
UNIVERSITY OF CALIFORNIA SAN DIEGO 

 

 

Bayesian Time-Domain Finite Element Model Updating of Civil Infrastructure Systems 

 

 

A dissertation submitted in partial satisfaction of the requirements for the degree  

Doctor of Philosophy 

 

 

in 

 

 

Structural Engineering 

 

 

by 

 

 

Mukesh Kumar Ramancha 

 

 

Committee in charge: 

 Professor Joel P. Conte, Chair 

 Professor Jose I. Restrepo 

 Professor Michael D. Todd 

 Professor Behrouz Touri 

 

 

2022 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Mukesh Kumar Ramancha, 2022 

All rights reserved.



iii 

 

 

 

 

The dissertation of Mukesh Kumar Ramancha is approved, and it is acceptable in quality and 

form for publication on microfilm and electronically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of California San Diego 

 

2022  



iv 

DEDICATION 

 

 

 

 

 

To my parents, Rama Devi Ramancha and Ramesh Babu Ramancha, thank you for encouraging 

me in all my pursuits and supporting me to pursue my dreams. 

 

 

To my friends, thank you for being there through all my hardships. 

  



v 

EPIGRAPH 

 

 

 

 

 

 

 

 

 

 

 

“Genius is 1% talent and 99% percent hard work...” 

— Albert Einstein 

 

 

  



vi 

TABLE OF CONTENTS 

 

Dissertation Approval Page ........................................................................................................... iii 

Dedication ...................................................................................................................................... iv 

Epigraph .......................................................................................................................................... v 

Table of Contents ........................................................................................................................... vi 

List of Figures ................................................................................................................................. x 

List of Tables ............................................................................................................................... xiii 

Acknowledgements ...................................................................................................................... xiv 

Vita ............................................................................................................................................. xviii 

Abstract of the Dissertation .......................................................................................................... xx 

1 Introduction ............................................................................................................................. 1 

1.1 Background ..................................................................................................................... 1 

1.2 Structural Digital Twin ................................................................................................... 2 

1.3 FE Model Updating using Bayesian Inference ............................................................... 3 

1.4 Linear vs Non-linear FE Models for Model Updating of Civil Structures ..................... 6 

1.5 Three-Phased Research Strategy..................................................................................... 8 

1.6 Organization of Dissertation ........................................................................................... 9 

2 Bayesian Updating and Identifiability Assessment of Nonlinear Finite Element Models ... 11 

2.1 Abstract ......................................................................................................................... 11 

2.2 Introduction ................................................................................................................... 12 

2.3 Bayesian Finite Element Model Updating .................................................................... 18 

2.3.1 Recursive Bayesian Parameter Estimation ............................................................. 23 

2.3.2 Batch Bayesian Parameter Estimation .................................................................... 29 

2.4 Identifiability................................................................................................................. 35 

2.4.1 Sensitivity analysis.................................................................................................. 39 

2.4.2 Local Practical Identifiability Analysis using Fisher Information Matrix .............. 43 

2.4.3 Variance-based Global Sensitivity Analysis ........................................................... 47 

2.5 Testbed Structure: Pine Flat Concrete Gravity Dam .................................................... 53 

2.5.1 Nonlinear Finite Element (FE) Model .................................................................... 54 

2.5.2 FE Model Updating of Testbed Structure ............................................................... 57 

2.5.3 Identifiability and Sensitivity Analysis of Testbed Structure ................................. 68 

2.5.4 Revisiting Unscented Kalman Filter ....................................................................... 74 



vii 

2.6 Conclusions ................................................................................................................... 76 

2.7 Acknowledgements ....................................................................................................... 78 

2.8 Preview to Chapter 3 ..................................................................................................... 79 

3 Accounting for Model Form Uncertainty in Bayesian Calibration of Linear Dynamic 

Systems ......................................................................................................................................... 80 

3.1 Abstract ......................................................................................................................... 80 

3.2 Introduction ................................................................................................................... 81 

3.3 Bayesian Model Calibration with Model Form Error ................................................... 84 

3.3.1 Measurement Equation ........................................................................................... 86 

3.3.2 Estimating Physical Parameters using Bayesian inference ..................................... 89 

3.3.3 Multi-Output Measurement Channels ..................................................................... 97 

3.4 Modeling the Delta Term in Linear Dynamic Systems ................................................ 99 

3.4.1 Single Output Measurement Channel ................................................................... 104 

3.4.2 Multi-Output Measurement Channels ................................................................... 110 

3.5 Illustration Example 1: Linear SDOF System ............................................................ 113 

3.5.1 Results and Discussions ........................................................................................ 115 

3.6 Illustration Example 2: Linear 2-DOF System ........................................................... 124 

3.6.1 Single Output Measurement Channel ................................................................... 126 

3.6.2 Multi-Output Measurement Channels ................................................................... 127 

3.7 Overview of the Proposed Approach .......................................................................... 129 

3.8 Conclusions ................................................................................................................. 131 

3.9 Appendix A: Power spectral density matrix and auto/cross-correlation matrix of 

response of MDOF systems subjected to white noise base excitation .................................... 134 

3.10 Appendix B: Alternatives to Fully Bayesian Approach ............................................. 137 

3.10.1 Integrated Likelihood Approach ........................................................................... 137 

3.10.2 Modular Bayesian Approach ................................................................................ 138 

3.11 Acknowledgements ..................................................................................................... 139 

3.12 Preview to Chapter 4 ................................................................................................... 139 

4 Bayesian Model Updating with Finite Element vs. Surrogate Models: Application to a Miter 

Gate Structural System ............................................................................................................... 141 

4.1 Abstract ....................................................................................................................... 141 

4.2 Introduction ................................................................................................................. 142 

4.3 Bayesian Finite Element Model Updating .................................................................. 145 



viii 

4.3.1 Challenges in FE Model Updating of Large-scale Structural Systems................. 149 

4.3.2 Sampling Posterior Distribution using TMCMC .................................................. 152 

4.4 Surrogate Modeling .................................................................................................... 153 

4.4.1 Surrogate Modeling Workflow ............................................................................. 154 

4.4.2 Polynomial Chaos Expansion Overview .............................................................. 158 

4.4.3 Gaussian Process Regression Overview ............................................................... 163 

4.5 Application Example .................................................................................................. 166 

4.5.1 Finite Element Model ........................................................................................... 167 

4.5.2 Damage Modes ..................................................................................................... 169 

4.5.3 Surrogate Modeling .............................................................................................. 174 

4.5.4 Measurement Data Simulation .............................................................................. 187 

4.5.5 FE Model Updating............................................................................................... 188 

4.6 Conclusions ................................................................................................................. 192 

4.7 Acknowledgements ..................................................................................................... 194 

4.8 Preview to Chapter 5 ................................................................................................... 194 

5 Bayesian Nonlinear Finite Element Model Updating of a Full-Scale Bridge-Column using 

Sequential Monte Carlo .............................................................................................................. 195 

5.1 Abstract ....................................................................................................................... 195 

5.2 Introduction ................................................................................................................. 196 

5.3 Finite Element Model Updating using Bayesian Inference ........................................ 198 

5.3.1 Sequential Monte Carlo ........................................................................................ 201 

5.4 Full-scale reinforced-concrete bridge Column ........................................................... 204 

5.4.1 Finite Element Model of the column .................................................................... 205 

5.4.2 FE Model Updating Setup .................................................................................... 206 

5.4.3 Results ................................................................................................................... 210 

5.5 Conclusions ................................................................................................................. 217 

5.6 Acknowledgements ..................................................................................................... 217 

6 Conclusions ......................................................................................................................... 218 

6.1 Summary of Research Work ....................................................................................... 218 

6.2 Recommendations for Future Research ...................................................................... 221 

6.2.1 Sensor placement and data collection ................................................................... 221 

6.2.2 Physics/mechanics-based modeling of the system ............................................... 222 

6.2.3 Model updating using Bayesian inference ............................................................ 223 



ix 

6.2.4 Decision making using the updated model ........................................................... 225 

6.3 Final Thoughts ............................................................................................................ 226 

References ................................................................................................................................... 227 

 

  



x 

LIST OF FIGURES 

 

Figure 1.1: Schematic representation of a digital twin development for SHM/DP ........................ 3 

Figure 1.2: Schematic representation of Bayesian FE model updating .......................................... 6 

Figure 1.3: Nonlinear vs Linear FE Model Updating ..................................................................... 7 

Figure 1.4: Proposed three-phased research strategy ...................................................................... 9 

Figure 2.1: A stage in TMCMC algorithm (weighting, resampling, and perturbation). In the 

above illustration, θ  is a scalar quantity. ..................................................................................... 35 

Figure 2.2: Schematic representation of local sensitivity analysis, derivative-based GSA, and 

variance-based GSA...................................................................................................................... 42 

Figure 2.3: (a) Pine Flat concrete gravity Dam, (b) Downstream elevation, and (c) 2D nonlinear 

FE model ....................................................................................................................................... 54 

Figure 2.4: FE model hierarchy: (a) Structure level, (b) Element level, and (c) Material level; (d) 

Input ground motion ..................................................................................................................... 57 

Figure 2.5: Stress-path in the 1I − s  space at (a) heel of the dam, and (b) neck of the dam ....... 63 

Figure 2.6: Time histories of the posterior mean estimates, normalized with respect to their 

corresponding true values, of all eleven time-invariant parameters   obtained using the UKF. . 63 

Figure 2.7: Evolution of RRMS error for all measurement channels during unscented Kalman 

filtering .......................................................................................................................................... 64 

Figure 2.8: Pairs plot of eleven parameters of testbed structure obtained using posterior samples 

generated by TMCMC. ................................................................................................................. 66 

Figure 2.9: Consistency between UKF estimates and TMCMC posterior for parameters D and W

....................................................................................................................................................... 67 

Figure 2.10: Normalized sensitivities of acceleration response at the top of the dam 
A

a  ........... 70 

Figure 2.11: (a) Fisher information matrix of the testbed structure evaluated at 
prior

θ , (b) its 

diagonal elements, and (c) its eigenvalues .................................................................................... 70 

Figure 2.12: Total-order sensitivity index time histories for the acceleration at the top of the dam 
A

a  ................................................................................................................................................. 73 

Figure 2.13: Averaged total-order Sobol' indices of parameters of the testbed structure ............. 73 

Figure 2.14: (a) first- and total-order Sobol’ indices time histories averaged over measurement 

channels, (b) first- and total-order Sobol’ indices averaged over time and measurement channels, 

for parameter groups ..................................................................................................................... 74 

Figure 2.15: Time histories of the posterior mean estimates, normalized with respect to their 

corresponding true values, of the influent or locally identifiable parameters obtained using the 

UKF............................................................................................................................................... 76 



xi 

Figure 3.1: Schematic representation of (a) power spectral density (Eq. (3.22)) and (b) 

covariance function (Eq. (3.21)) ................................................................................................. 102 

Figure 3.2: Power spectral density, covariance function, and a realization of the random process 

for different values of GPv , 0
GP , and 

GP . ............................................................................... 104 

Figure 3.3: Schematic representation of (a) mixture power spectral density and (b) mixture 

covariance function defined in Eq. (3.23) with 3 mixture components ...................................... 108 

Figure 3.4: Loading, displacement, and model discrepancy time history of the linear SDOF 

illustrative example ..................................................................................................................... 114 

Figure 3.5: Prior distribution of unknown physical parameters and hyperparameters ............... 116 

Figure 3.6: Pairs plot of physical parameters constructed from the posterior samples obtained 

using the measurement equation (a) without delta term and (b) with delta term  (red lines and 

dots indicate true parameter values) ........................................................................................... 117 

Figure 3.7: Posterior marginal distributions of hyperparameters for the case of model calibration 

with delta term ............................................................................................................................ 118 

Figure 3.8: Model response time histories after model calibration performed using the 

measurement equation (a) without delta term and (b) with delta term ....................................... 119 

Figure 3.9: Realizations of the response posterior predictive distribution when model calibration 

is performed using the measurement equation (a) without delta term and (b) with delta term .. 120 

Figure 3.10: A comparison of the true and predicted model discrepancy time histories for the 

case of model calibration with delta term ................................................................................... 121 

Figure 3.11: Effect of the sampling rate of the input-output measurement data on the posterior 

distribution of the unknown physical parameters (red line indicates the true parameter value) 122 

Figure 3.12: Effect of the duration of the input-output measurement data on the posterior 

distribution of the unknown physical parameters (red line indicates the true parameter value) 124 

Figure 3.13: (a) 2-DOF system, (b) input earthquake excitation, (c) normalized relative 

displacement response time histories, and (d) normalized true model discrepancy time histories

..................................................................................................................................................... 125 

Figure 3.14: Comparison of posterior marginal distributions of physical parameters with the 

corresponding true parameter values (indicated by red lines) for the cases of model calibration 

without and with delta term. ....................................................................................................... 129 

Figure 4.1: Surrogate modeling workflow. ................................................................................. 155 

Figure 4.2: Navigation Chamber (Government Accountability Office 2018). ........................... 166 

Figure 4.3: (a) Real miter gate (John T. Meyers locks, Kentucky, USA along the Ohio River), (b) 

top view, (c) elevation view, and (d) side view schematic of the gate. ...................................... 167 

Figure 4.4: (a) Assembly view (red dots indicate locations of uniaxial strain gauges and blue 

arrows indicate their orientations), and (b) mesh of the FE model. ............................................ 169 

Figure 4.5: (a) Plan view with hydrostatic loading, (b) quoin blocks schematic, and (c) picture of 

quoin blocks from a real miter gate. ........................................................................................... 170 

ZEqnNum384405
ZEqnNum819979


xii 

Figure 4.6: (a) Ideal approach (contact-type constraint between gate quoin block and wall quoin 

block), and (b) simplified approach (pinned boundary condition along the gate quoin block above 

the gap)........................................................................................................................................ 171 

Figure 4.7: (a) Side view schematic of the gate showing the three environmental zones, and (b) 

picture of a real miter gate depicting the three zones. ................................................................ 173 

Figure 4.8: Scatter plot of sample points from final training set (blue) and test set (red). ......... 177 

Figure 4.9: Final fitted PCE surrogates as a function of a parameter (black line) along with final 

training set (blue dots) and test set (red dots). ............................................................................ 183 

Figure 4.10: (a) PCA transformed FE response versus PCE surrogate predictions, and (b) 

residuals versus PCE surrogate predictions. ............................................................................... 184 

Figure 4.11: Final fitted GPR surrogates as a function of a parameter (black line) along with final 

training set (blue dots) and test set (red dots). ............................................................................ 186 

Figure 4.12: (a) PCA transformed FE response versus GPR surrogate predictions, and (b) 

residuals versus GPR surrogate predictions. ............................................................................... 187 

Figure 4.13: Marginal kernel density estimates (KDEs) of each component of θ  for the strain 

measurement data set 1 . ........................................................................................................... 191 

Figure 4.14: Marginal kernel density estimates (KDEs) of each component of θ  for the strain 

measurement data set 2 . ........................................................................................................... 192 

Figure 5.1: Full-scale reinforced-concrete bridge column tested on the LHPOST@UCSD ...... 205 

Figure 5.2: Finite Element Model Hierarchy of Bridge Column ................................................ 206 

Figure 5.3: Input (acceleration at top of footing) and output (absolute horizontal and rotational 

acceleration and drift ratio at the top of the column) measurement data for model updating. ... 209 

Figure 5.4: Pair plot using normalized posterior samples of six unknown FE parameters obtained 

using sequential Monte Carlo ..................................................................................................... 212 

Figure 5.5: Response prediction of the FE model vs experimentally measured response, before 

and after model updating ............................................................................................................ 213 

Figure 5.6: Drift response comparison of the FE model (a) before model updating, (b) after 

model updating using EQ1 data, and (c) after model updating using EQ2 data with the 

experimentally measured drift response. .................................................................................... 216 

 

 

  



xiii 

LIST OF TABLES 

 

Table 2.1: Unscented Kalman filtering algorithm for parameter estimation using the scaled 

unscented transformation .............................................................................................................. 28 

Table 2.2: TMCMC algorithm for parameter estimation.............................................................. 33 

Table 2.3: Algorithm for ranking and determining practically locally identifiable parameters for 

parameter estimation ..................................................................................................................... 46 

Table 2.4: Algorithm for determining influent parameters using GSA of individual and groups of 

parameters for parameter estimation ............................................................................................. 52 

Table 2.5: Comparison of prior and posterior (obtained using TMCMC) coefficients of variation 

for all parameters .......................................................................................................................... 65 

Table 2.6: Parameters of testbed structure ranked using algorithm in Table 2.3 .......................... 70 

Table 2.7: Parameters of testbed structure ranked based on averaged total-order Sobol' indices 72 

Table 3.1: Overview of model calibration using measurement equation without and with delta 

term (fully Bayesian approach) ..................................................................................................... 95 

Table 4.1: Upper and lower bounds of parameters for space filling. .......................................... 175 

Table 4.2: Surrogate model construction procedure (pseudo code). .......................................... 180 

Table 4.3: Final fitted PCE surrogate details. ............................................................................. 182 

Table 4.4: Final fitted GPR surrogate test errors. ....................................................................... 185 

Table 4.5: Parameter values to simulate the strain measurement data. ...................................... 188 

Table 4.6: Total runtimes to perform Bayesian model updating for measurement data set 1  or 

2  ............................................................................................................................................... 192 

Table 5.1: Sequential Monte Carlo Algorithm ........................................................................... 203 

Table 5.2: Parameter values reported in PEER report vs the mean values of the posterior SMC 

samples ........................................................................................................................................ 211 

  



xiv 

ACKNOWLEDGEMENTS 

 

The work shown in this dissertation would not have been possible without the constant 

help, guidance, and support of many individuals. First, I would like to sincerely thank my 

advisor, Prof. Joel P. Conte, for the guidance over the past few years and for teaching me many 

valuable personal and professional life skills such as critical thinking, persistence, owning a 

project versus simply doing it, and the art of teaching and presenting. I’ll always cherish these 

skills throughout my entire life.  

