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ABSTRACT OF THE THESIS

Comparing GNSS and InSAR Derived Ground Motion Velocities in
Preparation for NISAR

by

Amy Whetter

Master of Science in Earth Sciences, 2020

Professor Adrian Borsa, Chair

A key element in the preparation for NISAR’s launch (see Section 1.2) in 2023

is developing a methodology for validating NISAR-estimated displacements against

GNSS displacements. In collaboration with the NISAR Solid Earth Science team

I developed a Jupyter notebook workflow to download and generate timeseries of

Sentinel-1 interferograms and GNSS daily solutions, project their displacements into

radar line-of-sight (LOS), and derive velocity trends for each GNSS station in the

given study site region and its collocated InSAR pixel. These velocity trends are

then compared to asses the agreement of Interferometric SAR (InSAR) with GNSS.

The effect of varying the following parameters were investigated: the GNSS station

velocity approximation model, the reference station selected, various applied InSAR

corrections, and the number of InSAR pixels averaged to form the InSAR collocated

x



velocity. Analysis was conducted at two study sites, the Mojave Desert in California

and a section of the Central Valley in California. The Mojave study site did not

meet the validation requirement set by the NISAR team while the Central Valley

did. Another key element of this project is providing future users with a clear and

simple workflow to compare GNSS and InSAR data. The workflow discussed in this

thesis has been handed off to the Solid Earth Science team to maintain and improve

the user accessibility by moving the workflow into a cloud based environment.
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Chapter 1

Introduction

1.1 Motivation

Understanding ground motion is an important and longstanding challenge. His-

torically, ground motion has been studied using continuously operating Global Navi-

gation Satellite System (GNSS) stations on permanent monuments. GNSS only gives

sparse point measurements of deformation, which is a limitation as many important

deformation processes (e.g., earthquakes, groundwater extraction) are highly variable in

space. Although GNSS has high temporal sampling, the current low spatial density of

GNSS networks is not adequate for resolving strong spatial gradients in surface deforma-

tion. Relying solely on GNSS at its current spatial density can thus lead to a misleading

conclusions about the nature of deformation processes.

A way to increase GNSS resolution in areas of scientific interest is to densify the

GNSS station network; however, this solution is typically not feasible due to high cost

(Wei et al., 2010). InSAR (Interferometric Synthetic Aperture Radar), which observes

surface deformation over large areas (250 km swaths) at high resolution (100 m) and

moderate temporal sampling (6-12 days), provides a means of addressing shortfalls in

GNSS spatial sampling. Since it is an imaging technique, InSAR captures deformation

that is missed by GNSS, at the cost of higher noise due to atmospheric and other effects

(Bekaert et al., 2015; Gray et al., 2000).

In this thesis, I examine GNSS and InSAR estimates of surface deformation over
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two regions (one stable, one actively deforming) in California, both to understand how

the observations compare, and to develop algorithms that will be used for the validation

of NASA’s upcoming NISAR mission (see Section 1.2). For the stable region, I use an

area of the Mojave Desert in California where I expect minimal surface motion over the

analysis period. Active regions are defined by the NISAR mission as locations where

the Global Strain Rate Model (Blewitt et al., 2018) indicates strain in excess of 20 ns/y

or 1 mm/y over 50 km (Algorithm Theoretical Basis Document, 2022). For the active

region, I use the Southern Central Valley, California, which features some of the highest

rates of vertical deformation on the planet. Subsidence rates can be up to 131 mm/yr

(Levy et al., 2020).

Since groundwater pumping is the source of most Central Valley subsidence

(Famiglietti et al., 2011), the Valley is a location of both scientific and socioeconomic

interest. In fact, one of the most important reasons to characterize surface motion is for

monitoring groundwater withdrawal. Groundwater is extracted from aquifers all over

the world to meet agriculture and urban water demand, and its use is a widespread

resource management issue (NISAR User Handbook, 2018). Aquifers can permanently

deform when groundwater is withdrawn unsustainably, losing their capacity for future

storage (Smith et al., 2017). As water shortages increase due to a changing climate,

losing existing storage capacity is of great societal concern.

Monitoring storage capacity has become particularly pertinent in California since

the introduction of the Sustainable Groundwater Management Act (SGMA BMP 6),

which was enacted to reduce over-extraction of groundwater and to balance pumping

with recharge within groundwater basins. Permanent deformation can be avoided by

sustainable, low-impact groundwater extraction, which monitoring can help achieve.

InSAR has the potential to play a key role in this monitoring because of its broad

spatial coverage and high sampling rate (e.g., 12-day repeat data collection in the case
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of Sentinel-1A and NISAR), creating a robust timeseries of surface motion that can

in turn be used to infer groundwater storage changes and better manage groundwater

supply (NISAR User Handbook, 2018).

Groundwater over-extraction not only has the potential to reduce storage capac-

ity, but the accompanying surface subsidence can also lead to infrastructure damage.

Land subsidence in the Sacramento River Delta has increased the threat of flooding,

and the sinking of Central Valley canals has reduced water flow downstream Escriva-

Bou et al. (2020). Similarly, dams become less effective as their storage capacity is

reduced. Roads and railways can suffer damage from subsidence. In all these cases, In-

SAR can play an important role in understanding surface motion, mitigating damages,

and saving resources.

1.2 NISAR Mission and Validation Requirements

The NASA-ISRO Synthetic Aperture Radar (NISAR) is an upcoming Earth or-

biting satellite mission that is expected to launch in early 2023. The National Aero-

nautics and Space Administration (NASA) and the Indian Space Research Organisation

(ISRO) have put significant time and resources into planning and preparing for this mis-

sion. It will be the first radar satellite mission to collect data in two different wavelengths,

L-band and S- band, and it will have a repeat orbit of 12 days. Multiple wavelengths

and low repeat time will create a tremendous amount of new data that can be used for

a variety of scientific applications (NISAR Mission Concept).

