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ABSTRACT D-optimal designs are frequently used in controlled experiments to obtain the most accurate
estimate of model parameters at minimal cost. Finding them can be a challenging task, especially when
there are many factors in a nonlinear model. As the number of factors becomes large and interact with
one another, there are many more variables to optimize and the D-optimal design problem becomes high-
dimensional and non-separable. Consequently, premature convergence issues arise. Candidate solutions get
trapped in local optima and the classical gradient-based optimization approaches to search for the D-optimal
designs rarely succeed. We propose a specially designed version of differential evolution (DE) which is a
representative gradient-free optimization approach to solve such high-dimensional optimization problems.
The proposed specially designed DE uses a new novelty-based mutation strategy to explore the various
regions in the search space. The exploration of the regions will be carried out differently from the previously
explored regions and the diversity of the population can be preserved. The proposed novelty-based mutation
strategy is collaborated with two common DE mutation strategies to balance exploration and exploitation
at the early or medium stage of the evolution. Additionally, we adapt the control parameters of DE as the
evolution proceeds. Using logistic models with several factors on various design spaces as examples, our
simulation results show our algorithm can find D-optimal designs efficiently and the algorithm outperforms
its competitors. As an application, we apply our algorithm and re-design a 10-factor car refueling experiment
with discrete and continuous factors and selected pairwise interactions. Our proposed algorithm was able to
consistently outperform the other algorithms and find a more efficient D-optimal design for the problem.

INDEX TERMS Approximate design, design efficiency, generalized linear model, high-dimensional, non-
separable, sensitivity function

I. INTRODUCTION

OPTIMAL design problems frequently arise in scientific
investigations when we want to obtain the most accu-

rate statistical inference at minimal cost. For example, D-
optimal designs are commonly used to estimate parameters
in the statistical model by minimizing the volume of the
confidence ellipsoid of the parameters. When the model is
nonlinear, the design criterion contains the unknown model
parameters, which we want to estimate. Nominal values for
the parameters are required to replace the unknown param-
eters before optimization and the resulting optimal design
is termed locally optimal [1], [2] because it depends on

the nominal values. Nominal values for the parameters may
come from an expert’s opinion or from a pilot study. The
locally D-optimal design is then implemented to generate
data to estimate the model parameters and the estimated
parameters become the nominal values in the next step. The
expectation is that after a couple of iterations, the estimates
will become stable.

In the statistical literature, the optimal design is usually
found from theory and when the model is nonlinear, there is
usually only one or two factors. The theoretical approach en-
counters mathematical difficulties when the nonlinear model
has several factors or the design criterion becomes com-
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plicated. Under such situations, our experience is that the
classical optimization numerical techniques fail to find the
locally optimal design or they become very inefficient. This
is because as the number of factors in the model increases,
the number of parameters in the model also increases. Con-
sequently, the number of design points for the optimal design
increases, resulting in having substantially many more vari-
ables to optimize. Thus, the design problem becomes quickly
high-dimensional and also non-separable when factors inter-
act with one another. Premature convergence can become a
severe issue since solutions can easily get trapped in local
optima.

Nature-inspired metaheuristic algorithms are now increas-
ingly applied to solve a large variety of complicated op-
timization problems [3], [4]. Particle Swarm Optimization
(PSO) [5] is one such algorithm [5], [6], [7], which has been
recently used to solve various optimal design problems in
the statistical literature [8], [9], [10]. However, the D-optimal
design problems in these papers have only 3 or fewer factors
in the statistical model and so premature convergence may
not be an issue. Since PSO exerts the selective pressure onto
some current best solutions termed as gbest and pbest, our
experience is that models with 4 or more factors can cause
PSO to experience premature convergence and make PSO
less effective [11], [12].

Differential Evolution (DE) is an algorithm from a family
of gradient-free algorithms-evolutionary algorithms. Muta-
tion, crossover and selection are three fundamental opera-
tions in DE [13], [14]. One advantage that DE has over other
evolutionary algorithms is that it has fewer control parame-
ters [15], [16], [17], and works well in handling numerical
optimization problems [18], [19], [20], [21]. Compared with
PSO, DE can alleviate the premature convergence issue mod-
erately [13] since most of the mutation strategies of DE do
not exert the selective pressure onto the current best solution
[22], [23], [24], [25], [26]. However, based on the studies
of DE variants for solving high-dimensional problems, there
is no specially designed mechanism to explore various but
novelty regions in the search space and to preserve the
diversity of the population.

To circumvent the above issues and also motivated by
novelty search methods [27], [28] which are capable of
escaping from local optima by trying some novelty solutions
for efficient exploration, we propose a new novelty-based
mutation strategy. At the start of the evolution, a portion
of individuals are randomly selected as the novelty-based
individuals, and their aim is to explore various individuals
which are potentially to be novelty individuals. For each
novelty-based individual, we sample some difference vectors
to be added to the current individual. Among these sampled
difference vectors, we select the one which has the largest
angle differences from the difference vector used in the pre-
vious generation. Each novelty-based individual explores the
region of the search space different from the region explored
in the previous generation so that novelty solutions can be ob-
tained. As evolution proceeds, various regions of the search

space would be explored and the diversity of the population
is enhanced. The novelty-based mutation strategy is com-
bined with two common mutation strategies, ’DE/rand/2’ and
’DE/current-to-rand/1’. These two mutation strategies can
balance the exploration and exploitation well at the early or
medium stage of evolution as compared with other mutation
strategies [29]. When the individuals obtained from these two
mutation strategies converge, the novelty-based individuals
can provide information of these recently explored regions in
the search space so that these convergent individuals can both
exploit in their current region and explore more regions in the
search space.

We apply the proposed algorithm to generate locally D-
optimal designs for logistic models with several factors with
and without interactions on various design spaces. Logistic
regression models have a binary response with one or more
factors and is among the most frequently used in scientific
investigations across many disciplines. Using a broad simula-
tion study, we show our proposed algorithm consistently out-
performs several of its top competitors. As an application, we
implement our DE based algorithm to re-design a 10-factor
car refueling experiment with both discrete and continuous
factors, with and with factor interactions.

The remainder of this paper is organized as follows.
Section II introduces statistical background and locally D-
optimal designs for logistic regression models. It also reviews
previous applications of using PSO to solve optimal design
problems and a literature review of DE algorithms. In Section
III, we propose a new DE algorithm NovDE and in Section
IV, we apply it to construct and study properties of D-optimal
designs on various design spaces. In Section V, we apply
the proposed algorithm to generate D-optimal designs for a
ten-factor car refueling experiment with and without factor
interactions and there are mixed factors in the experiment.
Section VI concludes with a summary of our work.

II. BACKGROUND

A. LOCALLY D-OPTIMAL DESIGNS FOR LOGISTIC
REGRESSION MODELS

A generalized linear model is commonly used to study the
mean of a response variable Y as a function of n inde-
pendent variables [1]. We focus on models with a binary
response variable even though the methodology proposed
herein applies more generally. Let E(Yl) = µl and let
ηl=rT (x)β be the linear predictor, where r(x) is a user-
selected regression function that depends on the n factors.
Additionally, let g(.) be a monotonic function such that
g(µl) = ηl [30]. Some common choices for the regression
function are r(x)T = {1, x1, · · · , xn} (additive model) or
r(x)T = {1, x1, · · · , xn, x1x2, · · · , xn−1xn} (model with
all pairwise interaction terms). We assume Yk is independent
of Yl if l 6= k and the design space is user-selected compact
set and contains all allowable combination levels of the
factors to observe the response.
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For the logistic model, we have

g(µl) = log(
µl

1− µl
) = ηl (1)

Our goal is to find an optimal set of factor levels
x1, · · · , xL to estimate the vector of parameters β in the
linear predictor [2], [31] when we are given resources to take
N observations. This means that we determine the optimal
number of support points required, i.e. the value of L, the
best choices of the support points x1, · · · , xL from a given
design space and the optimal number of replicates at ni at
xi, i = 1, · · · , L subject to n1 + · · · + nL = N . The upshot
is we have a constrained optimization problem where some
of the variables to be optimized are positive integers and
constrained to sum to N .