I want to thank my committee members, Prof. José I. Restrepo and Prof. Michael D. 

Todd, for their contributions to my research, sitting through my prolonged presentations, and 

providing critical feedback and expert guidance over the past few years. Their comments and 

engineering insights have certainly helped me improve the quality of my work. Next, I would 

like to thank my committee member, Prof. Behrouz Touri from the ECE Department, for 

accepting my request to be part of my thesis committee and providing critical feedback during 

my candidacy and Ph.D. defense exams.  

I would like to thank my co-authors and collaborators, Dr. Rodrigo Astroza, Dr. Matthew 

D. Parno, Dr. Manuel A. Vega, Dr. Zhen Hu, Dr. Ramin Madarshahian, and Dr. Rodrigo 

Carreño. Without these people, my research life would have been much more difficult.  

I would like to thank my colleagues at UC San Diego, Angshuman Deb, Athul 

Parayancode, Mayank Chadha, and Amanpreet Singh, for countless insightful discussions over 

the past few years, which helped me clean out my strangled thoughts. 

I would like to thank engineers from USACE, specifically Travis Fillmore, Mark Shultz, 

and Matthew D. Smith, for their valuable engineering insights about the miter gate and dam. I 

would also like to thank the USACE engineers for organizing the site visits to locks and dams 



xv 

(located along the Ohio river) and providing us with a high-fidelity FE model of the Greenup 

gate. 

I would like to thank Dr. Tim Cockerill from the Texas Advanced Computing Center 

located at UT Austin for providing me with access to Stampede2 and Frontera supercomputing 

resources, which accelerated my research progress. I would also like to thank Dr. Aakash 

Bangalore Satish and Dr. Frank McKenna from NHERI SimCenter located at UC Berkeley for 

their assistance with high-performance computing and OpenSees.  

I would like to thank Dr. Zhijian Qiu and Dr. Quan Gu from Xiamen university for their 

help on dam modeling as well as Dr. Matthias Neuner and Dr. Guenter Hofstetter from the 

University of Innsbruck, Austria for their assistance on concrete material modeling. I would like 

to thank Daryl Rysberg for the IT support at UC San Diego. 

I can arguably say that I spent most of my time in my lab (SME 416) over the past few 

years. I had great fun working with my lab mates, Angshuman Deb, Alex Zha, Kiida Lai, Lin 

Sun, Maitreya Kurumbhati, Michael Kohler, and Zachary Austin. I would like to thank them for 

the wonderful memories. 

I would like to thank all the professors and teaching assistants of all 25 courses taken at 

UC San Diego. These courses helped me gain a tremendous background, thereby enabling me to 

do the research presented in this dissertation. 

I would like to thank the UC San Diego structural engineering staff, Yvonne Wollman, 

Julie Storing, Lindsay Walton, and Kyung Brown, for taking care of all the logistical issues and 

making my research life much easier.  

I would like to sincerely thank my parents (Rama Devi Ramancha and Ramesh Babu 

Ramancha) and my siblings (Mounika Ramancha and Sai Rithik Komuravelly) for always 



xvi 

believing in me, for being a backbone to me, and for always supporting me in pursuit of my 

dreams. 

I’m incredibly fortunate to have a great group of friends in San Diego and back home in 

India. I firmly believe that you are an average of all the people you spend the most time with. 

I’m thankful to all my friends for filling my life with beautiful memories. I’m looking forward to 

many more memories with them. I would like to give a special mention to two of my friends or 

brothers, Rahul Hazra and Angshuman Deb, for always being there for me. 

Last but not least, and if I may quote Snoop Dogg, “I would like to thank me!”. I would 

like to thank myself for putting in all the hard work. 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 2, in part, is a reprint of the material as it appears in the following papers 

(the dissertation author is the first author of these papers): 

Ramancha, M. K., Astroza, R., Madarshahian, R., and Conte, J. P. (2022). “Bayesian updating 

and identifiability assessment of nonlinear finite element models.” Mechanical Systems and 

Signal Processing, 167, 108517. https://doi.org/10.1016/j.ymssp.2021.108517 

Ramancha, M. K., Madarshahian, R., Astroza, R., and Conte, J. P. (2020). “Non-unique 

Estimates in Material Parameter Identification of Nonlinear FE Models Governed by 

Multiaxial Material Models Using Unscented Kalman Filtering.” Conference Proceedings 

of the Society for Experimental Mechanics Series, 257–265. https://doi.org/10.1007/978-3-

030-12075-7_29 

Chapter 3, in full, is a reprint of the material as it appears in the following paper (the 

dissertation author is the first author of this paper): 

Ramancha, M. K., Conte, J. P., and Parno, M. D. (2022). “Accounting for model form 

uncertainty in Bayesian calibration of linear dynamic systems.” Mechanical Systems and 

Signal Processing, 171, 108871. https://doi.org/10.1016/j.ymssp.2022.108871 

https://doi.org/10.1016/j.ymssp.2021.108517
https://doi.org/10.1007/978-3-030-12075-7_29
https://doi.org/10.1007/978-3-030-12075-7_29
https://doi.org/10.1016/j.ymssp.2022.108871


xvii 

Chapter 4, in full, has been submitted for publication of the material as it may appear in 

the following paper (the dissertation author is the first author of this paper): 

Ramancha, M. K., Vega, M. A., Conte, J. P., Todd, M. D., and Hu, Z. (2022). “Bayesian model 

updating with finite element vs. surrogate models: application to a miter gate structural 

system.” Submitted to Engineering Structures. 

Chapter 5, in part, is a reprint of the material as it appears in the following paper (the 

dissertation author is the first author of this paper): 

Ramancha, M. K., Astroza, R., Conte, J. P., Restrepo, J. I., and Todd, M. D. (2020). “Bayesian 

nonlinear finite element model updating of a full-scale bridge-column using sequential 

monte carlo.” Model Validation and Uncertainty Quantification, 389–397. 

https://doi.org/10.1007/978-3-030-47638-0_43 

 

  

https://doi.org/10.1007/978-3-030-47638-0_43


xviii 

VITA  

 

2015    Bachelor of Technology, Indian Institute of Technology, Guwahati, India 

2016-2017  Teaching Assistant, University of California San Diego 

2017    Master of Science, University of California San Diego 

2017-2022  Research Assistant, University of California San Diego 

2022    Doctor of Philosophy, University of California San Diego 

 

PUBLICATIONS 

Journal Papers: 

Ramancha, M. K., Astroza, R., Madarshahian, R., and Conte, J. P. (2022). “Bayesian updating 

and identifiability assessment of nonlinear finite element models.” Mechanical Systems and 

Signal Processing, 167, 108517. https://doi.org/10.1016/j.ymssp.2021.108517 

Ramancha, M. K., Conte, J. P., and Parno, M. D. (2022). “Accounting for model form 

uncertainty in Bayesian calibration of linear dynamic systems.” Mechanical Systems and 

Signal Processing, 171, 108871. https://doi.org/10.1016/j.ymssp.2022.108871 

Ramancha, M. K., Vega, M. A., Conte, J. P., Todd, M. D., and Hu, Z. (2022). “Bayesian model 

updating with finite element vs. surrogate models: application to a miter gate structural 

system.” Submitted to Engineering Structures. 

Kurumbhati, M. M., Ramancha, M. K., Aakash, B. S., Conte, J. P., Lotfizadeh, K. H., and 

Restrepo, J. I. (2022). “Hierarchical Bayesian modeling for calibration and validation of 

constitutive material models.” Under preparation for submission to Mechanical Systems and 

Signal Processing. 

Chadha, M., Ramancha, M. K., Vega, M. A., Conte, J. P., and Todd, M. D. (2022). “The 

modeling of risk perception in the use of structural health monitoring information for 

optimal maintenance decisions.” Submitted to Reliability Engineering & System Safety. 

Hu, Z., Jiang, C., Vega, M. A., Ramancha, M. K., Todd, M. D., Conte, J. P., and Parno, M. D. 

(2022). “Bayesian calibration of multi-level model with unobservable distributed response 

and application to miter gates.” Mechanical Systems and Signal Processing, 170, 108852, 

https://doi.org/10.1016/j.ymssp.2022.108852 

 

Conference Papers 

Ramancha, M. K., Madarshahian, R., Astroza, R., and Conte, J. P. (2020). “Non-unique 

Estimates in Material Parameter Identification of Nonlinear FE Models Governed by 

https://doi.org/10.1016/j.ymssp.2021.108517
https://doi.org/10.1016/j.ymssp.2022.108871
https://doi.org/10.1016/j.ymssp.2022.108852


xix 

Multiaxial Material Models Using Unscented Kalman Filtering.” Conference Proceedings 

of the Society for Experimental Mechanics Series, 257–265. https://doi.org/10.1007/978-3-

030-12075-7_29 

Ramancha, M. K., Astroza, R., Conte, J. P., Restrepo, J. I., and Todd, M. D. (2020). “Bayesian 

nonlinear finite element model updating of a full-scale bridge-column using sequential 

monte carlo.” Model Validation and Uncertainty Quantification, 389–397. 

https://doi.org/10.1007/978-3-030-47638-0_43 

Vega, M. A., Ramancha, M. K., Conte, J. P., and Todd, M. D. (2020). “Efficient Bayesian 

Inference of Miter Gates Using High-Fidelity Models.” Model Validation and Uncertainty 

Quantification, 375–382. https://doi.org/10.1007/978-3-030-47638-0_41 

 

https://doi.org/10.1007/978-3-030-12075-7_29
https://doi.org/10.1007/978-3-030-12075-7_29
https://doi.org/10.1007/978-3-030-47638-0_43
https://doi.org/10.1007/978-3-030-47638-0_41


xx 

ABSTRACT OF THE DISSERTATION 

 

 

Bayesian Time-Domain Finite Element Model Updating of Civil Infrastructure Systems 

 

 

by 

 

 

Mukesh Kumar Ramancha 

 

 

Doctor of Philosophy in Structural Engineering 

 

 

University of California San Diego, 2022 

 

 

Professor Joel P. Conte, Chair 

 

 

 

The American Society of Civil Engineers (ASCE) 2021 report card rated the U.S. 

infrastructure at a C- grade. Therefore, there is an operational need for structural health 

monitoring (SHM) and damage prognosis (DP) for large-scale civil infrastructure systems. An 

effective way of performing SHM/DP of structural systems is by using a hybrid physics-based 
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and data-driven digital twin or cyber model. A potential approach for constructing digital twins 

of civil structural systems consists of using the Bayesian finite element (FE) model updating 

framework. The process of calibrating probabilistically, using the Bayesian inference framework, 

a FE model of a structural system using sensor measurement data collected from the system is 

termed as Bayesian FE model updating.  

Most methods of FE model updating for SHM consist of updating linear FE models based 

on changes in modal parameters identified before and after a potentially damaging event (e.g., an 

earthquake) using low amplitude vibration data. However, these modal methods only identify 

damage as loss of effective stiffness and can only be used to detect the existence of damage and 

localize it. This dissertation focuses on the Bayesian FE model updating framework applied in 

the time domain. This framework can be used to update linear and nonlinear FE models. In 

contrast to updated linear FE models, a mechanics-based nonlinear FE model of the system (able 

to capture the damage states and failure modes of interest) updated using measurement data can 

provide information about other crucial characteristics of damage such as loss of strength, 

ductility capacity, and low cycle fatigue life, etc., which are very important to identify for 

comprehensive damage diagnosis and prognosis. The updated mechanics-based nonlinear FE 

model can be directly used to detect, localize, classify, and assess the severity of the damage and 

perform damage prognosis. 

The Bayesian time-domain FE model updating framework is illustrated using three civil 

infrastructure testbed structures – a concrete gravity dam, a miter gate, and a bridge column. The 

framework is further extended to account for model form uncertainty, arguably the most 

significant source of uncertainty in model calibration, in linear dynamic systems. The extended 

framework is illustrated and validated on simple structural benchmark problems.  



xxii 

Surrogate models can be used as fast emulators of FE models to accelerate the extremely 

computationally expensive model updating process. Part of this dissertation focuses on 

evaluating the loss of accuracy and the gain in computational time while performing Bayesian 

model updating by using surrogate model evaluations compared to using direct FE model 

evaluations.  
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1 Introduction 

1.1 Background 

Infrastructure conditions have a cascading impact on the nation’s economy and the U.S. 

infrastructure is aging. The average age of dams in the U.S. is 57 years, 7.5% of the bridges in 

the U.S. are structurally deficient, and most of the locks (integral part of the inland waterways 

network) have exceeded their 50-year economic design life. The American Society of Civil 

Engineers (ASCE) 2021 report card rated the U.S. infrastructure (17 categories) at a C- grade, 

where C stands for mediocre, and D poor. Given these statistics, there is an operational need for 

optimal asset management: active monitoring, condition-based inspection and maintenance, 

optimal operation, predictive planning. There is a need for a rational guide (or a framework) to 

prioritize the allocation of resources for retrofit and replacement of the degrading infrastructure 

systems. This requires a framework for comprehensive damage diagnosis and prognosis of 

infrastructure systems. 

Structural health monitoring (SHM) is the process of implementing a damage 

identification strategy (for damage diagnosis) for any aerospace, civil, or mechanical engineering 

system. Damage is defined as changes to the material and/or geometric properties of the system 

which adversely affect the system’s performance. SHM is also currently being extended to 

biological systems such as humans under the name of human health monitoring. Damage 

prognosis (DP) is the process of forecasting system performance by combining SHM 

assessments with probabilistic description of future loading. A comprehensive SHM/DP 

framework should inform us about the: (1) existence of damage, (2) location of damage 

(localization), (3) type of damage (classification), (4) extent of damage, and (5) future metrics 
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such as remaining useful life of the system. The level of data/information needed and the level of 

sophistication in mathematical models increases from (1) to (5). The goal is to rely on 

physics/mechanics-based linear/non-linear finite element (FE) models for comprehensive 

damage assessment in structural systems. 

Mathematical models are used in many fields of science and engineering to understand 

and predict the behavior of the system of interest. The fundamental governing equations of 

mathematical models describing physical phenomena in many fields consist of coupled partial 

differential equations – a form of mathematical model. The finite element (FE) method, first 

developed in the 1960s, is a numerical analysis technique to approximately solve the governing 

partial differential equations of a system. In the field of civil engineering, FE methods have been 

used by engineers in the analysis and design of structural, geo-structural, and soil-foundation-

structural systems. Tremendous progress in FE modeling and analyses methods over the last few 

decades enables us to appropriately capture the complex behavior of large-scale civil structural 

systems subjected to static, quasi-static, and dynamic loading, particularly in the case of natural 

hazards, such as earthquakes. Physics/mechanics-based nonlinear FE models of civil structural 

systems (e.g., buildings, bridges, dams, miter gates) can reasonably capture the damage and 

failure mechanisms developing in such systems under critical loading environment or 

progressive deterioration over time.  

1.2 Structural Digital Twin 

Digital twins are at the heart of cybermodeling for intelligent infrastructure asset 

management. A structural digital twin is an up-to-date representation in terms of structural 

behavior of an individual/unique physical asset in operation. It is usually a hybrid physics-based 
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and data-driven model which is dynamically updated with data collected from its physical twin 

throughout its lifecycle and informs decisions that realize value. Combining physics-based 

models and data can really bring value to decision making. Digital twins have the potential to 

revolutionize decision-making across science and engineering. Figure 1.1 shows the schematic 

representation of a digital twin development for SHM/DP. 

 

Figure 1.1: Schematic representation of a digital twin development for SHM/DP 

1.3 FE Model Updating using Bayesian Inference 

Consider a real structure equipped with sensors to measure the input-output or output-

only response of the system. The input loading can be due to ambient vibrations or forced 

vibrations from a planned event or seismic vibrations from an unexpected earthquake event. The 

heterogenous sensor array to measure global and local output response of the systems may 
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consist of accelerometers, GPS-based displacement sensors, fiber-optic sensors, LVDTs, string 

potentiometers, strain gauges, etc. Assume a physics/mechanics-based linear or non-linear FE 

model of the structure is developed from design or as-built drawings of the system and using 

explicitly formulated assumptions and hypotheses. Often the system response predicted by the 

FE model differs from the measured output response of the system. The discrepancy between 

these responses can be attributed to numerous sources of uncertainties. These include: 

(1) Uncertainty in the measured input and output due to measurement noise. 

(2) Unmeasured/partially measured/erroneous input. 

(3) Uncertainty about the parameters of the FE model due to lack of knowledge, 

assuming that the structure/form of the model is known. 

(4) Uncertainty about the structure/form of the model, i.e., the selected model class 

cannot represent the real system appropriately. This model form error, if not 

accounted for, can introduce bias in parameter estimation and handicap the 

predictive utility of the model. 

