,
model estimation and cross-validation, especially when there
are overlaps among the variable groups.
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Methods
Proximal gradient descent for regularized logistic
and Cox regression models

We first describe the computational workflow of ParProx in
the typical binary classification setting. The goal of the regres-
sion modeling is to understand the influence of p covariates
X = (

X1, . . . , Xp
)

on the probability Pr
(
Y = 1|X) of a sample

belonging to class 1, where the two classes are labeled 0 and 1.
In logistic regression, if there are n samples, given the observed
label yi and covariates xi = (

xi
1, . . . , xi

p
)

for each individual
sample i, the likelihood of the observed data is modeled based
on the assumption that the log odds of the class membership is
a linear combination of covariates, yielding the likelihood of the
linear combination coefficient β = (β1, . . . , βp

)
:

Lik (β) =
∏n

i=1

[
1/
(
1 + exp

(∑p

j=1
βjxj

i

)]1−yi

[
exp

(∑p

j=1
βjxj

i

)
/
(
1 + exp

(∑p

j=1
βjxj

i

)]yi

.

If the number of covariates p is large, as is the case in omics
data, it is customary and reasonable to assume that only a few
independent variables determine the response. This is promoted
by multiplying a prior probability to the likelihood that causes
all but a few coefficients among

(
β1, . . . , βp

)
to be zero, a process

known as regularization. This prior typically takes the form of
π
(
β
) ∝ exp

( − λ
∥∥β∥∥), where

∥∥β∥∥is some norm of the coefficient
vector β. By taking the logarithm, the model-fitting procedure
amounts to an optimization problem of minimizing

− L (β) + λ ‖β‖ , (1)

where L
(
β
) =∑n

i=1

[
yi
∑p

j=1βjxi
j − log

(
1 + exp

(∑p
j=1βjxi

j
))]

. The reg-
ularization parameter λ is typically selected via cross validation
[21].

In a typical survival analysis setting, the goal is to understand
the influence of p covariates X = (

X1, . . . , Xp
)

to the survival
probability S

(
y | X

) = Pr
(
Y > y | X

)
that the survival time Y of

a subject is longer than time y. In the Cox proportional hazards
model [22], given the ith subject, i = 1, . . . , n, with covariates
xi = (

xi
1, . . . , xi

p
)
, whose time-to-death ti or right-censoring

time ci is measured so that the observed survival time is
yi = min

(
ti, ci

)
, the survival probability is equivalently modeled

through the hazard function h
(
yi | xi

) = −S′(yi | xi
)
/S
(
yi | xi

)
, where

S′ is the derivative of the survival function S:

h
(
yi | xi

) = h0
(
yi | β) exp

(∑p

j=1
βjxi

j

)
.

Here h0
(
y | β

)
is the unspecified baseline hazard function. That

is, the covariates affect the hazard multiplicatively in such a
way that a linear combination of covariates determines the
strength of the multiplication. The coefficient vector of the linear
combination is denoted by β = (β1, . . . , βp

)
. Cox then proposes to

get rid of the unknown baseline hazard in the fitting procedure
by maximizing the partial likelihood

PL (β) =
∏n

i=1

[
exp

(∑p

j=1
βjxi

j

)
/
∑

t:yt>yi
exp

(∑p

j=1
βjxt

j

)]δi

,

where δi is the indicator that is 1 if ti ≤ ci, i.e. the event of sample
i is observed, and 0 otherwise [22]. Like logistic regression, if
the number of covariates p is large, a prior of the form π

(
β
) ∝

exp
(− λ

∥∥β∥∥) is multiplied to the partial likelihood to promote a
sparse model. The model fitting procedure then amounts to an
optimization problem of minimizing

− L (β) + λ ‖β‖ , (2)

where L
(
β
) = ∑n

i=1δi
[∑p

j=1βjxi
j − log

(∑
t:yt>yi

exp
(∑p

j=1βjxt
j
))]

,
which takes the form of a generalized linear model, similar to
the logistic regression problem (1). The regularization parameter
λ is typically selected via cross validation as problem (1).

If this objective function (1) or (2) of the optimization prob-
lem were differentiable in β, then the typical gradient descent
method, which iteratively updates the current estimate of β by
moving slightly to the opposite direction of the vector of the
first-order partial derivatives of the objective function, would
eventually yield the correct estimate. Unfortunately, the objec-
tive functions (1) and (2) are not differentiable due to the norm∥∥β∥∥. Nevertheless, the term L

(
β
)

in (1) and (2) is differentiable,
hence an extension of the gradient descent method called the
proximal gradient descent (PGD) can be applied instead. PGD for
(1) or (2) consists of two steps [23]:

(i) Compute the gradient ∇L
(
β (k)
)

of L
(
β
)

at the current estimate
β (k) of the coefficient vector β.

(ii) Update the estimate by the formula

β(k+1) = arg min
β

{
λ ‖β‖ + 1

2αk
‖β−( β (k) + αk∇L

(
β (k)
)

‖2
2

}
, (3)

where
∥∥· ∥∥2

2
in the right-hand side of equation (3) is squared

Euclidean norm, i.e.
∥∥x∥∥2

2
= ∣∣x1

∣∣2 +· · ·+ ∣∣xp
∣∣2, and the argmin oper-

ator refers to the parameter value that minimizes the expression
in the right-hand side. The scalar αk is the step size that deter-
mines how far to move the estimate from the current candidate
β (k). To be specific,

∇L (β) = XT (y − p
)

=
∑n

i=1

(
yi − pi

)
xi where pi = 1/

(
1 + exp

(−βTxi
))

(4)

for the logistic regression model, and

∇L (β) = XT (I − P) δ =
∑n

i=1

(
δi −

∑n

k=1
πikδk

)
xi, (5)

where δ = (δ1, . . . , δn
)T

, P = (πij
)

with πij = I{
yi≥yj

}wi/
∑

l:yl≥yj
wl, and

wi = exp
(
βTxi

)
, for the Cox proportional hazards model.

The idea of PGD is to approximate L
(
β
)

by a spherically
shaped quadratic function tangential to L

(
β
)

at β (k) and above
it for all other values of β and then minimize the approximate
objective function. By iteratively doing so, the minimum of the
original function (1) or (2) can be found (Supplementary Figure 1A
available online at http://bib.oxfordjournals.org/) even when the
objective function is not differentiable at the optimal solution.
For many choices of the norm

∥∥β∥∥, the right-hand side of the
second step (3) takes a closed form expression despite its non-
differentiability (This includes the latent group lasso penalty
chosen for this paper. See below for detailed derivation.) Thus,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
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the whole iterative procedure is almost as simple as the usual
gradient descent method.