The NISAR mission team has outlined all that needs to be accomplished before

launch. One of the NISAR science team’s current priorities is creating the workflow

that will be used to calibrate and validate InSAR observations, and to demonstrate that

these observations meet mission requirements. The work described in this thesis directly
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supports these initiatives, and I have worked in close collaboration with the Solid Earth

Science team.

NISAR’s Solid Earth Science (SES) Mission requirements are outlined in the

Solid Earth Algorithm Theoretical Basis Document (ATBD). Three types of surface

deformation are addressed in the SES ATBD: transient motion, coseismic motion from

large earthquakes, and secular deformation. Each has its own validation requirements.

My work focuses on the secular deformation, which is the most relevant in the Central

Valley.

The ATBD secular deformation validation requirement states,

“The NISAR project shall measure at least two components of the spa-

tially and temporally averaged relative vector velocities over active regions of

Earth’s land surface with accuracy of 2 mm/yr or better, over length scales

0.1 km ≤ L ≤ 50 km” (Algorithm Theoretical Basis Document, 2022)”

For this thesis, I analyze only one component of vector velocity in two locations as

a proof-of-concept for NISAR validation, with the understanding that actual validation

will use two look directions and many calibration areas. NISAR uses different validation

approaches to satisfy this requirement, based on whether or not independent reference

data is available. The work in this thesis contributes to validation approach #1, which

assumes that a network of GNSS stations exists within the calibration/validation region

to provide independent displacement measurements. This approach requires GNSS sta-

tion displacements to be projected into Line of Site (LOS) velocity estimates so that

they can be compared to the InSAR LOS displacements.

The reason GNSS is used as a reference for InSAR is that GNSS displacements

are derived from continuous observations of up to dozens of GNSS satellites over 24-hour

periods using stable monuments. This means that GNSS estimates of surface motion

can take advantage of varying observational geometry and models of atmospheric delay
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to minimize uncertainty. This is unlike InSAR, whose underlying images are acquired

from much more limited geometric and temporal sampling, and thus are more likely to

be impacted by effects that are unrelated to actual Earth deformation.
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Chapter 2

Data Collection and Processing

The work presented in this thesis uses collocated InSAR and GNSS data at two

separate locations in California. This chapter discusses how these data were collected

and processed.

2.1 Study Sites

Figure 2.1: Study site location map. Each study site in shown by a white box
outlined in red. Site A, the control, is located in California’s Mojave Desert. Site
B is located in California’s Central Valley and has significant vertical motion.

Two study sites were selected, Figure 2.1. Site A covers a portion of the Mojave

Desert in California. This site is used as a control site as it currently shows minimal

ground motion and has simple terrain, seen in Figure 2.2. The Site A bounding box
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coordinates are 34.66, -116.62, 35.60, -114.39 (S,N,W,E), covering a 110 km by 220 km

area. Observational data for Site A includes 244 Sentinel-1 interferograms, from 71 SAR

acquisitions spanning temporal baselines of approximately 1 week to 1 year, spanning the

period 2018/01/01 to 2020/01/01. We also use North/East/Up (N/E/U) displacements

from 27 GNSS stations over the same period. During InSAR processing the raw SAR

SLC (single look complex) images where spatially filtered using a multi-look filter with

19px in azimuth and 7px in range.

Figure 2.2: Inside the red boundary shows Site A and reference station P626

Site B covers a swath of the southern Central Valley and a portion of the adja-

cent Sierra Nevada. The site includes areas of significant subsidence and features diverse

terrain, with high relief to the west and east of a broad flat valley floor, seen in Figure

2.3. This site was selected to see how InSAR performs under high-deformation condi-

tions. The bounding box coordinates are 35.77, 36.75, -120.61, -118.06 (S,N,W,E), which

covers an area of 100 km by 200 km. Data for this site includes 203 Sentinel-1 interfer-

ograms, from 70 SAR acquisitions with roughly the same temporal baselines as for Site

A, spanning the same two year time period as for Site A (2018/01/01 to 2020/08/01),

along with N/E/U displacements from 56 GNSS stations. A two year timeframe was

used to help mitigate the effect of high displacement gradients and atmospheric noise in

the interferograms.
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Figure 2.3: Inside the red boundary shows Site B and reference station P467

2.2 Data Collection

The NISAR Science Team is testing NISAR validation algorithms using synthetic

aperture radar data from Sentinel-1, as the NISAR mission will not be able to generate

data until after launch. Sentinel-1 uses C-Band radar, which has a shorter wavelength

than NISAR’s primary L-Band instrument. Sentinel-1 is less susceptible to ionospheric

noise than NISAR (Bekaert et al., 2015; Gray et al., 2000), however the Sentinel-1

mission still serves as a good NISAR analogue. The Sentinel-1 repeat time is nominally

12 days, but was 6 days when both the 1-A and 1-B satellites were flying. Similarly,

NISAR plans a 12-day repeat cycle with ascending and descending passes giving 6-day

average sampling (NISAR User Handbook, 2018).

For the validation described in this thesis, two Sentinel-1 datasets were used:

Frame 475 on Path 173 (descending) for the Mojave, and Frames 471-473 on Path

144 (descending) for the Central Valley. A total of 447 geocoded unwrapped (GUNW)

interferograms for these two sites were prepared by the NISAR project, staged at the

Alaska Satellite Facility (ASF), and downloaded in my workfow for validation testing.

Note that it takes under a minute to download an interferogram, which is a small fraction

of the time to process that interferogram locally. GUNW products are extremely easy
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to use, since they are projected from radar azimuth/range coordinates onto a uniform

X/Y pixel grid that can easily be converted to lat/lon. We initially processed and

downloaded a subset of these interferograms using ASF’s Vertex tool, but switched to

the NISAR-project-generated products to test production workflows.

By way of context, Vertex is a web-based user interface created by ASF to provide

SAR data discovery and on-demand processing for standard products (e.g., radiometri-

cally terrain corrected SAR backscatter; InSAR line-of-sight displacement). Prior to the

availability of on-demand processing, InSAR users had to use powerful, but complex,

processing tools such as GMTSAR (Sandwell et al., 2011) and ISCE (Rosen et al., 2012).