(5) Uncertainty due to environmental variability and operational variability 

(6) … 

Let the vector of time-invariant unknown model parameters be denoted by θ . For the 

methodology described in this thesis, the parameter vector θ  can include any unknown time-

invariant parameters such as geometric, inertial, damping, hysteretic material law, boundary 

conditions, and loading parameters characterizing the FE model. The measurement data is 

denoted by . The process of estimating/calibrating the unknown parameter vector θ  of a FE 

model of a structural system using the probabilistic Bayesian inference framework and the 

measurement data  is termed Bayesian FE model updating in the engineering literature. 
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The Bayesian methodology provides a rigorous probabilistic framework that allows to 

explicitly and accurately account for the various sources of real-world uncertainties in the model 

updating process. The framework also allows incorporation of prior knowledge about the 

unknown parameter vector θ  of the FE model using a prior probability distribution ( )p θ . The 

framework quantifies uncertainty in parameter estimates after calibration through the posterior 

probability distribution ( )|p θ . All the uncertainties can be carried forward into the future 

predictions using posterior predictive distribution thus enabling robust predictions. The Bayesian 

updating of the unknown parameter vector θ  is obtained using Bayes theorem as 

 ( )
( ) ( )

( )

|
|

p p
p

p


=

θ θ
θ   (1.1) 

The prior distribution ( )p θ  is a probability distribution over θ  and is formulated using 

domain knowledge and expert opinion. The likelihood function is a function over θ  and conveys 

the likelihood of observing the measured data  through the lens of a measurement model at 

each value of θ . This measurement model incorporates the FE model and is discussed in 

Chapters 2, 3, 4, and 5. The posterior distribution ( )|p θ  is an updated probability distribution 

over θ  which fuses both prior knowledge and measured data. In Bayesian parameter estimation, 

( )p  is just a normalizing constant that ensures the posterior distribution ( )|p θ  integrates to 

1. Figure 1.2 shows a schematic representation of Bayesian FE model updating. The FE model 

characterized by the posterior distribution ( )|p θ  of the parameter vector θ  is termed the 

updated FE model. 
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Figure 1.2: Schematic representation of Bayesian FE model updating 

1.4 Linear vs Non-linear FE Models for Model Updating of Civil 

Structures 

Most methods of FE model updating for SHM consist of updating linear FE models based 

on changes in modal parameters identified before and after a potentially damaging event (e.g., an 

earthquake) using low amplitude vibration data (Doebling et al. 1998; Farrar et al. 2001), see 

Figure 1.3. Such vibration-based SHM techniques have been successfully applied to large scale 

civil structures (Astroza et al. 2016; Moaveni et al. 2010, 2011). With linear FE model updating 

methods, however, damage is only identified as loss of effective stiffness in various elements or 

groups of elements of the FE model of the structure. Moreover, these methods can only detect 

the existence of damage and localize it. These methods fail to accurately classify and assess the 

severity of damage. In addition, the updated linear FE model cannot be used for DP purposes 

since the system response during damage-inducing loading events (and sometimes even during 

normal operational events) deviates significantly from the linear elastic behavior. This 

dissertation focuses on the Bayesian FE model updating framework applied in the time domain. 

This framework can be used to update linear and nonlinear FE models. In contrast to linear FE 

model updating methods operating in the modal domain, when a mechanics-based nonlinear FE 
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model of the system (able to capture the damage states and failure modes of interest) is updated 

in the time domain using measurement data, it can provide information about, for example, the 

loss of strength and ductility capacity and loss of low cycle fatigue life, which are even more 

important  metrics of structural damage in civil structural systems as compared to the mere loss 

of effective stiffness. For civil structural systems, the sources of nonlinear behavior can be 

attributed to multiple sources (i.e., material and geometric nonlinearities, force and displacement 

boundary condition nonlinearities, friction, fracture, …). The updated mechanics-based nonlinear 

FE model can be directly interrogated to detect, localize, classify, and assess the severity of 

damage. It can also be used to perform DP (for example, estimate the remaining useful life of a 

system) by defining future service, operational, and extreme loads in probabilistic terms, see 

Figure 1.3.  

 

Figure 1.3: Nonlinear vs Linear FE Model Updating 
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1.5 Three-Phased Research Strategy 

The final objective of this research is to use measurement data collected from a physical 

structure in the lab or the field to perform FE model updating. This is a complex and challenging 

task. Therefore, we devised a systematic and progressive three-phased research strategy to 

develop the Bayesian FE model updating methodology. The three-phased approach allows us to 

investigate and overcome the stumbling blocks in methodology development and enables us to 

move systematically and progressively towards the final objective. Figure 1.4 shows a schematic 

representation of the proposed 3-phased research strategy. 

In phase 1, simulated data is used as measurement data for model updating. The same FE 

model is used to simulate the measurement data and perform model updating (parameter 

estimation). In this phase, only the uncertainty due to input and output measurement noise are 

accounted for in the model updating framework.  

In phase 2, simulated data is again used as measurement data for model updating. 

However, the FE model used to simulate the measurement data is different from the one used to 

perform model updating. For example, an FE model with refined mesh can be used to simulate 

the measurement data and an FE model with a coarser mesh can be used to conduct model 

updating; or different material constitutive models can be used to simulate the data and to 

perform model updating. This enables us to study the effect of modeling errors in FE model 

updating in addition to input and output measurement noise – a step closer to reality. 

Phase 3 is the real-world scenario where data recorded from a physical structure tested in 

the lab or existing in the field is used as measurement data for model updating. All the sources of 

real-world uncertainties (measurement noise, modeling errors, environmental and operational 

variability, …) are accounted for in this phase. 
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Figure 1.4: Proposed three-phased research strategy 

1.6 Organization of Dissertation 

This dissertation consists of six chapters, a brief description of the content in each chapter 

is provided below: 

Chapter 1 introduces and motivates the topic of structural health monitoring and damage 

prognosis of civil infrastructure systems. This chapter also introduces Bayesian linear and non-

linear FE model updating of civil structures. 

Chapter 2 focuses on the Bayesian time-domain FE model updating framework and 

illustrates the methodology to update an idealized nonlinear FE model of a concrete gravity dam 

using data simulated according to phase 1 of the research strategy. This chapter also introduces 

the concept of identifiability and shows its importance in model updating. Two meta-algorithms 

are proposed to identify the identifiable parameters.  
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Chapter 3 extends the proposed FE model updating framework to account for model 

form uncertainty for linear dynamic systems. The extended framework is validated on simple 

structural benchmark problems using data simulated according to phase 2 of the research 

strategy. Note that model form uncertainty is the major source of uncertainty in model 

calibration. 

Chapter 4 considers surrogate modeling and parallel computing to reduce the 

computational burden of model updating. Loss in accuracy of model updating results and gain in 

computational time is studied when model updating is performed using direct FE model 

evaluations versus surrogate model evaluations. In this chapter, a high-fidelity FE model of a 

real-world miter gate structure is considered for model updating using data simulated according 

to phase 1 of the research strategy. 

Chapter 5 considers FE model updating of a full-scale bridge column tested on the shake 

table at UC San Diego. The heterogenous experimental data is used to update a nonlinear FE 

model of the bridge column (phase 3 of the research strategy). The prospects and limitations of a 

living digital twin are highlighted in this chapter.  

Chapter 6, the last chapter, provides conclusions of the dissertation, some avenues for 

future research, and final thoughts about the future of the structural digital twin technology for 

SHM/DP purposes. 
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2 Bayesian Updating and Identifiability Assessment of 

Nonlinear Finite Element Models 

2.1 Abstract 

A promising and attractive way of performing structural health monitoring (SHM) and 

damage prognosis (DP) of engineering systems is through utilizing a nonlinear finite element 

(FE) model. Often, FE models contain parameters that are unknown or known with significant 

level of uncertainty. Such parameters need to be estimated/updated/calibrated using data 

measured from the physical system. The Bayesian paradigm to model updating/calibration is 

attractive as it accounts, using a rigorous probabilistic framework, for numerous sources of 

uncertainties existing in the real-world. However, applying Bayesian methods to nonlinear FE 

models of large-scale civil structural systems is computationally very prohibitive. Additionally, 

non-identifiability of FE model parameters poses challenges in the model updating process. This 

paper presents Bayesian model updating and identifiability analysis of nonlinear FE models with 

a specific testbed civil structure, Pine Flat concrete gravity dam, as illustration example. Model 

updating is performed in the recursive mode using the unscented Kalman filter (UKF) and in the 

batch mode using the transitional Markov chain Monte Carlo (TMCMC) method. Limitations in 

terms of applicability and computational challenges of each method for model updating of large-

scale nonlinear FE models are addressed and discussed. Identifiability and sensitivity analyses of 

the model are then performed using local and global methods. Local practical identifiability 

analysis using local sensitivity in conjunction with the Fisher information matrix is used to assess 

the parameter identifiability in a certain local region in the parameter space. Due to the 
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nonexistence of a method to assess global practical identifiability, variance-based global 

sensitivity analysis (Sobol’s method) is used herein. Identifiability and sensitivity analysis results 

are used to choose the parameters to be included in the model updating phase. 

Keywords: Structural health monitoring, Model updating, Model calibration, Finite 

element model, Nonlinear system identification, Bayesian parameter estimation, Identifiability 

analysis, Sensitivity analysis, Sobol’ Indices 

2.2 Introduction  

Structural health monitoring (SHM) is the process of implementing a damage 

identification strategy (damage diagnosis) for aerospace, civil, and mechanical engineering 

infrastructure (Farrar and Worden 2007). Damage prognosis (DP) extends this process by 

combining SHM assessment with probabilistic modeling of the future loading environments to 

forecast metrics such as remaining useful life of the system (Farrar and Lieven 2007). An 

effective way of doing SHM/DP of civil structural systems is by utilizing a calibrated nonlinear 

finite element (FE) model of the system able to capture the pertinent damage and failure modes 

(Hemez and Farrar 2014). This involves collecting measurement data (input-output or output-

only data) using heterogeneous sensor arrays deployed on the system. Then, a FE model is 

developed from design or as-built drawings of the system and using explicitly formulated 

assumptions and hypotheses. Due to the inherently complex nature of civil structural systems and 

the presence of wide-ranging uncertainties, it is extremely difficult to model these systems 

accurately. Often, FE models contain parameters that are unknown or known with significant 

uncertainty, combinedly referred to as unknown parameters in this paper. These parameters need 

to be calibrated (or estimated or updated) using the measured data accounting for numerous 
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sources of uncertainties. The process of calibrating/estimating/updating the unknown parameters 

of the developed FE model using Bayesian inference is known as Bayesian FE model 

updating/calibration.  

Most methods of FE model updating for SHM consist of updating linear FE models based 

on changes in modal parameters identified before and after a potentially damaging event (e.g., an 

earthquake) using low amplitude vibration data (Doebling et al. 1998; Farrar et al. 2001). Such 

vibration-based SHM techniques have been successfully applied to large scale civil structures 

(Astroza et al. 2016; Moaveni et al. 2010, 2011). With linear FE model updating methods, 

however, damage is only identified as loss of effective stiffness in various elements or groups of 

elements of the FE model of the structure. Moreover, these methods can only detect the existence 

of damage without being able to localize it, barring a few cases. Another important drawback is 

that these methods fail to accurately classify and assess the severity of damage. In addition, the 

updated linear FE model cannot be used for DP purposes since the system response during 

damage-inducing loading events (and sometimes even during normal operational events) 

deviates significantly from linear elastic behavior. In contrast to linear FE model updating 

methods, when a mechanics-based nonlinear FE model of the system (able to capture the damage 

states and failure modes of interest) is updated using measurement data, it can provide 

information about, for example, the loss of strength and ductility capacity and loss of low cycle 

fatigue life, which are more meaningful and important  metrics of structural damage in civil 

structural systems as compared to the mere loss of stiffness. For civil structural systems, the 

sources of nonlinear behavior can be attributed to multiple sources (i.e., material and geometric 

nonlinearities, force and displacement boundary condition nonlinearities, friction, fracture, …) 

with material nonlinearity being the most important. The updated mechanics-based nonlinear FE 
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model can be directly used to detect, localize, classify and assess the severity of damage. It can 

also be used to perform DP (for example, estimate the remaining useful life of a system) by 

defining future service, operational and extreme loads in probabilistic terms. Most work in 

nonlinear FE model updating consists of using simplified models with concentrated/lumped 

nonlinearities described by empirical nonlinear models (e.g., Bouc-Wen) to represent the 

hysteretic behavior (Chatzi and Smyth 2009; Yang et al. 2014). However, such empirical models 

are not mechanics-based and thus inadequate to capture the real nonlinear behavior of large-scale 

civil systems. Only recently, researchers have started updating mechanics-based nonlinear FE 

models of civil structural systems using simulated measurement data (Astroza et al. 2015, 2019b; 

Ebrahimian et al. 2015, 2018; Ramancha et al. 2020b; Vega et al. 2020) and experimental data 

(Ramancha et al. 2020a). Updating mechanics-based nonlinear FE model of large-scale civil 

structural systems is highly computationally intensive. However, it is rewarding in terms of 

accuracy in damage detection, localization, classification, severity assessment and prognosis. 

The model updating process should be complemented or preceded by some sort of 

identifiability analysis to assess the identifiability of the model parameters. In the Bayesian 

paradigm, the concept of identifiability has not been free from controversies, polemics, and 

confusion (San Martın and González 2010). Aldrich (Aldrich 2002) describes the transfer of the 

term “identification” to the Bayesian theory and how its transfer has led to a protracted debate. In 

this paper, the term “identifiability” of a model parameter refers to the possibility of uniquely 

determining its value from the measurement data. A model is identifiable if all its parameters are 

identifiable. It is important to perform some sort of identifiability analysis before solving the 

actual inverse problem to answer questions such as “which model parameters or parameter 

combinations can be uniquely estimated from the measurement data?”. In theory, model 
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identifiability poses no real difficulty in the Bayesian approach to model updating (Wechsler et 

al. 2013). However, numerical approximations such as Markov chain Monte Carlo methods do 

not perform well when non-identifiable parameters are included in the inference stage (Hines et 

al. 2014; Raue et al. 2013). In the case of approximate inference methods that operate on point 

estimates (e.g., maximum likelihood, maximum-a-posteriori, Kalman filters and its variants), 

non-identifiability brings undesirable non-uniqueness (Ramancha et al. 2020b; Wechsler et al. 

2013). Additionally, the computationally intensive nature of Bayesian methods often requires a 

parameter screening and selection process to select the most significant/influent parameters to be 

used in the updating process. Identifiability and sensitivity analysis are used to detect/identify the 

influent/identifiable parameters. 

Identifiability is commonly distinguished between structural versus practical and local 

versus global (see Section 2.4 for more details). This paper is mainly concerned with practical, 

both local and global, identifiability. Many analytical and numerical methods are available in the 

literature for identifiability analysis of mathematical models. Most analytical methods (e.g., 

Laplace transform approach, Taylor series approach, similarity transform approach, differential 

algebra approach) answer questions about structural (local and global) identifiability of the 

model. Analytical methods require implementing the model symbolically and using symbolic 

differentiation, which is impractical for FE models as they are generally implemented in software 

external to the software for performing the Bayesian estimation and identifiability analysis. 

Analytical methods also have limitations with large models due to computational reasons (RAM 

limitations). On the other hand, most numerical methods (e.g., Fisher information matrix 

(Rothenberg 1971), profile likelihood (Raue et al. 2009), Bayesian approaches (Hines et al. 

2014), sloppy models (Chis et al. 2016), active subspaces (Constantine 2015)) can achieve 
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structural and practical identifiability analysis. Numerical methods are often computationally fast 

and doesn’t require symbolic implementation of the model. However, existing numerical 

methods are typically local, i.e., these methods can only answer questions about local (structural 

and practical) identifiability of the model. To the best of the authors’ knowledge, no analytical or 

numerical methods exist that can evaluate the practical global identifiability of a model. The best 

possible tool currently available to investigate global identifiability is global sensitivity analysis. 

Also, most numerical approaches also only provide a binary yes-no answer to model 

identifiability (refer to introduction of (Ebrahimian et al. 2019)). However, even when a model is 

not identifiable, a few parameters of the model might still be identifiable. Therefore, it is 

important to detect such parameters using some sort of identifiability analysis and estimate only 

these parameters in the model updating stage. 

Identifiability of structural models is a topic of emerging interest in structural engineering 

research. While some researchers have used the determinant and trace of the Fisher information 

matrix to evaluate the binary yes-no answer to model identifiability (Heredia-Zavoni and Esteva 

1998; Kirkegaard and Brincker 1994; Udwadia 1994), others have used the concept of 

information theory to study model identifiability (Papadimitriou et al. 2000; Yuen and Kuok 

2015). The application examples of these studies, however, are linear elastic structural models. 

Chatzis et al. (Chatzis et al. 2015) looked at the identifiability of nonlinear models using 

Observability Rank Condition. This analytical method requires symbolic differentiation of the 

FE model which is impractical (highly challenging) for large scale nonlinear mechanics-based 

FE models. Ebrahimian et al. (Ebrahimian et al. 2019) proposed an information-theoretic 

approach (which does not require the symbolic state-space implementation of the FE model) for 

identifiability assessment and investigated the identifiability of mechanics-based nonlinear FE 
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models of civil structures. Most of the mentioned studies also focused on local identifiability 

only. The problem with local methods is that the identifiability of parameters is only valid in the 

local region around the evaluation point. Therefore, these methods are not appropriate for models 

with a nonlinear relation between the parameter vector and the model output of interest. Due to 

the lack of a practical global identifiability analysis method, most researchers have focused on 

global sensitivity analysis (GSA), namely  Sobol’s method (a variance-based GSA method). 

GSA is a tool primarily used in systems modeling to discriminate between influent and non-

influent parameters (Saltelli et al. 2007). The link between global sensitivity and identifiability is 

discussed in (Dobre et al. 2010). GSA of structural models is a relatively less studied topic in the 

literature. Researchers have proposed algorithms and metrics based on Sobol’s method and have 

applied them to idealized linear elastic structural models (Hu and Mahadevan 2019; Zhou et al. 

2017). These studies also do not focus on detecting the most significant/influent parameters to be 

used in the updating process.  

This paper discusses the general process of updating unknown parameters of a FE model 

from measurement data using batch and recursive Bayesian estimation methods. Popular 

algorithms for recursive estimation, i.e., unscented Kalman filter (UKF), and batch estimation, 

i.e., transitional Markov chain Monte Carlo (TMCMC), are briefly summarized from the FE 

model updating perspective (in Section 0 and 2.3.2, respectively), highlighting their advantages 

and disadvantages in the context of updating large-scale nonlinear FE models. It is very likely 

that a nonlinear FE model of a large-scale civil structural system will contain nonidentifiable 

parameters. Therefore, an algorithm is proposed for ranking and detecting the parameters that are 

practically locally identifiable based on Fisher information and the generalized notion of Cramer-

Rao lower bound (Section 2.4.2). A novel method to find the globally influent parameters based 
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on variance-based GSA of individual and groups of parameters is also proposed (Section 2.4.3). 

These proposed methods do not require symbolic implementation of the mathematical model, 

thus ideal for FE models. Also, the updating and identifiability methodologies described in the 

paper are general and applicable to any mathematical model. Model updating and identifiability 

methodologies are applied to a testbed civil structure (Section 2.5). This paper aptly illustrates 

the challenges in updating mechanics-based FE models of large-scale real-world systems as well 

as the importance of identifiability – the primary objective of this paper. 

