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Abstract

Stochastic Modeling and Analysis of DNA Polymerase Kinetics Based on

Observed Dwell Times

by

George Reyes Labaria

DNA Polymerases (DNAPs) are enzymes that make DNA molecules by assem-

bling nucleotides and are responsible for copying the genome in all cells. Fidelity

in genome replication is essential for genome integrity. Replication errors could

lead to mutations which lead to diseases, including cancer. DNAPs selectively

bind a deoxyribonucleoside triphosphate (dNTP) that is complementary to the

template nucleotide of the DNA they are copying. After the covalent incorpora-

tion of a complementary nucleotide into the newly synthesized DNA strand, the

DNAP moves onto the next template nucleotide in the translocation step driven

by thermal fluctuations, allowing for a new round of binding. The binding and

incorporation of a nucleotide, along with the translocation step, consist of a full

nucleotide addition cycle. Nanopore experiments allow us to observe the DNAP

translocation along the template strand with single-nucleotide spatial precision

and millisecond temporal resolution. We develop mathematical formulations and

methods to infer the kinetic details of the nucleotide addition cycle from dwell

time data obtained from the nanopore experiments. We fully characterize the

uncertainty in the inferred kinetic details, and show that the uncertainty can be

controlled in experimental design. We show that a dimensionless quantity based

on the randomness parameter provides a lower and upper bounds on the num-

ber of biochemical states in the polymerization (pol) step of a replication cycle.

Understanding the kinetic details of the nucleotide addition cycle is essential to

xiv



elucidating the mechanisms which regulate fidelity. The inference methods we

developed can be applied to other single molecule experiments in which dwell

time samples are observable. More importantly, the analysis results and methods

for designing optimal experimental conditions will motivate more meaningful and

informative single molecule measurements.
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Chapter 1

Introduction

DNA Polymerases (DNAP) are enzymes that create DNA molecules by assem-

bling nucleotides and are responsible for copying the genome in all cells. Fidelity of

the replication is essential for avoiding mutations which can lead to disease, includ-

ing cancer. DNAPs selectively bind a deoxyribonucleoside triphosphate (dNTP)

that is complementary to the template nucleotide. This selection must be made

over non-complementary dNTPs and over ribonucleoside triphosphates (rNTPs).

In addition to discriminating against non-complementary dNTPs and rNTPs in

nucleotide binding, fidelity is also achieved by 3’ to 5’ exonucleolytic editing of

non-complementary dNTPs that have escaped the initial discrimination and were

incorporated into the DNA. These coordinated activities give DNAPs an error rate

of about one mistake per 108-109 base pairs, mostly in bacteria [63]. Error rates

can be as high as one mistake per 102-103 base pairs in error-prone polymerase

genes in humans [34]. After incorporation of a complementary dNTP, DNAPs

must translocate a distance of one nucleotide to reset the DNAP active site for the

next nucleotide addition cycle. Errors in translocation can cause frameshift muta-

tions and deletion errors. Understanding the kinetic steps of nucleotide addition

cycle–translocation, exonucleolytic editing, dNTP binding, dNTP incorporation,
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and the kinetic structure of the polymerization process are essential to elucidating

the mechanisms which regulate fidelity.

Cells have multiple pathways that can correct replication errors

[23], [37], [40], [46], [47], [53], [54], [64], [66], and [69]. The mechanisms that dis-

criminate against incorrect nucleobases and sugars for incoming nucleotide sub-

strates has been studied for numerous DNAPs [7], [33], [39], and [75]. The struc-

ture of the DNAP domain is highly conserved and resembles a partially closed

right hand. In this right hand analogy, the DNAP domain has palm, fingers,

and thumb subdomains [6], [22], [25], [35], [30]. The palm subdomain contains

residues that are required for catalysis. The thumb subdomain positions the

primer-template in the active site. In DNAP-DNA complexes, containing comple-

mentary dNTP to the templating nucleotide, the fingers subdomain moves relaive

to its position in complexes without a dNTP. Here, the fingers close and move

toward the DNAP active site (the palm) to obtain a tight steric fit for the nascent

base pair. Correct nucleotide substrates promote pre-chemistry conformational

changes that are necessary to achieve optimal alignment in the DNAP active site,

while incorrect nucleotides do this less efficiently [75]. The kinetics of nucleotide

discrimination based on ensemble pre-steady state essays have been carried out

in the past [33] [38]. Although studies such as these have provided lots of infor-

mation on the kinetics of discrimination, many kinetics aspects of discrimination

have yet to be determined.

The DNAP is a molecular motor that moves from the 3’ end to the 5’ end of

the template strand of the DNA. The DNAP converts chemical energy into me-

chanical work and motion [1], [4], [41], [43], [44]. Chemical energy derived from the

polymerization of the primer strand is used to drive the DNAP in a unidirectional

manner, generating force against mechanical barriers and hydrodynamic drag [76].
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The DNAP can be thought of as a small machine operating in a thermal bath,

subject to fluctuations in conformation and chemical state. These microscopic

fluctuations are not observable in the ensemble averages of bulk experiments, but

some can be directly observed in single molecule experiments. This physical pic-

ture of the DNAP corresponds to a random walk of a particle guided by the

free-energy surface of the system in which the mechanical motion and chemical

reaction are coupled [4], [12], [41] (figure 1.1). The diffusion fluxes that result from

this random walk give the the chemical reaction rates and mechanical velocities

of the DNAP [12], [41].
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position, y

free energy, V(s,y)

ΔV

Δy

Δs

particle
pre exo

post dNTP

pre exo

post dNTP
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2

y
3
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Figure 1.1: DNAP can be modeled as a particle undergoing a random walk on
a free-energy surface. Collision by the bath molecules make the particle undergo
Brownian motion that is statistically biased by the free-energy surface.

In this view, molecules in the surrounding bath collide with the DNAP (a

larger particle), causing it to undergo Brownian motion; the resulting motion is

biased by the free-energy surface. The particle spends a significant amount of time
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in equilibrium in the potential wells of the surface, occasionally fluctuating out,

driven by the thermal noise, via low-energy barriers. If the particle starts in the

potential well labeled “pre” in figure 1.1, the particle will likely fluctuate along the

low-energy bridge (denoted by a green contour) to the “post” well. Since this fluc-

tuation is parallel to the position coordinate, this manifests a change in position

of the DNAP motor with no change in chemical occupancy. These fluctuations

between the pre and post states may occur many times before the particle fluctu-

ates to the “dNTP” well. The fluctuation to dNTP depends on the availability of

dNTP molecules in bulk solution. It involves the change of chemical occupancy

of the catalytic site and is parallel to the chemistry coordinate; it does not di-

rectly induce any translocation between the DNAP motor and DNA substrate.

After dNTP binding, the system will incorporate the nucleotide, experiencing a

large drop in free energy of magnitude ∆V . Then the system will fluctuate to the

pre-translocation state of the next cycle. After nucleotide incorporation, in the

absence of any catalyst, the particle will not fluctuate back to the previous cycle

due the large free energy barrier.

This describes a Brownian ratchet. For a Brownian ratchet, chemical reaction

does not provide a direct active force for the motion. Instead of directly driving

the motor, chemistry selects the forward fluctuations and prevents the backwards

fluctuations. Over a long time, the particle moves forward in position, producing

useful work from the random thermal noise of the bath in the presence of the

chemical gradient (see for example, [12]). The reasoning behind the way the free-

energy surface was drawn in figure 1.1 and the claim that the DNAP is a Brownian

ratchet motor will become clear in the later chapters.

Due to the small size of the DNAP, the effect of inertia is negligible. Each

attempt of the particle at crossing over an energy barrier ends with either arriving
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at a new local minimum or returning to the current minimum, and the time spent

in the actual crossing of the energy barrier is a small fraction of the total waiting

time. It is believed that the potential well of each chemical state is a collection

of small energy ripples, where the magnitude of the ripples are smaller than the

available energy in the bath (< kBT ) where kB is the Boltzmann constant, and T

is the temperature [29] (see figure 1.2). The result is that the particle will fluctuate

post dNTP

pre exo

Free energy, V(s)

chemistry, s 

>k
b
T

postpost

>k
b
T

fast

<k
b
T

slow

particle

post

Figure 1.2: Low energy ripples (< kBT ) lead to fast fluctuations of the particle
inside the well. Since the energy barriers around the well are much higher (> kBT ),
the timescale of fluctuating between wells is much slower. This separation of
timescales lead to “memorylessness” in the system.

rapidly inside a well before eventually escaping to another potential well. Since

the energy barriers of the well are much larger than kBT , the fluctuations to

other potential wells are on a much slower timescale. The effect of this separation

of timescales is that the faster fluctuations inside the well will average out any

differences in residence time of the particle within the well due to the exact position

of the particle inside the well [29]. Approximately, as a result, the system looses all

memory of the previous states; the previous attempts at crossing over an energy

barrier; and the time elapsed since arriving at the present state. The future

evolution of the system is hence solely governed by the present state and the
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stochastic thermal fluctuations from the environment. Thus we can characterize

the system as a time-homogeneous, continuous-time Markov process [41], [45].

This provides a well-defined framework for studying the DNAP.

If the energy barriers surrounding the potential wells are not significantly

higher, so that there is no longer adequate separation of timescales, the descrip-

tion of molecular motor dynamics using a memoryless particle undergoing discrete

jumps between wells is no longer valid [44]. In this situation, the fluctuations be-

tween wells are not significantly slower than the relaxation time of a particle

undergoing fluctuations within a well. The result here is that the residence time

within the well may depend on the previous state. It is believed that the internal

fluctuations within a well are on the nanosecond or faster timescale [29]. Hence

Markov description of particle dynamics on the millisecond or larger timescale will

be unlikely affected by these faster fluctuations. As we will briefly describe later

in this section, and more thoroughly covered in any aforementioned references,

the nanopore experiments we will be discussing here have time-resolution at the

sub-millisecond (>> ns) temporal resolution. We thus do not concern ourselves

with these complications. However, as future experimental techniques increase in

resolution in both space and time, more complicated models for particle dynamics

will have to be considered [77].

The DNAP moves in single nucleotide increments, and the movement from

one nucleotide to the next is known as DNAP translocation or translocation

step [18], [48]. The translocation and subsequent incorporation of a complemen-

tary nucleotide is known as the nucleotide addition cycle. Despite the importance

of the translocation step, dNTP binding and incorporation, and exonucleolytic

editing in understanding the mechanisms that regulate replication fidelity, their

kinetics are not well understood. Previous work has been done to determine
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the kinetic structure and estimate the kinetic rates from dwell time data of non-

synthesizing DNAP-DNA complexes [18], [19], [49], [50], [51].

Extracting kinetic parameters of the DNAP-DNA complex using ensemble

methods is very difficult. Single-molecule experiments designed to study this also

require a challenging combination of high spatial and temporal resolution since

the translocation step involves a spatial displacement of only 0.3nm [3]. The

translocation step of the bacteriophage φ-29 DNAP can be directly observed at

the single-molecule level using an α-hemolysin nanopore with single nucleotide

spatial and sub-millisecond temporal resolution [18]. In the past couple decades,

nanopore experiments have become an important tool to study DNA and DNAPs

at the single-molecule level [2], [5], [21], [26], and [48].

We use the bacteriophage φ-29 DNAP as a model system to study the translo-

cation step and its kinetics. The φ-29 DNAP catalyzes highly processive DNA

replication without the need for accessory proteins [9]. This provides a robust and

high throughput experimental assay for studying the kinetics of the translocation

step in the framework of rigorous mathematical models. The φ-29 DNAP is in

the B family of DNAPs, which includes DNAPs δ and ε. Among members of the

B family, the structures and mechanisms which contribute to replication fidelity

are highly conserved [6], [31], [32], [71], [74]. Mutations in the human polymerase

genes for pol δ and pol ε are linked to colon and endometrial cancers [17], [28], [61].

Thus to understand these cancers, the mechanisms which regulate fidelity in the

φ-29 DNAP must be understood in detail.

The nanopore experiments allow us to observe individual DNAP-DNA com-

plexes at specific known positions along the DNA template and control replication

of DNA molecules [15], [18], [19], [48], [49], [50], and [51]. In each experiment,

thousands of DNAP-DNA complexes can be examined individually.
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In the nanopore experiments, DNAP-DNA complexes diffuse in bulk and cap-

tured atop an α-hemolysin nanopore which is embedded in a lipid membrane that

separates two chambers. The nanopore is wide enough to accommodate only a

single-strand DNA. A voltage is applied across the membrane and the ionic cur-

rent trace, carried by potassium and chloride ions, is measured (figure 1.3). In

cis

trans

A

V -

+

alpha-HL nanopore

lipid bilayer

limiting aperture K+

Cl-

Figure 1.3: Schematic diagram of the nanopore experiment.

this setup, DNAP-DNA complexes from bulk are driven towards the nanopore

by the electric field. The nanopore is only wide enough to accommodate a sin-

gle strand of DNA, and so the driven DNAP-DNA complex perches atop the

nanopore with the single-strand of DNA suspended through the nanopore lumen

(figure 1.4). More thorough introductions to the experimental setup can be found

in [18], [19], [49], [50], and [51].

The ability to detect DNA displacement is achieved by a reporter group in the

template strand, formed by five consecutive abasic residues. The abasic reporter

group is thinner than the surrounding nucleobases, so the reporter group region

allows for more ion flow through the limiting aperture of the nanopore. This in

turn results in an increase in measured current amplitude as the reporter group

nears the limiting aperture, and a decrease in amplitude as the reporter group
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moves further away from the aperture. The abasic reporter group thus reports

on the direction and distance of the DNA substrate relative to the DNAP and

nanopore during reactions [15] [18], [48] (figure 1.6).

Experimental data suggests that the ionic current trace will undergo iterative

transitions across the translocation step when the DNAP-DNA complexes are not

allowed to undergo synthesis (figure 1.4) [18]. The equilibrium across the DNAP

translocation step is dependent on applied force, dNTP concentration, and by the

DNA sequences close to the DNAP active site [18]. The experimental observations

support a model in which the DNAP-DNA complex fluctuates between these two

states and is driven by Brownian thermal motion [18]. The dNTP binding only

occurs after transition to the post-translocation state, and the DNAP-DNA com-

plex is rectified to the lower-amplitude, post-translocation state after dNTP bind-

ing [18]. The presence of dNTP shifts the translocation step equilibrium towards

the lower amplitude, post-translocation state [50]. The pre-translocation state

is also a branch point in which transfer of the primer strand to the exonuclease

active site can occur [51]. When exonuclease activity is blocked, transition to the

exonuclease is succeeded by a subsequent transition back to the pre-translocation

state. In this setting, the DNAP-DNA complex will undergo stochastic transitions

among the pre-translocation, post-translocation, exonuclease, and dNTP-bound

states (figure 1.5). When using the DNA substrate described in [50], the upper

and lower amplitudes are centered at about 32pA and 26pA, respectively when a

voltage of 180mV is applied.

When the DNAP-DNA complex is allowed to undergo synthesis and com-

plementary dNTP are provided in the cis chamber, then the ionic current will

fluctuate in discrete amplitude levels. During synthesis, as the captured DNAP-

DNA complex sits atop the nanopore, the template strand is drawn through the
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upper-amplitude, pre-translocation

lower-amplitude, post-translocation

nanopore

DNAP-DNA complex

nanopore

abasic reporter group

Figure 1.4: A schematic diagram of the membrane with embedded nanopore.
The current amplitude level drops when a DNAP-DNA complex is captured atop
the pore. When the captured DNAP-DNA complex is not allowed to undergo
synthesis, the ionic current fluctuates between two distinct amplitude levels which
corresponds to the upper-amplitude, pre-translocation and lower-amplitude, post-
translocation states.

limiting aperture of the nanopore. The abasic reporter group is thus drawn closer

to the limiting aperture and the measured ionic current level increases. When the

reporter group is centered in the limiting aperture, the measured current traces

reaches its maximum. Finally, after the reporter group passes through the limiting

aperture, the current rapidly decreases (figure 1.6).

A blocking oligomer achieves (1) the protection of DNA in bulk phase from φ-29
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Figure 1.5: The relevant states and a representative current trace for one nu-
cleotide addition cycle. Here, incorporation of a complementary nucleotide is
blocked, preventing the DNAP-DNA complex from transitioning to the next nu-
cleotide addition cycle.

DNAP-catalyzed replication and exonucleolysis; (2) capture-depended initiation

of synthesis [15],[60]. Without the blocking oligomer, the suspended DNAP-DNA

complexes in bulk will have already undergone synthesis before capture atop the

nanopore. The blocking oligomer is attached to the template strand of the primer-

template substrate immediately adjacent to the primer terminus and features a

string of complementary residues capped by a tail of several abasic residues and

a three-carbon spacer at the end. Upon capture of the DNAP-DNA complex

atop the nanopore, the blocking oligomer is unzipped. This is facilitated by the

non-complementary tail and the force induced by the voltage [15], [60].

In this setting, the abasic amplitude peak will be traversed twice [15] (see

figure 1.7). The first traversal occurs as the blocking oligomer is unzipped upon

capture and the template abasic reporter group is moved through the nanopore

lumen into the trans chamber by the force induced by the voltage. Upon unzip-

ping of the blocking oligomer, the DNAP encounters an exposed primer terminus

and synthesis occurs. This draws the template strand with the abasic residues

upwards. The abasic residues again move through the limiting aperture of the
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Figure 1.6: A schematic diagram of a DNAP-DNA complex undergoing synthesis
captured atop a nanopore. With the absence of a DNAP-DNA complex captured
atop the pore, the ionic current is at its highest (1). Upon capture, the ionic
current is partially blocked, resulting in a large decrease in ionic current (2); As
the complex begins synthesis, the reporter group is drawn towards the limiting
aperture of the nanopore, manifested by an increase in current. When the reporter
group is centered in the limiting aperture, the measured current trace reaches its
maximum (3). After the reporter group passes through the limiting aperture of
the nanopore, the current rapidly decreases (4).

nanopore, providing a second current peak qualitatively similar to figure 1.6.

Using the DNA substrate in [15], there are 25 nucleotide addition cycles cat-

alyzed by the φ-29 DNAP. The amplitude levels corresponding to the 25 cycles

were determined in a series of mapping experiments [15]. There are a subset of

cycles that yield distinct current amplitude levels. Focusing on the 17th-19th nu-

cleotide addition cycles, the current amplitudes for these cycles are about 31pA,

26pA, and 23.5pA, respectively at 180mV. Such a current amplitude trace will be

qualitatively similar to the one in figure 1.8.

As we will see, the dwell times contain a lot of information about the ki-
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Figure 1.7: Schematic diagram of a DNAP-DNA complex with blocking
oligomer. With the absence of the complex captured atop the nanopore, the
ionic current is at its highest (i); upon capture, force induced by the voltage pulls
the template strang downwards and unzips the blocking oligomer leading to suc-
cessive increases in current (ii); when the abasic reporter group is directly aligned
with the limiting aperture, the current trace is at its relative highest (iii); the
current drops rapidly as the reporter group passes the limiting aperture and the
blocking oligomer is ejected when it is fully unzipped from the template strand
(iv); when the blocking oligomer is ejected, a primer-template terminus is exposed
an the DNAP begins synthesis, drawing the template strand upwards against the
force induced by the voltage. The current trace from here forward in time is
qualitatively similar to that in labels (2)-(4) in figure 1.6.

netic structure of the nucleotide addition cycle. This dissertation focuses on what

can be inferred from the dwell time data obtained during nanopore experiments.

In chapter 2, we start with analyzing dwell time data from nanopore experi-

ments in which the DNAP-DNA complexes cannot proceed to the chemical step

of phosphodiester bond formation. In this situation, the DNAP-DNA complexes

stochastically transition between four biochemical states: pre-translocation, post-

translocation, exonuclease, and dNTP-bound states [18], [19], [49], [50], and [51].

We will review the previous work done in this regime and present a new method
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Figure 1.8: A state-space diagram for two nucleotide addition cycles in DNA
replication. When the DNAP-DNA complex is allowed to undergo synthesis and
a complementary dNTP is provided in the cis chamber, the DNAP-DNA complex
can transition to the next nucleotide addition cycle–indicated by the “+” symbol
after the state names. This is manifested as a change in the upper and lower
amplitudes as the reporter group gets closer or further away from the nanopore
lumen.

for inferring the kinetic rates based on maximum-likelihood estimation. We will

show that the dNTP concentration, which can be controlled in the nanopore ex-

periments, plays an important role in regulating the statistical uncertainty of the

inferred dNTP binding and disassociation rates from dwell time data. Care must

therefore be taken when choosing the dNTP concentration in the experiments. We

characterize the inference uncertainty in the inferred dNTP binding and disasso-

ciation rates, and show how optimal experimental conditions can be determined.

The methodology for choosing optimal experimental conditions will be extended

to include constraints on the experimental time. We end this chapter with a char-

acterization of the effects of multiplicative noise in the observed dwell times on

the inferred kinetic rates.

In chapter 3, we will extend the results in chapter 2 by considering synthesiz-

ing DNAP-DNA complexes which can proceed through the polymerization process

and incorporate a complmentary dNTP. In this context, the polymerization pro-

cess is modeled as a single rate-limiting step from the dNTP-bound state to the
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pre-translocation state of the next nucleotide addition cycle. To the best of our

knowledge, a stochastic model for DNAP-DNA complexes going through multiple

nucleotide addition cycles based on observed dwell times has not been examined

in the literature. We show that in regards to the relevant dwell times, synthe-

sizing DNAP-DNA complexes can be mathematically mapped to an equivalent

non-synthesizing complex with modified backwards translocation, dNTP binding,

and dNTP disassociation rates. Therefore any inference methods and analysis

based on dwell times for non-synthesizing complexes can be applied to synthesiz-

ing complexes.

Finally, in chapter 4, a general polymerization (pol) process is examined. In

chapter 3, the pol process is modeled as a single rate-limiting step. The kinetic

details of the polymerization process for DNAP-DNA complexes is largely un-

known, but it consists of least binding, chemistry, and pyrophosphate release.

Determining the number of effective kinetic states in the pol process is essential

to discovering any fidelity regulating mechanisms in the dNTP incorporation step.

We develop methods to infer the kinetic details of the pol process from dwell time

data by examining a quantity based on the randomness parameter of the dwell

times. In certain idealized situations, this quantity can determine the number of

steps in the pol process exactly. In the more general case, we present a conjecture

that puts a bounds on the number of steps on the polymerization process.
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Chapter 2

Dynamics of dNTP Binding in

Non-Synthesizing DNAP-DNA

Complexes

2.1 Introduction

In this chapter, we determine the dNTP binding and disassociation rates

using dwell time data for non-synthesizing DNAP-DNA complexes that cannot

proceed to the chemical step of phosphodiester bond formation. In this setting,

the DNAP-DNA complex stochastically transitions between the pre-translocation,

post-translocation, exonuclease, and dNTP-bound states (figure 2.1). We derive

the probability density function (PDF) underlying the dwell time data and deter-

mine the maximum-likelihood estimates of the binding and disassociation rates

by use of the expectation-maximization (EM) algorithm. Previous work has been

done to estimate these rates by use of a autocorrelation function of the entire cur-

rent amplitude measured from nanopore experiments [50]. We will show that our
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Figure 2.1: The relevant states and a representative current trace for one nu-
cleotide addition cycle. Here, incorporation of a complementary nucleotide is
blocked, preventing the DNAP-DNA complex from transitioning to the next nu-
cleotide addition cycle.

method is robust against measurement noise and that the framework is general

enough to be applied to other Markovian phenomena in which dwell time data is

available.

Recall that in the synthesizing case, the ionic current trace covers more than

one nucleotide addition cycle if complementary dNTP are provided in the cis

chamber (figure 2.2). We define various dwell times of interest.

• TA: the time from the first arrival to the post-translocation state of the

current nucleotide addition cycle, to the last arrival to the post-translocation

state of the current nucleotide addition cycle; this is shown graphically as

the blue square to the green circle in figure 2.2.

• TB: the time from the last arrival to the post-translocation state of the

current nucleotide addition cycle to the first arrival to the post-translocation

state of the next nucleotide addition cycle; this is shown graphically as the

green circle to the magenta hexagon in figure 2.2.

• T (1): the lower-amplitude dwell times within the TA dwell time segment
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Figure 2.2: A state-space diagram for two nucleotide addition cycles in DNA
replication. When the DNAP-DNA complex is allowed to undergo synthesis and
a complementary dNTP is provided in the cis chamber, the DNAP-DNA complex
can transition to the next nucleotide addition cycle–indicated by the “+” symbol
after the state names. This is manifested as a change in the upper and lower
amplitudes as the reporter group gets closer or further away from the nanopore
lumen.

(figure 2.2). In any observation of TA, there are likely to be many samples

of T (1) and we label them as T (1)
1 , T

(1)
2 , T

(1)
3 , . . . , etc (figure 2.1).

The transition rates r1, r2, r3, r4, kon, koff , and kpol shown in figures 2.1 and 2.2

are defined as follows. Each transition rate is written next to an arrow originating

from state i and ending at state j. That transition rate is the rate of which

the DNAP-DNA complex transitions from state i to state j. For example, r1 is

the rate of which the DNAP-DNA complex transitions from the pre-translocation

state to the post-translocation state. Mathematically, we can write

r1 = lim
∆t→0+

Pr (X (t+ ∆t) = Post | X (t) = Pre)
∆t ,

where X (t) denotes the state of the Markov chain at time t. The other transition

rates are defined in a similar manner.

In this chapter, we are interested in the case in which the DNAP-DNA complex

cannot undergo synthesis; a mutation is engineered into the DNAP which prohibits
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dNTP incorporation, blocking the incorporation step of the polymerization pro-

cess. Hence kpol = 0 in figure 2.2. The DNAP-DNA complex will thus undergo

stochastic transitions among the pre-translocation, post-translocation, exonucle-

ase, and dNTP-bound states without ever proceeding to the next nucleotide addi-

tion cycle (figure 2.1). A mutation is also engineered into the exonuclease so that

cleaving of the dNTP cannot occur. We are interested in inferring the transition

rates kon and koff from the T (1) data. In this situation, observing T (1) is not

in competition with TB, since the DNAP-DNA complex will not go through the

irreversible polymerization process. This provides a simplified situation in which

to examine the information content of the T (1) data.

In [50], the transition rates kon and koff were inferred by from the measured

current trace data by use of the autocorrelation function of the measured current

trace. Here, we take a different approach. We consider only the lower-amplitudes

of the current trace, the T (1) data, and derive its probability density function

(PDF). Considering only the lower-amplitude data allows us to isolate the kinetic

rates r2, kon, and koff . We will show that the PDF of T (1) is a proper mixture

of exponential modes and thus fits naturally into an expectation-maximization

framework for finding the MLE estimates of the mixture parameters. The in-

ferred mixture parameters are then mapped to the kinetic rates kon and koff .

We will show that this method provides satisfactory results when tested against

simulated data and is robust even when the observed T (1) data is subject to high

measurement noise. The techniques used here to derive the PDF of T (1) and

the subsequent setup of the EM framework can be used as a guide for inferring

parameters from other Markov models using escape-time data.

We characterize the inference uncertainty by considering the total relative error

which we define to be the sum of the relative errors of kon and koff . Using the
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observed Fisher information matrix, we can compute the inference uncertainty of

the mixture parameters without the need for full Monte Carlo simulations. The

inference uncertainty of the mixture parameters will then be propagated to the

kinetic rates by a first-order Taylor expansion. To simplify our analysis, we will

introduce scaling laws and show that the total relative error is a function of a

scaled version of [dNTP ] and a scaled version of koff only. Using this fact, we

can build a table of which the total relative error of any kon and koff can be

calculated from a priori. We mention that this table can be extended to compute

the inference uncertainty for the dNTP binding, disassociation, and incorporation

rates for synthesizing DNAP-DNA complexes. This will be covered in chapter 3.

We also discuss experimental design in finding the optimal [dNTP ]. As will

become evident in the Monte Carlo simulations and from the total relative error

as a function of the scaled [dNTP ] and scaled koff , there is a well defined min-

imum total relative error in the [dNTP ]-direction for each koff . As we will see,

this optimal [dNTP ] may lead to long experimental run-times, so we extend the

optimization problem to a constrained optimization problem in which the mean-

field approximation to the experimental run-time is used for the constraint. We

show numerically that using the mean-field approximation is justified.

Finally, we characterize the effect of multiplicative noise in the measured dwell

time samples. We show that under multiplicative noise of the form exp (σζ) where

σ is the standard deviation and ζ ∼ N (0, 1), the effect on the inferred kinetic rates

can be characterized exactly.

2.2 Mathematical Formulations

To derive the PDF of T (1), consider the general escape problem with state-

space shown in figure 2.3. Note that for notational convenience, we have recycled
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the use of the rates r1, r2 and r3; they are not related to the rates with the same

name in the nucleotide addition cycle–they are any general transition rate. Let

T be the time to escape to state 2 when the Markov process starts at state 1

at time t = 0. Let X (t) be the state of the Markov process at time t. Define

2

r
1

1

r
2

r
3

3

(pre)

(post) dNTP

Figure 2.3: State-space diagram of a general escape problem of two transient
states and one absorbing branch.

pj (t) = Pr (X (t) = j). We then have the initial conditions p1 (0) = 1 and p2 (0) =

p3 (0) = 0.

Proposition 1. The PDF of T is of the form αλ1e
−λ1t + (1− α)λ2e

λ2t with

0 < α < 1, λ1, λ2 > 0 and λ1 6= λ2.

Proof. By Kolmogorov’s backwards equation, we have the following system of

ODEs,

d

dt

p1

p3

 =

− (r1 + r2) r3

r2 −r3


p1

p3

 .
The characteristic polynomial is given by

f (λ) = λ2 − (r1 + r2 + r3)λ+ r1r3. (2.1)

Hence solving f (λ) = 0 gives us the eigenvalues

λ1,2 =
(r1 + r2 + r3)±

√
(r1 + r2 + r3)2 − 4r1r3

2 (2.2)

Now from the arithmetic mean-geometric mean (AM-GM) inequality, (r1 + r3) /2 ≥
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√
r1r3 with equality if and only if r1 = r3. Thus we have that (r1 + r3)2 ≥ 4r1r3

and so (r1 + r2 + r3)2 > 4r1r3 since r1, r2, r3 > 0. Also, by Descartes’ Rule of

Signs, both roots of the quadratic equation 2.1 are positive. Hence pj(t) is of the

form of

pj(t) = c1e
−λ1t + c2e

−λ2t

Thus the total probability of the states 1 and 2 is p1(t) + p3(t), which is of the

form

p1(t) + p3(3) = c1e
−λ1t + c2e

−λ2t

The PDF of the dwell time is given by

ρ(t) = − d

dt
(p1(t) + p3(t))

= c1λ1e
−λ1t + c2λ2e

−λ2t

Now since λ1, λ2 > 0, we have that 1 =
∫∞

0 ρ (t) dt = c1 + c2. Thus c1 = α and

c2 = 1− α for some α ∈ R. Hence we have

ρ(t) = αλ1e
−λ1t + (1− α)λ2e

−λ2t

To determine α, we compare the value of ρ (0) given by the expression above and
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the value based on the initial value problem,

αλ1 + (1− α)λ2 = ρ (0) =

= − d

dt
(p1(t) + p3(t))

∣∣∣∣∣
t=0

= −dp1

dt
(0) + dp3

dt
(0)

= (r1 + r2) p1(0)− r3p3(0)− r2p1(0) + r2p3(0)

= r1p1(0)

= r1

The last equality is true since p1(0) = 1 and p3 (0) = 0. Thus we have

αλ1 + (1− α)λ2 = r1

Solving for α gives us

α = λ2 − r1

λ2 − λ1
(2.3)

Now we show that 0 < α < 1. Without loss of generality, sort the two

eigenvalues as λ1 < λ2, so that

λ1 =
r1 + r2 + r3 −

√
(r1 + r2 + r3)2 − 4r1r3

2 ,

λ2 =
r1 + r2 + r3 +

√
(r1 + r2 + r3)2 − 4r1r3

2 .

Note that

0 < α < 1⇔ 0 < λ2 − r1 < λ2 − λ1,

⇔ λ1 < r1 < λ2.
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Hence it suffices to show that λ1 < r1 < λ2.

Consider the quadratic equation given in equation 2.1. Notice that f satisfies

f (λ) > 0 for λ < λ1 and λ > λ2. Also f (λ) < 0 for λ1 < λ < λ2. So we only

need to show that f (r1) < 0. Indeed, f (r1) = −r1r2 < 0. Thus we can conclude

that 0 < α < 1.

2.3 Inference Method

From proposition 1, the PDF of T (1), fT (1) is a mixture of two exponentials,

fT (1) (t) = αλ1e
−λ1t + (1− α)λ2e

−λ2t. (2.4)

This gives us the mapping (r2, kon, koff ) 7→ (α, λ1, λ2) with

λ1,2 =
r2 + kon[dNTP ] + koff ±

√
(r2 + kon[dNTP ] + koff )2 − 4r2koff

2 . (2.5)

The mixture weight α is given by α = (λ2 − r2) / (λ2 − λ1). The quantities θ :=

(α, λ1, λ2) are referred to as the mixture parameters. We order the eigenvalues,

λ1 < λ2. If r2 and [dNTP ] are known, the mapping above is easily invertible; in

fact, we can write

koff = λ1λ2

r2
(2.6)

kon = (1− α)λ1 + αλ2 − koff
[dNTP ] . (2.7)

We will refer to the mapping in equations 2.6-2.7 as K (θ) = (kon, koff ).

The transition rate r2 can be inferred from the T (1) data when [dNTP ] =
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0 [49]. When [dNTP ] = 0, the DNAP-DNA complex transitions between the pre-

translocation and post-translocation state. The dwell time of the lower-amplitude

(which consist of only the post-translocation state) is a single exponential with

rate r2. Hence r2 can be obtained from the T (1) data by using the fact that

1
r2

=
〈
T (1)

∣∣∣
[dNTP ]=0

〉
.

Also in the nanopore experiments, the [dNTP ] can be controlled accurately, and

hence its value is assumed to be known. Hence for [dNTP ] > 0, the mapping K

defined above can be carried out in practice.

Since the distribution of T (1) is a proper mixture distribution, we can estimate

the mixture parameters θ = (α, λ1, λ2) using the expectation-maximization (EM)

algorithm [13]. The mappings from equations 2.6 and 2.7 can then be used to

obtain estimates for kon and koff .

Let θ = (α, λ1, λ2). We denote θ(k) =
(
α(k), λ

(k)
1 , λ

(k)
2

)
to be the k-th term

in the EM sequence. Suppose that we observe T (1)
1 , T

(1)
2 , . . . , T (1)

n
iid∼ fT (1) where

fT (1) is the PDF of T (1) and iid means independently, identically distributed. Let

Z1, . . . , Zn be the latent variable (hidden) that controls which exponential mode

in T (1)
i is switched on in generating T (1)

i ,

T
(1)
i | {Zi = 1} ∼ exp (ti | λ1) ,

T
(1)
i | {Zi = 0} ∼ exp (ti | λ2) ,

where exp (t | λ) denotes the exponential distribution with rate λ. Note that Zi ∼

Bernoulli (α), so Pr (Zi = 1) = α, where Bernoulli (p) is the Bernoulli distribution
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with probability of success p. The joint PDF of
(
T

(1)
i , Zi

)
is given by

f
T

(1)
i ,Zi

(ti, zi) = f
T

(1)
i | Zi

(ti | zi) fZi (zi)

=
(
αλ1e

−λ1ti
)zi ((1− α)λ2e

−λ2ti
)1−zi

.

The distribution of Zi |
{
T

(1)
i , θ

}
is given by

Zi |
{
T

(1)
i , θ

}
=
Pr

(
Zi, T

(1)
i

)
Pr

(
T

(1)
i

)
∼ Bernoulli

(
αλ1e

−λ1ti

αλ1e−λ1t + (1− α)λ2e−λ2ti

)
,

The complete data log-likelihood is given by

L
(
θ |

{
T (1), Z

})
= log f

({
T (1), Z

}
| θ
)

=
n∑
i=1

[zi (logα + log λ1 − λ1ti) + (1− zi) (log (1− α) + log λ2 − λ2ti)] .

Note that Zi is not in the data set. To use the above formulation to infer θ,

we need to eliminate the hidden unknown Zi. We accomplish this by taking the

average based on the available value of θ from the previous iteration. Suppose

that we have completed k iterations and θ(k) is the most recent update on θ. The

conditional expectation
〈
Zi |T (1)

i , θ(k)
〉
is given by

β
(k)
i :=

〈
Zi |

{
T

(1)
i , θ(k)

}〉
= α(k)λ

(k)
1 e−λ

(k)
1 ti

α(k)λ
(k)
1 e−λ

(k)
1 ti + (1− α(k))λ(k)

2 e−λ
(k)
2 ti

. (2.8)

After taking the average, the result is a function of θ only, which we can then
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maximize to find the new updated approximation of θ. Hence

Q
(
θ | θ(k)

)
:=
〈
L
(
θ |

{
T (1), Z

})〉
Z | {T (1),θ(k)}

= (logα + log λ1)
n∑
i=1

β
(k)
i − λ1

n∑
i=1

β
(k)
i ti

+ (log (1− α) + log λ2)
n∑
i=1

(
1− β(k)

i

)
− λ2

n∑
i=1

(
1− β(k)

i

)
ti.

Hence the EM sequence is given by

θ(k+1) = argmaxθQ
(
θ | θ(k)

)
.