ASF developed Vertex’s on-demand services as part of its Getting Ready for NISAR

(GRFN) project, which pioneered the development of services allowing non-expert users

to make their own interferograms (Garron et al., 2019). Both project-generated and

user-generated interferograms are staged on Vertex under “S1 InSAR (beta)” category

of data products.

Figure 2.4: Vertex interface, showing ASF-archived GUNW interferograms for
Path 144 over our Central Valley study site.
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Raw data from permanent GNSS networks are processed by several analysis cen-

ters (ACs), each of which uses different processing software and parameters. The stan-

dard AC data product is a daily timeseries of North/East/Up (NEU) positions for each

GNSS station, provided in the IGS14 reference frame. For this analysis I used University

of Nevada Reno’s (UNR) daily position solutions, rotated into the Sentinel-1 radar line

of sight (see Section 3.2 below). Every week, UNR updates the daily positions for ap-

proximately 10,000 stations (Blewitt et al., 2018). While UNR is a popular data source,

this analysis could be redone with data from any of the processing centers.

In addition to position timeseries, analysis centers such as UNR typically produce

GNSS station velocity estimates. However, we cannot use these estimates for validating

the NISAR secular requirement, since AC velocities are typically estimated over the

entire station lifespan, while we need estimates for the (typically shorter) period spanned

by the available InSAR observations. Additional information on InSAR and GNSS

velocity estimation is included in section 3.2.

We note that while the work in this thesis was produced and executed on a

laptop Jupyter computing environment, the actual validation workflow for NISAR will

be run entirely in the cloud. My secular requirement Jupyter notebook is currently being

transferred to OpenSARLabs, a cloud service that sits next to ASF’s cloud archive and

which will allow users to use InSAR data for validation without the need for slow data

downloads.

2.3 InSAR Timeseries Processing Overview

There are two main techniques for creating displacement timeseries from InSAR:

Persistent Scatterer InSAR (PS-InSAR), and Small BAseline Subset InSAR (SBAS).

Each technique has pros and cons, giving different utility for each method. Persistent
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scatterers are points that dominate the SAR backscatter, i.e., that show up as very

bright points in the SAR image (Ferretti et al., 2000). These points commonly appear

within cities, often from reflections off the edges of buildings or from unintentional

corner reflectors. Due to their high amplitudes relative to other nearby SAR scatterers,

point scatterers are associated with phase and amplitude stability over time and thus do

not decorrelate between SAR images. PS-InSAR does not support phase unwrapping

(the process converting phase to useful units by removing complete 2π phase cycles at

each point of the interferometric phase image (Werner et al., 2002)), since deformation

estimates are only available for a sparse set of PS points. Instead, the SAR phases at

individual points are differenced and a least squares adjustment is done with respect to

a reference point. This method is best for one dimensional motion with relatively low

spatial gradients in displacement, and is not the methodology used in this analysis.

SBAS is a technique (Yunjun et al., 2019) that combines many high coherence

interferograms into a robust timeseries of surface deformation. SBAS selects a sub-

set of available interferograms with short spatial and moderate temporal baselines to

increase the coherence of deformation information, especially in natural environments.

This method typically uses a large number of overlapping interferograms, which can

appear redundant but actually acts as a robust mechanism to catch and mitigate errors

and reduce noise. However, more interferograms requires higher computational efforts.

Another drawback of SBAS relative to PS-InSAR is that adding new data into SBAS

timeseries requires redoing the entire timeseries inversion rather than just adding new

acquisitions at the end. Additionally, SBAS only works with no temporal gaps in the

interferogram network, although “bad” images can be sidestepped by forming interfer-

ograms that span the impacted epoch. A major benefit of SBAS is that it provides

continuous spatial coverage where unwrapping is successful, which is better for complex

geophysical signals like surface deformation from earthquakes and groundwater pump-
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ing.

For this analysis, I use SBAS because I have access to a large number of interfer-

ograms with good correlation and unwrapping, which means I do not have to rely on a

small number of persistent scatters to estimate deformation.
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Chapter 3

Methods

This chapter presents the software used and analysis workflow I wrote to get the

InSAR and GNSS data sets into radar line-of-sight (LOS) velocities so they could be

jointly analyzed.

3.1 Third-Party Software for Data Download and

Timeseries Analysis

There are several software packages available for InSAR Timeseries analysis. For

persistent scatterer analysis, some examples are Traditional PS-InSAR, StaMPS, dePSI,

and Coherent Target InSAR. For SBAS, some examples are Traditional SBAS InSAR,

StamPS SBAS InSAR, GIAnT, and MintPy. The NISAR mission selected MintPy for

requirement validation, and since a primary motivation for this project is to assist the

NISAR mission, I use MintPy as well. MintPy (Miami INSAR time-series software in

Python, (?) was originally developed at the University of Miami, but is now maintained

by NASA’s JPL as an open source project and is available on GitHub. MintPy has

multiple capabilities. It can be used to look at the displacement of a single point, a

transect, or an entire area, with application to earthquakes, volcanoes, subsidence and

more. As I describe below, I use MintPy to analyze deformation over entire areas, and

I take advantage of several of MintPy’s processing features.

In addition to MintPy, I use JPL’s open-source ARIA-tools python package to
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download interferograms from the Alaska Satellite Facility (ASF) and to reformat these

datasets for MintPy to read. ARIA-tools is well-documented and available on GitHub

(ARIA GitHub).

MintPy uses SBAS to derive the timeseries. In MintPy, the input interferogram

is already multilooked and filtered, thus, the noise is low already. Additionally, simple

SBAS without any extra constraints is unbiased when the network is fully connected,

thus, no smoothing is needed in the time domain (Yunjun et al., 2019).