The convergence of PGD update (3) depends on the Lipschitz
constant of the gradient ∇L of L. Both the logistic and propor-
tional hazards models admit a negative log-(partial) likelihood
L
(
β
)

of the regression coefficient vector β = (
β1, β2, . . . , βp

) ∈ R
p

that is differentiable and convex in β, where R
p means the set

of p real numbers [26]. Furthermore, the gradient ∇L satisfies
the Lipschitz condition

∥∥∇L
(
β
)− ∇L

(
β ′)∥∥

2
≤ M

∥∥β − β ′∥∥
2

for some
positive constant M, which can be chosen as an upper bound of∥∥∇2L

(
β
)∥∥

2
, the maximum singular value of the Hessian of L. For

logistic regression,
∥∥∇2L

(
β
)∥∥

2
≤ 1

4

∥∥XTX
∥∥

2
; for Cox’s proportional

hazards model,
∥∥∇2L

(
β
)∥∥

2
≤ 2

∥∥XTX
∥∥

2
, where X = (

xj
i

)
is the

n × p data matrix [14]. Convergence of update (3) is guaranteed if
αk ∈ [ε, 2

M − ε
]
, where ε ∈ (0, min

{
1, 1

M

})
[23].

Optimization with latent group lasso penalty

In order to encode the prior knowledge, we employ the latent
group lasso penalty defined as follows [24]. Assume a collection
G of groups of genes is given. That is, g ∈ G is a subset of all the
gene indexes

{
1, 2, . . . , p

}
. Let | g | be the number of elements in g.

Define a | g |-dimensional vector γg (denoted by γg ∈ R
|g|) and the

linear map Pg that maps γg to a p-dimensional vector βg ∈ R
p in

such a way that the elements with indexes in g are equal to those
of γg and all the other elements are zero. For example, if g = {2, 3

}
and γg = ( − 1, 1

)
, then βg = (

0, −1, 1, 0, . . . 0
)

and Pg is a p× | g |
matrix with 1 as the 2nd and 3rd diagonal components and all
the other components being zero. Then, the desired penalty is

P (β) = inf
{∑

g∈G
λg

∥∥γg

∥∥ : γg ∈ R|g|,
∑

g∈G
Pgγg = β

}
, λg > 0. (6)

In other words, the regression coefficient β is decomposed as
a sum of latent components βg = Pgγg and it is the norm of these
components that is penalized (note

∥∥γg

∥∥
2

= ∥∥βg

∥∥
2
). In this way,

overlaps between the groups are allowed. When there is no over-
lap, penalty (6) reduces to the classical group lasso penalty [25].
Although the latter penalty may be straightforwardly defined
for overlapping groups, it tends to select the complement of a
union of groups—if two groups share a gene but one group is
not selected, then the coefficient for the shared gene must be
zero and the other group is only partially selected. The penalty
(6), on the other hand, promotes the opposite and this property
is desired for group selection.

We formulate the estimation problem for the logistic and Cox
models under the penalty (6). It can be shown that P

(
β
)

is indeed
a norm [24]. Typically, the λg’s in (6) are set to be proportional to
the group size and the λ in (1) or (2), e.g. λg = λ

√ | g |. Hence the
problem takes the form of minimizing (1) or (2). Since the penalty
(6) also has a minimization form, the estimation problem can be
formulated as the following optimization problem.

min
β,γ

− L
(
β
)+ λ

∑
g∈G

√∣∣g∣∣∥∥γg

∥∥
2

subject to

β =
∑

g∈G
Pgγg, γ = (γg

)
g∈G

,

which can be equivalently written as an unconstrained opti-
mization problem

min
γ

− L (Aγ ) + λ
∑

g∈G

√ ∣∣g∣∣ ∥∥γg

∥∥
2, (7)

where A = (Pg
)

g∈G
is the p×∑g∈G | g | 0–1 valued matrix such that

β = Aγ =∑g∈GPgγg.
It can be shown that the second term λ

∑
g∈G

√∣∣g∣∣∥∥γg

∥∥
2

is a
norm of the aggregated latent vector γ = (

γg
)

g∈G
and hence

problem (7) again has the same structure as problems (1) and (2),
with L replaced by L

(
A· ). Here we can apply the PGD algorithm

to solve (7) efficiently. For iteration k + 1, PGD updates γg by
the formula (3). Since there is no overlap between γg’s in γ , this
update has a closed form:

γg
(k+1) = arg min

γg⎧⎨
⎩−
[

∂L
(
Aγ (k)

)
∂γ g

]T (
γg − γg

(k)
)

+ 1
2αk

∥∥∥γg − γ
(k)
g

∥∥∥2

2
+ λ

√∣∣g∣∣ ∥∥γg

∥∥
2

⎫⎬
⎭

=
⎛
⎜⎝1–

αkλg∥∥∥γg
(k) − αk

∂L(Aγ (k))
∂γg

∥∥∥
2

⎞
⎟⎠
(

γg
(k) − αk

∂L
(
Aγ (k)

)
∂γg

)
,

if

∥∥∥∥∥γg
(k) − αk

∂L
(
Aγ (k)

)
∂γg

∥∥∥∥∥
2

> αkλ
√ ∣∣g∣∣ ,

and

γg
(k+1) = 0, otherwise (8)

for all g ∈ G. The derivative
∂L
(

Aγ (k)
)

∂γ g
can be written as

∂L
(
Aγ (k)

)
∂γ g

= PT
g∇L (Aγ ) .

where ∇L
(· ) is delineated in formulae (4) and (5) for logistic and

Cox models, respectively.

Parallel and distributed computation

From the point of view of computing, the combination of the
latent group lasso penalty and PGD enables parallel computa-
tion (Supplementary Figure 1B available online at http://bib.oxfo
rdjournals.org/), since both the gradient ∇L

(
β
)

and the closed
form expression of (3) can be computed independently for each
latent variable group γg. Furthermore, within a variable group,
each component can also be updated in parallel. An important
implication of this doubly parallel feature of our approach in
omics analysis is that the data set does not need to reside on
a single storage—it can be split and stored in a distributed fash-
ion in multiple computing devices. Each device can report the
update of the estimate of the regression coefficients in parallel
to the master device holding the tally of the objective function,
independent of the others. The size of the data to analyze scales
linearly with the number of devices, with negligible sacrifice in
computing time. This is in a stark contrast with the BCD method
of [12, 13] for optimizing the objectives (1) and (2), which, instead
of approximately solving (7) for the whole vector γ = (

γg
)

g∈G
,

solves it for one group at a time, i.e. BCD solves

min
γg

− L
(

Pgγg +
∑

g′ �=g
Pg′ γg′

)
+ λ

√ ∣∣g∣∣ ∥∥γg

∥∥
2

for different g for each iteration, sweeping the whole coordinates
in | G | iterations. Thus, BCD is inherently sequential and requires
the whole dataset to be stored in a single device.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Advantage of Julia

Julia is a high-level programming language that provides a syn-
tax close to interpreter languages such as R and Python but
employs dynamic type inference. Combined with its just-in-time
(JIT) compilation feature, Julia can execute code very efficiently.
A significant advantage of this design is that Julia solves the
‘two-language problem.’ Even though the syntax of R or Python
is easy to follow, for the tasks requiring efficient and fast compu-
tation such as fitting large-scale penalized regression models, it
is almost necessary to write the core computation layer in a low-
level language such as C and Fortran, which is difficult to learn.
Furthermore, seamless coordination of the two languages is lim-
ited by the external language interface of the host language, i.e.
R or Python, which typically outdates the advance in hardware
and compiler technology. Software packages glmnet, snpnet and
grpreg are no exception. In Julia, one can write code close to the
speed of compiled languages while maintaining the easy-to-use
syntax of interpreter languages.