Following [31], the worth of a L-point design ξ with nl
replicates at xl is determined by its Fisher information matrix
defined by

Iξ =
L∑
l=1

nlΥ(ηl)r(xl)r(xl)
T
, (2)

where Υ(ηl) =
(dul/dηl )

2

ul(1−ul) . For the logistic regression model,
the link function is the logit function in (1) and

Υ(ηl) =
1

2 + eηl + e−ηl
=

eηl

(1 + eηl)
2 . (3)

A locally D-optimal design maximizes the log-determinant
of the Fisher information matrix Iξ in (2), or equivalently
minimizes the generalized variance of the estimates of the
parameters. Thus, D-optimal designs provide the most ac-
curate estimates of all the model parameters in β. Clearly,
Iξ depends on β and so nominal values for β are required
before optimization. Frequently, the nominal values for β
come from prior experiences or a pilot study [32].

We focus on approximate designs obtained by replacing
each nl by wl = nl/N , the proportion of the total obser-
vations to be taken at xl. More generally, we allow wl to
take on any value between 0 and 1 and doing so turns the
problem into a convex optimization problem where convex
optimization tools can be used to find and verify optimality
of a design. Designs with weights w′is that sum to unity are
called approximate designs.

For D-optimality, the design criterion is −log|I(ξ, θ)| and
this is a convex function over the space of all approximate
designs on the given and compact design space of interest
[1]. Following [33], the approximate design ξ∗ is locally D-
optimal among all designs if and only if for all x in the design
space, the following checking condition is satisfied:

eβ
T r(x)

(1 + eβT r(x))
2 r(x)T I−1ξ∗ r(x)− k ≤ 0 (4)

with equality at each support point of ξ∗. Here k is the
dimension of β and the left-hand side of (4) is sometimes
called the sensitivity function.

Often, the worth of a design ξ is measured by its efficiency
relative to the optimal design ξ∗ [1]. For D-optimality, the
D-efficiency of a design ξ is(

det(Iξ)

det(Iξ∗)

)1/k

.

If its D-efficiency is near 1, ξ is close to ξ∗. If the theoretical
optimal design ξ∗ is unknown, the proximity of a design
ξ to ξ∗ can be determined from convex analysis theory.
Specifically, its D-efficiency is at least exp(−θ/k), where θ is
the maximum positive value of the sensitivity function across
the entire design space [34]. If the D-efficiency lower bound
is close to 1, the design ξ is close to the D-optimal design ξ∗.

B. FUNDAMENTALS OF DIFFERENTIAL EVOLUTION
Differential Evolution (DE) [13] was proposed by Storn and
Price in 1995. It is a population-based optimization algorithm
that searches for the optimum iteratively. DE is simple to im-
plement and has good performance for solving various types
of optimization problems. Compared with other evolutionary
algorithms (EA), the the space complexity of DE is low [14]
and number of control parameters in DE is small [15], [16],
[17] . There are two control parameters in DE; a scaling factor
F for mutation and a crossover rate CR for the crossover
operation. The parameter F controls the convergence speed
and the parameter CR affects both the convergence and the
diversity of the population [13], [35], [36].

To fix ideas, suppose f(X) is the given objective func-
tion and we want to minimize it over a user-selected D-
dimensional space comprising the decision variables. DE
has three main operations: mutation, crossover and selection.
Each solution of generation g is represented by Xi,g , where
i is the index of the corresponding solution. Sometimes Xi,g

is referred to as the target vector, which needs to be updated
for the next generation g + 1. Mutation generates a mutant
vector Vi,g , followed by a crossover which then generates a
trial vector Ui,g based on both Vi,g and Xi,g . The next step
is Selection, where a decision is made whether to update the
solution Xi,g+1 from Ui,g or Xi,g based on their objective
function values. Some details for the three operations follow.

1) Mutation
Each target vector Xi,g generates a new individual, called
the mutant vector Vi,g and some frequently used mutation
strategies are listed below.

"DE/rand/1":

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) (5)

"DE/rand-to-best/2":

Vi,g = Xi,g + F · (Xbest,g −Xi,g) + F · (Xr1,g −Xr2,g)
+ F · (Xr3,g −Xr4,g)

(6)
"DE/rand/2":

Vi,g = Xr1,g+F ·(Xr2,g−Xr3,g)+F ·(Xr4,g−Xr5,g) (7)
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"DE/current-to-rand/1":

Vi,g = Xi,g +K · (Xr1,g−Xi,g) +F · (Xr2,g−Xr3,g) (8)

In (8),K is randomly generated from [0, 1]. The subscripts
r1 to r5 of X in (5)−(8) represent the random individuals
selected from the population pool.

2) Crossover
Crossover operation is employed after mutation. In crossover,
the mutant vector Vi,g is recombined with the original in-
dividual Xi,g to form the trial vector Ui,g . Two types of
crossover schemes of DE are binomial crossover and expo-
nential crossover. Binomial crossover is commonly used in
DE to determine the trial vector as follows [24]:

uji,g =

{
vji,g, rand(0, 1) ≤ Cr j =jrand
xji,g, otherwise

(9)

where jrand ∈ {1, 2, 3, · · · , D} is a randomly selected index
to ensure that the trial vector Ui,g can get at least one variable
from the mutant vector Vi,g . The notation rand(0,1) is a
uniform random number from the interval [0,1] and Cr is
the pre-specified crossover rate.

An exponential crossover is another way to implement
a crossover [37]. An integer z is randomly generated from
[1,D]. Another integer L, i.e. the length of decision variables
to be mutated, is determined as follows:

L=0
WHILE(rand(0,1)≤ Cr AND L≤ D)
DO(L=L+1)
If L ≥1, the trial vector Ui,g is generated as follows:

uji,g =

{
vji,g , for j = z, z + 1, z + 2, · · · z + L− 1

xji,g , otherwise
(10)

If L = 0, then Ui,g is identical to Xi,g .

3) Selection
Selection is the last step to determine whether the trial
vector Ui,g survives to enter the next generation based on the
objective function value f(Ui,g).

The selection operation in DE is described below:

Xi,g+1 =

{
Ui,g, if f(Ui,g) ≤ f(Xi,g)
Xi,g, otherwise

(11)

C. LITERATURE REVIEW OF DIFFERENTIAL
EVOLUTION
1) The Adaptation Scheme of Control Parameters
The success of DE in solving a specific problem crucially
depends on the appropriate choice of mutation strategies and
the associated control parameter values. Many DE studies
have proposed new mutation strategies that stayed constant
for the entire evolution process but a few such as SaDE [29]
have proposed an adaptive approach to select appropriate
mutation strategies based on the successful experiences in the
previous generations.

In terms of the control parameter adaptation schemes, most
DE studies adapt the control parameters F and CR based
on a pre-defined distribution. The mean of this distribution
depends on the successful F or CR values in the previ-
ous generations. In [38], a new crossover method Multiple
Exponential Recombination (MER) that combines the ad-
vantages of binomial crossover and exponential crossover
was proposed to solve the non-separable problems, where
the decision variables are dependent on each other [39].
It has been shown both theoretically and empirically that
for the same value of CR, MER can result in improved
performances. Hence, it is promising to embed MER into the
control parameter adaptation schemes when we solve non-
separable optimization problems.

