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Two-dimensional calibration-
free odds design for phase I
drug-combination trials

Wenliang Wang1, Huaqing Jin2, Yan Dora Zhang1

and Guosheng Yin3*

1Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong
Kong SAR, China, 2Department of Radiology and Biomedical Imaging, University of California, San
Francisco, San Francisco, CA, United States, 3Department of Mathematics, Imperial College London,
London, United Kingdom
In oncology, it is commonplace to treat patients with a combination of drugs that

deliver different effects from different disease-curing or cancer-elimination

perspectives. Such drug combinations can often achieve higher efficacy in

comparison with single-drug treatment due to synergy or non-overlapping

toxicity. Due to the small sample size, there is a growing need for efficient

designs for phase I clinical trials, especially for drug-combination trials. In the

existing experimental design for phase I drug-combination trials, most of the

proposed methods are parametric and model-based, either requiring tuning

parameters or prior knowledge of the drug toxicity probabilities. We propose a

two-dimensional calibration-free odds (2dCFO) design for drug-combination

trials, which utilizes not only the current dose information but also that from all

the neighborhood doses (i.e., along the left, right, up and down directions). In

contrast to interval-based designs which only use the current dose information,

the 2dCFO is more efficient and makes more accurate decisions because of its

additional leverage over richer resources of neighborhood data. Because our

design makes decisions completely based on odds ratios, it does not rely upon

any dose–toxicity curve assumption. The simulations show that the 2dCFO

delivers satisfactory performances in terms of accuracy and efficiency as well

as demonstrating great robustness due to its non-parametric or model-free

nature. More importantly, the 2dCFO only requires the minimal specification of

the target toxicity probability, which greatly eases the design process from the

clinicians’ aspects.

KEYWORDS

dose finding, drug combination, maximum tolerated dose, non-parametric method,
phase I trial design
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1 Introduction

The main objective of a phase I clinical trial is to find the

maximum tolerated dose (MTD), which is defined as the highest

dose with an acceptable probability of dose-limiting toxicity (DLT).

For safety reasons, a phase I clinical trial typically assigns one cohort

at a time to the most suitable dose level according to some criterion,

and the choice of which dose to treat the next cohort is made based

on the observed toxicity outcomes of the previous cohorts.

Traditional phase I clinical trial designs are mainly for single-

drug treatments, such as the 3 + 3 design (1), the continual

reassessment method (CRM) (2), the dose escalation with

overdose control design (3), the Bayesian optimal interval (BOIN)

design (4), and the non-parametric overdose control (NOC)

design (5).

In the past decades, combination therapies have demonstrated

advantages of higher efficacy, lower toxicity, and fewer side effects

compared to monotherapy (6), and thus an efficient design for

drug-combination trials is more desirable. A common assumption

for phase I clinical trials is the monotonic relationship between dose

levels and toxicity probabilities. For single-drug trials, this simply

restricts the sequence of toxicity probabilities with ascending dose

levels are completely ordered, i.e., higher dose levels induce more

severe toxicities. However, for two-drug combinations, this

becomes a partial ordering constraint on each row and each

column in the two-dimensional toxicity probability space, while

the toxicity relationship on the diagonal lines is often unknown,

thus imposing new challenges for dose-finding and toxicity

probability estimation.

Numerous methods have been proposed for identifying the

MTD in drug-combination trials, and most of the existing methods

rely on parametric models. Thall et al. (7) proposed a two-stage

Bayesian design with a six-parameter model, requiring informative

priors based on historical dose–toxicity data from previous single-

agent studies on each of the two drugs. Wang and Ivanova (8)

proposed a three-parameter Bayesian design using the

parsimonious working model for the dose–toxicity relationship.

Yin and Yuan (9, 10) developed a joint toxicity probability model

for the binary outcomes through a copula-type regression. Wages

et al. (11) proposed a partial ordering continual reassessment

method (POCRM) for two-dimensional drug-combination trials.

Riviere et al. (12, 13) considered a Bayesian design using the

standard logistic regression, which still requires priors of toxicity

probabilities of the two drugs respectively.

All the aforementioned methods are parametric, requiring

either specification of tuning parameters or prior knowledge of

the drug toxicities. Due to their parametric nature, these methods

often achieve high accuracy in selecting the MTD when precise

information is given, at the cost of robustness when such

information is missing or inadequate. On the other hand, non-

parametric methods tend to be more robust compared to

parametric ones. Mander and Sweeting (14) proposed a product

of independent beta probabilities design based on conjugate

Bayesian inference. The escalation scheme is constructed by

estimating a maximum tolerated contour using the posterior

probabilities. Lin and Yin (15) developed a two-dimensional
Frontiers in Oncology 02
Bayesian optimal interval (2dBOIN) design for drug-combination

trials by extending the one-dimensional BOIN design to a two-

dimensional space. Similarly, the 2dBOIN design makes decisions

based on the posterior probability that a given dose’s toxicity

probability falls in the pre-specified optimal interval. Razaee et al.

(16) introduced a non-parametric Bayesian method for dual agents

with truncated beta priors, in which the joint posterior probability

of DLT is estimated using a weighted Gibbs sampler.

In this work, we extend the calibration-free odds (CFO) design

(17) to two-dimensional drug-combination trials, named the

2dCFO design. Similar to the CFO design, our 2dCFO design is

also a non-parametric or curve-free method using purely the odds

based on the estimated posterior probabilities. The main advantages

of the CFO design are that it requires minimal parameter tuning

due to its model-free and calibration-free nature, and furthermore it

does not require prior information. The CFO design has shown

great advantages in single-drug trials with satisfactory accuracy and

robustness properties, and so does the 2dCFO design.