We can explicitly find the stationary points of Q:

α(k+1) = 1
n

n∑
i=1

β
(k)
i , (2.9)

λ
(k+1)
1 =

∑n
i=1 β

(k)
i∑n

i=1 β
(k)
i ti

, (2.10)

λ
(k+1)
2 = n−∑n

i=1 β
(k)
i∑n

i=1

(
1− β(k)

i

)
ti
, (2.11)

where β(k)
i are given in terms of

(
α(k), λ

(k)
1 , λ

(k)
2

)
in equation 2.8. The analytical

expressions in equations 2.9-2.10 provide an accurate and efficient way of calcu-

lating θ(k+1) from θ(k) and the dwell time data. Hence for each k, there is only

one stationary point θ(k) =
(
α(k), λ

(k)
1 , λ

(k)
2

)T
. For each k, taking second partial
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derivatives we find that

∂2Q

∂α2 = − 1
α2

n∑
i=1

β
(k)
i −

1
(1− α(k))2

n∑
i=1

(
1− β(k)

i

)
,

∂2Q

∂λ2
1

= − 1
λ2

1

n∑
i=1

β
(k)
i ,

∂2Q

∂λ2
2

= − 1
λ2

2

n∑
i=1

(
1− β(k)

i

)
,

with all the mixed partial derivatives equal to 0. The Hessian matrix of Q is thus

a diagonal matrix with entries diag (Qαα, Qλ1λ2 , Qλ2λ2). Note that for each k and

i, 0 < β
(k)
i < 1 so the diagonal elements of Q are negative, and hence Q is negative

definite. This implies that the stationary point of Q given in equations 2.9-2.10

is a global maximum. It can then be shown that the EM sequence converges to

the MLE of (α, λ1, λ2) for any initial guess θ(0) [72].

2.4 Inference on Simulated Samples of Dwell Times

In this section, we conduct some numerical simulations to determine the va-

lidity of using the MLE method to infer kon and koff from T (1) data.

The following numerical simulation was done as follows. The random variable

T (1) was sampled 10,000 times and this data was used to obtain MLE estimates

for kon and koff This was then repeated 10,000 times to obtain a distribution for

the MLE estimates.

The MLE estimates were centered with respect to their true values and then

normalized by their true values; we use the notation

err (k) := kMLE − ktrue

ktrue
,
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to denote the centered and normalized error of MLE estimates. The standard de-

viation off err (k) is also recorded, and we denote this by std (err (k)). In the simu-

lations, we set the true values of kon and koff to be kon = 200 and koff = 100. For

r2, we set this rate to r2 = 100. The rate r2 can be determined from T (1) data when

[dNTP ] = 0 [49]. Thus for simplicity, we assume that this rate is known. The

dNTP concentration can be controlled accurately in the nanopore experiments, so

its value is also assumed to be known. The results from this numerical simulation

are displayed in figures 2.4-2.5. They show that the inference accuracy is good

and consistent over a wide range of dNTP concentrations. The accuracy is slightly

better around [dNTP ] = 2, as indicated by the smallest std(err) when compare to

other dNTP concentrations. Since we use kon = 200 and koff = 100, [dNTP ] = 2

corresponds to a slightly high concentration of [dNTP ]/Kd = 4, where Kd is the

dissociation constant defined to be Kd = koff/kon. For both transition rates, the

bias is small.
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Figure 2.4: MLE results for kon with no noise in T (1) observations.
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Figure 2.5: MLE results for koff with no noise in T (1) observations.

2.5 Dependence of Inference Uncertainty Model

Parameters

From the proceeding section, it is clear that the relative errors for kon and

koff are dependent on the dNTP concentration. Even with no noise in the T (1)

observations, the relative errors for kon and koff ranges from about 5%-8%, for the

relatively small amount of dNTP concentrations that we tested. The error can of

course, be a lot worse if a highly suboptimal [dNTP ] is chosen; for example, at

[dNTP ] = 0.07, the relative errors for kon and koff are about 16%-18%. The error

in estimating kon and koff originate from the inference of the mixture parameters

θ = (α, λ1, λ2) in equation 2.4 by the EM algorithm. The inference uncertainty in

θ is then propagated to kon and koff by the inverse mappings given in equations 2.6

and 2.6.

In order to control the error by tuning the dNTP concentration, we need to
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know the inference uncertainty of kon and koff a priori. We characterize the

inference uncertainty of kon and koff by considering the total relative error. We

define the total relative error as the sum of the relative errors of kon and koff . In

the parameter regimes where the total relative error is small, the variance of the

MLE estimates is a good approximation to the root-mean-squared due to the small

inference bias in these regimes. Hence, we can write the total relative error as the

sum of the standard deviations of err (kon) + err (koff ). Practically speaking, it is

the small inference error regimes that are more useful for experimental design, so

we only concern ourselves with approximating the total relative error in the small

inference error regimes accurately. We will first show a way to obtain the total

relative error without the need for full scale Monte Carlo simulation. Then we

will show that the total relative error is a function of a scaled version of [dNTP ]

and a scaled version of koff .

2.5.1 Calculating of the Total Relative Error of the Kinetic

Rates

Let T (1)
1 , T

(1)
2 , . . . , T (1)

n be a random sample from fT (1) , where fT (1) is the PDF

of the lower-amplitude segment given in equation 2.4. Let

L (θ | t) =
n∑
i=1

log
(
αe−λ1ti + (1− α) e−λ2ti

)
(2.12)

be the log-likelihood function of the T (1) data, and let θMLE =
(
αMLE, λMLE

1 , λMLE
2

)
be the MLE estimates of θ. The observed Fisher information matrix, H, defined
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by

H
(
θMLE | t

)
= −


Lα,α

(
θMLE | t

)
Lα,λ1

(
θMLE | t

)
Lα,λ2

(
θMLE | t

)
Lλ1,α

(
θMLE | t

)
Lλ1,λ1

(
θMLE | t

)
Lλ1,λ2

(
θMLE | t

)
Lλ2,α

(
θMLE | t

)
Lλ2,λ1

(
θMLE | t

)
Lλ2,λ2

(
θMLE | t

)

 ,
(2.13)

where we denote Lx,y to mean Lx,y = ∂2L/ (∂x∂y). Note that equation 2.13 is the

negative Hessian of L evaluated at the MLE estimates. It has been demonstrated

that the inverse of H gives an approximation to the asymptotic covariance matrix

of the MLE estimates of θ as the number of samples of T (1), n→∞ [24]. Hence

for large n, Cov (θ) ≈ H−1.

We can propagate the inference uncertainty of the mixture parameters θ to

kon and koff by a first-order Taylor expansion. Recall that we have the map-

ping θ 7→ (kon (θ) , koff (θ))T according to equations 2.6 and 2.7. Let K (θ) =

(kon (θ) , koff (θ))T be this mapping.

Consider the first-order Taylor expansion,

K (θ) = K
(
θMLE

)
+ J

(
θMLE

) (
θ − θMLE

)
+ o

(∥∥∥θ − θMLE
∥∥∥) ,

where J
(
θMLE

)
is the Jacobian of K evaluated at θMLE. Now

Cov (K (θ)) = Cov
[
K
(
θMLE

)
+ J

(
θMLE

) (
θ − θMLE

)
+ o

(∥∥∥θ − θMLE
∥∥∥)]

= Cov
(
J
(
θMLE

)
θ
)

= J
(
θMLE

)
Cov (θ) J

(
θMLE

)T
,

where Cov (θ) is the covariance matrix of θ. Recall that Cov (θ) is approximated

by H−1 where H is the observed information matrix (equation 2.13). The second
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equality follows since K
(
θMLE

)
, θMLE, and o

(∥∥∥θ − θMLE
∥∥∥) are constant vectors.

The result is that the diagonal entries of the covariance matrix Cov (K (θ)) are

the asymptotic estimates of the variance of the MLE estimates of kon and koff .

Using this, we can estimate the relative error of the MLE estimates of kon and

koff a priori without the computational effort of full Monte Carlo simulations.

A useful metric which will guide our study of the inference uncertainty of kon

and koff is the total relative error. We approximate the total relative error as

std (err (kon)) + std (err (koff )). In parameter regimes in which the total relative

error is small, this is an adequate approximation. We can readily approximate the

total relative error without the computational effort of Monte Carlo simulations

by using the estimates for the relative error of the MLE estimates of kon and koff

derived above in the following way,

std (err (kon)) + std (err (koff )) ≈

∥∥∥∥∥∥
√
diag (Cov (K))�

(
1
kon

,
1
koff

)T ∥∥∥∥∥∥
1

, (2.14)

where diag (A) is the vector containing the diagonal entries of the matrix A, A�B

is the element-wise multiplication of the matrices A and B, and ‖·‖1 denotes the

Euclidean 1-norm. The square-root operator is taken to be applied element-wise

on the entries of diag (Cov (K)).

2.5.2 Characterizing the Total Relative Error

We will show that the total relative error in equation 2.14 is a function of koff

and [dNTP ] only.

Consider the following time-scaling result for a mixture of exponentials

Proposition 2. Let Z = βT (1). Then the PDF of Z is given by fZ (z) =
1
β
fT (1)

(
z
β

)
where fT (1) is the PDF of T (1).
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Proof. The PDF of Z is given by d
dz
Pr (z ≤ Z) = d

dz
Pr

(
z
β
≤ T

)
= 1

β
fT (1)

(
z
β

)
by the chain rule and the fact that the derivative of the cumulative distribution

function is the PDF.

The consequence of Proposition 2 is that the scaled random variable βT (1) has

PDF

α
λ1

β
e−

λ1
β
t + (1− α) λ2

β
e−

λ2
β
t, (2.15)

and hence is still a proper exponential mixture with mixture parameters

(α, λ1/β, λ2/β). Note that since α = (λ2 − r2) / (λ2 − λ1), we have r2 = (1− α)λ2+

αλ1. This and equations 2.6 and 2.7 gives us the mapping (α, λ1/β, λ2/β) →

(r2/β, kon/β, koff/β). Hence r2T
(1)
1 gives us the scaling mapping (r2, kon, koff ) 7→

(1, kon/r2, koff/r2). An intuitive way to think about this is that the transition

rates has units [time]−1 and thus we can rescale time in such a way that r2 7→ 1.

Throughout the rest of this paper, we denote the scaled koff/r2 as k := koff/r2.

By the same reasoning, we can also scale [dNTP ] since [dNTP ] has units of

concentration. Scaling [dNTP ] by kon/r2 gives us S := kon/r2[dNTP ]. Hence

after scaling, we have the following state-space diagram shown in figure 2.6, with

scaled rates

r′2 = r2/r2 = 1,

k′on = 1,

[dNTP ]′ = S := kon/r2[dNTP ],

k′off = k := koff/r2.

Under the scaling, we are free to choose k′on = 1.

From figure 2.6, we can conclude that the inference uncertainty of kon and koff

is a function of S and k only. Hence in all of the following analysis, we can set
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Pre (1)

Post (2) dNTP (4)

r′2 = r2
r2

= 1

k′on[dNTP ]′ = S := kon
r2

[dNTP ]

k′off = k := koff
r2

Figure 2.6: State-space diagram of the lower-amplitude segment of TA after
scaling.

r2 = kon = 1 and we can write equation 2.14 as

err (S, k, n) =

∥∥∥∥∥∥
√
diag (Cov (K (θ (S, k, n))))�

(
1
kon

,
1
koff

)T ∥∥∥∥∥∥
1

(2.16)

where K is the mapping θ 7→ (kon, koff ), θ = (α, λ1, λ2), and n is the number

of T (1) samples. Note that the scaled dNTP concentration S, the scaled dNTP

disassociation rate k, and the number of samples of T (1) n affect the mixture

parameters θ (equation 2.5). We thus write θ (S, k, n) to emphasize θ’s dependance

on S, k, and n.

The total relative error function err (S, k) is very difficult to compute analyt-

ically. To numerically build the total relative error function, we discretize S and

k over a range of values. Let S and K be the set of discrete points for S and k

respectively. Enumerate the elements of S = {S1, . . . , Sm}, where m is the num-
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ber of S points used. At each (S, k) ∈ S × K point we sample fT (1) n0 = 10, 000

times and estimate kon and koff using the EM method. The total relative er-

ror is then estimated by using equation 2.16. This is repeated 20 times for each

(S, k) ∈ S ×K, giving us a cloud of total relative error data for each (S, k) point.

Let EC (S, k) be the 20-point data cloud at the point (S, k). We then estimate

the total relative error by fitting a quadratic polynomial in the S-direction using

41 points in the least squares sense in the following way.

Let Si ∈ S. Define the following subset of S,

Si =



{S1, . . . , S41} if i < 21

{Sm−40, . . . , Sm} if i > m− 20

{Si−20, . . . , Si+20} otherwise

.

Here, Si is selected to consist of 41 points entered around Si with the index range

shifted if necessary to be contained in S. For each k ∈ K, we do the following:

for each i = 1, . . . ,m, a quadratic polynomial Pi,k is fit to the set of points

log (Si)× log
 ⋃
S∈Si
EC (S, k)

 ,
in the least squares sense where the logarithm function is understood to be taken

over all the elements of the set; that is, logA = {log a : a ∈ A}.

Since we are using n0 = 10000 samples to build the numerical approximation

to the total relative error along a grid of S and k points, define err1 to be the

function

err1 (S, k) := err (S, k, n)
∣∣∣
n=n0

.

Here, err1 is a function of only (S, k).
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Then err1 (S, k) = Pi,k (Si) is set to be the point-estimate of the total relative

error for k′on = 1 and k at (Si, k). We use the log of the data for the local least

squares fit since qualitatively the data is approximately quadratic on the log-scale.

After this procedure, a discrete grid of point-estimates for the total relative

error of kon and koff using 10,000 T (1) samples is obtained:

E = {err1 (S, k) : (S, k) ∈ S × K}. Using linear interpolation on E , we can then

compute err1, for any S and k pair a priori. The resulting total relative error

surface is shown in figure 2.7.

Figure 2.7: The total relative error surface err1 (S, k) by local quadratic poly-
nomial least-squares.

The constructed total relative error function err1 (S, k) provides a good esti-

mate to the total relative error of kon and koff . To show this, we re-sample the

cloud of data EC at each (S, k) point 1000 times to obtain the uncertainty of the

total relative error estimate of kon and koff at each point. From figure 2.8, we

see that the uncertainty of the total relative error of kon and koff is small and

grows approximately proportional to the inference uncertainty of kon and koff .

For each (S, k)-point, the covariance matrix of the MLE estimates of the mixture
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Figure 2.8: The left panel shows the uncertainty of the total relative error
estimate of kon and koff as produced by boot-strap resampling of the cloud of
20 data points EC at each (k, S) point. The right panel shows the top quantity
divided by err1.

parameters (α, λ1, λ2) is also saved. In doing so, we can easily extend this table to

the kpol > 0 case since conditioning on the escape to the pre-translocation state

when kpol > 0 forms an escape problem governing T (1) which is in the same form

as the kpol = 0 case. This will be discussed in chapter 3.

2.6 Optimum Experimental Condition

In this section, we examine the optimal experimental condition that when

achieved, produces the least total relative error.

2.6.1 Finding the Optimal [dNTP ]

From the scaling laws and the total relative error point estimates in E , we can

numerically obtain the [dNTP ] that yields the least total relative error for any

kon and koff .
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Let [dNTP ]∗ denote the optimum dNTP concentration–optimum in the sense

that it produces the least total relative error according to equation 2.16. From

figure 2.6, we see that after scaling, the scaled optimum dNTP concentration S∗

is a function of only k. Hence we can write,

S∗ = F (k)⇔ [dNTP ]∗ = r2

kon
F

(
koff
r2

)
. (2.17)

Determining an expression for F analytically is very difficult, so we instead

turn to a numerical approximation. For fixed k, the total relative error is locally

quadratic in the log-scale around the minimum (figure 2.9).

10
0
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−1.4

10
−1.3

10
−1.2

S

er
r 1
(S

,k
)

Total Relative Error at k = 0.015625

Figure 2.9: For fixed k, the total relative error is approximately quadratic near
the minimum. This is a typical graph of err1 (S, k) with k fixed.

For fixed k ∈ K, we approximate S∗ by using the smoothing quadratic poly-

nomial Pi,k where i is any i such that err1 (Si, k) is near the minimum for that

fixed k. The minimum of the chosen Pi,k is the approximated value for S∗. This

can be extended for any arbitrary k by linear interpolation of the error grid E .

Figure 2.10 shows the approximation of the optimal S∗ trajectory on the total

relative error surface err1 (S, k). The trajectory k 7→ S∗ provides a numerical
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approximation to F in equation 2.17.

Figure 2.10: The total relative error surface err1 (S, k) with the estimated opti-
mal S∗ trajectory. For each k, the 10% error interval shown as black-dashed lines
were obtained by finding the two S points such that err1 (S, k) = 1.1err (S∗, k)

For convenience, we also plot the total relative error along the optimal [dNTP ]

trajectory (figure 2.11).

2.6.2 Behavior of the Minimum Total Relative Error

From figure 2.11, we see that the total relative error along the optimal S

trajectory increases monotonically as k increases. It is also evident that there is

no well defined least minimum total relative error as a function of k.

This can be intuitively explained as follows. When k → 0, the post-translocation

and dNTP-bound states become more “separated.” That is, the dwell time of the

dNTP-bound state increases as k → 0. From figure 2.10, as k → 0, S∗ → 1.

In this region, when S∗ → 1, the probability of escape to the pre-translocation

state and the probability dNTP binding approach each other. This means that

the dwell time for the post-translocation state approaches the largest it can be.
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Figure 2.11: The total relative error along the optimal S∗ trajectory.

Hence as k → 0, the post-translocation and dNTP-bound states approach its

largest separation and hence the total relative error approaches its infimum as

k → 0; that is, limk→0 err (S∗, k, n) = infk err (S∗, k, n) for fixed n.

The minimum total relative error approximately increases by an order of mag-

nitude from infk err (S∗, k, n) for k > 50. For k large, the optimal S∗ is pro-

portional to k. In this region, the total relative error is large since the post-

translocation and dNTP-bound states are approximately in equilibrium. In this

setting, the post-translocation and dNTP-bound states form a superstate, and

resolution of the two exponential modes is very difficult.

2.6.3 Behavior of the Optimal [dNTP ]

We now examine the behavior of the optimal [dNTP ] obtained from figure 2.10.

Some immediate observations we can make are that as k → 0, S∗ → 1, and for

k larger than about 0.5, S∗ increases proportional to k. To gain insight into this

behavior, we investigate asymptotic cases for k and S.
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Behavior of the Total Relative Error of the Mixture Parameters

Before diving into the asymptotic cases for k and S, we first take a digression

to the behavior of the total relative error of the mixture parameters (α, λ1, λ2).

The total relative error of the mixture parameters is defined to be the sum of the

relative errors of α, λ1, and λ2. Recall the scaling law in proposition 2. We can

scale the T (1) samples by λ2, thereby obtaining the equivalent mixture parameters

(α, λ1/λ2, 1). Hence the total relative error of the mixture parameters is a function

of α and λ1/λ2 only.

Figure 2.12 shows a contour plot of the total relative error of the mixture

parameters, where the total relative error was calculated from the covariance

matrices obtained from the observed Fisher information matrix based on n0 =

10000 samples of T (1). At each (α, λ1/λ2)-point, this was repeated 40 times. The

resulting total relative error data was put through the same quadratic polynomial

smoothing algorithm in the α-direction described in section 2.5.2.
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Figure 2.12: The total relative error of the mixture parameters (α, λ1, λ2) after
quadratic polynomial smoothing. The total relative error increases along the
boundary.
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The error changes rapidly along the boundaries, so when generating the total

relative error of the mixture parameters, we increases the resolution along the

boundaries of α ≈ 0 and α ≈ 1. Although the upper limit of λ1/λ2 is 1, we

stopped the simulation at λ1/λ2 ≈ 2/3 since the total relative error was already

very high in this region. To increase the resolution along the aforementioned

boundaries, we generate a linear grid βα × βλ1/λ2 where βα and βλ1/λ2 consist of

equally spaced points centered around 0. The following nonlinear mapping was

applied,

λ1

λ2
=

2
3e
βλ1/λ2

1 + eβλ1/λ2
, (2.18)

α = eβα

1 + eβα
, (2.19)

to generate the (α, λ1/λ2)-grid. This generates a non-uniform grid with more

points concentrated along the boundaries α ≈ 0, 1 and λ1/λ2 ≈ 0, 2/3.

The error plot in figure 2.12 confirm our intuition that the inference un-

certainty for the mixture parameters increase as α gets close to 0 or 1 and

as λ1 and λ2 approach each other. Recall the expression for the T (1) PDF,

αλ1 exp (−λ1t) + (1− α)λ2 exp (−λ2t). When α ≈ 0, the population of the faster

exponential mode (1− α)λ2 exp (−λ2t) is substantially larger than the slower ex-

ponential mode αλ1 exp (−λ1t). In this situation, the inference uncertainty for λ1

will be large. The opposite is true if α = 1. In this situation, since the popu-

lation of the lower exponential mode is substantially larger than the population

of the faster exponential mode, the inference uncertainty for λ2 will be large. A

closer inspection of figure 2.12 reveals that the surface is not symmetric about

α = 0.5. In fact, the inference uncertainty for λ2 is generally larger than the

inference uncertainty for λ1 for an equivalent distance of α from 1 and 0; i.e., let
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α1 and α2 be values of α such that 0 < |1− α2| = |α1| << 1, then the inference

uncertainty for λ2 is greater when α = α2 than the inference uncertainty for λ1

when α = α1. This can be more easily seen when we plot the total relative error

on the linear grid βα×βλ1/λ2 (figure 2.13). The reason for this is when α ≈ 1, not

βα
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Figure 2.13: The total relative error of the mixture parameters (α, λ1, λ2) after
quadratic polynomial smoothing plotted on the linear grid βα × βλ1/λ2 .

only is the population for the faster exponential mode substantially smaller than

the population for the slower exponential mode, but the faster exponential mode

decays faster than the slower exponential mode, further increasing the inference

uncertainty for λ2. Finally when λ1 ≈ λ2, the two exponential modes are nearly

indistinguishable and hence the inference uncertainty for α is increased.

Behavior of the Optimal [dNTP ]: Asymptotic Studies of S and k

We know exmaine the behavior of the optimal [dNTP ]. To gain some insight,

we investigate asymptotic cases for k and S. In all of the following asymptotic

analysis, let 0 < ε << 1 be a small parameter, and a, b = O (1). Each of the fol-

lowing asymptotic cases are shown schematically in figure 2.14, with C1 referring
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to case 1, C2 referring to case 2, etc.
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Figure 2.14: The total relative error of the mixture parameters (α, λ1, λ2) af-
ter quadratic polynomial smoothing plotted on the linear grid with schematic
locations of the asymptotic regions for S and k.

• Case 1: k = aε and S = bε.

λ1 = aε+O
(
ε2
)
,

λ2 = 1 + bε+O
(
ε2
)
,

α = aε+O
(
ε2
)
.

In this case, both k and S are small. When k is small, if the complex transi-

tions to the dNTP-bound state, the complex will remain in that state for a

long time. When S is small, then the complex has a high probability of im-

mediately escaping to the pre-translocation state from the post-translocation

state; hence the dNTP-bound state is visited less. This results in one of the

exponential modes being sampled less. Indeed from the above asymptotic
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expansions for the mixture parameters, even though the exponential rates

are well separated, α ≈ 0, resulting in the slow exponential with rate λ1

being sampled less. This leads to a higher total relative error.

• Case 2: k = aε and S = b/ε.

λ1 = O
(
ε2
)
,

λ2 = b

ε
+ 1 + aε+O

(
ε2
)
,

α = 1− 1
b
ε+O

(
ε2
)
.

Like the previous case, k is small so that if the complex transitions to the

dNTP-bound state, the complex will remain in that state for a long time.

When S is large, the complex has a high probability of immediately binding

a dNTP. This results in a small dwell time for the post-translocation state.

At the same time, the dwell time in the dNTP-bound state is large since k

is small. This results in one of the exponential modes being sampled less.

Indeed, from the asymptotic expansions of the mixture parameters, α ≈ 1

and hence the fast exponential mode is sampled less, increasing the total

relative error.

• Case 3: k = aε and S = 1 + bε.

λ1 = a

2ε+O
(
ε2
)
,

λ2 = 2 +
(
a

2 + b
)
ε+O

(
ε2
)
,

α = 1
2 + a+ b

4 ε+O
(
ε2
)
.

According to figure 2.10, for small k, the optimal S∗ ≈ 1. At S = 1, the
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probability of escape to the pre-translocation state and the probability of

escape to the dNTP-bound state are equal. In this case, when the complex

binds to a dNTP, it will remain there for a long time. When the dNTP

disassociates, the complex has an equal proability of escaping to the pre-

translocation state or binding another dNTP. Here, the dwell time in the

post-translocation state is the longest it can be in this kinetic region, result-

ing in the least total relative error for small k. This can be seen from the

asymptotic expansions of the mixture parameters. Here, not only are the

exponential rates well separated, the parameters α is close to 1/2, resulting

in equal sampling of both exponential modes. This results in the lowest

total relative error for the mixture parameters (figure 2.13).

• Case 4: k = a
ε
and S = bε.

λ1 = 1 +O
(
ε2
)
,

λ2 = a

ε
+ bε+O

(
ε2
)
,

α = 1 +O
(
ε2
)
.

When k is large and when the complex transitions to the dNTP-bound state,

the complex will transition back to the post-translocation state very quickly

so that the dwell time in the dNTP-bound state is very short. If S is small,

the complex quickly escapes to the pre-translocation state without ever vis-

iting the dNTP-bound state. Any (rare) visit to the dNTP-bound state is

quicky transitioned back to the post-translocation state and then back to

the pre-translocation state. Here, α ≈ 1 resulting in the fast exponential

mode being poorly sampled resulting in a high total relative error for the

mixture parameters.
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• Case 5: k = a
ε
and S = b

ε2
.

λ1 = a

b
ε+O

(
ε2
)
,

λ2 = b

ε2
+ a

ε
+ 1− a

b
ε+O

(
ε2
)
,

α = 1− ε2

b
+O

(
ε3
)
.

Like before, if k is large, when the complex transitions to the dNTP-bound

state, the complex will transition back to the post-translocation state very

quickly so that the dwell time of the dNTP-bound state is very short. When

S is much larger than k, the complex will bind a dNTP very quickly. Since

k is also large, both of the dwell times of the post-translocation and dNTP-

bound states are very small. Hence in this regime, the post-translocation and

dNTP-bound states are in equilibrium and resolving the exponential modes

in this case is very difficult as a result. Indeed from the above asymptotic

expansions, α ≈ 1 and so the slow exponential mode is hard to resolve.

• Case 6: k = a
ε
and S = b

ε
.

λ1 = a

a+ b
+
(

a2

(a+ b)3 −
a

(a+ b)2

)
ε+O

(
ε2
)
,

λ2 = a+ b

ε
+ 1− a

a+ b
+
(

a

(a+ b)2 −
a2

(a+ b)3

)
ε+O

(
ε2
)
,

α = 1 +
(

a

(a+ b)2 −
1

a+ b

)
ε+O

(
ε2
)
.

In this case, k is large and S is proportional to k. Here, the balance between

the length of the dwell times for the post-translocation and the dNTP-bound

states are approximately equal. This means that the situations described

when S is small or when S is much larger than k are mitigated, producing
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the least total relative error for large k regimes. We can also see this from

the asymptotic expansion for α for this case, α is further from 1 than when

S is small or much larger than k.

2.6.4 Finding the Optimal [dNTP ] Under Experimental

Time Constraints

It is useful to investigate the behavior of the total relative error and opti-

mal dNTP concentration when under experimental time constraints. The PDF

of the lower-amplitude dwell time T (1) is a function of r2, kon, koff , and [dNTP ]

with [dNTP ] being the only tunable parameter that can be controlled in the ex-

periments. The unconstrained optimal [dNTP ], while producing the least total

relative error, can result in long run-times in nanopore experiments. The experi-

mental run-time is a function of the number of samples of T (1) that we choose to

collect, [dNTP ], and the kinetic rates r2, kon, and koff . After applying the scaling

laws in section 2.5.1, we can write the experimental waiting time as a function

of S, k, and the number of T (1) samples. Let n be the number of T (1) samples.

The mean-field approximation to the total lower-amplitude waiting time can be

written as

n
〈
T (1) (S, k)

〉
.

We write the random variable T (1) as T (1) (S, k) to emphasis its dependence on

the scaled dNTP concentration and the scaled koff .

It is reasonable to assume that err (S, k, n) ∼ O (1/
√
n) as n → ∞, since

the standard error of a parameter scales as O (1/
√
n) where n is the number of

samples [13]. Indeed, figure 2.15 shows that err (S, k, n) ∼ O (1/
√
n) at (S, k) =

(10, 1). It is hence reasonable to conclude the following scaling law for the total
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Figure 2.15: The total relative error at the point (S, k) = (10, 1). The decaying
of the error at O (1/

√
n) is expected and numerically demonstrates the scaling

law for the total relative error function (equation 2.20).

relative error function:

err (S, k, n1) ∼ err (S, k, n2)
√
n2

n1
. (2.20)

Recall that the we numerically approximated total relative error function

err1 (S, k) in equation 2.9 by constructing the discretized grid E using n0 = 10, 000

samples of T (1). Thus from equation 2.20, we have the approximation

err (S, k, n) ≈
√
n0

n
err1 (S, k) , (2.21)

for large n.

Suppose that we do not want to wait more than τmax time for the total lower-

amplitude run-time. We want to know the number of T (1) samples to collect and

at what dNTP concentration to run the experiment that results in the least total

relative error for the inference of kon and koff . The constrained optimization
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problem whose solution would result in those optimum n and S is thus given by

minimize err (S, k, n) (2.22)

subject to n
〈
T (1) (S, k)

〉
= τmax. (2.23)

With koff intrinsic to the system, the only tunable parameters are n and S.

We can recast the constrained optimization in equations 2.22-2.23 to an un-

constrained optimization in S only in the following way. From the constraint in

equation 2.23 we have that

n = τmax

〈T (1)〉
. (2.24)

Thus from equation 2.21, the objective function to minimize which solves the

optimization problem in equations 2.22-2.23 is given by

err2 (S, k) :=
√
n0 〈T (1)〉
τmax

err1 (S, k) . (2.25)

Equation 2.25 can be used to create an error surface and find the optimum

dNTP concentration which solves the constrained optimization problem given in

equations 2.22-2.23 (see figure 2.16). The optimal number of T (1) samples to

collect can then be calculated from equation 2.24 (see figure 2.17).

Generally the unconstrained optimal [dNTP ] will be higher than the con-

strained optimum [dNTP ] since at each koff , higher dNTP concentrations in-

crease the probability of the DNAP-DNA complex transitioning from the post-

translocation to the dNTP-bound state and hence increases the T (1) dwell time.

Thus when constraining the maximum experimental time, the constrained op-

timum dNTP concentration can be no larger than the unconstrained optimum

dNTP concentration (figure 2.18). The total relative error at the constrained

optimum [dNTP ] will therefore be higher than the total relative error at the un-
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Figure 2.16: Constrained total relative error surface err2 (S, k) with optimal
S∗ concentration. The dashed lines are the 10% interval calculated in a similar
manner as in figure 2.10.

constrained optimum [dNTP ] (figure 2.19). The minimum total relative error

along the constrained k 7→ S∗ trajectory occurs at a value of k not too small (fig-

ure 2.19), unlike in the unconstrained k 7→ S∗ trajectory where the total relative

error decreases with the decrease in k. This is because for very small values of k,

the DNAP-DNA complex will take a longer time to transition from the dNTP-

bound state to the post-translocation state, hence increasing the length of the T (1)

segment. This results in low amounts of samples being used in order to maintain

the total experimental time constraint in the constrained optimization problem in

equations 2.22-2.23.

The scaled kinetic rate k and constrained optimal S∗ that yields the least

total relative error along the k 7→ S∗ trajectory is the best possible system. Best

possible in a sense that this system will yield the least total relative error at its

optimal [dNTP ]. Numerically finding the minimum of the total relative error

at the constrained S∗ in figure 2.19, we have kinf ≈ 0.1096 and correspondingly
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Figure 2.17: Number of T (1) samples at the optimal [dNTP ] with corresponding
10% interval as calculated from the optimal S∗ trajectory found in figure 2.16.

S∗inf ≈ 0.2281 where kinf and S∗inf are the scaled koff and [dNTP ] which produce

the system that gives the least total relative error at its optimal [dNTP ].

Figures 2.20 and 2.21 show the unconstrained and constrained optimum S∗

with intervals 10%, 25%, and 50%. These figures show how accurately the dNTP

concentration must be in order to be within p% of the optimum scaled dNTP

concentration S∗ under the unconstrained and constrained conditions. Corre-

spondingly, if the scaled dNTP concentration S is within p% of the optimum

S∗, then the total relative error is no greater than (1 + p%/100) err1 (S, k) and

(1 + p%/100) err2 (S, k) for the unconstrained case at 10,000 samples and the con-

strained case at n (S, k) samples, respectively.

2.6.5 Finding the Optimal [dNTP ] Under Experimental

Time Constraints with Overhead Cost

We can generalize the constrained optimization problem in equations 2.22-2.23

to include a fixed time-cost for collecting each T (1) sample. In the context of this

53



10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

k

S
∗

Constrained and Unconstrained S*

 

 

Unconstrained Optimum S*

10% Interval

Constrained Optimum S*

10% Interval

Figure 2.18: The optimum S∗ for the unconstrained and constrained optimiza-
tion problems along with their corresponding 10% intervals.

system, the fixed time-cost is the dwell time of the DNAP-DNA complex in the

upper-amplitude state centered at 31pA, comprised of the pre-translocation and

exonuclease states (see figure 1.5). Suppose that we have a fixed time-cost of t0

for each T (1) sample. Note that the distribution of t0 is a proper mixture of two

exponential modes, determined completely by the transition rates r1, r3, and r4

in a similar manner to Proposition 1 (figure 1.5). We include this fixed time cost

into the maximum total time τmax allowed for the experiment. That is, we want

to solve the constrained optimization problem,

minimize err (S, k, n) (2.26)

subject to n
(〈
T (1) (S, k)

〉
+ t0

)
= τmax. (2.27)

In a similar way for the constrained optimization problem in equations 2.22-

2.23, we can recast this into an unconstrained optimization problem of S only.
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Figure 2.19: The total relative error at the constrained and unconstrained op-
timum S∗.

We thus want to minimize the objective function,

err3 (S, k) :=
√
n0 (〈T (1)〉+ t0)

τmax
err1 (S, k) . (2.28)

Figure 2.22 shows the constrained optimum S∗ for various values of t0 along

with the unconstrained optimum S∗. As seen in figure 2.22, the constrained

optimum scaled dNTP approaches the unconstrained optimum dNTP as t0 →∞.

To see this, consider equation 2.28. We can re-write equation 2.28 as

err3 (S, k) =
√
t0

√√√√√n0

(〈T (1)〉
t0

+ 1
)

τmax
err1 (S, k) .

Hence as t0 →∞, we have the following asymptotic result,

err3 (S, k) ∼
√

t0
τmax

n0err1 (S, k) +O
( 1
t0

)
.

Thus we see that for any k, argminSerr3 (S, k) → argminSerr1 (S, k) as t0 → ∞.
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Figure 2.20: The optimum S∗ for the unconstrained optimization problem along
with the 10%, 25%, and 50% intervals.

The total relative error at the optimum S in this asymptotic regime will therefore

scale as O
(√

t0
)
.

In the constrained optimization problems, we are looking to minimize err (S, k, n)

under the constraint n
(〈
T (1)

〉
+ t0

)
= τmax. This constraint is the mean-field ap-

proximation to the experimental run time. However, under real experimental

settings, the samples of T (1) would be collected one at a time until the constraint

is met. That is, k samples of T (1) would be collected where k is the largest such

that T (1)
1 + · · ·T (1)

k + t0 ≤ τmax. This is different than the mean-field approach

taken in the optimization problems 2.22-2.23 and 2.26-2.27 in which the mean of

T (1) is used instead of the observed total time of the T (1) samples.

The mean field approaches greatly simplifies the calculation of the solution

to the constrained optimization problems by replacing the individual behavior of

a large number of random variables (T (1)
1 , . . . , T

(1)
k ) with the ensemble average.

We demonstrate the validity of the mean field approach by numerical simulation.

For the constrained optimization case with t0 = 0, we set S = 0.1, k = 0.3, and
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Figure 2.21: The optimum S∗ for the constrained optimization problem along
with the 10%, 25%, and 50% intervals.

τmax =
〈
T (1)

〉
nmf , where nmf = 10000. The total relative error is then estimated

using the mean field approach and using the constraint ∑i T
(1)
i ≤ τmax using 2000

data sets. As seen in figure 2.23, both approaches are in agreement and is well

approximated by err1 (S, k).

2.7 Inference on Simulated Samples of Dwell Times

with Detection Uncertainty

Let σ denote the standard deviation of the measurement noise. In this section,

we repeat the numerical experiments in section 2.4 with multiplicative noise in

the observed T (1) samples; i.e., the observed value of T (1) is given by

T
(1)
obs := T (1)eσζ ,

where ζ ∼ N(0, 1).
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Figure 2.22: Constrained optimum S∗ for various values of t0 along with the
unconstrained optimum S∗.

Let σ = 0.01. In this situation, the best MLE estimates are found around

the concentration [dNTP ] = 2. Like the ideal, no noise case, the bias is small

throughout the [dNTP] ranges (figures 2.24 and 2.25).

Finally, the numerical experiment is repeated with a full magnitude increase

in noise magnitude; i.e., σ = 0.1. For koff , the best MLE estimates were provided

at [dNTP ] = 2 as before, but for kon, the best MLE estimates were provided at

[dNTP ] = 0.5 (figures 2.26 and 2.27).

To get a sense of how err (kon) and err (koff ) behave over a greater range of

noise magnitudes, we plot std (err (kon)) and std (err (koff )) as a function of σ for

each of the representative [dNTP] points (figure 2.28). From this figure we can see

that measurement noise in T (1) samples affect the estimation of koff more so than

kon. For kon, the dNTP concentration of [dNTP ] = 0.5 provides the estimates

with the smallest relative error; even for a relatively high noise magnitude, the

relative error for kon is still small.

It is also valuable to see how the bias of the MLE estimates changes with
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Figure 2.23: Comparison of the constrained total relative error err2 obtained
from the mean field approach and from enforcing the total time in the observed
T (1) samples. Here, S = 0.1, k = 0.3, and τmax =

〈
T (1)

〉
nmf , where nmf = 10000.

