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Acquisition of visual priors and induced
hallucinations in chronic schizophrenia

Vincent Valton,1,2,3,* Povilas Karvelis,1,* Katie L. Richards,2 Aaron R. Seitz,4

Stephen M. Lawrie2,5 and Peggy Seriès1

*These authors contributed equally to this work.

See Siemerkus (doi:10.1093/brain/awz211) for a scientific commentary on this article.

Prominent theories suggest that symptoms of schizophrenia stem from learning deficiencies resulting in distorted internal models of

the world. To test these theories further, we used a visual statistical learning task known to induce rapid implicit learning of the

stimulus statistics. In this task, participants are presented with a field of coherently moving dots and are asked to report the

presented direction of the dots (estimation task), and whether they saw any dots or not (detection task). Two of the directions were

more frequently presented than the others. In controls, the implicit acquisition of the stimuli statistics influences their perception in

two ways: (i) motion directions are perceived as being more similar to the most frequently presented directions than they really are

(estimation biases); and (ii) in the absence of stimuli, participants sometimes report perceiving the most frequently presented

directions (a form of hallucinations). Such behaviour is consistent with probabilistic inference, i.e. combining learnt perceptual

priors with sensory evidence. We investigated whether patients with chronic, stable, treated schizophrenia (n = 20) differ from

controls (n = 23) in the acquisition of the perceptual priors and/or their influence on perception. We found that although patients

were slower than controls, they showed comparable acquisition of perceptual priors, approximating the stimulus statistics. This

suggests that patients have no statistical learning deficits in our task. This may reflect our patients’ relative wellbeing on anti-

psychotic medication. Intriguingly, however, patients experienced significantly fewer (P = 0.016) hallucinations of the most fre-

quently presented directions than controls when the stimulus was absent or when it was very weak (prior-based lapse estimations).

This suggests that prior expectations had less influence on patients’ perception than on controls when stimuli were absent or below

perceptual threshold.
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Introduction
An increasingly popular idea in neuroscience is that percep-

tion and decision-making can be well described in terms of

probabilistic inference processes (Knill and Pouget, 2004;

Fiser et al., 2010; Friston, 2010, 2012). For example, stat-

istical and perceptual learning studies show that the percep-

tual systems continuously extract and learn statistical

regularities of the environment (for a review on visual per-

ception, see Seriès and Seitz, 2013). This learning results in

the construction of internal models of the environment, or

expectations, which are used automatically and uncon-

sciously to predict and disambiguate perceptual inputs in

situations of uncertainty and to guide decisions.

In this context, it has been proposed that psychiatric dis-

orders in general, and schizophrenia in particular, might be

explained in terms of deficits in probabilistic inference

(Friston, 2005; Frith and Friston, 2012; Adams et al.,

2013; Jardri and Denève, 2013, for reviews see: Friston

et al., 2016; Valton et al., 2017; Sterzer et al., 2018).

Impaired statistical learning and/or inference deficits

would lead to distorted internal models of the world,

which could then explain the existence of abnormal beliefs

or delusions experienced by patients with schizophrenia, as

well as their hallucinations.

Two different lines of research support this general idea.

First, a number of studies using explicit probabilistic learn-

ing tasks, such as the ‘beads task’ report that patients with

schizophrenia show a deficit in integrating probabilistic in-

formation resulting in faster responses than control sub-

jects, an effect called the ‘jumping-to-conclusions’ bias

(Huq et al., 1988; Speechley et al., 2010; Averbeck et al.,

2011; Evans et al., 2012). Interestingly, patients with stron-

ger delusional symptoms fare worse at the task than those

who do not (Huq et al., 1988; Speechley et al., 2010), and

control subjects displaying delusional ideation also show

similar impairments at the task (Freeman et al., 2008), sug-

gesting a link between delusions and probabilistic inference

(Garety et al., 2013; Garety and Freeman, 2013). Second,

patients with schizophrenia do not experience visual illu-

sions in the same way as controls do. For example, patients

are less susceptible to certain visual illusions such as the

hollow-mask illusion (Dima et al., 2009, 2010; Keane

et al., 2013; for review see: Silverstein and Keane 2011a,

b; Notredame et al., 2014). This suggests that they either

have different implicit expectations about the environment

(i.e. they would not have such a strong expectation that

faces are convex) or that these expectations do not affect

patients’ perception in the same way as observed in

controls.

A few studies have recently tried to test the impaired

Bayesian inference hypothesis more directly, but the find-

ings are mixed. Teufel et al. (2015) found that early psych-

osis and schizotypal traits were associated with an

increased influence of prior knowledge when disambiguat-

ing two-tone images. Powers et al. (2017) also reported an

increased perceptual prior influence in experimentally-

induced hallucinations in both patients and controls

with higher propensity to hallucinatory experiences.

Interestingly, however, a series of studies by Schmack

et al. (2013, 2015, 2017) found an increased influence of

cognitive priors on the perception of bi-stable stimuli in

participants with schizotypal traits and clinical schizophre-

nia, but showed on the contrary a decreased influence of

perceptual priors, suggesting that the level at which the

prior operates in the inference hierarchy might lead to dif-

ferential effects. Finally, Jardri et al. (2017) investigated

probabilistic reasoning and found schizophrenia patients

to be over-counting sensory evidence and under-weighting

priors, which they described using a so-called ‘circular in-

ference’ model. Together these findings paint a complicated

picture of Bayesian inference in schizophrenia where priors

can have either increased or decreased influence depending

on the task, the stimulus, the type of priors involved (e.g.

low-level perceptual prior versus high-level cognitive prior)

or depend on particular symptom characteristics (e.g.

whether patients experience hallucinations versus delusions;

Stephan et al., 2016; Sterzer et al., 2018).

A general limitation of these studies, however, is that it is

typically unclear to what extent the effects are driven by

deficits in statistical learning (i.e. forming and updating the

priors) or impaired inference per se. Moreover, past studies

usually only qualitatively compared the behavioural results

they collected with the proposed Bayesian theories.