The rest of the paper is organized as follows. In Section 2, we

present the methodology and decision rules in the 2dCFO design

while reviewing the idea of the one-dimensional CFO design. In

Section 3, both fixed and random scenarios are experimented in

the simulations to study the operating characteristics of our

2dCFO design in comparison with other state-of-the-art designs.

In Section 4, we provide a real trial application to illustrate the

operating characteristic of our design by redesigning a drug-

combination trial using real data. Section 5 concludes with

some remarks.
2 Methodology

2.1 The 2dCFO design

In a drug-combination trial, a two-dimensional joint toxicity

probability space is considered. Suppose that we study the

combined toxicity of two drugs, drug A and drug B, with J and K

dose levels respectively. Let pjkdenote the joint DLT rate for dose

combination (j, k), j = 1,…,J, k = 1,…,K. Let f be the pre-specified

target DLT rate. Our aim is to find the MTD, which is the dose level

with the DLT rate closest to the target f,

(j∗, k∗)MTD = argmin
j,k

∣ pjk − f ∣, 1 ≤ j ≤ J , 1 ≤ k ≤ K :

In our design, we enroll cohorts one by one with a fixed cohort

size, e.g., the cohort size is 3 by default. After enrollment of n

cohorts of patients, we obtain the observed toxicity outcomes at all

the dose levels as Dn = (xjk,mjk)
� �J ,K

j,k=1, where xjk and mjk are the

observed number of DLTs and the total number of patients treated

at dose combination (j, k). Assume that dose level (j, k) is the

current dose combination, which is denoted as C. We further

denote the four adjacent dose combinations (j − 1, k), (j + 1, k),

(j, k − 1), (j, k + 1) as L, R, D, U respectively, representing the left,

right, down, and up positions relative to the central or current dose

C. There are five possible decisions to assign the next cohort, either

escalate/de-escalate to the dose level at one of the four positions
frontiersin.org
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(Left, Right, Up, Down), or treat at the current dose level, as

illustrated in Figure 1A. For each dose combination d ∈ {L, D, C,

U, R}, we denote the true DLT rate as pdand the observed toxicity

outcomes as (xd, md).

The 2dCFO design is constructed based on joint decisions of

multiple one-dimensional CFO analyses. Following the partial

ordering constraints, it is known that dose combinations L and D

have a lower DLT rate than C and dose combinations U and R

have a higher DLT rate than C. Reformulating in a one-

dimensional space, D and L are located on the left of C, while U

and R are located on the right. However, the relative positions of D

and L, as well as U and R are not known or specified, as illustrated

in Figure 1B. From the information above, we can identify four

one-dimensional dose sequences with ascending DLT rates: {L, C,

R}, {L, C, U}, {D, C, R}, {D, C, U}. Thus, the decision for escalating/

de-escalating/staying in a two-dimensional space can be made

based on the joint decisions of one-dimensional CFO analyses on

the four dose sequences. We use the dose sequence {L, C, R} as an

example to illustrate how we make decisions in a one-dimensional

CFO design, and the same method can be applied to the other

three dose sequences respectively.

The CFO design uses odds to measure the tendency for

escalating/de-escalating the dose level, which is defined as

Od =
Pr (pd > f ∣ xd ,md)
Pr (pd ≤ f ∣ xd ,md)

, d ∈ L,D,C,U ,Rf g :

Let �Od = 1/Od denote the reciprocal of Od. Taking the odds of L

and C as an example, a large value of OCindicates the current dose

combination is too toxic, which suggests de-escalating to the next

lower dose combination. Similarly, a large value of �OL indicates that

the DLT rate of the left dose combination is too low, and thus

suggests dose escalation. This is analogous to a battle between the

left and current doses: the former tries to push the dose up while

the latter tries to push it down. Hence, the ratio OC/�OL measures the

tendency or strength for de-escalating to the left adjacent dose level

L, as shown in Figure 1B. That is, a large value of OC/�OL tends to

push the dose down. Similarly, OC/�OD measures the tendency or
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strength to de-escalate to dose combination D, and �OC/OR, �OC/OU

measures the tendency or strength to escalate to dose combinations

R and U respectively, as illustrated in Figure 1A.

A non-informative prior Beta(f, 1 − f) is adopted for each DLT

rate pd. Using the monotonic relationships that pL< pC< pR, the

marginal posterior density functions for pL and pC from the left side

can be derived as

fL(pL ∣ xL, xC)∝ fb  (pL; aL, bL)
Z 1

pL
fb (pC ; aC , bC)dpC ,

fC(pC ∣ xL, xC)∝ fb  (pC ; aC , bC)
Z pC

0
fb (pL; aL, bL)dpL :

where fb(·;ad,bd) is the density function of Beta(ad,bd), with ad=

f + xd and bd= 1 − f + md− xd. Similarly, for computing the odds

ratio between pC and pR from the right side, we have

fC(pC ∣ xC , xR)∝ fb  (pC ; aC , bC)
Z 1

pC
fb (pR; aR, bR)dpR,

fR(pR ∣ xC , xR)∝ fb  (pR; aR, bR)
Z pR

0
fb (pC ; aC , bC)dpC :