The distributions of the mean field approach and approach ∑i T
(1)
i ≤ τmax are in

agreement. The mean of the mean-field approach can be calculated from err1.

respect to the noise magnitude. The inference bias is the mean of the MLE

estimates, and we denote this by mean (err (k)) (figure 2.29). Here we see that,

even for high noise magnitudes, the bias remains relatively small. A key conclusion

from this is that even with relatively high noise, repeating the MLE method on

many data sets of T (1) and then averaging out the MLE estimates of kon and

koff across those data sets will yield satisfactory approximations of the transition

rates.

We also plot the root-mean-squared (RMS) error as a function of σ. The RMS

error contains information about both std(err(k)) and mean(err(k)). We denote

the RMS of the MLE estimates as rms (err (k)) (figure 2.30).

It is also worthwhile to examine the response of standard deviation, inference
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Figure 2.24: MLE results for kon with multiplicative noise magnitude of σ = 0.01
in T (1) observations.

bias, and RMS of the MLE estimates of kon and koff as the number of T (1)

samples n of T (1) change. Note that the number of data-sets consisting of n

samples of T (1) remains fixed at 10,000. For this simulation, we hold the dNTP

concentration fixed at [dNTP ] = 0.5. According to the results in figures 2.28-

2.30, [dNTP ] = 0.5 provides the most robust concentration of the concentrations

examined for estimating kon and koff (figures 2.31- 2.33). From the graphs, we

can see that around 5000 samples of T (1) is sufficient to get a meaningful estimate

of the transition rates kon and koff .

2.8 Characterizing the Effect of Measurement

Noise

In this section, we characterize the effect of measurement noise on the observed

T (1) samples. Suppose the true T (1) samples are perturbed by multiplicative noise
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Figure 2.25: MLE results for koff with multiplicative noise magnitude of σ =
0.01 in T (1) observations.

of the form eσζ where ζ ∼ N (0, 1). That is, we observe the T (1) samples to be

T
(1)
obs := T (1)eσζ . (2.29)

In this section, we denote kMLE
on (σ) and kMLE

off (σ) to be the maximum-likelihood

estimate of kon and koff respectively from the perturbed T
(1)
obs data. To see how

the MLE of kon and koff is effected by noise, we investigate the first-two moments

and standard deviation of the quantities

zkon := kMLE
on (σ)− kMLE

on (0)

zkoff := kMLE
off (σ)− kMLE

off (0) .

For the following simulations, we use 10,000 data sets with r2 = kon =

[dNTP ] = 1 and koff = 0.25 with varying the number of T (1) samples n, as
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Figure 2.26: MLE results for kon with multiplicative noise magnitude σ = 0.1
in T (1) observations.

well as the measurement noise standard deviation σ.

Figure 2.34 shows the squared-mean of zkon and zkoff . Here, we see that

〈zkon〉 ,
〈
zkoff

〉
= O (σ2).

Figure 2.35 and figure 2.36 shows the second-moment of zkon and zkoff as a

function of σ and as a function of n, respectively. From these results, we see

that as σ → 0 and n→∞,
〈
z2
kon

〉
,
〈
z2
koff

〉
= O (σ2/n). For large σ, we have that〈

z2
kon

〉
,
〈
z2
koff

〉
= O (σ4). We can write this more compactly as

〈
z2
kon

〉
,
〈
z2
koff

〉
=

O (σ2/n) +O (σ4).

Figures 2.37 and 2.38 shows the variance of zkon and zkoff as a function of σ

and n, respectively. From these results, we see that var (zkon) and var
(
zkoff

)
behave as O (σ2/n).

The results of these simulations show that we have strong numerical evidence

for the following claims:

1. 〈zkon〉 ,
〈
zkoff

〉
= O (σ2),
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Figure 2.27: MLE results for koff with multiplicative noise magnitude σ = 0.1
in T (1) observations.

2.
〈
z2
kon

〉
,
〈
z2
koff

〉
= O (σ2/n) +O (σ4), and

3. var (zkon) , var
(
zkoff

)
= O (σ2/n).

That is, both zkon and zkoff are of the form O (σ/
√
n)+O (σ2), where the O (σ/

√
n)

term vanishes under the expectation.

To investigate the distribution of zkon and zkoff , we detail two different ways of

collecting the noise-perturbed samples of T (1) and show that they are equivalent.

• Type 1: For each 10,000 data sets, n T (1) samples are generated and those

n samples are perturbed by multiplicative noise with standard deviation σ

as in equation 2.29.

• Type 2: n T (1) samples are generated, and those n samples are perturbed by

10,000 different realizations of multiplicative noise with standard deviation

σ as in equation 2.29.
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Figure 2.28: The quantities std (err (kon)) and std (err (koff )) as a function of σ
for each dNTP concentration.

Figure 2.39 shows the distributions of zkon and zkoff using the two different types

of data sets, each with n = 32000 samples. Here, we see vary good agreement

among the distributions of zkon and zkoff using the two different types of data sets.

Furthermore, we see that both zkon and zkoff are normally distributed. From this

observation and from claims 1-3 above, we can write zkon and zkoff as

zkon = c2,konσ
2 + c1,kon

σ√
n
ζ, (2.30)

zkoff = c2,koffσ
2 + c1,koff

σ√
n
ζ, (2.31)

where ζ ∼ N (0, 1).

The consequence of this result is that the bias of kMLE
on (σ) and kMLE

off (σ) in-

creases by a magnitude of O (σ2) relative to the bias of kMLE
on (0) and kMLE

off (0);

64



0 0.05 0.1 0.15 0.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

σ
noise

m
ea

n(
er

r(
k on

))

 

 

0 0.05 0.1 0.15 0.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

σ
noise

m
ea

n(
er

r(
k of

f))

 

 

[dNTP]=0.25
[dNTP]=0.3
[dNTP]=0.4
[dNTP]=0.5
[dNTP]=1
[dNTP]=2
[dNTP]=4
[dNTP]=16

[dNTP]=0.25
[dNTP]=0.3
[dNTP]=0.4
[dNTP]=0.5
[dNTP]=1
[dNTP]=2
[dNTP]=4
[dNTP]=16

Figure 2.29: The quantities mean (err (kon)) and mean (err (koff )) as a function
of σ for each dNTP concentration.

that is,

〈
kMLE
on (σ)

〉
=
〈
kMLE
on (0)

〉
+O

(
σ2
)
,〈

kMLE
off (σ)

〉
=
〈
kMLE
off (0)

〉
+O

(
σ2
)
.

Also, the variance of the perturbed MLE estimates increase by O (σ2/n); that is,

var
(
kMLE
on (σ)

)
= var

(
kMLE
on (0)

)
+O

(
σ2

n

)
,

var
(
kMLE
off (σ)

)
= var

(
kMLE
off (0)

)
+O

(
σ2

n

)
,

since kMLE
on (0) and kMLE

off (0) are independent with the normal in 2.30-2.31.

We can numerically solve for the constants c1 and c2 for zkon and zkoff in

equations 2.30-2.31 by least-squares fitting. From equation 2.30, we have that

〈zkon〉
2 = c2

2,konσ
4 and var (zkon) = c1,konσ

2/n. The least-squares solution is given
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Figure 2.30: The quantities rms (err (kon)) and rms (err (koff )) as a function of
σ for each dNTP concentration.

by

c1,kon =

√√√√√∑i var (zkon)
∣∣∣
σ=σi

σ2
i

n

, (2.32)

c2,kon =
∑
i 〈zkon〉

∣∣∣
σ=σi∑

i σ
2
i

. (2.33)

A least-squares solution for c1,koff and ckon can be derived in a similar manner.

To verify the validity of the least-squares fitting, we compare the mean and

variance of zkon and zkoff at σ = 2−4 and n = 32000 with their predicted mean

and variance as obtained through the least-squares fit above (table 2.1). Here, we

obtained

• c1,kon = 4.6580

• c1,koff = 1.2843

• c2,kon = −0.3467
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Figure 2.31: The quantities std (err (kon)) and std (err (koff )) as a function of σ
for different sample sizes n.

• c2,koff = −0.2219

The distribution of zkon and zkoff for these values of σ and n are shown in fig-

ure 2.39. Table 2.1 shows that there is good agreement between the predicted and

zkon zkoff
mean -0.001102 -0.00089558

mean from fit -0.0014 -0.00086661
var. 2.4636× 10−6 2.3314× 10−7

var. from fit 2.6486× 10−6 2.0136× 10−7

Table 2.1: Comparison between the observed mean and variance of zkon and zkoff
with their predicted means and variances obtained through the least-squares fit.
Here, σ = 2−4 and n = 32000. The results show good agreement between the
observed and predicted mean and variances.

observed mean and variances of zkon and zkoff .

Throughout the number of samples examined in our numerical simulation

(n = 1000, 2000, 4000, 8000, 16000, 32000, 64000), we observed little change in the

least-squares solutions for c1 and c2 for zkon and zkoff . In fact, for these n’s, the

means of c1,kon , c2,kon , c1,koff , and c2,koff are 4.6908, -0.3454, 1.2934, and -0.2213,

67



0 0.05 0.1 0.15 0.2
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

σ
noise

m
ea

n(
er

r(
k on

))

 

 

0 0.1 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

σ
noise

m
ea

n(
er

r(
k of

f))

 

 

n=1000
n=2000
n=5000
n=10000
n=40000

n=1000
n=2000
n=5000
n=10000
n=40000

Figure 2.32: The quantities mean (err (kon)) and mean (err (koff )) as a function
of σ for different sample sizes n.

respectively. The standard deviations are 0.0457, 0.0030, 0.0122, and 0.0009,

respectively.

The importance of these results is that for any r2, kon, koff , and [dNTP ], we

can collect n unperturbed T (1) samples and perturb them m times to obtain m

data sets. From this data, the coefficients c1 and c2 in equations 2.30-2.31 can be

obtained by least-squares fitting (equations 2.32-2.33) and an accurate description

of the distribution of zkon and zkoff can be obtained.

2.8.1 Analysis of the Single Exponential Mode

To gain some intuition as to why we can write the distribution of zkon and

zkoff as in equations 2.30 and 2.30, we consider the simpler problem of inferring

the rate from a single exponential mode: T1, . . . , Tn ∼ exp (r), where the T1, . . . Tn

are independent and identically distributed (iid). The MLE of 1/r is then given

by

ρ := 1
r

= 1
n

n∑
i=1

Ti.

68



0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

σ
noise

rm
s(

er
r(

k on
))

 

 

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

σ
noise

rm
s(

er
r(

k of
f))

 

 

n=1000
n=2000
n=5000
n=10000
n=40000

n=1000
n=2000
n=5000
n=10000
n=40000

Figure 2.33: The quantities rms (err (kon)) and rms (err (koff )) as a function of
σnoise for different sample sizes n.

Consider the Ti samples perturbed by multiplicative noise, so that the observed

Ti samples are of the form Ti exp (σζi) where ζi ∼ N (0, 1), iid. Now the MLE of

1/r from the perturbed samples is given by

ρ (σ) := 1
r (σ) = 1

n

n∑
i=1

Tie
σζi .

We write ρ (σ) to emphasize the dependence on σ. We can then write,

ρ (σ) := 1
r (σ) = 1

n

n∑
i=1

Ti + σ

n

n∑
i=1

Tiζi + σ2

2n

n∑
i=1

Tiζ
2
i + · · · ,

after Taylor expansion. From here, we see that the first term is ρ (0). From the

Central Limit Theorem, the second term is approximately σN (0, 2/ (nr2)) for
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Figure 2.34: The squared-mean of the quantities zkon and zkoff . This shows
that the squared-mean of zkon and zkoff both follow O (σ4) as σ → 0 and hence
〈zkon〉 ,

〈
zkoff

〉
= O (σ2).

large n. For the third term, we can write

σ2

2
1
n

n∑
i=1

Tiζ
2
i = σ2

2
1
n

n∑
i=1

(
Tiζ

2
i −

〈
Tiζ

2
i

〉
+
〈
Tiζ

2
i

〉)
= σ2

2
1
n

n∑
i=1

(
Tiζ

2
i −

〈
Tiζ

2
i

〉)
+ σ2

2r .

Notice that first term, 1
n

∑n
i=1 (Tiζ2

i − 〈Tiζ2
i 〉) is approximately normalN (0, 8/ (nr2))

for large n by the Central Limit Theorem. Hence we have that

σ2

2
1
n

n∑
i=1

Tiζ
2
i approximately σ2

2 N
(

0, 8
nr2

)
+ σ2

2r ,

for large n. Notice that the stochastic contribution of σ2/2N (0, 8/ (nr2)) is small

for small σ. Putting all of this together, we can formally write

ρ (σ)− ρ (0) = σ2

2r + σ√
n
N
(

0, 2
r2

)
+ · · · . (2.34)

Notice that in equation 2.34, we have a bias of order O (σ2) and a variance
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Figure 2.35: The second moments of zkon and zkoff as a function of σ. This
shows that the second moments follow O (σ2) +O (σ4) for fixed n.

of order O (σ2/n), similar to equations 2.30 and 2.31. The extension to the more

general case of a proper exponential mixture is much harder, since in our context,

kon and koff is intertwined in the mixture parameters (α, λ1, λ2). Nevertheless,

this example of a single exponential mode gives us confidence in the distribution

of zkon and zkoff given in equations 2.30 and 2.31.

2.9 Discussion and Concluding Remarks

The techniques used to derive the PDF of T (1) and the proceeding steps to

derive the EM algorithm to infer the MLE of kon and koff can be applied to

many phenomena which can be described as a Markov chain and for which dwell-

time data can be gathered. The EM framework is dependent on the PDF of the

observed data being in the form of a proper mixture distribution.

Using the EM algorithm to infer estimates for kon and koff has been shown to

be robust under a wide range of noise magnitudes. We have found that the relative

error of the inferred kon and koff rates are dependent on the dNTP concentration
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Figure 2.36: The second moments of zkon and zkoff as a function of n. This
shows that the second moments follow O (1/n) as n→∞ for fixed σ.

used. This is more evident in the inference of kon, but it is only weakly dependent

for the inference of koff . For example, at σnoise = 0.2, relative error for kon

ranges from about 9% to 30%, whereas for koff , the relative error only ranges

from about 44% to 46% throughout the dNTP concentrations examined for that

noise magnitude. The relative error ranges tend to decrease for kon as the noise

magnitude decreases. For σnoise greater than about 0.05, using [dNTP ] = 0.5

provides the lowest relative error for kon among the dNTP concentrations tested.

Below 0.05, [dNTP ] = 2 provides the lowest relative error among the dNTP

concentrations examined. For both kon and koff , the inference bias remains under

10% throughout the dNTP concentrations tested and throughout the range of

σnoise examined.

We also examined the behavior of the relative error and inference bias for kon

and koff when the number of samples of T (1) was varied. We found that observ-

ing around 5000 samples of T (1) is sufficient for the conclusions in the previous

paragraph to be valid; recall that those conclusions were based on a data set in

which 10000 samples of T (1) were observed.
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Figure 2.37: The standard deviation of zkon and zkoff as a function of σ. For
fixed n, the variance of zkon and zkoff behave as O (σ2).

The inference uncertainty of kon and koff was also investigated. We showed

that the total relative error for inferring kon and koff is a function of the scaled

[dNTP ] and scaled koff only. We used the observed Fisher information matrix to

obtain an asymptotic estimate for the covariance matrix for the MLE estimates

and then we propagated that uncertainty to the kon and koff estimates through

a first-order Taylor expansion. This and the scaling laws allowed us to build a

numerical approximation to the total relative error for any kon and koff . From

the scaling laws, we can also infer that the [dNTP ] that produces the least total

relative error is a function of k only. The optimum [dNTP ] was also numerically

estimated by the approximated total relative error function.

The total relative error table in (S, k) calculated in this paper for the numerical

approximation to err1 (S, k) can also be applied to the synthesizing case in which

the DNAP-DNA complex is allowed to incorporate a dNTP and proceed through

the polymerization process. This extension can be made if the covariance matrix

of the MLE estimates of the mixture parameters (α, λ1, λ2) are stored for each

(S, k)-point in the table. It can be shown that for kpol > 0, the escape problem

governing T (1) can be re-written as an equivalent escape problem of the same
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Figure 2.38: The standard deviation of zkon and zkoff as a function of σ. For
fixed σ, the variance of zkon and zkoff behave as O (1/n).

form as the escape problem governing T (1) for the kpol = 0 case presented in this

paper. Thus the saved covariance matrices for each (S, k)-point can be used in

the synthesizing case.

We also looked into the constrained optimization problem in which the total

experimental time was constrained using the mean-field approximation of the total

experimental time and found the optimal number of T (1) samples to collect and the

optimum [dNTP ] concentration to run the experiment which produces the least

total relative error. The constrained optimization problem can be recast into an

unconstrained optimization problem of [dNTP ] only. Using this technique, we

were able to numerically estimate the [dNTP ] which produces the least relative

error for each k. We showed that the use of the mean-field approximation to the

total experimental run time was valid numerically.

The optimization problem was generalized to include the cost of obtaining each

sample when considering the escape back to the lower-amplitude from the upper-

amplitude. Again, we used the mean-field approximation to the total experimental

time in this context. We also showed that as the cost of obtaining each sample
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Figure 2.39: Distributions of zkon and zkoff using two different types of data sets,
each with n = 32000 samples. In the type 1 data sets, each data set is perturbed
by a separate independent set of noises. In the type 2 data sets, all data sets are
perturbed by the same set of noises. The distributions using the two types show
good agreement.

increases, the optimal S approaches the optimal S in the unconstrained case.

The construction of the total relative error function and characterization of the

optimal [dNTP ] thus provide a way to determine the experimental parameters

which produce the least inference uncertainty when inferring the dNTP binding

and disassociation rates. This a priori knowledge will allow researchers to make

more accurate estimates for the dNTP binding and disassociation rates and further

elucidate the dynamics of dNTP binding DNA-DNAP complexes.

Finally characterization of the MLE estimates from perturbed T (1) samples

was also investigated. Using numerical simulations, we obtained strong numerical

evidence to support the claims that the MLE estimates of kon and koff from

the perturbed T (1) data differ from the MLE estimates of kon and koff from the

unperturbed T (1) data by a Gaussian with deterministic mean of order O (σ2) and

75



stochastic variance of order O (σ2/n), where σ is the standard deviation of the

noise. Furthermore, the distribution of zkon and zkoff can be accurately described

by least-squares fitting of the asymptotic coefficients to the squared-mean and

variance of zkon and zkoff . The asymptotic coefficients are shown to have a weak

dependence on n. This and numerical simulations examining the distribution

of zkon and zkoff show that the distribution of zkon and zkoff can be accurately

obtained for any system in the following way: (1) generate n unperturbed T (1)

samples and perturb them m times to create m data sets; and (2) determine

the asymptotic coefficients of the squared-mean and variance of zkon and zkoff by

least-squares fitting.

Allowing the bound dNTP to proceed to the chemical step of phosphodiester

bond formation is a natural extension to this paper. In this setting, after dNTP

is bound (but not yet incorporated covalently), the DNA-DNAP complex can

transition back to the post-translocation state or fully incorporate the bound

dNTP and proceed to through the polymerization process and onto the next

nucleotide addition cycle (figure 2.2). In this setting, the DNAP-DNA complex

can escape to the next nucleotide addition cycle. Hence observing T (1) dwell times

are in direct competition with the TB dwell times. Developing statistical inference

tools and optimal experimental design methodologies in this more general setting

will allow for more robust control DNAP-DNA complexes allowed to undergo

synthesis and illuminate the mechanisms which control replication fidelity.
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Chapter 3

Extension to the Synthesizing

Case: Inferring the Kinetic Rates

of dNTP Binding and

Incorporation

3.1 Introduction

In this chapter, we determine the dNTP binding, incorporation, and disasso-

ciation rates using dwell time data for synthesizing DNAP-DNA complexes. We

derive the probability density function (PDF) underlying the dwell time data and

determine the maximum-likelihood estimates (MLE) of the binding, incorpora-

tion, and disassociation rates. Previous work has been done to estimate the dNTP

binding and disassociation rates in non-synthesizing DNAP-DNA complexes by

use of a autocorrelation function of the entire current amplitude measured from

nanopore experiments [50]. In the previous chapter, we also proposed a method
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of estimating the dNTP binding and disassociation rates in non-synthesizing com-

plexes by deriving the underlying dwell time PDF and applying an expectation-

maximization (EM) algorithm to obtain the MLE estimates. This chapter extends

this to synthesizing case. Until now, inferring the binding, incorporation, and dis-

association rates of synthesizing complexes have not yet been examined.

For an ionic current trace covering more than one nucleotide addition cycle,

we define various dwell times (figure 3.1).
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Figure 3.1: A state-space diagram for two nucleotide addition cycles in DNA
replication. When the DNAP-DNA complex is allowed to undergo synthesis and
a complementary dNTP is provided in the cis chamber, the DNAP-DNA complex
can transition to the next nucleotide addition cycle–indicated by the “+” symbol
after the state names. This is manifested as a change in the upper and lower
amplitudes as the reporter group gets closer or further away from the nanopore
lumen.

• TA: the time from the first arrival to the post-translocation state of the

current nucleotide addition cycle to the last arrival to the post-translocation

state of the current nucleotide addition cycle; this is shown graphically as

the blue square to the green circle in figure 3.1

• TB: the time from the last arrival to the post-translocation state of the

current nucleotide addition cycle to the first arrival to the post-translocation

state of the next nucleotide addition cycle; this is shown graphically as the
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green circle to the magenta hexagon in figure 3.1

• T (1): the lower-amplitude dwell times within the TA dwell time segment. In

any observation of TA, there are likely to be many samples of T (1) and we

label them as T (1)
1 , T

(1)
2 , T

(1)
3 , . . . , etc (figure 3.1)

• T (2): the upper-amplitude dwell times within the TA and TB dwell time

segments. Like T (1), there are likely to be many samples of T (2), so we label

them as T (2)
1 , T

(2)
2 , . . . , etc (figure 3.1). Note that the dwell time T (2) is

not directly observable within the dwell time segment TB. Within the TB

segment, this is denoted graphically as the left-opened cyan parenthesis to

the right-opened cyan parenthesis in figure 3.5.

• Tpol: the time from the last arrival to the post-translocation state to the

first arrival to the pre-translocation state in the next nucleotide addition

cycle; this is the time that the DNAP-DNA complex completes the dNTP

binding and incorporation steps. This is denoted by the green circle to the

right-opened red parenthesis in figure 3.5.

In this chapter, we are interested in the case in which the DNAP-DNA complex

is allowed to undergo synthesis. The DNAP-DNA complex will thus transition

in discrete amplitude levels, each level corresponding to a nucleotide addition

cycle. A mutation has been engineered into the exonuclease so that cleaving of

the dNTP cannot occur, and hence the transition to the next nucleotide addition

cycle is irreversible. We are interested in inferring the transition rates kon, koff ,

and kpol from the T (1) and TB data. In this situation, collecting T (1) samples is

in competition with TB in a sense that the probability of escaping to the next

nucleotide addition cycle increases with the increase in dNTP concentration.

In [49], the transition rates kon and koff were inferred from the measured
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current trace data by use of the autocorrelation function of the measured current

trace. In this situation, the DNAP-DNA complex was not allowed to undergo

synthesis. In chapter 2, we re-examined this situation and inferred kon and koff

by deriving the PDF of the lower-amplitude data, T (1). We then showed that the

PDF is a proper exponential mixture in which the EM algorithm can be applied to

determine the maximum-likelihood estimates (MLE) of the mixture parameters.

The estimated mixture parameters can then be used to determine kon and koff .

Unlike in [49] and chapter 2, we are considering the case in which the DNAP-

DNA complex is allowed to undergo synthesis and hence kpol > 0. When the

complex is allowed to undergo synthesis, the complex has a probability of incor-

porating the bound dNTP and proceeding to the next nucleotide addition cycle.

The probability of incorporating the bound dNTP and proceeding to the next

nucleotide addition cycle is determined by the transition rates kon, koff , kpol and

dNTP concentraion [dNTP ]. The ability of the DNAP-DNA complex to escape

to the pre-translocation state or to proceed to the next nucleotide addition cycle

fundamentally changes the distribution of the lower-amplitude dwell time T (1).

Derivation of the PDF of the T (1) in this setting must consider the possibility of

the complex irreversibly escaping to the next nucleotide addition cycle. We will

derive a new PDF for T (1) for this setting and show that it is still a proper expo-

nential mixture. Thus the same methods used to determine the MLE estimates of

the mixture weights from T (1) data via the EM algorithm as shown in chapter 2

can still be used.

In chapter 2, we characterized the inference uncertainty for kon and koff from

T (1) data and show that the inference uncertainty of these kinetic rates can be

controlled in experimental design. We also characterize the effect of noise on the

inferred kinetic rates. We extend this to synthesizing DNAP-DNA complexes in
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this chapter. We first characterize the inference uncertainty of kon, koff , and

kpol and show that the inference uncertainty of these kinetic rates can also be

controlled in experimental design. A simple extension of our noise study in the

previous chapter characterizes the effect of noise on the inferred kinetic rates.

We will also examine the information content of TB and show that the PDF

of TB is an improper mixture of four exponential modes. Here, we use the term

“improper” to mean that one or more of the mixture weights are negative although

the total sum of the weights still equal 1, and the overall mixture is still a PDF.

The fact that some of the exponential weights are negative means that inference

of the mixture parameters does not fit into the EM framework, and thus the

MLE estimates from TB have to be found by more naive approaches. Through

numerical observation, there appears to be no advantage of using TB over the T (1)

dwell times.

3.2 Mathematical Formulations

In this section, we derive the PDFs of T (1) and TB, as well as the mean cycle

time.

Derivation of the PDF of T (1)

Since the DNAP-DNA complex can transition to the next nucleotide addition

cycle, the escape problem describing the dwell time T (1) is fundamentally different

than what was derived in chapter 2. Consider figure 3.2 which shows the relevant

states describing the T (1) dwell time. Throughout this section and the rest of the

paper, the states may be referred to by their full name, abbreviated name, or

number; for example, we will interchangeably refer to the post-translocation state

of the current nucleotide addition cycle as “post” or 2. In this example, “post-
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translocation” is the full name of the state, “post” is the abbreviated name of the

state, and 2 is the number assigned to that state. Any states in the next nucleotide

addition cycle will have a “+” symbol appended to it; for example, “post+” or

2+ refers to the post-translocation state of the next nucleotide addition cycle

(figures 3.2 and 3.4). The dwell time T (1) are the lower-amplitude dwell time

Pre (1)

Post (2) dNTP (4) Pre+ (1+)

r2

kon[dNTP ]

koff

kpol

Figure 3.2: A state-space diagram of the relevant states for the escape problem
pertaining to the T1 and Tpol data.

segments of TA, and so T (1) is the dwell time of the lower-amplitude conditioned

on the event of escaping to the pre-translocation state when the complex starts in

the post-translocation state. Throughout this section and the rest of this paper,

let X (t) denote the state of the Markov process at time t.
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It is helpful to define the following events:

E<t
pre = {X (t′) = pre,X (t) 6= pre, pre+ : 0 < r < t′ < t}

E>t
pre = {X (t′) = pre,X (r) 6= pre, pre+ : 0 < r < t < r′}

E=t
pre = {X (t) = pre,X (r) 6= pre, pre+ : 0 < r < t} ,

Epre =
⋃
t>0

E=t
pre.

Here, E<t
pre and E>t

pre are the events of the DNAP-DNA complex eventually escaping

to the pre-translocation (pre) state of the current nucleotide addition cycle before

and after time t, respectively. The event E=t
pre is the event of the complex escaping

to the pre-translocation state of the current nucleotide addition cycle at exactly

time t. Finally, Epre is the event of the complex eventually escaping to the pre-

translocation state of the current nucleotide addition cycle.

The following probabilities will be useful for our derivations:

pEpre|2 = Pr (Epre | X (0) = 2) , (3.1)

pEpre|4 = Pr (Epre | X (0) = 4) . (3.2)

Here pEpre|2 is the probability of escaping to the pre state provided that the DNAP-

DNA complex starts at the post-translocation state (state 2), and pEpre|4 is the

probability of escaping to the pre state provided that the DNAP-DNA complex

starts at the dNTP-bound state (state 4). Note that only pEpre|2 is directly ob-

servable.

Consider the dwell time inf {t ≥ 0 : X (t) 6= post, dNTP}. This is the time-

to-escape the lower-amplitude states: post-translocation and dNTP-bound. We

can rigorously define the T (1) dwell time to be the following conditional random
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variable,

T (1) = inf {t ≥ 0 : X (t) 6= post, dNTP} | {Epre, X (0) = post} . (3.3)

It is important to note that T (1) is a stochastic stopping time, and hence the

Markov process before and after the dwell times can be thought of independent

Markov processes by the strong Markov property (see for example [52] and [11]).

In fact, it can be shown that any dwell time random variable is a stopping time;

that is the random variable inf {t ≥ 0 : X (t) /∈ U} where U denotes a subset

of the state-space is a stopping time (see for example, page 119, example 7.2.2

of [59]). A consequence of this is that upon arrival of the complex at the post-

translocation state, we can describe the escape problem underlying T (1) to be its

own independent Markov process with state space {pre, post, dNTP, pre+} with

the states {post, dNTP} transient and the states {pre,pre+} absorbing.

Let X (t) be the state of the Markov process with state-space shown in fig-

ure 3.2. The infinitesimal generator Q of this Markov process is given by

Q =



0 0 0 0

r2 − (r2 + kon[dNTP ]) kon[dNTP ] 0

0 koff − (koff + kpol) kpol

0 0 0 0


.

Now the transition matrix K of the embedded disrete-time Markov chain is given
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by

K = I +Q =



1 0 0 0

r2 1− (r2 + kon[dNTP ]) kon[dNTP ]λ 0

0 koff 1− (koff + kpol) kpol

0 0 0 1


.

We can write K in a canonical form

K =

I O

R A

 =



1 0 0 0

0 1 0 0

r2 0 1− (r2 + kon[dNTP ]) kon[dNTP ]

0 kpol koff 1− (koff + kpol)


, (3.4)

where R is the 2 × 2 matrix that gives the probability of transitioning from a

transient state to an absorbing state; A is the 2×2 matrix that gives the probability

of staying in a transient state; I is the identity matrix; and O is the zero matrix.

It can be shown that for a time-homogeneous, discrete-time Markov chain, the

probability of being absorbed in absorbing state j from transient state i is given

by (I − A)−1R (theorem 3.3.7 page 52 of [42]). Computing this, we obtain

(I − A)−1R =

1
(koff + kpol) r2 + kpolkon[dNTP ]

r2 (koff + kpol) kon[dNTP ]kpol

r2koff kpol (r2 + kon[dNTP ])

 .
(3.5)
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Hence we can write,

pEpre|2 = r2 (koff + kpol)
(koff + kpol) r2 + kpolkon[dNTP ] , (3.6)

pEpre|4 = r2koff
(koff + kpol) r2 + kpolkon[dNTP ] . (3.7)

For notational convenience, let I be the state-space of the Markov process;

that is, I = {1, 2, 4, 1+}. Consider the conditional transition matrix, PEpre (t) =(
Pi,j,Epre (t)

)
i,j∈I×I

, where

Pi,j,Epre (t) = Pr (X (t) = j | X (0) = i, Epre) .

From here, we can obtain the conditional infinitesimal generator

QEpre = lim
t→0+

PEpre (t)− I
t

,

for the Markov process governing the lower-amplitude escape problem conditioned

on the escape to the pre-translocation state. We now derive the entries of the

conditional transition matrix PEpre (t).
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P2,4,Epre (t) = Pr (X (t) = 4 | X (0) = 2, Epre)

= Pr (X (t) = 4, X (0) = 2, Epre)
Pr (Epre | X (0))Pr (X (0) = 2)

= Pr (Epre, X (t) = 4 |X (0) = 2)Pr (X (0) = 2)
Pr (Epre | X (0) = 2)Pr (X (0) = 2)

=
Pr

(
E>t
pre, X (t) = 4 | X (0) = 2

)
Pr (Epre | X (0) = 2) since {X (t) = 4} ∩ Epre = E>t

pre

=
Pr

(
E>t
pre | X (t) = 4, X (0) = 2

)
Pr (X (t) = 4 | X (0) = 2)

Pr (Epre | X (0) = 2)

=
Pr

(
E>t
pre | X (t) = 4

)
Pr (X (t) = 4 | X (0) = 2)

Pr (Epre | X (0) = 2)

from the Markov property

=
(kon[dNTP ]t) pEpre|4

pEpre|2
+ o (t) .

The entries P4,2,Epre (t) and P2,1,Epre (t) can be calculated in a similar manner.

P4,2,Epre (t) = Pr (X (t) = 2 | X (0) = 4, Epre)

= Pr (X (t) = 2, X (0) = 4, Epre)
Pr (Epre | X (0) = 4)Pr (X (0) = 4)

= Pr (Epre, X (t) = 2 | X (0) = 4)Pr (X (0) = 4)
Pr (Epre | X (0) = 4)Pr (X (0) = 4)

= Pr (Epre, X (t) = 2 | X (0) = 4)
Pr (Epre | X (0) = 4)

=
Pr

(
E>t
pre, X (t) = 2 | X (0) = 4

)
p2

=
(koff t) pEpre|2

pEpre|4
+ o (t) .
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P2,1,Epre (t) = Pr (X (t) = 1 | X (0) = 2, Epre)

= Pr (X (t) = 1, X (0) = 2, Epre)
Pr (Epre | X (0) = 2)Pr (X (0) = 2)

= Pr (Epre, X (t) = 1 | X (0) = 2)Pr (X (0) = 2)
Pr (Epre | X (0) = 2)Pr (X (0) = 2)

=
Pr

(
E<t
pre | X (0) = 2

)
Pr (Epre | X (0) = 2)

= r2t

pEpre|2
+ o (t) .

Clearly, P4,1+,Epre = 0 since we are conditioning on Epre. Also, P2,1+,Epre (t) =

o (t) and P4,1,Epre (t) = o (t) since the probability of two or more transitions oc-

curing in an interval [0, t] is o (t). And clearly, P1,j,Epre (t) = 0 for all j 6= 1

and P1+,j,Epre (t) = 0 for all j 6= 1+ since states 1 and 1+ are absorbing, and

consequently P1,1,Epre (t) = P1+,1+,Epre (t) = 1. And finally, P2,2,Epre (t) = 1 −
r2t

pEpre|2
− kon[dNTP ]pEpre|4t

pEpre|2
+ o (t), and P4,4,Epre (t) = 1− koffpEpre|2t

pEpre|4
+ o (t). Hence the

conditional infinitesimal generator matrix is given by

QEpre =



0 0 0 0
r2

pEpre|2
− r2+kon[dNTP ]pEpre|4

pEpre|2

kon[dNTP ]pEpre|4
pEpre|2

0

0 koffpEpre|2
pEpre|4

−koffpEpre|2
pEpre|4

0

0 0 0 0


. (3.8)

The state-space diagram for the Markov process generated by QEpre is shown in

figure 3.3. The time to absorption of the DNAP-DNA complex starting in the

post-translocation state of this Markov process is equivalent to the general escape

problem shown in Proposition 1 of Chapter 2. Hence the PDF of T (1), fT (1) (t), is
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Pre (1)

Post (2) dNTP (4) Pre+ (1+)

r2
pEpre|2

kon[dNTP ]pEpre|4
pEpre|2

koffpEpre|2
pEpre|4

0

Figure 3.3: State-space diagram of the lower amplitude states conditioned on
Epre.

given by

fT (1) = αλ1e
−λ1t + (1− α)λ2e

−λ2t, (3.9)

with

λ1,2 =
B ±

√
B2 − 4 r2koff

pEpre|4

2 ,

where

B = r2

pEpre|2
+
kon[dNTP ]pEpre|4

pEpre|2
+
koffpEpre|2
pEpre|4

,

for notational compactness. We order the eigenvalues to be λ1 < λ2. Also,

α = (λ2 − r2) / (λ2 − λ1) and 0 < α < 1. Hence fT (1) is a proper exponential

mixture.
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Derivation of the PDF of TB

Consider figure 3.4 which shows the relevant states for the escape problem

describing TB. Recall that TB is the time for the DNAP-DNA complex to escape

Pre (1)

Post (2) dNTP (4) Pre+ (1+) Exo+ (3+)

Post+ (2+)

r2

kon[dNTP ]

koff

kpol

r3+

r4+

r1+

Figure 3.4: A state-space diagram of the relevant states for the escape problem
pertaining to the TB data.

to the post-translocation state of the next nucleotide addition cycle (post+) when

starting at the post-translocation state of the current nucleotide addition cycle

(post). We can write TB = Tpol + T (2) where Tpol is the time it takes the DNAP-

DNA complex to complete the binding and incorporation segment of the nucleotide

addition cycle and T (2) is the upper-amplitude segment of the next nucleotide

addition cycle (figure 3.5). Unlike TA, TB, and T (1), the dwell times Tpol and

T (2) are both unobservable. The latter is only unobservable when it is part of

the TB segment. Otherwise, T (2) data can be directly observed in between the
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Figure 3.5: A schematic current trace depicting the TB dwell time along with
Tpol and T (2) dwell time segments which make up the TB dwell time. The Tpol
dwell time segment is graphically denoted from the green circle to the right-opened
red parenthesis, and the T (2) dwell time segment is graphically denoted from the
left-opened cyan parenthesis to the right-open cyan parenthesis. Both dwell times
Tpol and T (2) are not directly observable since they do not manifest a change in
current amplitude. The latter is only unobservable when part of the TB dwell
time segment.

DNAP-DNA transitions across the translocation in a similar manner in which

T (1) data can be collected (figure 3.1). It is also important to note that Tpol and

T (2) are stochastic stopping times, and hence the Markov process before and after

the dwell times can be thought of independent Markov processes by the strong

Markov property. An important consequence of this is that the random variables

Tpol and T (2) are independent and hence TB is a sum of two independent random

variables. Using this fact, we can determine the PDF of TB by determining the

PDF of Tpol and T (2), and then using the fact that the PDF of a sum of two

independent random variables in the convolution of their PDFs.
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Derivation of the PDF of Tpol

To derive the PDF of Tpol, it is helpful to define the following events:

E<t
pol = {X (t′) = pre+, X (t) 6= pre, pre+ : 0 < r < t′ < t}

E>t
pol = {X (t′) = pre+, X (r) 6= pre, pre+ : 0 < r < t < r′}

E=t
pol = {X (t) = pre+, X (r) 6= pre, pre+ : 0 < r < t} ,

Epol =
⋃
t>0

E=t
pol.