To address these issues, we simultaneously investigated

the implicit acquisition of perceptual priors, how these

priors are integrated with sensory information, and the in-

fluence they have on perception when stimulus is absent

(i.e. experimentally induced hallucinations) in patients

with schizophrenia. We used a previously-developed statis-

tical learning task (Chalk et al., 2010; Gekas et al., 2013;

Karvelis et al., 2018) that is known to induce the rapid

acquisition of the statistics of motion stimuli. In this task,

participants need to report the direction of motion of a

cloud of dots (estimation task) and whether they have per-

ceived the dots or not (detection task; on some trials no

stimulus is presented). Unbeknown to the participants, two

directions of motion are more frequently presented than

others. Participants implicitly and unconsciously learn

those stimulus statistics. This learning influences perception

such that: (i) motion stimuli are perceived as being more

similar to the most frequently presented stimuli than they

really are (i.e. estimation biases); and (ii) participants some-

times report perceiving the most frequently presented sti-

muli in absence of visual stimuli (a form of hallucination).

In previous work (Chalk et al., 2010; Karvelis et al., 2018),

we showed that Bayesian modelling could be applied to

individual participants’ performances to quantitatively

monitor their acquisition and use of the statistics of the

stimuli (perceptual prior). We applied the same techniques

in the current study to compare the perceptual priors

acquired by patients with schizophrenia to those of

controls.
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Materials and methods

Participants

A sample of 25 (22 male) individuals with psychosis (diag-
nosed with either DSM-IV schizophrenia, n = 21; or schizoaf-
fective disorder, n = 4), and 23 (13 male) controls with normal
or corrected-to-normal vision were recruited. Patients were re-
cruited from inpatient and outpatient adult mental health ser-
vices across NHS Lothian. Diagnoses were determined using
the Structured Clinical Interview for DSM-IV (SCID-I; First
et al., 2002). None of the control participants met DSM-IV
criteria for a psychotic disorder, bipolar disorder, or schizo-
typal or schizoid personality disorder (American Psychiatric
Association, 2000). Symptom severity was measured with the
Positive and Negative Syndrome Scale (PANSS) (Kay et al.,
1987), current IQ with the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 1999) and pre-morbid IQ with
the National Adult Reading Test (NART; Nelson and
Willison, 1991). All patients were medicated (85% on
second generation antipsychotics, 50% of these were also on
mood stabilizers). The study was conducted in accordance
with the national and international ethical standards for
human experimentation and research (World Medical
Association, 2013; International Conference of
Harmonization (ICH), 2014). All participants provided fully-
informed written consent. The study received ethical approval
from the South East Scotland Research Ethics Committee 01
and NHS Lothian Research and Development. Following pre-
vious studies using the same paradigm (Chalk et al., 2010), we
determined that 20 participants per group would give us
580% power to detect the correct acquisition of the prior
and significance between groups (see power calculations in
the Supplementary material). We thus aimed to recruit be-
tween 20 and 25 participants per group to account for possible
exclusions because of poor performance at the task.

Twenty patients and 23 controls successfully performed the
task (see below and Supplementary Fig. 1 for exclusion criteria
based on performance). The demographic details of the
included participants are shown in Table 1. Note that the pa-
tients all had relatively low levels of symptoms on the PANSS,
but ongoing functional impairment. Most were assigned a
PANSS positive rating of 1 (absent), 2 (minimal/questionable)
or 3 (mild) for delusions, hallucinatory behaviour, suspicious-
ness/persecution, and unusual thought content, suggesting that
they were clinically stabilized and relatively homogenous in
their current symptoms (see detailed symptoms demographics
in Supplementary Table 1 and Supplementary Fig. 6).

Apparatus, stimuli and procedure

The setup for this study was similar to that used by Chalk
et al. (2010). Motion stimuli consisted of a field of dots with a
density of 2 dots/deg2, moving coherently (100%) at a speed
of 9�/s.

Each trial was composed of two tasks arranged as follows
(Fig. 1A): First, participants were presented with a fixation
point (0.5� diameter) for 400 ms. With the fixation point still
on-screen, the motion stimulus (field of dots) was displayed
along with a red bar extending from this fixation point.
During the presentation of the field of dots, participants

were required to estimate the direction of motion by aligning
the red bar into the perceived direction of motion (‘estimation
task’). The angle of this bar was randomized on each trial and
participants were instructed to focus their gaze on the fixation
point throughout the estimation task. The display then cleared
when either the participant clicked the mouse to validate their
choice (estimation) or 3000 ms had elapsed. After the estima-
tion, a 200-ms delay was enforced before the detection screen
was presented. The new screen was divided in two equal areas
reading ‘Dots’ and ‘No Dots’, giving the participants a two-
alternative forced choice. Participants were required to move
the cursor to the right or the left to indicate whether they
detected dots or not, and click to validate their choice (‘detec-
tion task’). The cursor then flashed green or red for correct or
incorrect responses respectively. No time-outs were enforced
during the detection task. Finally, the screen was cleared for
400 ms before a new trial began. Every 20 trials, participants
were presented with feedback on their estimation performance
in terms of average estimation error (in degrees).

Design

Participants completed 567 trials (i.e. lasting approximately
40 min versus 850 trials lasting 60 min in Chalk et al., 2010)
with opportunities for breaks every 170 trials to prevent fa-
tigue. Stimuli were presented at four different randomly inter-
leaved contrast levels. The highest contrast level was 1.7 cd/m2

above the 5.2 cd/m2 background. There were 167 trials at zero
contrast (no stimulus condition) and 67 trials at high contrast.
Contrasts of other stimuli were determined using a descending
4/1 and an ascending 2/1 staircase on detection performance.
Throughout the experiment, there were 90 trials with the 2/1
staircase and 243 trials with the 4/1 staircase. The use of the
2/1 and 4/1 contrast staircases ensures that individual detection
performances converge to contrast thresholds corresponding to
70.4% and 84.1% correct responses, respectively (Levitt,
1971; Garcı́a-Pérez, 1998), thus being comparable between
participants. From the point of view of the observer, this
meant that stimulus contrasts converged and remained
around the limit of visibility, hence creating a lot of uncer-
tainty in the stimulus (its presence and its direction). We had
more trials in the descending staircase so as to facilitate acqui-
sition of the prior. On a given trial, the direction of motion for
the two staircased contrast levels could either be 0�, �16�,
�32�, �48�, and �64� with respect to a central reference
angle. This central reference angle was randomized for each
participant.