Both OC/�OLand �OC/OR can be computed using the Gaussian

quadrature or the Monte Carlo method. The two odds ratios are

used for making decisions. Escalation/de-escalation is more

favorable when the odds ratio is relatively large, and staying at

the current dose should be considered when the odds ratio is

relatively small. The next step is to find appropriate thresholds

for the two odds ratios, by exceeding which we will escalate/de-

escalate the dose. Denote the true DLT rate of pLand pC as p0L and

p0C respectively. Consider the probability of incorrect votes or

indications VL(gL), i.e., either the computed odds ratio is large

(i.e., OC/�OL > gL), suggesting de-escalation, but in fact we should

stay at the current dose under the condition of (p0C= f,p0L < f), or
the odds ratio is small (i.e., OC/�OL ≤ gL) suggesting escalation

but the current dose is in fact overly toxic (p0L = f,p0C > f). As a
result, the left threshold g ∗

L can be defined as the one that minimizes

VL(gL):
BA

FIGURE 1

Illustrations of odds and odds ratios in a two-dimensional dose combination space and its one-dimensional interpretations. (A) Illustration of a two-
dimensional dose combination space, where C. is the current dose combination and L,R,D,U are the four adjacent dose combinations, where the
directions of odds ratios presented in the figure indicate the tendency of dose movement. (B) Illustration of one-dimensional interpretations of the
two-dimensional dose combination space. The upper figure shows the relative positions of D,L and U,R with respect to C. The lower figure shows
the directions of odds and odds ratio between two adjacent doses when the corresponding value is large.
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g ∗
L = argmin

gL
VL(gL)

= argmin
gL

Pr ðOC=�OL > gL ∣ p0C = f, p0L < f) + Pr ðOC=�OL ≤ gL ∣ p0L = f, p0C > f)

= argmin
gL o

mC

i=0
o
mL

j=0
I ðOC=�OL > gL) Pr ðxC = i ∣ p0C = f)Pr ðxL = j ∣ p0L < f)

+ o
mC

i=0
o
mL

j=0
I ðOC=�OL ≤ gL) Pr ðxC = i ∣ p0C > f)Pr ðxL = j ∣ p0L = f),

where I (·) denotes the indicator function. Similarly, denote the

true DLT rate of pR as p0R, and then the right threshold is defined

as

g ∗
R = argmin

gR
VR(gR)

= argmin
gR

Pr ð�OC=OR > gR ∣ p0C = f, p0R > f) + Pr ð�OC=OR ≤ gR ∣ p0R = f, p0C < f)

= argmin
gR o

mC

i=0
o
mR

j=0
I ð�OC=OR > gR) Pr ðxC = i ∣ p0C = f)Pr ðxR = j ∣ p0R > f)

+ o
mC

i=0
o
mR

j=0
I ð�OC=OL ≤ gR) Pr ðxC = i ∣ p0C < f)Pr ðxR = j ∣ p0R = f) :

Since the trial for each patient is independent, the number of

patients with DLTs follows a binomial distribution, thus we have

Pr(xC = i ∣ p0C = f) =
mC

i

 !
fi(1 − f)mC−i,

Pr(xL = j ∣ p0L = f) =
mL

j

 !
fj(1 − f)mL−j :

We further adopt a Uniform(0, f) prior for p0L when p0L< f
and Uniform(f,2f) prior for p0C when p0C > f, and then the

following probabilities can be computed using the Gaussian

quadrature,

Pr(xL = j ∣ p0L < f) =
Z f

0

1
f

mL

j

 !
pj0L(1 − p0L)

mL−jdp0L,

Pr(xC = i ∣ p0C > f) =
Z 2f

f

1
f

mC

i

 !
pi0C(1 − p0C)

mC−idp0C :

As a result, VL(gL) is computed, and so is VR(gR). Therefore, the
two thresholds g ∗

L and g ∗
R can be obtained, and the decision follows

the decision rules in Table 1.

Similar decisions can be obtained from the other three

directions {L,C,U}, {D,C,R} and {D,C,U}. Finally, we can proceed

to formulate joint decisions.
2.2 Decision rules and the algorithm

1. Treat the first cohort at the lowest dose level (1,1) or a pre-

specified dose level.
Frontiers in Oncology 04
2. Suppose the current cohort is treated at dose level C. We

apply one-dimensional CFO analysis on both the horizontal

direction {L,C,R} and the vertical direction {D,C,U}. The joint

decisions are formulated as follows.
• If analyses along both directions suggest staying, i.e., the

joint decision is to stay at the current (central) dose level,

the next cohort will be treated at dose level C.

• If one direction suggests escalation (or de-escalation) while

the other suggests staying, the joint decision is to escalate

(or de-escalate) to the corresponding dose. For example, if

the decision for {L,C,R} is escalation while the decision for

{D,C,U} is staying, then the next cohort will be treated at

dose level R.

• If one direction suggests escalation while the other suggests

de-escalation, we need to further compare the contradictory

direction using one-dimensional CFO analysis. For

example, if the decision for {L,C,R} is escalation, while the

decision for {D,C,U} is de-escalation, we further apply one-

dimensional CFO analysis on {D,C,R}, because the true

toxicity order of {D,C,R} is also known. We then escalate the

dose level to R if the decision is escalation, and the dose level

will stay at C if the decision is staying, and de-escalate toD if

the decision is de-escalation.

• If both directions suggest escalation, we will escalate to

either U or R, while the most appropriate direction can be

chosen by comparingOU andOR. Since �OC/ORmeasures the

tendency of escalating towards R, while �OC/OUmeasures the

tendency of escalating towards U, if �OC/OR > �OC/OU, i.e.,

OR< OU, we treat the next cohort at dose level R, otherwise

we treat the next cohort at U. If the two odds OR and OU are

the same, we randomly select one dose from the two to treat

the next cohort.’

• If both suggest de-escalation, we will de-escalate to either L

or D. Similarly, if OC/�OL > OC/�OD, i.e., OL > OD, we treat the

next cohort at dose level L, otherwise we treat the next

cohort at D. If the two odds OL and OD are the same, we

randomly select one dose from the two to treat the

next cohort.
3. Repeat step 2 until the sample size is reached or the early

stopping criteria are met.