Another helpful feature of Julia is multiple dispatch, which
allows multiple implementations of a function with different
types of arguments. Then, the actual implementation (‘method’)
executed in run time is selected based on the combination of the
argument types. Multiple dispatch allows a code with an easy-to-
read syntax to be optimally compiled to run on various hardware
with only minor, high-level, changes; its implication is that many
types of parallelization and distributed computation (e.g. GPU or
cloud) can be supported seamlessly. In ParProx, the amount of
changes necessary for GPU parallelization of PGD from simple,
sequential implementation is contained to the change of array
types and moving data between CPU and GPU. Supplementary
Figure 2, available online at http://bib.oxfordjournals.org/, shows
how data are exchanged between CPU and GPU while the parallel
computation is conducted within GPU.

Simulation study

To demonstrate the merit of ParProx, we first conducted simula-
tion studies. Simulated datasets were generated to have possibly
overlapping group structure. Following the design of [26, 27], we
set p independent variables to have a total of R groups comprised
of S adjacent variables, in which T variables overlap. In other
words, the jth group consists of the

((
S − T

)(
j − 1

)+ 1
)
th variable

through the
((

S − T
)(

j − 1
) + S

)
th variable. This design yields

p = (
R − 1

)(
S − T

) + S. For example, if R = 100, S = 100,
and T = 10, the first group consists of variables 1 through 100,
the second group consists of variables 91 through 190, and the
final 100th group consists of variables 8911 through 9010. We

then set the regression coefficients βj = (− 1
)j

exp
( − j−1

W

)
, for

j = 1, · · · , p. The parameter W controls the effective sparsity
of the true coefficients; later coordinates have negligible effect
sizes. The entries of the n × p data matrix X were sampled from
the standard normal distribution. Binary outcomes were gener-
ated according to the logistic model P

(
yi = 1

) = 1/
(
1+exp

(−xT
i β
))

for i = 1, · · · , n. Survival times were generated based on the
probability P

(
Ti > t

) = exp
( − t

)
. Right censoring was simulated

by generating another set of n times to events. If the censoring
time was less than the corresponding survival time, the former
replaces the latter, and the observation is marked censored.
As a result, about half of the sample were censored. Since the
software packages available for fitting logistic/Cox proportional
hazards regression models with latent group lasso penalty are
limited, we compared ParProx with grpreg (with no overlap) and
grpregOverlap (with overlaps). For comparison with grpreg, we
used n = 500 simulated samples with S ∈ {10, 100

}
, T = 0, and set

R to make P = 200 000, 400 000, 600 000, 800 000, 1 200 000, 1 600 000
and 2 000 000. The effective sparsity parameter W was chosen
10, 100, and 1000. For comparison with grpregOverlap, we chose
T ∈ {2, 10

}
, with the other parameters remained the same. For

each combination of simulation parameters, the solution path
consisting of 100 values of λ was computed.

Applications

We next illustrate the use of ParProx through three represen-
tative example data sets below, with detailed protocol in Sup-
plementary Information, available online at http://bib.oxfordjou
rnals.org/. Across the case studies of varying size, sparsity and
group complexity, we show that ParProx fits group-regularized
regression models and produces easily interpretable models
with or without complex group penalties with arbitrary degrees
of overlap. Another important innovation of this implementa-
tion is that the model-fitting process can be parallelized through
distributed or parallel computing environments, if necessary, in
case exorbitantly large data need to be analyzed without any
screening before or during the optimization such as the strong
rule in coordinate descent algorithms.

Survival analysis with TCGA pan-cancer somatic
mutation data

The first case study explores a multivariable Cox regression anal-
ysis using somatic mutation counts in protein coding regions as
the predictors of cancer death risk. Since somatic mutations are
sparse and not reproducibly detected at predetermined loci in
early tumors, association between ‘locus-level’ somatic muta-
tion data and clinical endpoints is not feasible. Alternatively,
counts or rates of somatic mutations can be aggregated on pre-
defined regions or individual genes [28, 29]. However, once muta-
tions are aggregated per gene, it results in coarse interpretability
in relation to the potential functional impact of mutations on
the clinical outcome (Figure 1A). To find a reasonable compro-
mise between the two options, we have recently proposed a
functional region-based association testing approach for exome
sequencing data, called gene-to-protein-to-disease (GPD) [30].
GPD counts mutations per genomic sequence segments pertain-
ing to protein domains and 11 codons (33 bp)-long windows
surrounding post-translational modification (PTM) sites and per-
forms univariate statistical analyses with a clinical endpoint.
Figure 1B illustrates how GPD summarizes mutation counts per
protein sequence segments of three different types. These newly
organized data can be used as covariates in the regression model.

Using this framework, we summarized the entire somatic
mutation data into a count data set with 9707 patients and 55 961
protein sequence segments across the human exome. We then
fitted a pan-cancer Cox regression model with 55 961 variables
and group lasso penalties for overall survival of the 9707 patients
using ParProx (Figure 1C). Here, all sequence segments in the
same gene were set as variable groups, mirroring a hypothe-
sis that individual mutations accrued in the same gene wield
functional impact in different ways, but they are associated with
the death risk of a given subject collectively. We also attempted
the same regression analysis with group penalties imposed on
groups of sequence segments present in pairs of genes which
are proven to physically interact at the protein level.

Data preparation

TCGA pan-cancer somatic mutation data were downloaded from
the Genomic Data Commons (MC3 Public MAF) [16]. In addition,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 1. (A) Diagram of a hypothetical survival analysis with mutation data in EGFR and TP53 genes, two loci harboring somatic mutations with high frequencies

in cancer genomes. Two people with different somatic mutation profiles may have two different cancer death risk. (B) The mutation counting method in the GPD

framework. Mutations are counted by sequence regions encoding functional units of proteins such as protein domains. GPD mapping therefore produces sparse count

data with inherent variable group structure, with genes serving as variables groups. (C, D) ParProx accommodates high-dimensional Cox regression as well as multi-

group logistic regression for classification, with overlapping or non-overlapping group lasso penalties specified by the user. (E) ParProx fits overlapping group lasso

regression models on large-scale data sets through distributed or parallel computing, if necessary, and handles overlapping variable groups through the proximal

gradient optimization algorithm.

we gathered 348 658 protein modification sites from Phospho-
SitePlus [31] and 45 607 domains, families and repeats for 19 076
genes from Pfam [32]. Survival outcome data were downloaded
from the TCGA Pan Cancer Clinical Data Resource [2], which
contains curated clinical information for 10 793 patients. Among
these, 367 non-primary skin cutaneous melanoma patients with
metastatic tumors were excluded. Mapping somatic variants to
protein units was described in our previous work [30]. Protein
information units (PIU) refer to the genomic regions encoding
protein domains, or ±5 amino acid-long windows around protein
modification sites. Sequence regions between PIUs are defined
as linker units (LU). The LUs include linker regions between
domains as well as unannotated, repeat or disordered regions.
The regions outside the protein-coding sequences including
untranslated regions, introns and regulatory regions are collec-
tively defined as noncoding units (NCU). NCUs are assigned to
the closest gene in the genome. Aggregating somatic mutation
mapped PIUs, LUs and NCUs from primary tumor samples cate-
gorized in 33 cancer types, we have 27 452 PIUs, 12 441 LUs and
16 068 NCUs, adding up to 55 961 units mapped by mutations
from 9707 individuals.