Unbeknown to participants, we manipulated their expect-
ations about which motion directions were most likely to
occur by presenting stimuli moving at �32� more frequently
(resulting in a bimodal distribution, Fig. 1B). At the highest
contrast level, 50% of trials were at �32� and 50% remaining
trials at random directions (i.e. not just the predetermined
directions).

Behavioural data analysis

Performance on high contrast trials was used as an indicator of
whether participants were performing the task adequately.
Detection accuracy of at least 70% and estimation root
mean square error (RMSE) of 530� were the minimum cri-
teria. All 23 controls met these criteria, while 5 of 25 patients
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did not meet at least one of the criteria and thus were excluded
from further data analysis (Supplementary Fig. 1).

The main data analysis was performed on 2/1 and 4/1 stair-
cased contrast levels and only on confirmed trials (i.e. trials
where participants validated their choice with a click within
3000 ms in the estimation task and reported seeing dots in the
subsequent detection task). The first 100 trials were excluded
from the analysis to allow the staircases to converge to stable
contrast levels (Supplementary Fig. 2). After removing these
trials, the luminance levels achieved by the 2/1 and 4/1 stair-
cases were found to be overlapping (Supplementary Fig. 2),
thus they were combined for all further analysis. Finally,
since the distribution of presented directions was symmetrical
around a central reference angle, the behavioural measures at
equal absolute distance from the reference angle were averaged
together.

In the estimation task, the variance of participants’ direction
estimates was large. As in previous work (Chalk et al., 2010;
Gekas et al., 2013), we hypothesized that this variability re-
sulted from a proportion of estimations being made randomly.
To account for this, we fitted the individual estimation re-
sponses for each stimulus direction to the following distribu-
tion:

ð1� �Þ�Vð�; �Þ þ �=2� ð1Þ

where V(m, �) is the circular normal (i.e. von Mises; Mardia,
1972) distribution with mean m and width � and � corres-
ponds to the proportion of lapse estimations (i.e. seemingly
random responses). The estimation bias is then defined as
the difference between the estimated mean of this circular
normal distribution m and the true motion direction, while
the estimation variability corresponds to the standard devi-
ation � of that distribution. The lapse rate � enables us to
capture the proportion of estimation responses that appear
random, unrelated to the true motion direction. As a first ap-
proximation, these are here parameterized as being uniformly
distributed between �180�.

In trials where no stimulus was presented, we reconstructed
the probability distributions of participants’ responses over
motion directions using kernel density estimation (Silverman,
1986; Wand and Jonas 1994). The kernel density estimation is

a non-parametric method used to estimate the probability
density function from discrete measures of a continuous vari-
able. To do so, a kernel that defines the form of the probabil-
ity density function (e.g. von Mises kernel) was placed at each
of the observed measurement. Then, all the individual kernels
were summed to create the probability density function of the
random variable (motion direction).

To assess the effects of the acquired expectations in both
groups and to simultaneously determine whether patients dif-
fered from controls, we performed 2-way mixed ANOVA with
motion direction as a within-subjects factor and group as a
between-subjects factor. We ran Bonferroni-corrected pairwise
comparisons to determine which motion directions were driv-
ing the effects. To control for possible deviations from normal-
ity, we also ran non-parametric tests to confirm the parametric
2-way ANOVA findings (Supplementary material). All ana-
lyses were done using SPSS version 24. To determine the
strength of the evidence for the null hypothesis (i.e. finding
no group difference versus finding evidence that the groups
are similar) we also report Bayes factors using the Bayesian
statistical software package JASP. We report Kendall correl-
ation coefficients whenever the data are ordinal with rank ties
and/or strong outliers.

Modelling

To test for individual variability in the underlying perceptual
inference and to obtain more direct measurements of the
acquired expectations, we fitted a range of models to our
data. The first class of models assumed that the biases were
of a perceptual nature, as conceived in the Bayesian frame-
work: sensory information is combined with a learned prior
of the stimulus statistics in a probabilistic way. The simple
‘BAYES’ model assumed that the likelihood precision was con-
strained to be the same across all presented motion directions
(corresponding to the hypothesis that there was no learning in
the likelihood due to the distribution of the motion directions).
An additional variant of the BAYES model tested the hypoth-
esis that the lapse estimations were not uniformly distributed
but instead were sampled from the acquired prior expect-
ations. We call these responses ‘prior-based lapses’ (Fig. 2).

Table 1 Participants’ demographics

Characteristics Controls n = 23 Patients with schizophrenia n = 20 Significance level P-value

Gender, males, n 13 17 0.04

Age, years 33.86 (12.08) 39.40 (9.43) 0.07

Premorbid IQ 115.55 (4.41) 113.18 (8.76) 0.58

Current IQ 117.45 (7.28) 111.15 (10.70) 0.06

PANSS Positive Scale 8.86 (2.29) 12.55 (5.01) 50.01

PANSS Negative Scale 8.41 (2.24) 12.20 (5.05) 50.01

PANSS General Scale 22.27 (6.48) 26.10 (8.35) 0.12

PANSS Total 39.55 (9.22) 50.85 (15.86) 50.01

GAF 74.81 (11.42) 54.75 (14.36) 50.001

OLZ eq., mg/day – 12.61 (6.24) N/A

Illness duration, years – 13.33 (9.01) N/A

Values indicate mean and (standard deviation). For the PANSS, lower score is better, and for Global Assessment of Functioning (GAF) higher score is better. For gender, group

comparisons were done using �2 test, for all other measures, two-sided Wilcoxon rank-sum test was used. See Supplementary Table 1 and Supplementary Fig. 6 for a more detailed

description of the clinical characteristics.

N/A= not applicable; OLZ eq. = olanzapine equivalent dosage.
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This model was termed ‘BAYES_P’ and was otherwise equiva-
lent to ‘BAYES’.

Another class of models assumed that task performance
could be explained by response strategies that do not involve
Bayesian integration (heuristic models). According to these
models, on any given trial participants responses were based
solely on either the prior expectations or sensory informa-
tion. We considered four variations of response strategy
models (see above and Supplementary material for details).
Below we present the Bayesian models as they provided a
better explanation to the data (see Fig. 5, model
comparison).