2) High-dimensional Problems
For solving high-dimensional problems, DE algorithms have
a cooperative coevolution (CC) framework and a noncoop-
erative coevolution framework [40]. CC-based framework
partitions either the entire population into subpopulations, or
partitions the entire decision variables into subcomponents.
The optimization process is both parallel within each sub-
group and centralized for the entire group. In [41], DECC-
DML adopted CC framework, and the new partition strategy
called delta grouping was proposed. To emphasize the inter-
action between variables in the same group, the improvement
interval of interacting variables in different group would be
limited. DECC-DML was efficient in solving non-separable
problems with one group of rotated variables but not so when
there are multiple groups. In [42], DCDE applied the CC
framework and a ring connection to enhance the interactions
among variables between different groups so that the search
behavior of exploration and exploitation can be balanced.
DCDE was capable of solving some non-separable and
multimodal high-dimensional problems. In [43], DDE-AMS
was proposed to solve the high-dimensional problems by a
distributed differential evolution with adaptive mergence and
split on subpopulations. The mergence and split operators
made full use of the population resource to efficiently solve
the problems in a cooperative and efficient way. For non-
CC frameworks, most of the DE studies focused on adding
adaptive mechanisms into the algorithms or proposed new
mutation strategies. In [44], both F , CR, population size and
mutation strategies were adapted and in [40], a new triangular
mutation strategy was proposed.

III. PROPOSED ALGORITHM: NOVDE
A. OVERVIEW
Since the D-optimal design problems in this paper are high-
dimensional and non-separable, premature convergence can
be a severe issue with solutions easily getting trapped as
local optima. Compounding the problem is that most of the
state-of-the-art DE methods do not have a special mechanism
to preserve diversity of the solutions and so the issue of
premature convergence is not completely solved. For the
mutation strategies such as ’DE/rand-to-best/2’, solutions
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tend to be close to the current best region thus limiting the
exploration capability at the early stage. For the mutation
strategies such as ’DE/rand/2’ or ’DE/current-to-rand/1’, so-
lutions tend to be close to each other at the early or medium
stage of the evolution. Thus, to circumvent the issue of
premature convergence of DE-based algorithms for solving
high-dimensional and non-separable optimization problems,
a mechanism of exploring various regions of the search space
should be specially designed and combined with other DE
mutation strategies.

Assume that there are n factors in the model and we denote
a L-point design by ξ = ([x11x12 · · ·x1np1],
· · · , [xl1xl2 · · ·xlnpl], · · · [xL1xL2 · · ·xLnpL]), where pl
is the proportion of the total observations to be taken
at the l-th design point [xl1xl2 · · ·xln]. It follows
that each individual Xi,g in the current generation g
with population index i is constructed as Xi,g =
(x11x12 · · ·x1np1 · · ·xl1xl2 · · ·xlnpl · · ·xL1xL2 · · ·xLnpL).
For an additive model with no interactions among the factors,
the dimension D of Xi,g is (n+ 1)L.

We propose a new novelty-based DE-based algorithm and
denote it by NovDE to solve our complex optimization prob-
lems using a novelty-based mutation strategy. At the start of
the evolution process, a group of individuals are randomly
selected to be novelty-based individuals. To preserve the
diversity of solutions, various regions of the search space are
explored by these novelty-based individuals. Fig. 1 shows the
difference vector di,g−1 which is the difference between the
trial vector ui,g−1 and the target vector xi,g−1 in the previous
generation g − 1. For the current generation g and a user-
selected value of m, the number of m difference vectors
d1i,g · · · dmi,g are sampled. Fig. 1 displays the computed angle
θs between the sampled difference vector dsi,g in the current
generation g and the difference vector di,g−1 in the previous
generation g − 1 where s = 1, 2, · · · ,m. We then add the
difference vector d∗i,g , which has the largest angle difference
between dsi,g and di,g−1 among the m samples, to the target
vector xi,g to generate the mutant vector vi,g . This is because
the largest angle differences between d∗i,g and di,g−1 would
enhance each novelty-based individual to explore region in
the search space entirely different than what was explored
in the previous generation g − 1. As the evolution proceeds,
the novelty-based individuals can gradually explore various
and novelty regions in the search space because of the
efficient exploration and the diversity of solutions can be
preserved. The proposed novelty-based mutation strategy is
combined with ’DE/rand/2’ and ’DE/current-to-rand/1’ since
they can balance exploration and exploitation at the early or
medium stage of evolution [29]. If the individuals obtained
based on ’DE/rand/2’ and ’DE/current-to-rand/1’ are close
to each other, the novelty-based individuals can provide the
information of the recent explored regions of the search space
to those convergent individuals. The convergent individuals
can either exploit in their current region of the search space
or explore more regions of the search space.

The D-optimality criterion is a function of the information

Xi,g

di,g- 1

d1
i,g

ds
i,g

dm
i,g

.

.

.

There are m sampled 

difference vectors.
θ

s

d*
i,g 

Vi,g = Xi,g +F х d*
i,g

FIGURE 1: The operation of novelty-based mutation strat-
egy. The target vector is Xi,g , and the difference vector from
the previous generation is di,g−1. In the current generation,
the m sampled difference vectors are d1i,g · · · dmi,g and θs is
the computed angle between dsi,g and di,g−1, where s =
1, · · · ,m. The dsi,g with the largest angle differences θs is
selected to be d∗i,g and the mutant vector Vi,g is generated
from Xi,g and d∗i,g .

matrix in (2), where xl is part of the consecutive compo-
nent in the decision variables. The term xlx

T
l in equation

(2) is the consecutive variables multiplied by each other,
so physically proximate variables have stronger correlation
and the problem is non-separable. According to [38], the
crossover method MER can solve non-separable problems
more efficiently than the binomial or exponential crossover
method if the CR rate is the same. Further, MER updates the
consecutive variables altogether which is more suitable for
the structure of the decision variables in our problem. Thus,
MER is selected to be the crossover method for our problem.

We adapt the control parameters F and CR to find lo-
cally D-optimal designs. The adaptation of F is the same
as the state-of-the-art adaptive DE algorithm SaDE [29]
where the F value for each individual is generated from
F = N(0.5, 0.3). In this way, the value of F falls in the range
[-0.4,1.4] with probability of 0.997, which covers exploration
capability when F is large and exploitation capability when
F is small [29]. Because the novelty-based individuals ex-
plore various regions in the search space, F is not required
to be adaptive so it is fixed at 0.5. Our adaptation method of
CR in NovDE is new. A First-in-First-out (FIFO) memory
CRpoolk with a fixed size is applied, and the memory size for
strategy k is proportion to the number of individuals involved
in strategy k. The CRmeank is the mean value of the
successful CR values stored in CRpoolk memory. The mean
value of CRmeank for each strategy k is adapted based on
the success values of CR stored in CRpoolk for strategy k.
This adaptation method updates the distribution of CR more
frequently based on the solutions in the current evolution
stage. In NovDE, CR value for each individual for strategy
k is generated from CR = N(CRmeank, 0.1). The initial
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value of CRmeank is selected to be 0.7 since if the value
of CR is larger, the exploration would be encouraged. At the
start of the evolution, exploration should be encouraged.

B. ALGORITHM STRUCTURE
The proposed algorithm NovDE is displayed in Algo-
rithm 1. In NovDE, three mutation strategies ’DE/rand/2’,
’DE/current-to-rand/1’ and the proposed ’novelty-based DE’
are employed to generate the mutant vector Vi,g . Population
are assigned to these three groups to employ one of the
mutation strategies based on the pre-defined ratios p1 and
p2. From step 9 to step 16, the proposed novelty-based
DE mutation is presented. For each novelty-based individual
Xi,g , F is fixed to be 0.5. The number of m difference
vectors are sampled as d1i,g · · · dmi,g , and the value of m is
user-selected. For each dsi,g in the samples for s = 1, · · · ,m,
the angle between dsi,g and the difference vector from last
generation di,g−1 is computed and denoted as θs. The dsi,g
with the largest θs is denoted as d∗i,g . Then in step 15, the
mutant vector Vi,g can be generated based on target vector
Xi,g and difference vector d∗i,g .

For the adaptation of CR, a first-in-first-out memory for
each mutation strategy k is established as CRpoolk with size
LPk. CRpoolk is to store the values of CR that make the
trial vector Ui,g successfully replace the target vector Xi,g

for strategy k. The CRmeank is computed as the mean
value of elements in CRpoolk, and CR for each individual
is generated fromN(CRmeank, 0.1). The crossover method
is MER. After the crossover operation, the novelty-based in-
dividuals should update di,g to be used in the next generation
as di,g+1.