Analysis of co-mutation frequency on protein interaction networks

The protein–protein interaction network has 133 146 unique
pairs of interactions among 12 047 unique proteins. To esti-
mate the significance of co-mutation frequency (the number
of subjects having simultaneous mutations on both interacting
proteins) of each pair of interacting proteins, we generated the
null distribution of the frequency by randomly sampling 133 146
pairs of interaction from the pool of proteins 1000 times and
calculating the co-mutation frequency for randomly sampled
pairs in each iteration. The P-value of pair with co-mutation fre-
quency F is defined as the number of pairs with co-mutation fre-
quency higher than F divided by the total number of interactions
(133 146), averaged across the 1000 iterations.

Classification analysis with gene expression
data in breast cancer therapy response

In the second example, we demonstrate that the overlapping
latent group lasso model estimated by ParProx produces a
biologically interpretable logistic regression model among many
comparably predictive models, with the predictive signature
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consisting of genes associated with pCR to neoadjuvant
chemotherapies, a binary outcome determined by expert
pathologists (Figure 1D). In this conventional ‘small n, large p’
data example, we use biological pathways and GO terms as
variable groups with arbitrary degree of overlap and nesting
[33, 34], and show that the latent group lasso regression model
optimized by ParProx identifies a sparse prognostic gene
signature enriched with specific biological processes, rendering
the prognostic model high interpretability over other similarly
performing alternatives.

Data preparation

We downloaded gene expression microarray data sets with sam-
ple annotation information from the Gene Expression Omnibus
database, based on the information from Prat et al. [20], Hatzis
et al. from GSE25006 [17], Miyake et al. from GSE32646 [19] and
Horak et al. from GSE 41998 [18]. Each data set was normalized
by equalizing the median and median absolute deviation of
expression values across the samples. For regression analysis,
we applied logarithmic transform (base 2) and substracted the
mean from expression values in each gene. For univariate dif-
ferential expression analysis, we performed two-sample t-test
and computed q-values [35] from the raw P-values to account
for multiple testing.

Protein–protein interaction networks and gene pathways
for variable group information

For variable group information in the TCGA somatic mutation
data analysis with network penalty, we used protein–protein
interaction network data from iRefIndex [36] and BioPlex [37]. For
the group information used in the breast cancer data, we used
a composite database of pathway databases called Consensus
Pathway DataBase (CPDB) [34] and GO [33].

Survival analysis with DNA methylation
data in liver cancer

In the third example, we demonstrate ParProx in the context of
ultrahigh-dimensional data, with p so large that parallel com-
puting is required to fit a regression model with overlapping
group penalties. We fit a Cox regression model with overlapping
group lasso penalties on a DNA methylation data set from the
liver hepatocellular carcinoma of TCGA. The DNA methylation
array platform has probes representing genomic regions of high
G/C content, and as such, the dimensionality is much higher
than other omics data sets where the measurements are often
summarized to individual gene level, e.g. gene expression or
DNA copy number data. We show that ParProx can perform reg-
ularized Cox regression with penalties jointly applied to probes
located in different segments of regulatory and coding regions
for individual genes. In this data, we defined 90 099 groups over
289 509 variables (CpG islands). We show that the analysis can
be completed within a reasonable amount of time using a single
GPU, whereas another software grpregOverlap for overlapping
latent group lasso regression analysis, implemented in R, could
not handle the size of the data.

Data preparation

We downloaded the Illumina human methylation 450 array data
set from Broad GDAC Firehose, corresponding to the liver hep-
atocellular carcinoma study (N = 428 from 377 unique patients)
[38]. Fifty-two (52) patients had two biopsies and we used the

primary tumor sample of those individuals for this illustration.
We have selected 369 194 probes belonging to the following areas
according to the manufacturer’s annotation: TSS1500, TSS200,
5′ UTR, 1st exon, gene body and 3′ UTR. Individual sequence
regions were considered as variable groups (e.g. A1BG_TSS1500,
A1BG_TSS200, A1BG_1st exon, A1BG_5′ UTR, A1BG_body, A1BG_3′

UTR are different variable groups). This specification resulted in
a total of 90 099 groups, reflecting on average four methylation
probes per group. In genomic regions with dense population of
genes, the adjacent groups sometimes shared the same methy-
lation probes, creating overlapping groups.

Results
Scalability of ParProx in simulation studies

The running times until convergence of the algorithms for
each combination of the simulation parameters are plotted in
Figure 2. In general, ParProx ran on the Nvidia Titan V GPU
was substantially faster than grpreg and grpregOverlap ran
on the Intel Xeon Silver 4114 CPU. The combined benefit of
parallelism and the PGD method gets larger with the number
of variables p. The performance gap is much larger when
there are overlaps among the groups; grpregOverlap could not
complete the fitting within a reasonable time span when the
dimension is greater than a million. While for both grpreg and
grpregOverlap, the running time clearly increases super-linearly
with the dimension p, ParProx scales well with the dimension,
sometimes sub-linearly. Note also that the effective level of
sparsity did not affect the time until convergence significantly.

Pan-cancer survival analysis of somatic mutations
using group lasso Cox regression

Non-overlapping groups

We next demonstrate ParProx through survival analysis of
somatic exome mutation data in TCGA pan-cancer cohort. As
mentioned in the Applications section, we have mapped all
somatic mutations curated by the Pan-Cancer consortium of
TCGA to human protein sequence segments. These include
(i) PIUs including 26 115 unique protein domains and 1337
segments surrounding PTM sites, (ii) unannotated regions
called LUs, and non-coding regions (NCUs). Of 10 793 patients,
9707 tumors had at least one somatic mutation across 55 961
sequence segments. The 9707 × 55 961 count data matrix was
used as the covariates in a Cox regression model of all-cause
mortality, which requires 4.3 gigabytes of memory as double-
precision floating-point numbers. We set 18 250 genes as
variable groups for regularization in the present analysis, but this
group structure can be extended with overlap within ParProx,
such as multiple genes in a biological process, biochemical
pathway, or protein complex as a group as we demonstrate
later. In addition to the mutation counts, we have adjusted the
model for age at diagnosis, gender, and cancer type without
regularization on these coefficients, as they are known cancer
death risk factors and the overall survival rates vary widely
across different cancers.

The 10-fold cross-validation for selecting optimal regulariza-
tion parameter took 57 min in this data, and the final fit with the
optimal regularization parameter took 16 min on an Nvidia Titan
V GPU. The GPU experiments were run on a workstation with two
2.20 GHz 10-core Intel Xeon Silver 4114 CPU with 192GB memory,
with four Nvidia Titan V GPUs with 8GB memory each attached.
A detailed manual for ParProx analysis of this data set, using
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Figure 2. Time to convergence for the simulated runs of ParProx, grpreg and grpregOverlap showing the scalability of the former over the others. The parameters

S and W control the size of variable groups and the effective sparsity of the true coefficients, respectively. Time was recorded in seconds. Lines in red and orange

are for ParProx, and blue and green are for grpreg/grpregOverlap. (A) ParProx and grpreg with non-overlapping groups for Cox regression. (B) ParProx and grpreg

with non-overlapping groups for logistic regression. (C) ParProx and grpregOverlap with overlapping groups for Cox regression. (D) ParProx and grpregOverlap with

overlapping groups for logistic regression.