Bayesian model

Following the Bayesian framework, we assumed that partici-
pants combined sensory information (likelihood) with their
expectations about the motion direction (prior) on every

trial. The sensory likelihood of the observed motion direction

(�sensory) was parameterized as a von Mises circular normal

distribution with variance �sensory:

Plikelihoodð�sensoryj�Þ ¼ Vð�; �sensoryÞ ð2Þ

The mean of this distribution depended on the actual presented
motion direction (�actual), but to account for trial-to-trial vari-

ability it was sampled from another von Mises distribution

centred on �actual with variance �sensory [i.e. V (�actual, �sensory)].
This is necessary because on any given trial the observer does

not have direct access to the true motion direction. Therefore,

the likelihood cannot be centred on the true motion direction,
but instead has to be centred on a noisy estimate of it (Stocker

and Simoncelli, 2006; Körding et al., 2007).
We then hypothesized that participants acquire an approxi-

mation of the ‘true’ prior from experience (Pprior), representing

the participants’ expectations of motion directions. The

acquired priors were parameterized as the sum of two von

Figure 1 The Moving Dots task. (A) Experimental procedure. Participants were presented with a fixation point followed by the motion

stimulus and a response bar (red bar) that they were instructed to align to the perceived motion-direction. The screen was cleared either when

participants clicked to validate their estimation or 3000 ms had elapsed. A new screen appeared with a two-alternative forced choice task (2-

AFC), requiring participants to indicate whether they perceived the dots during the estimation task. (B) Probability distribution of the motion

directions. Unbeknown to participants, the distribution of motion direction was bimodal (i.e. stimuli appeared most often at �32� from a central

direction). The central direction was randomized for each participant.

Figure 2 Bayesian model of estimation response for a single trial. The actual motion direction (�actual) is corrupted by sensory

uncertainty (�sensory), and then combined with prior expectations (mean �expected and uncertainty �expected) to form a posterior distribution. The

perceived motion direction (�perceived) then corresponds to the mean of the posterior distribution. However, on a fraction of trials, determined by

the lapse rate (�prior-based), the perceived motion direction is sampled from the prior. Finally, in both cases, the response (�estimated) is made by

perturbing �perceived with motor noise (�motor). This results in four free model parameters: �sensory, �expected, �expected and �prior-based. The motor

noise (�motor) is estimated from high contrast trials and is used as a fixed parameter.
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Mises circular normal distributions, centred on motion direc-
tions �expected and ��expected, each with variance �expected:

Ppriorð�Þ ¼
1

2
½V ð��expected; �expectedÞ þ V ð�expected; �expectedÞ�

ð3Þ

Combining the prior and the likelihood gives us the posterior
probability that the stimulus is moving in a direction �:

Pposteriorð�j�sensoryÞ / Plikelihoodð�sensoryj�Þ�Ppriorð�Þ ð4Þ

The perceived direction, �perceived, was taken to be the mean of
the posterior distribution (almost identical results would be
obtained by using the maximum instead).

Finally, we accounted for motor noise (related to aligning
and clicking the mouse) and lapse estimations, such that:

Pð�estimatej�perceivedÞ ¼ ð1 � �prior-basedÞ�Vð�perceived; �motorÞ þ �prior-based�Ppriorð�Þ

ð5Þ

where �motor is the motor noise and �prior-based describes the
chance of making an estimation response that appears
random in that it is unrelated to the actual stimulus. In the
model that we call ‘Bayes_P’ for ‘Bayes with prior-based lapse
estimations’, we assume that these random estimations are
drawn from the participants’ acquired expectations—
Pprior(�). The motivation for this model came from observing:
(i) that the lapse responses were found not to be uniformly
distributed in the data; and (ii) that if such random responses
are effectively made when the stimulus is below detection
threshold (a common occurrence since contrasts hover
around threshold), and thus become invisible for the obser-
ver, those responses are formally equivalent to what we de-
scribe as hallucinations, which seem to be sampled from the
prior [see also Laquitaine and Gardner (2018) for a related
model].

Finally, we also tested variants of this model, where lapse
estimations were uniformly distributed, rather than following
the participants expectations (model ‘BAYES’), or that because
of increased exposure to stimuli at specific angles, sensory un-
certainty �sensory could vary across angles (0�, �16�, �32�,
�48�, �64�; model ‘BAYES_var’), or that sensory uncertainty
varied only at the most presented directions (model
‘BAYES_varmin’; see above and Supplementary material for
details).

Data availability

Derived data and source code supporting the findings
of this study are available at https://osf.io/v6spe (DOI:
10.17605/OSF.IO/V6SPE).

Results

Detection performances and contrast
levels

Contrast staircases converged to stable luminance levels

after about 100 trials for both groups (Supplementary

Fig. 2); controls converged to 0.41 cd/m2 (�0.03) for the

2/1 staircase and 0.46 cd/m2 (�0.03) for the 4/1 staircase,

while patients converged to 0.57 cd/m2 (�0.04) for the 2/1

staircase and 0.62 cd/m2 (�0.05) for the 4/1 staircase.

These results confirm previous findings (Skottun and

Skoyles, 2007) suggesting that patients with schizophrenia

display significantly poorer contrast-sensitivity in compari-

son to controls (2/1 staircase: Z = 3.15, P = 0.002; 4/1 stair-

case: Z = 2.90, P = 0.004, two-tailed rank-sum test).

Statistical learning

First, we investigated whether participants acquired the

statistics of the stimulus. To do so, we looked at patterns

suggestive of statistical learning in each group, namely at-

tractive biases towards the most frequent directions,

decreased reaction times and improved detection perform-

ance for the most frequent directions (Fig. 3).

Estimation performance

In the analysis of the estimation task, we looked only at the

staircase contrasts stimulus trials where participants both

reported seeing a stimulus and clicked on the mouse during

stimulus presentation to indicate their estimate of motion

direction.