2.3 Bayesian Finite Element Model Updating 

At time step k  (or discrete time kt ), let n
k 

uu  and 
n

k 
yy  be the measured input 

and output response, respectively, where nu  and ny  denote the number of input and output 

measurement channels, respectively. Assuming that the measurements are obtained for N  time 

steps, the measurement input and output vectors are 
( ) 1

1: 1 2, ,...,
T n NT T T

N N
  = 

 
uu u u u  and 

( ) 1

1: 1 2, ,...,
T n NT T T

N N

 
 = 
 

y
y y y y , respectively.  Thus, the input-output measurement dataset is 

defined as ( ) ( )  ( )1 1 1: 1:, ,..., , ,N N N N= u y u y u y . For civil structural systems, the input and 

output measurements are typically obtained from heterogenous sensor arrays which may consist 

of accelerometers, GPS-based displacement sensors, fiber-optic sensors, LVDTs, string 

potentiometers, strain gauges, etc., deployed on the system (Ramancha et al. 2020a). 

Let ( )1: ;
nFE

k k k=  yy h u θ  be the output response of the FE model h  at time step k  

when subjected to the measured input time history 
( ) 1

1: 1 2, ,...,
T n kT T T

k k
  = 

 
uu u u u . The FE 
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model h  is parameterized by the unknown parameter vector 1 2, ,...,
T n

n
 =     

θ

θ
θ , where 

nθ  denotes the number of unknown parameters. For the methodology described in this paper, the 

parameter vector θ  can include any unknown time-invariant parameters such as geometric, 

inertial, damping, hysteretic material law, boundary conditions, and loading parameters 

characterizing the FE model.  

The measured output response y  and predicted response 
FE

y  do not match due to the 

numerous sources of uncertainties observed in the real-world (Chatfield 1995; Kennedy and 

O’Hagan 2001). These include: 

(1)   Uncertainty in the measured input and output due to measurement noise. 

(2)   Unmeasured/partially measured/erroneous input. 

(3)   Uncertainty about the parameters of the FE model, assuming that the 

structure/form of the model is known. 

(4)   Uncertainty about the structure/form of the model, i.e., the selected model class 

cannot exactly represent the real system. This model form error, if not accounted 

for, can introduce bias in parameter estimation and handicap the predictive utility 

of the model. 

The goal of model updating is to estimate the unknown parameters of the model using 

measurement data (see Remark 1 below). However, the measurement data of civil structural 

systems are typically noisy, sparse (limited in number), and susceptible to unknown 

environmental artifacts, thus unable to completely constrain the unknown parameters of the FE 

model. Mathematically, the model updating problem is ill-posed. Deterministic/classical 

approaches such as least squares or generalized/weighted least squares can be used for model 

updating. However, these methods need regularization while solving an ill-posed problem. In 



20 

addition, deterministic methods are not strictly appropriate for dealing with real-world 

uncertainties. Alternatively, the Bayesian approach to model updating is attractive because it 

provides the framework to (1) account explicitly for the various sources of real-world 

uncertainties during the estimation process of unknown parameters and (2) characterize 

probabilistically the remaining estimation uncertainty (Kennedy and O’Hagan 2001). The 

remaining estimation uncertainty provided by the Bayesian approach is extremely useful in 

SHM/DP as it supports reliable and robust decision making. Unlike classical approaches, the 

Bayesian approach models the unknown parameter vector θ  as a random vector thereby 

providing a means to incorporate prior knowledge of the unknown parameters through a prior 

probability density function (PDF) ( )p θ . Some prior knowledge is usually available for most 

parameters in the FE model of a civil structural system. For example, if the parameter of interest 

is “the tensile strength of concrete” then its nominal value can be used to construct the prior 

PDF.  

Three main ingredients are required to perform Bayesian model updating: (1) 

measurement data , (2) the prior PDF of the unknown parameters ( )p θ , and (3) a 

measurement equation (i.e., a model of the measurement process). The measurement equation is 

essentially a joint physical-statistical model that relates model parameters to measurements. The 

following measurement equation is used in this paper:  

 ( )  1: ;

/

At time step : ; 1,2,...,k k k k

measured output error noiseFE predicted response

k k N= + y h u θ w   (2.1) 

where 1, 2, ,, ,...,
T

k k k n k

n
w w w = 
 y

yw  is the error/noise vector at time step k , ,i kw  

denotes the discrepancy between measured output and the FE predicted response corresponding 
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to the thi  output measurement channel at time step k . Note that in this paper, the noise term is 

assumed additive to the FE predicted response in the measurement equation (Eq. (2.1)). With 

such measurement equation, all the sources of real-world uncertainties are lumped and accounted 

for in the noise term. Therefore, accurate statistical description of the noise process 

( ) 1

1 2, ,...,
T n NT T T

N

 
 = 
 

y
w w w w  is crucial for accurate model updating. In this paper, the 

error/noise vectors 1 2, ,..., Nw w w  are assumed statistically independent and identically 

distributed with the random vector kw  modeled as zero-mean Gaussian with independent 

components (i.e., noise/error terms across all measurement channels, 1, 2, ,, ,...,k k n kw w w
y

, are 

assumed statistically independent). Thus,  

 

( )
( )
( )

2
1

2
2

1 1
2

0 0

0 0
~ ,  , ~ ,

0 0

k
n n N

n N
n

n n n N

  



  

  
                = =     
             

   

y y

y
y

y y y

R 0 0

0 R 0
w 0 R w 0 C

0 0 R

  (2.2) 

where ( ),μ Σ  denotes a Gaussian joint PDF with mean vector μ  and covariance 

matrix Σ , 2
i  denotes the variance of the discrepancy between measured and FE predicted 

output responses for the thi  output measurement channel. Note that the covariance matrix of the 

error/noise kw  is assumed to be a diagonal time-invariant matrix R . Assuming the noise 

process to have zero-mean and time-invariant diagonal covariance matrix (as in Eq. (2.2)) may 

not be sufficiently accurate especially in the presence of model-form error. However, this is 

outside the scope of this paper. Refer to (Astroza et al. 2019a; Kennedy and O’Hagan 2001) for 

representation of the model-form error in Bayesian model updating.  
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In the measurement equation (Eq. (2.1)), the mapping between the unknown parameter 

vector θ  and measured output ky  is not linear. Hence, the model updating problem is nonlinear. 

Note that even for a linear (between input and output response) FE model h , the model updating 

problem can still be nonlinear depending on the mapping between θ  and ky . Thus, most FE 

model updating problems require the use of nonlinear model updating tools. 

The objective of Bayesian model updating is to obtain ( ) ( )1: 1:| | ,N Np pθ θ u y , 

referred to as posterior/updated PDF of θ . This posterior PDF of θ  accounts for both the prior 

knowledge ( )p θ  and the measurement data . This generic Bayesian parameter estimation 

problem can be solved in a batch mode or a recursive mode. In the recursive mode, updating is 

performed at each time step k  accounting for the “new” measurement data at time step k  

( ),k ku y  yielding an updated PDF ( )1: 1:| ,k kp θ u y . Whereas in the batch mode, the prior ( )p θ  

is updated to ( )1: 1:| ,N Np θ u y  in one go accounting for the entire measurement data  at once. 

Batch Bayesian estimation is a special case of recursive Bayesian estimation (Sarkka 2013). The 

batch estimation framework does not allow estimation of parameters that vary with time (i.e., 

time-varying parameters). However, recursive estimation can be used for time-varying 

parameters as the parameters can be modeled to change between measurement steps using a state 

equation. More details about recursive and batch mode estimations are provided in Section 2.3.1 

and Section 2.3.2, respectively.  

Remark 1: Parameter-only estimation 

This paper does not deal with the joint state and parameter estimation problem but rather 

considers the parameter-only estimation problem. In mechanics-based nonlinear FE models, the 

state vector consists of displacement and velocity at each node and all the history-dependent 
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variables at each integration point (material history variables of the constitutive material model 

used). This results in an extremely high-dimensional state vector for large-scale models and thus 

a joint state-parameter estimation problem becomes intractable. Extensive research in the field of 

nonlinear modeling and analysis of civil structures has shown that adequate mechanics-based FE 

models can predict with reasonable accuracy the actual structural response provided that realistic 

and well-calibrated material constitutive models are used. Therefore, relying on the mechanics-

based FE model developed for a given structure, the estimation of the state variables can be 

omitted because they can be obtained as the output of the FE model with well identified 

unknown parameters. As a result, a parameter-only estimation problem can be formulated instead 

of a joint (state-parameter) estimation problem. Refer to the Proposed Framework section of 

(Astroza et al. 2015) for more details. 

Remark 2: Time-invariant parameters 

It is important to note that although parameters of nonlinear inelastic material constitutive 

models are time-invariant, the resulting nonlinear inelastic FE models of civil structures capture 

material and therefore structural degradation such as stiffness degradation and strength 

deterioration through the material history variables of the constitutive models. These material 

history variables are updated through evolution equations integrated over the deformation history 

of the materials. 

2.3.1 Recursive Bayesian Parameter Estimation 

Recursive Bayesian parameter estimation (also known as Bayes Filter) consists of 

obtaining the PDF ( )1: 1:| ,k kp θ u y  recursively over time (i.e., at time step 1,2,...,k N= ) (Sarkka 

2013). At any time step k , the PDF ( )1: 1 1: 1| ,k kp − −θ u y  is updated to ( )1: 1:| ,k kp θ u y  accounting 
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for the “new” measurement ( ,k ku y ). Therefore, the updated PDF ( )1: 1:| ,k kp θ u y  accounts for 

both the prior PDF ( )p θ  and measurements until time step k  ( 1: 1:,k ku y ). This process is 

repeated until k N= . Particle filters and nonlinear variants of Kalman filters such as the 

extended Kalman filter (EKF) and the unscented Kalman filter (UKF) can be used to achieve this 

task. A state-space representation (state and measurement equation) of the problem is needed to 

utilize these algorithms (van der Merwe and Wan 2004). The following discrete-time state-space 

representation is used in this paper:  

 

( )

1 1

1: ;

State Equation:

Measurement Equation:

k k k

k k k k k

− −= +

= +

θ θ v

y h u θ w
   (2.3) 

In this representation, the unknown parameter vector θ  at each time step k  is denoted as 

kθ . The state equation governing the parameter vector n
k 

θθ  is a simple random walk model 

driven by the “artificial” process noise n
k 

θv . The artificial process noise kv  is only used to 

model the evolution in time of the estimates of the time-invariant unknown parameters (during 

their recursive estimation) by a random walk and its variance controls the convergence and 

tracking performance of the filter (see Section 2.6.2 of (van der Merwe and Wan 2004)). The 

measurement equation is similar to Eq. (2.1), except that the FE model is now characterized by 

the unknown parameter vector kθ .  

In recursive Bayesian estimation, kθ  at each time step k  is modeled as a random vector. 

In addition, the PDF ( )1 1: 1 1: 1| ,k k kp − − −θ u y  is updated to ( )1: 1:| ,k k kp θ u y  at each time step k . 

This involves computing ( )1: 1 1: 1| ,k k kp − −θ u y , referred to as the predicted parameter distribution 

at time step k , using ( )1 1: 1 1: 1| ,k k kp − − −θ u y  and then updating the predicted distribution to 
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( )1: 1:| ,k k kp θ u y . For the state-space model shown in Eq. (2.3), the prediction and updating steps 

are performed as follows.  

 

1 1: 1 1: 1 1: 1:

From state equation

1: 1 1: 1 1 1 1: 1 1: 1 1

1: 1:

At time step :   ( | , )    ( | , )

Prediction step:   ( | , ) ( | ) ( | , )

( | ,
Updating step:   ( | , )

k k k k k k

k k k k k k k k k

k k
k k k

k p p

p p p d

p
p

− − −

− − − − − − −

→

= 

=



θ u y θ u y

θ u y θ θ θ u y θ

y θ
θ u y

From measurement equation

1: 1: 1 1: 1

1: 1: 1

) ( | , )

( | , )

k k k k

k k k

p

p

− −

−

u θ u y

y u y

  (2.4) 

Note that the prediction step is a Chapman-Kolmogorov equation and the update step is 

Bayes rule (Sarkka 2013). The conditional PDFs 1( | )k kp −θ θ  and 1:( | , )k k kp y θ u  are obtained 

from the state and measurement equation, respectively. 

Numerical approximation methods such as Particle filters and nonlinear variants of the 

Kalman filter can be used to solve the prediction and updating step of Eq. (2.4). Particle filters 

use a Monte Carlo representation (particles or weighted samples) for the distribution of the 

unknown parameter vector and the computational requirements are much higher than for Kalman 

filters (Sarkka 2013). Kalman filter is the classical optimal filter (best linear unbiased estimator, 

minimum mean square error estimator) for linear Gaussian models and is widely used for 

tracking, navigation, telecommunication, audio processing, control systems, etc. For nonlinear 

(between the state θ  and response measurement y ) state-space models, variants of Kalman filter 

such as the extended Kalman filter (EKF) and unscented Kalman filter (UKF) can be used. EKF 

is a linearization-based extension of Kalman filter to nonlinear state-space models. Hence, it 

requires the derivative of the response with respect to the parameter vector θ . UKF is a sigma-

point transformation-based extension of Kalman filter. In this paper, UKF is applied to the 

testbed structure for recursive estimation of the unknown parameter vector θ . 
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2.3.1.1 Unscented Kalman Filter 

A nonlinear Kalman filter is a Bayes filter for which: 

(1) The prior PDF ( )p θ  is a Gaussian distribution. Therefore, 0θ  is modeled as 

Gaussian with mean vector 0|0θ̂  and covariance matrix 0|0
ˆ θθP , i.e., 

( ) ( )0|0 0|0
ˆ ˆ,p = θθ

θ θ P . 

(2) The process noise kv  and measurement noise kw  are assumed to be Gaussian: 

( )~ ,k kv 0 Q  and ( )~ ,k kw 0 R  for all k , where kQ  and kR  are the 

process and measurement noise covariances, respectively, at time step k . 

Therefore, ( )1 1 1( | ) ,k k k kp − − −=θ θ θ Q  and 

( )( )1:1: ;( | , ) ,k k kk k k kp =y θ u h u θ R  in Eq. (2.4). In this paper, kQ  and kR  are 

assumed time-invariant diagonal matrices. The measurement noise covariance 

matrix k =R R  is described in Eq. (2.2). 

(3) The process noise, kw , and measurement noise, kv , across all time steps k  (

1,2,...,k N= ), along with the initial parameter vector, 0θ , are assumed to be 

mutually statistically independent. 

(4) The posterior/updated PDF ( )1: 1:| ,k k kp θ u y  at each time step k  is forced 

(assumed) to be Gaussian via approximation. Thus 

( ) ( )1: 1: | |
ˆ ˆ| , ,k k k k k k kp = θθ

θ u y θ P , where |
ˆ

k kθ  and |
ˆ

k k
θθ

P  are the updated mean vector 

and covariance matrix, respectively, at time step k . All variants of Kalman filters 

only update the mean vector and covariance matrix instead of computing the 

entire joint PDF, thus reducing the computational cost. In the context of Bayesian 
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parameter estimation, Kalman filters are approximate inference techniques that 

operates using point estimates (mean). 

In nonlinear variants of Kalman filter, statistics of a random vector, say x , undergoing 

some nonlinear transformation ( )g x , for an arbitrary nonlinear function g , must be evaluated. 