Informally, the events E<t
pol and E>t

pol are the events of the DNAP-DNA complex

escaping to the pre-translocation state of the next nucleotide addition cycle (pre+)

before and after time t, respectively. The event E=t
pol is the event of the DNAP-

DNA complex escaping to the pre+ state at exactly time t, and the event Epol is

the event of the complex eventually escaping to the pre+ state.

Define the following probabilities

pEpol|2 = Pr (Epol | X (0) = 2) , (3.10)

pEpol|4 = Pr (Epol | X (0) = 4) . (3.11)

Here pEpol|2 is the probability of escaping to the pre+ state provided that the

DNAP-DNA complex starts at the post-translocation state (state 2), and pEpol|4

is the probability of escaping to the pre+ state provided that the DNAP-DNA

complex starts at the dNTP-bound state (state 4).

Similar to the definition of T (1) in equation 3.3, we can define Tpol to be

Tpol = inf {t ≥ 0 : X (t) 6= Post, dNTP} | {Epol, X (0) = Post} .

The state-space diagram relevant for this random variable is shown in figure 3.2.
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For Tpol we are conditioning on the escape to the Pre+ state. Ximilar to our

strategy for deriving the PDF of T (1), we will first derive the conditional transition

matrix for the embedded discrete-time Markov process, conditioned on the escape

to the Pre+ state. From equation 3.5, we have that

pEpol|2 = kon[dNTP ]kpol
(koff + kpol) r2 + kpolkon[dNTP ] , (3.12)

pEpol|4 = kpol (r2 + kon[dNTP ])
(koff + kpol) r2 + kpolkon[dNTP ] . (3.13)

We want to calculate the conditional transition matrix,

PEpol (t) =
(
Pi,j,Epol (t)

)
i,j∈I

,

where

Pi,j,Epol (t) = Pr (X (t) = j | X (0) = i, Epol) .
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P2,4,Epol (t)

P2,4,Epol (t) = Pr (X (t) = 4 | X (0) = 2, Epol)

= Pr (X (t) = 4, X (0) = 2, Epol)
Pr (X (0) = 2, Epol)

= Pr (X (t) = 4, Epol | X (0) = 2)
pEpol|2

=
Pr

(
E>t
pol, X (t) = 4 | X (0) = 2

)
pEpol|2

since {X (t) = 4} ∩ Epol = E>t
pol

=
Pr

(
E>t
pol | X (t) = 4, X (0) = 2

)
Pr (X (t) = 4 | X (0) = 2)

pEpol|2

=
Pr

(
E>t
pol | X (t) = 4

)
Pr (X (t) = 4 | X (0) = 2)
pEpol|2

=
pEpol|4kon[dNTP ]t

pEpol|2
+ o (t) .

P4,2,Epol (t)

P4,2,Epol (t) = Pr (X (t) = 2 | X (0) = 4, Epol)

= Pr (X (t) = 2, X (0) = 4, Epol)
Pr (Epol | X (0) = 4)Pr (X (0) = 4)

= Pr (Epol, X (t) = 2 | X (0) = 4)
Pr (Epol | X (0) = 4)

=
Pr

(
E>t
pol, X (t) = 2 | X (0) = 4

)
pEpol|4

=
Pr

(
X>t
pol | X (t) = 2

)
Pr (X (t) = 2 | X (0) = 4)
pEpol|4

=
pEpol|2koff t

pEpol|4
+ o (t) .
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P4,1+,Epol (t)

P4,1+,Epol (t) = Pr (X (t) = 1 + | X (0) = 4, Epol)

= Pr (Epol, X (t) = 1 + | X (0) = 4)
Pr (Epol | X (0) = 4)

=
Pr

(
E<t
pol, X (t) = 1 + | X (0) = 4

)
pEpol|4

=
Pr

(
E<t
pol | X (t) = 1+

)
Pr (X (t) = 1 + | X (0) = 4)
pEpol|4

= kpolt

pEpol|4
+ o (t) .

Now, P2,1,Epol (t) = P4,1,Epol (t) = 0 since we are conditioning on Epol. Also

P2,1+,Epol (t) = o (t) since the probability of transitioning twice in [0, t] is o (t). For

the absorbing states, we have P1,1,Epol (t) = P1+,1+,Epol (t) = 1, and P1,j,Epol (t) =

P1+,j,Epol (t) = 0 for j = 1, . . . , 4. Finally,

P2,2,Epol (t) = 1−
pEpol|4kon[dNTP ]t

pEpol|2
+ o (t)

P4,4,Epol (t) = 1−

(
pEpol|2koff + kpol

)
t

pEpol|4
+ o (t) .

Hence the conditional infinitesimal generator matrix of the underlying continuous-
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time process is given by

QEpol =



0 0 0 0

0 −
pEpol|4kon[dNTP ]

pEpol|2

pEpol|4kon[dNTP ]
pEpol|2

0

0
pEpol|2koff

pEpol|4
−
pEpol|2koff+kpol

pEpol|4

kpol
pEpol|4

0 0 0 0



=



0 0 0 0

0 −Λ Λ 0

0 koffkon[dNTP ]
Λ −koffkon[dNTP ]

Λ −
(
kpol + koff r2

Λ

)
kpol + koff r2

Λ

0 0 0 0



where Λ = r2 + kon[dNTP ] for notational compactness.

This gives rise to the Markov process with state-space diagram in figure 3.6.

The escape problem shown in figure 3.6 is similar to the one underlying T (1). We

Pre (1)

Post (2) dNTP (4) Pre+ (1+)

0

pEpol|4kon[dNTP ]
pEpol|2

pEpol|2koff

pEpol|4

kpol
pEpol|4

Figure 3.6: A state-space diagram of the Markov process conditioned on the
escape to the Pre+ state.
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can derive the PDF of Tpol in a similar manner to T (1) as shown in Proposition

1 of Chapter 2. The key difference is that the escape to the absorbing state is

sequential for Tpol, whereas for T (1), the absorbing state is a branch (compare

figures 3.3 and 3.6).

Consider figure 3.7. Let T be the dwell time that it takes for the Markov

process to escape to state 3, starting from state 1 in figure 3.7. We will derive the

PDF of T below in a similar manner to Proposition 1 in Chapter 2.

1 2 3

r1

r2

r3

Figure 3.7: A state-space diagram of the general escape problem for a sequential
chain with two transient states and one absorbing state.

Proposition 3. The PDF of T is of the form αλ1e
−λ1t + (1− α)λ2e

−λ2t with

λ1, λ2 > 0 and α > 0.

Proof. By Kolmogorov’s backwards equation, we have the following system of

ODEs,

d

dt

p1

p2

 =

−r1 r2

r1 − (r2 + r3)


p1

p2

 .
The characteristic equation is given by

λ2 − (r1 + r2 + r3)λ+ r1r3 = 0 (3.14)

This gives us the eigenvalues

λ1,2 =
(r1 + r2 + r3)±

√
(r1 + r2 + r3)2 − 4r1r3

2 (3.15)
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Now from the arithmetic mean-geometric mean (AM-GM) inequality, (r1 + r3) /2 ≥
√
r1r3 with equality if and only if r1 = r3. Thus we have that (r1 + r3)2 ≥ 4r1r3

and so (r1 + r2 + r3)2 > 4r1r3 since r1, r2, r3 > 0. Also, by Descartes’ Rule of

Signs, both roots of the quadratic equation 3.14 are both positive. Hence pj(t) is

of the form of

pj(t) = c1e
−λ1t + c2e

−λ2t

Thus the total probability of the states 1 and 2 is p1(t) + p2(t), which is of the

form

p1(t) + p2(t) = c1e
−λ1t + c2e

−λ2t

The PDF of the dwell time is given by

ρ(t) = − d

dt
(p1(t) + p3(t))

= c1λ1e
−λ1t + c2λ2e

−λ2t

Now since λ1, λ2 > 0, we have that 1 =
∫∞

0 ρ (t) dt = c1 + c2. Thus c1 = α and

c2 = 1− α for some α ∈ R. Hence we have

ρ(t) = αλ1e
−λ1t + (1− α)λ2e

−λ2t
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To find α, consider

ρ(0) = αλ1 + (1− α)λ2

= − d

dt
(p1(t) + p2(t))

∣∣∣∣∣
t=0

= −dp1

dt
(0) + dp2

dt
(0)

= p1 (0) r2 − p2 (0) r2 + (r2 + r3) p2 (0)− p1 (0) r2

= 0

The last equality is true since p1(0) = 1 and p2 (0) = 0 (the dwell time starts each

time the complex arrives at the pre-translocation state from the post-translocation

state in segment TA). Thus we have

αλ1 + (1− α)λ2 = 0

Solving for α gives us

α = λ2

λ2 − λ1
. (3.16)

Hence we can writ the PDF of Tpol, fTpol (t) in the form

fTpol (t) = βη1e
−η1t + (1− β) η2e

−η2t,

with

η1,2 =
B ±

√
B2 − 4kon[dNTP ]kpol

pEpol|2

2 ,

where

B =
pEpol|4kon[dNTP ]

pEpol|2
+
pEpol|2koff

pEpol|4
+ kpol
pEpol|4

,
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for notational compactness. The change in notation relative to what was used

in Proposition 3 will be come clear after we derive the PDF of T (2) in the next

subsection. Notice that we can write the PDF of Tpol as

fTpol (t) = η1η2

η2 − η1
e−η1t − η1η2

η2 − η1
e−η2t,

so Tpol is a two-parameter hypoexponential distribution [10].

Derivation of the PDF of T (2)

Recall that T (2) is the dwell time of the upper-amplitude. In this context, it

is unobservable since it is part of the TB dwell time segment and is not marked

by a change in observed current amplitude (figure 3.5). Consider the state-space

diagram shown in figure 3.8

Pre (1) Exo (3)

Post (2)

dNTP (4-)

r3

r1

r4

kpol

Figure 3.8: State-space diagram of the upper-amplitude and relevant states for
the T (2) dwell time. The “-” symbol appended to the end of the dNTP-bound
state means that the dNTP-bound state in this context is part of the previous
nucleotide addition cycle.
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We can define the dwell time T (2) as the following,

T (2) = inf {S (t) 6= Pre, Exo} | {S (0) = Pre} .

Note that once the complex enters the Pre state, the only way to escape to the

lower-amplitude is transitioning to the Post state.

Notice that the state-space for the escape problem underlying T (2) is equivalent

to the general escape problem shown in Proposition 1 in 2. Hence we can conclude

that the PDF of T (2), fT (2) is a proper exponential mixture in which we can write

it in the form,

fT (2) = γµ1e
−µ1t + (1− γ)µ2e

−µ2t. (3.17)

Derivation of the PDF of TB

We are now ready to derive the PDF of TB. Recall that TB = Tpol + T (2) and

that Tpol and T (2) are independent. Hence, the PDF of TB, fTB (t) is given by the

convolution fTB (t) =
(
fTpol ∗ fT (2)

)
(t). By direct calculation, we find that

fTB (t) =
∫ t

0
fTpol (t− τ) fT (2) (τ) dτ

=
(
βγη1µ1

η1 − µ1
+ (1− β) γη2µ1

η2 − µ1

)
e−µ1t

+
(
β (1− γ) η1µ2

η1 − µ2
+ (1− β) (1− γ) η2µ2

η2 − µ2

)
e−µ2t

−
(
βγη1µ1

η1 − µ1
+ β (1− γ) η1µ2

η1 − µ2

)
e−η1t

−
(

(1− β) γη2µ1

η2 − µ1
+ (1− β) (1− γ) η2µ2

η2 − µ2

)
e−η2t.

Note that the coefficients of the exponential modes sum up to 1, but some of

the coefficients are negative. Hence we can write the PDF of TB as an improper
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mixture of four exponential modes,

fTB (t) = Ω1e
−µ1t + Ω2e

−µ2t + Ω3e
−η1t + Ω4e

−η2t, (3.18)

where each Ωi is their respective coefficient from above and Ω1+Ω2+Ω3+Ω4 = 1.

Derivation of the Mean Cycle Time

Let Tcycle = TA + TB be the time it takes to complete a nucleotide addition

cycle (figure 3.1). We will see that the mean cycle time plays a useful role in the

inference of the transition rates kon, koff , and kpol. The TA dwell time segment

consists of a random sum of T (1) and T (2) (figure 3.1),

TA =
N
T (1)∑
i=1

T
(1)
i + T

(2)
i ,

where NT (1) is the number of T (1) samples per cycle. Hence we can write

Tcycle =
N
T (1)∑
i=1

(
T

(1)
i + T

(2)
i

)
+ TB.

From the law of total expectation, we can write

〈Tcycle〉 =
∞∑
n=0
〈Tcycle | NT (1) = n〉Pr (NT (1) = n)

=
∞∑
n=0

[
n
(〈
T (1)

〉
+ 〈Tupper〉

)
+ 〈TB〉

]
pmEpre|2

(
1− pEpre|2

)
=
(〈
T (1)

〉
+
〈
T (2)

〉) pEpre|2
1− pEpre|2

+ 〈TB〉 ,

where the second equality comes from the fact that NT (1) ∼ geometric
(
pEpol|2

)
where the geometric distribution has support N ∪ {0} and pEpol|2 = 1− pEpre|2.
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The calculation of
〈
T (2)

〉
is straight-forward. Recall from equation 3.17 that

the PDF of T (2) is a proper mixture of two exponential modes,

fT (2) = γµ1e
−µ1t + (1− γ)µ2e

−µ2t.

Hence, by direct computation,
〈
T (2)

〉
= γ/µ1 + (1− γ)µ2.

Derivation of
〈
T (1)

〉
To obtain the expression for

〈
T (1)

〉
, we could integrate tfT (1) (t), but there is

a cleaner way. Let Tpost,j and TdNTP,j be the dwell times of the post-translocation

and the dNTP-bound states, respectively. Then,

Tpost,j
iid∼ exp (r2 + kon[dNTP ]) ,

TdNTP,j
iid∼ exp (koff + kpol) .

Throughout the rest of this paper, let Y (n) denote the state of the embedded

discrete-time Markov chain of the continuous-time process X (t). That is,

Y (n) =


X (τn) if τn <∞

♦ if τn =∞

where τn = inf {t ≥ τn−1 : X (t) 6= X (τn−1)} and τ0 = 0 and ♦ is an arbitrary

element not in the state-space of the Markov processX (t). Note that the sequence

{τn}n∈N is the sequence of transition times.

Define the conditional random variable

NdNTP =
∑
n>0

1{Y (n)=4}

∣∣∣∣∣ Epre ∩ {Y (0) = 2} ,
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where 1{Y (n)} = 1 is Y (n) = 4 and 0 otherwise. Here, NdNTP is the number of ar-

rivals at state 4, the dNTP-bound state given that the DNAP-DNA complex starts

in the post-translocation state and eventually escapes to the pre-translocation

state of the current nucleotide addition cycle. For notational convenience, let

h = Pr (NdNTP = 0). We have that,

h = Pr (NdNTP = 0)

= Pr (Y (1) = 1 | Y (0) = 2, Epre)

= Pr (Y (1) = 1, Y (0) = 2, Epre)
Pr (Epre |Y (0) = 2)Pr (Y (0) = 2)

= Pr (Y (1) = 1 | Y (0) = 2)Pr (Y (0) = 2)
Pr (Epre | X(0) = 2)P (Y (0) = 2)

= r2

(r2 + kon[dNTP ]) pEpre|2
.

From the state-space diagram in figure 3.2, we see that Pr (NdNTP = n) = (1− h)n h

since the only possible way for there to be n arrivals at state 4, given Epre and

Y (0) = X (0) = 2 is for the DNAP-DNA complex to transition from state 2 to

state 4 n times, and then escape to state 2. We can then write T (1) as the following

sum of a random number of random variables,

T (1) =
NdNTP∑
j=1

(Tpost,j + TdNTP,j) + Tpost,(NdNTP+1)

The first moment can then be calculated by the law of total expectation, By the
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law of total expectation, we then have

〈
T (1)

〉
=
∞∑
n=0

〈
T (1) | NdNTP = n

〉
Pr (NdNTP = n)

=
∞∑
n=0

(
n+ 1

r2 + kon[dNTP ] + n

koff + kon

)
(1− h)n h

=
(

1− h
h

+ 1
)

1
r2 + kon[dNTP ] + 1− h

h

1
koff + kpol

.

Derivation of 〈TB〉

We use the same strategy to determine the first moment of TB. Define the

conditional random variable,

Npol =
∑
n>0

1{Y (n)=4}

∣∣∣∣∣ Epol ∩ {Y (0) = 2} .

Here, Npol is the number of arrivals in the dNTP-bound state (state 4), given

sucessful covalent incorporation of the nucleotide and that the DNAP-DNA com-

plex starts with the initial state X (0) = Y (0) = 2. We write the random variable

Tpol as a random sum of a random number of random variables,

Tpol =
Npol∑
j=1

(Tpost,j + TdNTP,j) .
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For notational convenience, let q = Pr (Npol = 1). We calculate,

q = Pr (Npol = 1) = Pr (Y (2) = 1+, Y (1) = 4 | Y (0) = 2, Epol)

= Pr (Y (2) = 1+, Y (1) = 4, Epol | Y (0) = 2)Pr (Y (0) = 2)
Pr (Epol | Y (0) = 2)Pr (Y (0) = 2)

= Pr (Y (2) = 1+, Y (1) = 4 | Y (0) = 2)
pEpol|2

= Pr (Y (2) = 1 + | Y (1) = 4)Pr (Y (1) = 4 | Y (0) = 2)
pEpol|2

=
kpol

koff+kpol
kon[dNTP ]

r2+kon[dNTP ]

pEpol|2
.

Hence Pr (Npol = n) = 0 if n = 0 and Pr (Npol = n) = (1− q)n−1 q if n > 0, since

for Npol = n to occur, the chain must have traveled from state 2 to 4, n times,

and then escaped to state 1+.

Thus we can calculate by total expectation,

〈
T

(1)
pol

〉
=
∞∑
n=0

〈
T

(1)
pol | Npol = n

〉
Pr (Npol = n)

=
∞∑
n=0

(
n

r2 + kon[dNTP ] + n

koff + kpol

)
Pr (Npol = n)

=
∞∑
n=0

(
n

r2 + kon[dNTP ] + n

koff + kpol

)
(1− q)n−1 q

=
(

1
r2 + kon[dNTP ] + 1

koff + kon

)
1
q
.

Hence the first moment of TB is given by

〈TB〉 = 〈Tpol〉+
〈
T (2)

〉
=
(

1
r2 + kon[dNTP ] + 1

koff + kpol

)
1
q

+ γ

µ1
+ 1− γ

µ2
.
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Putting this all together, we can write 〈Tcycle〉 as

〈Tcycle〉 = (r1r4 + r2r3 + r2r4) (koff + kpol) + (r3kpol + r4kpol + r1r4) kon[dNTP ]
r1r4kpolkon[dNTP ] .

(3.19)

The first moment of Tcycle can be written in the Michaelis-Menten form,

〈Tcycle〉 =

(r1r4+r2r3+r2r4)(koff+kpol)
(r3kpol+r4kpol+r1r4)kon + [dNTP ]

r1r4kpol
r3kpol+r4kpol+r1r4

[dNTP ]
(3.20)

= Km + [dNTP ]
kcat[dNTP ] , (3.21)

where

Km = (r1r4 + r2r3 + r2r4) (koff + kpol)
(r3kpol + r4kpol + r1r4) kon

, (3.22)

and

kcat = r1r4kpol
r3kpol + r4kpol + r1r4

. (3.23)

Here, Km is the [dNTP] for which the reaction rate is half-maximum and kcat is

the maximum reaction rate.

3.3 Inferring the Transition Rates kon, koff , and

kpol from T (1) and TB Data and the Role of

〈Tcycle〉

In this section, we describe the strategies for inferring the transition rate pa-

rameters kon, koff , and kpol from T (1) and TB dwell time data, and 〈Tcycle〉.
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3.3.1 Inferring kon, koff , and kpol from T (1) Data

Recall that after conditioning on the escape to the pre-translocation state from

the post-translocation state (figure 3.9)., the state-space of the Markov process

describing the T (1) escape problem is of the same form as the escape problem for

T (1) in chapter 2.

Pre (1)

Post (2) dNTP (4) Pre+ (1+)

r2

kon[dNTP ]

koff

kpol

y conditioning

Pre (1)

Post (2) dNTP (4) Pre+(1+)

r̂2 = r2
pEpre|2 k̂on[dNTP ] = kon[dNT P ]pEpre|4

pEpre|2

k̂off = koff pEpre|2
pEpre|4

0

Figure 3.9: (top) State-space diagram of the lower-amplitude states describ-
ing the escape problem underlying T (1); (bottom) State-space diagram of the
lower amplitude states after conditioning on the escape to the pre-translocation
state. Recall that pEpre|2 and pEpre|4 are the probabilities of escape to the pre-
translocation starting from states 2 and 4, respectively.
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Recall that the PDF of T (1) is a mixture of two exponential modes,

fT (1) = αλ1e
−λ1t + (1− α)λ2e

−λ2t,

with

λ1,2 =
B ±

√
B2 − 4 r2koff

pEpre|4

2 ,

where

B = r2

pEpre|2
+
kon[dNTP ]pEpre|4

pEpre|2
+
koffpEpre|2
pEpre|4

,

for notational compactness. The mixture parameter α is given by

α = (λ2 − r2) / (λ2 − λ1). The characteristic equation whose roots are λ1,2 is given

by

λ2 −
(

r2

pEpre|2
+
kon[dNTP ]pEpre|4

pEpre|2
+
koffpEpre|2
pEpre|4

)
λ+ r2koff

pEpre|4
= 0.

Hence we have the following three nonlinear equations

r2

pEpre|2
+
kon[dNTP ]pEpre|4

pEpre|2
+
koffpEpre|2
pEpre|4

= λ1 + λ2, (3.24)

r2koff
pEpre|4

= λ1λ2, (3.25)

α = λ2 − r2

λ2 − λ1
. (3.26)

We solve the above system for kon, koff , and kpol with the aide of a computer

algebra solver if r2 is known. Like in the kpol = 0 case in chapter 2, r2 is inferred

separately when [dNTP ] = 0. When [dNTP ] = 0, the PDF of T (1) is a single

exponential mode with mean 1/r2. Hence we can infer r2 from the T (1) data when

[dNTP ] = 0 by computing,

r2 = 1
〈T (1)〉

.
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Hence for the purposes of inferring kon, koff , and kpol (in this case [dNTP ] > 0),

we can consider r2 to be known.

With the aide of a computer algebra solver, we solve 3.24-3.26 for kon, koff ,

and kpol. Since the expressions are extraordinarily long and cumbersome, we write

them down in the Appendix (equations A.1, A.2, and A.3). This solution gives us

the mapping (α, λ1, λ2)→ (kon, koff , kpol). Hence we preserve the EM-framework

thus providing a more efficient means of computing the estimates of kon, koff , and

kpol. Like in Chapter 2, we can estimate the mixture parameters α, λ1, and λ2

by using the EM algorithm since the distribution of T (1) is a proper exponential

mixture [13]. Let T (1)
1 , . . . , T (1)

n be a random sample of fT (1) . Let θ = (α, λ1, λ2)

be the mixture parameters and θ(k) =
(
α(k), λ

(k)
1 , λ

(k)
2

)
the k-th term in the EM

sequence. The analytical expression for θ(k) is the same as in Chapter 2, which

we rewrite here for convenience,

α(k+1) = 1
n

n∑
i=1

ξ
(k)
i , (3.27)

λ
(k+1)
1 =

∑n
i=1 ξ

(k)
i∑n

i=1 ξ
(k)
i ti

, (3.28)

λ
(k+1)
2 = n−∑n

i=1 ξ
(k)
i∑n

i=1

(
1− ξ(k)

i

)
ti
, (3.29)

where

ξ
(k)
i = α(k)λ

(k)
1 e−λ

(k)
1 ti

α(k)λ
(k)
1 e−λ

(k)
1 ti + (1− α(k))λ(k)

2 e−λ
(k)
2 ti

.

The analytical expressions in equations 3.27-3.29 are used to calculate θ(k+1) from

θ(k) and the dwell time data. It can be shown that equations 3.27-3.29 will converge

to the MLE of (α, λ1, λ2) for any initial guess θ(0) [72] (see Chapter 2).
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3.3.2 Inferring kon, koff , and kpol from TB Data

We also have the option of inferring the transition rates kon, koff , and kpol

from TB data. However, unlike the dwell time T (1), the distribution of TB is an

improper mixture of four exponential modes (equation 3.18). Hence we lose the

hierarchical structure of a proper mixture distribution and cannot use the EM

algorithm. We instead have to use more straight-forward optimization techniques

to find the MLE estimates of (kon, koff , koff ). Let TB1 , . . . , TBn be a random

sample of TB. We can form the log-likelihood given by

L (θ | t) =
n∑
i=1

log (fTB (ti | θ)) .

We maximize the log-likelihood numerically using Matlab’s “fminsearch” function

which employs the Nelder-Mead algorithm [57]. The value of (kon, koff , kpol) which

yields the maximum gives us the MLE estimates of the transition rates.

3.3.3 The role of 〈Tcycle〉 on the inference of kon, koff , and

kpol.

The average time of the nucleotide addition cycle plays a role in constrain-

ing the transition rates. Recall from equation 3.20 that 〈Tcycle〉 can be put in

the Michaelis-Menten form. From the Michaelis-Menten parameter kcat (equa-

tion 3.23), we can obtain an expression for kpol,

kpol = r1r4
r1r4
kcat
− (r3 + r4) . (3.30)

Provided that we know the transition rates r1, r3, and r4, we can thus obtain the

incorporation rate kpol from saturating dNTP concentrations.
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The Michaelis-Menten parameter Km (equation 3.22) can be used to put a

constraint on the binding and disassociation rates:

Km (r3kpol + r4kpol + r1r4) kon − (r1r4 + r2r3 + r2r4) koff

− (r1r4 + r2r3 + r2r4) kpol = 0. (3.31)

Provided that we can obtain kpol from equation 3.30 or through another means,

can accurately determine Km, and we know the transition rates r1, r2, r3, and r4,

we can constrain kon and koff to the line given in equation 3.31.

3.4 Numerical Simulations: Case of No Detec-

tion Uncertainty

In this section, we conduct some numerical simulations to determine the va-

lidity of using the MLE method to infer kon, koff , and kpol from T (1) and TB data

without noise in the T (1) and TB observations. We also look at some numerical

experiments to examine the reliability of inferring kpol from the maximum reaction

velocity.

3.4.1 Inferring kon, koff , and kpol from T (1) and TB Data by

the MLE Method

The following numerical simulation was done as follows. We generated 10,000

samples of the dwell times T (1) and TB and we used these samples to obtain MLE

estimates for kon, koff , and kpol. This was then repeated 10,000 times to obtain a

distribution for the MLE estimates.

The MLE estimates were centered with respect to their true values and then
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normalized by their true values. We use the notation

err (k) = kMLE − ktrue

ktrue
,

to denote the centered and normalized error of the MLE estimates. The standard

deviation of err (k) is also recorded, and we denote this by std (err (k)). In the

simulations, we set the true values of the transition rates to be:

• r1 = r2 = 100,

• r3 = r4 = 1,

• kon = 200,

• koff = 100,

• kpol = 50.

The transition rate r2 can be recovered from T (1) data when [dNTP ] = 0. When

[dNTP ] = 0, T (1) is distributed by a single exponential mode and r2 can be

recovered by using an MLE similar to the method proposed in Chapter 2 or

the autocorrelation method in [49]. The transition rates r1, r3, and r4 can be

inferred from upper-amplitude T (2) data in the exact same manner as in Chapter 2

or in [51]. The dNTP concentration can also be controlled accurately in the

experiments. Thus for simplicity, we assume that r1, r2, r3, r4, and [dNTP ] are

known and focus only on the inference of kon, koff , and kpol.

For notational convenience, let θ = (kon, koff , kpol). We can infer θ from the

T (1) and TB dwell times separately. Using the T (1) data to infer θ, we see that

higher dNTP concentrations lead to lower relative errors for these particular set

of transition rates. The relative error decreases for kon, koff , and kpol as [dNTP ]

increases throughout the range of [dNTP ] tested; the minimum relative error
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for kon, koff , and kpol is 2.5%, 2.8%, and 1.3%, respectively at [dNTP ] = 16

(figures 3.10, 3.12, and 3.14).

Unlike T (1) the information content of TB has no obvious pattern. The relative

error for kon increases as [dNTP ] increases when inferring from TB data through-

out the range of [dNTP ] tested, and the minimum relative error is about 10.7%

at [dNTP ] = 0.25 (figure 3.11). For inferring koff from TB data, the relative error

is minimum at [dNTP ] = 1 throughout the range of [dNTP ] tested. The relative

error for koff increases as [dNTP ] gets further from 1; at [dNTP ] = 1, the rela-

tive error is about 5.2% (figure 3.13). Finally, when inferring kpol from TB data,

the relative error decreases as [dNTP ] increases, obtaining a minimum of 1.6% at

[dNTP ] = 16, behaving similar to the relative error for kon, koff , and kpol when

inferring from T (1) data (figure 3.15). Since we set kon = 200 and koff = 100,

[dNTP ] = 16 corresponds to the high dNTP concentration of [dNTP ]/Kd = 32

where Kd = koff/kon = 0.5.

Distribution of the MLE of kon from T (1) Data
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Figure 3.10: MLE results for kon from T (1) data with no noise.
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Distribution of the MLE of kon from TB Data
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Figure 3.11: MLE results for kon from TB data with no noise.

3.4.2 Inferring kpol from the Maximum Reaction Velocity

To test the validity of inferring kpol from the maximum reaction velocity, we

generated 10,000 samples of Tcycle of which to compute the mean cycle time 〈Tcycle〉.

This was then repeated 1,000 times to obtain a set of estimates for kpol. The results

of std (err (kpol)), mean (err (kpol)), and rms (err (kpol)) are shown in figures 3.16-

3.18. From figure 3.16, we see that the relative error actually increases from about

2% at [dNTP ] = 1 to about 7% at [dNTP ] = 1024. This is very unintuitive since

we expect the error to decrease as the dNTP concentration saturates. However,

as we can see from figure 3.17 the bias decreases from about 50% at [dNTP ] = 1

to about 0.1% at [dNTP ] = 1024. Examining the RMS error incorporates the

bias and shows that the RMS error settles to about 7% at saturating dNTP

concentrations.
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Distribution of the MLE of koff from T (1) Data
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Figure 3.12: MLE results for koff from T (1) data with no noise.

3.4.3 Inferring kon and koff from T (1) and TB Data with

Constraints

We also investigate the validity of inferring kon and koff from both the T (1)

and TB data while enforcing that kon and koff are constrained to the line given

in equation 3.31. In this context, it makes sense to infer from both the T (1) and

TB data since (i) we cannot enforce the constraint in the EM method when using

T (1) data, so we are forced to maximize the likelihood function of the T (1) data

directly; and (ii) combining the likelihood functions for the T (1) and TB data comes

at no extra cost, as we can maximize the sum of the likelihood functions for T (1)

and TB. The results of std (err (k)), mean (err (k)), and rms (err (k)) are shown in

figures 3.21-3.19. The increase in bias and relative error for kon and koff around

[dNTP ] = 1 is intriguing. This is likely due to the poor information content from

TB around [dNTP ] = 1 creating large bias (figures 3.11 and 3.13). In this region,

the likelihood function for T (1) was not able to compensate enough to produce
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Distribution of the MLE of koff from TB Data
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Figure 3.13: MLE results for koff from TB data with no noise.

comparable results to the surrounding regions of [dNTP ]. This can be mitigated

by only using the likelihood function for T (1), however careful thought must be

carried out in regards to experimental waiting time to collect the desired number

of samples of T (1) as we will see in the next section. Regardless, this numerical

study shows that constraining kon and koff to the line obtained from the Michaelis-

Menten parameter Km produces very satisfactory inference results and improves

upon the general unconstrained inference of kon, koff , and kpol simultaneously

(figures 3.10-3.13).

3.5 Dependence of Inference Uncertainty Model

Parameters

Similar to the case of non synthesizing DNA-DNAP complexes, The dNTP

concentration plays a role in the inference uncertainty of kon, koff , and kpol (Chap-
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Distribution of the MLE of kpol from T (1) Data
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Figure 3.14: MLE results for kpol from T (1) data with no noise.

ter 2). Tuning the dNTP concentration will allow us to control the total relative

error of the inferred transition rates, and so the behavior of the total relative er-

ror as a function of the transition rates kon, koff , and kpol and [dNTP ] has to be

known a priori. We focus on inferring the transition rates from T (1) data only as

numerical simulations from the previous section show that the information con-

tent of T (1) for the transition rates is superior to that of TB for inferring the rates.

We will do this by first deriving an estimate for the total relative error function of

the inferred kon, koff , and kpol. We will also show by conditioning and scaling laws

that the total relative error is a function of scaled versions of koff and [dNTP ]

only.

118



Distribution of the MLE of kpol from TB Data
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Figure 3.15: MLE results for kpol from TB data with no noise.

3.5.1 Derivation of Total Relative Error Function of kon,

koff , and kpol

The derivation of the total relative error is a straightforward generalization of

the derivation presented in Chapter 2. We repeat it here for convenience. Let

T
(1)
1 , . . . T (1)

n be a random sample of fT (1) where fT (1) is the PDF of the lower-

amplitude dwell time segment in TA (equation 3.9).

Let

L (θ | t) =
n∑
i=1

log
(
αe−λ1ti + (1− α) e−λ2ti

)
(3.32)

be the log-likelihood function of the T (1) data, and let θMLE =
(
αMLE, λMLE

1 , λMLE
2

)
be the MLE estimates of θ. The observed Fisher information matrix, H, defined
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Figure 3.16: Plot of std (err (kpol)) vs [dNTP ] from the maximum reaction ve-
locity
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Figure 3.17: Plot of mean (err (kpol)) vs [dNTP ] from the maximum reaction
velocity

by

H
(
θMLE | t

)
= −


Lα,α

(
θMLE | t

)
Lα,λ1

(
θMLE | t

)
Lα,λ2

(
θMLE | t

)
Lλ1,α

(
θMLE | t

)
Lλ1,λ1

(
θMLE | t

)
Lλ1,λ2

(
θMLE | t

)
Lλ2,α

(
θMLE | t

)
Lλ2,λ1

(
θMLE | t

)
Lλ2,λ2

(
θMLE | t

)

 ,
(3.33)

where we denote Lx,y to mean Lx,y = ∂2L/ (∂x∂y). Note that equation 3.33 is the

negative Hessian of L evaluated at the MLE estimates. It has been demonstrated

that the inverse of H gives an approximation to the asymptotic covariance matrix
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Figure 3.18: Plot of rms (err (kpol)) vs [dNTP ] from the maximum reaction
velocity
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Figure 3.19: Plot of std (err (k)) vs [dNTP ] the constrained maximization of
the sum of the likelihood functions of T (1) and TB.

of the MLE estimates of θ as the number of samples of T (1), n→∞ [24]. Hence,

Cov (θ) ≈ H−1.

We can propagate the inference uncertainty of the mixture parameters θ to

kon, koff , and kpol by a first-order Taylor expansion. Recall that we have the

mapping

θ 7→ (kon (θ) , koff (θ) , kpol (θ))T according to equations A.1, A.2, and A.3 in the

Appendix. Let K (θ) = (kon (θ) , koff (θ) , kpol (θ))T be this mapping.
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Figure 3.20: Plot of mean (err (k)) vs [dNTP ] the constrained maximization of
the sum of the likelihood functions of T (1) and TB.
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Figure 3.21: Plot of rms (err (k)) vs [dNTP ] the constrained maximization of
the sum of the likelihood functions of T (1) and TB.

Consider the first-order Taylor expansion,

K (θ) = K
(
θMLE

)
+ J

(
θMLE

) (
θ − θMLE

)
+ o

(∥∥∥θ − θMLE
∥∥∥) ,
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where J
(
θMLE

)
is the Jacobian of K evaluated at θMLE. Now

Cov (K (θ)) = Cov
[
K
(
θMLE

)
+ J

(
θMLE

) (
θ − θMLE

)
+ o

(∥∥∥θ − θMLE
∥∥∥)]

= Cov
(
J
(
θMLE

)
θ
)

= J
(
θMLE

)
Cov (θ) J

(
θMLE

)T
,

where Cov (θ) is the covariance matrix of θ. Recall that Cov (θ) is approximated

by H−1 where H is the observed information matrix (equation 3.33). The second

equality follows since K
(
θMLE

)
, θMLE, and o

(∥∥∥θ − θMLE
∥∥∥) are constant vectors.

The result is that the diagonal entries of the covariance matrix Cov (K (θ))

are the asymptotic estimates of the variance of the MLE estimates of kon, koff ,

and kpol. Using this, we can estimate the relative error of the MLE estimates of

kon, koff , and kpol a priori without the computational effort of full Monte Carlo

simulations.

We will use the total relative error as a metric to study the inference uncer-

tainty of kon, koff , and kpol. The total relative error is the sum of the relative

errors of kon, koff , and kpol. In parameter regions in which the total relative

error is small, the total relative error can be approximated by std (err (kon)) +

std (err (koff )) + std (err (kpol)), since inference bias is small in these regions. We

can approximate the total relative error without the computational efforts of a

full Monte Carlo simulation for any kon, koff , and kpol by using the estimates of

the total relative error of their MLE estimates derived above in the following way,

std (err (kon)) + std (err (koff )) + std (err (kpol))

≈

∥∥∥∥∥∥
√
diag (Cov (K))�

(
1
kon

,
1
koff

,
1
kpol

)T ∥∥∥∥∥∥
1

:= Err (kon, koff , kpol, n) (3.34)
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where diag (A) is the vector containing the diagonal entries of the matrix A, A�B

is the element-wise multiplication of the matrices A and B, and ‖·‖1 denotes the

Euclidean 1-norm. The square-root operator is taken to be applied element-wise

on the entries of diag (Cov (K)). We denote the total relative error function as

Err (kon, koff , kpol, n), where n is the number of T (1) samples observed.