IV. EMPIRICAL STUDY
In this section, we evaluate the performance of the proposed
algorithm NovDE for finding locally D-optimal designs for
logistic models on various design spaces with several fac-
tors. Specifically, we compare NovDE with six state-of-
the-art variants of the DE algorithms. ’DE/rand/2/bin’ [13]
and SaDE [29] are effective in handling general numeri-
cal optimization problems; SaDE+MER [38] is effective in
solving non-separable optimization problems; JADE [23] is
an effective DE variant for its control parameter adaptation
scheme; ANDE [40] and DDE-AMS [43] are effective in
solving high-dimensional optimization problems. In order
to validate the effectiveness of novelty-based mutation, we
also compare the novelty-based mutation combined with the
conventional crossover (i.e. binomial crossover), which is
termed as NovDE-Bin. We compare using logistic models on
various design spaces with seven continuous factors and five
sets of nominal values. The design space of each factor is
first selected to be on the prototype interval [-1, 1] before we
vary the design space to [-3, 3], followed by the interval [0,
3]. We next describe the details of our experimental setup for
comparing the four algorithms.

Algorithm 1 NovDE

Require: Target Vector Xi,g = (x1i,g, x
2
i,g, · · · , xDi,g), popu-

lation sizeN , p1=0.45, p2=0.9, sample sizem,CRpoolk
with size LPk, where k represents the k−th mutation
strategy.

Ensure: Trial Vector Ui,g = (u1i,g, u
2
i,g, · · · , uDi,g).

1: if i ≤ p1 ∗N then
2: F is generated from N(0.5, 0.3).
3: Xi,g performs ’DE/rand/2’ to generate mutant vector

Vi,g .
4: end if
5: if p1 ∗N < i ≤ p2 ∗N then
6: F is generated from N(0.5, 0.3).
7: Xi,g performs ’DE/current-to-rand/1’ to generate mu-

tant vector Vi,g .
8: end if
9: if i > p2 ∗N then

10: F is fixed to be 0.5.
11: di,g−1 is the differences between trial vector Ui,g−1

and target vectorXi,g−1 in the previous generation g−
1.

12: Sample number of m difference vectors as
d1i,g · · · dmi,g .

13: Compute the angle θs between dsi,g and di,g−1 where
s = 1, 2, · · · ,m.

14: d∗i,g is the one with the largest θs.
15: The mutant vector Vi,g = Xi,g + F ∗ d∗i,g .
16: end if
17: CR is generated from (CRmeank, 0.1) for different

mutation strategy k.
18: Trial vector Ui,g is generated based on MER and the CR

rate.
19: if i > p2 ∗N then
20: di,g = Ui,g −Xi,g .
21: end if
22: if f(Ui,g) < f(Xi,g) then
23: Record CR value into the corresponding CRpoolk.
24: Perform first-in-first-out operation once the size of

CRpoolk exceeds LPk.
25: Update CRmeank to compute the mean value of

elements in CRpoolk.
26: end if

A. EXPERIMENTAL SETUP

1) Population size is 100.
2) The preset upper bound on the number of support points

L is 100.
3) The dimension D of the problem to be optimized for

seven factors without interactions is 800 (=(7 + 1) × 100).
The dimension for each support point is 8, which includes
the number of factors (i.e. 7) and the dimension of the
corresponding portion of observations taken at each support
point (i.e. 1).

4) The evolution process terminates if and when a design
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with at least 99.99% D-efficiency is found. Otherwise, the
process terminates when the maximum number of genera-
tions we specify is met. For all our experiments, we set the
maximum number of generation to be 20000.

5) The maximum number of run is 30.
6) For ’DE/rand/2/bin’, we set F = 0.5 and CR = 0.9

based on the suggested settings in [13],.
7) For ANDE, we follow recommendations in [40] and

generate F1, F2, and F3 from the uniform distribution on
[0, 1]. We select CR accordingly to [40] and set LP to 10%
of the maximum generation.

8) For SaDE and SaDE+MER, we set LP = 20 and initial
value of pk = 0.25 for each strategy. The initial CRm for
each strategy is 0.5 and generate the value of F from the
normal distribution [0.5,0.3] based on [29]. For SaDE+MER,
we set T = 10 based on [38].

9) For JADE, we set p = 0.05, c = 0.1 and set µCR = 0.5,
µF = 0.5 as their initial values indicated in [23].

10) For DDE-AMS, we use 4 sub-populations, and set
Up = 25, T = 80, Dr = 0.3, and φ = 0.05, F = 0.5 and
CR = 0.9 based on [43].

11) For NovDE and NovDE-Bin, we set p1 = 0.45, p2 =
0.9 and the sample size is m = 10. Initial CRmeank for
each strategy is 0.7 to encourage the exploration at the start
of evolution. The upper bound of CRmeank is 0.9, and the
lower bound of CRmeank is 0.1. For both ’DE/rand/2’ and
’DE/current-to-rand/1’, we set LP = 50, and for the novelty-
based mutation strategy, we setLP = 10. We generate values
of F for both ’DE/rand/2’ and ’DE/current-to-rand/1’ from
the normal distribution [0.5, 0.3], and set F = 0.5 for the
novelty-based mutation strategy.

12) We generate each of the nominal values in the vector
of 8 coefficients βT = (β0, β1, β2, β3, β4, β5, β6, β7) in an
additive 7-factor logistic regression model randomly from the
interval [-1,1] without loss of generality. In this experiment,
we generate five parameter sets and they are as follows:
β1 = (0.6294, 0.8116,−0.7460, 0.8268, 0.2647,−0.8049,
−0.4430, 0.0938), β2 = (−0.6710, 0.8256,−0.9221, 0.8348,
0.0538, 0.8664, 0.9186, 0.7741), β3 = (−0.4926,−0.6280,
−0.3283, 0.4378, 0.5283,−0.6120,−0.6837,−0.2061), β4 =
(−0.4336, 0.3501,−0.8301, 0.3295, 0.0853, 0.5650, 0.0870,
0.1688), β5 = (0.8379,−0.5372, 0.1537,−0.1094,−0.2925,
0.2599,−0.8201,−0.8402).

13) The program is implemented in MATLAB R2017b.
14) In this paper, the D-efficiency lower bound criterion is

applied to evaluate the optimality of the generated design ξ
and "DE/rand/1/bin" with F=0.5 and CR=0.9 is used to find
the maximum positive value of the sensitivity function θ. We
recall this value is used to compute the D-efficiency lower
bound of the design ξ, which is exp (−θ/k) where k is the
dimension of β. In what is to follow, if a design has at least
95% D-efficiency, we accept the design as close enough to
the optimum.

B. RESULTS AND DISCUSSIONS
We compare the performance of the proposed NovDE with
NovDE-Bin and six competitive DE-based algorithms using
3 different design spaces to validate that NovDE is an ef-
fective DE variant in solving the high-dimensional optimal
design problems. Since the optimal designs of the logistic
model under various sets of nominal values and design
spaces are unknown, the average of the objective function
values obtained in 30 runs is considered as one performance
indicator. Since the aim is to maximize the log-determinant,
the larger the objective function values are, the better is the
performance of the algorithm. Another performance indi-
cator is the success rate, which is the percentage of runs
where the generated design has at least 95% D-efficiency. To
judge whether the proposed NovDE algorithm outperforms
each of the other seven DE-based algorithms in a statistically
significant way, we employ a nonparametric statistical test
called Wilcoxon rank-sum test [45] and t the 5% significance
level. For each algorithm, the numbers in the upper line in
each cell represent the mean and standard deviation of the
objective values. The numbers in the bottom line represent
the success rate of the algorithm. The best values of the mean
and success rates are in bold, and entries with ∗ represent
NovDE significantly outperforms the other algorithm based
on Wilcoxon rank-sum test at the 0.05 significance level.