The 2dCFO decision rules in Step 2 are summarized in Table 2.
2.3 Early stopping and final selection of
the MTD

In practice, it is preferable to impose some early stopping and

overdose control strategies to alleviate safety concerns. During the

implementation of the 2dCFO, we will terminate the trial if the

lowest dose level (1,1) is overly toxic, as determined by Pr(p11 > f |

x11,m11 ≥ 3) > 0.95. To further prevent assigning too many cohorts

to the overly toxic doses, we exclude dose level (j0,k0) and all the

higher dose levels, i.e., (j,k), where j ≥ j0 and k ≥ k0 if Pr(pj0k0 > f |

xj0k0,mj0k0 ≥ 3) > 0.95.
TABLE 1 Decision rules for one-dimensional CFO analysis.

OC= �OL > g ∗
L OC= �OL ≤ g ∗

L

�OC=OR > g ∗
R Stay Escalate to R

�OC=OR ≤ g ∗
R De-escalate to L Stay
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Upon finishing treating all cohorts, we obtain the cumulative

data for all dose combinations as Dn = (xjk,mjk)
� �J ,K

j,k=1. For each

dose combination (j,k), the estimated DLT rate p̂ jk can be computed

as xjk/mjk. To conform with the partial ordering constraints, we

further perform a bivariate isotonic regression (18) on the estimated

DLT rates p̂ jk using the pool-adjacent-violators algorithm (PAVA).

Let ~pjk denote the estimator corresponding to p̂ jk in the isotonic

regression, and then the MTD (j∗,k∗) is selected as

(j∗, k∗)MTD = argmin
j,k

∣ ~pjk − f ∣,  where 1 ≤ j ≤ J , 1 ≤ k ≤ K :
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3 Simulation study

3.1 Fixed-scenario simulation

To assess the performance of the proposed method, we compare

our 2dCFO design with three competitive methods: the two-

dimensional Bayesian optimal interval design (2dBOIN), the

partial ordering continue reassessment method (POCRM), and

the adaptive logistic model design. We conduct simulations on 14

fixed scenarios, in which the number of MTDs varies from 1 to 3

and the target DLT rate is set to be 0.3, as shown in Table 3. The 14
TABLE 3 Fourteen fixed scenarios of joint toxicity probabilities for simulations, with the target DLT rate f = 30% in boldface.

Drug B

Drug A 1 2 3 4 5 1 2 3 4 5

Scenario 1 Scenario 2

3 0.15 0.30 0.45 0.50 0.60 0.45 0.55 0.60 0.70 0.80

2 0.10 0.15 0.30 0.45 0.55 0.30 0.45 0.50 0.60 0.75

1 0.05 0.10 0.15 0.30 0.45 0.15 0.30 0.45 0.50 0.60

Scenario 3 Scenario 4

3 0.10 0.15 0.30 0.45 0.55 0.50 0.60 0.70 0.80 0.90

2 0.07 0.10 0.15 0.30 0.45 0.45 0.55 0.65 0.75 0.85

1 0.02 0.07 0.10 0.15 0.30 0.30 0.45 0.60 0.70 0.80

Scenario 5 Scenario 6

3 0.07 0.09 0.12 0.15 0.30 0.15 0.30 0.45 0.50 0.60

2 0.03 0.05 0.10 0.13 0.15 0.09 0.12 0.15 0.30 0.45

1 0.01 0.02 0.08 0.10 0.11 0.05 0.08 0.10 0.13 0.15

Scenario 7 Scenario 8

3 0.30 0.50 0.60 0.65 0.75 0.08 0.15 0.45 0.60 0.80

2 0.15 0.30 0.45 0.52 0.60 0.05 0.12 0.30 0.55 0.70

1 0.07 0.10 0.12 0.15 0.30 0.02 0.10 0.15 0.50 0.60

Scenario 9 Scenario 10

3 0.30 0.37 0.42 0.47 0.52 0.08 0.10 0.15 0.30 0.50

2 0.15 0.30 0.37 0.43 0.48 0.04 0.07 0.12 0.16 0.30

(Continued)
frontiers
TABLE 2 Decision rules for the two-dimensional CFO analysis.

Vertical
Decisions

Horizontal Decisions

Escalate Stay De-escalate

Escalate
Escalate to R if OR< OU, escalate to U if OR > OU, and

randomly select R or U if OR = OU

Escalate
to U

Next dose is decided by 1dCFO analysis on {L,C,U}

Stay Escalate to R Stay De-escalate to L

De-escalate Next dose is decided by 1dCFO analysis on {D,C,R}
De-escalate

to D
De-escalate to L if OL > OD, de-escalate to D if OL< OD, and

randomly select L or D if OL= OD
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fixed scenarios are carefully constructed to encompass all common

instances of joint toxicity probability distribution. These scenarios

include situations where the MTDs are positioned diagonally and

doses are initiated from the minimum dosage and progressively

advanced to the maximum dosage. They also incorporate

situations where MTDs are sporadically spread across multiple

diagonal lines. We set the total number of patients to be 60 with

a cohort size of 3. Under each scenario, we run 5000 independent

simulations. For the 2dBOIN method, we apply the R package

“BOIN” (19) and adopt default values for all parameters, i.e., f1 =

0.6, f2 = 1.4 and l = 0.95 as suggested in the original paper (11). For

the POCRM, the provided R package “pocrm” (20) restricts the

cohort size to be 1, while we slightly modified the source code to

allow the cohort size to be 3. We adopt six orderings with equal

prior probabilities, as suggested by Wages (21), while other

parameters are set as default values. For the logistic method, we

use the R package “dfcomb” (22), with the prior toxicity

probabilities set as (0.2, 0.3, 0.4) and (0.1, 0.2, 0.3, 0.4, 0.5) for the

two drugs respectively, and all other parameters are set as default

values. The logistic method includes a start-up phase by default, in

which the dose level will be increased until the first DLT is observed.