3.2 Jupyter Notebook Workflow

This section describes the Python workflow I created to do the InSAR/GNSS

validation. I wrote this workflow in the form of two Jupyter notebooks, one of which

implemented the NISAR validation algorithm from start to end, and the other of which

I used to perform the tests that I describe in Chapter 5. In order to use this notebook, it

is necessary to have already installed MintPy and ARIA-tools. I recommend setting up

an ATBD python environment as described on the NISAR Solid Earth ATBD GitLab

( NISAR GitLab). Additionally, you must have an ASF account. A summery of the

below steps can be found in Figure 3.1.

Step 1: Setting up Workflow Parameters

The following user-defined variables set the location and time period of the validation

analysis. Theoretically, this analysis can be run anywhere on Earth, but it does require

pre-made interferograms and GNSS stations to be available within the specified analysis

region:

i. project directory

ii. project name

14



iii. download region (in S,N,W,E format)

iv. analysis region (in S,N,W,E format)

v. download start date

vi. download end date

Step 2: Download Interferograms

Because the NISAR mission will produce interferograms as a standard data product

(NISAR User Handbook, 2018) and will produce all interferograms needed for valida-

tion, this workflow does not perform interferogram processing. Instead, it uses ari-

aDownload.py, a script within ARIA-tools, to query the ASF archive for any existing

interferograms within the spatial and temporal analysis bounds. This script downloads

available interferograms into a product folder within the project directory. Depending

on the number of interferograms available within the region between the start and end

dates, this step can take several hours.

Phase unwrapping is done using Statistical-cost, Network-flow Algorithm for

Phase Unwrapping (SNAPHU), which is widely used in InSAR processing software.

MintPy and ARIA-tools have build-in processing to minimize unwrapping errors. (ASF

Phase Unwrapping Documentation)

Step 3: Prepare Interferograms

To set up the downloaded data, the workflow uses the ariaTSetup.py script from ARIA-

tools. This step first confines all interferograms in the product directory to the analysis

region, although all our files should already meet this requirement. Next, it downloads

and applies the Global Self-consistent Hierarchical High-resolution Shorelines (GSHHS,

(Wessel and Smith, 1996)) water mask, which removes all pixels over water. Finally

(via the –croptounion option), it crops interferograms to the analysis region. Once

run it creates the output directories within the overall project directory that contain
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information about the coherence, imaging geometry, and the inferferogram stack. This

information is used in later processing steps.

Step 4: MintPy Configuration

MintPy uses a configuration file to set most of its runtime parameters. The configuration

file must be updated to set the mintpy.load.incAngleFile and mintpy.load.azAngleFile

parameters to the .vrt files in the incidentAngle and azimuthAngle folders mentioned

above. Custom configuration options include excluding specific interferograms and set-

ting minimum coherence limits. The configuration file also includes parameters for

controlling the application of various corrections to the InSAR data (e.g., tropospheric

correction, topography correction, and either linear or quadratic deramping). To apply

topographic and troposphere corrections requires setting up accounts with OpenTopog-

raphy and Copernicus to obtain an API key for programmatic access to their archives.

MintPy will need these keys to download correction data (Yunjun et al., 2019). Note,

MintPy’s naming convention is ”topography” correction, however, this correction is re-

ally an elevation-dependent troposphere correction.
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Figure 3.1: Flow diagram showing the jupyter notebook workflow.

Step 5: Generating an InSAR Velocity File

Next I run smallbaselineApp.py in MintPy, which performs the following steps. Note

that each of these steps can be run individually for debugging purposes, or all at once.

i. load data: load all interferograms prepared by ARIA-tools.

ii. modify network: runs quality control and drops poor interferograms.

iii. reference point: reference all deformation to a single point within the anal-

ysis region; the reference point can be user-specified, but MintPy selects it

by default.

iv. invert network: inverts the network of interferograms.

v. correct troposphere, deramp, correct topography: optional correc-

tions.

vi. velocity: creates a velocity.h5 file containing the velocity for each pixel of

the interferogram stack. By default MintPy finds the best-fitting line to all

the interferogram offsets, but MintPy can simultaneously estimate seasonal
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terms and offsets to improve the linear fit.

Step 6: Get GNSS Positions and Create LOS Timeseries

The next step in the workflow uses MintPy to query the University of Nevada Reno

(UNR) archive for all the GNSS stations in the analysis region, as defined from metadata

on InSAR coverage in the velocity.h5 file. For each GNSS station, MintPy downloads

the daily NEU (North/East/Up) position solutions from UNR.

Traditionally, GNSS displacements are published in three components: North,

East, and Up (N/E/U). InSAR displacements most commonly come in a single Line-

of-Sight (LOS) component that is directed from the SAR satellite down to the ground.

To compare these two datasets we must first get them into the same coordinates. It is

possible to convert InSAR LOS to N/E/U, but this requires 3 or more look directions

(e.g., data from both the ascending and descending paths) or other assumptions to

derive the correct relationships between N/E/U component. As we only use data from

the descending satellite track, we must instead convert the GNSS displacements to LOS.

This is done using the InSAR viewing geometry for the analysis region to reproject the

daily positions into the radar line-of-sight (LOS). For this conversion the geometry of the

first interferogram in the stack is used. However, within that scene the specific geometry

for each GNSS station is used, as the geometry changes throughout the scene. MintPy

was not originally programmed to handle GNSS timeseries, but this functionality was

added to support the NISAR mission validation. My workflow performs basic quality

control to remove stations that do not meet a temporal coverage threshold of 70% during

the study time period.

Step 7: Estimate GNSS LOS Velocities

I use MintPy to estimate LOS velocities at each GNSS station in the analysis region. For

a default model, I uses a linear term with a single annual sinusoid. The annual periodic
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term is important to include in regions where there are significant seasonal effects, like

in California, but it does not suit all stations and all regions. Figure 3.2 shows how

the velocity model is implemented within the notebook, with double periodic terms and

steps included for stations with complex seasonal behavior and/or uncorrected timeseries

offsets.