To this end, the UKF relies on unscented transformations (UTs). The UT is a method for 

calculating the statistics of a transformed random vector ( )g x  (e.g., mean vector ( )E   x g x  and 

covariance matrix ( )Var   x g x ) by using a minimal set of deterministically chosen sample points 

( )i , also known as sigma-points (SPs), to represent the random vector x . The SPs are selected 

such that they exactly capture the mean vector and covariance matrix of random vector x . These 

SPs when propagated through the nonlinear function g , capture the mean vector and covariance 

matrix of the transformed random vector ( )g x  up to 2nd order accuracy (3rd order accuracy if x  

follows a Gaussian distribution) (van der Merwe and Wan 2004; Simon 2006). Note that the 

linearization used in the EKF can only capture the mean vector and covariance matrix of ( )g x  

up to 1st order accuracy (van der Merwe and Wan 2004; Simon 2006). A specific type of UT 

known as scaled unscented transformation is used in this paper. Refer to (van der Merwe and 

Wan 2004) for more details about the UT and scaled UT. Table 2.1 shows the UKF algorithm 

used in this paper. For more details about this algorithm, refer to (Astroza et al. 2015; van der 

Merwe and Wan 2004). 
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Table 2.1: Unscented Kalman filtering algorithm for parameter estimation using the scaled 

unscented transformation 

Definitions:  

From state-space model :  ( )1 1 1( | ) ,k k k kp − − −=θ θ θ Q , ( )( )1:1: ;( | , ) ,k k kk k k kp =y θ u h u θ R  

Prediction PDF at time step k : ( ) ( )1: 1 1: 1 | 1 | 1
ˆ ˆ| , ,k k k k k k kp − − − −= θθ

θ u y θ P  

Denominator of updated PDF at time step k : ( ) ( )1: 1: 1 | 1 | 1
ˆˆ| , ,k k k k k k kp − − −= yy

y u y y P  

Joint PDF: ( )
| 1 | 1| 1

1: 1: 1

| 1 | 1 | 1

ˆ ˆˆ
, | , ,

ˆ ˆˆ

k k k kk k
k k k k

k k k k k k

p
− −−

−

− − −

   
   =
   
    

θθ θy

yθ yy

P Pθ
θ y u y

y P P
  

Updated PDF at time step k : ( ) ( )1: 1: | |
ˆ ˆ| , ,k k k k k k kp = θθ

θ u y θ P  

( )i

mW  and ( )i

cW  are weight coefficients of the SPs to estimate the mean vector and covariance 

matrix, respectively (van der Merwe and Wan 2004) 

Initialize: ( ) ( )0|0 0|0
ˆ ˆ,p = θθ

θ θ P  

for 1,2,3,...,k N=   

   Prediction step: 

       Generate SPs based on 1| 1
ˆ

k k− −θ  and 1| 1
ˆ

k k− −
θθ

P :   ( )
1| 1, 1,2,..., 2 1i

k k i n− − = +θ  

       Propagate each ( )
1| 1

i
k k− −  through the state equation:   ( ) ( )

| 1 1| 1, 1,2,..., 2 1i i
k k k k i n− − −= = +θ  

       Prediction:   
2 1 2 1

( ) ( ) ( ) ( )

| 1 | 1 | 1 | 1

1 1

( )
| 1 | 1 1| 1

ˆ ˆˆ ˆ,   
n n

T
i i i i

m c k k k k k k k k

i i

i
k k k k kk kW W

+ +

− − − −

= =

− − −− − −   = = +    
θ θ

θθ
θ θθ P Q   

    Updating step: 

       Propagate each ( )
| 1
i

k k−  through the measurement equation:   ( )1:
( ) ( )

| 1,k k
i i

k k k−= h u  

       Measurement:   
2 1 2 1

( ) ( ) ( ) ( ) ( )

| 1 | 1 | 1 | 1

1 1

ˆˆ ˆ ˆ,

n n
T

i i i i i

k k m k k k c k k k k k k k

i i

W W

+ +

− − − −

= =

= = − − +   
    

θ θ
yy

y P y y R  

       Cross-covariance:   

2 1
( ) ( ) ( )

| 1 | 1| 1 | 1
1

ˆˆ ˆ
n

T
i i i

c k k k kk k k k k
i

W
+

− −− −
=

   = − −
  

θ
θy

P θ y  

       Kalman gain:   ( )
1

| 1 | 1
ˆ ˆ

k k k k k

−

− −= θy yy
K P P   

       Parameter update:   ( )| | 1 | 1 | | 1 | 1
ˆ ˆ ˆ ˆ ˆˆ , T

k k k k k k k k k k k k k kk k− − − −= + − = −θθ θθ yyθ θ K y y P P K P K  



29 

2.3.2 Batch Bayesian Parameter Estimation 

Batch Bayesian parameter estimation updates the prior PDF ( )p θ  to the posterior PDF 

( )1: 1:| ,N Np θ u y   using all the measurement data  at once. This batch estimation is performed 

using the following implementation of Bayes’ theorem: 

 ( )
( ) ( )

( )
1: 1:

1: 1:
1: 1:

| ,
| ,

|

priorlikelihood

N N
N N

N N
posterior

evidence

p p
p

p


=

y u θ θ
θ u y

y u
  (2.5) 

where ( )1: 1:| ,N Np y u θ  is the likelihood function (also simply referred to as likelihood) 

which is essentially a goodness of fit of the measurement model (Eq. (2.1) and (2.2)) to the 

measurement data  given the values of the unknown parameter vector θ . The PDF 

( )1: 1:| ,N Np θ u y  is the posterior distribution of θ  accounting for all measurement data . The 

denominator ( )1: 1:|N Np y u  is the evidence. In the context of parameter estimation, the evidence 

is just viewed as a normalizing constant ensuring that the posterior PDF integrates to one. Thus, 

equation (2.5) can be written as 

 ( ) ( ) ( )1: 1: 1: 1:| , | ,N N N N

priorposterior likelihood

p p p θ u y y u θ θ   (2.6) 

With the measurement model defined in Eq. (2.1) and (2.2), the likelihood function 

( )1: 1:| ,N Np y u θ  is given by 
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( ) ( )

( )
( ) ( )

( )
( ) ( )

1: 1: 1:

1

1
1: 1:

1

1
1: 1:

1

1 2

2

2

2

| , | ,

1 1
exp , ,

22

1 1
exp , ,

22

N

N N k k

k

N
T

k k k k k k

k

N
T

k k k k k kN
k

N

n

n

p p
=

−

=

− −

=

−

=

 
   = − − −    

 

  
   = − − −     

   







y

y

y u θ y u θ

R y h u θ R y h u θ

R y h u θ R y h u θ

 (2.7) 

Note that 1:Nu  and 1:Ny  in the Eq. (2.7) are the input and output measurement data, 

respectively. Thus, the likelihood ( )1: 1:| ,N Np y u θ  is viewed as only a function of θ  and is 

denoted by ( )θ . 

Determining analytically (in explicit form) the joint posterior distribution 

( )1: 1:| ,N Np θ u y  with the likelihood function given in Eq. (2.7) is not possible. This is mainly 

due to the fact that evaluating the likelihood function involves running a FE model h  (i.e., a 

complex numerical model). Numerical approximation methods such as grid-based methods, 

sampling-based methods (e.g., Markov chain Monte Carlo (MCMC) methods, transitional 

Markov chain Monte Carlo (TMCMC) method) and variational approximations (e.g., variational 

inference) have been developed by researchers to obtain the posterior PDF. In this paper, we 

focus on sampling-based methods (e.g., MCMC and TMCMC), i.e., methods that aim at 

sampling the joint posterior distribution of the unknown parameter vector θ .  

MCMC methods (such as Metropolis-Hastings, Slice sampling, Gibbs sampling and 

Hamiltonian methods) are applicable in very general settings (non-gaussian prior, nonlinear 

model, etc.) and hence are widely used in various fields. Theoretically, MCMC can sample any 

joint PDF known up to a constant. However, in practice, many standard MCMC methods do not 

perform well (in terms of convergence) in sampling multi-modal PDFs or PDFs with flat 
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manifolds (Ching and Chen 2007). In addition, MCMC methods are not parallelizable and hence 

not ideal for model updating of computationally expensive FE models.  

The TMCMC algorithm is also very flexible, easy to implement and applicable in general 

settings. Unlike MCMC methods, TMCMC is inherently parallel. So, it can be used to perform 

model updating of computationally expensive high-fidelity large-scale nonlinear FE models 

using high-performance computing (HPC) resources. In addition, TMCMC can effectively 

sample from multi-modal PDFs and PDFs with flat manifolds (Ching and Chen 2007). TMCMC 

also computes the model evidence as a by-product, which can then be used for Bayesian model 

class selection and model averaging (Ching and Chen 2007). To this end, TMCMC is used in this 

paper for batch Bayesian estimation of the testbed structure. 

2.3.2.1 Transitional Markov Chain Monte Carlo 

TMCMC method is a simulation-based Bayesian inference technique which sample from 

the complete joint posterior distribution of the unknown parameter vector θ . In the literature, 

there are several closely related algorithms such as cascading adaptive transitional metropolis in 

parallel, sequential Monte Carlo, particle filters, bootstrap filters, condensation algorithm, 

survival of the fittest and population Monte Carlo algorithms. TMCMC do not require the 

Gaussian assumption about the prior and posterior PDFs of the unknown parameters, an inherent 

assumption in Kalman filters and its nonlinear variants. 

TMCMC avoids sampling directly the target PDF, but instead constructs a series of easy-

to-sample intermediate PDFs that starts from the prior distribution and converges to the target 

posterior distribution as 

 ( ) ( ) ( )1: 1: 1: 1: 0 1| , | , ; 0,1,..., 0 ... 1j

N N N N mj
p p p j m


  = =       =θ u y y u θ θ   (2.8) 
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where index j  denotes the stage number, m  denotes the total number of stages and 

( )1: 1:| ,N N j
p θ u y  is the intermediate PDF at stage j  controlled by parameter j . At the initial 

stage ( )0j = , parameter 0 0 =  and the intermediate PDF ( )1: 1: 0
| ,N Np θ u y  is just the prior PDF 

( )p θ . The TMCMC sampler progresses by monotonically increasing the value of j , at each 

stage j , until it reaches the value of 1. At the final stage ( )j m= , parameter 1m =  and the 

intermediate PDF ( )1: 1:| ,N N m
p θ u y  is the target posterior PDF ( )1: 1:| ,N Np θ u y . The series of 

intermediate PDFs is represented as 

 ( )

( )

( ) ( )

( )

1: 1: 1: 1: 1: 1:0 1

1: 1:| ,

| , | , | ,N N N N N N m

N Np p

p p p

 

→ → →

θ θu y

θ u y θ u y θ u y   (2.9) 

TMCMC represents the intermediate PDF at every stage by a set of weighted samples 

(known as particles). TMCMC approximates the 
thj  stage intermediate PDF ( )1: 1:| ,N N j

p θ u y  

by weighting, resampling, and perturbing the particles representing the ( )1
th

j −  stage 

intermediate PDF  ( )1: 1: 1
| ,N N j

p
−

θ u y . In this paper, resampling is performed using random 

sampling and the perturbation of particles is performed using the MCMC Metropolis-Hastings 

algorithm. The TMCMC sampler can be thought of as a parallel MCMC algorithm that can 

effectively sample high-dimensional parameter spaces. The algorithmic details of the process of 

weighting, resampling and perturbing at each TMCMC stage are provided in Table 2.2 and a 

schematic representation of a TMCMC stage is shown in Figure 2.1. For more details about the 

TMCMC algorithm refer to (Ching and Chen 2007; Minson et al. 2013).  
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Table 2.2: TMCMC algorithm for parameter estimation 

Notation: : number of particlespN ; :stage numberj ; : unknown parameter vectorθ ; 

( )
( )

:  particle of  at stage j
i th

j
iθ θ ; : weight of  particle of  at stage i th

jwn i jθ ; 

: number of MCMC stepsMCMCN ; 

:scaling factor of proposal covariance in perturbation steps ; 

( )
2

1

1
1, : effective sample size at stage 

p
j pN

i
j

i

ESS N j

wn
=

  



 

Initialize: pN , 0j = , 0 pESS N= , 0 0 = , MCMCN , 1s =  

Generate pN  samples ( )
( ) 0

, 1,...,
i

pj
i N

=
=θ  from the prior PDF ( )p θ  

while 1j  : 

  Stage number 1j j= +   

  Determine j :  

 find j  such that 10.95j jESS ESS −=   (through applying the weighting step below 

 iteratively) ; when converged: ( )min ,1j j =   

  weighting:  

 
( )
( )( )

( )
( )( ) ( )

( )( )
1

1: 1:1

1: 1: 1

1: 1:1
1

1

| ,

; | ,
| ,

j j

p

i
i N Nj

ij ji i
j j N N jN i

i N Nj
jj

i

p
w

wn w p
p

w

− −−

−

−
−

=

= = =



θ u y

y u θ
θ u y

 for 1,..., pi N=   

  Sample mean of weighted samples: ( ) ( )
( )

1 1
1

pN
ii

jj j
i

wn− −
=

=θ θ   

  Sample covariance of weighted samples: 

( ) ( )
( )

( ) ( )
( )

( )1 1 11 1
1

pN T
i ii

jj j jj j
i

wn− − −− −
=

   = − −
   C θ θ θ θ  

  resampling:  

( )
( ) ( ) 1, ,
i

pj
i N=θ  are sampled according to the probability mass function 

 ( )
( ) ( )1

  1, ,
k k

j pj
P wn k N

−
 = = =
 
θ θ  
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Table 2.2: TMCMC algorithm for parameter estimation (continued) 

  perturbation:  

start an MCMC Metropolis-Hastings chain at ( )
( )i

j
θ  and take MCMCN  steps with 

target distribution ( )1: 1:| ,N N j
p θ u y , for each 1,..., pi N= . The proposal distribution 

for the MCMC walks is a Normal distribution with covariance matrix ( )
2

1js −C . 

Gather the last sample of each MCMC chain to obtain ( )
( ) ; 1,...,
i

pj
i N=θ . These 

samples represent the intermediate PDF ( )1: 1:| ,N N j
p θ u y  (see red particles in Figure 

2.1). 

  Calculate the acceptance rate 
total number of accepts

total number of proposals
R  of the perturbation step. 

  Using ,R compute scaling factor for next stage proposal distribution: 

( ) ( )1/ 9 8 / 9s R= + . (Minson et al. 2013) 

end  

save last stage m j=  

( )
( ) , 1,...,
i

pm
i N=θ :  samples representing the target posterior ( )1: 1:| ,N Np θ u y  
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Figure 2.1: A stage in TMCMC algorithm (weighting, resampling, and perturbation). In the 

above illustration, θ  is a scalar quantity.  

2.4 Identifiability 

Identifiability is concerned with the possibility of estimating (at least locally) the 

unknown parameters of a mathematical model (e.g., FE models of civil structural systems) for a 

given input and output. Under this definition, identifiability is a property of the likelihood 

function and is the same whether considered classically or from the Bayesian approach (San 

Martın and González 2010). The problem of model identifiability surfaces in mathematical 

models of various fields (e.g., ordinary or partial differential equations of biophysical systems, 

FE models of civil structural systems) while solving a model updating problem. Therefore, it is 

important to perform some sort of identifiability analysis before solving an actual inverse 

problem to answer questions such as “which model parameters or parameter combinations can be 

uniquely estimated from the input-output measurement data?”. This paper mainly concerns the 
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identifiability of FE models. It is important to note that identifiability is a property of both the 

model and the input-output measurement data, and not just of the model. Therefore, 

identifiability analysis is performed given a model and the input-output measurement data 

considered.  

A non-identifiable model parameter indicates that the model output (for a given input) is 

either insensitive to that parameter or the parameter is part of an identifiable parameter 

combination (Brouwer and Eisenberg 2018). If the sensitivity of the model output (for a given 

input) to a parameter is zero or low, then it implies that the measurement input-output data will 

contain no or little information about that parameter. Such insensitive or poorly sensitive 

parameter should ideally be eliminated from the inference process by fixing its value anywhere 

in its range of uncertainty as it has no or little effect on the model output. On the other hand, if a 

parameter is not identifiable because it is part of an identifiable parameter combination, then the 

model structure should ideally be changed by replacing the entire identifiable parameter 

combination with a single parameter. For example, in the model ( )1 2y m m x c= + +  with ( ),x y  

pairs as the measurement input-output data, parameter c  is identifiable but parameters 1m  and 

2m  are not, but the sum ( )1 2m m+  is an identifiable parameter combination. There are infinite 

( )1 2,m m  pairs that explain the measurement data equally well, i.e., parameters 1m  and 2m  

compensate each other to explain the measurement data. Thus, this kind of non-identifiability 

results in non-unique estimates when the inference is performed using approximate inference 

methods that rely on point estimates such as Kalman filters. If the model is reparametrized as 

y mx c= + , the new model parameters ( m  and c ) are identifiable with ( ),x y  pairs as 

measurement input-output data (Brouwer and Eisenberg 2018). However, this requires: (1) 
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screening the existing model ( )1 2y m m x c= + +  to identify compensating parameters ( )1 2,m m , 

(2) obtaining the functional relation between the compensating parameters, 1 2m m+ , and (3) 

restructuring the model by replacing the identifiable parameter combination with a single 

parameter, y mx c= + . Refer to (Eisenberg and Hayashi 2014; Raue et al. 2009) for more 

information about determining identifiable parameters and/or parameter combinations of 

mathematical models. In the case of FE models, it is extremely difficult to determine 

compensating parameters (i.e., parameters with compensating effects) and the functional relation 

among them (i.e., identifiable parameter combination). Even if found, replacing the identifiable 

parameter combination with a single parameter would require having access to the FE source 

code (e.g., OpenSees software). A practical alternative is to fix all the parameters (from the 

parameter combination) in their range of uncertainty except for one of them and estimate the 

leftover parameter. In the above example, if 2m  is fixed to a certain value, then 1m  becomes 

identifiable. The caveat is that when 2m  is fixed to a non-true value, then 1m  will be estimated 

incorrectly. However, the exact values of 1m  and 2m  may not be required to understand the 

system behavior. Based on the authors’ experience, it is very likely that a nonlinear FE model of 

a large-scale civil structural system contains non-identifiable parameters (either due to parameter 

insensitivity or parameter being part of an identifiable parameter combination).  

A common distinction in parameter identifiability is global and local identifiability. A 

parameter of the model is said to be globally identifiable if there exists a unique solution in the 

parameter space for a given model input-output. On the other hand, if a parameter, say  , of the 

model has a finite number of solutions in its parameter space for a given model and input-output, 

but a unique solution in the neighborhood of, say 
* , then the parameter   is said to be locally 
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identifiable in the neighborhood of 
* . If a parameter of the model has infinitely many solutions 

in its parameter space for a given model and input-output, then it is said to be non-identifiable or 

unidentifiable (such as in the simple linear example described above). Another important 

distinction in model identifiability is structural/theoretical versus practical identifiability. 

Structural or theoretical identifiability deals with the ability to uniquely determine the unknown 

parameters of the model assuming ideal conditions (i.e., noise-free input-output measurement 

data and error-free model) thus revealing identifiability issues related to the model structure of 

the candidate mathematical model. Therefore, structural identifiability of the model just depends 

on the model structure (which includes the designation of the input and output) and not on the 

measurement data (as in the simple linear example described above). Although it is unrealistic to 

assume these ideal conditions, structural identifiability of the model (i.e., identifiability of all 

parameters of the error-free model using noise-free input-output measurement data) is a 

necessary condition for practical identifiability. Practical identifiability deals with the possibility 

of uniquely estimating the unknown parameters from noisy input-output data using an imperfect 

model (real world scenario) thus highlighting identifiability issues related to the use of real data. 

Therefore, practical identifiability of a model is a property of both the model structure and the 

measurement input-output data (i.e., depends on the quantity, quality and frequency content of 

the data). 

In identifiability analysis, the model should be viewed as the mapping between unknown 

parameters and the output response (e.g., type, location and number of sensors) for a given input 

which is considered part of the model. Thus, in the identifiability analysis part of this paper, the 

model is the mapping between the unknown parameter vector θ  and the FE output response of 

interest 1:
FE
Ny , where ( )1: ,

nFE
k k k=  yy h u θ . In this regard, practical identifiability analysis 
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should be performed for several realizations (e.g., different earthquake ground motion records 

with the same overall intensity but different frequency content) of the input 1:Nu  to conclude 

which parameters are practically identifiable for that specific input. 