Such a start-up phase is considered part of the design and is kept in

our simulations. In the simulations, we do not adopt any early-

stopping rules for each of the methods, and all patients should be

treated before the final selection of the MTD.

We use four statistics to assess the performance of the methods.

The percentage of the correct MTD selection, the percentage of

patients treated at the MTD, the percentage of patients treated

above the MTD, and the percentage of patients with DLT. The first

two criteria measure the accuracy and efficiency of the designs

respectively, for which the higher the better. The latter two criteria

reflect the risk of the trials, and thus are expected to be as low as

possible. All four statistics are computed as the ratio of simulations

that meet specific conditions to the total number of simulations.

For instance, the percentage of the correct MTD selection is

determined by dividing the number of simulated trials that

accurately select the MTD by the total number of simulations,

which is 5000 in our case.
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The simulation results for the 14 fixed scenarios are shown in

Figure 2. According to the results, our 2dCFO design has the highest

MTD selection rate (2dCFO: 62.21%, 2dBOIN: 60.48%, POCRM:

61.76%, logistic: 61.88%), and comparable percentages of patients

treated at the MTD (2dCFO: 41.78%, 2dBOIN: 40.30%, POCRM:

42.10%, logistic: 36.91%). The safety measures are similar between

2dCFO and 2dBOIN; both have comparable percentages of patients

treated above the MTD and percentages of patients with DLT.

Although the logistic model has a comparable MTD selection rate,

it has a significantly lower percentage of patients allocated to the

MTD, indicating a large sacrifice in efficiency. In addition, the logistic

model is less robust compared to 2dCFO, as it has a much higher

MTD selection rate than other methods in scenarios 2 and 9, but has

a much lower selection rate in scenarios 5 and 13. On the other hand,

2dCFO outperforms 2dBOIN with respect to accuracy and efficiency,

while keeping similar low risks of toxicity, as indicated by the latter

two statistics. Compared with POCRM, 2dCFO has a higher MTD

selection rate, a comparable percentage of the MTD allocation, and a

significantly lower percentage of patients treated above the MTD and

a lower percentage of patients with DLT. Furthermore, we observe

that apart from 2dCFO, the other three methods tend to have higher

accuracy of MTD selection when MTDs are located at higher dose

levels. However, when MTDs are located at lower dose levels, their

MTD selection rates fluctuate and are not satisfactory. On the

contrary, the 2dCFO design has a consistently high MTD selection

rate no matter where the MTDs are located. Scenarios 1–5 and 9–10

have incremental MTDs or MTD contours, and thus the accuracy of

the MTD selection across this set of scenarios can reflect the

robustness of a method. The results show that our proposed design

has consistently high accuracy across all these 7 scenarios. In contrast,

the other methods all have significant drops in accuracy in some of

the scenarios: The 2dBOIN design has significant drops in accuracy

in scenarios 4 and 9. The accuracy of the adaptive logistic design falls

in scenarios 4 and 5. The POCRM also has accuracy dropping in

scenarios 2, 9, and 10. In conclusion, the 2dCFO design does have

satisfactory performance in terms of accuracy, efficiency, and safety,

as well as demonstrating high robustness across various patterns of

MTD locations.
TABLE 3 Continued

Drug B

Drug A 1 2 3 4 5 1 2 3 4 5

1 0.10 0.12 0.30 0.40 0.45 0.01 0.03 0.06 0.08 0.10

Scenario 11 Scenario 12

3 0.50 0.60 0.70 0.80 0.90 0.30 0.42 0.52 0.62 0.70

2 0.10 0.30 0.50 0.70 0.80 0.10 0.20 0.30 0.40 0.50

1 0.06 0.10 0.15 0.30 0.50 0.05 0.12 0.20 0.30 0.40

Scenario 13 Scenario 14

3 0.42 0.52 0.62 0.70 0.80 0.30 0.42 0.52 0.70 0.80

2 0.20 0.30 0.40 0.50 0.67 0.10 0.20 0.30 0.50 0.67

1 0.12 0.20 0.30 0.40 0.60 0.04 0.06 0.08 0.20 0.30
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3.2 Sensitivity analysis

To study the effect of changes in the sample size and cohort size

on the accuracy of the design, we first fix the sample size at 60 while

reducing the cohort size from 3 to 2 and 1, with 20, 30, and 60

cohorts respectively. Under each of the settings, we repeat the 14

fixed-scenario simulations and replicate 5000 simulations for each

scenario. The results are shown in Figure 3A, from which we

observe that there are no significant differences in the percentage

of the correct MTD selection when the cohort size varies between 1
Frontiers in Oncology 07
and 3. However, for most of the scenarios, a cohort size of 3 leads to

the highest MTD selection rate, and thus 3 is still the best choice for

the cohort size. Furthermore, we study the relationship between the

correct MTD selection rate and the sample size. With the cohort

size fixed at 3, the number of cohorts increases from 5 to 40, i.e., the

sample size extends from 15 to 120. Under each of the

configurations, we still repeat the 14 fixed-scenario simulations.