An offset is a jump in the timeseries, typically from a change in an equipment,

as seen in Figure 3.3 around 2019-10. Three stations within the two study regions have

offsets: AZBH (on 9/19/2019) and BEPK and P573 (on 7/6/2019). Initially, I flagged

and removed stations with offsets, but that resulted in the loss of GNSS data needed for

validation. To better address offsets, I included step functions in the model, placing the

step at offsets dates above (which I determined from examining the timeseries).

I used a special customization for CAFP and CRCN, which are unusual in that

a single annual sinusoid did not approximate their seasonal displacements. A double

sinusoid, with one-year and half-year periodicity, fit the displacement data the best.
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Figure 3.2: Final model used to approximate GNSS station velocities.

Figure 3.3 highlights the bias in estimated velocity that can occur when offsets

are not accounted for. The original linear-only model (green line) poorly fits the dis-

placement data (blue dots) and exhibits a positive LOS velocity. The modified model

with sinusoidal and offset terms (orange line) fits the displacement data well, and has a

negative LOS velocity.
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Figure 3.3: In blue show the daily GNSS solutions projected into the LOS. In
green is the velocity trendline used for the initial results. In orange is the velocity
trendline after modifying the model to include the offset on 2019/09/19.

Figure 3.4, which shows a station with significant seasonality in displacement,

highlights how a model with an annual periodic term (orange) fits the GNSS positions

(in blue) better than the linear-only model (green). In this example, the resulting

velocities are not too different, but you can imagine a case where they could be if the

timeseries started and ended in opposite seasons (with a peak on one side and trough

on the other).

Figure 3.4: In blue show the daily GNSS solutions projected into the LOS. In
green is the velocity trendline used for the initial results. In Orange is the velocity
trendline after modifying the model to account for the seasonal trend in the data.

Step 8: Reference GNSS and InSAR LOS velocities to Common Frame
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To compare InSAR and GNSS velocities across the analysis region requires that both are

in the same frame of reference. While GNSS positions (and thus velocities) are provided

in an absolute reference frame (e.g., IGS08), InSAR displacements and velocities are

provided in a relative frame of reference based on whatever location is chosen as the

InSAR reference point in Step 5. However, the original S1 data are in ITRF14.

In this step, the workflow defines a single GNSS station to be a common reference

point for both GNSS and InSAR. The GNSS LOS velocity for this station is subtracted

from that of all other GNSS velocites, and the InSAR velocity for this pixel is subtracted

from that of all other pixels. While this step only removes offsets between the InSAR

and GNSS velocity fields, it is still important. Identifying stations located away from

deformation processes (i.e., away from subsidence/uplift) to avoid introducing a large

local bias, I chose station P626 for Site A in the Mojave and P467 for site B in the

Central Valley. Choosing a difference alignment method such as GInSAR (Neely et al.,

2020) could improve results and will be discussed Section 6.1.

Step 9: Averaging InSAR Pixel Velocities

InSAR data are provided on a uniform x/y grid for analysis, where each grid point is

called a “pixel,” and each pixel has dimensions of about 100m on a side. To mitigate

the impact of noise or missing data in individual pixels, I took the median velocity of

multiple pixels to form our InSAR velocity for comparison. Specifically, I took the me-

dian of all InSAR pixels within a 11 px by 11 px window (approximately 1km by 1km)

around a GNSS station location to be the InSAR velocity for that location. The 11 px

by 11 px ( 1km by 1km) window represented a trade-off between minimizing noise and

introducing error from using too large an area. In practice, my analysis in Chapter 5

shows that the value of the averaging radius has little impact on the InSAR velocity

estimate.
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After these steps are complete in the workflow, the InSASR and GNSS velocity datasets

are ready for analysis.

23



Chapter 4

Results

This chapter presents the initial results for each study site.

4.1 Site A: Mojave

Plotting the GNSS station velocities with InSAR velocities gives a quick visual

way to compare these two datasets. In Figure 4.1 we see that none of the GNSS stations

exhibit large velocity discrepancies with respect to the background InSAR velocities.

Figure 4.1: InSAR velocity map of Site A. GNSS station velocities are overlaid,
shown within the circular marker and colored to the same scale as InSAR velocities.
Reference station is P626, which is roughly in the center of the study region.

Figure 4.1 also serves as a check on the validity of the InSAR velocity data, which has

the spatial pattern we might expect for this area. On the right, we see the Colorado river

masked out and some subsidence (red) in the agricultural regions bordering the Colorado

river to the south. Slightly left of center we see a small circular area of uplift. This is

24



the oasis of Mara Soda Lake, a dry lake bed next to Soda Springs which appears to have

differential motion relative to the desert around it. These features give confidence that

the InSAR velocities are revealing actual Earth deformation. Overall, however, Site A

is fairly stable, which is what we and expected.

Another way to look at these results is in a histogram of the velocities. On the left

of Figure 4.2 the InSAR velocities (in blue) are plotted with the GNSS velocities overlaid

(in yellow). On the right are the residuals (GNSS minus InSAR) between the datasets at

each GNSS station. While the InSAR and GNSS velocity distributions have roughly the

same spread (standard deviations of 0.19 cm/y and 0.13 cm/y, respectively), they have

different mean values (-0.18 cm/y and -0.05 cm/y), which results in a positively biased

residual distribution. Overall, both sets of velocities exhibit small velocities overall, with

the differences between them consistent with small amounts of additive noise.

Figure 4.2: Left: the Mojave velocities and standard deviation with P626 as the
reference station. Right: GNSS minus InSAR residuals with standard deviation.
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4.2 Site B: Central Valley

The Central Valley velocities are shown in Figure 4.3. This analysis region has

far more decorrelation than does the Mojave, as indicated by the white patches in the

center (agricultural fields) and right (high mountains). Both the InSAR and the GNSS

velocities show a large subsidence bowl in the Central Valley, as expected from previous

studies (Faunt et al., 2016; Levy et al., 2020) and known high rates of groundwater

pumping in the region. The broad range of velocities across Site B is important to

the NISAR team for testing the validation workflow. Visually, it appears there is good

agreement between GNSS and InSAR, including in areas of the highest subsidence (dark

red).