CPU and GPU, can be found in the software manual provided
as Supplementary Information, available online at http://bib.o
xfordjournals.org/. A similar non-overlapping latent group lasso
regression model could be fitted using the grpreg R package with
CPU [12], and the analysis took 2.8 min for solution path calcula-
tion with 100 values of the regularization parameter λ and 28 min
for 10-fold cross-validation (iMac desktop with 3.7 GHz 6-core
Intel Core i5 processor and 32 GB 2667 MHz DDR4 memory).

Although grpreg was faster than ParProx for this size of
data with non-overlapping groups, likely due to the overhead
of data transfer from CPU to GPU dominating the merit of
parallel computation in ParProx in the present example, the
selected model by the grpreg was counterintuitive in several
aspects. First, the selected model included a very small number
of variables (Supplementary Table 1 available online at http://
bib.oxfordjournals.org/), with almost all coefficients of muta-
tion harboring sequence segments being negative. Second, the

coefficients for cancer type, which adjust for varying relative risk
of death in different cancers, were all negative except leukemia
(LAML), although there are other cancers that are just as lethal
as the baseline cancer (GBM). Third, the selected model did not
contain the most well-known cancer death-associated protein
domains on TP53 and EGFR genes. All put together, we suspect
that this aberrant result has to do with the default data trans-
formation step (orthonormalization; see Discussion), which may
not be applicable for non-continuously scaled variables (count
data with a large number of zeros). ParProx does not apply
orthonormalization to the data.

Figure 3 shows the covariates selected by group lasso regres-
sion of ParProx. The visualization in Figure 3A and B was con-
fined to the selected variables representing protein domains or
PTM sites, of absolute values greater than 0.01, and with muta-
tions present in patients of at least 10 different cancer types (see
Supplementary Table 1 for the full list available online at http://bi

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
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Figure 3. Cox regression coefficients from the model with (A) non-overlapping group lasso penalty (with proteins as groups) and (B) lasso penalty. Sequence segments

from the same genes, jointly selected by regularization, are highlighted in gray boxes. The columns on the left-hand side of the barplot show gene identifiers, start

and end position on respective protein sequences, protein domain or modification site information, the number of cancers with at least one patient with somatic

mutations in the sequence segments, and the total number of patients with mutations in the segment, respectively. The segments are shown in the figure if mutations

were detected in at least 10 cancers and regression coefficients are >0.05 in absolute value (C) Comparison of Cox regression coefficients between the two models.

Brown and green dots show sequence segments with selected coefficients with consistent and inconsistent signs, respectively. Gray dots are the sequence segments

selected in one of the two models only. (D) Comparison of Cox regression coefficients in the group lasso Cox regression in pan-cancer analysis as well as individual

cancer analysis.

b.oxfordjournals.org/). The group lasso regression selected 2370
variables (sequence segments) with non-zero coefficients (1131
PIUs, 492 LUs, 747 NCUs). Not surprisingly, the P53 domain on
TP53 gene, the most commonly mutated protein domain across
34.3% of all tumors (3358 tumors of 31 different types in the pan-
cancer cohort), was determined to have a large deleterious effect
on the cancer death risk, adjusting for other somatic mutation
events across the genome. Two protein domains on EGFR, namely
Furin-like domain and growth factor receptor IV domain on
EGFR, also had comparably large positive coefficients (delete-
rious), although somatic mutations on these domains of EGFR
were observed in specific cancers with much lower frequencies
(14 of 33 types).

Overlapping groups

We next tested whether ParProx can handle a more complex
group penalty structure with overlap. In the analysis above, the

membership of sequence segments (PIU, LU, NCU and PTM site
windows) to genes did not have any overlap in the group assign-
ment. This time around, we gathered high confidence protein–
protein physical interactions from two widely used databases
(see Applications) and used the shared membership of sequence
segments to any pair of two interacting proteins as a variable
group. This analysis tests the hypothesis that co-mutations on
two physically binding proteins in the same individual are likely
to impact protein functions and thus the simultaneous mutation
events have a greater deleterious or protective impact on cancer
death risk. The mapping from our data translated into a total of
197 259 overlapping variable groups, many of them sharing the
same sequence units. In other words, each sequence segment of
a protein-coding gene may belong to two or more groups if the
protein has multiple interaction partners.

Using a Nvidia Titan V, the analysis took 167 min in total
with 10-fold cross-validation and final model fitting. A sim-
ilar Cox latent group lasso analysis could not be performed

http://bib.oxfordjournals.org/
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by grpregOverlap R package [13], an extension to the grpreg
package for handling overlapping latent group penalty, on the
iMac desktop computer (‘vector memory exhausted’ error). Fur-
thermore, the optimal regularization parameter selected by 10-
fold cross-validation led to a Cox regression model with no
sequence segments. In other words, we did not identify a sig-
nature of simultaneous mutations occurring on physically inter-
acting proteins associated with survival, when adjusted for one
another. This result can be interpreted in two different ways. It
is possible that cancer death risk-associated somatic mutations
do not necessarily co-localize to genes encoding members of the
same protein complex, especially in the somatic mutation data
of early primary tumors at the time of diagnosis. In fact, when
we examined co-mutation events in patients with death within
5 years of follow-up, only 126 pair of interacting proteins had
simultaneous mutations in more than 10 such patients. Further
restricting to the patients who were deceased within 2 years, we
had only 71 protein interactions with simultaneous mutations
(Supplementary Table 2 available online at http://bib.oxfordjou
rnals.org/).

Alternatively, it is also possible that tumors collected from
primary diagnosis have a very low probability of harboring
functionally consequential mutations on two or more essential
members of a protein complex, and such events would not
have been observed frequently in the early primary tumor
collection of TCGA in the first place. Indeed, when we compared
the number of interacting protein pairs with simultaneous
mutations across the patients, we observed that only 8682 out
of 133 146 total interaction pairs (6.5%) have more frequent
simultaneous mutations than expected by random co-mutation
on any pairs of proteins (more than 10 subjects). (Supplementary
Table 2 available online at http://bib.oxfordjournals.org/ and
Methods).

In either case, a key point here is that the variable group
information for regularized regression makes a difference in
the final model selection and overlapping latent group lasso
allows users to specify different hypothesis in the model fitting
based on appropriate biological priors. In this context, ParProx
can handle the optimization problem that was not solved by a
BCD-based implementation in R, the commonly used statistical
analysis environment.

Benchmark: Plain lasso

To benchmark the non-overlapping group lasso model, we
also ran the same regression with Cox lasso regression using
ParProx, i.e. with L1 penalty on individual sequence segments
but no group-wise regularization [39] (Supplementary Table 1
available online at http://bib.oxfordjournals.org/). As expected,
the lasso model was essentially a sub-model of the group
lasso model (Figure 3C, gray dots on the vertical and horizontal
axes). The overlapping group lasso model selected 861 sequence
segments as a prognostic signature of cancer death risk, whereas
the lasso model selected 288 sequence segments. The deflation
in the number of selected sequence segments was expected
since group lasso would maintain a sequence segment as a
predictor as long as there is one sequence segment of prognostic
signal in the same protein.