3.5.2 Behavior of the Total Relative Error Function

We apply the scaling law shown in Proposition 2 of chapter 2 to show that the

total relative error function in equation 3.34 above is a function of scaled versions

of koff , kpol, and [dNTP ] only.

Recall that after conditioning, we have effective translocation, dNTP binding,

and dNTP disassociation rates

r̂2 = r2

pEpre|2
,

k̂on =
konpEpre|4
pEpre|2

,

k̂off =
koffpEpre|2
pEpre|4

,

(figure 3.9). Note that pEpre|2 and pEpre|4 are functions of (r2, kon, koff , kpol, [dNTP ])

(equations 3.6-3.7. Using the scaling law in Proposition 2 of chapter 2, scaling the

T (1) data by β gives the scaling map

(
r̂2, k̂on, k̂off

)
7→

 r̂2

β
,
k̂on
β
,
k̂off
β

 .
Physically, this is analogous to scaling the unit of time such that r̂2 7→ r̂2/β. The

scaling factor β is arbitrary, and the T (1) dwell time remains unchanged modulo

a scaled factor. Since β is arbitrary, we can choose it to be any value. Choose
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β = r̂2, so that (
r̂2, k̂on, k̂off

)
7→

1, k̂on
r̂2
,
k̂off
r̂2

 .
Note that in the inference, we do not infer r̂2 and thus do not know its true value

(we only know r2). Nevertheless, in the theoretical treatment in showing that the

relative error is a function of scaled koff and scaled [dNTP ], we can choose β to

be any value, namely we choose β = r̂2.

Denote ` as

` := k̂off/r̂2 =
p2
Epre|2k

pEpre|4
, (3.35)

where k := koff/r2. Here k is the same scaled r2 as in the non-synthesizing case

in chapter 2.

We can also scale the units of concentration by k̂on/r̂2 so that we have the

scaled [dNTP ],

U := k̂on
r̂2

[dNTP ] = pEpre|4S, (3.36)

where S := kon/r2[dNTP ]. Here S is the same scaled [dNTP ] as in the non-

synthesizing case in chapter 2. The quantities ` and U can be viewed as the new

effective binding and disassociation rates after scaling.

Let kp := kpol/r2 be the scaled kpol. From equations 3.6-3.7, it is easy to see

that the absorption probabilities pEpre|2 and pEpre|4 can be written as

pEpre|2 = k + kp
k + kp + kpS

,

pEpre|4 = k

k + kp + kpS
.

That is, the probability to absorption to the pre-translocation state are functions

of S, k, and kp only. Hence both U and ` are functions of S, k, and kp. We thus

write them as U (S, k, kp) and ` (S, k, kp) to emphasize this dependence.
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Applying these scalings to the bottom state-space diagram in figure 3.9, we

obtain the following state-space diagram in the bottom figure 3.22; here, figure 3.9

(top) is reproduced in figure 3.22 (top) for convenience. We see that the total

relative error of kon, koff , and kpol is thus a function of S, k, and kp only.

Pre (1)

Post (2) dNTP (4)

r̂2 = r2
pEpre|2

k̂on[dNTP ] = kon[dNT P ]pEpre|4
pEpre|2

k̂off = koff pEpre|2
pEpre|4y scaling

Pre (1)

Post (2) dNTP (4)

r̂2
r̂2

= 1
U (S, k, kp) = k̂on

r̂2

(
r̂2

k̂on
U (S, k, kp)

)
= pEpre|4S

` (S, k, kp) = k̂off

r̂2
=

p2
Epre|2

pEpre|4
k

Figure 3.22: (top) State-space diagram of the lower-amplitude states after con-
ditioning on Epre; (bottom) State-space diagram of the lower amplitude states
conditioned on Epre after scaling on r̂2, k̂on, and k̂off . Here, we see that the total
relative error of kon, koff , and kpol is a function of S, k, and kp only.

For clarity, figure 3.23 shows the state-space diagram governing the escape

problem for T (1) before conditioning (top left), after conditioning (bottom left),

and after scaling (bottom right).
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Pre (1)
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Pre (1)

Post (2) dNTP (4)

1

U

`

Figure 3.23: (top left) State-space diagram of the lower-amplitude states gov-
erning the escape problem for T (1); (bottom left) state space diagram after con-
ditioning on the escape to the pre-translocation state; (bottom right) State-space
diagram of the conditioned lower amplitude states after scaling by r̂2.

Hence let errpol (S, k, kp, n) = errpol (U (S, k, kp) , ` (S, k, kp) , n) be the total

relative error of kon, koff , and kpol using n samples of T (1). We can write

Err (kon, koff , kpol, n) = errpol (S, k, kp, n) .

The function errpol (S, k, kp) is very difficult to compute analytically, so we turn

to numerical approximation. To build the total relative error function numerically,

we use a similar procedure as in approximating err (S, k) shown in Chapter 2.

We set r2 = kon = 1. For each fixed kp, we do the following. We vary S and

127



k over a range of values. Note that in this case, S = [dNTP ], k = koff , and

kp = kpol. Let S and K be the set of discrete points for S and k respectively.

Enumerate the elements of K = {k1, . . . , km}, where m is the number of k points

used. At each (S, k) ∈ S × K point we sample fT (1) n0 = 10, 000 times and

estimate kon, koff , and kpol using the EM method above. The total relative error

is then estimated by using equation 3.34. This is repeated 20 times for each

(S, k) ∈ S ×K, giving us a cloud of total relative error data for each (S, k) point.

Let EC (S, k) be the 20-point data cloud at the point (S, k). We then estimate

the total relative error by fitting a quadratic polynomial in the k-direction using

11 points in the least squares sense.

Let ki ∈ K. Define the following subset of K,

Ki =



{k1, . . . , k11} if i < 6

{km−10, . . . , km} if i > m− 5

{ki−5, . . . , ki+5} otherwise

.

For each S ∈ S, we do the following: for each i = 1, . . . ,m, a quadratic polynomial

Pi,S is fit to the set of points

log (Ki)× log
 ⋃
k∈Ki
EC (S, k)

 ,
in the least squares sense where the logarithm function is understood to be taken

over all the elements of the set; that is logA = {log a : a ∈ A}.

Since we are using n0 = 10000 samples to build the numerical approximation

to the total relative error along a grid of S and k points, define errpol,1 to be the

function

errpol,1 (S, k, kp) := errpol (S, k, kp, n)
∣∣∣
n=n0

.
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Here, errpol,1 is a function of only (S, k, kp).

Then errpol,1 (S, k, kp) = Pi,k (Si) is set to be the point-estimate of the total

relative error for kon = 1, koff , and kpol = kp. We use the log of the data for the

local least squares fit since qualitatively the data is approximately quadratic on

the log-scale.

After this procedure, a discrete grid of point-estimates for the total relative

error of kon, koff , and kpol = kp using 10,000 T (1) samples is obtained: E =

{errpol,1 (S, k, kp) : (S, k) ∈ S × K}. Using linear interpolation on E , we can then

compute errpol,1, for any S and k pair a priori. The resulting total relative error

surface is shown in figure 3.24. This procedure is repeated for every kp as desired.

Figure 3.24: The total relative error surface errpol,1 (S, k) at kp = 0.5 by local
quadratic polynomial least-squares.

The black line in figure 3.25 is the trajectory [dNTP ] 7→ (S, k) with r2 =

100, kon = 200, koff = 100, and kpol = 50 (so k = 1 and kp = 0.5). We see that

this trajectory shows good agreement with the full Monte Carlo simulations of
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std (err (kon)), std (err (koff )), and std (err (kpol)) in section 3.4.

Figure 3.25: The total relative error surface errpol (U, `) at kp = 0.5 by local
quadratic polynomial least-squares. The black line is the trajectory [dNTP ] 7→
(S, k) with r2 = 100, kon = 200, koff = 100, and kpol = 50. The red “O” and “X”
denote the start and end of the trajectory at [dNTP ] = 20.8 and [dNTP ] = 24,
respectively. We see that this trajectory shows good agreement with the full Monte
Carlo simulations of std (err (kon)), std (err (koff )), and std (err (kpol))

As evident by the expressions for U and ` in equations 3.35 and 3.36, both U

and ` are dependent on kp and hence the total relative error surface errpol,1 (S, k, kp)

is dependent on kp (figure 3.26). From figure 3.26, we see that at for high kp, low

values of k result in trajectories which lie entirely in high error regions. Thus we

see that if kp/k is large, then the total relative error may be high regardless of the

[dNTP ] chosen.

The constructed total relative error errpol (S, k) provides a good estimate for

the total relative error of kon, koff , and kpol. To show this, we resample the cloud of

data EC at each (S, k) and repeat the quadratic polynomial smoothing procedure.

This is repeated 1000 times and the resulting total relative error estimate at each
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Figure 3.26: The total relative error surface errpol (S, k) at various values of kp.
This shows that the total relative error is dependent on the value of kp.

(S, k) point is recorded so that a standard deviation at each (S, k) point can

be obtained. Normalizing the standard deviation estimate by the total relative

error gives the uncertainty of the total relative error estimate at each (S, k) point

(figure 3.27). From the figure, we see that the relative error of the total relative

error estimate is small and grows proportional to the inference uncertainty of kon,

koff , and kpol.

3.5.3 Comparison to the kpol = 0 Case

After conditioning on the escape to the pre-translocation state, the state-

space diagram of the Markov process describing the escape problem generating

T (1) is seen in figure 3.22. This system can be formally viewed as a DNAP-DNA

complex that cannot proceed to the pol-process and has effective dNTP binding

and disassociation rates U and `, respectively (equations 3.36 and 3.35). Viewed

in this way, this modified system can be mapped to the kpol = 0 case in Chapter 2.
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Figure 3.27: The left subplot shows the uncertainty of the total relative error
estimate of kon, koff , and kpol at kp = 0.5 as produced by bootstrap resampling of
the cloud of 20 data points EC at each (S, k) point. The right subplot shows the
left quantity divided by errpol.

In fact, if in the kpol = 0 case, the covariance matrix for MLE estimates of the

mixture parameters was stored for each (S, k)-point, that same table can be used

for the synthesizing kpol > 0 cases.

Recall that U and ` are functions of k, kp, and S. For fixed kp, the effect on S

and k on the effective binding and disassociation rates U and ` are not intuitive.

In figure 3.28 we show the result of the mapping (S, k) 7→ (U (S, k, kp) , ` (S, k, kp))

for fixed kp.

The only parameter tunable in the nanopore experiments is [dNTP ]. For fixed

r2, kon, koff , kpol, both U and ` are functions of [dNTP ] only (since k = koff/r2

is fixed and S = kon/r2[dNTP ]). We investigate the mapping [dNTP ] 7→ (U, `)

to see the behavior as a function of [dNTP ]. Since we can formally view the

system as a complex which cannot proceed to the pol-process with effective dNTP

binding and disassociation rates U and `, respectively, we plot a (U, `) trajectory

on the err1 (S, k) surface for the kpol = 0 case (figure 3.29). Here we see that
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Figure 3.28: The total relative error surface errpol (S, k) at kp = 0.5 when plot-
ted on both the (S, k)-grid (left) and the (U, `)-grid (right). The mapping from
(S, k) 7→ (U (S, k, kp) , ` (S, k, kp)) is not intuitive.

increasing [dNTP ] decreases the effective dNTP disassociation rate ` and increases

the effective dNTP binding rate S. Note that in doing this, the total relative errors

in errpol,1 and err1 are slightly different. In errpol,1, the total relative error of kon,

koff , and kpol are recorded at each point, but in err1, the total relative error of the

effective binding and disassociation rates (i.e., U and `, respectively) are recorded

at each point.

From equations 3.35 and 3.36, we can readily see that at saturating [dNTP ],

we see that (U, `) → (koff/kpol, 0) = (k/kp, 0). As [dNTP ] → 0, we see that

(U, `)→ (0, (koff + kpol) /r2) = (0, k + kp). To summarize,

lim
[dNTP ]→0

(U, `) = (0, k + kp) , (3.37)

lim
[dNTP ]→∞

(U, `) =
(
k

kp
, 0
)
. (3.38)
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Figure 3.29: An example trajectory as [dNTP ] increases from 100.5 to 103.5 in the
(S, k)-space for kp = 0.5 and the (U, `)-space in the equivalent non-synthesizing,
kpol = 0 system. The start and end of the trajectory are denoted by the “O” and
“X” symbols, respectively.

Examining the derivatives of U and ` we have that

dU

d[dNTP ] = konkoff
(koff + kpol) r2

((koff + kpol) r2 + kpolkon[dNTP ])2

d`

d[dNTP ] = − (koff + kpol)2 ((koff + kpol) r2 + kpolkon[dNTP ])−2 kpolkon.

Hence we see that

0 < dU

d[dNTP ] <
konkoff

2 ,

d`

d[dNTP ] < 0,

for fixed r2, kon, koff , and kpol. The consequence of this is that for fixed transition

rates, the trajectory [dNTP ] 7→ (U, `) follows the line ` = (koff + kpol) /r2 = k+kp
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for small [dNTP ] before bending left towards the line U = koff/kpol = k/kp

for large [dNTP ]. How quickly the trajectory bends left is determined by the

derivatives of U and ` above.

From this analysis, we can see that as [dNTP ] → ∞ (and hence S → ∞),

the effective disassociation rate, `, approaches 0; at the same time, the effective

binding rate, U approaches the constant k/kp. As [dNTP ] → 0 (and hence

S → 0), the effective disassociation rate approaches the constant k + kp and the

effective binding rate approaches 0.

From here, we can intuitively see why saturating [dNTP ] gives the least total

relative error but the total relative error does not decrease indefinitely, instead

approaching a small constant. For large [dNTP ], the DNAP-DNA complex has a

very high probability of binding a dNTP and traveling to the dNTP-bound state,

determined by the effective binding rate, U . Once in the dNTP-bound state, the

complex will remain there for a very long, but finite time, determined by the ef-

fective disassociation rate `. Once the complex disassociates the bound dNTP,

the complex binds another dNTP with high probability, remaining in the dNTP-

bound state until eventual disassociation. This path does not continue indefinitely

since there is a small probability of escaping to the pre-translocation state upon

each visitation back to the post-translocation state. Eventually the complex es-

capes to the pre-translocation state after a very long time. In this process, both

the post-translocation and dNTP-bound states must have been visited very many

times and so the two exponential modes are easily discernible from the dwell-time

data. This hence leads to a low total relative error for kon, koff , and kpol. The

total relative error does not decrease indefinitely with high [dNTP ] however since

the effective binding rate is bounded.

Similarly, with low [dNTP ], the complex has a very low probability of binding
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a dNTP and hence immediately escapes to the pre-translocation state. The result

is that the dNTP-bound state is rarely visited and hence the two exponential

modes are not easily discernible.

3.6 Optimum Experimental Condition

In this section, we examine the optimal experimental condition that when

achieved, produces the least total relative error.

3.6.1 Finding the optimal [dNTP ]

Like in Chapter 2, from the scaling laws and the total relative error point

estimates in E , we can numerically obtain the [dNTP ] that yields the least total

relative error for any kon, koff , and kpol.

Notice that for fixed k and kp, both U and ` are functions of S only. For fixed

k and kp we have the trajectory S 7→ errpol,1 (S, k, kp) = errpol,1 (S). Let S∗ be the

optimum S in the sense that

S∗ = argmin
S

errpol,1 (S) .

For fixed kp, S∗ is entirely dependent on k. Hence we can write,

S∗ = F (k)⇔ [dNTP ]∗ = r2

kon
F

(
koff
r2

)
,

for fixed kp and where F is some function of k.

Determining an expression for F is very difficult, so we turn to numerical

approximation. For each k ∈ K, we approximate F by finding the location of the

minimum of errpol,1 (S). As it turns out, errpol,1 is minimum at saturating [dNTP ]
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for many values of k, and in this saturating [dNTP ] region, the total relative error

approaches some small value (figure 3.30). This behavior is confirmed by the full
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Figure 3.30: A typical plot of the total relative error along a trajectory S 7→
errpol,1 (S). In agreement the plot of errpol,1 in figure 3.24, the minimum total
relative error occurs at saturating [dNTP ] for most values of k.

Monte Carlo simulations for k = 1 and kp = 0.5 (figures 3.10, 3.12, and 3.14).

The result of this is that the minimum total relative error is not numerically

well defined in this region. Instead, it makes more sense to find the p% interval

from the approximated minimum for each k. Any S within this interval is therefore

guaranteed to give a total relative error within p% of the total relative error at

S∗.

The p% interval is obtained as follows. For fixed kp and for each k ∈ K,

minS errpol,1 (S) is obtained. Then the solution to the equation errpol,1 (S) =(
p

100 + 1
)
errpol,1 (S∗) for each k gives the p% interval. After this procedure, we

smooth the interval by a cubic smoothing spline [62]. The smoothing cubic spline
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is necessary since numerically finding the minimum total relative error produces

noisy results due to the flat nature of the total relative error in saturating [dNTP ]

regimes. Figure 3.31 shows a 5% interval for kp = 0.5. The upper-bound of the

Figure 3.31: The total relative error errpol,1 for kp = 0.5 with the 5% interval
after applying a cubic smoothing polynomial to the lower-bound of the interval.
The upper-bound of the interval does not exist the majority of k. For each k, any
S within the bounds of the interval is guaranteed to produce a total relative error
within 5% of the minimum total relative error.

interval does not exist the majority of k. For each k, any S within the bounds

of the interval is guaranteed to produce a total relative error within 5% of the

minimum total relative error.

Figure 3.32 shows the 5%, 10%, and 25% intervals plotted on errpol,1 for kp =

0.5 along with the trajectory for k = 1 from [dNTP ] = 20.8 to [dNTP ] = 24. The

different percentile intervals highlight the rate of decay of the total relative error

for and show that at [dNTP ] = 24, the total relative error obtained is within 25%

of the minimum total relative error. Again, the upper-bound of the interval does
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Figure 3.32: A plot of errpol,1 for kp = 0.5 with 5%, 10%, and 25% intervals
along with a trajectory for k = 1 from [dNTP ] = 20.8 to [dNTP ] = 24. The red
“O” and “X” denote the start and end of the trajectory.

not exist for the majority of k, due to the monotonically decreasing total relative

error as S increases for fixed k (figure 3.30).

3.6.2 Finding the Optimal [dNTP ] Under Experimental

Time Constraints

The PDF of T (1) is a function of r2, kon, koff , kpol, and [dNTP ]. The only

tunable parameter in the nanopore experiments is [dNTP ]. From the full Monte

Carlo simulations in section 3.4 and the estimate of errpol above, we see that

for most koff/r2, the total relative error decreases as [dNTP ] increases. How-

ever, it can be very expensive to collect a sufficient number of T (1) samples with

high [dNTP ] concentrations. When [dNTP ] is high, there is a high probabil-

ity of nucleotide binding. Thus upon nucleotide disassociation, the DNAP-DNA

complex immediately encounters and binds another nucleotide. This immediate
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binding makes nucleotide incorporation through the pol-process highly probable,

and hence the DNAP-DNA complex enters the next nucleotide addition cycle.

This can be seen from the expression for pEpol|2 in equation 3.12. From this, we

see that as [dNTP ] → ∞, pEpol|2 → 1. Hence for large [dNTP ], the number of

T (1) samples will be very small.

In this section, we look into finding the optimal [dNTP ] that results in the

least total relative error under a maximum experimental time-constraint τmax.

Here, τmax is the maximum time allowed for the experiment to run.

It is reasonable to assume that errpol (S, k, kp, n) = O (1/
√
n) as n→∞ since

the standard error of a parameter scales as O (1/
√
n) as n → ∞ [13]. Indeed,

figure 3.33 shows errpol (S, k, kp, n) at S = 103, k = 1, and kp = 0.5 for n ranging

from 104 to 105. Here, we see that errpol scales as O (1/
√
n) as n→∞ for fixed S,

k, and kp. Hence just like the non-synthesizing case in Chapter 2, it is reasonable

10000 30000 50000 70000 90000
10

−3

10
−2

10
−1

n

T
o

ta
l 
R

e
la

ti
v
e

 E
rr

o
r

Total Relative Error vs Number of Samples

 

 

Total Relative Error

O(1/n
1/2

) Reference

Figure 3.33: The total relative error function errpol (S, k, kp, n) vs n for S = 103,
k = 1, and kp = 0.5. Here see that the total relative error scales as O (1/

√
n) as

n→∞.
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to conclude the following scaling law for the total relative error function:

errpol (S, k, kp, n1) ≈ errpol (S, k, kp, n2)
√
n2

n1
, (3.39)

for large n1 and n2.

Recall that we numerically approximated errpol,1 using n0 = 10000 points.

From equation 3.39, we thus have the approximation,

errpol (S, k, kp, n) ≈
√
n0

n
errpol,1 (S, k, kp) , (3.40)

for large n.

Let N be the number of T (1) samples obtained before the DNAP-DNA com-

plex incorporates a dNTP and hence proceeds to the next nucleotide addition

cycle. Notice that N ∼ geometric
(
pEpol|2

)
, where geometric (p) is the geometric

distribution with parameter p with support N ∪ {0}. Hence the mean number of

T (1) samples within a nucleotide addition cycle is given by

〈N〉 =
1− pEpol|2
pEpol|2

.

Let n be the number of T (1) samples that we want to observe from the nanopore

experiments. The mean number of nucleotide addition cycles required to observe

n samples is given by n/ 〈N〉. Hence the mean amount of time required to observe

n samples of T (1) is given by

〈Tcycle〉
n

〈N〉
,

where 〈Tcycle〉 is the mean total cycle time (equation 3.19). We will use this

quantity to constrain our optimization; that is, find the dNTP concentration
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which produces the minimum total relative error such that

〈Tcycle〉
n

〈N〉
= τmax.

That is, we are interested in solving the constrained optimization problem,

minimize errpol (S, k, kp, n) , (3.41)

subject to 〈Tcycle〉
n

〈N〉
= τmax. (3.42)

With k and kp intrinsic to the DNAP-DNA complex, the only tunable parameters

are n and S.

We recast the constrained optimization problem in equations 3.41-3.42 to an

unconstrained optimization in S only. From the constraint in equation 3.42, we

have

n = τmax
〈N〉
〈Tcycle〉

. (3.43)

Hence we have that

errpol,2 := errpol (S, k, kp, n) ≈

√√√√ n0

τmax

〈Tcycle〉
〈N〉

errpol,1 (S, k, kp) . (3.44)

From equation 3.44, we can find the optimal S which solves the optimization

problem in equations 3.41-3.42.

Figure 3.34 shows the plot of errpol,2 with τmax = 50000 and n0 = 10000,

along with the optimal S trajectory as a function of k and its 5%, 10%, and 25%

intervals. The constrained optimal trajectory and its 5%, 10%, and 25% intervals

were found in the same way as the unconstrained case in which no constraints in

the experimental time were used.

Unlike the unconstrained case, the optimal [dNTP ] has a well defined location
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Figure 3.34: The constrained total relative error function errpol,2 (S, k, kp) at
kp = 0.5 along with the optimal constrained S and its 5%, 10%, and 25% intervals
with τmax = 50000 and n0 = 10000 for kp = 0.5.

for the constrained optimization. This is because larger dNTP concentrations

decrease the amount of T (1) samples that can be collected per nucleotide addition

cycle.

3.6.3 Finding the Optimal [dNTP ] when Constraining the

Number of Cycles

In the previous subsection, the total experimental time was constrained. In

that situation, it is implicitly implied that the cost of collecting each cycle is small

relative to to the cost of collecting each T (1) sample. In this subsection, we look

at constraining the number of nucleotide addition cycles instead of the total time

cost. This situation is useful in situations in which the cost of observing each cycle

is high. For example, capturing a DNAP-DNA complex atop the nanopore at the
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beginning of each cycle takes a long time. Let ηmax be the maximum number of

cycles that is to be collected in the experiment. Then ηmax 〈N〉 is the average

samples of T (1) collected with ηmax number of cycles. The relevant optimization

problem is thus

minimize errpol (S, k, kp, n) , (3.45)

subject to n = ηmax 〈N〉 . (3.46)

Like the previous constrained optimization problem, this is recast into an

unconstrained problem by minimizing

errpol,3 (S, k, kp) := errpol (S, k, kp, n) ≈
√

n0

ηmax 〈N〉
errpol,1 (S, k, kp) .

Figure 3.35 shows the constrained optimal S with 5%, 10%, and 25% intervals for

kp = 0.5 with ηmax = 10000. The graph is qualitatively similar to figure 3.34.

3.6.4 Validity of the Mean-Field Approaches

In this section, we numerically validate the mean-field approaches used in both

of the constrained optimization problems.

In the constrained optimization problem, we minimized the total relative error

errpol (S, k, kp, n) under the constraint 〈Tcycle〉n/ 〈N〉 = τmax. However, under real

experimental settings, the samples of T (1) would be collected until the maximum

time τmax has elapsed. Let Tcycle,j be the j-th nucleotide addition cycle observed.

Then

Tcycle,j =
Nj∑
i=1

(
T

(1)
j,i + T

(2)
j,i

)
+ TB,j,

where Nj is the number of T (1) segments in the j-th nucleotide addition cycle;
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Figure 3.35: The error surface errpol,3 with ηmax = 10000 for kp = 0.5 along with
the optimal S trajectory with 5%, 10%, and 25% intervals.

that is, Nj ∼ geometric
(
pEpol|2

)
with support {0} ∪ N. Let M be the number of

nucleotide addition cycles such that

M∑
j=1

Tcycle,j ≤ τmax, (3.47)

but
M+1∑
j=1

Tcycle,j > τmax. (3.48)

The T (1) samples are collected until the inequality

M∑
j=1

Tcycle,j +
nM+1∑
i=1

(
T

(1)
M+1,i + T

(2)
M+1,i

)
+ T

(1)
M+1,nM+1+1I ≤ τmax (3.49)
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is tight, where I is the indicator function

I =


1 if T (1)

M+1,nM+1+1 ≤ τmax −
∑M
j=1 Tcycle,j +∑nM+1

i=1

(
T

(1)
M+1,i + T

(2)
M+1,i

)
0 otherwise

.

Tight means thatM is such that inequalities 3.47 and 3.48 hold and nM+1 ≤ NM+1

where nM+1 is such that

M∑
j=1

Tcycle,j +
nM+1∑
i=1

(
T

(1)
M+1,i + T

(2)
M+1,i

)
≤ τmax,

but
M∑
j=1

Tcycle,j +
nM+1+1∑
i=1

(
T

(1)
M+1,i + T

(2)
M+1,i

)
> τmax.

The number of T (1) samples, n, observed constraining the experimental time to

τmax is thus

n =
M∑
j=1

Nj + nM+1 + I.

This is different than the mean field approach taken when solving the optimization

problem in equations 3.41 and 3.42.

The mean field approach greatly simplifies the calculation of the solution to

the constrained optimization problem by replacing the behavior of the large num-

ber of random variables (Tcycle1 , . . . , TcycleM=m) with the ensemble average. We

demonstrate the validity of the mean field approach by numerical simulation. For

the constrained optimization case, we set S = 5, k = 0.5, and kp = 0.5 with

τmax = 〈Tcycle〉nmf/ 〈N〉 where nmf = 10000. The total relative error is then es-

timated using the mean field approach and using the constraint in equation 3.49

using 2000 data sets. As seen in figure 3.36, both approaches are in agreement

and is well approximated by errpol,2 (S, k, kp).
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Figure 3.36: Comparison between the constrained total relative error errpol,2
obtained from the mean field approach and from using the total time from
the observed T (1) samples using constraint 3.49. Here, we use ∑

j Tcycle,j as
an abbreviation for constraint 3.49. Also, S = 5, k = 0.5, kp = 0.5, and
τmax = 〈Tcycle〉nmf/ 〈N〉, where mmf = 10000. The distributions of the mean-
field approach and the total run-time constrains are in agreement. The mean of
the mean-field approach can be calculated from errpol,2.

We do the same comparison for the mean field approach taken for the optimiza-

tion problem in equations 3.45-3.46. In this situation, we replaced the behavior

of N1, . . . , Nηmax with the average 〈N〉. That is, the constraint in equation 3.46 is

given by the mean number of T (1) samples after ηmax nucleotide addition cycles,

n = ηmax 〈N〉 instead of n = N1 + · · ·Nηmax . As before, this has the advantage of

simplifying the optimization problem. The two approaches are equivalent as we

see in figure 3.37.
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Figure 3.37: Comparison between the constrained total relative error errpol,3
obtained from the mean field approach and from using the total time from the
observed T (1) samples using constraint 3.46. Also, S = 5, k = 1, kp = 0.5, and
ηmax = mmf/ 〈N〉, where mmf = 10000. The distributions of the mean field
approach and the total run-time constrains are in agreement. The mean of the
mean-field can be calculated from errpol,3.

3.7 Numerical Simulations: Case with Detec-

tion Uncertainty

In this chapter, we repeat the numerical simulations done in chapter 3.4,

adding multiplicative noise in the observed T (1) and TB samples. Here, the ob-

served T (1) and TB samples are of the form

T
(1)
obs = T (1)eσζ ,

TB,obs = TBe
σζ ,

where ζ ∼ N (0, 1).
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The plots from the T (1) data with multiplicative noise are given in figures 3.38-

3.40. The plots from the TB data with multiplicative noise are given in figures 3.41-

3.43
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Figure 3.38: Plot of std (err (k)) vs σ from T (1) data.

For T (1), the higher dNTP concentrations produce the least amount of relative

error throughout the noise magnitudes tested, and all of the concentrations except

for [dNTP ] = 0.25 have low bias. For TB, the relative error for kon is smallest

throughout the noise magnitudes tested at [dNTP ] = 0.5. For koff , [dNTP ] = 1

and [dNTP ] = 2 produce the smallest relative error when using the TB data. Like

when inferring from T (1) data, for kpol, the larger [dNTP ] concentrations produce

the smallest relative error when using TB data. The bias is larger when compared

to the bias inference from the T (1) data for kon and koff . For kpol the bias is

small for [dNTP ] ≥ 1 when using TB data. We see that throughout all the noise

magnitudes tested, inferring from the T (1) samples produce lower relative errors

for all of the transition rates than when inferring from the TB data with respect

to their optimum dNTP concentrations.
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Figure 3.39: Plot of mean (err (k)) vs σ from T (1) data.

It is also worthwhile to investigate how the relative error changes as the number

of samples of T (1) and TB changes as a function of σ. We use [dNTP ] = 2 and

repeat the above numerical experiments but this time varying the number of

samples of T (1) and TB.

The plots from the T (1) data are given in figures 3.44-3.46. The plots from the

TB data are given in figures 3.47-3.49

Throughout the range of σ and the number of samples n tested, we see that

using the T (1) samples at [dNTP ] = 2 provides a lower relative error for each

transition rate kon, koff , and kpol when compared to inferring the transition rates

using TB data. We also see that when using T (1) data, collecting about 5000

samples is sufficient for obtaining reasonable estimates for the transition rates

(the relative error is less than 20% for high noise magnitudes and less than 10$

for low noise magnitudes).

150



0 0.05 0.1
10

−2

10
−1

10
0

σ
noise

rm
s
(e

rr
(k

o
n
))

0 0.05 0.1
10

−2

10
−1

10
0

σ
noise

rm
s
(e

rr
(k

o
ff
))

0 0.05 0.1
10

−2

10
−1

10
0

σ
noise

rm
s
(e

rr
(k

p
o

l))

 

 
[dNTP]=0.25

[dNTP]=0.5

[dNTP]=1

[dNTP]=2

[dNTP]=4

[dNTP]=16

Figure 3.40: Plot of rms (err (k)) vs σ from T (1) data.

3.8 Characterizing the Effect of Measurement

Noise

In this section, we characterize the effect of measurement noise on the observed

T (1) samples. Suppose that the true T (1) samples are perturbed by multiplicative

noise of the form eσζ where ζ ∼ N (0, 1). That is, we observe the T (1) samples to

be

T
(1)
obs := T (1)eσζ .

In this section, we denote kMLE
on (σ), kMLE

off (σ), and kMLE
pol (σ) to be the maximum-

likelihood estimate of kon, koff , and kpol respectively from the perturbed T (1)
obs data
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Figure 3.41: Plot of std (err (k)) vs σ from TB data.

with noise eσζ . We investigate the first-two moments and variance of the quantities

zkon := kMLE
on (σ)− kMLE

on (0) ,

zkoff := kMLE
off (σ)− kMLE

off (0) ,

zkpol := kMLE
pol (σ)− kMLE

pol (0) .

For the following simulations, we use 10,000 data sets with r2 = kon = 1,

koff = 0.8, kpol = 0.5, and [dNTP ] = 103. The number of T (1) samples, n, as

well as the measurement noise σ is varied. Figure 3.50 shows the squared-mean

of zkon , zkoff , and zkpol as a function of σ. From here, we see that 〈zkon〉,
〈
zkoff

〉
,

and
〈
zkpol

〉
= O (σ2).

Figures 3.51 and 3.52 show the second moment of zkon , zkoff , and zkpol as a

function of σ and n, respectively. From these results, we see that as σ → 0

and n → ∞, we have that
〈
z2
kon

〉
,
〈
z2
koff

〉
,
〈
z2
kpol

〉
= O (σ2/n). For large σ, we

have that
〈
z2
kon

〉
,
〈
z2
koff

〉
,
〈
z2
kpol

〉
= O (σ2/n) = O (σ4). We can write this more
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Figure 3.42: Plot of mean (err (k)) vs σ from TB data.

compactly as
〈
z2
kon

〉
,
〈
z2
koff

〉
,
〈
z2
kpol

〉
= O (σ2/n) +O (σ4).

Figures 3.53 and 3.54 shows the variance of zkon , zkoff , and zkpol as a function

of σ and n, respectively. From these results, we see that var (kon), var (koff ), and

var (kpol) behave as O (σ2/n).

The results in these numerical simulations show that we have strong numerical

evidence for the following claims:

1. 〈zkon〉 ,
〈
zkoff

〉
,
〈
zkpol

〉
= O (σ2),

2.
〈
z2
kon

〉
,
〈
z2
koff

〉
,
〈
z2
kpol

〉
= O (σ2/n) +O (σ4), and

3. var (zkon) , var
(
zkoff

)
, var

(
zkpol

)
= O (σ2/n).

From figure 3.55, we see that zkon , zkoff , and zkpol are normally distributed.

There are primarily two ways of collecting the perturbed T (1) samples:

• Type 1: For each 10,000 data sets, n T (1) samples are generated and those

n samples are perturbed by multiplicative noise with standard deviation σ.
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Figure 3.43: Plot of rms (err (k)) vs σ from TB data.

• n, T (1) samples are generated and those n samples are perturbed by 10,000

realizations of multiplicative noise with standard deviation σ.

As shown numerically in Chapter 2, both of these methods of perturbing T (1) are

equivalent in distribution.

From claims 1-3 above and the observation that zkon , zkoff , and zkpol are nor-

mally distributed, we can write

zkon = c2,konσ
2 + c1,kon

σ√
n
ζ, (3.50)

zkoff = c2,koffσ
2 + c1,koff

σ√
n
ζ, (3.51)

zkpol = c2,kpolσ
2 + c1,kpol

σ√
n
ζ, (3.52)

where ζ ∼ N (0, 1).

Similarly to the kpol = 0 case in Chapter 2, the consequence of this result is that

the bias of zkon , zkoff , and zkpol is deterministic and scales as c2,konσ
2, c2,koffσ

2,
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Figure 3.44: Plot of std (err (k)) vs σ from T (1) data for n samples of T (1).

and c2,kpolσ
2, respectively. The variance is stochastic and scales as c1,konσ

2/n,

c1,koffσ
2/n, and c1,kpolσ

2/n.

We can solve for the constants in equations 3.50-3.52 numerically. From equa-

tion 3.50, we have that 〈zkon〉
2 = c2

2,konσ
4 and var (zkon) = c1,konσ

2/n. The least-

squares solution is given by

c1,kon =

√√√√√∑i var (zkon)
∣∣∣
σ=σi

σ2
i

n

, (3.53)

c2,kon =
∑
i 〈zkon〉

∣∣∣
σ=σi∑

i σ
2
i

. (3.54)

A least-squares solution for c1,koff , c2,koff , c1,kpol , and c2,kpol can be derived in a

similar manner.

To verify the validity of the least-squares fitting, we compare the mean and

variance of zkon and zkoff at σ = 2−4 at n = 32000 with their predicted mean

and variance as obtained through the least-squares fit above (table 3.1). Here, we

155



0 0.05 0.1
10

−10

10
−5

10
0

σ
noise

m
e
a
n

2
(e

rr
(k

o
n
))

0 0.05 0.1
10

−10

10
−5

10
0

σ
noise

m
e
a
n

2
(e

rr
(k

o
ff
))

0 0.05 0.1
0

0.005

0.01

σ
noise

m
e
a
n
(e

rr
(k

p
o

l))

 

 
n=2000

n=5000

n=10000

n=40000

Figure 3.45: Plot of mean2 (err (k)) vs σ from T (1) data for n samples of T (1).

obtained

• c1,kon = 2.2652

• c1,koff = 1.5097

• c1,kpol = 0.87507

• c2,kon = −0.31581

• c2,koff = −0.34855

• c2,kpol = −0.23282

Throughout the number of samples examined in our numerical simulations

(n = 1000, 2000, 4000, 8000, 16000, 32000, 64000), we observe little change in the

least-squares solutions for c1 and c2 for zkon , zkoff , and zkpol . Table 3.2 shows the

mean and standard deviation of the asymptotic coefficients c1 and c2 throughout

the samples sizes.