Figure 4.3: InSAR velocity map of site B with GNSS station velocities overlaid,
shown within the circular marker and colored to the same scale as InSAR velocities.
Reference station is P467, to the far right of the study region.

Next we look at the histogram of the velocities and and residuals for the Central

Valley (Figure 4.4). The range of velocity values is significantly larger than in the

Mojave, and this is reflected in the much larger standard deviations of the InSAR (1.6

cm/y) and GNSS (2.1 cm/y) distributions. As in the Mojave, the InSAR velocities are

biased negatively compared to GNSS, which results in the positive bias in the (GNSS

minus InSAR) residuals. Unlike in the Mojave, where the residual standard deviation is
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only slightly smaller than that of either InSAR or GNSS, in the Central Valley, the much

smaller standard deviation of the residual suggests that the GNSS and InSAR velocities

are primarily reflecting common Earth deformation processes (rather than noise).

Figure 4.4: Left: the Central Valley velocities and standard deviation with P467
as the reference station. Right: GNSS minus InSAR residuals with standard
deviation
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Chapter 5

Discussion

After reviewing my initial results, I explored the effect of making different choices

in the analysis. I experimented with changing the GNSS reference station, the spatial

averaging of InSAR velocity, and applying different corrections to the InSAR dataset.

5.1 Reference Station Selection

I tested different reference stations to see how important the reference station

selection was and how much it would effect the InSAR/GNSS comparison. I compared

three stations to the originally chosen stations in each analysis region (P626 in the

Mojave, P467 in the Central Valley). The first station had the closest to average velocity.

The second station was the one whose velocity was closest to zero. The third was a noisy

or large-offset station. My intention behind testing stations with velocities near average

and closest to zero was to see if the selection the reference station could be automated,

rather than via manual user input as it is done now.

Figure 5.1 shows histograms for the InSAR and GNSS velocity distributions for

the Mojave. As expected, the shape of the velocity distributions do not change signifi-

cantly between plots, but the location (i.e., mean velocity value) does. Further, the first

three distributions are all very similar, which indicates that the reference station selec-

tion is not as critical as I first assumed. However, I recommend continuing to manually

select reference stations, using these metrics to help narrow the selection. Additionally, I

recommend looking at the timeseries plots for the station before finalizing the selection.
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Looking at the timeseries will help prevent selecting a noisy station whose velocity may

not reflect that of other stations around it. An example of such a station is station

AZBH, on the far right of Figure 5.1, which gives a reference velocity that is not a good

match to the InSAR data.

Figure 5.1: InSAR (blue) and GNSS (yellow) velocity distributions for Site A.
InSAR velocities remain the same throughout the four graphs while the GNSS
velocities shift as different reference stations are applied.

In site B, we see a similar result but with more noise in the GNSS and a larger

spread of velocity values. Overall the four reference stations show similar agreement

with the InSAR velocities, although LOWS and MIDA show the best match with InSAR

velocities (residual medians of 0.27 cm/y and -0.02 cm/y, respectively, compared to 0.71

cm/y for the original reference station P467).

Figure 5.2: InSAR (blue) and GNSS (yellow) velocity distributions for site B,
following the convention in Figure 5.1. All four reference stations are reasonable
choices.
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5.2 Impact of InSAR Corrections

The original InSAR data has no corrections applied. I tested the effects of ap-

plying various corrections available in MintPy, for the purpose of identifying which ones

are most likely to improve the InSAR/GNSS comparison. A summary of results for

each correction is shown in Table 5.1 (Mojave) and Table 5.2 (Central Valley). These

tables include the standard deviations of InSAR velocities and the (GNSS minus InSAR)

residual velocities, and the best fit line and Pearson correlation coefficient between the

two sets of velocities.

Figure 5.3 (Mojave) and Figure 5.4 (Central Valley) visually summarize my find-

ings. Each subplot shows GNSS velocities on the x-axis and uncorrected InSAR velocities

on the y-axis, where each point represents a GNSS station location. The diagonal black

line indicates perfect 1:1 agreement between GNSS and InSAR, and ideally all points

would fall along this line. The colored line in each subplot is the result of a linear fit

between GNSS and InSAR velocities. In the legend, I report the slope and intercept

of this fit, along with their corresponding uncertainties. The Pearson correlation coef-

ficient, which I report in the tables, is used to see how close the data are to a line. A

value of 1 means the data fall perfectly on a line, while a value of 0 means the data are

randomly scattered in relation to each other.

With no corrections, the slope of the linear relationship between GNSS and In-

SAR is 0.323 and the Pearson correlation coefficient is 0.213. This represents poor

correlation of InSAR and GNSS, which is what we might expect in a region like the

Mojave with little actual deformation. I tested several corrections by editing the project

configuration file as explained in Step 4 of Section 3.2. The tropospheric correction

(middle-top subplot in Figure 5.3) greatly improved the comparison, yielding a slope

of 0.671 and a Pearson coefficient of 0.540. This is an expected results as most InSAR

30



error comes from the troposphere (Bekaert et al., 2015). The topography correction

(middle subplot) gave the best result, with a slope of 0.834 and Pearson coefficient of

0.544. The shapes of the topography and troposphere correction scatterplots are similar,

as expected given that the topographic correction is primarily adjusting for radar path

length through the troposphere.

Applying linear deramping (top-right plot) changed the scatterplot significantly,

but did not improve the linear relationship between GNSS and INSAR, giving a slope

of 0.277 and Pearson coefficient of 0.318. The quadratic deramp also did not improve

the result, givine a slope of 0.227 and (an identical) Pearson coefficient of 0.227. It is

unclear if the deramp worsened the results because the ramp in the velocity map was

due to actual deformation observed in both GNSS and InSAR, or if there is an error

with how this correction is applied in MintPy. This concern has been brought to the

NISAR Solid Earth team for further examination and discussion (see Section 6.1). A

combination of corrections was tested and can be seen in Table 5.1, but none of these

performed as well as the topographic and tropospheric corrections alone.