The results were shown in Figures 3B, C. We can see that there are

no significant fluctuations along the curves, indicating the 2dCFO is

not sensitive to changes in the number of patients. For each of the
FIGURE 2

Simulation results under fixed scenarios. The performance of two non-parametric methods (2dCFO and 2dBOIN) and two parametric methods
(POCRM and logistic) were compared in terms of the percentage of the correct MTD selection, the percentage of patients treated at the MTD, the
percentage of patients treated above the MTD, and the percentage of patients with DLT.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1294258
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1294258
scenarios, the percentage of the correct MTD selection keeps

increasing steadily as the sample size increases. In some of the

scenarios (scenarios 5 and 10), the MTD selection rate starts at a

very low percentage due to the limited sample size but increases

very quickly as the sample size increases. For most of the scenarios,

the MTD selection rate can reach 70 percent at a sample size of 120.
3.3 Random-scenario simulation

To further assess the performance and robustness of the

proposed method without cherry-picking scenarios, we conduct

random-scenario simulations by randomly generating the toxicity

probabilities under partial ordering constraints. To generate the

random toxicity probabilities, we need to specify the dimension of

the matrix J × K, the number of MTDs with the target toxicity

probability nMTD, and the minimum spacing ϵ between adjacent

toxicity probabilities. In our simulations, we set the target toxicity

probability f = 0.3 and ϵ = 0.01. We first randomly draw J × K

samples from Uniform(0,1), among which we randomly choose

nMTD number of elements and set them to be the target f. We then

check whether the samples have a minimum spacing of ϵ; if not,

repeat the previous step to re-draw the samples until the minimum

spacing constraint is satisfied. The next step is to reshape the

sequence of toxicity probabilities into a J × K matrix and sort the

matrix by first sorting each row and then sorting each column of

the matrix. Consequently, the resulting matrix satisfies the partial

ordering constraints. Lastly, we check whether there are multiple

MTDs on the same row or the same column; if so, we go back to the

initial stage to redraw the samples and repeat the above steps until

at most one MTD is located on each row and each column.
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For a better coverage of different dimensions of the toxicity

probability matrix, we conduct random simulations under 3 × 5, 3 ×

4, 3 × 3 and 2 × 3 cases with a varying number of MTDs, nMTD. We

use the same design parameters as in the fixed-scenario simulations.

Under the logistic design, for the case with J = 3 and K = 4, we set

the prior toxicity probabilities of the two drugs as (0.1,0.2,0.3) and

(0.1,0.2,0.3,0.4) respectively; for J = 3 and K = 3, we set the prior

toxicity probabilities as (0.1,0.2,0.3) for both drugs; for J = 2 and K =

3, the prior toxicity probabilities are set as (0.1,0.2) and (0.1,0.2,0.3)

respectively. For POCRM, we still adopt the six ordering patterns as

in the fixed-scenario simulations. Under each random-scenario

setting, we conduct 5000 independent simulations, i.e., randomly

generate 5000 probability matrices.

Inspired by Zhou et al. (23), we provide supplementary statistics

to better illustrate the characteristics of the randomly generated

probability matrices. We use the setting with J = 3,K = 5,nMTD = 1

for illustrative purposes. Figure 4 shows a collection of boxplots

which elucidate the distribution of the 5000 randomly generated

DLT rates at each specific dose combination. Furthermore, Figure 5

displays a heatmap illustrating the mean with standard deviation of

the generated DLT rates. As shown by the two figures, the randomly

generated DLT rates are well spread out across the matrices, strictly

adhering to the partial ordering constraints.

The simulation results for all these random scenarios are shown

in Figure 6. In terms of accuracy, 2dCFO has on average a

competitively high percentage of correct MTD selection, which is

slightly lower than POCRM but higher than the competing non-

parametric method 2dBOIN and the logistic method (2dCFO:

52.7%, 2dBOIN: 51.8%, POCRM: 53.9%, logistic: 50.1%). In terms

of efficiency, both 2dCFO and POCRM yield significantly higher

average percentages of patients treated at the MTD than the other
B C

A

FIGURE 3

The effect of changes in the cohort size and sample size on the MTD selection rate of the 2dCFO design. (A) The MTD selection rate with
different cohort sizes. (B) The MTD selection rate with increasing sample size(scenarios 1–7). (C) The MTD selection rate with increasing sample
size(scenarios 8–14).
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two methods (2dCFO: 38.3%, 2dBOIN: 36.2%, POCRM: 39.3%,

logistic: 31.1%). Although POCRM has the best accuracy and

efficiency in our random simulations, it has a significantly higher

risk in terms of the percentage of patients treated above the MTD

(2dCFO: 23.3%, 2dBOIN: 24.2%, POCRM: 29.8%, logistic: 15.2%)

and the percentage of patients with DLT (2dCFO: 29.2%, 2dBOIN:

28.4%, POCRM: 31.7%, logistic: 25.7%), when comparing to the

other three methods. Furthermore, the risk is particularly higher

when there are more dose levels, i.e., in the 3 × 5 and 3 × 4 cases.