156



0 0.05 0.1
10

−2

10
−1

10
0

σ
noise

rm
s
(e

rr
(k

o
n
))

0 0.05 0.1
10

−2

10
−1

10
0

σ
noise

rm
s
(e

rr
(k

o
ff
))

0 0.05 0.1
10

−2

10
−1

10
0

σ
noise

rm
s
(e

rr
(k

p
o
l))

 

 

n=2000

n=5000

n=10000

n=40000

Figure 3.46: Plot of rms (err (k)) vs σ from T (1) data for n samples of T (1).

zkon zkoff zkpol
mean -0.00036089 -0.00036063 -0.0002392

mean from fit -0.00030841 -0.00034038 -0.00022737
var. 6.9199× 10−7 2.8203× 10−7 1.0156× 10−7

var. from fit 6.9127× 10−8 4.6073× 10−8 2.6705× 10−8

Table 3.1: Comparison between the observed mean and variance of zkon , zkoff ,
zkpol with their predicted means and variances obtained through the least-squares
fit. Here, σ = 2−4 and n = 32000. The results show good agreement between the
observed and predicted mean and variances.

The importance of these results is that for any r2, kon, koff , kpol, and [dNTP ],

we can collect n unperturbed T (1) samples and perturb them m times to obtain m

data sets. From this data, the asymptotic coefficients c1 and c2 in equations 3.50-

3.52 can be obtained by least-squares fitting, and an accurate description of the

distribution of zkon , zkoff , and zkpol can be obtained.
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Figure 3.47: Plot of std (err (k)) vs σ from TB data for n samples of T (1).

c1,kon c1,koff c1,kpol c2,kon c2,koff c2,kpol
mean 2.2523 1.5156 0.8779 -0.3149 -0.3481 -0.2323
std 0.0154 0.0075 0.0038 0.0012 8.0164× 10−4 8.1392× 10−4

Table 3.2: Mean and standard deviations of the asymptotic constants c1
and c2 for zkon , zkoff , and zkpol throughout the different samples sizes n =
1000, 2000, 4000, 8000, 16000, 32000, 64000.

3.9 Further Improvements on Inference from T (1)

Data

In subsection 3.3.1, we proposed a method for inferring kon, koff , and kpol from

T (1) data by first using the EM algorithm to infer the mixture parameters α, λ1,

and λ2 from the T (1) data and then mapping the inferred mixture parameters

to kon, koff , and kpol using equations A.1, A.2, and A.3. In this mapping, the

probability of escape to the pre-translocation state, pEpre|2 was not used. In this

section, we investigate the advantages of using the knowledge of pEpre|2. Intuitively,

using more available information in the inference will reduce the total relative
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Figure 3.48: Plot of mean2 (err (k)) vs σ from TB data for n samples of T (1).

error.

The probability of escape back to the pre-translocation state, pEpre , can be

calculated directly from observations in the nanopore experiment. We can ap-

proximate pEpre from the data by,

pEpre|2 ≈
nT (1)

nT (1) + nTB
,

where nT (1) and nTB are the total number of T (1) and TB samples observed.

Recall figure 3.3 which shows the state-space diagram which pertains to T (1).

Let

r̂2 := r2

pEpre|2
,

k̂on :=
konpEpre|4
pEpre|2

,

k̂off :=
koffpEpre|2
pEpre|4

.
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Figure 3.49: Plot of rms (err (k)) vs σ from TB data for n samples of T (1).

We can calculate pEpre|2 as described above and r2 can be calculated by setting

[dNTP ] = 0 and fitting a single exponential mode to the lower-amplitude data.

Hence, we assume that pEpre|2 and r2 is known; i.e., r̂2 is known.

Notice that the conditioned system is in the exact same form as the kpol = 0

case in Chapter 2 with effective dNTP binding and disassociation rates k̂on and

k̂off , respectively. We can thus infer k̂on and k̂off in the exact same manner as

kon and koff in the kpol = 0 case in Chapter 2. In order to map r̂2, k̂on, and k̂off

to kon, koff , and kpol, we solve the following system of equations

pEpre = r2 (koff + kpol)
(koff + kpol) r2 + kpolkon[dNTP ] ,

k̂on =
konpEpre|4
pEpre|2

= konkoff
koff + kpol

,

k̂off =
koffpEpre|2
pEpre|4

= koff + kpol.
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Figure 3.50: The squared-mean of the quantities zkon , zkoff , and zkpol . This
shows that the squared-mean of zkon , zkoff , and zkpol both follow O (σ4) as σ → 0
and hence 〈zkon〉,

〈
zkoff

〉
, and

〈
zkpol

〉
= O (σ2).

Indeed, the solution to this system of equations is given by

kpol =

(
1− pEpre|2

)
r2k̂

2
off(

1− pEpre|2
)
r2k̂off + pEpre|2k̂onk̂off [dNTP ]

, (3.55)

koff = k̂off − kpol, (3.56)

kon = k̂onk̂off
koff

. (3.57)

To recap, we first infer the mixture parameters α, λ1, and λ2 from T (1) data.

The mixture parameters are then mapped to k̂on and k̂off in the exact same

manner as in Chapter 2. Then the inferred kon, koff , and kpol are given by equa-

tions 3.55-3.57. Equation 3.58 summarizes these series of mappings.

{
T

(1)
1 , . . . , T (1)

n

} MLE−→ (α, λ1, λ2) K−→
(
k̂on, k̂off

)
G−→ (kon, koff , kpol) , (3.58)
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Figure 3.51: The second moment of zkon , zkoff , and zkpol . This shows that the
second moments follow O (σ2) +O (σ4) for fixed n.

where K and G are the mappings (α, λ1, λ2) 7→
(
k̂on, k̂off

)
and

(
k̂on, k̂off

)
7→

(kon, koff , kpol) given in Chapter 2 and equations 3.55-3.57, respectively.

For notational convenience, let θ = (α, λ1, λ2). Consider the first-order Taylor

expansion,

G (K (θ)) = G
(
K
(
θMLE

))
+ JG◦K

(
θMLE

) (
θ − θMLE

)
+ o

(∥∥∥θ − θMLE
∥∥∥) ,

where JG◦K
(
θMLE

)
is the Jacobian of G◦K evaluated at θMLE. Now the covariance

of the MLE estimates of kon, koff , and kpol are given by,

Cov (K (θ)) = JG◦K
(
θMLE

)
Cov (θ) JG◦K

(
θMLE

)T
,

where Cov (θ) is the covariance matrix of θ, which is approximated by H−1, the

inverse of the observed information matrix in equation 3.33. The total relative

error can then be calculated using equation 3.34 in the same manner as before.
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Figure 3.52: The second moment of zkon , zkoff , and zkpol a function of n. This
shows that the second moments follow O (1/n) for fixed σ.

Qualitatively, the total relative error when using knowledge of the escape prob-

ability pEpre|2 looks similar to when we did not use the escape probability (fig-

ure 3.56). However, closer inspection shows that this is not the case. Figure 3.57

shows the total relative error along the trajectory with k = 1, kp = 0.5 and

[dNTP ] ranging from 10−2 to 103. Using knowledge of pEpre results in nearly a

order of magnitude decrease in total relative error in small [dNTP ] regimes. How-

ever, this advantage is negligible in saturating [dNTP ] regimes where the total

relative error is already at its lowest. Including knowledge of the escape probably

will thus play a more imporant role in systems in which the optimal constrained

[dNTP ] is small, otherwise the advantages of incorporating pEpre|2 are negligible.
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Figure 3.53: The variance of zkon , zkoff , and zkpol as a function of σ. For fixed
n, the variance of zkon , zkoff , and zkpol behave as O (σ2).

3.10 Discussion and Concluding Remarks

The methods used here to derive the PDFs of T (1) and TB can be applied to

deriving dwell times of other Markovian phenomena in which dwell time data can

be gathered. We showed that the PDF of T (1) is of the form of a proper mixture

distribution and hence the mixture parameters can be accurately obtained from

observed T (1) data through the EM algorithm.

We demonstrated through numerical simulations that the EM approach for

inferring kon, koff , and kpol from T (1) data is robust against measurement noise,

and that the inference uncertainty decreases as [dNTP ] increases. For low mea-

surement noise, the relative error is less than 20% and 17% respectively for kon

and koff for low [dNTP ] and decreasing to under 5% for both kon and koff for

high [dNTP ]. Under low measurment noise, the inference uncertainty for kpol is

below 8% even for low [dNTP ]. For high measurement noise, low [dNTP ] pro-

duces very high relative error. For [dNTP ] ≥ 2, the inference error is relatively
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Figure 3.54: The variance of zkon , zkoff , and zkpol as a function of n. For fixed
σ, the variance of zkon , zkoff , and zkpol behave as O (1/n).

low: less than 14%, 9%, and 15% for kon, koff , and kpol, respectively.

When using T (1) data, the measurement noise affects the inference of kon and

koff the least, but its effects are relatively large for the inference of kpol.

We also showed that the PDF of TB is an improper mixture of four exponential

modes. Because some of the mixture weights are negative, we lose the hierarchical

structure of a proper mixture distribution and hence cannot use the EM method

to infer kon, koff , and kpol, unlike when using the T (1) data. We thus use the

Nelder-Mead algorithm to maximize the log-likelihood function of the TB data.

For low measurement noise, inferring kon from TB data produces relative errors

of less than 18% when using [dNTP ] ≤ 4. The inference uncertainty of kon

grows to unacceptable levels for very high [dNTP ]. The relative error for koff

is lowest when [dNTP ] = 1, 2 (less than 14% for low noise), but the uncertainty

becomes unacceptable for very high and low [dNTP ]. The inference uncertainty

for kpol behaves similar to that of kpol from the T (1) data, generally decreasing

as [dNTP ] increases. For high measurement noise, [dNTP ] = 0.5 produces the
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Figure 3.55: The distribution of zkon , zkoff , and zkpol at σ = 2−4 with n = 8000.
Here, all the quantities are normally distributed.

least relative error for kon; [dNTP ] = 2 produces the least relative error for koff ;

and [dNTP ] = 16 produces the least relative error for kpol. However, for the

high measurement noise, using the TB data produces near unacceptable levels of

uncertainty even at optimal [dNTP ].

We also examined how the relative errors behaved as a function of measure-

ment noise when changing the number of samples of T (1) and TB while keeping

the [dNTP ] fixed. We found that around 5000 samples of T (1) are sufficient for

obtaining reasonable estimates for kon, koff , and kpol.

The maximum reaction velocity obtained from 〈Tcycle〉 provides an alterna-

tive method for calculating kpol. Numerical simulations conclude that we can

estimate kpol to about 7% RMS error at saturating [dNTP ]. This can provide

an alternate means of inferring kpol. The dNTP concentration which produces

the half-maximum reaction velocity (parameter Km) can be used to put a con-

straint on kon and koff . We found that the constrained maximization of the joint
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Figure 3.56: Comparison between the total relative errors calculated when
knowledge of the escape probability pEpre|2 is used and when pEpre|2 is not used
in mapping the mixture parameters to the kinetic rates kon, koff , and kpol. The
results are qualitatively similar.

likelihood function of T (1) and TB formed by adding their respective likelihoods

provides very satisfactory inference results and improves upon the uncertainty of

inferring kon and koff when compared to the general unconstrained inference of

kon, koff , and kpol simultaneously.

We investigated the inference uncertainty of kon, koff , and kpol estimated from

the T (1) samples in terms of the total relative error. After conditioning on the

escape to the pre-translocation state, the escape problem governing T (1) is of

the same form as the kpol = 0 case in Chapter 2 where r2, koff , and kpol are

scaled by the conditional probabilities pEpre|2 and pEpre|4. The scaled r2 rate,
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Figure 3.57: Comparison of the total relative error with and without knowledge
of the escape probability pEpre|2 along the trajectory k = 1, kp = 0.5 and [dNTP ]
ranging from 10−2 to 103. Using knowledge of pEpre results in nearly a order of
magnitude decrease in total relative error in small [dNTP ] regimes. However,
this advantage is negligible in saturating [dNTP ] regimes where the total relative
error is already at its lowest.

r̂2 can be scaled to 1. For fixed kp = kpol/r2, the total relative error of kon,

koff , and kpol can be shown to only depend on S and k–the scaled [dNTP ] and

koff , respectively. We used the observed Fisher information matrix to obtain an

asymptotic estimate for the covariance matrix for the MLE estimates and then

the uncertainty was propagated to the kon, koff , and kpol estimates through a first-

order Taylor expansion. This and the aforementioned scaling laws allowed us to

build a numerical approximation to the total relative error for any kon, koff , and

kpol. The use of the observed Fisher information allowed us to build a database of

the total relative error for any dNTP binding, disassociation, and incorporation

rate without the use of full-scale Monte Carlo simulation.

There is no well defined optimum [dNTP ] which produces the least total rel-

ative error of kon, koff , and kpol from the T (1) observations unlike the kpol = 0
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case in Chapter 2. The minimum total relative error occurs in saturating [dNTP ]

regimes and the total relative error approaches a constant in this region. Although

the total relative error is lowest in saturating [dNTP ] regions, collecting T (1) sam-

ples here is impractical due to the high probability of immediate escape into the

pol-process.

We then examined how to obtain the optimal [dNTP ] under experimental time

constraints; that is, the total run-time of the experiment is constrained using

the mean-field approximation of the experimental run-time. This constrained

optimization problem can be recast into an unconstrained optimization problem

of [dNTP ] only and the [dNTP ] which produces the least total relative error in

this recast problem is the optimal constrained [dNTP ]. Under this setting, the

optimal [dNTP ] occurs well below saturating [dNTP ] regions. We also examined

the optimal [dNTP ] when constraining the number of cycles using the mean-field

approximation as well. Like constraining the experimental time, the constrained

optimization is recast into an unconstrained problem. The optimal [dNTP ] in this

setting occurs well below saturating [dNTP ] regions. In both cases, the mean-field

approximation is justified numerically.

The construction of the total relative error function and characterization of

the optimal [dNTP ] thus provide a way to determine the experimental parame-

ters which produce the least inference uncertainty when inferring dNTP binding,

disassociation, and incorporation rates. This a priori knowledge will allow re-

searchers to make more accurate estimates for the dNTP binding, disassociation,

and incorporation rates and further elucidate the dynamics of dNTP binding and

incorporation in DNAP-DNA complexes.

Characterization of the MLE estimates from perturbed T (1) samples with mul-

tiplicative noise was also investigated. Using numerical simulations, we obtained
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strong numerical evidence to support the claims that the MLE estimates of kon,

koff , and kpol from perturbed T (1) data differ from the MLE estimates of kon, koff ,

and kpol from unperturbed T (1) data by a Gaussian with mean O (σ2) and variance

O (σ2/n), where σ is the standard deviation of noise. Furthermore, the distribu-

tion of zkon , zkoff , and zkpol can be accurately described by least-squares fitting of

the asymptotic coefficients to the squared-mean and variance of zkon , zkoff , and

zkpol . The asymptotic coefficients are shown to have a weak dependence on n.

This and numerical simulations examining the distribution of zkon , zkoff , and zkpol
show that the distribution of zkon , zkoff , zkpol can be accurately obtained for any

system in the following way: (1) generate n unperturbed T (1) samples and perturb

them m times to create m data sets; and (2) determine the asymptotic coefficients

of the squared-mean and variance of zkon , zkoff , and zkpol by least-squares fitting.

Finally, we looked at how further improvements can be made when inferring

the kinetic rates from T (1) data by including the escape probability, pEpre|2. Gains

in terms of reducing the total relative error by including this information in the

mapping from the mixture parameters to the kinetic rates are negligible, but

the reduction in total relative error when including the escape probability in the

mapping is nearly an order of magnitude when [dNTP ] is small. This can be

useful in systems in which the constrained optimal [dNTP ] occurs when [dNTP ]

is small.
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Chapter 4

Kinetic Structure of the DNAP

Polymerization Process

4.1 Introduction

In this chapter, we focus on inferring the internal kinetic structure of the DNAP

polymerization process. Previous work has been done to estimate the dNTP bind-

ing and disassociation rates in non-synthesizing DNAP-DNA complexes by use of a

autocorrelation function of the entire current amplitude measured from nanopore

experiments [50]. We also proposed a method of estimating the dNTP binding

and disassociation rates in non-synthesizing complexes by deriving the underlying

dwell time PDF and applying an expectation-maximization (EM) algorithm to

obtain the MLE estimates (chapter 2). In the previous chapter, we extended this

result to synthesizing DNAP-DNA complexes, inferring the kinetic rates of dNTP

binding, disassociation, and incorporation (chapter 3).

However, in chapter 3, dNTP incorporation was modeled as a single kinetic

step called kpol. The actual number of steps of the polymerization process is
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unknown, but it contains at least activation, chemistry, and pyrophosphate re-

lease. In this chapter, we extend further the model for synthesizing DNAP-DNA

complexes. We model the polymerization process as an arbitrary number of ki-

netic states and show how both the number of states and the kinetic rates of the

polymerization process can be inferred from dwell time data.

For an ionic current trace covering more than one nucleotide addition cycle,

we define various dwell times (figure 4.1):
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Figure 4.1: A state-space diagram for two nucleotide addition cycles in DNA
replication. When the DNAP-DNA complex is allowed to undergo synthesis and
a complementary dNTP is provided in the cis chamber, the DNAP-DNA complex
can transition to the next nucleotide addition cycle–indicated by the “+” symbol
after the state names. This is manifested as a change in the upper and lower
amplitudes as the reporter group gets closer or further away from the nanopore
lumen.

• TA: the time from the first arrival to the post-translocation state of the

current nucleotide addition cycle to the last arrival to the post-translocation

state of the current nucleotide addition cycle; this is shown graphically as

the blue square to the green circle in figure 4.1

• TB: the time from the last arrival to the post-translocation state of the

current nucleotide addition cycle to the first arrival to the post-translocation

state of the next nucleotide addition cycle; this is shown graphically as the
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green circle to the magenta hexagon in figure 4.1

• T (1): the lower-amplitude dwell times within the TA dwell time segment. In

any observation of TA, there are likely to be many samples of T (1) and we

label them as T (1)
1 , T

(1)
2 , T

(1)
3 , . . . , etc (figure 4.1)

• T (2): the upper-amplitude dwell times within the TA and TB dwell time

segments. Like T (1), there are likely to be many samples of T (2), so we label

them as T (2)
1 , T

(2)
2 , . . . , etc (figure 4.1). Note that the dwell time T (2) is

not directly observable within the dwell time segment TB. Within the TB

segment, this is denoted graphically as the left-opened cyan parenthesis to

the right-opened cyan paranthesis in figure 4.3.

• Tpol: the time from the last arrival to the post-translocation state to the

first arrival to the pre-translocation state in the next nucleotide addition

cycle; this is the time that the DNAP-DNA complex completes the dNTP

binding and incorporation steps. This is denoted by the green circle to the

right-opened red parenthesis (figure 4.3).

The transition rates r1, r2, r3, r4, kon, koff , and kpol shown in figures 4.2, and

the rest of the state-space diagrams shown in this paper are defined as follows.

Each transition rate is written next to an arrow originating from state i and

ending at state j. That transition rate is the rate of which the DNAP-DNA

complex transitions from state i to state j. For example, r1 is the rate of which

the DNAP-DNA complex transitions from the pre-translocation state to the post-

translocation state. Mathematically, we can write

r1 = lim
∆t→0+

Pr (S (t+ ∆t) = Post | X (t) = Pre)
∆t ,
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where X (t) denotes the state of the Markov chain at time t. The other transition

rates are defined in a similar manner.

In this paper, we are interested in the case in which the DNAP-DNA complex

is allowed to undergo synthesis. The DNAP-DNA complex will thus transition

in discrete amplitude levels, each level corresponding to a nucleotide addition

cycle. A mutation has been engineered into the exonuclease so that cleaving of

the dNTP cannot occur, and hence the transition to the next nucleotide addition

cycle is irreversible. In the previous chapter, we inferred kon, koff , and kpol from

the lower-amplitude, T (1) data.

The dNTP incorporation rate kpol modeled the polymerization (pol) process as

a single rate-limiting step. The polymerization process is actually multiple internal

kinetic steps which includes at least activation, chemistry, and pyrophosphate

release. In this paper, we model the pol process as an arbitrary number of kinetic

steps with the last step irreversible and introduce ways to infer the number of

internal states and their kinetic rates in the pol process from dwell time data

available from the nanopore experiments (figure 4.2).

The dwell time TB incorporates information about the pol process. Recall that

TB is the time for the DNAP-DNA complex to escape to the post-translocation

state of the next nucleotide addition cycle (post+) when starting at the post-

translocation state of the current nucleotide addition cycle (post). We can write

TB = Tpol + T (2) where Tpol is the time it takes the DNAP-DNA complex to

complete the binding and incorporation segment of the nucleotide addition cycle

and includes the pol process; and T (2) is the upper-amplitude segment of the next

nucleotide addition cycle (figure 4.3).

In this paper, we will develop methods to infer the number of states in the

DNAP polymerization process from the dwell time data. The methods all make
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Figure 4.2: The state-space diagram of a DNAP-DNA complex allowed to un-
dergo synthesis. The complex has been engineered to exonuclease activity cannot
occur, and hence incorporation of a dNTP is irreversible. The pol process is
modeled as an arbitrary number of internal kinetic steps with the last step being
irreversible. The blue-box zoom emphasizes the TB escape problem in which the
pol process resides.

use of the randomness parameter of the dwell time data. We will show that under

a restricted class of Markov processes, we can improve upon previous results in the

literature that provide a bounds on the possible number of states in a continuous-

time, discrete-state Markov process based on the randomness parameter of the

observed dwell time data.

4.1.1 Introduction to the Randomness Parameter

In the context of molecular motors, the randomness parameter is defined to be

r = 2D/ (vd) where D is the effective diffusion constant of the enzyme, v is the

average rate of the enzyme, and d is the step size of the molecular motor. Due to

fluctuations, if two identical motors are started at the same location at the same

time, they will eventually separate with a squared distance that increases linearly
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Figure 4.3: A representative current trace depicting the TB dwell time along
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Tpol dwell time segment is graphically denoted from the green circle to the right-
opened red parenthesis, and the T (2) dwell time segment is graphically denoted
from the left-opened cyan parenthesis to the right-open cyan parenthesis. The
pol process occurs within the Tpol dwell time. Both dwell times Tpol and T (2) are
not directly observable since they do not manifest a change in current amplitude.
The latter is only unobservable when part of the TB dwell time segment.

with time [56]. The quantity D is a measure of this diffusive behavior [67], [70]. In

the limit that the motor takes a uniform step size and direction, the randomness

parameter reduces to a function of only the first two moments of the dwell times

R = var (T )
〈T 〉2

,

where T is the cycle time [67], [70]. In the broader context of stochastic modeling,

this quantity is also known as the squared coefficient of variation.

The randomness parameter can be used to put a lower bound on the number

of kinetic states in a system:
1
R
≤ n, (4.1)

where n is the number of states in the system. The inequality was first introduced

a conjecture in the context of single-molecule experiments [67], [70]. It has been
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formally proven for any continuous-time, discrete-state Markov process by the use

of martingales in the context of phase-type distributions [20].

The lower-bound inequality in equation 4.1 can be intuitively explained as

follows. If we have a system with a single kinetic state, then the randomness

parameter is 1 since the variance of the dwell time is the square of the mean for

an exponential distribution. As more kinetic states are added, the mean of the

dwell time increases more quickly than the variance. Thus the ratio of the squared

mean to the variance increases.

An advantage of using the randomness parameter to study the kinetic structure

of a system is that the quantity can be accurately measured when the moments

of the cycle time are corrupted by noise [67], [70].

In certain situations however, the randomness parameter fails to follow the

inequality in equation 4.1. This occurs when the motor step size is not uniform or

when the kinetic pathway varies [14], [68], [73]. In this setting, correction terms

must be added to the randomness parameter so that the inequality in equation 4.1

is valid. In our context, the DNAP-DNA complex translocation step size is as-

sumed to be uniform, and we can observe the individual dwell time events from

the nanopore experimental data. The dwell time moments can thus be calculated,

and hence so can R.

4.1.2 Application to the Randomness Parameter to Molec-

ular Motors

The application of the randomness parameter to molecular motors was first

introduced in the context of single molecule experiments in [67], [70]. Here, a se-

quential enzymatic pathway of n irreversible reactions was considered (figure 4.4).
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Figure 4.4: A sequential enzymatic pathway with irreversible transitions.

For this system the randomness parameter is given by

R =
∑n
i=1 r

−2
i(∑n

i=1 r
−1
i

)2 ,

as calculated by Laplace Transforms in [67], [70]. Suppose that k of the ri rates are

comparable, and the n − k other rates are much smaller. That is, ri1 , . . . , rik =

O (η) and rik+1 , . . . , rin = O (ε) where 0 < ε << η and rij ∈ {1, . . . , n} with

rij 6= ril for j 6= l. In this case, R ≈ 1/k. Hence 1/R gives an approximation to

the number of rate-limiting steps in the reaction.

In [67], the sequential kinetic chain was generalized to include a reversible

step between states 1 and 2 with the binding step first order in the substrate

concentration (figure 4.5).
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[S] r
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r
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r
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r
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r
-1

Figure 4.5: A sequential enzymatic pathway with irreversible transitions and
the first transition reversible. The binding step first order in the substrate con-
centration, [S].

The randomness parameter in this case is given by

R =
∑n
i=3

1
r2
i

+ (r1[S]+r2+r−1)2−2r1r2[S]
(r1r2[S])2(∑n

i=3
1
ri

+ r1[S]+r2+r−1
r1r2[S]

)2

as calculated in [67]. It was shown in [67] that if all of forward rates r1, . . . rn

are comparable, then r → 1/n as [S] → ∞. This is because as [S] → ∞,
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the unbinding rate r−1 is negligible compared to the binding rate. As [S] → 0,

r → 1 since the substrate binding step becomes rate-limiting. Thus at saturating

substrate concentrations, the number of states can be recovered for this system.

The randomness parameter has been studied in numerous papers over the years

in the context of sequential systems [67], [70], [78] among others; or in the context

of more complicated systems in which branches or parallel kinetic pathways are

present [68], [55], [14] among others.

In this chapter, we extend the application of the randomness parameter to

systems in which the escape problem governing the dwell time has two absorbing

states. In particular, we apply this theory to the DNAP-DNA complex when

synthesis is allowed (figure 4.2). We will develop methods using the randomness

parameter to infer the number of kinetic states and kinetic rates of the polymer-

ization process. In this situation, the DNAP-DNA complex has two choices after

arrival at the post-translocation state: (i) the complex can transition back to the

pre-translocation state, exiting the lower-amplitude; or (ii) the complex can bind

and incorporate a complementary dNTP and proceed irreversibly through the

entire pol-process, eventually arriving at the post-translocation state of the next

nucleotide addition cycle. This application thus has two escape possibilities, or

equivalently, two absorbing states. We will develop methods to infer the kinetic

structure and details in this setting in which the individual kinetic states cannot

be directly observed. Such is the case with the kinetic states in the pol-process;

the states in the pol-process do not manifest a change in ionic current and hence

cannot be directly observed.
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4.2 Determining the Number of States and Tran-

sition Rates in a Birth-Death Process

Consider a birth-death process with two absorbing boundary states (figure 4.6).

The birth-death process with two absorbing boundary states is of the same form

1 2 n-1 n
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f,1 r

f,2
r
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r
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f,n
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r
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r
b,2
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r
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Figure 4.6: A birth death process with two absorbing boundary states.

as the escape problem describing the lower-amplitude up to and including co-

valent incorporation of the nucleotide. In this setting, the two absorbing states

are the pre-translocation state and pre-translocation state of the next nucleotide

addition cycle. This is apparent from figure 4.2; a Markov process describing the

escape problem with transient states {post, dNTP, pol-1, . . . , pol-n} and absorbing

states {pre, pre+} is isomorphic to the birth-death process described in figure 4.6.

Throughout the rest of this paper, let X (0) = 1 (or X (0) = post if viewed in

the setting of the DNAP-DNA complex), where X (t) is the state of the Markov

process at time t. Hence the birth-death process describes the escape from the

lower-amplitude up to and including covalent incorporation of the nucleotide as

mentioned before. In this section, we introduce methods to infer the number of

states in the birth-death process and the forward and backwards (birth and death

respectively) rates.
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4.2.1 Symmetric Birth-Death Process with Two Absorb-

ing States

We first consider the simple case of a symmetric birth-death process. Suppose

that the forward and backwards rates of the birth-death process in figure 4.6 are

equal; that is, rf,i = rbj = r for all i and j. We look into methods for inferring the

number of states n and the forward and backwards transition rate r from data.

Unconditional Escape Time

Let T be the time to absorption; that is the time that the process takes to

transition into one of the absorbing states, 0 or n + 1. For notational simpli-

fity, let hk = 〈T | X (0) = k〉. We can then write hk = r∆thk−1 + r∆thk+1 +

(1− 2r∆t)hk + ∆t + o (∆t). Dividing by ∆t and passing the limit ∆t → 0, we

obtain the nonhomogeneous difference equation

rhk−1 + rhk+1 − 2rhK = −1,

with boundary conditions h0 = hn+1 = 0. Solving this difference equation gives

the solution

hk = n+ 1
2r k − k2

2r .

Hence, the quantity we are interested in is given by

h1 = n+ 1
2r − 1

2r = n

2r . (4.2)

This gives the mean escape time when the birth-death process starts at state 1 at

time t = 0.

To derive the second moment of T , we introduce some more notation. Let
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Tk = T | {S (0) = k} be the conditional random variable. Then we can write,

Tk = ∆t+



Tk−1 with probability r∆t+ o (∆t)

Tk+1 with probability r∆t+ o (∆t)

Tk with probability 1− 2r∆t+ o (∆t)

We can write

〈
T 2
k

〉
= (∆t)2 + 2∆t [r∆t 〈Tk−1〉+ r∆t 〈Tk+1〉+ (1− 2r∆t) 〈Tk〉]

+ r∆t
〈
T 2
k−1

〉
+ r∆t

〈
T 2
k+1

〉
+ (1− 2r∆t)

〈
T 2
k

〉
+ o (∆t) .

For ease of notation, let uk = 〈T 2
k 〉 and recall that hk = 〈Tk〉 and that

hk = r∆thk−1 + r∆thk+1 + (1− 2r∆t)hk + ∆t+ o (∆t) ,

so that

hk −∆t = r∆thk−1 + r∆thk+1 + (1− 2r∆t)hk + o (∆t) .

Hence

uk = 2∆t (hk −∆t) + r∆tuk−1 + r∆tuk+1 + (1− 2r∆t)uk + o (∆t) .

Dividing by ∆t and passing the limit ∆t → 0, we obtain the inhomogeneous

difference equation

uk−1 + uk+1 − 2uk = −2
r
hk

= −2
r

(
n+ 1

2r k − k2

2r

)
.
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Solving this difference equation, we obtain

uk =
(
n+ 1
12r2 + (n+ 1)3

12r2

)
k − k2

12r2 −
n+ 1
6r2 k3 + k4

12r2 .

Plugging in k = 1 gives us the desired quantity

u1 = n (n+ 1) (n+ 2)
12r2 . (4.3)

From the derivations of the first two moments above (equations 4.2 and 4.3),

the randomness parameter of T is given by

RT = n2 + 2
3n . (4.4)

We consider the quantity 3RT . Notice that for n ≥ 3, we have n < 3RT ≤

n + 2/3 with equality to n + 2/3 if and only if n = 3. Hence we can infer the

number of states in the symmetric birth-death process by computing n = b3RT c

when n ≥ 3. However, if n = 1 or n = 2, we have 3RT = 3. The number of states

cannot be recovered from just RT in this case.

Advantages of Conditioning on the Location of Escape

In order to fully recover the number of states, we need more information.

Consider the probability of escaping to the forward absorbing boundary; that is,

let pfk be the probability of escaping to the n+ 1 state starting from state k. Like

T , we can derive a linear, homogeneous difference equation in pfk .
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We have the following probabilities

Pr (S (∆t) = k + 1 | (0) = k) = r∆t+ o (∆t)

Pr (S (∆t) = k − 1 | (0) = k) = r∆t+ o (∆t)

Pr (S (∆t) = k | (0) = k) = 1− 2r∆t+ o (∆t)

Hence we can write pfk = r∆tpfk−1 + r∆tpfk+1 + (1− 2r∆t) pfk + o (∆t). Now

dividing by ∆t and r and passing the limit ∆t→ 0, we obtain, the linear, homoge-

neous difference equation pfk−1 +pfk+1−2pfk = 0. Solving this difference equation

with boundary conditions pf0 = 0 and pfn+1 = 1, we obtain pfk = k/ (n+ 1).

Hence the desired quantity is pf1 = 1/ (n+ 1), which gives us the probability of

absorption to n+1 given that S (0) = 1. From here, we have the obvious corollary

that n = 1/pf1 − 1.

We see that conditioning on the escape to either of the absorbing boundary

states yields more information content in regards to the number of states then

the unconditional escape time T . From the forward escape probability alone, the

number of states n can be recovered for a symmetric birth-death process.

To infer the forward and backward transition rate r, recall that 〈T | S (0) = 1〉 =

n/ (2r) from equation 4.2. Hence after inferring n from the probability of forward

escape, pf1 , we can infer r from r = n/ (2 〈T | S (0) = 1〉).

A Look into the Conditional Escape Time

In this section, we look at the conditional escape time which demonstrates the

advantages of conditioning on the escape direction. Although both the number of

states n and the forward and backwards rates can already be determined by p1

and T , the conditional escape time nevertheless offers an interesting theoretical

study.
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Let Tb and Tf be the time to absorption to the 0 state and n + 1 states

respectively. We will also refer to Tb and Tf as the backwards escape time and

forward escape times respectively. The birth-death process on the transient states

is fully described by the infinitesimal generator matrix pertaining to the transient

states {1, . . . , n}. Here the infinitesimal generator matrix of the transient states

is tri-diagonal with super and sub-diagonal entries r and main diagonal entries

−2r; let Q be this matrix.

Let pk (t) = Pr (S (t) = k), where k is a transient state. The state probabilities

pk are given by the solution to the differential equation

d

dt
= Qp (t) ,

where p (t) is vector p (t) = (p1 (t) , . . . , pn (t)). The solution to this differential

equation is given by p (t) = exp (tQ) p (0). Here, p (0) = (1, 0, . . . , 0)T . Let

Q = V DV T be the eigenvalue decomposition of Q. Note that V −1 = V T since V

is orthogonal. Hence we have

p1 (t) =
n∑
k=1

v2
1,ke

tλk ,

pn (t) =
n∑
k=1

vn,kv1,ke
tλk .

The PDF of Tb and Tf is then given by

fTb (t) = p1 (t)∫∞
0 p1 (t) dt,

fTf (t) = pn (t)∫∞
0 pn (t) dt.
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Computing this, we obtain

fTb (t) =
n∑
k=1

ω1v
2
1,ke

tλk (4.5)

fTf (t) =
n∑
k=1

ωnvn,kv1,ke
tλk (4.6)

where

ω1 = −
(

n∑
k=1

v2
1,k

λk

)−1

,

ωn = −
(

n∑
k=1

vn,kv1,k

λ k

)−1

.

The first-two moments of Tb and Tf can then be easily computed,

〈Tb〉 =
n∑
k=1

ω1
v2

1,k

λ2
k

, (4.7)

〈Tf〉 =
n∑
k=1

ωn
vn,kv1,k

λ2
k

, (4.8)

〈
T 2
b

〉
= −

n∑
k=1

2ω1
v1,kv1,k

λ3
k

, (4.9)

〈
T 2
f

〉
= −

n∑
k=1

2ωn
vn,kv1,k

λ3
k

. (4.10)

Since Q is tri-diagonal and Toeplitz, we have closed-form expressions for the

eigenvalues and eigenvectors [58]. The eigenvalues and eigenvectors are given by

λk = 2r
(

cos
(

kπ

n+ 1

)
− 1

)
, (4.11)

vj,k = sin
(
kjπ

n+ 1

)
, (4.12)

for k, j = 1, . . . , n respectively.
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We can then write the first-two moments of Tb and Tf as,

〈Tb〉 = − 1
2r

∑n
k=1

sin2( kπ
n+1)

(cos( kπ
n+1)−1)2

∑n
k=1

sin2( kπ
n+1)

cos( kπ
n+1)−1

, (4.13)

〈
T 2
b

〉
= 1

2r2

∑n
k=1

sin2( kπ
n+1)

(cos( kπ
n+1)−1)3

∑n
k=1

sin2( kπ
n+1)

cos( kπ
n+1)−1

, (4.14)

〈Tf〉 = − 1
2r

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

(cos( kπ
n+1)−1)2

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

cos( kπ
n+1)−1

, (4.15)

〈
T 2
f

〉
= 1

2r2

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

(cos( kπ
n+1)−1)3

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

cos( kπ
n+1)−1

. (4.16)

Amazingly, these finite trigonometric sums can be calculated analytically by use of

the residue theorem or by the use of generating functions established by expansions

of trigonometric polynomials in partial fractions [8], [16]. In Appendix B.1, we

calculate these summations explicitly. It can then be shown that the first-two

moments of Tb and Tf can be written as,

〈Tb〉 = 1
6r (2n+ 1) , (4.17)〈

T 2
b

〉
= 1
r2

(
2n3

45 + 8n2

45 + 19n
90 + 1

15

)
, (4.18)

〈Tf〉 = 1
6r
(
n2 + 2n

)
, (4.19)〈

T 2
f

〉
= 1

8r2

(
14n4

45 + 56n3

45 + 74n2

45 + 4n
5

)
. (4.20)
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The randomness parameters of Tb and Tf are thus

RTb = 4n2 + 4n+ 7
5 (2n+ 1) , (4.21)

RTf = 2n2 + 4n+ 9
5n (n+ 2) . (4.22)

Here we see that asymptotically, we have RTb ∼ O (n) and RTf ∼ O (1). This

result implies that the ratio RTb/RTf can be used to infer the number of states n,

for n large. Indeed this can be taken a step further and can be shown to hold for

all values of n as the next theorem shows

Theorem 4. Let R = RTb/RTf . Then for n ∈ N, n − 2
125 ≤ R < n + 1

2 with

equality to n− 2
125 if any only if n = 2. Furthermore, R is asymptotic to n+ 1

2 as

n→∞.