As mentioned above, a practically non-identifiable model parameter indicates that the 

model output (for a given input) is either insensitive to that parameter or the parameter is part of 

an identifiable parameter combination (with compensation effects between the parameters of that 

combination). Sensitivity analysis should be performed to assess the sensitivity of each output to 

each parameter of the model. Non and low sensitive parameters should be eliminated from the 

inference as they are not practically identifiable. However, highly sensitive parameters could also 

be practically non-identifiable, as they can be part of an identifiable parameter combination. In 

other words, parameter sensitivity is a necessary but not sufficient condition for practical 

parameter identifiability. Thus, we cannot address practical identifiability without considering 

sensitivity. 

2.4.1 Sensitivity analysis 

Sensitivity analysis in the context of parameter estimation is a study of how uncertainty 

(or variability) in the model output can be apportioned to different sources of uncertainty (or 

variability) in the model parameters (Saltelli et al. 2007). Sensitivity analysis allows the 

detection of the parameters or parameter sets that have the greatest influence on the model 

output(s). Sensitivity analysis has been widely used in numerous fields, such as computational 

optimization, structural reliability and risk analysis, and economics, and it is instrumental in civil 

engineering to guide the development and understanding of complex nonlinear FE models of 

civil infrastructure systems. There are two main approaches to sensitivity analysis: local 
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sensitivity analysis (LSA) and global sensitivity analysis (GSA). Well known approaches to 

GSA are derivative-based GSA and variance-based GSA (also known as Sobol’ method). Each 

of these approaches are briefly described below. A schematic representation of these approaches 

is shown in Figure 2.2. 

LSA varies one parameter at a time (in small increments) and determines its effect on the 

model output. For a model ( )z f= θ  with scalar output z  and vector parameterization 

1 2, ,...,
n

n
 =     

θ

θ
θ , the derivative 

*
i i

i

z

 =




 of scalar output z  with respect to parameter 

i  is the local sensitivity metric for sensitivity of z  to i  at the evaluation point *
i i =  . The 

derivatives are only informative at the evaluation point *
i ; therefore, local sensitivity metrics are 

only valid in the local region around the evaluation point. This is a major limitation for models 

with a nonlinear relation between parameters and model output (as is the case of most FE models 

of civil structural systems). In addition, LSA only varies one parameter at a time thus not 

revealing the effect of simultaneous changes in model parameters on the model output. 

Derivatives for LSA can be directly computed by the direct differentiation method (DDM) 

(Conte et al. 2003). However, the DDM is not implemented in most FE software. Alternatively, 

local derivates of FE responses can be obtained using the finite difference method or the adjoint 

method. The FE software used in this paper – OpenSees – has DDM response sensitivity 

capabilities (Scott and Haukaas 2008). 

Derivative-based GSA has become popular among researchers in recent years. This 

metric average local derivatives over the parameter space to produce global sensitivity metric 

(i.e., a natural extension of LSA). For our previous model ( )z f= θ , the derivative-based global 
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sensitivity metrics for some probability distribution over the parameter space, ( ) θ , are defined 

as 

 ( )
2

, 1,2,...,i
i

z
d i n

 
 =  = 

 
 θθ θ   (2.10) 

Evaluating derivative-based global sensitivity metrics is not within the scope of this 

paper. For more information about derivative-based GSA, refer to (Kucherenko et al. 2009; 

Kucherenko and Iooss 2017; Sobol’ and Kucherenko 2009). 

Variance-based GSA (aka Sobol’ method) varies all parameters simultaneously (explores 

the global parameter space) and quantifies the effect on the model output in a rigorous and 

structured way. In variance-based GSA, sensitivity of each individual parameter is evaluated by 

varying all parameters simultaneously thus revealing any possible interaction between 

parameters within a model. Variance-based GSA does not need an evaluation point. Hence, it is a 

tool for studying the mathematical model rather than its specific solutions (Sobol’ 2001). In the 

context of parameter estimation, the GSA framework is fundamentally rooted in the 

decomposition of the variance of the model output (for a given input) into contributions of the 

parameters and their interactions (i.e., sets of parameters). Indices obtained as a result of this 

decomposition (Sobol’ indices) can be directly used as measures of sensitivity.  



42 

 

Figure 2.2: Schematic representation of local sensitivity analysis, derivative-based GSA, and 

variance-based GSA 

For a dynamic system (e.g., the testbed structure in Section 2.5), sensitivity 

metrics/indices (local or global) are obtained as a function of time. Hence, they are referred to as 

sensitivity functions or sensitivity time histories. Section 2.4.2 focuses on local practical 

identifiability analysis using Fisher information matrix, which uses local sensitivity results, while 

Section 2.4.3 deals with the variance-based GSA method as a way to shed light into global 

identifiability. Note that in nonlinear FE models under dynamic loading, the 

identifiability/sensitivity of parameters changes with time and with the considered output 

measurement channel. This aspect is beyond the scope of this paper. This paper focuses on the 

identifiability/sensitivity analysis of parameters considering only the entire measurement data 

(i.e., entire time history of all input and output measurement channels) (Bhrushundi et al. 2019; 

Jung et al. 2021; Karingula et al. 2021). 
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2.4.2 Local Practical Identifiability Analysis using Fisher Information Matrix 

The concept of Fisher information stems from classical estimation theory. Fisher 

information represents the amount of information that the measurement data  contain about 

the unknown parameter vector θ , and is therefore very useful for structural and practical 

identifiability analysis. In terms of geometric interpretation, Fisher information is closely related 

to  the curvature of the log-likelihood function, as measured by its Hessian. Its sharpness 

determines how accurately the unknown parameter vector θ  can be estimated from the 

measurement data  (Kay 1993).  

Recall the measurement equation at time step k  (Eq. (2.1) and (2.2)) 

 ( ) ( )1: ;             where ~ ,k k k k k= +y h u θ w w 0 R   (2.11) 

The measurement equation for all time steps ( 1,2,...,k N= ) combinedly can be written as  

 ( )1: 1:             where ~ ,FE
N N= +y y w w 0 C   (2.12) 

where 
( ) 1

1: 1 2, ,...,
T T T T

n NFE FE FE FE
N N

  = 
  

y
y y y y , ( )1: ,

nFE
k k k=  yy h u θ  and the 

error/noise covariance matrix C  is defined in Eq. (2.2). Therefore, the likelihood function is of 

the form  

 ( ) ( )( )1: 1: 1:| , ,FE
N N Np =y u θ y θ C   (2.13) 

Note that only the mean of ( )1: 1:| ,N Np y u θ , ( )1:
FE

Ny θ , depends on θ . For such cases, the 

Fisher information matrix (FIM), ( )I θ , evaluated at any 
*=θ θ , is a symmetric n nθ θ  matrix 

given by (refer to Section 3.9 of (Kay 1993)) 
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 ( ) ( ) ( )* * 1 *
T

Nn Nn
n n Nn nn Nn

−


 

=

y y
θ θ y θθ y

I θ χ θ C χ θ   (2.14) 

where ( )* θ  is the sensitivity matrix evaluated at *=θ θ , i.e.,  

( )

1,(1) 1,(1)

1

1,( ) 1,( )1 1

1 1

1: 1: 1:

1

,(1) , (1)

1 1

FE FE

n

FE FEFE FE
n n

n nFE FE FE
N N N

n FE FE FE FENn n
N N N N

n n

N

y y

y y

y y

y



 

 

   
 
    

     
  = = = =    
      

 
     



θ

y y

θ θ

θ
y θ

θ θ

y y

y y y
θ

θ
y y

, ( ) , ( )

1

FE FE
n N n

n

y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

y y

θ

  (2.15) 

where ( ) ( ) ( ), 1 , 2 ,
, ,...,

T
nFE FE FE FE

k k k k n
y y y = 
  

y

y

y  and ( ),
FE
k iy  is the FE predicted output 

response corresponding to the thi  measurement channel at time step k . Note that for structural 

identifiability analysis, the matrix C  in Eq. (2.14) is taken as the identity matrix (Brouwer and 

Eisenberg 2018). 

The FIM evaluated at 
*=θ θ , ( )*

I θ , having full rank (i.e., ( )( )*rank n= θI θ ) implies 

that the parameter vector/set 1 2, ,...,
T

n
 =   
 θ

θ  is practically locally identifiable in the 

neighborhood of 
*=θ θ . If ( )*

I θ  is rank deficient, then ( )( )*rank I θ  gives the number of 

(practically locally) identifiable parameters. In this case, the model is referred to as partially 

identifiable since all the parameters of the model are not identifiable. The FIM is a real 
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symmetric positive semi-definite ((Kay 1993)). The numerical rank of such positive semi-

definite matrix is defined as the number of eigenvalues that are larger than some tolerance. The 

choice of the tolerance depends on both the matrix and the application. 

For partially identifiable models, the notion of Cramer-Rao lower bound (CRLB) from 

classical estimation theory can be used to determine the identifiable parameters in the parameter 

vector θ . Let θ  be an unbiased estimator of θ . The vector parameter CRLB places a lower 

bound on the variance of each element θi  of θ  (Kay 1993). In other words, there exists no 

unbiased estimator whose variance is lower than the CRLB. Under certain common assumptions 

(Kay 1993), the inverse of the FIM provides the CRLB covariance matrix, CRLBCM , whose 

diagonal entries correspond to the CRLB of each parameter estimator θi  (i.e., lower bound on 

the variance of θi ), denoted as ( )θiCRLB . If ( )θiCRLB  is very large, then so is the lower bound 

of the variance of estimator θi  and parameter θi  is probably unidentifiable. Furthermore, if 

( ) ( )θ θi jCRLB CRLB , then θ j  is easier to estimate than θi  (Kay 1993). Thus, the CRLB can 

be used to rank the parameters in order of their local identifiability in the neighborhood of 
*=θ θ

. Note that for a partially identifiable model, the FIM is singular and therefore the CRLB 

covariance matrix does not exist; however, the inverse of the FIM can still be calculated 

numerically as, in this case, the determinant of the FIM is generally extremely low but non-zero. 

The algorithm for ranking the parameters is shown in Table 2.3. Using this ranking of parameters 

together with the rank of the FIM (evaluated numerically), an informed decision can be made 

about which parameters of θ  are practically identifiable locally in the neighborhood of 
*=θ θ . 

  



46 

Table 2.3: Algorithm for ranking and determining practically locally identifiable parameters for 

parameter estimation 

Initialize:  parameter vector (1)
1 2, ,...,

T n

n
 =    
 

θ

θ
θ   

 sensitivity matrix  ( )(1) * Nn n
=  y θχ χ θ  at the evaluation point *=θ θ  

 error/noise covariance matrix 
Nn Nn

 y yC  

 Note: In this table, ( )i
θ  must be viewed as a symbolic parameter vector.  

Number of locally identifiable parameters: ( )( )*IDn rank=θ I θ  (evaluate the rank of matrix 

( )*
I θ  numerically, i.e., the number of eigenvalues of ( )*

I θ  that are larger than some 

tolerance) 

To rank the parameters in order of their local identifiability in the neighborhood of *=θ θ : 

for 1,2,...,i n= θ   

Evaluate the Fisher information matrix: ( ) ( ) ( )( ) * ( ) 1 ( )
T

i i i−=I θ χ C χ   

Evaluate numerically the CRLB covariance matrix: ( )( )
1

( ) ( ) *i i
−

=CRLBCM I θ  

Find index j  such that ( ) ( )( )( ) ( )maxi i

j
diag diag  =
 

CRLBCM CRLBCM   

Assign  rank ( )1n i− −θ  to 
thj  element of parameter vector 

( )i
θ  

( 1)i+
θ  = parameter vector 

( )i
θ  with 

thj  element removed 

( 1)i+
χ  = sensitivity matrix 

( )i
χ  with 

thj  column removed 

end 

Now each element of parameter vector 1 2, ,...,
T

n
   
 θ

 has an assigned rank. The top ranked 

IDnθ  parameters are the practically locally identifiable parameters around 
*=θ θ  

 

In practice, the parameters in vector θ  are usually of different physical dimensions. In 

addition, the output responses of the FE model may also be of different physical dimensions. 
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Therefore, some normalization is performed on the sensitivity matrix for many identifiability 

tests in practical applications. The following normalization is used in this paper and the 

normalized sensitivity matrix is used to rank the parameters according to the algorithm presented 

in Table 2.3. 

( )

( ) ( )

( ) ( )

( ) ( )

( )

1,(1) 1,(1)1

11 1
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yn yn

y y

yn yn
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 

 


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1, 2,..., ; 1, 2,...,
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i k i
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N n

n

yn abs y

i n k N

y
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 
 
 
 
 
 
 
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y

θy
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  (2.16) 

where prior
θ  is the mean of the prior PDF ( )p θ , ( ),

1: ;
nFE prior prior

k kk =  yy h u θ  is the 

output response at time step k  of the FE model characterized by parameter values 
prior

θ , and 

( )iyn  is the maximum absolute value of the FE output response (characterized by prior
θ ) 

corresponding to the thi  measurement channel.  

2.4.3 Variance-based Global Sensitivity Analysis 

Variance-based methods for sensitivity analysis (also referred to as Sobol’ method) are 

fundamentally rooted in the decomposition of the variance of the model output (for a given 

input) into contributions of the parameters and sets of parameters. Sobol’ sensitivity analysis 
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determines the contribution of each input parameter and their interactions to the variance of the 

model output. For a model ( )z f= θ  with scalar output z  and vector input 

1 2, ,...,
n

n
 =    
 

θ

θ
θ  , the variance of the model output  Var zθ  can be uniquely 

decomposed (Saltelli et al. 2007) as follows when the parameters 'i s  are mutually statistically 

independent: 

   123....i ij ijk n

i i j i i j i k j

Var z V V V V
  

= + + + +   θθ   (2.17) 

where  | |
i i ii iV Var E z

− 
 =  θ , 

,, | , | ,
i j i j i jij i j i jV Var E z V V

−   
  =   − −  θ , and so 

forth. iV  is the variance of the model output explained by i  (the first-order effect of i  on the 

model output z ). ijV  is the variance of the model output explained by the interaction between i  

and j (i.e., variance contribution of i  and j  to the model output not expressed in iV  and jV ), 

and so forth. i−θ  denote all parameters of θ  except i , ,i j−θ  denote all parameters of θ  except 

i  and j , and so forth.  .Var  is the variance operator and  . | .E  is the conditional expectation 

(mean) operator. 

Sobol’ indices or variance-based sensitivity indices are defined as 

 
   

, ,       ...
iji

i ij

VV
S S

Var z Var z
= =

θ θ

  (2.18) 

From Eq. (2.17) and Eq. (2.18), the sum of all Sobol’ indices is unity 

 123.... 1i ij ijk n

i i j i i j i k j

S S S S
  

+ + + + =   θ
  (2.19) 
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The total number of Sobol’ indices, 2 1
n
−θ , grows exponentially with the parameter 

space dimension nθ . Owing to the computational cost and interpretation reasons, researchers 

usually look at first-order iS  and total-order TiS  indices. The first-order index, iS , captures the 

first-order effect of i  on the model output z . The total-order index, TiS , introduced by Saltelli 

(Saltelli et al. 2007), accounts for all contributions (of all orders) to the variance of the model 

output due to parameter i , therefore 

 1... ......
n

Ti i ij i n

j i

S S S S


= + + +   (2.20) 

From Eq. (2.18), the first-order index iS  is defined as 

 
 

 
| |

i i i i

i

Var E z
S

Var z

− 
  =

θ

θ

  (2.21) 

Consider the following form of the law of total variance: 

      | || |
i i i i i ii iE Var z Var E z Var z

− −   
    +  =   θ θ θ   (2.22) 

where  . | .Var  is the conditional variance operator and  .E  is the expectation (mean) 

operator. Note that  | |
i i i iE Var z

− 
  θ  is the expected variance of z  when only i  is fixed. 

Thus, in Eq. (2.22),  | |
i i i iVar E z

− 
  θ  can be interpreted as the expected variance reduction 

of z  when only i  is fixed. Now, from Eq. (2.21), the first-order index iS  can be interpreted as 

the fractional variance reduction of z  (on average) when only i  is fixed. Thus, the first-order 

Sobol’ indices ( 'iS s ) provide guidance for parameter prioritization or experiment prioritization, 

i.e., first-order indices help identify parameters which, once accurately estimated (by performing 
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experiments) and fixed (set) at their “true” values, reduce the variance of the model output the 

most.  

Using the following form of the law of total variance: 

      | || |
i i i i i ii iE Var z Var E z Var z

− − − − −  −
   + =   θ θ θ θ θθ θ ,  (2.23) 

the total-order index TiS  defined in Eq. (2.20) can be expressed (Saltelli et al. 2007) as  

 
 

 
| |

i i i i

Ti

E Var z
S

Var z

− − −
 
 =

θ θ

θ

θ
  (2.24) 

Note that  | |
i i i iE Var z

− − −
 
 θ θ θ  is the expected variance of z  when only i−θ  is fixed 

(or when only i  is released). Therefore, the total-order index TiS  can be interpreted as the 

fractional variance contribution to z  (on average) when only i  is released. Thus, the total-order 

indices ( 'TiS s ) provide guidance for parameter fixing, i.e., total-order indices help identify 

parameters that can be fixed anywhere in their range of uncertainty without appreciably affecting 

the variance of the model output. In this regard, prior to model updating, the total-order Sobol’ 

indices can be used to rank the parameters in order of their sensitivity to model output as the low 

ranked parameters can then be eliminated from the parameter estimation stage by fixing them 

anywhere in their range of uncertainty (it is recommended to fix them at their nominal values). 