For each design space, there are 5 different settings with
nominal values β1 to β5. Hence, for the three different design
spaces, there are 15 different settings in total. For the 15
different settings, when NovDE compares with the other
seven DE algorithms, NovDE ranks first 9 out of 15 in terms
of the mean of the objective function values. Furthermore,
in these 9 cases, excluding NovDE-Bin, NovDE significantly
outperforms the other six DE algorithms in 6 out of 9. NovDE
also ranks first 10 out of 15 in terms of the success rate.
These empirical results suggest that since the novelty-based
mutation strategy combined with the MER crossover has the
advantages of superior capability of exploration [27] and
maintaining the dependent variables structure [38], NovDE
can work well in handling non-separable problems and can
avoid trapping into local optimum with higher chances. Thus,
NovDE is more effective in generating locally D-optimal
designs compared with the other seven algorithms.

To validate the effectiveness of novelty-based mutation
alone, NovDE-Bin which is the novelty-based mutation with
the conventional crossover-binomial crossover, is involved
for the comparisons as well. For the 15 different settings,
NovDE-Bin ranks first 3 out of 15, and second 8 out of
15 in terms of the mean of the objective function values.
NovDE-Bin also ranks first 8 out of 15 in terms of the
success rate. These empirical results suggest that the novelty-
based mutation strategy presents better exploration capability
and can prevent solutions from trapping into local optimum,
which is consistent with the advantages of novelty search
methods as illustrated in [27].

To give a clearer picture of the performance difference
between NovDE and the other four DE algorithms, Fig. 2
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plots the change of best-of-run objective function values over
generations for each DE algorithm. The plots in Fig. 2 are
based on nominal parameter β3 and plots based on the other 4
sets of nominal values showed a similar pattern. We observe
from Tables 1-3 and Fig. 2, both NovDE and NovDE-Bin
clearly outperform ’DE/rand/2/bin’ for all of the settings.
Although ’DE/rand/2/bin’ converges faster than NovDE,
’DE/rand/2/bin’ has the issue of premature convergence so
that the solutions tend to become close to each other and its
exploration capability is deteriorated. The better performance
of both NovDE-Bin and NovDE validate that exploration
is important to solve our high-dimensional non-seperable
problem which have local optimums. Furthermore,the novel
information collected from exploration can be provided to
the individuals generated from ’DE/rand/2’ and ’DE/current-
to-rand/1’ to enhance both exploration and exploitation. As
shown in Fig. 2, NovDE has the best converged objective
function values close to the global optimum on various
design spaces.

TABLE 1: Performances of NovDE, NovDE-Bin and six
competitors for finding locally D-optimal designs on [−1, 1]7

using 5 sets of nominal values. In each cell, the numbers in
the upper line are the mean and standard deviation of the
values of the objective function over 30 runs, and the number
at the bottom line is its success rate. For each set of nominal
values, the best values of the mean and success rates are in
bold. The entries with an ∗ means that NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-
sum test.

Algorithm β1 β2 β3 β4 β5

NovDE -13.2018 (0.0079) -13.5845 (0.0153) -12.8106 (0.0054) -12.6012 (0.0041) -13.0221 (0.0093)

86.67% 90% 73.33% 83.33% 90%

NovDE-Bin -13.2028 (0.0077)∗ -13.5958 (0.0526)∗ -12.8116 (0.0049) -12.5946 (0.0044) -13.0224 (0.0242)

86.67% 90% 70% 96.67% 86.67%

DE/rand/2/bin -13.2274 (0.0153)∗ -13.5973 (0.0092)∗ -12.8459 (0.0128)∗ -12.6412 (0.0253)∗ -13.0650 (0.0205)∗

3.33% 0% 3.33% 3.33% 0%

ANDE -13.2340 (0.0146)∗ -13.6009 (0.0197)∗ -12.8460 (0.0095)∗ -12.6330 (0.0144)∗ -13.0543 (0.0163)∗

3.33% 6.67% 0% 3.33% 3.33%

SaDE -13.2030 (0.0060)∗ -13.5778 (0.0052) -12.8195 (0.0106)∗ -12.6006 (0.0078) -13.0505 (0.0651)∗

73.33% 93.33% 23.33% 96.67% 73.33%

SaDE+MER -13.2032 (0.0071)∗ -13.5761 (0.0012) -12.8186 (0.0057)∗ -12.6022 (0.0052) -13.0233 (0.0059)∗

80% 96.67% 53.33% 90% 76.67%

JADE -13.2035 (0.0021)∗ -13.5799 (0.0021) -12.8156 (0.0033)∗ -12.5958 (0.0072) -13.0248 (0.0039)∗

30% 73.33% 53.33% 40% 33.33%

DDE-AMS -13.2390 (0.0096)∗ -13.5961 (0.0186)∗ -12.8690 (0.0154)∗ -12.6258 (0.0169)∗ -13.0549 (0.0204)∗

3.33% 3.33% 0% 6.67% 0%

SinceCRmean can represent the overallCR values of the
individuals under different strategies, it is instructive to plot
the CRmean values versus generations for each design space.

TABLE 2: Performances of NovDE, NovDE-Bin and six
competitors for finding locally D-optimal designs on [−3, 3]7

using 5 sets of nominal values. In each cell, the numbers in
the upper line are the mean and standard deviation of the
values of the objective function over 30 multiple runs, and the
number at the bottom line is its success rate. For each set of
nominal values, the best values of the mean and success rates
are in bold. The entries with ∗ represent NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-
sum test.

Algorithm β1 β2 β3 β4 β5

NovDE -0.1052 (0.0048) -0.4441 (0.0038) 0.5343 (0.0128) 0.7487 (0.0076) 0.3678 (0.0028)

100% 80% 46.67% 93.33% 90%

NovDE-Bin -0.1054 (0.0049) -0.4438 (0.0036) 0.5384 (0.0177) 0.7476 (0.0051) 0.3645 (0.0055)

93.33% 90% 40% 93.33% 90%

DE/rand/2/bin -0.1209 (0.0135)∗ -0.4581 (0.0221)∗ 0.4879 (0.0283)∗ 0.7140 (0.0127)∗ 0.3396 (0.0061)∗

43.33% 23.33% 0% 6.67% 16.67%

ANDE -0.1131 (0.0080) ∗ -0.4561 (0.0113)∗ 0.4940 (0.0207)∗ 0.7097 (0.0295)∗ 0.3412 (0.0138)∗

53.33% 40% 3.33% 3.33% 6.67%

SaDE -0.1033 (0.0027) -0.4435 (0.0040) 0.5234 (0.0155)∗ 0.7457 (0.0109) 0.3641 (0.0070)

80% 90% 40% 86.67% 73.33%

SaDE+MER -0.1022 (0.0032) -0.4440 (0.0030) 0.5240 (0.0143) ∗ 0.7474 (0.0067) 0.3661 (0.0061)

100% 86.67% 36.67% 90% 83.33%

JADE -0.1031 (0.0025) -0.4436 (0.0038) 0.4979 (0.0274) 0.7467 (0.0058) 0.3667 (0.0031)

50% 46.67% 10% 83.33% 83.33%

DDE-AMS -0.1241 (0.0320)∗ -0.4590 (0.0304)∗ 0.4278 (0.0350)∗ 0.7130 (0.0197)∗ 0.3547 (0.0098)∗

30% 16.67% 0% 3.33% 33.33%

Fig. 3 plots the CRmean values based on the median run
using β3 as nominal values for the same reason explained
earlier. In Fig. 3, we observe that the CRmean values for
’DE/rand/2’ and ’DE/current-to-rand/1’ would converge to
0.1, which is the lower bound of the CRmean in NovDE.
The variation of the CRmean values for novelty-based strat-
egy presents distinct patterns under different design spaces.
When X = [−1 1]7 and X = [−3 3]7, the CRmean would
converge to 0.1, which is the lower bound of the CRmean
in NovDE. Under these two design spaces, the decrease of
CRmean values indicates their exploration capability tends
to be restricted as evolution proceeds; for X = [−3 3]7,
the CRmean values would converge faster. When X =
[0 3], the CRmean converges to around 0.9, which is the
upper bound of the CRmean in NovDE. The increase of
CRmean values indicates their exploration capability tends
to be enhanced as evolution proceeds. For different design
spaces, the CRmean for the novelty-based strategy presents
its adaptation to the exploration capability.