However, among the sequence segments selected by lasso,
the magnitude of coefficients for some variables belonging
to the same gene was different between the two models.
For example, the PTM sites (serine/threonine phosphorylation
and lysine ubiquitination at respective sites) are all physically
nested within the P53 domain, but lasso assigned the highest

coefficient to the ubiquitination site (amino acid positions 127–
138) rather than the P53 domain. Differences were also present
in other genes such as the EGFR gene, where lasso regression
assigned much greater coefficient to the Furin-like domain
and deprecated the coefficient for the tyrosine kinase domain
(Pkinase_Tyr) (Supplementary Table 1 available online at http://
bib.oxfordjournals.org/). Across all other genes, the estimated
coefficients seem to follow a consistent pattern: group lasso
distributes the effect sizes more evenly to different members
(variables) under the same selected group.

We next examined the overlapping group lasso regression
coefficients from the pan-cancer analysis with those models
fit on individual cancer data separately. Figure 3D shows the
heatmap of regularized coefficients obtained from the pan-
cancer analysis as well as those from analyses of individual
cancer data. As expected, the sign of the coefficients was
highly congruent among different analyses, although there
were a few exceptions. Hence, we conclude that the pan-cancer
survival analysis by the latent group lasso regression of ParProx
successfully pools shared effects of mutations on the risk of
cancer death in most, if not all, cases.

pCR prediction analysis of gene expression data using
overlapping group lasso logistic regression

In the next case study, we demonstrate ParProx for acquiring
a logistic regression classifier. Re-analyzing the meta-analysis
data of Prat et al. [20], we aim to identify an mRNA gene expres-
sion signature to classify breast cancer patients undergoing
chemotherapy with anthracycline and neoadjuvant agents into
two groups, i.e. pCR and residual disease (RD). Here we use gene
expression data sets of 12 307 genes and 469 patients in the
training data set [17] and two test data sets [18, 19] (N = 115 and
N = 244), and we use the pathways and GO terms as variable
group information in the logistic group lasso regression. The
analysis workflow is visually represented in Figure 4A.

Before fitting the regression model, we first carried out
classical univariate analysis by gene-wise hypothesis testing
in the training data by Hatzis et al. (N = 469) (see Applications for
selection criteria). The analysis found as many as 1825 genes
over-expressed and 1524 genes under-expressed in tumors from
patients who achieved pCR compared to those with residual
disease (q-value < 0.01, Supplementary Table 3 available online
at http://bib.oxfordjournals.org/). The genes over-expressed
in pCR patients showed enrichment of biological processes
related to cell cycle, DNA repair, cell proliferation and protein
folding, whereas the genes under-expressed in pCR patients
showed enrichment for less essential pathways such as cilium
assembly and extra cellular matrix (ECM) organization. This
‘routine’ analysis via hypothesis testing suggests that the
tumors responding to the neoadjuvant agents with pCR have
gene expression profiles favoring cell proliferation, while the
tumors not achieving it do not.

We next built classifiers of pCR using four different meth-
ods: logistic regression with the plain lasso penalty, logistic
regression with pathway-level overlapping latent group lasso
penalty (ParProx and grpregOverlap), random forest (RF) [40]
and support vector machine (SVM) [41]. In ParProx analysis, we
used external data resource that combined multiple pathway
databases to define variable groups, resulting in 11 734 groups
among the 12 307 variables (including those singletons that do
not belong to any pathway or GO term). With smaller size of the
data set (12 307 by 469), the analysis was performed within a
reasonable amount of time with ParProx on a GPU (12.5 min

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
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Figure 4. (A) Gene expression-based classification analysis of pCR in breast cancer. Lasso regression, RF, and SVM with radial basis function were used for benchmarking

of pathway-based group lasso regression model. (B) Receiver operating characteristic curves of lasso, group lasso, and RF, and the sensitivity and specificity of SVM, all

evaluated using the two test data sets. All four methods perform similarly in the classification of pCR and residual disease. (C) Class probabilities for the samples in

the two test data sets reported by the four methods show highly similar results.

for cross-validation, 8.7 min for final model fitting). A similar
analysis could be performed using the grpregOverlap package
in R (28 min for cross-validation, 28 min for entire solution path
calculation). As shown in Figure 4A, we trained the classifiers in
the training data by Hatzis et al., and made prediction of pCR
on the two test data sets. When we compared the area under
the curve of the receiver operating characteristic (ROC), the first
three methods performed as well as one another (Figure 4B),
and the predictions from the SVM with radial basis kernel, with
cost and gamma parameters optimized through 10-fold cross-
validation within the training data, did not perform better than
the three methods (scores shown in Figure 4C).

Given the highly similar performance metrics across differ-
ent methods, we next investigated the interpretability of the
gene expression signatures. Since the two machine learning
methods with greater complexity (RF and SVM) utilize all fea-
tures in the respective classifiers, we did not pursue interpre-
tation of the underlying predictors, although it may be possible

to prioritize variables, i.e. based on variance importance factors
in the case of RF. Instead, we compared the selected genes
between the two logistic regression models with and without
group penalties. Logistic regression with the plain lasso penalty
selected a total of 290 genes in the predictive signature (182 with
positive and 108 negative coefficients, Supplementary Table 4
available online at http://bib.oxfordjournals.org/). Subsequent
pathway enrichment analysis showed that the genes with pos-
itive regression coefficients, those contributing to the better
chance of pCR, had mild enrichment of mitotic cell cycle and
DNA replication genes, whereas the genes with negative coef-
ficients were not particularly enriched in any known pathways
other than ECM organization.

By contrast, ParProx analysis incorporating the pathway
membership of genes selected a total of 830 genes (489 positive
and 341 negative), a larger panel of genes than the lasso logistic
regression classifier above. As stated in the previous case study,
this is an expected consequence of using the group penalty,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/


12 Ko et al.

Figure 5. (A) Groups (pathways) containing at least one member gene selected with non-zero coefficients in the group lasso logistic regression. The GO terms with

nine or more genes with sum of coefficients above 0.05, with positive contribution to the probability of pCR, are shown with arrows. (B–D) Heatmaps of the 90 member

genes of the selected pathways in the training and test data sets. Each heatmap is annotated in terms of ER, PR and HER2 status, as well as pathologist-graded pCR

status (outcome).

which tends to select genes in the same pathway together
if there is a true effect of pathway-wide gene regulation. A
clear advantage of the latent group lasso penalty is that one
can rank pathways based on the number of genes with non-
zero coefficients (Figure 5A). We selected five GO terms and one
KEGG pathways with the largest number of genes with non-zero
coefficients and large magnitudes in the sum of coefficients,
with all six related to one overarching theme and sharing many
common genes — DNA replication during mitotic cell cycle
(Supplementary Table 4 available online at http://bib.oxfordjou
rnals.org/).