To investigate whether the participants’ perceived

motion-directions were biased, we measured the difference

between the true motion direction and the motion direction

reported by the participants. Figure 3A displays the average

estimation bias plotted against the true motion direction for

each group. Overall, there was a significant effect of motion

direction on the estimation bias [F(2.45,100.52) = 15.37,

P5 0.001, �2
P =0.273, Greenhouse-Geisser correction

" = 0.613], but no differences between the groups [group

main effect: F(1,41) = 0.83, P = 0.369, �2
P = 0.001; with

positive evidence for the null hypothesis, BF01 = 3.99; and

no group � angle interaction F(2.45,100.52) = 1.64,

P = 0.193, �2
P =0.038]. Pairwise comparisons (with

Bonferroni correction) revealed that there was an attractive

bias towards �32� at �48� and �64� [mean difference

(MD) = 4.858, P = 0.002; and MD = 14.395, P5 0.001, re-

spectively]; but not at �16� (MD = 1.818, P = 0.955).

Together, these results confirm that both patients and con-

trols were biased towards perceiving motion directions as

being more similar to the most frequently presented direc-

tions than they really were, consistent with having acquired

the priors that approximate the statistics of the stimulus.

We also investigated whether the effects of acquired prior

expectations were reflected in the variability of estimations,

namely a decrease of variability for the expected directions

(Fig. 3B). We found a significant main effect of motion

direction [F(3.07,125.69) = 5.18, P = 0.002, �2
P = 0.112,

Greenhouse-Geisser correction " = 0.766], but no differ-

ences between the groups [main effect of group:

F(1,41) = 0.02, P = 0.880, �2
P = 0.001; with positive evi-

dence for the null hypothesis, BF01 = 3.74; and no group -

angle interaction F(3.07,125.69) = 1.58, P = 0.196,

�2
P = 0.037]. Pairwise comparisons showed that variability

at 0� stood out the most, being significantly larger than at

� 32� and �48� (MD = 4.680, P = 0.012; and MD = 4.733,
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P = 0.025, respectively), although not different than at

�16� and �64� (MD = 3.044, P = 0.239 and MD = 2.990,

P = 0.541). The increased variability in the region between

the two modes reflects their conflicting influence on the

percepts in this region.

Finally, we analysed lapse estimations, which were cap-

tured by the ‘�’ term in Equation 1 and which were

assumed to arise from random responses on some of the

trials (Fig. 3C). We found both motion direction and group

main effects to be significant [F(4,164) = 5.76, P5 0.001,

�2
P = 0.123 and F(1,41) = 6.41, P = 0.015, �2

P = 0.135, re-

spectively], with patients exhibiting fewer lapse estimations.

Pairwise comparisons revealed that lapse rate at 0� was

significantly smaller than at all other directions (�32�,

MD = 4.814, P = 0.001; �48�, MD = 6.010, P = 0.007;

�64�, MD = 4.951, P = 0.003), except for �16�

(MD = 3.043, P = 0.393). The finding that the estimated

lapses would depend on the presented motion direction

was surprising, since it suggests these lapses are not made

completely randomly. Below, we show that these seemingly

random responses can be best described as being sampled

from the acquired prior distribution (see ‘Modelling results’

section).

Reaction times and detection performance

Next, we examined how participants’ acquired expectations

influenced reaction times and the detection of stimulus. The

estimation reaction times (Fig. 3D) show a significant main

effect of motion direction [F(2.73,111.76) = 10.80,

P5 0.001 �2
P =0.209, Greenhouse-Geisser correction

" = 0.681]. This was driven by decreased reaction times

at the most frequent directions as revealed by pairwise

comparisons: reaction time at �32� was significantly

shorter than at all other directions (0�, MD = 0.104,

P = 0.001; �16�, MD = 0.068, P = 0.004; �64�,

MD = 0.139, P5 0.001), except for �48� (MD = 0.027,

P = 1.000). Furthermore, patients were found to also be

significantly slower than controls [F(1,41) = 4.11,

P = 0.049, �2
P = 0.091], but we found no interaction be-

tween group and motion direction [F(2.73,

111.76) = 0.66, P = 0.563, �2
P = 0.016]. Slow reaction time

is a hallmark of schizophrenia that has been documented

thoroughly in the literature in simple reaction-time tasks

using visual and/or auditory stimuli (Nuechterlein, 1977;

Fioravanti et al., 2012).

An even more direct way of assessing how the acquired

expectations influenced the detection of stimulus is to

Figure 3 Performance on low contrast trials by patients (blue lines) and controls (black lines). (A) Mean estimation bias as a

function of the true motion direction. (B) Estimation standard deviation (i.e. variability) as a function of the presented of motion direction.

(C) Lapse estimations as a function of motion direction, estimated using (Equation 1). (D) Reaction times during the estimation task as a function

of motion direction. (E) The fraction of trials in which the stimulus was detected as a function of the presented motion direction. The error bars

represent within-subject standard error. The vertical dashed lines correspond to the most frequently presented motion directions (i.e. �32�).

Significance levels are *P5 0.05, **P5 0.01, ***P5 0.001. These results are not affected by any violation of normality assumption (Supplementary

material).
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analyse the fraction of trials where participants explicitly

report seeing or not seeing the stimulus (Fig. 3E). We found

that the detection of stimulus was greatly affected by the

presented motion direction [F(2.36,96.64) = 8.51,

P50.001, �2
P = 0.172, Greenhouse-Geisser correction

" = 0.589], with stimulus at �32� being the most frequently

detected direction as shown by pairwise comparisons: de-

tection at �32� was significantly better than at all other

directions (0�, MD = 9.59, P = 0.004; �16�, MD = 6.48,

P = 0.001; �48�, MD = 6.54, P = 0.001; �64�,

MD = 12.35, P5 0.001). However, the groups were not

found to be different [main group effect: F(1,41) = 3.62,

P = 0.064, �2
P = 0.081; although there was no evidence for

the null hypothesis either, BF01 = 0.97; group � motion

direction interaction was also non-significant

F(2.36,96.64) = 1.11, P = 0.340, �2
P = 0.026].

Overall, these results indicate that, in terms of detection

responses (hit rates and reaction-time), similar benefits of

statistical learning were present in both patient and control

groups. Overall, behavioural measures suggest that prior

effects (e.g. bias, reaction time, and hit rate) became signifi-

cant as early as within first �100 trials for both patients

and controls (Supplementary Figs 3 and 4).