Table 4 to Table 6 present the support points of the locally
D-optimal designs when β3 is the set of nominal values.
Interestingly, each support point of these locally D-optimal
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FIGURE 2: Average best-of-run objective function values of 30 independent runs over generations for X = [−1 1]7, X =
[−3 3]7 and X = [0 3]7, respectively. The nominal parameter is β3.

0 0.5 1 1.5 2

Generations 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f C
R

m
ea

n

X=[-1 1]7

DE/rand/2
Novelty-based mutation
DE/current-to-rand/1

0 0.5 1 1.5 2

Generations 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f C
R

m
ea

n

X=[-3 3]7

DE/rand/2
Novelty-based mutation
DE/current-to-rand/1

0 0.5 1 1.5 2

Generations 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
 o

f C
R

m
ea

n

X=[0 3]7

DE/rand/2
Novelty-based mutation
DE/current-to-rand/1

FIGURE 3: Adaptation behaviors of the median run among the 30 multiple runs of the CRmean values in NovDE for X =
[−1 1]7, X = [−3 3]7 and X = [0 3]7, respectively. The nominal parameter is β3.

designs has at most one factor level supported at its non-
extreme values. This observation may provide an impetus for
further study using analytical tools.

V. CAR REFUELING EXPERIMENT
We now apply the proposed NovDE algorithm to re-design
a ten factor experiment to test a vision-based car refueling
system [46]. The investigators were interested in finding
whether a computer-controlled nozzle was able to insert
into gas pipe correctly or not implying that the response
variable in the study is binary. Table 7 lists the ten factors.
Four factors are discrete, each with two levels -1 or +1, and
six factors are continuous. Table 7 shows that the range of
values for each continuous factor and they do vary consid-
erably. The proposed NovDE algorithm is applied to find a
locally D-optimal design for this high-dimensional nonlin-
ear model with mixed factors using the vector of nominal
values β = (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)T =
(3, 0.5, 0.75, 1.25, 0.8, 0.5, 0.8,−0.4,−1, 2.65, 0.65) from
literature [46].

Design issues for this ten-factor experiment were also
considered in [47] but without interaction terms. In practice,
the binary response is likely dependent on the joint changes
in two or more of the factors, suggesting that interaction
terms should be in the model. To fix ideas, we include

five pairwise interactions into the model and believe that
this is the first design work for such a high-dimensional
logistic model. Previous attempts using common algorithms,
like multiplicative and modified Fedorov-Wynn algorithms
did not converge. The vector of nominal values for the
model with the five selected pairwise interactions is β =
(β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β1,9, β2,5, β3,4,
β6,7, β8,10)T = (3, 0.5, 0.75, 1.25, 0.8, 0.5, 0.8,−0.4,−1,
2.65, 0.65, 0.01,−0.02, 0.03,−0.04, 0.05)T based on litera-
ture [46].

Some of the tuning parameters used to find the locally D-
optimal designs are the population size, maximum number
of generations and maximum number of support points. For
the model without factor interactions, the population size is
100, and the maximum number of generations is 10000. The
maximum number of support points L is set to 100 so the
dimension D of the problem is 1100 (=(10 + 1) × 100).
The dimension for each support point is 11, which includes
the number of factors (i.e. 10) and the dimension of the
corresponding portion of observations taken at each support
point (i.e. 1). For the model with factor interactions, the pop-
ulation size is 100, and the maximum number of generations
is 20000. The maximum number of support pointsL is 100 so
the dimension D of the problem is 1600 (=(10+1+5)×100).

Due to the number of factors in this study, it is hard
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TABLE 3: Performances of NovDE, NovDE-Bin and six
competitors for finding locally D-optimal designs on [0, 3]7

using 5 sets of nominal values. In each cell, the numbers in
the upper line are the mean and standard deviation of the
values of the objective function over 30 multiple runs, and the
number at the bottom line is its success rate. For each set of
nominal values, the best values of the mean and success rates
are in bold. The entries with ∗ represent NovDE significantly
outperforms the other algorithm based on Wilcoxon rank-
sum test.

Algorithm β1 β2 β3 β4 β5

NovDE -8.2056 (0.0091) -11.0117 (0.0023) -9.3156 (0.0191) -7.6625 (0.0183) -9.1025 (0.0124)

83.33% 100% 26.67% 83.33% 76.67%

NovDE-Bin -8.2064 (0.0047) -11.0134 (0.0027) -9.3188 (0.0314) -7.6508 (0.0038) -9.1076 (0.0171)

80% 100% 23.33% 96.67% 80%

DE/rand/2/bin -8.2344 (0.0196)∗ -11.0293 (0.0121)∗ -9.3562 (0.0193)∗ -7.6977 (0.0184)∗ -9.1549 (0.0194)∗

3.33% 16.67% 3.33% 6.67% 3.33%

ANDE -8.2430 (0.0194)∗ -11.0249 (0.0055)∗ -9.3500 (0.0256)∗ -7.6861 (0.0163)∗ -9.1510 (0.0135)∗

3.33% 46.67% 0% 0% 3.33%

SaDE -8.2147 (0.0145)∗ -11.0141 (0.0019)∗ -9.3282 (0.0213)∗ -7.6571 (0.0063) -9.1066 (0.0128)∗

66.67% 90% 10% 86.67% 46.67%

SaDE+MER -8.2067 (0.0052) -11.0139 (0.0030)∗ -9.3348 (0.0270)∗ -7.6594 (0.0121) -9.1098 (0.0147)∗

70% 86.67% 16.67% 76.67% 56.67%

JADE -8.2085 (0.0019)∗ -11.0330 (0.0093)∗ -9.3213 (0.0207)∗ -7.6517 (0.0040) -9.1095 (0.0032)∗

20% 20% 6.67% 33.33% 36.67%

DDE-AMS -8.2212 (0.0145)∗ -11.0239 (0.0114)∗ -9.3939 (0.0279)∗ -7.7216 (0.0250)∗ -9.1529 (0.0377)∗

3.33% 26.67% 0% 0% 3.33%

to construct and visually appreciate the high-dimensional
sensitivity function of the generated design to confirm its
optimality. An option is to generate 1000000 random vectors
within the design spaces and check whether the sensitivity
function is positive at these points. One may repeat this
procedure and if none is found and the sensitivity function
is zero at the support points of the generated design, then
we conclude we have found an optimal design. Otherwise,
we apply "DE/rand/1/bin" with F=0.5 and CR=0.9 to find
the maximum positive value of the function and compute its
D-efficiency lower bound. The lower bound D-efficiency is
defined as exp (−θ/k) where k is the dimension of the model
parameter β. Since the variables of this problems are mixed,
the variation of lower bound D-efficiency is very large. In
what is to follow, if a design has at least 90% D-efficiency,
we accept the design as close enough to the optimum.

A. WITHOUT FACTOR INTERACTIONS
Table 8 compares the mean of locally D-optimal objective
value and success rate of NovDE with NovDE-Bin and the
other six differential evolution algorithms. Wilcoxon rank-
sum test [45] is also conducted at the 5% significance level. In

TABLE 4: NovDE-generated locally D-optimal design
for the logistic model with seven variables when
the vector of nominal values for the parameters
is β3 = (β0, β1, β2, β3, β4, β5, β6, β7)T =
(−0.4926,−0.6280,−0.3283, 0.4378, 0.5283,−0.6120,
− 0.6837,−0.2061)T , and X = [−1, 1]7.