Figure 5B shows the gene expression data with each gene
normalized by its mean expression value, along with immuno-
histochemistry results of estrogen and progesterone receptors
(ER and PR), fluorescence in situ hybridization analysis of HER2,
and pCR status. In this training data, the tumors with pCR were
mostly triple negative tumors (ER-, PR- and HER2-) as Prat et al.
initially observed, indicating that the gene signature obtained

by ParProx for a high chance of pCR is negatively associated
with the positive hormone receptor status, hence positively
associated with the canonical pattern of gene expression regu-
lation for DNA replication and cell cycle progression in the triple
negative tumors. Consistent with this, we observed that the gene
signature in the test data set showed better concordance with
the pCR status of patients in Horak et al. with at least half the
patients classified under basal-like cancer with majority being
triple negative (Figure 5C) than the status of patients in Miyake
et al., where many were ER positive (Figure 5D).

In summary, this data example represents a case of logistic
regression classifier with high-dimensional feature data with a
modest sample size, with penalties imposed on a large number
of overlapping variable groups. ParProx successfully optimized
the objective functions under the constraint of overlapping,
complex variable group information, with comparable compu-
tation time to an existing R package (grpregOverlap) which
produced a much sparser predictive model with 22 covariates

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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only (Supplementary Table 4 available online at http://bib.oxfo
rdjournals.org/). In this data set, the classification performance
was similar to the logistic regression with the plain lasso penalty,
as well as other machine learning methods including RF and
SVM in this data. Among these similarly informative models,
however, the lasso logistic regression selected a gene signa-
ture devoid of enrichment of biological functions associated
with the clinical endpoint (pCR), and the two machine learning
algorithms did not yield interpretation of predictive data fea-
tures as the regression models do. By contrast, the overlapping
latent group lasso model estimated by ParProx yielded a gene
signature indicating high probability of pCR in patients with
DNA repair and cell proliferation genes over-expressed in their
tumors.

Survival analysis of ultrahigh-dimensional epigenetic
data using overlapping group lasso Cox regression

In the third data set, we fitted a Cox regression model with over-
all survival as outcome variable and DNA methylation probes
located in distinct genomic positions relative to protein coding
genes as predictor variables in a liver cancer data. In this data
set, even after selecting the probes located near protein coding
genes only, the number of data features (p) was 289 508, with
sample size of N = 377. In addition, we treated 90 099 genomic
regions representing unique relative positions of probes as vari-
able groups, including TSS1500, TSS200, 5′ UTR, 1st exon, gene
body and 3′ UTR as annotated by the microarray vendor (see
Applications). We thus guide the Cox regression model fitting to
jointly penalize the probes in adjacent genomic regions.

Using overall survival as the clinical endpoint, we first
attempted to fit overlapping group Cox regression using
grpregOverlap in R. Unfortunately, the software was unable to
perform model fitting and produced memory allocation errors
in multiple desktop computers with at least 32GB RAM and
3.4 GHz quad-core intel i5 CPUs or better; see the ‘Comparison
with existing software packages’ section. By contrast, ParProx
was able to perform the C-index-based search of optimal λ value
and the final model fit in 127 min with parallel computation
using a Nvidia Titan V, demonstrating its scalability.

ParProx reported an overlapping group lasso Cox model with
444 methylation probes located upstream and along the coding
regions of 306 genes (see Figure 6A and Supplementary Table
5, available online at http://bib.oxfordjournals.org/, for data and
regression coefficients, respectively). As in the previous two
examples, the latent group lasso regression model produced
an immediately interpretable model. The biological processes
enriched in the genes close to the selected CpG island probes
included response to stress, negative regulation of transcription
from RNA polymerase II, apoptotic process, cell redox homeosta-
sis and small molecule metabolic process. The model suggests
that genes involved in oxidative stress response, metabolism and
gene expression regulation are modulated by DNA methylation
differently between patients with longer survival and those with
shorter survival.

We next benchmarked the model against a Cox regression
model with the plain lasso penalty, which selected 327 CpG
island probes. To our surprise, the probes selected by Cox
regression with lasso penalty had a poor overlap with the
probes selected in the latent group lasso model, sharing only
70 common probes, albeit with good correlation (black circles
in Figure 6A). In addition, C-index was comparable between the
two models: 0.62(± 0.0) for both the latent group lasso penalty
and the lasso penalty. Similar to the second application, this

result likely suggests that there are a large number of weakly
predictive regression models with different predictor variable
combinations with comparable degrees of association with
overall survival in the present data. Among those options, latent
group lasso chose the model that best represents the variable
group structure we specified as the modelers, and this prior
resulted in a functionally different predictive model with respect
to the genes associated with the epigenetic signatures (CpG
islands) as shown in Figure 6B. This observation also reaffirms
that specification of variable group structure influences the
selection of data features associated with the clinical endpoint,
and ParProx provides the interface to fit these models in
ultrahigh-dimensional data sets that would otherwise have been
impossible to fit.

Discussion
In this work, we presented a scalable implementation to fit
regression models for survival and classification analysis with
structured group penalty representing biological prior informa-
tion. The PGD method implemented in the Julia programming
language can parallelize the iterative updates of the method in
the case of large-scale data sets, which is the major advance
offered by ParProx. We demonstrated the robustness of the
implementation in both ‘large n, large p’ case (mutation data
example) as well as ‘large p, small n’ case (gene expression
data example) and showed that ParProx can deal with survival
regression under the latent group lasso penalty using a very
large-scale data set (P = 289 508) using parallel computing with
GPU. Further, the simulation results indicate that ParProx is
ready to embrace even larger size of data sets with millions of
variables.

In contrast to the conventional differential expression anal-
ysis via hypothesis testing, our one-shot regression analysis
strategy describes the multivariate relationship between clini-
cal endpoint and high-dimensional molecular data using linear
models. Linear models are often thought to be too restrictive to
describe complex relationships between genotype and pheno-
type. However, it has the clear advantage of interpretability of
results and low variance of prediction results. Linear models can
summarize the overall impact of each variable onto the outcome
into positive and negative values after accounting for the effect
of others, and this directionality is often important for biolog-
ical interpretation of predictive models. Despite the increasing
popularity of machine learning and deep learning methods in
omics data analysis, those methods permitting non-linear clas-
sifiers can only tell the importance of individual variables, but
they fail to provide intuitive interpretation of the relationship
between the outcome and the variables, as demonstrated in the
breast cancer data as well. Within the class of linear models,
ParProx provides an efficient solution to enable the challenging
overlapping group lasso optimization and it has the appropriate
software architecture for scaling to very large data sets.

Assessment of computation time between different imple-
mentations of linear models may be affected by the differences
in algorithm, choice of grid coordinates for the regularization
parameter, and convergence criteria, to name a few. Convergence
criteria and grid selection are detailed below. Nonetheless, we
emphasize that it is the choice of the algorithm that deter-
mines the scalability of the software. The proximal gradient
method employed by ParProx is flexible in parallelization over
distributed data, hence the computation time improves almost
linearly with addition of hardware, e.g. GPU or a cluster node.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
http://bib.oxfordjournals.org/
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Figure 6. (A) Comparison of non-zero coefficients between group lasso and lasso models fitted using ParProx. Variables (CpG islands) with non-zero coefficients in one

of the two models are shown in gray color along the horizontal and vertical axes. (B) Top 10 biological processes significantly enriched in the genes adjacent to the CpG

islands selected by group lasso and lasso.