Perceived motion in absence of visual
stimuli (hallucinations)

Finally, we investigated whether the acquired statistics

about the motion stimulus affected the participants’ percep-

tion on trials where no stimulus was presented, but where

participants reported both a motion direction and seeing a

stimulus. We refer to this effect as hallucinations. These

hallucinations in our perceptual task are of course different

in terms of content and complexity from the visual hallu-

cinations observed in psychosis. However, the underlying

mechanisms might be informative to the understanding of

illusions and hallucinations in schizophrenia (Silverstein

and Keane 2011a, b; Notredame et al., 2014).

To quantify the probability ratio that participants made

estimates that were closer to the most frequently presented

motion directions relative to other directions, we multiplied

the probability that participants estimated within 16� of

these motion-directions by the total number of 32� bins:

Pratio ¼ P
�
�estimate ¼ �32ð�16Þ�

�
�Nbins ð6Þ

This probability would be equal to 1 if participants were

equally likely to estimate within 16� of �32� as they are to

estimate within the other 16� bins.

We found that the median value of ‘Pratio’ was signifi-

cantly greater than 1 for both patients and controls [me-

dian(Pratio) = 2.88, P = 0.003 and median(Pratio) = 2.75,

P50.001, respectively; two-tailed signed-rank test], indi-

cating that both patients and controls were much more

likely to hallucinate the most frequent motion directions

as opposed to all other directions (Fig. 4A and B).

Bayesian statistical analysis provided positive evidence for

the groups being the same in this measure (BF01 = 3.32).

Finally, hallucinations of the most frequent directions (i.e.

hallucinations at �32� �16�) were quick to develop during

the course of the experiment: they became significant after

only 150 trials for both controls (P = 0.036, one-tailed

signed-rank test; Supplementary Fig. 3D) and patients

(P = 0.035, one-tailed signed-rank test; Supplementary

Fig. 4D).

While both patients and controls hallucinated predomin-

antly towards the most frequently presented directions (i.e.

prior-based hallucinations), patients exhibited fewer of such

hallucinations (Fig. 4D; hallucinations within �16� of

�32�; P = 0.016, two-sided rank-sum test), and also ex-

hibited less hallucinations overall (Fig. 4C; P = 0.004,

two-sided rank-sum test). We wanted to know whether

the severity of the symptoms was predictive of the magni-

tude of this effect. However, we found no correlations be-

tween the number of hallucinations and the PANSS

positive, negative, general or total scores nor duration of

illness, or between the daily-dosage of anti-psychotics

(olanzapine equivalent; Andreasen et al., 2010; Leucht

et al., 2015) and the total number of hallucinations.

We also investigated the distribution of responses when

participants estimated the direction of motion but reported

not seeing any dots. Interestingly, in this subset of trials,

and unlike in our previous work (Chalk et al., 2010), esti-

mations were also more likely than chance to be made

around the most frequent motion directions by both pa-

tients and controls [median(Pratio) = 1.24, P = 0.002 and

median(Pratio) = 1.41, P = 0.045, respectively; two-sided

signed rank test]. One explanation for this might be habit-

ual effects—when the bar is moved towards the most fre-

quent directions out of motor habit. Another possible

explanation is that participants might have hallucinated

stimuli in the expected prior directions, but their confidence

about their percept being very low, they sometimes chose to

report not seeing any dots in the hope to give the correct

answer (each detection response was followed by immedi-

ate feedback).

Modelling results

We fitted the models to the behavioural data and computed

the Bayesian Information Criterion (BIC) for each partici-

pant, which quantifies goodness of fit while penalizing for

extra model complexity (preventing overfitting). We found

that the BAYES_P model had the smallest BIC for both

patients and controls (Fig. 5)—indicating best performance,

with a difference in BIC between the winning model

(BAYES_P) and the second best model (BAYES) being

410. This is equivalent to a log Bayes factor 410, and

is considered to be very strong or ‘decisive’ evidence in

favour of the winning model (Kaas and Raftery, 1995).

Model fits also showed that BAYES_P was much better

at fitting lapse estimations, confirming that such estimations

were sampled from the acquired prior distribution instead

of being uniformly distributed (Fig. 6C and G). We also ran
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a random effect Bayesian model selection analysis

(Daunizeau et al., 2014; Rigoux et al., 2014) to ensure

that the favoured model was not being selected due to a

subset of participants in each group. The analysis con-

firmed that BAYES_P was best at describing behaviour

for both groups (Fig. 5C and D). Moreover, we found a

strong correlation between the participant’s prior-based

lapse rate parameter recovered via BAYES_P and their

number of hallucinations (	b = 0.657, P5 0.001;

Kendall’s correlation; Fig. 7B). This suggests that prior-

based lapses [in the presence of a (very weak) stimulus]

and hallucinations (in absence of a stimulus) originate

from the same mechanism (Fig. 7A).

Finally, we compared patients and controls on the basis

of BAYES_P parameter estimates (Fig. 6I–L). Consistent

with the behavioural data analysis, we found no differences

in the acquired prior expectations (Fig. 6I and J; the mean

of acquired prior: P = 0.874, BF01 = 3.32; and the uncer-

tainty in the acquired prior: P = 0.401; two-tailed rank-

sum test; BF01 = 2.95). There were no differences in the

precision of sensory likelihood (Fig. 6K, P = 0.742,

two-tailed rank-sum test; BF01 = 2.96). Lastly, just as in

the behavioural data, we found that patients made less

prior-based lapse estimations (Fig. 6L, �prior-based:

P = 0.024, two-tailed rank-sum test), suggesting that patients

were less likely to perceive a sample from their prior in the

presence of a weak (possibly subthreshold) stimulus.