Support point X1 X2 X3 X4 X5 X6 X7 Pi

1 1 -1 1 -1 -1 -1 -1 0.0230
2 1 -1 1 -1 -1 -1 1 0.0160
3 1 1 1 1 1 -1 1 0.0255
4 1 1 -1 1 1 -1 -1 0.0223
5 1 -1 1 -1 -1 1 1 0.0152
6 -1 -1 1 1 1 1 1 0.0212
7 -1 1 1 -1 1 -1 1 0.0269
8 1 -1 1 -1 1 -1 -1 0.0101
9 1 -1 1 -1 -1 1 -1 0.0269

10 -1 1 1 -1 -1 1 -1 0.0117
11 1 -1 -1 1 1 -1 1 0.0269
12 -1 -1 1 1 1 1 1 0.0142
13 -1 1 1 1 1 -1 1 0.0219
14 1 1 1 -1 -1 -1 1 0.0182
15 1 1 -1 1 -1 -1 1 0.0183
16 -1 -1 1 1 1 1 -1 0.0199
17 -1 -1 -1 -1 -1 -1 1 0.0269
18 -1 -1 -1 -1 1 -1 -1 0.0101
19 -1 -1 1 -1 1 1 -1 0.0269
20 -1 1 1 -1 -1 -1 -1 0.0163
21 1 -1 1 1 -1 -1 1 0.0102
22 -1 1 -1 -1 1 -1 -1 0.0269
23 -1 1 -1 1 -1 -1 1 0.0241
24 -1 -1 -1 -1 -1 -1 1 0.0213
25 -1 -1 -1 -1 -1 1 1 0.0269
26 -1 -1 1 -1 1 -1 -1 0.0269
27 1 -1 -1 1 -1 -1 -1 0.0269
28 -1 1 -1 -1 -1 1 -1 0.0184
29 -1 -1 -1 1 -1 1 -1 0.0269
30 1 -1 -1 1 -1 1 -1 0.0161
31 1 -1 1 1 -1 1 -1 0.0165
32 1 -1 -1 -1 -1 -1 1 0.0143
33 -1 1 -1 -1 1 -1 -1 0.0269
34 -1 -1 1 1 1 1 -1 0.0124
35 -1 1 1 1 1 -1 -1 0.0269
36 -1 1 1 -1 -1 1 1 0.0204
37 1 1 1 1 -1 1 -1 0.0269
38 -1 1 -1 1 1 -1 -1 0.0103
39 1 -1 1 1 1 -1 1 0.0269
40 -1 1 -1 1 -1 1 1 0.0152
41 1 1 -1 1 -1 -1 -1 0.0150
42 1 1 1 -1 -1 -1 -1 0.0260
43 -1 -1 -1 -1 -1 -1 1 0.0144
44 -1 1 -1 1 -1 1 -1 0.0260
45 -1 -1 -1 1 1 1 1 0.0269
46 1 1 1 1 -1 1 1 0.0203
47 -1 1 1 1 -1 1 1 0.0245
48 1 -1 -1 1 1 -1 -1 0.0269

Table 8, both the mean of the objective value and the success
rate of NovDE-Bin are the highest. NovDE ranks the second.
Both NovDE-Bin and NovDE significantly outperform all
the other six algorithms. Thus, our empirical results validate
the effectiveness of novelty exploration in solving the car
refueling experiment. By extension, our work suggests that
the NovDE and NovDE-Bin are effective for searching lo-
cally D-optimal designs for high-dimensional non-separable
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TABLE 5: NovDE-generated locally D-optimal design
for the logistic model with seven variables when
the vector of nominal values for the parameters
is β3 = (β0, β1, β2, β3, β4, β5, β6, β7)T =
(−0.4926,−0.6280,−0.3283, 0.4378, 0.5283,−0.6120,
− 0.6837,−0.2061)T , and X = [−3, 3]7.

Support point X1 X2 X3 X4 X5 X6 X7 Pi

1 -3 -3 -3 -3 3 -3 -3 0.0311
2 3 3 3 3 -3 3 3 0.0100
3 -3 -3 -3 -3 3 -3 3 0.0347
4 3 -3 3 3 3 -2.9971 3 0.0480
5 -3 -3 3 -3 3 2.9217 -3 0.0292
6 3 -3 -3 -3 -3 -3 -3 0.0100
7 -3 3 -3 -3 2.0891 -3 -3 0.0107
8 -3 -3 3 -3 -2.7545 3 3 0.0468
9 3 3 3 3 3 -3 -3 0.0187

10 3 3 3 3 -3 3 -3 0.0298
11 -3 -3 3 3 3 3 3 0.0409
12 3 -3 -3 3 -3 3 -3 0.0403
13 3 3 3 -3 -3 -3 3 0.0100
14 3 3 -3 3 -3 -3 3 0.0100
15 -3 3 3 3 3 3 -3 0.0385
16 3 -3 -3 -3 -3 -3 -3 0.0260
17 3 3 3 -3 -3 -3 -3 0.0517
18 -3 -3 -3 3 3 3 -3 0.0338
19 3 -3 3 -3 3 -3 -3 0.0375
20 -3 3 -3 -3 -3 -3 3 0.0303
21 3 3 -3 3 -3 -3 3 0.0258
22 -2.9190 3 -3 3 -3 3 -3 0.0451
23 -3 3 3 -3 -3 3 3 0.0431
24 3 -3 -3 3 3 -3 -3 0.0100
25 3 -3 -3 -3 -3 -3 3 0.0316
26 -3 -3 -3 -3 -3 3 -3 0.0136
27 -3 3 3 -3 3 -3 -3 0.0356
28 -3 3 -3 3 -3 3 3 0.0162
29 3 -3 3 3 -3 3 3 0.0438
30 -3 3 3 -3 -3 3 3 0.0305
31 3 -3 -3 3 -3 3 -3 0.0140
32 -3 3 -3 3 3 -3 3 0.0517
33 3 3 3 3 3 -3 3 0.0512

problems with mixed variables on various design spaces. In
problems with mixed factors, the design space is less com-
plex than the design space of the problems with continuous
factors. The solutions obtained from D-optimal design with
mixed factors are more likely to be close to one another
at early evolution stage. Thus, it is more crucial to handle
the premature issue especially for the problems with mixed
factors. NovDE and NovDE-Bin can present the advantages
in handling the premature issue and preserve the diversity of
the solutions. As a result, NovDE performs even better than
it performs on handling D-optimal design with continuous
factors. Table 9 lists the locally D-optimal design for the car
refueling experiment, and 12 support points are generated.
The design criteria value is -35.9178. A direct calculation
shows that the D-efficiency lower bound for the generated
design is 94.60%. This is not surprising even though we set
the lower bound to be 90% for this problem. The reason is
because the algorithm is not monotonic in the sense that it
does not necessarily produce increasingly more efficient de-
signs with each iteration. Another reason is that the higher D-
efficiency optimal design may exist in the continuous design
spaces instead of the mixed design spaces. Based on Table 9,
the common rule of the mining knowledge still satisfies. For

TABLE 6: NovDE-generated locally D-optimal design
for the logistic model with seven variables when
the vector of nominal values for the parameters
is β3 = (β0, β1, β2, β3, β4, β5, β6, β7)T =
(−0.4926,−0.6280,−0.3283, 0.4378, 0.5283,−0.6120,
− 0.6837,−0.2061)T , and X = [0, 3]7.