While the topography correction is the best, none of the corrections yield a par-

ticularly high linear correlation between GNSS and InSAR. As mentioned earlier, the

velocity values themselves are low and the range of velocities is so small that any error

is magnified. Additionally, some of these corrections make the correlation between the

InSAR data and GNSS data worse rather than improving it. This is a very impor-

tant take-away, since it demands that future users of this workflow must apply these

corrections with caution and thorough examination.
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Figure 5.3: Each subplot contains a different correction or correction combination
applied to the InSAR data. GNSS stations are plotted with their GNSS velocity
along the x-axis and InSAR velocity along the y-axis. Overlaid is the line of best
fit, the ideal or perfect fit is shown in black with a 1:1 relation between the datasets.
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Table 5.1: Complete statistical list for each correction and correction combina-
tions plotted in 5.3.

For Site B in the Central Valley, with no corrections the line of best fit gives a

slope of 0.863 and a Pearson coefficient of 0.978. This is much better than any result for

Site A. One reason for this could be that there is a much larger range of velocities in the

Central Valley. This makes the Pearson coefficient harder to compare between the two

analysis regions, since a few really large values are driving the high Pearson coefficient

values.

The tropospheric correction has a slope of 0.904 and Pearson coefficient of 0.986.

Just as in site A, this improves the relationship between the two datasets. The topogra-

phy correction gives a slope of 0.89 and coefficient of 0.982, which is also an improvement

from no correction. The linear deramp has a slope of 0.61 and coefficient of 0.941. The

quadratic deramp has a slope of 0.613 and coefficient of 0.779. Again, neither deramping

correction improves the results, and both must be used with caution. The full lineup

of best fit equations can be found in Table 5.2 as well as the correction combination

results.

For the Central Valley, applying InSAR corrections does not significantly improve

the comparison between GNSS and InSAR. While not including corrections is probably
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fine in regions with large deformation, my results do not indicate they need to be added

as standard practice.

Figure 5.4: Same as Figure 5.3, but for Site B in the Central Valley.
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Table 5.2: Same as Table 5.2, but for Site B in the Central Valley.

5.3 Spatial Averaging of InSAR Velocities

I conducted follow-up analysis on the size of the spatial averaging region for

InSAR velocity estimates, to determine how much averaging is optimal for comparison

with GNSS station velocity observations. In my workflow, I parameterize the averaging

region in terms of the radius in InSAR pixels around a measurement point. This is done

after MintPy has estimated a velocity value for each pixel and solely for the purpose of

comparing to GNSS stations.

The InSAR velocities shown in Figures 4.1 and 4.3 were created using a 11px

by 11px (1km) median smoothing window, as explained in Step 10 of section 3.2. To

examine the impact of median window size on the velocity estimate, I compared raw

100m-resolution MintPy velocities against velocities smoothed using median windows

with widths of 11px (1km) and 101 px (10km).

Examining Figure 5.5 and Figure 5.6, there is very little difference between the

raw velocity estimate and either of the smoothed velocity fields. The residual plots in

the right panels of those figures show that changing spatial averaging has much less of
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an impact than I initially assumed. It is a very surprising finding that there is almost no

residual difference between the 101 px and 1 px plots, which indicates that the velocity

measurements are really robust. However, for stations near the edge of the study site

the median window may extend beyond the analysis region, which means that large

windows may not equally sample velocities on all sides of the station. For that reason,

and for speed of processing, I recommend continuing to use the 11 px median window.

In addition to the results shown in the figures here, I also performed the GNSS/

InSAR velocity comparison from 4.1 and 4.2 using different median smoothing of InSAR

velocities. These results were almost identical to those obtained using the raw InSAR

velocities.

Figure 5.5: Site A InSAR velocities with a median filter applied. Left shows
the raw MintPy velocity estimate. Middle shows a 11px (1km) and 101px (10km)
filter. Right shows the difference between the raw and filtered images.
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Figure 5.6: Same as Figure 5.5, but for Site B in the Central Valley.

5.4 Meeting NISAR’s Validation Requirement

As this work is meant to support NISAR validation, it is important to check if

measured velocities meet the required accuracy of 2 mm/y or better over length scales

of 0.1 km ≤ L ≤ 50 km. Since the requirement is written in terms of baseline distances,

the validation is performed on relative velocities between various points in the analysis

region and not on absolute velocities. The validation still uses GNSS for reference, but

instead of comparing GNSS velocities directly with InSAR velocities as I did above,

it compares pairwise differences of GNSS and InSAR velocities between GNSS station

locations.

Specifically, I calculate baseline distances for all pairs of GNSS station locations

in the analysis region. I difference the GNSS LOS velocities and the InSAR velocities

for each pair, then take the difference of the differences (a double difference). Since we

assume the GNSS velocities to be correct, this double difference represents the assumed

error in InSAR velocities over the various baseline distances in the dataset.

In order to assess whether the InSAR velocity error meets NISAR’s accuracy

requirements, the NISAR Solid Earth Team groups the baselines into 5-km-wide bins

and:
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“assumes that the residuals between cGNSS and InSAR follow a Gaussian

distribution. For each distance bin, if the fraction of residuals lying below

the bin threshold value is more than 0.683 (i.e., one standard deviation),

we judge the derived secular deformation rate... to pass the corresponding

requirement. (Algorithm Theoretical Basis Document, 2022)”

The ATBD document additionally specifies that only stations within 50 km of each other

need to satisfy the velocity requirement. Figure 5.7 shows the double differences for all

station pairs in the Mojave analysis region with baselines of less than 50 km. The red

line indicates the requirement threshold accuracy of 2mm/yr.