Parameter recovery for model BAYES_P

To gauge the reliability of our modelling results, we per-

formed parameter recovery for the winning BAYES_P

model. Parameter recovery consists of simulating synthetic

data with different sets of known parameter values (‘true

parameters’) for a given model and then fitting the same

model to the synthetic data to estimate and recover these

parameters (‘recovered parameters’). The strength of correl-

ation between the actual and recovered parameters meas-

ures the reliability of modelling results. Parameter recovery,

Figure 4 Estimation responses in the absence of stimulus. (A and B) Distribution of the estimation responses by patients and controls,

respectively. The vertical grey lines represent reported motion directions when no stimulus was present (i.e. hallucinations) pooled across each

group. The green line denotes the probability distribution of these hallucinations, which was produced using kernel density estimation. The red

line denotes probability distribution of responses that were followed by participants’ reporting seeing no stimulus. The orange line denotes all

estimations regardless of the detection response. In the main plots the data are averaged across the central motion direction, while the insets

show the corresponding distributions across the full range. (C and D) Comparison of patients and controls by (C) the total number of

hallucinations (P = 0.004, two-sided rank-sum test) and (D) the number of hallucinations around the most frequently presented motion directions

(within �16� of �32�; P = 0.016, two-sided rank-sum test). Red horizontal lines denote median values; blue horizontal lines denote 25th and 75th

percentiles. Black dots denote individual participants, grey areas represent density of the data points. Significance levels at *P5 0.05 and

**P5 0.01 respectively.
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just as the parameter estimation from behavioural data, is

sensitive to any correlations that might be present among

the model parameters, to the choice of parameter estima-

tion methods and also to the amount of data used for

model fitting. Therefore, parameter recovery serves as a

crucial step in validating the reliability of the modelling

results (Palminteri et al., 2017).

We found that the winning BAYES_P model recovered

parameters very well, which was reflected in the coefficient

of determination (R2) for all recovered parameters being

R25 0.84 (Supplementary Fig. 9).

Discussion
We were interested in testing the emerging model of schizo-

phrenia proposing that the disorder could stem from def-

icits in Bayesian inference (Corlett et al., 2009a, b; Fletcher

and Frith, 2009; Adams et al., 2013; Schmack et al., 2013,

2015, 2017; Teufel et al., 2015; Jardri et al., 2017; Powers

et al., 2017). The experimental paradigm we chose is well

suited to quantitatively assess the acquisition of sensory

priors, how these priors are used in perception, as well as

to quantify interindividual variability in the learning and

inference process (Chalk et al., 2010; Karvelis et al., 2018).

Acquisition of visual prior
expectations

We found that both the control and patient groups impli-

citly learned the statistics of the motion stimuli and that

those expectations modified their perception, consistent

with them acquiring a Bayesian prior of the stimulus stat-

istics and combining it with sensory evidence, replicating

our previous results (Chalk et al., 2010). This was reflected

by attractive estimation biases towards the frequently pre-

sented directions, faster reaction times and higher detection

rates at these directions, as well as hallucinated motion

directions in the absence of stimulus predominantly follow-

ing the most frequent directions.

Patients with schizophrenia were not qualitatively, nor

quantitatively different from controls in the measures

used to assess learning of the task statistics. This suggests

that while there are clearly domain-specific perceptual (e.g.

hallucinations) and learning deficits in schizophrenia (e.g.

Figure 5 Model comparison and selection. (A and B) Fixed effects model selection using Bayesian Information Criterion (BIC) for

(A) controls and (B) patients. X-axis measures the relative difference between BIC of each model (as indicated on y-axis) and BIC of BAYES_P

(winning model) summed across participants. Smaller BIC indicate a better model fit while penalizing for added model complexity. For both

patients and controls BAYES_P provided the best model evidence, 12 BIC units better than BAYES for patients and 146 BIC than BAYES for

controls. (C and D) Random effect Bayesian model selection for (C) controls and (D) patients. Higher protected exceedance probability indicates

a model having a higher likelihood of being more frequent among the subjects. For both patients and controls BAYES_P was the most likely model.

Insets show the distribution of Bayesian Factor for BAYES_P versus BAYES summarized by a box plot, jittered data scatter and a probability

density that was estimated using a normal kernel.
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jumping to conclusions), our study demonstrates that these

deficits are not due to a domain-general impairment in the

acquisition and/or utilization of statistical information in

the environment. That is, we find that patients with chronic

schizophrenia do not appear to be impaired in the acquisi-

tion of visual statistical priors in our task.

These results are consistent with studies finding no deficit

in implicit learning in schizophrenia (Kéri et al., 2000;

Danion et al., 2001; Marvel et al., 2005; for a review see

Gold et al., 2009). In contrast with studies that assay ex-

plicit statistical learning and inference using more cognitive

tasks (i.e. usually believed to involve frontal cortical re-

gions), here we measured implicit statistical learning of

visual stimuli that could be embodied in visual processing

areas rather than frontal cortices (Kok et al., 2013). In fact,

patients with schizophrenia appear relatively spared in im-

plicit learning tasks that do not require integrating feed-

back after each trial (Gold et al., 2009). These results are

also consistent with our previous study using the same

paradigm showing intact statistical learning in participants

with high schizotypal traits (Karvelis et al., 2018).

Impact of acquired visual prior
expectations

We found no difference between patients and controls as to

the influence of the acquired expectations on their perform-

ance regarding estimation of the motion directions. They

were not more or less biased towards the most frequent

directions, nor more or less variable in those estimations.

However, patients were found to differ from controls in

three ways: first, patients with schizophrenia displayed sig-

nificantly poorer contrast discrimination thresholds and

slower reactions times, as documented in previous studies.

Second, and more interestingly, patients reported signifi-

cantly fewer hallucinations at all directions and fewer hal-

lucinations of the most frequently presented motion

directions. Third, patients exhibited fewer prior-based

Figure 6 Model fits and parameter estimates. (A–H) Model fits for the best fitting model BAYES_P (green) and the second best model

BAYES (yellow), to the behavioural data (black). (A–D) controls and (E–H) patients. (A and E) estimation bias, (B and F) estimation variability, (C

and G) estimation lapse rate, (D and H) prior expectations of each individual (transparent green) and group average (thick green) as estimated via

BAYES_P model. The vertical dashed lines correspond to the most frequently presented motion directions (i.e. �32�). The error bars represent

within-subject standard error. (I–L) Comparison of BAYES_P model parameter estimates of patients and controls. (I) �expected = the mean of

acquired prior (P = 0.874, two-tailed rank-sum test; BF01 = 3.32), (J) �expected = the uncertainty in the acquired prior (P = 0.401, two-tailed rank-

sum test; BF01 = 2.95), (K) �sensory = the uncertainty of sensory likelihood (P = 0.742, two-tailed rank-sum test; BF01 = 2.96), (L) �prior-base-

d = prior-based lapse rate (P = 0.024, two-tailed rank-sum test). Red horizontal lines denote median values; blue horizontal lines denote 25th and

75th percentiles. Black dots denote individual participants, grey areas represent density of the data points. Significance level *P5 0.05. See