To determine the number of parameters to be included in the estimation phase, sets of 

parameters can be analyzed (grouped variables – sensitivity analysis). The advantage of 

variance-based sensitivity analysis methods is that they allow for a concise treatment of sets of 

parameters. If the parameter vector is split into two groups as 1 2,
T nT T

G G
 = 
 

θθ θ θ , the 

uncertainty of the model output z  is shared by 1Gθ  , 2Gθ  and their interactions, therefore 
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 1 2 1 2 1G G G GS S S+ + =   (2.25) 

where 1GS  includes all the first-order terms related to 1Gθ  and all higher-order terms 

including only elements of vector 1Gθ . Likewise, 2GS  includes all the first-order terms related to 

2Gθ  and all higher-order terms including only elements of vector 2Gθ . Finally, 1 2G GS  includes 

all cross-terms not involved in 1GS  and 2GS  (Saltelli et al. 2007). Let 1TGS  and 2TGS  be the 

total-order Sobol’ indices of 1Gθ  and 2Gθ , respectively. Therefore, 

 
1 1 1 2

2 2 1 2

TG G G G

TG G G G

S S S

S S S

= +

= +
  (2.26) 

Using Eq. (2.26), Eq. (2.25) can be written as 

 1 2 1G TGS S+ =   (2.27) 

The total-order effect of 2Gθ  on the model output z  being close to zero (i.e., 2 0TGS   or 

1 1GS  ) implies that all parameters in vector 2Gθ  can be fixed anywhere in their range of 

uncertainty without appreciably affecting the variance of the model output. From the parameter 

estimation viewpoint, the goal is to find the largest number of parameters in parameter vector 

1 2, ,...,
n

n
 =    
 

θ

θ
θ  to be included in 2Gθ  such that 2 0TGS  . The parameters 

1 2, ,..., n  
θ

 can be ranked according to their individual total-order indices (i.e., 'TiS s ), with the 

bottom ranked parameter having the lowest value of TiS . Therefore, the problem boils down to 

finding the largest number of bottom ranked parameters (ranked according to 'TiS s ) to be 

included in 2Gθ  such that 2TGS Threshold , where the value of Threshold depends on the 

analyst. This is an optimization problem and the best approach to solve this problem is beyond 

the scope of this paper. A naive approach is employed in this paper and is presented in Table 2.4. 
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Note that the parameters that are not in 2Gθ  will be in 1Gθ  as 1 2,
T nT T

G G
 = 
 

θθ θ θ  and every 

parameter added to 2Gθ  (or removed from 1Gθ ) increases the value of 2TGS .  

Table 2.4: Algorithm for determining influent parameters using GSA of individual and groups of 

parameters for parameter estimation 

Model ( )z f= θ  with scalar output z  and input vector 1 2, ,...,
n

n
 =    
 

θ

θ
θ  

Compute total-order Sobol’ indices ( 1 2, ,...,T T TnS S S
θ

) of all parameters 1 2, ,..., n  
θ

 

Rank the parameters using 'TiS s  :  1 2, ,...,r r r n  
θ

 where parameter 1r  has the largest TiS . 

Initialize: 
1

2G r n
 =  
 θ

θ  ( lowest ranked parameter), 
( )

1

1 1 2 1
, ,...,

n

G r r r n

−

−

 
=    
  

θ

θ

θ , 

 ( )2 1 2min , ,...,TG T T TnS S S S=
θ

,  set Threshold  

while 2TGS Threshold   

 Remove the last element of 1Gθ  (as it has the lowest TiS  in 1Gθ ) and add it to 2Gθ  

 Compute 2TGS , i.e., total-order index of 2Gθ  

end 

Remove last parameter added to 2Gθ  and bring it back to 1Gθ  

1Gθ  contains influent parameters and the parameters in 2Gθ  can be fixed anywhere in their 

range of uncertainty during model updating as they do not affect the model output appreciably. 

The first- and total-order indices (of individual parameters and parameter sets) in Table 

2.4 are computed using the methodology described by Saltelli (Saltelli et al. 2010). This 

algorithm uses Saltelli’s sampling scheme (Saltelli 2002), an extension of Sobol’ quasi-random 

sequences (Sobol’ 2001) in a way to reduce error rate in the sensitivity index calculations.  

The algorithm in Table 2.4 seems extremely computationally expensive as each time a 

parameter is added to 2Gθ  (or removed from 1Gθ ), 2TGS  should be recomputed (see second step 

inside the while loop in Table 2.4). However, note that the major cost in computing Sobol’ 
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indices is from model evaluations. The model evaluations performed to compute the total-order 

indices 1 2, ,...,T T TnS S S
θ

 of individual parameters 1 2, ,..., n  
θ
 can be reused to compute the 

total-order indices of parameter sets (e.g., 2TGS ) (Saltelli 2002; Saltelli et al. 2010; Sobol’ 2001). 

Thus, no additional model evaluations are needed to compute total-order indices of parameter 

sets.  

A dynamic system with multiple output measurement channels (such as the testbed 

structure in Section 2.5) results in sensitivity time histories (first-order or total-order Sobol’ 

indices) corresponding to each output measurement channel. In this paper, the sensitivity time-

histories are averaged over time and over measurement channels and then used for ranking 

parameters. Let ( )
,Ti k j

S  denote the total-order sensitivity index of parameter i  corresponding to 

the response at time step k  of the 
thj  measurement channel. Therefore, the total-order Sobol’ 

index averaged over time and measurement channels for each individual parameter 

( )1,...,i i n =   is defined as 

 ( )
,

1 1

1 1
 , 1,2,...,

n N

Tai Ti k j
j k

S S i n
n N= =

 
 = =  

 
 

y

θ

y

  (2.28) 

where N  is the total number of time steps, ny  is the number of measurement channels, 

and nθ  denotes the number of parameters (to be estimated) of the mathematical model. 

2.5 Testbed Structure: Pine Flat Concrete Gravity Dam 

Pine Flat concrete gravity dam (Figure 2.3a-b) located in the seismic region of Fresno, 

California is taken as the testbed structure. The 560m wide dam consists on thirty-six 15.2m 
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wide and one 12.2m wide monoliths (Figure 2.3c) (Rea et al. 1974). The height of the tallest 

monolith is 122m (Figure 2.3c). 

 

Figure 2.3: (a) Pine Flat concrete gravity Dam, (b) Downstream elevation, and (c) 2D nonlinear 

FE model 

2.5.1 Nonlinear Finite Element (FE) Model 

Mathematical modeling of concrete gravity dams is a subject of interest to many 

researchers. 2D or 3D linear elastic or  nonlinear FE models can be used as mathematical models 

of dams. Each FE modeling approach has a certain range of applicability and represents reality to 

a certain degree (Brand et al. 2014). Even though 3D nonlinear FE models represent the best 

(most advanced) available method for modeling dams and simulating their response to various 

loading conditions, 2D nonlinear FE models achieve a good compromise between computational 

cost and applicability (Brand et al. 2014). A study conducted by Chopra and his co-workers on 



55 

mathematical models of concrete dams subjected to dynamics loads (e.g., earthquakes) states that 

“a 2D FE model including effects of water in the reservoir appears to be the most appropriate 

model available for predicting the response of concrete gravity dams to moderate or intense 

earthquake ground motion” (Rea et al. 1974). Therefore, in this study, a 2D nonlinear FE model 

of Pine Flat Dam is developed in the FE software framework OpenSees (McKenna et al. 2000), 

by modeling the tallest monolith as a plane section (Figure 2.3d). In the developed FE model, the 

dam is assumed to be supported on rigid foundation rock, i.e., the boundary conditions at the 

bottom of the dam are assumed fixed (Figure 2.3d). The hydrostatic load from the water in the 

reservoir is applied as a triangular load pattern and the additional hydrodynamic effects of water 

are included using Westergaard masses (Hall and Chopra 1980) added to the upstream face of 

the dam (Figure 2.3d). 

The concrete material of the dam is assumed to be isotropic and homogeneous (i.e., 

represented by the same material model and the same set of material parameter values) over the 

entire cross-section of the dam. The FE model hierarchy (i.e., structure, element, and numerical 

integration point/material level) is shown in Figure 2.4a-c. Each FE is a bilinear quadrilateral 

element (Figure 2.4b) with material behavior at each integration point governed by the cap 

plasticity model, a classical 3D non-smooth multi-surface plasticity model (Figure 2.4c) 

(Hofstetter et al. 1993; Sandler et al. 1976; Simo et al. 1988). The cap plasticity model is a 

material constitutive model for plain concrete (a quasi-brittle material) addressing three major 

issues in modeling concrete: (i) the drastic difference in behavior under tension and compression; 

(ii) the hardening behavior under hydrostatic compression; and (iii) the nonlinear dilatancy 

behavior. Note that the cap plasticity model is a reasonable model for plain concrete; however, 

more advanced and accurate constitutive models for concrete have been proposed in the 
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literature. An advantage of using the cap plasticity model in this study is that the Direct 

Differentiation Method (DDM) is implemented in OpenSees for this model. The cap plasticity 

model is characterized by a set of eleven (11) time-invariant material parameters (i.e., material 

constants) (Simo et al. 1988). Two of these parameters, the shear modulus ( G ) and the bulk 

modulus ( K ), are the linear elastic parameters, while the other nine parameters 

( ), , , , , , ,  and T X R D W     characterize the yield surfaces, flow rule and hardening law of the 

cap plasticity model. The three yield surfaces consist of: (1) an ideal plasticity failure envelope 

1( ) 0f =σ  with parameters , ,  and    , (2) a strain hardening elliptical cap 2 ( , ) 0f  =σ  (  is 

the hardening parameter acting as a material history variable or internal state variable) defined by 

parameters  and X R , and (3) an ideal plasticity tensile-cutoff surface 3( ) 0f =σ  defined by the 

tensile strength (T ). Parameters D  and W characterize the hardening law. Here, σ  represents 

the stress tensor with s  and ( )1 / 3I I  denoting its deviatoric and volumetric components such 

that ( )1 / 3I= +σ Is  ( 1I  is the first invariant of the stress tensor, and I  denotes the 4th order 

identity tensor). In this paper, the eleven time-invariant parameters of the cap plasticity material 

model define the unknown parameter vector θ  as  

   11 1, , , , , , , , , ,
T

G K X D W R T =     θ   (2.29) 

The developed FE model is not an advanced state-of-the-art mechanics-based 3D 

nonlinear FE model of a dam including dam-reservoir (fluid)-foundation interaction. It cannot 

capture all the potential failure modes of the dam. However, it has some major ingredients of a 

more sophisticated FE dam model as far as nonlinear FE model updating and identifiability 

assessment is concerned in the context of SHM/DP.   
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Figure 2.4: FE model hierarchy: (a) Structure level, (b) Element level, and (c) Material level; (d) 

Input ground motion 

2.5.2 FE Model Updating of Testbed Structure 

2.5.2.1 Sensors, Data Simulation, and Prior 

The numerically simulated seismic response data with added Gaussian white noise (to 

simulate the measurement noise) is assumed to represent the data measured from a real-world 

dam and is used as measurement data  in this paper. In simulating such measurement data, 

sensors measuring absolute acceleration and relative displacement (with respect to the base of 

the dam) response time histories are assumed to be installed at locations A through E on the 

downstream face of the dam as shown in Figure 2.4a. For measurement data generation 

(simulation), the 2D FE model of the dam (Figure 2.3d) is characterized by a realistic set of 
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material parameter values (Simo et al. 1988) which were obtained by calibrating the cap 

plasticity model to the Colorado concrete test data (uniaxial compressive strength of 27.6 MPa) 

at the material level. This set of “true” material parameter values are referred to herein as true
θ  

and are reported in Eq. (2.30). 

 

4 1

1
11 1

11721.1 MPa,  14479 MPa,  4.6 10 MPa ,  0.42,110.32 MP

P0. ,0 .6 74

a,  4.43,

8 MPa,  MPa ,  0.11,  26.61 M a  2 0 MPa

T

true
− −

−


 
=  

−  

θ   (2.30) 

No additional damping (beyond the material hysteretic damping) is considered in this 

case study. The developed FE model h  characterized by true
θ  is subjected to seismic input time 

history, the first 10 sec of the 3600 horizontal component of the 1994 Northridge earthquake 

(M6.7) recorded at Sylmar Hospital station. The absolute acceleration and relative displacement 

response time histories at locations A through E are obtained from the dynamic seismic response 

analysis performed in OpenSees. This analysis takes 10 sec to run on an Intel Xeon W-2155 @ 

3.30 GHz CPU with 10 cores / 20 threads and 128 GB RAM workstation. The computed output 

response data 
true

y  (referred to as true output response measurement) are then polluted with 

additive Gaussian white noise of root mean square (RMS) 1.0%g and 1.9mm for the acceleration 

and displacement responses, respectively, to simulate the output measurement noise. This 

polluted output response is used as the output measurement data 1:Ny , thus 

10, ,... , , ,...
T

A B E A B E
k k k k k k ka a a d d d = 

 
y  where i

ka  and i
kd  denote the polluted absolute 

acceleration and relative displacement response, respectively, at time step  1,2,...,k N  at 

location [ , ,..., ]i A B E . The seismic input (ground motion record considered as true seismic 

input) is also polluted with 1.0%g RMS additive Gaussian white noise to simulate the input 

measurement noise. This polluted input is used as the input measurement data 1:Nu . Note that the 
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input measurement noise is filtered (together with the true seismic input) through the dam 

nonlinear FE model and therefore appears  as transformed (filtered) input noise in the system 

output. Therefore, the total noise associated with each output measurement channel comprises 

the transformed input measurement noise and added output measurement noise.  

The response of the developed FE model h  characterized by the parameter vector θ  and 

subjected to the measurement input 1:ku  is given by 

, , , , , , 10, ,... , , ,...
T

FE A FE B FE E FE A FE B FE E FE
k k k k k k ka a a d d d = 

 
y  where ,i FE

ka  and ,i FE
kd  are the 

absolute acceleration and relative displacement responses, respectively, of the FE model at time 

step  1,2,...,k N  and at location [ , ,..., ]i A B E . 

In this paper, the prior PDF ( )p θ  is assumed Gaussian ( ),prior prior
θ Σ  with  

 

 

  ( )( )

11 1

2

11 11

1.40, 0.55, 0.85,1.20, 0.80, 0.80,1.15,1.05, 0.95, 0.80, 0.60

0.30,  0.30, 0.20,  0.20, 0.20,  0.20, 0.20,  0.20, 0.20,  0.20, 0.20

Tprior true

Tprior priordiag





=

 =
  

θ θ

Σ θ

 (2.31) 

where  represents the element-wise vector multiplication operator, 
prior

θ  is the prior 

mean vector. Prior covariance matrix prior
Σ  is a diagonal matrix with coefficient of variation of 

0.30 for the linear elastic parameters (  and G K ) and 0.20 for the other parameters (

, , , , , , , ,  and X D W R T    ).  

For the initial condition/state of the testbed structure, both in both data simulation and 

model updating, the dam is assumed to be perfectly healthy (linear elastic with no damage).  
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2.5.2.2 FE Model Updating using Unscented Kalman Filtering 

FE model updating of the testbed structure is performed using the UKF algorithm 

provided in Table 2.1 together with simulated input-output measurement data. With the prior 

PDF ( )p θ  defined in Eq. (2.31), the initialization step in Table 2.1 is 0|0
ˆ prior=θ θ  and 

0|0
ˆ prior=θθ
P Σ . The process noise covariance matrix Q  is taken as ( )3

0|0
ˆ10diag −= Q θ . Q  

governs the convergence and tracking performance of the UKF; the choice of Q  used in this 

study is based on the existing literature and experience of the authors in solving this type of 

problems. A standard deviation of 1.3%g and 0.25mm for the acceleration and displacement 

output measurement channels, respectively, is used to construct measurement noise covariance 

matrix R . For data recorded in the real world, the variance (or standard deviation) of the 

measurement noise corresponding to each measurement channel should be first estimated based 

on the noise sources, experience, and engineering judgment and then used to construct R .  

Figure 2.6 shows the time histories of the posterior mean estimates ( |
ˆ ,  1,2,...,k k k N=θ ), 

normalized with respect to their corresponding true values (
true
θ ),of all eleven time-invariant 

parameters θ  of the testbed structure obtained using the UKF. Note that the length of these time 

histories is 10 sec corresponding to the length of the input ground motion (Figure 2.4d). The blue 

solid line in each plot represents the time history of the normalized mean parameter estimate (

|
ˆ ,  1,2,...,k k k N=θ ), the grey shaded area represents the parameter estimation uncertainty shown 

in terms of mean ± two standard deviations (with standard deviation obtained from 

|
ˆ ,  1,2,...,k k k N=θθ
P ), and the red dashed line represents the normalized true parameter value. 

From the dynamic response history analysis performed during data simulation (Section 2.5.2.1), 

it is observed that the dam is in its linear elastic regime at the beginning of the earthquake 
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excitation  0 1 sec− . Thus, the output measurement data only contains information about the 

concrete material parameters governing the linear elastic response of the system. And since the 

correlation between all parameters is assumed to be zero in the prior (Eq. (2.31)), only the linear 

elastic material parameters ( G  and K ) start getting updated in the  0 1 sec−  time window 

(Figure 2.6). After 1 sec, the structure is still predominantly in its linear elastic regime along with 

some tensile cracking at the heel of the dam until 3.5 sec. Hence, the tensile strength of concrete 

(parameter T )  starts to update at around 1 sec. At 3.5 sec, the large pulse in the input ground 

motion (Figure 2.4d) drives the dam into its nonlinear regime (Figure 2.5 shows the stress-path at 

the heel and neck of the dam displaying the level of nonlinearity). Thus, other parameters 

governing the nonlinear material response of the dam are being updated. The mean estimates of 

the linear elastic parameters G  and K  and the nonlinear parameter T  converge to their 

corresponding true values and their estimation uncertainty decrease asymptotically as 

information about these parameters is assimilated step by step from the measurement data. The 

estimates of parameters , , , , , ,  andX D W R     do not converge to their corresponding true 

values. The estimate of parameter   is unchanged (from its prior estimate) most likely because it 

is not identifiable (the data may not contain any information about this parameter). Ideally, 

parameters such as   should be detected and removed from the estimation process; more on this 

in Section 2.5.3.  