Figure 5.7: The x-axis is the distance between GNSS stations in the Mojave
analysis region. On the y-axis is the absolute value of the double-differenced
velocity residual. To meet the NISAR requirements for any given distance interval,
68% of the points within that interval must fall below the 2 mm/yr threshold shown
in red
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Table 5.3 highlights if the secular requirement is met or not. The table columns

show results for each of the 5-km-wide distance bins. The first row shows the total

number of double differences in the bin, and the second row shows the number of double

differences under the 2 mm/y threshold. The third row shows the percentage of differ-

ences that meet the requirement, and the forth shows if the InSAR velocities in a given

bin pass (true) or fail (green) to meet requirement. Site A just fails the requirement,

with 67.5% of all points lying below the 2 mm/y threshold. I think this is mostly due

to the limited data within the 50km range.

Table 5.3: Site A pass/fail validation table. Row 1 shows the total stations in a
given distance bin, Row 2 shows the number of stations that meet the requirement,
Row 3 shows the percent that pass the 2mm/yr threshold where red indicates
failure and green indicates passing.

Site B in the Central Valley passes the NISAR validation requirement, with 69.9%

of the double differences at baselines ≤ 50 km lying below the 2 mm/y requirement. This

is a significant result that demonstrates that InSAR data hold up in actively deforming

regions. It is unexpected that Site B performed better than site A. This could simply

be due to the fact that there are significantly more stations within 50 km of each other

in the Central Valley, as seen in Figure 5.8 and Figure 5.4.
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Figure 5.8: Same as Figure 5.7, but for the Central Valley. There are many
more double differences in this figure, especially at short distances (due to the
concentration of stations around Parkfield at the southwest corner of Figure 4.3)

Table 5.4: Same as Table 5.3, but for Site B in the Central Valley.
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Chapter 6

Recommendations and Limitations

6.1 Recommendations for MintPy Updates

MintPy has extensive built-in functionality, however some are quiet buried. A

great deal of my time on this project was spent reading through the code to find the right

function I needed to call. More examples and documentation would allow users to better

understand this tool. Further documentation is being developed and will be released by

the NISAR mission. While developing this notebook, significant effort went into making

it as user friendly as possible and ease of use was a top consideration throughout this

process.

I also recommend changing how the deramp correction is applied. This correction

is currently being done to the entire stack while it would be much better to do to each

interferogram before the stack is built. This issue has been brought to the attention to

the developers and is being worked on.

Another place MintPy could be improved is by implementing a different method

to align the InSAR data to the GNSS. Rather than using a single reference station you

could align to the entire network of GNSS stations as done in the GInSAR method

(Neely et al., 2020).
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6.2 Limitations

A limitation to using this workflow is the high start-up cost. There are many

detailed steps required to set up the Python environment required to run this notebook.

While there is documentation, it is easy to get stuck.

Data availability is another limitation. For this workflow to work there has to

be preexisting processed interferograms. As can be seen in the ASF Vertex archive

of premade Sentinel-1 interferograms (the “S1 InSAR beta” products), these data are

currently limited. ASF is currently working to expand their interferogram archive, which

will increase the functionality of the workflow I have developed. The NISAR mission will

produce interferograms as a standard product, so I anticipate this will not be a major

problem for NISAR.

GNSS data are limited as well. While the study sites selected for this work have

significant GNSS station coverage, that is not always the case. In an area of poor or no

GNSS coverage but small expected deformation, it is possible to analyze the distribution

of InSAR velocities with respect to zero velocity, but it is better to have the actual GNSS

velocites for comparison.

InSAR signals contain noise, which can be significant and effect velocity validation

results, especially over short timeframes. However, using many interferograms over

long periods, velocity errors become negligible. Unfortunately, lengthening the analysis

timeframe is not always an easy solution, since it will increase workflow run time in the

notebook and require more storage space for additional interferograms.

Notebook speed is the another limitation. Downloading the InSAR data from

vertex can takes several hours and single steps within the notebook can take several

minutes. This issue has been discussed and addressed by the NISAR Solid Earth Science

team. To solve this limitation, they have been migrating the calibration and validation
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notebooks to the cloud, using ASF’s openSARLabs resources.

Finally, this notebook works best when run once for a single result. It does not

work well when running multiple tests, such as I did when testing processing parameters

for Chapter 5. File management and naming rapidly become tedious and difficult, as

there is not a great way to save output velocities from one test to another. For the

purpose of this work, I exported each test as a csv file and had a separate notebook to

compare results from different tests.
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Chapter 7

Conclusions

This work directly helped the NISAR Solid Earth Science team meet their cali-

bration and validation proof-of-concept goals. In order to use this workflow, some prior

knowledge of GNSS is helpful and I highly recommend plotting the stations daily LOS

positions, manually flagging any offsets times that appear, and incorporating offsets

into the velocity estimation model. Additionally, I recommend adding a troposphere

correction to interferograms, especially in areas of high topographic relief.

The workflow described in this thesis will continue to be developed and will serve

as a public resource to support the NISAR mission and the use of NISAR data. As

mission preparation continues, my validation results in the Mojave and Central Valley

should provide valuable information about what to expect with NISAR validation. The

Central Valley study site met the velocity requirement, while the Mojave site just barely

missed this requirement, and further work will determine if longer analysis periods or

the switch from Sentinel-1’s C-Band observations to NISAR’s L-Band observations will

make a difference.

After this analysis, I do not think InSAR should be used in place of GNSS,

but rather to supplement it. Using InSAR to supplement GNSS data helps shed light

on continuous deformation that might be missing from GNSS data alone. While some

stations match incredibly well, and the requirement was met in the Central Valley I

believe the velocity requirement set a fairly low bar to pass. Additionally, I do not think

InSAR is absolutely reliable, as there are some station locations that show significant

velocity differences.
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This work could be improved if corner reflectors were at the GNSS sites. This

would make the results more robust. As it is, we are assuming the signal we see is

displacement, however there are a lot of different signals that could be causing error

in both the GNSS and InSAR displacements. By using corner reflectors, the signal

would be so strong, other signals become arbitrary and would remove any ambiguity.

However, doing this analysis at corner reflectors would require doing point-scatterer

InSAR inversion rather than a SBAS inversion, which is not currently possible with this

workflow process.
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