This is the key contrast to grpreg and grpregOverlap pack-
ages implementing the BCD method, which is an inherently
sequential algorithm. For even larger data than those studied
in the paper, multiple GPUs or a virtual computer cluster on
a cloud can be seamlessly employed in Julia, as demonstrated
in Ko et al. [42]. We are planning to incorporate this feature in
the next version of ParProx. In addition, when the sample size
is large, stochastic approximation may be considered [43]. The
gradient maps (4) and (5) both have the form of an average of
per-sample gradients, i.e. ∇L

(
β
) = 1

n

∑n
i=1


′(xT
i β
)
xi. Hence, each

summand is an unbiased estimator of ∇L
(
β
)

and one may use
this in place of the whole-sample gradient. Stochastic versions of
PGD have been studied previously [44–46]. In the absence of the
penalty, this method is well-known as the stochastic gradient
descent (SGD). The downside of the sample scalability is that
convergence is guaranteed only in a probabilistic sense, raising
concerns on reproducibility, and slow.

We finally remark that the parallel PGD framework of
ParProx can easily be extended to regression models other than
logistic and Cox’s. In fact, most generalized linear models can
be employed if the corresponding loss function has Lipschitz
continuous gradient. For nonconvex penalties that can be
expressed as a difference of convex functions, such as group
minimax concave penalty (MCP) [47] and smoothly clipped
absolute deviation (SCAD) [48], proximal averaging technique
[49] can be incorporated into ParProx, at the expense of losing
global optimality of the fit.

Comparison with existing software packages

The popular software package glmnet for the R statistical
computing environments fits linear, logistic and Cox regression
models with the plain lasso penalty, and does not support

penalties for arbitrary groups of variables. Its extension, snpnet,
is specifically designed for large-scale SNP data compressed
in PLINK2 format. The Julia software package MendelIHT.jl is
also designed for compressed SNP data, and use the L0 penalty
instead of the lasso. Variable groups are not supported.

The R software package grpreg fits linear, logistic and Cox
regression models with non-overlapping group lasso penalties,
hence solves problems (1) and (2). The package grpregOverlap
extends grpreg to handle the latent group lasso penalty (6)
to allow overlaps between groups, hence solves problem (7).
The differences between these packages and ParProx are 3-
fold: (a) solution algorithm, (b) memory management and (c)
standardization of variables.

As for the algorithm, grpreg and grpregOverlap employ a
BCD method instead of proximal gradient of ParProx. BCD is
a simple algorithm that updates a (latent) variable group at a
time with the other groups held fixed—each group update has
a closed form. Hence, the complexity of each update is low.
While inherently sequential, BCD is very efficient when the
data size is moderate, as can be seen from the non-overlapping
group-regularized analysis in the first case study.

However, overlapping groups, if they exist, may expand
the data size considerably, causing memory issues even if
the original data size is modest. For instance, in the first
case study, the somatic mutation count data matrix is of size
9707 × 55 961. With a latent group penalty in which there are
197 259 overlapping groups, the number of latent variables
becomes 1 384 850. grpregOverlap creates a new effective data
matrix of size 9707 × 1 384 850 by duplicating the corresponding
columns of the original data matrix in order to apply BCD,
which requires more than 100 gigabytes of memory. On the
other hand, ParProx evaluates the gradient of L by using the
original data matrix and the linear map A, which is sparse and
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Table 1. Minimum memory requirement for each case study and variable grouping method

Predictive
variables

Clinical
outcome

Sample
size

Variable
size

Group
overlap

Latent
dimension

Data
size

Minimum memory

grpreg/grpreg
Overlap

ParProx

Case 1 Somatic
mutation
counts

Overall
survival (Cox)

9707 55 963 No 4.4 GB 4.4 GB 4.4 GB

Yes 1 384 805 4.4 GB 107.5 GB 4.4 GB
Case 2 Gene

expression
microarray

Pathological
complete
response
(logisitic)

469 12 309 Yes 127 083 46.2 MB 476.8 MB 47.2 MB

Case 3 Methylation
array probes

Overall
survival (Cox)

377 289 508 Yes 370 473 991.3 MB 1.3 GB 994.2 MB

Note: The number of variables may differ from the numbers in the main text due to inclusion of additional risk factors (covariates) from outside the respective omics
data, e.g. age and gender.

only has 0/1 entries. Hence, the additional memory requirement
is small. For a detailed comparison of memory requirements in
ParProx and grpreg/grpregOverlap, see Table 1. Recall that it
is the independent nature of update (8) that allows the use of
GPU acceleration and other parallel and distributed computing
environments, which is not feasible for BCD. Even if the original
data matrix does not fit into the memory of a single device, it
can be distributed over multiple devices and coefficients of each
group over multiple devices, and the coefficients can be updated
simultaneously.

Finally, grpreg and grpregOverlap standardize variables by
orthonormalizing the (latent) variables within the same group [3,
35], while ParProx employs the common practice of standardiz-
ing each observed variable. Through multiple example data sets,
we have verified that the current implementation with orthonor-
malization seems to produce unexpected analysis results with or
without overlapping groups when the variables are a mixture of
continuous variables and non-continuous variables (categorial
data and count data).

Convergence criteria

In all applications shown in the Results section, the PGD of
ParProx was run until

∣∣∣f (γ (k)
)− f

(
γ (k−100)

)∣∣∣∣∣f (γ k
)+ 1

∣∣ ≤ 5 × 10−4

for cross-validation, and run more stringently until

∣∣∣f (γ (k)
)− f

(
γ (k−100)

)∣∣∣∣∣f (γ k
)+ 1

∣∣ ≤ 1 × 10−5

for fitting the final model after model selection. Here, f
(
γ
)

denotes the objective function of the optimization problem
(7). For the BCD method of grpreg/grpregOverlap, the default
convergence criterion of the software was used, which stops the
algorithm if ∥∥∥γ (k) − γ (k−1)

∥∥∥
2√

p
≤ 1 × 10−4.

Grid points for cross-validation

In ParProx, the regularization parameter λ was chosen among
100 equally log-spaced λ values between 10−4 and 10−7 in the
first case study, among 100 equally log-spaced values between
10–6.5 and 10–8.5 in the second case study, and among 100 equally
log-spaced values between 10–5.5 and 10–7.5 in the third case
study. The grpreg and grpregOverlap packages automatically
select 100 equally log-spaced values. The maximum is chosen
to be the smallest λ for which no variables are selected with the
model. The minimum is 0.05 times the maximum value if there
are more variables than the number of samples.

Option for excluding variables from regularization

ParProx allows specification of variables to be excluded from
regularization. This is a useful option in clinical omics data since
certain variables represent known risk factors in a given dis-
ease context regardless of their statistical significance. Grpreg
package allows the option of specifying variables excluded from
regularization, but grpregOverlap does not offer it as of version
2.2-0.

Key Points
• ParProx estimates non-overlapping and overlapping

group lasso regression models as well as plain lasso
regression models for survival and classification anal-
ysis of ultrahigh-dimensional omics data.

• Unlike existing implementations of the algorithms for
fitting sparse regression models, ParProx embodies
the proximal gradient method for optimization, which
allows for parallelization over distributed data.

• Through specification of group lasso penalty, data
analyst can impose prior information during variable
selection, often resulting in in readily interpretable
models.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab256#supplementary-data
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Software availability

ParProx is freely available through GitHub repository at
https://github.com/kose-y/ParProx.jl under the MIT license.
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