Proof. From equations 4.21 and 4.22, we obtain

R = 4n4 + 12n3 + 15n2 + 14n
4n3 + 10n2 + 22n+ 9 .

By direct computation, R = 1 at n = 1 and R = 248/125 = 2 − 2/125 at n = 2.

Also, we can write,

R = n+ 1
2 −

12n2 + 6n+ 9
2

4n3 + 10n2 + 22n+ 9 . (4.23)

Thus, clearly for n ≥ 3, n < R < n+ 1
2 . Combined with the above, we obtain the

desired inequality. From equation 4.23, it is easy to see that R is asymptotic to

n+ 1
2 as n→∞.

The consequence of this theorem is that if R = 1, then n = 1, and if R =

248/125, then n = 2. For n ≥ 3, n = bRc.
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It turns out that we only need the first moments of Tb and Tf to determine

the number of states n as the next theorem shows.

Theorem 5. For all n ∈ N, n ≤ 2〈Tf〉〈Tb〉 − 1 < n+ 1
2 with equality to n if any only

if n = 1. Furthermore, the quantity 2〈Tf〉〈Tb〉 − 1 is asymptotic to n+ 1
2 as n→∞.

Proof. From equations 4.17 and 4.19, we have

2〈Tf〉
〈Tb〉

− 1 = 2n2 + 4n
2n+ 1 = n+ 1

2 −
3
2

2n+ 1 .

The result follows.

The consequence here of course is that n can be recovered from the Tf and Tb

data by

n =
⌊
2〈Tf〉
〈Tb〉

− 1
⌋
,

for any n.

Theorems 4 and 5 above can be used to determine n from the Tb and Tf data.

The transition rate r can then be recovered easily from the first moment of Tb.

From equation 4.17, we see that r = (2n+ 1) / (6 〈Tb〉).

By now, we have seen the advantages of conditioning on the direction of es-

cape. Without conditioning, the unconditional dwell time T does not have enough

information content to infer n. After conditioning on the direction of escape, the

number of states n can be inferred from pf1 of from the moments of Tb and Tf .

In either case, the forward and backward transition rate r can be recovered from

the first moment of Tb or from the first moment of T .
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4.2.2 Non-Symmetric Birth-Death Process with Two Ab-

sorbing States

In this section we generalize the results in the last section by considering that

the backwards transition rates are all equal and the forwards transition rates are

all equal but different than the backwards transition rates. That is, rb,0 = · · · =

rb,n−1 = rb, rf,1 = · · · = rf,n = rf , and rb 6= rf . Thus without loss of generality,

we write rf = βrb and rb = r. Here, β 6= 1.

Like the symmetric case, we first look at the first-two moments of the uncon-

ditional escape time T , starting from state k. Let hk = 〈T | S (0) = k〉. We can

then write

hk = r∆thk−1 + rβ∆thk+1 + [1− (1 + β) r∆t]hk + ∆t+ o (∆t) .

This leads to the inhomogeneous difference equation

rhk−1 + rβhk+1 − (1 + β) rhk = −1.

The solution to this equation is given by

hk = n+ 1

r (β − 1)
[
1−

(
1
β

)n+1
] − n+ 1

r (β − 1)
[
1−

(
1
β

)n+1
] ( 1

β

)k
− k

r (β − 1) ,

for β 6= 1. Hence the desired quantity is given by

h1 = 1
r (β − 1)

 n+ 1
1−

(
1
β

)n+1
β − 1
β
− 1

 .

The derivation of the second moment of T is similar to the symmetric case.
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Again, we have that

Tk = ∆t+



Tk−1 with probability r∆t+ o (∆t)

Tk+1 with probability rβ∆t+ o (∆t)

Tk with probability 1− r∆t (β + 1) + o (∆t)

We can then write

〈
T 2
k

〉
= (∆t)2 + 2∆t [r∆t 〈Tk−1〉+ rβ∆t 〈Tk+1〉+ (1− r∆t (β + 1))]

+ r∆t
〈
T 2
k−1

〉
+ rβ∆t

〈
T 2
k+1

〉
+ [1− r∆t (β + 1)]

〈
T 2
k

〉
+ o (∆t) .

Recall that hk = 〈Tk〉 and that

hk −∆t = r∆thk−1 + rβ∆thk+1 + [1− r∆t (β + 1)]hk + o (∆t) .

Hence we can write

〈
T 2
k

〉
= 2∆t (hk −∆t)+r∆t

〈
T 2
k−1

〉
+rβ∆t

〈
T 2
k+1

〉
+[1− r∆t (β + 1)]

〈
T 2
k

〉
+o (∆t)

Using the notation uk = 〈T 2
k 〉, we have the inhomogeneous difference equation

uk−1 + βuk+1 − (β + 1)uk = −2
r
hk.

The solution is of the form

uk = C1 + C2

(
1
β

)k
+B1k +B2k

(
1
β

)k
+B3k

2,

191



where

C1 =
B1 (n+ 1) +B2 (n+ 1)

(
1
β

)n+1
+B3 (n+ 1)2(

1
β

)n+1
− 1

and C2 = −C1. Here, B1 = [A1 −B3 (1 + β)] / (β − 1), B2 = A2/ (1− β), and

B3 = A3/ (2β − 2). The Ai coefficients are given by

A1 = − 2 (n+ 1)

r2 (β − 1)
[
1−

(
1
β

)n+1
]

A2 = 2 (n+ 1)

r2 (β − 1)
[
1−

(
1
β

)n+1
]

A3 = 2
r2 (β − 1) .

Hence the desired quantity is given by

u1 = C1 +2

(
1
β

)
+B1 +B2

(
1
β

)
+B3,

The randomness parameter is thus a function of both n and β, unlike the

symmetric case. Here, we have no hope of recovering n or β unless we also look

at the probability of forward (or backwards) escape.

The probability of forward escape can be derived in a similar manner as the

symmetric case. Again, let pfk be the probability of forward escape with S (0) = k.

Here we have the boundary conditions pf0 = 0 and pfn+1 = 1. We also have the

following transition probabilities

Pr (S (∆t) = k − 1 | S (0) = k) = r∆t+ o (∆t)

Pr (S (∆t) = k + 1 | S (0) = k) = βr∆t+ o (∆)

Pr (S (∆t) = k | S (0) = k) = 1− (1 + β) r∆t+ o (∆t)
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Hence we can write,

pfk = r∆tpfk−1 + βr∆tpfk+1 + [1− (1 + β) r∆t] pfk + o (∆t) .

Dividing by ∆t and passing the limit t→ 0, we obtain the difference equation

rpfk−1 + βrpfk+1 − (1 + β) rpfk = 0.

Solving this difference equation gives the result

pfk = 1
1−

(
1
β

)n+1 −
1

1−
(

1
β

)n+1

(
1
β

)k
,

for all β 6= 1. Thus, the quantity we are interested in is given by

pf1 = 1
1−

(
1
β

)n+1 −
1

1−
(

1
β

)n+1

(
1
β

)
. (4.24)

The forward escape probability and the randomness parameter of T provide a

mapping (n, β) 7→ (pf1 , RT ). Unlike the symmetric case, it appears that analyti-

cally inverting this mapping is intractable. We thus develop a method to invert

this mapping numerically by least-squares.

Determining n and β from pf1 and RT Numerically

Let F denote the mapping

F (n, β) = (pf1 , RT ) := (f1 (n, β) , f2 (n, β)) (4.25)

Let F obs denote the observed value of (n, β), so that F obs =
(
f obs

1 , f obs
2

)
. Define a

grid of (n, β)-points and descritize in the β-direction. Let N and B be the set of
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points for n and discrete set of points for β, respectively. Enumerate the n and β

points,

N = {n1, . . . , nq} ,

B = {β1, . . . , βm} ,

where q and m are the number of n and β-points respectively (figure 4.7).

n

β

n
j-1

n
j

n
j+1

β
i

β
i+1

Figure 4.7: A schematic grid of the n and β points. By definition, n is already
discrete. The discretization occurs in the β-direction.

For each line segment defined by (nj, βi) to (nj, βi+1) for j = 1, . . . , q and

i = 1, . . . ,m− 1, we solve the following least-squares problem. Let

s := β − βi
βi+1 − βi

,
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for βi ≤ β < βi+1. Define the functions

g1 (s, i) = (1− s) f1 (n, βi) + sf1 (n, βi+1) ,

g2 (s, i) = (1− s) f2 (n, βi) + sf2 (n, βi+1) .

For each nj, j = 1, . . . , q and i = 1, . . . ,m solve the following

snj ,i = arg min
s

((
g1 (s, i)− f obs

1

)2
+
(
g2 (s, i)− f obs

2

)2
)
. (4.26)

Let snj ,i be the solution to the above least-squares problem and let mnj ,i be the

corresponding minimum. Discard snj ,i and the corresponding mnj ,i if snj ,i < 0 or

snj ,i ≥ 1. Let

n∗ = arg min
nj

mnj ,i.

This is the estimate of n. The corresponding estimate of β is given by β∗ =

βi + (βi+1 − βi) sn∗ , where i is the corresponding index in which the least n∗ was

obtained.

We summarize the above in the following algorithm for finding the estimate of

n and β from the pf1 and RT observations.

Algorithm 6.

input: (pf1 , RT ).

output: (n∗, β∗).

begin:

define: n = (n1, . . . , nq).

define: β = (β1, . . . , βm).

define: snj, mnj array of size q ×m.

for j = 1, . . . , q do
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for i = 1, . . . ,m do

snj (j, i) = arg mins
((
g1 (s, i)− fobs

1

)2
+
(
g2 (s, i)− fobs

2

)2
)
.

mnj(j, i) =
(
g1 (snj(j, i), i)− fobs

1

)2
+
(
g2 (snj(j, i), i)− fobs

2

)2
.

if snj < 0 or snj ≥ 1 do

snj(j, i) = −1.

endif

endfor

endfor

ind = where (min (mnj)).

n∗ = n (ind(1)).

β∗ = β (ind (2)) + (β (ind (2) + 1)− β (ind (2)))) snj (ind(1), ind(2)).

end

Determining n and β from pf1, RTb, and RTf

We can modify the above algorithm to use the randomness parameter of con-

ditional escape times Tb and Tf instead of the unconditional escape time T . The

strategy of the algorithm is the same. Only a slight modification to the mapping

F in equation 4.25 and the least-squares objective function in equation 4.26.

Let F be the mapping

F (n, β) =
(
pf1 , RTb , RTf

)
:= (f1 (n, β) , f2 (n, β) , f3 (n, β)) .

Define the functions

gk (s, i) = (1− s) fk (n, βi) + sfk (n, βi+1) ,
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for k = 1, 2, 3. Hence the new least-squares objective function is given by

snj ,i = arg min
s

3∑
k=1

(
gk (s, i)− f obs

1

)2
.

The following algorithm for estimating n and β from pf1 , RTb , and RTf is a

slight modification of algorithm 6.

Algorithm 7.

input:
(
pf1 , RTb , RTf

)
.

output: (n∗, β∗).

begin:

define: n = (n1, . . . , nq).

define: β = (β1, . . . , βm).

define: snj, mnj array of size q ×m.

for j = 1, . . . , q do

for i = 1, . . . ,m do

snj (j, i) = arg mins
∑3
k=1

(
gk (snj(j, i), i)− fobs

k

)2
.

mnj(j, i) = ∑3
k=1

(
gk (snj(j, i), i)− fobs

k

)2
.

if snj < 0 or snj ≥ 1 do

snj(j, i) = −1.

endif

endfor

endfor

ind = where (min (mnj)).

n∗ = n (ind(1)).

β∗ = β (ind (2)) + (β (ind (2) + 1)− β (ind (2)))) snj (ind(1), ind(2)).

end
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4.2.3 Numerical Simulations

In this section, we conduct numerical simulations to see the performance of the

two least-squares algorithms above; one utilizing (pf1 , RT ) and the other utilizing(
pf1 , RTb , RTf

)
to infer n and β.

We first start with ntrue = 5 and βtrue = 1.1 as the true values of n and

β. Here, n and β are varied over a grid from 3 to 7 and 0.5 to 1.5 with 200

equally spaced points, respectively. We test the sensitivity of the algorithms by

introducing multiplicative noise into the observations of pf1 , RT , RTb , and RTf of

the form

pobs
f1 = pf1e

σζ ,

where ζ ∼ N (0, 1) and σ is the standard deviation. The perturbed samples of

Robs
T , Robs

Tb
, and Robs

Tf
are defined in a similar manner. The numerical experiment

is repeated 1,000 times to obtain a distribution of estimated n and β values for

both least-squares codes. For each graph, we plot the quantity

err (β) = βLS − βtrue

βtrue .

The quantity err (n) is defined similarly. In the following figures, we plot err (β)

and err (n) for σ = 0, 2−6, 2−4. We refer to the unconditional least-squares code

as algorithm 6 and the conditional least-squares code as algorithm 7.

With σ = 0, both least-squares codes recover n and β exactly. The distribution

of the inferred n and β is therefore a point-mass at 5 and 1.1 respectively.

Figures 4.8 and 4.9 show the results for σ = 2−6 and σ = 2−4, respectively.

As we see from the figures, the unconditional least-squares code outperforms

the conditional least-squares code when inferring β. Both codes are comparable

when inferring n. To see why this is the case, consider figure 4.10 which shows
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Figure 4.8: Comparison of the conditional and unconditional least-squares code
for n = 5, β = 1.1, and σ = 2−6.

pf1 , RT , RTb , and RTf as a function of β and n. From the plots of RTb and RTf

as a function of β for fixed n, we see that RTb and RTf are not injective on the

interval [0.5, 1.5]; hence are are two values of β that correspond to the same RTb

and RTf . This explains why in figures 4.8 and 4.9, the distribution of err (β) has

a small cluster of mass around −0.5. We note that the same result would likely

occur for RT if the search-grid for β was expanded and the true value of β was

centered around the location of the maximum of RT , β ≈ 0.6.

From these simulations, a better strategy for inferring n and β from the dwell

time data would be to run the least-squares code for (pf1 , RT ) or
(
pf1 , RTb , RTf

)
to infer n. Then fixing n and re-running the least-squares code on just pf1 to infer

β. From figure 4.10, pf1 is injective throughout the range of β for fixed n; hence

the the inference of β from pf1 is a numerically easier task.
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Figure 4.9: Comparison of the conditional and unconditional least-squares code
for n = 5, β = 1.1, and σ = 2−4.

We re-run these numerical simulations with the true n = 30. Examining fig-

ure 4.10, we expect the inference for n would be less accurate for large n since

pf1 and RT are relatively flat in this region. Like the case for n = 5, for no mul-

tiplicative noise, both least-squares codes recover n and β exactly. Figures 4.11

and 4.12 show the distribution of the quantities err (β) and err (n) for σ = 2−6

and σ = 2−4, respectively. Here we see that the estimates for β in the conditional

and unconditional least-squares codes are comparable. For estimating n, the con-

ditional least-squares code outperforms the unconditional least-squares code. For

σ = 2−4, the conditional least-squares code has about a 7% reduction in relative

error and a 2% reduction in bias over the unconditional least-squares code.

Figures 4.10, 4.11, and 4.12 highlight the advantages of conditioning–using RTb

and RTf for the inference of n in particular. For large n, using RTb and RTf to
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Figure 4.10: Plot of pf1 , RT , RTb , and RTf as a function of β for fixed n = 5
(left); and plot of pf1 , RT , RTb , and RTf as a function of n for fixed β = 1.1 (right).

infer n is advantages over using RT because RT is relatively flatter in this region.

4.3 Inferring the Kinetic Structure of the Poly-

merization Process

In this section, we extend our results from the previous section to infer the

kinetic structure of the polymerization process in DNAP-DNA complexes. The

most straightforward approach is to examine the randomness parameter of TB.

Recall that TB = Tpol + T (2). The dwell times Tpol and T (2) are independent,
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Figure 4.11: Comparison of the conditional and unconditional least-squares code
for n = 5, β = 1.1, and σ = 2−6.

hence we can write the randomness parameter of TB as

RTB =
RTpol 〈Tpol〉

2 +RT (2)

〈
T (2)

〉2

(〈Tpol〉+ 〈T (2)〉)2 .

This shows that we can study the randomness parameters of Tpol and T (2) indi-

vidually to gain insight into the randomness parameter of TB.

4.3.1 Randomness Parameter of T (2)

The randomness parameter of T (2) is worth special consideration, and we study

its behavior here. Recall that T (2) is the time to escape the upper-amplitude state

when starting at the pre-translocation state (figure 1.5). The state-space structure

of this escape problem is more akin to the Tb escape times studied in the birth-

202



−0.05 0 0.05
0

20

40

60

80

err(β)

P
D

F

Conditional Least−Squares β for σ=0.015625

 

 

mean=0.00051499

std=0.0073552

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

err(n)

P
M

F

Conditional Least−Squares n for σ=0.015625

 

 

mean=0.0023333

std=0.019817

−0.05 0 0.05
0

50

100

150

200

err(β)

P
D

F

Unconditional Least−Squares β for σ=0.015625

 

 

mean=0.00025979

std=0.002553

−0.2 −0.1 0 0.1 0.2
0

0.1

0.2

0.3

0.4

err(n)

P
M

F

Unconditional Least−Squares n for σ=0.015625

 

 

mean=0.0045

std=0.03824

Figure 4.12: Comparison of the conditional and unconditional least-squares code
for n = 5, β = 1.1, and σ = 2−4.

death processes with absorbing boundary states above. As the reader may have

noticed the randomness parameter of Tb can exceed 1; indeed, that is the case for

the randomness parameter of T (2) (figure 4.13). Note that due to scaling, we can

write the randomness parameter of T (2) as a function of r3 and r4 only. To see

this, note that the transition rates have units [time]−1. So we can scale T (2) such

that r1 7→ 1, r3 7→ r3/r1, and r4 7→ r4/r1 (see Proposition 2 in Chapter 2).

As seen in figure 4.13, the randomness parameter can exceed 1. This provides a

sufficient but not necessary condition for determining the existence of branches in a

Markov process. The contour plot of RT (2) suggests that RT (2) →∞ as r3, r4 → 0.

Indeed this makes sense since the time-scale to equilibrium 1/ (r3 + r4) → ∞ as

r3, r4 → 0; hence the variance of the escape time T (2) approaches infinity.

The overall shape of the contour lines in figure 4.13 is interesting, and is
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Figure 4.13: The randomness parameter of T (2), RT (2) , as a function of r3 and
r4.

asymmetric. To examine the behavior of RT (2) , we investigate some asymptotic

cases for r3 and r4. Let 0 < ε << 1, so that 1/ε is large.

1. r1 = 1 and r3 = r4 = 1/ε:

RT (2) = 1 + r1ε
2 + (ε2).

2. r1 = r3 = 1 and r4 = 2
ε
− 1:

RT (2) = 1 + r1ε2

2 +O (ε2).

3. r1 = r4 = 1 and r3 = 2
ε
− 1:

RT (2) = 1 + r1ε+O (ε2).

4. r1 = 1, r3 = 1−δ
ε
, and r4 = 1−δ

ε
, where −1 < δ < 1 is fixed:

RT (2) = 1− r1(δ−1)ε
2 +O (ε2).
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Cases (1)-(3) provide a sense of how close the pre-translocation and exonuclease

states are to being one “superstate.” Cases (2) and (3) show that RT (1) approaches

1 faster in the r4 direction than in the r3 direction in agreement with figure 4.13.

Case (4) examines the behavior around the “bend” of the contour lines.

4.3.2 Randomness Parameter of Tpol

In this section, we investigate the randomness parameter of Tpol. The dwell

time Tpol is the time from the last arrival to the post-translocation state to the

first arrival of the pre-translocation state of the next nucleotide addition cycle.

Figure 4.14 shows the state-space diagram of the Markov process governing the

escape problems for the polymerization process. Conditioning on starting at the

Post dNTP

r
2 k
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[dNTP]

k
off

pol-1 pol-n Pre+

r
b,1

r
b,2

r
b,n

Pre

r
f,1

r
f,2

r
f,n

r
f,n+1

Figure 4.14: State-space diagram of the Markov process governing the escape
problems for the polymerization process. Conditioned on starting at the post-
translocation state and escaping to the pre-translocation state of the next nu-
cleotide addition cycle generates Tpol.

post-translocation state and escaping to the pre-translocation state of the next

nucleotide addition cycle generates Tpol. Note that the Markov process whose

state-space diagram is shown in 4.14 is isomorphic to the birth-death process

with two absorbing states introduced in section 4.2. Viewed in this way, Tpol

is the same as Tf , the forward escape time in the birth-death process with two

absorbing states.

For a Markov process with absorbing states, we can condition on the escape

to any of the absorbing states and write down an equivalent Markov process
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describing this conditioning. Before we present how to write down a conditioned

Markov process, we introduce some definitions.

Let A be the set of absorbing states, and T be the set of transient states. Let

a ∈ A and define the following events:

E=t
a = {X (t) = a,X (r) /∈ A : 0 < r < t} ,

E<t
a = {X (t′) = a,X (r) /∈ A : 0 < r < t′ ≤ t} ,

E>t
a = {X (t′) = a,X (r) /∈ A : 0 < r < t < t′} ,

Ea =
⋃
t>0

E=t
a . (4.27)

Informally,

• E=t
a is the event of arriving at a for the first time at time t before arriving

in any other state in A;

• E<t
a is the event of arriving at a for the first time by time t before arriving

in any other state in A;

• E>t
a is the event of arriving at a for the first time after time t before arriving

in any other state in A;

• Ea is the event of arriving at a for the first time before arriving in any other

state in A.

Now consider the following proposition.

Proposition 8. Let S (t) be a Markov process with state-space I = A∪T , where

A denotes the set of absorbing states and T denotes the set of transient states. Let

Q be the infinitesimal generator matrix characterizing the Markov process. Let Ea

be the event of escaping to absorbing state a ∈ A. Let pEa|k = Pr (Ea | X (0) = k).
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Then the (i, j)-component of the conditional infinitesimal generator matrix QEa is

given by

Qi,j,Ea =



0 if i ∈ A and j ∈ A ∪ T or i ∈ T and j ∈ A\{a}

pEa|jQi,j
pEa|i

if i, j ∈ T and i 6= j

−∑j∈A∪T
j 6=i

Qi,j,Ea if i, j ∈ T and i = j

Qi,j
pEa|i

if i ∈ T and j = a

Proof. Clearly if i ∈ A, then the transition rate is 0. Also if i is transient and j

is an absorbing state different than a, then the transition rate is 0 (since we are

conditioning on the escape to a).

When i, j ∈ T and i 6= j, we have

Pr (X (t) = j | X (0) = i, Ea)

= Pr (Ea, X (t) = j | X (0) = i)Pr (X (0) = i)
Pr (Ea | X (0) = i)Pr (X (0) = i)

= Pr (E>t
a , X (t) = j | X (0) = i)
Pr (Ea | X (0) = i) since {X (t) = j} ∩ Ea = E>t

a

= Pr (E>t
a | X (t) = j,X (0) = i)Pr (X (t) = j | X (0) = i)

pEa|i

= Pr (E>t
a | X (t) = j)Pr (X (t) = j | X (0) = i)

pEa|i
by the Markov property

= pEa|jQi,jt

pEa|i
+ o (t) .

Hence

Qi,j,Ea = lim
t→0

Pr (X (t) = j | X (0) = i, Ea)
t

= pEa|jQi,j

pEa|i
.

The case i, j ∈ T , i 6= j follows since the probabilities must add up to 1. And
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finally, if i ∈ T and j = a, then

Pr (X (t) = j | X (0) = i, Ea)

= Pr (Ea, X (t) = j | X (0) = i)Pr (X (0) = i)
Pr (Ea | X (0) = i)Pr (X (0) = i)

= Pr (Ea, X (t) = j | X (0) = i)
PEa|i

= Pr (Ea | X (t) = j,X (0) = i)Pr (X (t) = j | X (0) = i)
pEa|i

= Pr (Ea | X (t) = j)Qi,jt

pEa|i
+ o (t) .

Hence,

Qi,j,Ea = lim
t→0

Pr (X (t) = j | X (0) = i, Ea)
t

= Qi,j

pEa|i
.

After conditioning on the escape to the pre-translocation state of the next

nucleotide addition cycle, the state-space diagram of the Markov process gov-

erning the Tpol dwell time is given in figure 4.15. Here, we label the states

Post dNTP

k
on

[dNTP]ρ
f,2 

/ρ
f,1

k
off  

ρ
f,1 

/ρ
f,2

pol-1 pol-(n-1) pol-n Pre+

Pre

r
f,1

 ρ
f,3 

/ρ
f,2

r
f,2

 ρ
f,4 

/ρ
f,3

r
f,n-1

 ρ
f,n+2 

/ρ
f,n+1 r

f,n
 ρ

f,n+3 
/ρ

f,n+2

r
b,1

 ρ
f,2 

/ρ
f,3

r
b,2

 ρ
f,3 

/ρ
f,4 r

b,n-1
 ρ

f,n+1 
/ρ

f,n+2
r

b,n
 ρ

f,n+2 
/ρ

f,n+3

0 r
f,n+1

  / ρ
f,n+3

Figure 4.15: State-space diagram of the Markov process governing the
escape problem for Tpol after conditioning. Here, we label the states
{pre, post, dNTP, pol-1, . . . , pol-n, pre+} as {0, 1, 2, 3, . . . , n+ 2, n+ 3}, respec-
tively for notational convenience. Here, ρf,i := Pr (Epre+ | X (0) = i).

{pre, post, dNTP, pol-1, . . . , pol-n, pre+} as {0, 1, 2, 3, . . . , n+ 2, n+ 3}, respectively

for notational convenience. We will refer to the states as either the name, short-

ened name, or number; i.e., “post-translocation”, “post,” or 2. Here, ρf,i :=

Pr (Epre+ | X (0) = i). We can compute the absorption probabilities ρf,i by con-
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sidering the subordinated discrete-time Markov chain with transition matrix K =

I +QEpre+ where I is the identity matrix and QEpre+ is the infinitesimal generator

matrix characterizing the Markov process whose state-space is given in figure 4.15.

Let U be the submatrix of K corresponding to the probabilities of transitioning

among states in T , and let R be the submatrix of K corresponding to the proba-

bilities of transitioning from transitioning from a transient state to an absorbing

state. Then it can be shown that the absorption probabilities are given by the

entries of the matrix B = (I − U)−1R (see [42]). The matrix (I − U)−1 is known

as the fundamental matrix of the absorbing Markov chain.

The absorption probabilities ρf,i in figure 4.15 are complicated functions of all

the transition rates and [dNTP ], so it is not clear analytically how the randomness

parameter of Tpol behaves as a function of [dNTP ]. Lets assume that the forward

transition rates rf,i are all equal and that the forward rates are a constant multiple

of the backwards transition rates; i.e., rf,i = βrb,i, where β > 0.

The PDF and hence the first-two moments for Tpol can in principle be written

down, but it is nearly intractable, so we turn to numerical computation. We can

largely follow the strategy, with modification, of computing the PDF and moments

of Tf in section 4.2.1 for computing Tpol. Let QT be the infinitesimal generator

corresponding to the transient states. Due to scaling, we can scale the units of

time so that the backwards transition rates rb,i 7→ 1 and the forward transition

rates rf,i = βrb,i 7→ β. Thus without loss of generality, we can set rf,i = β

and rb,i = 1. The matrix QT will thus be tri-diagonal with the diagonal entries

(−β[dNTP ]− 1,−β − 1, . . . ,−β − 1), super-diagonal entries (β, . . . , β), and sub-

diagonal entries (1, . . . , 1). Here, the eigenvectors will not be orthogonal since QT

is not symmetric.

We introduce a transformation to make QT symmetric. Let qi (t) be such that
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pi (t) = βi/2qi (t), where p′ (t) = QT p (t) are the state-probability equations and

pi (t) = Pr (X (t) = i). Thus the transformed system becomes q′ (t) = Q̃T q (t)

with the transformed infinitesimal generator matrix Q̃T being tri-diagonal with

main diagonal (−β[dNTP ]− 1,−β − 1, . . . ,−β − 1), super-diagonal
(√

β, . . . ,
√
β
)
,

and sub-diagonal
(√

β, . . . ,
√
β
)
. The transformed matrix Q̃T is thus symmetric

and its eigenvectors are orthogonal. The PDF of Tpol and its first-two moments

can then be computed according to equations 4.6, 4.8, and 4.10.

Figure 4.16 shows the reciprocal of RTpol as a function of [dNTP ] for various

numbers of transient states n. We see that over a large range of [dNTP ], the
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Figure 4.16: The reciprocal of the randomness parameter 1/RTpol as a function of
[dNTP ] for various number of transient states, n. In this simulation, the forward
rates, rf,i = βrb,i where β = 1.1.

randomness parameter of Tpol does not reveal much about the number of states.

Over the range of n examined, the randomness parameter of Tpol does not change

significantly throughout the [dNTP ].
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4.3.3 Randomness Parameter of TB

In this section, we consider the randomness parameter of TB. Since the TB

dwell time can be exactly observed, we can readily calculate RTB from the TB

data. In the last two sections, we examined the randomness parameters of Tpol

and T (2) which both make-up components of TB. Alone, these dwell times do

not reveal much information about the number of kinetic steps in the pol-process.

Here, we examine RTB to see if any information about the kinetic structure of the

pol-process can be obtained. Figure 4.17 shows the reciprocal of RTB as a function

of [dNTP ] for various numbers of transient states n in the Tpol segment of TB.
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Figure 4.17: The reciprocal of the randomness parameter 1/RTB as a function
of [dNTP ] for various number of transient states, n. In this simulation, the
forward rates, rf,i = βrb,i where β = 1.1 in the Tpol segment of TB. We also set
r1 = r3 = r4 = 1 in the T (2) segment of T (2).

Here, we see that the randomness parameter of TB also does not reveal much

information about the number of states in the pol-process. For the range of

transient states in the Tpol segment, n examined, the randomness parameter RTB

changes very little throughout the range of [dNTP ] examined. We therefore need
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a more robust quantity that reveals in a tighter bound, the number of states in

the pol-process.

4.3.4 Randomness Parameter of T (1)

The randomness parameter of T (1) can be computed in the exact same way

as the randomness parameter of Tpol. Here, instead we are conditioning on the

escape to the pre-translocation state of the current nucleotide addition cycle,

given that the Markov process starts in the post-translocation state at time t = 0.

Figure 4.14 shows the state-space diagram of the Markov process governing T (1)

before conditioning. As mentioned previously, the state-space is isomorphic to the

one in the birth-death process with two absorbing states introduced in section 4.2.

Viewed in this way, T (1) is the same as Tb in the birth-death process.

Using proposition 8, we obtain the conditional infinitesimal generator QEpre

characterizing the Markov process governing T (1) (figure 4.18). The absorption
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Figure 4.18: State-space diagram of the Markov process governing the
escape problem for T (1) after conditioning. Here, we label the states
{pre, post, dNTP, pol-1, . . . , pol-n, pre+} as {0, 1, 2, 3, . . . , n+ 2, n+ 3}, respec-
tively for notational convenience. Here, ρb,i := Pr (Epre | X (0) = i).

probabilities ρb,i are complicated functions of all the transition rates and [dNTP ].

Like Tpol, the PDF and the first-two moments of T (1) are difficult to write down,

so we turn to a numerical solution. Using the transformed infinitesimal generator

matrix QT , the PDF of T (1) and its first-two moments can be computed according

to equations 4.5, 4.7, and 4.9. Figure 4.19 shows the randomness parameter of

T (1) as a function of [dNTP ] for various number of transient states n. Unlike the
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Figure 4.19: The randomness parameter RT (1) as a function of [dNTP ] for
various number of transient states, n. In this simulation, the forward rates, rf,i =
βrb,i where β = 1.1.

randomness parameters of Tpol and TB, the randomness parameter of T (1) reveals

quite a bit of information about the number of states in the pol-process. For

example, it appears that max[dNTP ] RT (1) increases with n for fixed β.

4.3.5 Conjectures

In this section, we will detail some conjectures that we recently discovered

about inferring the number of states in the pol-process. The conjectures are

presented in a general setting of a birth-death process with state-space given in

figure 4.20.
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Figure 4.20: A birth-death process with two absorbing boundary states and the
first forward transition rate dependent on the substrate concentration [S].
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In the previous section, we investigated the randomness parameter of T (1),

which is akin to the Tb conditional dwell time introduced in section 4.2. We

demonstrated numerically, for fixed β, the maximum of RT (1) increases with n. For

the symmetric birth-death process case in section 4.2.1, the ratio of randomness

parameters RTb/RTf provided a suitable quantity of which the number of transient

states n can be inferred. We investigate that quantity in this context.

Consider the quantity RT (1)/RTpol . This quantity is the same as RTb/RTf from

section 4.2.1. Figure 4.21 shows the behavior of RT (1)/RTpol as a function of

[dNTP ] for various numbers of transient states in the pol-process. Here, we see
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Figure 4.21: The ratio RT (1)/RTpol as a function of [dNTP ] for various number
of transient states, n. In this simulation, the forward rates, rf,i = βrb,i where
β = 1.1 and rb,i = 1.

that the ratio RT (1)/RTpol generally increases with n for fixed β. The previous

section suggests that some quantity of RTb and RTf can be used to obtain the

number of transient states n. Indeed, this motivates our first conjecture.

Conjecture 9. Let X (t) be a birth-death process with two absorbing boundary
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states (figure 4.20); here, [S] > 0 is a tunable parameter such as [dNTP ]. Suppose

that rf,i = rfe
εi and rb,i = rbe

ηi, where |ε| , |η| << 1. Let Tb be the time to

absorption to state 0 when X (0) = 1, and let Tf be the time to absorption to state

n+ 1 when X (0) = 1; that is,

Tb := inf {t ≥ 0 : X (t) 6= 1, . . . , n} | {E0, X (0) = 1} ,

Tf := inf {t ≥ 0 : X (t) 6= 1, . . . , n} | {En+1, X (0) = 1} ,

where E0 and En+1 are the escape events defined in 4.27. Then one of the following

inequalities hold,

lim
[S]→0+

RTb

RTf

≤ n ≤ lim
[S]→∞

RTb

RTf

, or

max
{

lim
[S]→0+

RTb

RTf

, lim
[S]→∞

RTb

RTf

}
≤ n ≤ max

[S]

RTb

RTf

.

Based on numerical evidence, the inequality appears to hold for rb and rf and

for εi and ηi small (for example, see figure 4.22). Also, we note that the bounds

are relatively tight for small n (n less than about 5), but very lose for n large.

We can give a partial proof of this conjecture for the lower-bounds of the first

inequality.

Proof. Partial proof of lower-bounds of conjecture 9: From [20], the reciprocal of

the randomness parameter is always less than or equal to the number of states,

so 1/RTf ≤ n, for all [S] > 0. Now as [S]→ 0+, RTb → 1+ since var (Tb)→ 〈Tb〉2

as [S]→ 0+. Hence lim[S]→0+ RTb/RTf ≤ n.

The practical implications of this conjecture is profound. If true, this implies

that there exist a substrate concentration which provides the exact number of bio-
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Figure 4.22: Some numerical evidence for conjecture on the bounds of n. Here,
rbi = 1.1e0.05ζ , rfi = e0.05ζ , where ζ ∼ N (0, 1).

chemical steps in the polymerization process. For n small, the conjecture provides

a bounds which is fairly tight. However, the utility of this conjecture decreases

rapidly as n increases. Nevertheless, this conjecture can improve upon the lower-

bound 1/RT on the number of states, where RT is a randomness parameter of any

dwell time T , proven for any continuous-time discrete-state Markov process [20].

The following conjecture is an obvious corollary to conjecture 9, and is a

consequence of the intermediate value theorem.

Conjecture 10. There exist [S]0 > 0 such that

n = RTb

RTf

∣∣∣∣∣
[S]=[S]0

,

where n is the number of transient states in figure 4.20.

As alluded to before, the consequence of this conjecture is that there exist at

least one value of the substrate concentration [S] that gives the number of states

of the polymerization process. Of course, finding these values of [S] may be very
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difficult. If a constructive proof of conjecture 9 can be made, it is possible that

such a proof will illuminate a method to finding such a substrate concentration

[S].

4.4 Discussion and Concluding Remarks

The randomness parameter is a function of the first two-moments of the dwell

time, and has been shown to be a robust quantity for inferring the number of

states. In [20], it has been shown that the reciprocal of the randomness parameter

provides a lower-bound on the number of states of any continuous-time, discrete-

state Markov chain. This fact has been applied in the inference of the number of

kinetic steps in biochemical processes in which the reaction consisted of sequential,

irreversible steps ([67], [70], [78] among others). We extended these results to

include two absorbing boundary states. Such an extension is motivated by the

problem of inferring the number of kinetic states in the DNAP polymerization

process from dwell time data. In this situation, the polymerization process is

modeled as a birth-death process with two absorbing boundary states.

We first studied an symmetric birth-death process with two absorbing bound-

ary states to give us insight into more general reaction models. The unconditional

escape time T was not sufficient in inferring the number of states in a symmetric

birth-death process. The number of states can be inferred by the forward escape

probability pf1 . This highlights the advantages of conditioning. After the number

of states were inferred, the forward and backward kinetic rates can be obtained

from RT , the randomness parameter of T .

For theoretical study, we also looked at the conditional forward and backward

escape times Tf and Tb. We derived closed-form analytical expressions for the

first-two moments of Tf and Tb, and thus the randomness parameters of Tf and
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Tb. We showed that the number of internal states n can be obtained by just the

first moment of Tf and Tb. As a theoretical exercise, we also showed that n can be

recovered from a ratio of the randomness parameters RTb/RTf . After the number

of states are inferred, the forward and backward kinetic rate can be obtained from

the first moment of Tb. Although redundant and perhaps not useful in practice,

the study of the randomness parameter of Tf and Tb illuminated the possible

advantages of conditioning on the direction of escape for inferring the number

of internal states and the ratio of the forward and backward kinetic rates for

birth-death processes with two absorbing states where rfi = βrb,i−i and rb,i = rb,j.