Support point X1 X2 X3 X4 X5 X6 X7 Pi

1 3 0 3 3 3 0 0 0.0232
2 0 3 3 3 3 0 0 0.0262
3 0 3 3 0 0 0 3 0.0151
4 0 3 3 3 0 3 0 0.0270
5 3 3 3 3 0 0 0 0.0191
6 3 0 3 0 0 0 0 0.0113
7 0 0 3 3 0 3 0 0.0103
8 3 0 3 0 0 0 0 0.0215
9 0 3 3 0 0 0 3 0.0220

10 3 0 0 3 0 0 0 0.0106
11 3 0 3 3 0 0 3 0.0366
12 0 0 0 3 3 0 3 0.0389
13 0 3 3 3 0 0 0 0.0318
14 0 3 0 3 0 0 3 0.0309
15 0 0 3 3 0 3 3 0.0171
16 0 0 3 3 3 0 3 0.0315
17 0 3 3 0 0 0 3 0.0385
18 0 0 0 0 0 0 0 0.0367
19 0 0 3 0 3 0 0 0.0319
20 0 0 3 3 3 0 0 0.0323
21 0 0 0 3 3 0 0 0.0128
22 0 0 0 3 0 0 3 0.0217
23 3 3 3 3 0 0 0 0.0333
24 0 0 3 3 3 0 3 0.0114
25 0 0 0 3 0 3 0 0.0389
26 0 0 0 0 0 0 0 0.0107
27 0 0 3 0 0 3 0 0.0271
28 0 0 3 0 0 0 0 0.0380
29 0 3 3 3 3 0 0 0.0263
30 3 0 3 3 0 0 3 0.0298
31 0 0 3 3 0 3 0 0.0346
32 3 0 0 3 0 0 0 0.0316
33 0 3 0 3 0 0 0 0.0312
34 0 0 3 0 0 0 0 0.0131
35 0 0 0 3 0 0 3 0.0225
36 0 3 0 3 0 0 0 0.0138
37 0 3 3 3 0 3 3 0.0300
38 3 0 3 3 0 0 0 0.0100
39 0 0 3 3 3 3 0 0.0118
40 0 0 3 0 0 0 3 0.0146
41 0 0 3 3 0 3 3 0.0242

each support point, there is at most one factor value not at
the boundary of the design space. This is consistent with the
observation in Section IV.

B. WITH FACTOR INTERACTIONS
It seems realistic that there are factor interactions between
Ring type and Reflective ring thickness, Lighting and Light-
ing angle, Sharpen and Smooth, Gas-cap angle (Z axis) and
Gas-cap angle (Y axis skew) and Car distance and Threshold
step value, respectively. The former two interactions are
between a discrete factor and a continuous factor; the third
interaction is between a discrete factor and a discrete factor
and the latter two interactions are between a continuous
factor and a continuous factor. In practice, the researcher uses
content information to specify interaction terms in the model
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TABLE 7: Factor types and levels for the car refueling
experiment.

Type Factor Level

Low High

Discrete

Ring Type White paper Reflective

Lighting Room lighting 2 flood lights and room lights

Sharpen No Yes

Smooth No Yes

Continuous

Lighting angle from 50 degrees to 90 degrees

Gas-cap angle (Z axis) from 30 degrees to 55 degrees

Gas-cap angle (Y axis skew) from 0 degrees to 10 degrees

Car distance from 18 in. to 48 in.

Reflective ring thickness from 0.125 in. to 0.425 in.

Threshold step value from 5 to 15

TABLE 8: Comparisons of the performance of NovDE,
NovDE-Bin and six competitors for the car refueling exper-
iments without factor interactions. The best values of the
mean and success rates are in bold. The entries with ∗ rep-
resent NovDE significantly outperforms the other algorithm
based on Wilcoxon rank-sum test.

Algorithm Success Rate Mean (std)

NovDE 90% -35.9390 (0.1060)

NovDE-Bin 90% -35.9180 (0.0035)

DE/rand/2/bin 13.33% -37.4963 (0.8482)∗

ANDE 26.67% -36.7708 (0.8923)∗

SaDE 70% -35.9480 (0.0485)∗

SaDE+MER 46.67% -36.2242 (0.7181)∗

JADE 70% -35.9645 (0.0911)∗

DDE-AMS 10% -39.5935 (0.5128)∗

and implements a parsimonious model. Our conjecture that
interaction terms were ignored in earlier design work for such
a model is to simplify the design construction.

Table 10 compares the mean of locally D-optimal objective
value and success rate of NovDE with NovDE-Bin and the
other six differential evolution algorithms. Wilcoxon rank-
sum test [45] is also conducted at the 5% significance level.
In Table 10, both the mean of the objective value and the
success rate of NovDE is the highest, and NovDE-Bin is
the second highest. NovDE significantly outperforms all the
other six algorithms. We observe that the overall outperfor-
mance of the NovDE and NovDE-Bin algorithms relative
to the other six algorithms are less dramatic than when the
model has no interaction terms, our results still show it is
effective in solving non-separable high-dimensional locally

D-optimal design problems with mixed factors on various
design spaces. In particular, it shows the NovDE is able to
handle premature convergence and non-separable issues well
in complex optimization problems. The proposed NovDE
algorithm can produce optimal designs for a more realistic
situation and so represents an advancement. Table 11 shows
the optimal design for the car refueling experiment with five
pairwise factor interactions. There are 18 support points, and
the design criteria value is -71.4284. The design has a D-
efficiency of 95% or higher. An interesting note is that Table
11 shows each support point can have one or more factors
supported other than at its extreme values. This violates the
common rule mentioned earlier and serves to show that as
the model gets more complicated, the structure of the optimal
design also becomes harder to characterize and understand.

VI. CONCLUSION
We propose a DE-based algorithm NovDE to search for
locally D-optimal designs for logistic models with multiple
factors and the factors may or may not interact with one
another. We employ a new novelty-based mutation strategy to
explore various regions of the search space so that the diver-
sity of the population would be preserved. The new novelty-
based mutation strategy is collaborated with ’DE/rand/2’
and ’DE/current-to-rand/1’ which can balance exploration
and exploitation at early or medium stage of the evolution
so that both convergence and diversity of the population
are enhanced, and premature convergence issues are allevi-
ated. We have demonstrated that NovDE provides the best
objective function values and success rates compared with
four other DE-related evolutionary algorithms. NovDE also
outperforms the others in terms of finding a highly efficient
D-optimal design for the ten-factor car refueling study where
there are discrete and continuous factors in the logistic model
and some of them interact with one another. Our empirical
results also show that the distribution of the support points for
optimal designs for models with interaction terms are more
complex than those for models without interaction terms.

We focus on logistic models which are the most commonly
used in practice to model binary responses. We expect our
proposed algorithm works for other link functions as well,
including cases when the response is continuous and there
are many mixed factors. Our future study includes testing
the capability of our proposed algorithm for tackling these
problems and multiple-objective optimal design problems.
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TABLE 9: NovDE-generated locally D-optimal design for car refueling experiment without factor interactions.

Support point Ring Type Lighting Sharpen Smooth
Lighting

Z axis
Y axis

Car Dist. Ring Thick.
Threshold

PiAngle skew Step-size
1 -1 -1 -1 1 50 30 10 48 0.1250 5 0.0909
2 -1 -1 -1 -1 50 30 4.1991 48 0.1250 5 0.0909
3 -1 -1 -1 -1 50 30 10 48 0.1250 8.5698 0.0909
4 -1 -1 -1 -1 50 30 10 48 0.1250 5 0.0807
5 -1 -1 -1 -1 54.6407 30 10 48 0.1250 5 0.0909
6 -1 1 -1 -1 50 30 10 48 0.1250 5 0.0909
7 1 -1 -1 -1 50 30 10 48 0.1250 5 0.0752
8 1 -1 -1 -1 50 30 10 48 0.4250 5 0.0397
9 -1 -1 -1 -1 50 32.9005 10 48 0.1250 5 0.0909

10 -1 -1 -1 -1 50 30 10 45.6796 0.1250 5 0.0909
11 -1 -1 -1 -1 50 30 10 48 0.4250 5 0.0772
12 -1 -1 1 -1 50 30 10 48 0.1250 5 0.0909

TABLE 10: Comparisons of the performance of NovDE,
NovDE-Bin and six competitors for the car refueling exper-
iment with factor interactions. The best values of the mean
and success rates are in bold. The entries with ∗ represent
NovDE significally outperforms the other algorithm based on
Wilcoxon rank-sum tests

Algorithm Success Rate Mean (std)

NovDE 80% -71.5401 (0.3365)

NovDE-Bin 70% -71.5640 (0.3453)

DE/rand/2/bin 0% -74.4495 (1.4082)∗

ANDE 23.33% -72.0390 (0.6751)∗

SaDE 3.33% -71.7135 (0.3182)∗

SaDE+MER 20% -71.6072 (0.1860)∗

JADE 30% -71.5843 (0.3562)∗

DDE-AMS 6.67% -71.7058 (0.3136)∗
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