When comparing 2dCFO with POCRM, both methods exhibit

satisfactory accuracy and efficiency. However, POCRM presents a

significantly higher risk than 2dCFO, which is inherited from the

CRM itself. Therefore, 2dCFO is more recommended especially

when there are few doses under investigation (e.g., the 2×3 case),

because the regression model in POCRM may not fit such sparse

data well. On the other hand, 2dBOIN has similar performances to
Frontiers in Oncology 09
2dCFO due to their non-parametric nature. However, 2dCFO has

significantly higher efficiency in assigning the cohorts to the MTD

across almost all scenarios. Furthermore, 2dCFO has slightly

higher accuracy in selecting the MTD than 2dBOIN, especially

in scenarios with few doses (e.g., the 2 × 3 case). The logistic

method, on the contrary, has the worst performance in terms of

both accuracy and efficiency. Even though it presents significantly

lower risk compared to the other three methods, this advantage

does not compensate for its shortcomings in accuracy

and efficiency.
4 Real trial application

To gain more insights into the detailed implementation and

application of our proposed method, we consider a real phase I
FIGURE 4

Boxplots of the randomly generated DLT rates in the 5000 simulations under the setting with J = 3,K = 5,nMTD = 1.
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dose-escalation study of Neratinib in combination with

Temsirolimus, in patients with advanced solid tumors (24). The

study aimed to find the MTD combination of Neratinib and

Temsirolimus, which is defined as the highest tolerable dose

combination achieving a target DLT rate of less than 0.33. A total

of 60 patients were enrolled in the study and each patient received

one of 16 combinations of Neratinib {120,160,200,240 mg} and

Temsirolimus {15,25,50,75 mg}. The patients were treated in

cohorts of size 2 following a bidirectional four-by-four dosing

plan, with two initial cohorts treated at the dose combinations

(160 mg of Neratinib + 15 mg of Temsirolimus) and (120 mg of

Neratinib + 25 mg of Temsirolimus) respectively. The subsequent

doses were determined by a non-parametric up-and-down design

(25). The toxicity results were shown in Table 4. Based on the

observed data, we fit a logistic regression model with the doses of

Neratinib and Temsirolimus and their interaction term as

covariates (15), which gives the estimated DLT rates of all 16

dose combinations in Table 5.

To redesign the trial with 2dCFO, we set f = 0.33, with a

sample size of 60 and a cohort size of 3. Early stopping and

overdose control are incorporated in the trial design. The first

cohort is treated at the lowest dose level (1, 1), and the subsequent

doses are determined according to our proposed decision rules.

The dose escalation path and toxicity outcomes are shown in

Figure 7 and the implementation and computation details are

given in Table 6. Based on the simulated data, we obtain the

estimated DTL rates as shown in Table 7. The MTD can be

selected as either dose level (4, 2) or (3, 3), as both have DLT rates

closest to the target 0.33. From the results, we can see that 2dCFO

adopts an efficient as well as safe escalation strategy, with 60% (12

out of 20) of the cohorts treated at the two MTDs, only one cohort

treated above the MTD, and 23% (14 out of 60) of the patients

experienced DLTs. In the simulation of the trial, there is no

overdose identified, as Pr(pjk > f | xjk,mjk ≥ 3)< 0.95 is satisfied
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for all dose combinations. However, the cut-off probability of 0.95

can be adjusted in practice for a more strict or moderate

safety rule.
5 Concluding remarks

We propose a two-dimensional calibration-free odds (2dCFO)

design for drug-combination trials, which is a major expansion of

the one-dimensional CFO design for a single agent. The method

relies solely on data-driven approaches, and due to its non-

parametric nature, no prior probabilities and specifications of

tuning parameters are required. We also do not include any start-

up phase or preliminary stage in our simulations. Extensive

simulations demonstrate that our proposed method has

comparable accuracy, efficiency, and low risk compared to the

state-of-the-art non-parametric method 2dBOIN and other

parametric methods. The 2dCFO design is demonstrated to be

robust in minimizing risk and maximizing efficiency. The real trial

application shows that our proposed method is readily applicable to

a real phase I escalation study of drug combinations. In addition, a

preliminary stage and other overdose control strategies can be

incorporated according to practical needs, because neither of

them is an internal part of the design.

This study primarily showcases the effectiveness of the 2dCFO

design for phase I trials involving a combination of two drugs.

However, this research can also be expanded to incorporate

seamless phase I/II trials and trials involving more than two

drugs. Following the CFO design for a seamless phase I/II trial

(17), the only difference in extending to a drug combination trial is

the selection of the admissible set, which can be readily

determined by adhering to the partial ordering constraints.

Furthermore , one can modi fy the 2dCFO des ign to

accommodate trials involving more than two drugs by simply
FIGURE 5

Heatmap of the mean with standard deviation of the randomly generated DLT rates in the 5000 simulations under the setting with J = 3, K = 5, nMTD = 1.
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altering the decision rules. For example, a trial involving three

drugs would require 1dCFO analysis on three axes within the 3D

toxicity probability space, spanning the horizontal (X-axis),

vertical (Y-axis), and depth (Z-axis) dimensions. The final

decision can then be derived from a majority vote across these

three separate CFO analyses.

No overdose control strategies were adopted in both our fixed

and random simulations. There are two types of overdose control
Frontiers in Oncology 11
strategies, early stopping and dose elimination. Early stopping will

only be adopted when the lowest dose (1,1) is overly toxic.

However, in our fixed scenarios, the highest DLT rate at (1,1) is

0.3. For random scenarios, according to Figures 4, 5, the DLT rate

at (1,1) is much lower than 0.3. Hence both scenarios are not

applicable for early stopping rules. Dose elimination, on the other

hand, will eliminate the dose and all the higher doses if that dose is

overly toxic. This was intentionally omitted from our simulations
FIGURE 6

Simulation results under random scenarios. The performances of the four competitive methods were compared under randomly generated toxicity
probabilities with f = 0.30 and nMTD varies.
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with the aim of focusing on the escalation performance of the

methods, particularly their accuracy and efficiency. Implementing

dose elimination rules could potentially skew results, as different

methods adopt disparate rules, making it challenging to ensure

fairness in comparisons. On the other hand, dose elimination is

flexible, with the threshold being tunable for each method.