Supplementary Figs 7 and 8 for the model fits of individual biases.
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lapse estimations than controls on low contrast trials. We

argue that prior-based lapses (defined for low contrast

trials) and hallucinations (defined for no-stimulus trials)

are underlined by the same mechanism. Because of the con-

vergence of the contrast staircases, contrast levels in our

task hover around the detection threshold, which means

that on a significant number of trials the stimulus contrast

falls below the participants’ threshold of perception, effect-

ively becoming invisible and equivalent to trials with no

stimulus. If participants experience hallucinations on these

trials (and thus report that they have perceived a stimulus),

these will be expressed in our results as prior-based lapse

estimations. In support for this interpretation, we found

that there were significantly more lapse estimations made

on trials when the stimulus contrast was below the partici-

pants’ 75% detection threshold (based on their individual

psychometric curve) than when it was above

[F(1,84) = 12.61, P50.001; Fig. 7A] and we found a

strong correlation between prior-based lapse rate on thresh-

old contrast trials and number of hallucinations on no-

stimulus trials (Fig. 7B). Together, this suggests that al-

though patients appear to acquire the same prior as con-

trols, they tend to hallucinate this prior less often than

controls when there is no stimulus, or when the stimulus

is below detection threshold.

Interestingly, this diminished impact of prior expectations

in the detection task was not observed in our previous

work in participants with high schizotypal traits (Karvelis

et al., 2018), suggesting that it might be characteristic of

the chronic state of schizophrenia.

The fact that patients exhibit fewer prior-based lapses

and hallucinations suggests that their perception is less

influenced by their learned prior expectations than control

participants. This is consistent with previously reported

findings suggesting that patients with chronic schizophrenia

are less sensitive to expectation-driven illusions (e.g. the

hollow-mask illusion) than controls (Tschacher et al.,

2006; Dima et al., 2009; Crawford et al., 2010; Horton

and Silverstein, 2011; Keane et al., 2013, Notredame et al.,

2014). This finding is also in line with results from

Schmack et al. (2013, 2015), reporting a decreased influ-

ence of induced expectations (priors) on perception.

It is intriguing, however, that the influence of prior ex-

pectations is weaker in the detection task, but similar to

that of controls for the estimation task. This may reflect the

fact that conscious detection and estimation may depend on

different processing stages, with possibly different represen-

tations for the prior distributions, or involve different map-

pings between representations and responses (Petzschner

et al., 2015). In future work we will aim to address the

possible neural substrate for the effects we describe, by

modelling how prior distributions could modulate visual

responses or their read-out (Seriès et al., 2009) to explain

differential biases in different dimensions.

Other factors might contribute to the absence of differ-

ences in the estimation bias. One factor might be that few

of our patients reported clinically significant levels of hal-

lucinations (PANSS items 43), and that this propensity

might be more pertinent than the diagnosis of schizophre-

nia per se (Powers et al., 2017). We found some evidence

supporting the fact that patients who express fewer or

weaker positive symptoms differ more from controls in

our task than patients who express more or stronger posi-

tive symptoms: PANSS Positive symptom score and prior-

based lapses (estimated via BAYES_P) were close to being

negatively correlated (	b = �0.314, P = 0.063; Kendall’s

Figure 7 Relationship between lapse estimations and hallucinations. (A) The amount of lapse estimations at different stimulus contrast

levels. Contrast staircase trials were split into two subsets along the 75% detection threshold, which was determined for each individual from

their psychometric curves. The data then was pooled across both patient and control groups. We found that the number of lapse estimations

depended on the presented contrast level with more lapse estimations being made at lower contrasts [F(1,84) = 12.61, P5 0.001]. This supports

our interpretation that these estimations can be interpreted, at least partly, as hallucinations on trials when the stimulus was too weak to be

visible. The error bars represent within-subject errors. (B) Prior-based lapses and hallucinations. A strong positive correlation between prior-

based lapse rate parameter (recovered via BAYES_P model) on low contrast trials and number of hallucinations on no-stimulus trials (	b = 0.657,

P5 0.001; Kendall’s correlation) provided further support that the two phenomena are driven by the same mechanism (i.e. sampling from the

prior).
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correlation; Supplementary Fig. 5A); this relationship was

also backed up by a much stronger correlation for when

lapse estimations were estimated directly from the behav-

ioural data using Equation 1 (	b = �0.465, P = 0.006;

Kendall’s correlation; Supplementary Fig. 5B). However,

it should be noted that no correlation was found between

the PANSS Positive symptom score and the number of hal-

lucinations exhibited on no-stimulus trials.

Similarly, the absence of stronger effects might be related

to illness duration: weaker estimation biases may be char-

acteristic of earlier stages of the illness but may not be

detectable anymore in our patients as they have been gen-

erally ill for a long time, due to medication or compensa-

tory mechanisms. We find some support for this idea with a

significant correlation between duration of illness and mag-

nitude of estimation bias (	b = 0.523, P = 0.003; Kendall’s

correlation; Supplementary Fig. 5C).

Finally, since the differences appear only for the detection

part of the task, it might be that chronic patients have

simply developed an increased perceptual threshold.

Following this idea, patients would require stronger evi-

dence (i.e. sharper posterior) in order to perceive a stimulus

or to make a decision about the presence of a stimulus.

This is consistent with the fact that patients required

higher stimulus contrasts and integrated information over

longer periods of time before responding (slower reaction

times during the estimation task). We therefore hypothesize

that it is a possible adaptation strategy used by patients

over time to minimize responses to stimuli that were not

truly present (i.e. their psychotic hallucinations).

Taken together, our results suggest that statistical learn-

ing is intact in relatively well patients with chronic schizo-

phrenia on stable doses of second generation antipsychotic

medication. The impact of their acquired priors is also the

same as that of controls in the estimation task, but weaker

in the detection task. These results are surprising in view of

the current prominent theories proposing that schizophre-

nia is a disorder of predictive processing or Bayesian infer-

ence, and suggest ways in which these accounts need to be

nuanced. The similarity of controls and patients’ perform-

ance in our task may however be related to the success of

treatment or some other adaptive process related to illness

duration. Future work will aim at testing participants at

earlier stages of the illness, and ideally before pharmaco-

logical treatment has begun.
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