For non-symmetric birth-death processes with two absorbing boundary states,

the inference of n and β (the ratio of the forward to backward kinetic rates) is

difficult to do analytically. We developed two least-squares codes to infer n and β

from dwell time data: (1) using pf1 and RT (algorithm 6); and (2) using pf1 , RTb ,

and RTf (algorithm 7). These codes are referred to as the unconditional least-

squares or conditional least-squares codes, respectively. For small values of n, both

codes were comparable in inferring n. However, the unconditional least-squares

code was more accurate in inferring β, about a 7% decrease in relative error over

the conditional least-squares code. For large values of n, the conditional least-

squares code was more accurate in inferring n, about a 7% decrease in relative

error over the unconditional least-squares code.

We extended the results for non-symmetric birth-death processes to study the

inference of the number of kinetic steps of the polymerization process. Naturally,

the TB segment is a good starting point since it fully contains the polymerization

process. Since TB = Tpol+T (2), we studied the randomness parameters of Tpol and

T (2) individually to gain insight into the randomness parameter of TB. The dwell

time T (2) is the same as the Tb dwell time that we defined for the birth-death
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process with n = 2. We examined the behavior of the randomness parameter of

T (2) as a function of r3 and r4. We showed that the randomness parameter of

T (2) can exceed 1, due to branching of the state-space structure. The randomness

parameter of Tpol was also then examined and was found to not change significantly

throughout the range of [dNTP ] as n varies. Finally, the randomness parameter

of RTB was studied and it was also found to not change significantly as n increases.

The ratio of randomness parameters RTb/RTf studied in the symmetric birth-

death process context provided motivation for examining the quantity RT (1)/RTpol .

Numerical simulations showed that max[dNTP ] RT (1)/RTpol increased as n increased,

providing motivation for studying this quantity further. For a more general con-

text, we look at a birth-death process of the form in figure 4.20. In this context,

the quantity RTb/RTf was examined, akin to RT (1)/RTpol . We have strong nu-

merical evidence for a bounds on n based on the quantity RTb/RTf , where n is

the number of transient states in figure 4.20. We were able to provide a proof

of the lower-bounds of one of the inequalities, however a proof or counterexam-

ple of the upper-bounds or lower bounds of the other inequality remains an open

problem. An obvious corollary of this conjecture is that the number of states in

the polymerization process can be obtained from the quantity RT (1)/RTpol at some

[dNTP ] > 0, though a method of finding this dNTP concentration is not known.

In any case, the dNTP concentration can be set [dNTP ] = 1 and the least-squares

codes utilizing (pf1 , RT ) and
(
pf1 , RTb , RTf

)
from section 4.2.2 can be used to infer

n and β in the polymerization process.
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Chapter 5

Discussion and Concluding

Remarks

In the past couple decades, nanopore experiments have become an important

tool to study DNA and DNAPs at the single-molecule level

[2], [5], [21], [26], [48] [19], [18], [49], [50], and [51]. We used the φ-29 DNAP as a

model system for studying the DNAP since the φ-29 can undergo processive repli-

cation without the need for any accessory proteins [9]. The nanopore experiments

allow us to observe the DNAP translocation step at specified positions along the

DNA template and control replication [48], [15], [19], [18], [49], [50], and [51].

The kinetic structure for non-synthesizing DNAP-DNA complexes has been

determined in [19], [18], [49], [50], and [51]. In chapter 2, we looked at non-

synthesizing complexes and did a complete theoretical study. In [50], the dNTP

binding and disassociation rates were inferred by use of the autocorrelation func-

tion of the measured ionic current. We complemented this method by showing that

the lower-amplitude dwell time, T (1) is a proper mixture of exponential modes.

Mixture distributions naturally fit in the expectation-maximization framework

for finding the maximum-likelihood estimation. We infer the dNTP binding and
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disassociation rates by using the EM method.

We extended the results in [50] and completely characterized the uncertainty

of the inferred kinetic rates for dNTP binding and disassociation. We found that

the inference uncertainty is dependent on scaled versions of koff and [dNTP ]

(k and S, respectively). Since k is intrinsic to the system, the only tunable

experimental parameter that can influence the uncertainty is [dNTP ] and hence

S. We found that an optimal concentration of dNTP exist that produces the least

inference uncertainty for each k. Collecting sufficient amounts of T (1) samples

at the optimal dNTP concentration may be difficult in practice. Larger dNTP

concentrations decrease the probability of escape to the pre-translocation state,

so long experimental run-times may be required to observe a sufficient amount of

T (1) samples. To address this, we looked at the constrained optimization problem

in which we constrain the experimental run-time to a maximum time; that is,

we find the dNTP concentration which produces the least inference uncertainty

subject to the constraint that the run-time is no larger than τmax. The constrained

optimization can be solved relatively easily by the mean-field approximation to

the constraint. In doing so, for any maximum experimental time τmax, we can

find the optimal [dNTP ] that produces the least total relative error such that the

experimental run-time is approximately no greater than τmax.

We also characterized the effect of measurement noise on the observed T (1)

samples. We found that for multiplicative noise of the form exp (σζ) where ζ ∼

N (0, 1), the difference between the MLE estimates of with σ = 0 and σ > 0 is

of the form c2σ
2 + c1σ/

√
nζ. This means that the introduction of noise increases

the bias deterministically by O (σ2) and affects the variance stochastically by an

order of O (σ2/n). The coefficients c1 and c2 were estimated numerically.

The model in chapter 2 was extended to synthesizing DNAP-DNA complexes
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in chapter 3. Here, the DNAP-DNA complex was allowed to proceed to the

chemical step of phosphodiester bond formation and onto the next nucleotide

addition cycle. The DNAP polymerization process is modeled as a single rate

limiting step kpol. In this context, we infer the dNTP binding, disassociation,

and incorporation (kon, koff , and kpol, respectively). In this context, we have

two relevant dwell times: T (1) and TB which are the time from the arrival to

the post-translocation state to the arrival to the pre-translocation state of the

current nucleotide addition cycle; and the time from the last arrival to the post-

translocation state to the first arrival to the post-translocation state of the next

nucleotide addition cycle respectively.

We examined the information content of both T (1) and TB in regards to in-

ferring kon, koff , and kpol. Throughout the range of [dNTP ] examined, we found

no advantage of using TB for the inference; that is, the uncertainty when using

T (1) for the inference was lower throughout the range of [dNTP ] examined. We

derived an equivalent Markov process governing the escape problem for T (1) by

conditioning on the arrival to the pre-translocation state when starting at the

post-translocation state. In doing this, we showed that the PDF of T (1) is a

proper mixture of two exponential modes, and hence the same inference strategy

in the non-synthesizing kpol = 0 case can be used. After applying scaling laws,

we showed that the total relative error is a function of scaled versions of koff ,

[dNTP ], and kpol (k, S, and kp, respectively); these k and S are the same as in

the kpol = 0 case. Hence for fixed scaled kp, the total relative error is a function

of the same scaled k and scaled S as in the kpol = 0 case. For fixed scaled kp, if

the covariance matrices for each (S, k)-point were saved from the kpol = 0 case,

the same table can be used to calculate the total relative error of kon, koff , and

kpol.
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Like the non-synthesizing kpol = 0 case, the inference uncertainty was shown

to be dependent on k and S for each fixed kp. However, unlike the kpol = 0

case, the total relative error monotonically decreased and approached a horizontal

asymptote as [dNTP ] → ∞. The result is that there is no well defined optimal

[dNTP ] which yields the least total relative error. This result is impractical,

since at saturating dNTP concentrations, the probability of escape to the pre-

translocation state starting from the post-translocation state is approximately 0.

Hence experimental times are essentially infinite to obtain a sufficient amount of

T (1) samples for inference.

We studied the optimal [dNTP ] under two different kinds of constraints: (1)

constraining the experimental run-time to a maximum of τmax; or (2) constraining

the number of cycles to a maximum of ηmax. For both constraints, we used the

mean-field approximation. Both constraints pull the optimal [dNTP ] to a finite

region in which there is a clear minimum total relative error. This is because high

[dNTP ] concentrations limit the number of T (1) samples that can be observed.

Intuitively, the optimal [dNTP ] under any of these constraints will be a balance

between decreasing the total relative error and observing a sufficient number of

T (1) samples.

Like the non-synthesizing kpol = 0 case, the effect of measurement noise on

the observed T (1) samples is completely characterized. The difference between

the MLE estimates of kon, koff , and kpol with noise and without is of the form

c2σ
2 + c1σ/

√
nζ; that is the mean of the difference is deterministic with order

O (σ2) and the variance is stochastic of order O (σ2/n). The coefficients c1 and c2

can be estimated numerically from the data for kon, koff , and kpol.

We looked at further improvements on the inference from T (1) data. After the

EM algorithm is used to find the MLE estimates of the mixture parameters for
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the PDF of T (1), the estimated mixture parameters are mapped to the kinetic

rates kon, koff , and kpol directly without taking into account that the probability

of escape to the pre-translocation state from the post-translocation state, pEpre|2

can be calculated directly from the ionic current observations and hence can be

treated as known. The advantages of incorporating knowledge of pEpre|2 in the

mappings from the mixture parameters to the kinetic rates are apparent for small

[dNTP ]–as much as nearly an order of magnitude decrease in total relative error.

We showed that incorporating knowledge of pEpre|2 makes sense if the constrained

optimal [dNTP ] is small, otherwise the advantages of knowing pEpre|2 is negligible.

Mentioned briefly in section 3.3.3, the mean cycle time 〈Tcycle〉 can be used

to infer the dNTP incorporation rate kpol at saturating [dNTP ] with about 8%

relative error. After writing the mean cycle time in Michaelis-Menten form, the

parameter KM–the concentration of which half the reaction velocity if obtained–

can be used to constrain kon and koff to a line, further improving inference on

these kinetic rates.

In chapter 4, we extended the model further by modeling the polymerization

process as an unknown number of kinetic steps with the last kinetic step be-

ing irreversible. In the context of our model for the DNAP-DNA complex, we

define the polymerization process as the kinetic states after dNTP binding and

before transition into the pre-translocation of the next nucleotide addition cy-

cle. These states, along with the post-translocation state of the current cycle

and dNTP-bound state is modeled as a birth-death process with two absorbing

boundary states. Here, the transient states of the birth-death process are the

post-translocation, dNTP-bound, and polymerization process states; and the ab-

sorbing boundary states are the pre-translocation states of the current and next

nucleotide addition cycle (figure 4.20).
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To infer the number of kinetic states in the polymerization process, we looked

at the randomness parameter of the dwell times and the forward escape proba-

bility. The dwell times that we considered was the overall, unconditional escape

time, T ; the escape time to the forward absorbing state, Tf ; and the escape time

to the backward absorbing state, Tb. To gain insight into how these dwell times

and the forward escape probability can be used to infer the kinetic structure of the

polymerization process, we considered two simple cases for the birth-death pro-

cess model: (1) symmetric birth-death rates and (2) non-symmetric birth-death

rates. In the symmetric birth-death process, all the transition rates are equal. In

the non-symmetric birth-death process, all of the forward rates are equal and a

constant multiple of the backward rates; i.e., rf,i = βrb,i−1 for all i.

The dwell time T provided the least information about the number of states

in the birth-death process. For the symmetric birth-death case, we found that the

randomness parameter of T , RT was not sufficient to determine the number of

states when n ≤ 2. This hinted at the advantages of conditioning on the direction

of escape. For the symmetric birth-death case, we found that the forward escape

probability, pf1 alone was sufficient enough to determine the number of states in

the process. After the number of states has been determined, the unconditional

escape time T can then be used to determine the forward and backward rates of

the process.

We also looked at the conditional escape time Tf and Tb. Like RT and pf1 , we

were able to derive analytical closed-form expressions for RTf and RTb . We found

that the quantity R := RTb/RTf can be used to determine the number of states

in the process. After the number of states has been determined, the first moment

of Tb can be used to infer the forward and backward transition rates.

The same quantities: RT , pf1 , RTf , and RTb were also examined for the non-
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symmetric birth-death process case. In this case, we were able to derive analytical,

closed-form expressions for RT and pf1 but not R. However unlike the symmetric

case, inverting the mapping (n, β) 7→ (pf1 , RT ) or (n, β) 7→
(
pf1 , RTf , RTb

)
appears

to be analytically intractable. Instead, we developed numerical codes to invert

the mappings which utilize least-squares.

With no numerical noise, both least-squares codes inferred β and n exactly

from the data. With multiplicative noise introduced into the observed pf1 , RT ,

RTf , and RTb data, both least-squares codes behaved differently. For small values

of n, both codes were comparable in inferring n. However, the unconditional least-

squares code was more accurate in inferring β, about a 7% decrease in relative

error over the conditional least-squares code. For large values of n, the conditional

least-squares code was more accurate in inferring n, about a 7% decrease in relative

error over the unconditional least-squares code.

We extended the birth-death process model to a more general case which re-

sembles the DNAP polymerization process. The forward transition from state 1

to state 2 has been replaced with a first-order substrate dependent rate: rf1 [S].

States 1 and 2 correspond to the post-translocation and dNTP-bound states in

the DNAP-DNA state-space diagram, respectively. In this case, we assumed that

the forward rates are comparable to each other, and the backward rates are com-

parable to each other; i.e., rf,i = rfe
εi and rb,irbe

ηi where εi and ηi are small in

magnitude.

Motivated by the simpler birth-death process model, we looked at the quantity

R = RTf/RTb and found that it increases with n for fixed β. We found that there

is strong numerical evidence which puts a lower and upper bound on the number

of states in the pol-process for the more general case. The consequence of this

conjecture (conjecture 9), if true, is that there exist a substrate concentration
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which yields the number of states n.

In conclusion, we developed a mathematical framework that: (1) utilizes the

unique advantage of nanopore experiments in measuring translocation position

with single nucleotide precision and millisecond time resolution; (2) allows MLE

inference on kinetic rates based on observed dwell times; (3) formulates the in-

ference uncertainty as a table via scaling law to facilitate efficient computation;

and (4) allows the adaptive selecting of [dNTP ] in experiments to minimize infer-

ence uncertainty. The methodology and analysis we developed can be applied to

any single molecule experiment in which dwell time data is available. Lastly, the

results and methods for designing optimal experimental conditions presented in

this dissertation will motivate more meaningful and informative single molecule

measurements.
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Appendix A

Appendix for Chapter 3

A.1 Analytical Solution for kon, koff and kpol

In this Appendix section, we write down the solution kon, koff , kpol from the

system of equations 3.24-3.26. The solution was computed using a computer

algebra solver.

A.1.1 Analytical Solution for kon

For convenience, define the following

Λ = λ2
1 − 2λ1λ2 + λ2

2

A1 =
λ2

1
2 + λ1λ2 − r2λ1 + λ2

2
2 − r2λ2

[dNTP ] (λ1 + λ2)

A2 = 2αλ3
1 + 2αλ3

2 + Λ 3
2

2 + λ1λ
2
2 + λ2

1λ2 + λ2
1r2 + λ2

2r2 − λ3
1 − λ2

2

A3 = −

(
λ2

1
2 + λ1λ2 − r2λ1 + λ2

2
2 − r2λ2

)
(2λ1λ2 + 2αλ2

1 + 2αλ2
2 − λ2

1 − λ2
2 − 4αλ1λ2)

λ1 + λ2

A4 = −2λ1λ2r2 − 2αλ1λ
2
2 − 2αλ2

1λ2 − 2αλ2
1r2 − 2αλ2

2r2 + 4αλ1λ2r2.
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We have that

kon = A1 + A2 + A3 + A4

[dNTP ]
(
2λ1λ2 + λ1

√
Λ + λ2

√
Λ + 2αλ2

1 + 2αλ2
2 − λ2

1 − λ2
2 − 4αλ1λ2

)
(A.1)

A.1.2 Analytical Solution for koff

For convenience define the following

Λ = λ2
1 − 2λ1λ2 + λ2

2

B1 = λ4
1Λ
2 + λ2

2Λ
2 + Λ

(
2αλ5

1 + 2αλ5
2 + 3λ1λ

4
2 + 3λ4

1λ2 − λ5
1 − λ5

2

− 2λ2
1λ

3
2 − 2λ3

1λ
2
2 + 4αλ2

1λ
3
2 + 4αλ3

1λ
2
2 − 6αλ1λ

4
2 − 6αλ4

1λ2

)
B2 = −Λ3

2 − 2λ1λ
5
2 − 2λ5

1λ2 + λ3
1Λ 3

2 + λ3
2Λ 3

2 + 8λ2
1λ

4
2 − 12λ3

1λ
3
2 + 8λ4

1λ
2
2 − 2αλ3

1Λ 3
2

− 2αλ3
2Λ 3

2 − λ2
1λ

2
2Λ

B3 = −λ1λ
2
2Λ 3

2 − λ2
1λ2Λ 3

2 − 32αλ2
1λ

4
2 + 48αλ3

1λ
3
2 − 32αλ4

1λ
2
2 − 8α2λ1λ

5
2 − 8α2λ5

1λ2

B4 = 32α2λ2
1λ

4
2 − 48α2λ3

1λ
3
2 + 32α2λ4

1λ
2
2 + 8αλ1λ

5
2 + 8αλ5

1λ2

+ 2αλ1λ
2
2Λ 3

2 + 2αλ2
1λ2 + 2αλ2

1λ
2
2Λ 3

2

C1 = 2λ1λ2 + λ1
√

Λ + λ2
√

Λ + 2αλ2
1 + 2αλ2

2 − λ2
1 − λ2

2 − 4αλ1λ2

C2 = 4αλ3
1 + 4αλ3

2 + Λ 3
2 + 2λ1λ

2
2 + 2λ2

1λ2 + 2λ2
1r2 + 2λ2

2r2 + λ2
1
√

Λ

C3 = λ2
2
√

Λ− 2λ3
1 − 2λ3

2 − 4λ1λ2r2 + 2λ1λ2
√

Λ

− 2λ1r2
√

Λ− 2λ2r2
√

Λ− 4αλ1λ
2
2 − 4αλ2

1λ2 − 4αλ2
1r2 − 4αλ2

2r2 + 8αλ1λ2r2.

The equation for koff is given by

koff = B1 +B2 +B3 +B4

C1 (C2 + C3) . (A.2)
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A.1.3 Analytical Solution for kpol

For convenience, define the following

Λ = λ2
1 − 2λ1λ2 + λ2

2

D1 = r2Λ 3
2 − 2λ1λ

3
2 − 2λ3

1λ2 + 4λ2
1λ

2
2 + 2λ1λ

2
2
√

Λ + 2λ2
1λ2
√

Λ

D2 = −λ2
1r2
√

Λ− λ2
2r2
√

Λ− 8αλ2
1λ

2
2 + 4αλ1λ

3
2λ+ 4αλ3

1λ2 − 2λ1λ2r2
√

Λ

F1 = 4αλ3
1 + 4αλ3

2 + Λ 3
2 + 2λ1λ

2
2 + 2λ2

1λ2 + 2λ2
1r2 + 2λ2

2r2 + λ2
1
√

Λ

F2 = λ2
2
√

Λ− 2λ3
1 − 2λ3

2 − 4λ1λ2r2 + 2λ1λ2
√

Λ− 2λ1r2
√

Λ− 2λ2r2
√

Λ

F3 = −4αλ1λ
2
2 − 4αλ2

1λ2 − 4αλ2
1r2 − 4αλ2

2r2 + 8αλ1λ2.

kpol is given by

kpol = D1 +D2

F1 + F2 + F3
(A.3)
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Appendix B

Appendix for Chapter 4

B.1 Derivations of the first-two moments of Tb

and Tf for a Symmetric Birth-death Process

In this section, we derive the analytical expressions for the first-two moments

of Tb and Tf for a symmetric birth-death process. Recall that we can write the
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first-two moments of Tb and Tf as

〈Tb〉 = − 1
2r

∑n
k=1

sin2( kπ
n+1)

(cos( kπ
n+1)−1)2

∑n
k=1

sin2( kπ
n+1)

cos( kπ
n+1)−1

,

〈
T 2
b

〉
= 1

2r2

∑n
k=1

sin2( kπ
n+1)

(cos( kπ
n+1)−1)3

∑n
k=1

sin2( kπ
n+1)

cos( kπ
n+1)−1

,

〈Tf〉 = − 1
2r

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

(cos( kπ
n+1)−1)2

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

cos( kπ
n+1)−1

,

〈
T 2
f

〉
= 1

2r2

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

(cos( kπ
n+1)−1)3

∑n
k=1

sin( nkπn+1) sin( kπ
n+1)

cos( kπ
n+1)−1

.

In this section, we evaluate these finite trigonometric summations analytically.

Lemma 11. 〈Tb〉 = 1
6r (2n+ 1).
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Proof.

〈Tb〉 = − 1
2r

∑n
k=1

sin2( kπ
n+1)

(cos( kπ
n+1)−1)2

∑n
k=1

sin2( kπ
n+1)

cos( kπ
n+1)−1

= − 1
2r

∑n
k=1

cos( kπ
n+1)+1

cos( kπ
n+1)−1∑n

k=1

(
cos

(
kπ
n+1

)
+ 1

)
= 1

2r

∑n
k=1 cot2

(
kπ

2(n+1)

)
n+ 1

2 + sin( 2n+1
2

π
n+1)

2 sin( π
2(n+1))

− 1

= 1
2r

1
6 (2n+ 1) (2n)

n+ 1
2 + sin( 2n+1

2
π
n+1)

2 sin( π
2(n+1))

− 1

= 1
2r

1
6 (2n+ 1) (2n)
n+ 1

2 + 1
2 − 1

= 1
6r (2n+ 1) ,

where the 3rd and 4th equalities follow from the fact that

n∑
k=0

cos (kx) = 1
2 +

sin
(

2n+1
2 x

)
2 sin

(
x
2

) ,

and
n−1∑
k=1

cot2
(
kπ

n

)
= (n− 1) (n− 2)

3 . (B.1)

Hence from equation B.1, we have

bn−1
2 c∑

k=1
cot2

(
kπ

n

)
= (n− 1) (n− 2)

6 .

Equation B.1 can be found in tables of series such as [27], [36], and [65].
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Various proofs of this series evaluation exists, for example, in [8].

Lemma 12. 〈T 2
b 〉 = 1

r2

(
2n3

45 + 8n2

45 + 19n
90 + 1

15

)
.

Proof. From Lemma 11, we see that the denominator of equation 4.14 is one. Thus

following a similar strategy for the derivation of the exact polynomial expression

for 〈Tb〉, we obtain

〈
T 2
b

〉
= 1

2r2

n∑
k=1

sin
(
kπ
n+1

)
(
cos

(
kπ
n+1

)
− 1

)3

= − 1
2r2

n∑
k=1

cos
(
kπ
n+1

)
− 1(

cos
(
kπ
n+1

)
− 1

)
= − 1

2r2

n∑
k=1

cot2
(

kπ

2 (n+ 1)

)
1

cos
(
kπ
n+1

)
− 1

= 1
2r2

n∑
k=1

cot2
(

kπ

2 (n+ 1)

) 1
2

1−cos( 2kπ
2(n+1))
2

= 1
4r2

n∑
k=1

cot2
(

kπ

2 (n+ 1)

)
csc2

(
kπ

2 (n+ 1)

)

= 1
4r2

n∑
k=1

cot2
(

kπ

2 (n+ 1)

)(
1 + cot2

(
kπ

2 (n+ 1)

))

= 1
4r2

[
n∑
k=1

cot2
(

kπ

2 (n+ 1)

)
+

n∑
k=1

cot4
(

kπ

2 (n+ 1)

)]

= 1
4r2

[
1
62n (2n+ 1) + 8n4

45 + 32n3

45 + 8n2

45 −
n

45

]
.

The last equality comes from equation B.1 and from the fact that

bn−1
2 c∑

k=1
cot4

(
kπ

n

)
= (n− 1) (n− 2) (n2 + 3n− 13)

90 ,

as proven in [8]. Hence after elementary simplification, we get

〈
T 2
b

〉
= 1
r2

(
2n3

45 + 8n2

45 + 19n
90 + 1

15

)
.
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Lemma 13. 〈Tf〉 = 1
6r (n2 + 2n).

Proof. We start by evaluating the denominator of equation 4.15. By using ele-

mentary trigonometric identities,

n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

)
cos

(
kπ
n+1 − 1

) = −
n∑
k=1

sin
(
nkπ

n+ 1

)
cot

(
kπ

2 (n+ 1)

)

= −
n∑
k=1

sin
(
nkπ

n+ 1

)[
cot

(
kπ

n+ 1

)
+ csc

(
kπ

n+ 1

)]

= −
 n∑
k=1

sin
(
nkπ

n+ 1

)
cot

(
kπ

n+ 1

)
+

n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

)
 .

In the last equality above, we show that

n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

) =


1 if n odd

0 if n even
(B.2)

and
n∑
k=1

sin
(
nkπ

n+ 1

)
cot

(
kπ

n+ 1

)
=


0 if n odd

1 if n even
(B.3)

To show equation B.2, notice that for k odd, sin
(
nkπ
n+1

)
= sin

(
kπ
n+1

)
. To see this,

note that sin (x) = sin (y) if and only if x = απ + (−1)α y for α ∈ Z. Now for k

odd, k = 2j + 1. Choose x = nkπ
n+1 = 2(2j+1)π

n+1 , y = kπ
n+1 = (2j+1)π

n+1 , and α = 2j + 1.

Similarly, for k even, we see that sin
(
nkπ
n+1

)
= − sin

(
kπ
n+1

)
. To see this, note

that sin (x) = − sin (y) if any only if x = απ + (−1)α+1 y for α ∈ Z. For k = 2j,

choose x = nkπ
n+1 = n2jπ

n+1 , y = kπ
n+1 = 2jπ

n+1 , and α = 2j. Hence the result in equation

B.2 follows.
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To show equation B.3, we use Corollary 4.2 in [8]. As in [8], define

em (n, a) =
n−1∑
k=1

sin
(

2πak
n

)
cotm

(
πk

n

)
,

for m,n, a ∈ N and a < n. For n even, set a = n/2, and m = 1. Then by

Corollary 4.2 in [8], e1 (n+ 1, n/2) = 1. For the case n is odd, rewrite

n∑
k=1

sin
(
nkπ

n+ 1

)
cot

(
kπ

n+ 1

)
=

n∑
k=1

sin
(
nkπ
n+1

)
cos

(
kπ
n+1

)
sin

(
kπ
n+1

) .

By the reasoning on establishing equation B.2 above, sin( nkπn+1)
sin( kπ

n+1) = (−1)k+1. Hence

n∑
k=1

sin
(
nkπ
n+1

)
cos

(
kπ
n+1

)
sin

(
kπ
n+1

) =
n∑
k=1

(−1)k+1 cos
(

kπ

n+ 1

)
.

In this case, the above equation is 0 for n odd, which can be argued by symmetry.

Hence the denominator of equation 4.15 is -1.

Now we consider the numerator of equation 4.15. By elementary trigonometric
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identities, we can write

− 1
2r

n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

)
(
cos

(
kπ
n+1

)
− 1

)2

= − 1
2r

n∑
k=1

1
2 sin

(
nkπ

n+ 1

)
cot

(
kπ

2 (n+ 1)

)
csc2

(
kπ

2 (n+ 1)

)

= − 1
2r

1
2

n∑
k=1

 sin
(
nkπ

n+ 1

)
csc

(
kπ

n+ 1

)

+ sin
(
nkπ

n+ 1

)
csc3

(
kπ

n+ 1

)

+ 3 sin
(
nkπ

n+ 1

)
csc2

(
kπ

n+ 1

)
cot

(
kπ

n+ 1

)

+ 3 sin
(
nkπ

n+ 1

)
csc

(
kπ

n+ 1

)
cot2

(
kπ

n+ 1

)

+ sin
(
nkπ

n+ 1

)
cot

(
kπ

n+ 1

)

+ sin
(
nkπ

n+ 1

)
cot3

(
kπ

n+ 1

).
For ease of notation, call si the i-th term in the summation of the last equality

above. We see that

s1 =
n∑
k=1

sin
(
nkπ

n+ 1

)
csc

(
kπ

n+ 1

)
=

n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

) =


1 if n odd

0 if n even
(B.4)

from equation B.2.

For s2, we can write it as

s2 =
n∑
k=1

sin
(
nkπ

n+ 1

)
csc3

(
kπ

n+ 1

)
= −

n∑
k=1

(−1)k csc2
(

kπ

n+ 1

)
,

since sin( nkπn+1)
sin( kπ

n+1) = 1 if k is odd and −1 if k is even. Now from Corollary 3.2 in [8],
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we have the result that for n odd,

1
n+ 1

n∑
k=1

(−1)k csc2
(

kπ

n+ 1

)
= −23 ∑

j0,j1,j2≥0
j0+j1+j2=1

(n+ 1)2j0−1
2∏
r=0

(
2jr−1 − 1

) B2jr
(2jr)!

,

(B.5)

where Bn is the n-th Bernoulli number. Computing equation B.5 above gives us

s2 =


n2+2n+3

6 if n odd

0 if n even
(B.6)

The even case for s2 can be argued by symmetry.

The term s3 can be computed in a similar fashion. The key is, writing it as

an alternate series, whose value can be looked up in a table of finite trigonometric

sums.

s3 =
n∑
k=1

3 sin
(
nkπ

n+ 1

)
csc2

(
kπ

n+ 1

)
cot

(
kπ

n+ 1

)

= −3
n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
csc2

(
kπ

n+ 1

)
.

This alternating cosine and cosecant sum was computed in page 129 of [16] giving

us,

s3 =


0 if n odd

n2+2n
2 if n even

(B.7)

where the odd case can be argued by symmetry.

238



For s4, we can write

s4 =
n∑
k=1

3 sin
(
nkπ

n+ 1

)
csc

(
kπ

n+ 1

)
cot2

(
kπ

n+ 1

)

= −3
n∑
k=1

(−1)k cot2
(

kπ

n+ 1

)
.

Appealing to page 155 in [16], we obtain

s4 =


n2+2n−3

2 if n odd

0 if n even
(B.8)

The even case can be proven by symmetry.

The term s5 was calculated already in equation B.3 above. Here,

s5 =


0 if n odd

1 if n even
(B.9)

Finally, the s6 term can be calculated by rewriting the summation as an alter-

nating cosine and cotagent sum.

s6 =
n∑
k=1

sin
(
nkπ

n+ 1

)
cot3

(
kπ

n+ 1

)
= −

n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
cot2

(
kπ

n+ 1

)
.

This finite sum was evaluted in page 140 of [16]. Hence,

s6 =


0 if n odd

n2+2n−6
6 if n even

(B.10)

Combining the results from equations B.4, B.6, B.7, B.8, B.9, and B.10, we see
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that the numerator is given by

− 1
4r

6∑
k=1

sk = −n
2 + 2n

6 . (B.11)

Thus combining this with that fact that the denominator of equation 4.15 is -1,

we obtain that 〈Tf〉 = n2+2n
6r as desired.

Lemma 14.
〈
T 2
f

〉
= 1

8r2

(
14n4

45 + 56n3

45 + 45n2

45 + 4n
5

)
.

Proof. The numerator of
〈
T 2
f

〉
is given by

1
2r

n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

)
(
cos

(
kπ
n+1

)
− 1

)3

= − 1
8r

n∑
k=1

sin
(
nkπ

n+ 1

)
cot

(
kπ

2 (n+ 1)

)
csc4

(
kπ

2 (n+ 1)

)
(B.12)

For ease of writing, let θk = kπ/ (n+ 1). Equation B.12 can be written as

− 1
8r

n∑
k=1

 sin (nθk)
[

cot5 (θk) + 2 cot3 (θk) + cot (θk) + csc5 (θk) + 2 csc3 (θk)

+ csc (θk) + 5 cot4 (θk) csc (θk) + 10 cot3 (θk) csc2 (θk)

+ 10 cot2 (θk) csc3 (θk) + 6 cot2 (θk) csc (θk)

+ 5 cot (θk) csc4 (θk) + 6 cot (θk) csc2 (θk)
]

There are twelve terms in the summand, which we call s1, . . . , s12. These sk’s will

be evaluated and the result will be calculated as − 1
8r (s1 + · · ·+ s12).

For s1, we can write it as an alternating sum of cosine and an even power of
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cotangent,

s1 =
n∑
k=1

sin
(
nkπ

n+ 1

)
cot5

(
kπ

n+ 1

)

= −
n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
cot4

(
kπ

n+ 1

)
.

This has been evaluated in page 140 of [16],

s1 =


0 if n odd

7(n+1)4−110(n+1)2+463
360 if n even

(B.13)

The odd case can be argued by symmetry.

Similar as s1, for s2, we can write it as an alternating sum of cosine and and

even power of cotangent.

s2 =
n∑
k=1

2 sin
(
nkπ

n+ 1

)
cot3

(
kπ

n+ 1

)

= −2
n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
cot2

(
kπ

n+ 1

)
.

This was evaluated in page 140 of [16]. Hence

s2 =


0 if n odd

(n+1)2−7
3 if n even

(B.14)

The quantity s3 is exactly equation B.3.
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The term s4 can be written as an alternating sum of an even power of cosecant,

s4 =
n∑
k=1

sin
(
nkπ

n+ 1

)
csc5

(
kπ

n+ 1

)

= −
n∑
k=1

(−1)k csc4
(

kπ

n+ 1

)
.

This case was evaluated in page 149 of [16]. Hence

s4 =


7(n+1)4+40(n+1)2+88

360 if n odd

0 if n even
(B.15)

The even case can be argued by symmetry.

The quantity s5 can be written as an alternating cosecant squared sum,

s5 =
n∑
k=1

2 sin
(
nkπ

n+ 1

)
csc3

(
kπ

n+ 1

)

= −2
n∑
k=1

(−1)k csc2
(

kπ

n+ 1

)
.

By page 149 of [16], this becomes

s5 =


(n+1)2+2

3 if n odd

0 if n even
(B.16)

The quantity s6 is simply an alternating summation,

s6 =
n∑
k=1

sin
(
nkπ

n+ 1

)
csc

(
kπ

n+ 1

)
= −

n∑
k=1

(−1)k .

This is clearly 1 is n is odd and 0 otherwise.

242



s7 can be written as an alternating series of an even power of cotangent,

s7 =
n∑
k=1

5 sin
(
nkπ

n+ 1

)
csc

(
kπ

n+ 1

)
cot4

(
kπ

n+ 1

)

= −5
n∑
k=1

(−1)k cot4
(

kπ

n+ 1

)
.

Again, this summation was evaluated in page 156 of [16]. Hence

s7 =


(n+3)(n−1)

72

(
7 (n+ 1)2 − 52

)
if n odd

0 if n even
(B.17)

The term s8 can be split into two finite sums of alternating cosine-cotangent

products,

s8 =
n∑
k=1

10 sin
(
nkπ

n+ 1

)
cot3

(
kπ

n+ 1

)
csc2

(
kπ

n+ 1

)

= 10
n∑
k=1

sin
(
nkπ

n+ 1

)
cot3

(
kπ

n+ 1

)(
1 + cot2

(
kπ

n+ 1

))

= 10
n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

) cos
(

kπ

n+ 1

)
cot2

(
kπ

n+ 1

)

+ 10
n∑
k=1

sin
(
nkπ
n+1

)
sin

(
kπ
n+1

) cos
(

kπ

n+ 1

)
cot4

(
kπ

n+ 1

)

= −10
n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
cot2

(
kπ

n+ 1

)

− 10
n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
cot4

(
kπ

n+ 1

)
.

General alternating cosine-cotangent summations for even powers of cotagent are
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given in page 140 of [16]. Hence,

s8 =


0 if n odd

5
3

(
(n+ 1)2 − 7

)
+ 7(n+1)4−110(n+1)2+463

36 if n even
(B.18)

The term s9 can be written as two alternating sums of even powers of cotan-

gents,

s9 =
n∑
k=1

10 sin
(
nkπ

n+ 1

)
cot2

(
kπ

n+ 1

)
csc3

(
kπ

n+ 1

)

= −10
n∑
k=1

(−1)k cot2
(

kπ

n+ 1

)(
1 + cot2

(
kπ

n+ 1

))

= −10
n∑
k=1

(−1)k cot2
(

kπ

n+ 1

)
− 10

n∑
k=1

(−1)k cot4
(

kπ

n+ 1

)
.

Again, this is evaluated in page 156 of [16].

s9 =


5
3 (n+ 3) (n− 1) + (n+3)(n−1)(7(n+1)2−52)

36 if n odd

0 if n even
(B.19)

s10 can be written as an alternating sum of cotangent, hence

s10 =
n∑
k=1

6 sin
(
nkπ

n+ 1

)
cot2

(
kπ

n+ 1

)
csc

(
kπ

n+ 1

)

= −6
n∑
k=1

(−1)k cot2
(

kπ

n+ 1

)

Hence,

s10 =


(n+ 3) (n− 1) if n odd

0 if n even
(B.20)

For s11, we can write it as an alternating sum of cosine and an even power of
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cosecant.

s11 =
n∑
k=1

5 sin
(
nkπ

n+ 1

)
cot

(
kπ

n+ 1

)
csc4

(
kπ

n+ 1

)

= −5
m∑
k=1

(−1)k cos
(

kπ

n+ 1

)
csc4

(
kπ

n+ 1

)
.

This was evaluated in page 129 of [16]. Hence

s11 =


0 if n odd

n(n+2)
72

(
7 (n+ 1)2 + 17

)
if n even

(B.21)

And finally, s12 can also be written as an alternating series of cosine and

cosecant.

s12 =
n∑
k=1

sin
(
nkπ

n+ 1

)
cot

(
kπ

n+ 1

)
csc2

(
kπ

n+ 1

)

= −6
n∑
k=1

(−1)k cos
(

kπ

n+ 1

)
csc2

(
kπ

n+ 1

)
.

Hence,

s12 =


0 if n odd

n (n+ 2) if n even
(B.22)

Putting together the expressions for s1, . . . , s12 together from equations B.13-

B.22, we see that the numerator of 4.16 is given by

− 1
8r2

2n (n+ 2) (7n2 + 14n+ 9)
45 .
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Thus, 〈
T 2
f

〉
= 1

8r2

(
14n4

45 + 56n3

45 + 74n2

45 + 4n
5

)
. (B.23)
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