Therefore, we proposed that these should not be considered

intrinsic to the method itself, but rather, they should be seen as

a variable to bear in mind when executing actual clinical trials.
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When planning a real trial, the selection of methods plays a

crucial role in achieving desired outcomes. According to our

simulation results , in terms of balanced performance

characteristics, 2dCFO stands out with competitive accuracy,

efficiency, and an acceptable level of risk for safety control. This

makes it a particularly suitable candidate, especially for trial

designs with fewer dose levels. The performances of the non-

parametric methods, namely 2dCFO and 2dBOIN, are largely

similar. However, while 2dCFO is optimal for scenarios with fewer
TABLE 4 The observed toxicity outcomes and the number of patients treated at each dose combination in the trial of Neratinib and Temsirolimus.

Neratinib (mg)
Temsirolimus (mg)

15 25 50 75

240 (2 DLTs, 4 patients) – – –

200 (0 DLTs, 4 patients) (1 DLTs, 8 patients) (1 DLTs, 2 patients) –

160 (1 DLTs, 4 patients) (1 DLTs, 4 patients) (0 DLTs, 5 patients) –

120 (0 DLTs, 2 patients) (0 DLTs, 4 patients) (1 DLTs, 5 patients) (0 DLTs, 4 patients)
TABLE 5 The DLT rates estimated based on the observed toxicity outcomes in the trial of Neratinib and Temsirolimus, where the MTDs are assumed
to have a DLT rate of 0.33.

Dose level of Neratinib
Dose level of Temsirolimu

1 2 3 4

4 0.24 0.33 0.56 0.77

3 0.14 0.19 0.33 0.55

2 0.08 0.10 0.17 0.22

1 0.04 0.05 0.07 0.10
frontie
The bold values (0.33) are the MTD.
FIGURE 7

Dose allocations and toxicity outcomes of the redesigned Neratinib and Temsirolimus trial.
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TABLE 6 The implementation details of the 2dCFO design in simulating the Neratinib and Temsirolimus trial, where Pr (overdose)=Pr (pjk > f ∣ xjk, mjk ≥ 3) and overdose is indicated by Pr (overdose) > 0.95.

zontal Decision (OC/ �OD,g ∗
D) ( �OC/OU,g ∗

U ) Vertical Decision Joint Decision

Right – (9.234,0.127) Up Right

Right – (9.234,0.127) Up Right

Right – (9.234,0.127) Up Up

Right (0.001,0.473) (9.234,0.127) Up Up

Left (0.473,0.473) (0.003,0.127) Stay Left

Stay (0.220,0.220) (0.127,0.127) Stay Stay

Stay (0.009,0.135) (1.076,0.082) Up Up

Right (0.012,0.190) – Stay Right

Stay (299.3,0.473) – Down Down

Stay (0.024,0.184) (0.051,0.592) Stay Stay

Stay (0.116,0.439) (0.006,0.475) Stay Stay

Stay (0.086,0.553) (0.007,2.081) Stay Stay

Left (0.248,0.626) (0.001,1.555) Stay Left

Right (0.001,0.103) (363.2,0.475) Up Up

Stay (0.004,0.665) – Stay Stay

Stay (0.030,0.657) – Stay Stay

Stay (0.005,0.418) – Stay Stay

Stay (0.001,0.539) – Stay Stay

Stay (0.001,0.614) – Stay Stay

Stay (0.000,0.670) – Stay Stay
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Cohort Index Dose Level #DLT Pr(overdose) (OC/ �OL,g ∗
L ) ( �OC/OR,g ∗

R) Hor

1 (1,1) 0 0.051 – (9.234,0.127)

2 (1,2) 0 0.051 (0.001,0.473) (9.234,0.127)

3 (1,3) 0 0.051 (0.001,0.473) (9.234,0.127)

4 (2,3) 0 0.051 (0.004,0.220) (9.234,0.127)

5 (3,3) 2 0.840 (4.966,0.220) (0.003,0.127)

6 (3,2) 1 0.441 (0.220,0.220) (0.071,0.951)

7 (3,2) 0 0.153 (0.009,0.135) (0.466,0.592)

8 (4,2) 0 0.051 (0.003,0.220) (9.234,0.127)

9 (4,3) 2 0.840 (0.473,0.473) (0.003,0.127)

10 (3,3) 0 0.460 (0.131,0.273) (0.082,0.082)

11 (3,3) 2 0.730 (0.517,0.517) (0.008,0.484)

12 (3,3) 1 0.705 (0.379,0.604) (0.008,0.300)

13 (3,3) 2 0.845 (1.039,0.662) (0.001,0.215)

14 (3,2) 0 0.051 (0.001,0.103) (3.288,1.409)

15 (4,2) 1 0.153 (0.009,0.135) (0.466,0.592)

16 (4,2) 2 0.469 (0.103,0.103) (0.043,0.475)

17 (4,2) 0 0.245 (0.014,0.427) (0.180,2.081)

18 (4,2) 0 0.115 (0.002,0.319) (0.580,1.555)

19 (4,2) 1 0.140 (0.003,0.255) (0.413,1.235)

20 (4,2) 0 0.067 (0.001,0.213) (1.110,1.110)

Absent values of the odds ratio and thresholds occur at the boundary doses.
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dose levels, 2dBOIN may offer a viable alternative in situations

where computational complexity is a significant consideration,

as it is based on simple patients count in the proposed interval.

If safety is not the primary concern, POCRM might be a

desirable choice due to its superior accuracy and efficiency.

However, should safety be a paramount concern, the

logistic method could present a more suitable option. These

insights should guide the selection of methods in real trial

design, always considering the specific requirements and

priorities of each case.
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