The response predicted by the FE model (characterized by the mean estimates of the 

parameters θ ) is compared with the true output response using the relative root mean square 

(RRMS) error as the metric for comparison. For the first measurement channel 
A

a , we have 
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,
, 1,2,...,

A FE
ka k N=  for the FE predicted response and ,

, 1,2,...,
A true
ka k N=  for the true 

response.. The RRMS error for this measurement channel is given by 

 

( )

( )
( )

2
, ,

1

2
,

1

1

RRMS error 100 %
1

N
A true A FE
k k

k

N
A true
k

k

a a
N

a
N

=

=

 
− 

 
= 

 
 
 





  (2.32) 

The evolution of the RRMS error of each measurement channel 

( ), , ..., , , , ...,A B E A B E
a a a d d d  during the unscented Kalman filtering is depicted in Figure 2.7. 

The RRMS error at each time step k  is computed between the response predicted by the FE 

model characterized by the updated mean parameter estimates at time step k  (i.e., ( )1: |; ˆ
N k kh u θ  ) 

and the true output measurement response 
true

y . As expected, the error between the FE predicted 

response and the true response is very high (RRMS error > 100%) before filtering (at 0 sec). 

During filtering, the RRMS error progressively decreases and the rate of decrease depends on the 

amount of information about parameters θ  assimilated from the measurement data. Intuitively, 

the UKF adjusts the parameter estimates during filtering to decrease the error between the FE 

predicted response and the output measurement response. Note that although estimates of some 

parameters did not converge to their corresponding true values, the error between the FE 

predicted and true responses is very small for all measurement channels at the end of filtering 

(RRMS errors lower than 5% and 3% for acceleration and displacement sensors, respectively). In 

other words, the filter finds a different set of parameter values (non-true) yielding a very good 

match between FE predicted and measured output. This issue is resolved by including only 

identifiable parameters in the estimation process (Section 2.5.4). The runtime of this FE model 

updating using unscented Kalman filtering for eleven parameters is 6.4 hours on an Intel Xeon 
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W-2155 @ 3.30 GHz CPU with 10 cores / 20 threads and 128 GB RAM workstation. Parallel 

computing was exploited to propagate the SPs though the measurement equation. 

 

Figure 2.5: Stress-path in the 1I − s  space at (a) heel of the dam, and (b) neck of the dam 

 

 

Figure 2.6: Time histories of the posterior mean estimates, normalized with respect to their 

corresponding true values, of all eleven time-invariant parameters   obtained using the UKF. 
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Figure 2.7: Evolution of RRMS error for all measurement channels during unscented Kalman 

filtering 

2.5.2.3 FE Model Updating using Transitional Markov chain Monte Carlo 

FE model updating of the testbed structure is performed using the TMCMC algorithm 

defined in Table 2.2 together with simulated input-output measurement data. For the algorithm 

initialization, the prior PDF ( )p θ  is given in Eq. (2.31). At every TMCMC stage, 1500pN =  

particles are used to approximate the intermediate joint  PDF. The number of MCMC steps in the 

perturbation stage of each TMCMC stage (Figure 2.1) is set to 15 (i.e., 15MCMCN = ). 

The “pairs plot” (scatter plots of the pairs of parameters) of all eleven time-invariant 

material parameters of the testbed structure obtained using the posterior samples (normalized 

with respect to 
true
θ ) generated by TMCMC is shown in Figure 2.8. In this Figure, 'G  denotes 

/ trueG G , 'K  denotes / trueK K  and so on. The plots along the diagonal show the histograms and 

kernel density estimates of the marginal posterior PDFs of the eleven parameters. The coefficient 

of variation (  ) conveys the sharpness of the marginal posterior PDF, an indicator of the 

remaining estimation uncertainty after model updating. The marginal posterior PDFs of the 

linear elastic material parameters ( G  and K ) are extremely sharp (as indicated by very small 
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values of   on the order of 410− ). The plots above the diagonal show the posterior samples 

(normalized with respect to true
θ ) in the space of each pair of parameters (each sample point is 

surrounded by a white circle) and the plots below the diagonal depict the contour plots of the 

corresponding bi-variate kernel density estimates where r  denotes the Pearson correlation 

coefficient. Highly correlated parameters can compensate each other to explain the measurement 

data equally well (see Section 2.5.2.4 for more details). The prior and posterior coefficients of 

variation (  ) of the parameters are compared in Table 2.5. The reduction in   (from prior to 

posterior) of each parameter can be directly attributed to its identifiability. The linear elastic 

parameters G  and K  experience the largest reduction in  , while the   of parameters D  and 

W  barely decreases. The small increase in   for parameter   can be due to numerical 

approximation errors.  

The runtime of this FE model updating using TMCMC for eleven parameters is 93.7 

hours on an Intel Xeon W-2155 @ 3.30 GHz CPU with 10 cores / 20 threads and 128 GB RAM 

workstation. Parallel computing was exploited in the weighting and perturbation steps of each 

TMCMC stage. 

Table 2.5: Comparison of prior and posterior (obtained using TMCMC) coefficients of variation 

for all parameters 

Parameter G  K   X   D   W   R   

Prior   13.0 10−  
13.0 10−  

12.0 10−  
12.0 10−  

12.0 10−  
12.0 10−  

Posterior   57.3 10−  
42.1 10−  

34.8 10−  
11.9 10−  

11.8 10−  
34.6 10−  

Parameter             T    

Prior   12.0 10−  
12.0 10−  

12.0 10−  
12.0 10−  

12.0 10−   

Posterior   11.3 10−  
12.2 10−  

27.3 10−  
23.3 10−  

23.9 10−   
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Figure 2.8: Pairs plot of eleven parameters of testbed structure obtained using posterior samples 

generated by TMCMC. 

2.5.2.4 Consistency between UKF and TMCMC Parameter Estimation Results 

In this section, the parameter estimation results obtained using the UKF, an approximate 

Bayesian inference technique that operates using point estimates, are compared with the results 

obtained by the TMCMC, a “full distribution” Bayesian method. Note that high correlation (

0.80r   or 0.80r  − ) is observed for the parameter pairs 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , ,  and ,G K D W X R            using TMCMC (Figure 2.8). 

Highly correlated parameters compensate each other to explain the measurement data equally 

well. For example, as the estimates of parameters D  and W  are extremely highly correlated (

0.97r = ), there exist many pairs of ( ),D W  values that explain the measurement data equally 

well. To illustrate this, the unscented Kalman filtering is performed for seven cases, in each case 
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fixing parameter W  to a non-true value (  / 0.8, 0.9,1.0,1.1,1.2,1.3,1.4trueW W = ) and 

estimating parameter D  only. For this exercise, the remaining nine parameters (

, , , , , , , , and G K X R T    ) are not updated and fixed to their corresponding true values. The 

mean estimate of D , normalized with trueD , from the last UKF update step for each case (

 ' / 0.8, 0.9,1.0,1.1,1.2,1.3,1.4trueW W W = ) is shown in Figure 2.9. The UKF mean 

parameter estimates are overlaid on the contour plot of the kernel density estimate of D  and W   

constructed using the TMCMC posterior samples of parameters D  and W . Thus, Bayesian 

inference when performed using methods that focus on point estimates (e.g., Kalman filter and 

its variants) can end up finding non-true sets of parameter estimates which explain the 

measurement response equally well. This motivates the need to look at identifiability of the 

unknown parameters of the model given the model and measurement data before solving the 

model updating problem. 

 

Figure 2.9: Consistency between UKF estimates and TMCMC posterior for parameters D and W 
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2.5.3 Identifiability and Sensitivity Analysis of Testbed Structure 

2.5.3.1 Local Practical Identifiability Analysis using Fisher Information Matrix 

Local practical identifiability analysis of the testbed structure is performed using the 

algorithm presented in Table 2.3. The local sensitivity analysis of the testbed structure is 

performed using the direct differentiation method within the sensitivity analysis framework in 

OpenSees. Since, in a real world application, the true values of parameters θ  are unknown, the 

LSA is performed here at prior
θ  (i.e., the evaluation point *θ  in Table 2.3 is prior

θ ). The time 

histories of the FE response sensitivities with respect to all eleven time-invariant material 

parameters ( ), , , , , , , , , ,G K X D W R T     for all ten measurement channels 

( ), , ..., , , , ...,A B E A B E
a a a d d d  are used to construct the normalized sensitivity matrix ( )' prior θ  

using Eq. (2.16). For illustration purposes, the normalized sensitivity time histories of a 

measurement channel, the acceleration at the top of the dam (
A

a ), with respect to all parameters 

θ  are displayed in Figure 2.10. The FE acceleration response at the top of the dam is highly 

sensitive to the linear elastic parameters ( G  and K ) and considerably less sensitive to the 

material constitutive parameters that govern the nonlinear behavior of the dam.  

The FIM evaluated at prior
θ  (i.e., ( ) ( ) ( )1' '

T
prior prior prior−=I θ χ θ C χ θ ) is represented as 

a 3D bar plot in Figure 2.11a and its diagonal elements are shown as a bar plot in Figure 2.11b. 

A standard deviation of 1.3%g and 0.25mm for the acceleration and displacement measurement 

channels, respectively, is used to construct the measurement noise covariance matrix R . The 

matrix R  is then used to construct matrix C , see Eq. (2.2), for evaluating ( )prior
I θ . From 

Figure 2.11a and Figure 2.11b (notice the logarithmic scale on the vertical axis), it is observed 
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that the measurement data contains much more information about the linear elastic parameters (

G  and K ) than about the parameters that govern the nonlinear behavior of the dam. The blue 

lines in Figure 2.11c show the eigenvalues of ( )prior
I θ . The numerical rank of the FIM 

( )prior
I θ  is 6 with a specified tolerance of 1.0 (see red line in Figure 2.11c). Note that the 

numerical rank of a positive semi-definite matrix is the number of eigenvalues that are larger 

than the tolerance.  

The algorithm presented in Table 2.3 is now used to rank the parameters based on their 

local identifiability around prior
θ  and to determine the locally practically identifiable parameters. 

The ranking of the parameters θ  using this algorithm is reported in Table 2.6. Since the rank of 

the FIM is identified as 6 (with tolerance = 1.0), it can be concluded that the parameters 

, , , , ,  and G K X T R  are locally practically identifiable in the neighborhood of prior
θ . 

In Table 2.6, parameter   is ranked better than parameter T . However, from the UKF 

results (Figure 2.6), it is observed that   converges to an incorrect value, while T  converges to 

its true value. The convergence of   to an incorrect value can be attributed to its compensation 

with parameters ,  and     (see the pairwise correlations between these four parameters in 

Figure 2.8).  
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Figure 2.10: Normalized sensitivities of acceleration response at the top of the dam A
a  

 

Figure 2.11: (a) Fisher information matrix of the testbed structure evaluated at 
prior

θ , (b) its 

diagonal elements, and (c) its eigenvalues 

Table 2.6: Parameters of testbed structure ranked using algorithm in Table 2.3 

Rank 1 2 3 4 5 6 7 8 9 10 11 

Parameter G  K      X   T   R      W         D   
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2.5.3.2 Variance-based Global Sensitivity Analysis (GSA) 

Variance-based GSA of the testbed structure is performed according to the algorithm 

described in Section 2.4.3 and summarized in Table 2.4 to determine the influent parameters. To 

compute the sensitivity indices, the eleven unknown model parameters are assumed statistically 

independent. Computing variance-based global sensitivities for statistically dependent 

parameters is beyond the scope of this paper (refer to (Hu and Mahadevan 2019) for such 

analysis). To evaluate the first- and total-order Sobol’ indices, the base sample size is set to 

5000. As there are eleven parameters, the total number of FE model runs required is 65000 (

5000 (11 2)=  + ). Refer to (Saltelli 2002; Saltelli et al. 2010) for more details about this 

computation. The runtime to compute the first- and total-order Sobol’ indices for the eleven 

parameters is 18.05 hours on an Intel Xeon W-2155 @ 3.30 GHz CPU with 10 cores / 20 threads 

and 128 GB RAM workstation. Parallel computing was exploited for FE model evaluations. 

For illustration purposes, Figure 2.12 shows the time histories of the total-order 

sensitivity indices of a measurement channel, the acceleration at the top of the dam A
a , with 

respect to all parameters. The blue line in each plot represents the total-order sensitivity index 

time history, while the grey region denotes its 95% confidence interval. Figure 2.13 shows the 

bar plot of the averaged (according to Eq. (2.28)) total-order Sobol’ indices of all parameters. 

The ranking of the parameters based on these averaged sensitivity indices is reported in Table 

2.7.  

Now the ranked parameters are separated into two groups (influent parameters 1Gθ  and 

non-influent parameters 2Gθ ) using the algorithm in Table 2.4 with 0.1Threshold = . The top 

ranked six parameters  1 , , , , , 
T

G G K X R T= θ  are identified as influent parameters and the 
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remaining five parameters  2 , , , ,
T

G D W=   θ  as non-influent. The first- and total-order Sobol’ 

indices time histories averaged over the measurement channels of the influent and non-influent 

parameter groups, 1Gθ  and 2Gθ , respectively, are plotted in Figure 2.14a. It is observed that the 

total-order sensitivity index of group 1Gθ  is close to 1.0 throughout the duration of the input 

ground motion (0-10 sec), thus confirming that parameters  1 , , , , , 
T

G G K X R T= θ  are influent 

parameters. The total-order index of group 2Gθ  is negligible (close to 0) except at around 4 sec. 

At around 4 sec, the first- and total-order index of group 2Gθ  is negligible and non-negligible, 

respectively. This implies that the parameters of group 1Gθ  are interacting with the parameters of 

group 2Gθ  at around 4 sec. This phenomenon is also observed in the first-order sensitivity time 

history of parameter group 1Gθ  (observe the dip at around 4 sec). Note that the input ground 

motion has a large pulse at from 3.5 – 4.5 sec (Figure 2.4d). The averaged (using Eq. (2.28)) 

first- and total-order sensitivity indices of the influent and non-influent parameter groups, 1Gθ  

and 2Gθ , respectively, are shown in Figure 2.14b. 

Table 2.7: Parameters of testbed structure ranked based on averaged total-order Sobol' indices 

Rank 1 2 3 4 5 6 7 8 9 10 11 

Parameter G  K      X   R   T    D  W        
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Figure 2.12: Total-order sensitivity index time histories for the acceleration at the top of the dam 
A

a  

 

Figure 2.13: Averaged total-order Sobol' indices of parameters of the testbed structure 
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Figure 2.14: (a) first- and total-order Sobol’ indices time histories averaged over measurement 

channels, (b) first- and total-order Sobol’ indices averaged over time and measurement channels, 

for parameter groups 

2.5.4 Revisiting Unscented Kalman Filter  

From the local practical identifiability analysis using FIM and variance-based GSA, 

parameters , , , , ,  andG K X R T  are determined to be locally identifiable and influent 

parameters, respectively. Note that for the considered case study, the influent parameters 

identified using GSA and locally identifiable parameters determined using FIM happen to be the 

same. But it is quite possible that they could be different for other systems or with different 

measurement data. It is then the choice of the analyst to perform either of the two analyses and 

choose a parameter set to be included in the estimation stage. In this section, only these influent 

or locally identifiable parameters are estimated using the UKF, an approximate Bayesian 

inference technique that rely on point estimates, while fixing the other parameters to their 

corresponding mean value of their prior PDF (Eq. (2.31)). Instead of setting the non-influent or 
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non-identifiable parameters at a certain value, their uncertainty can be “considered” while 

updating only the influent or identifiable parameters using techniques such as the Consider 

Kalman filter (Woodbury and Junkins 2010). However, this is beyond the scope of this paper.  

Figure 2.15 shows the time histories of the posterior mean parameter estimates, 

normalized with respect to their corresponding true values true
θ , obtained using the UKF for the 

influent or locally identifiable parameters of the testbed structure. The blue solid line in each plot 

represents the time history of the normalized mean parameter estimate ( |
ˆ ,  1,2,...,k k k N=θ ), the 

grey shaded region represents the corresponding estimation uncertainty as the mean ± two 

standard deviations (obtained from |
ˆ ,  1,2,...,k k k N=θθ
P ) interval, and the red dashed line denotes 

the normalized true parameter value. Estimates of parameters , , , ,  and G K X R T  converge to 

their corresponding true values while parameter   converges to a non-true value. It was 

observed that the parameter   also converges to its true value when the UKF is performed by 

setting the non-identifiable or non-influent parameters to their true values. Thus, the convergence 

of parameter   to a nontrue value can be attributed to compensation effects with non-identifiable 

or non-influent parameters. For example, in the model ( )1 2y m m x c= + +  with ( ),x y  pairs as 

the measurement input-output data, parameter c  is identifiable and fixing parameter 1m  renders 

2m  identifiable and vice-versa. However, if 1m  is fixed at an incorrect value then 2m  will be 

estimated incorrectly due to its compensation with 1m  and vice-versa, whereas c  will be 

estimated correctly. The runtime of this FE model updating using the UKF for the six influent 

parameters is 3.6 hours on Intel Xeon W-2155 @ 3.30 GHz CPU with 10 cores / 20 threads and 

128 GB RAM workstation. Recall that it took 6.4 hours to run the UKF to estimate all eleven 

parameters (Section 2.5.2.2). In summary, removing non-identifiable parameters when using 
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approximate Bayesian inference methods that rely on point estimates improves significantly the 

estimation results and computational time. 

 

Figure 2.15: Time histories of the posterior mean estimates, normalized with respect to their 

corresponding true values, of the influent or locally identifiable parameters obtained using the 

UKF 

2.6 Conclusions 

This paper focuses on Bayesian model updating/calibration and identifiability analysis of 

nonlinear finite element (FE) models with an eye towards large-scale civil structural systems. 

The problem is challenging in terms of computational cost and identifiability issues arising in 

such FE models. Pine Flat concrete gravity dam is used as the testbed structure. The parameters 

of a mechanics-based materially-nonlinear FE model of Pine Flat dam are 

estimated/updated/calibrated in recursive mode using the unscented Kalman filter (UKF), an 

approximate Bayesian inference method that relies on point estimates, and in batch mode using 

transitional Markov chain Monte Carlo (TMCMC), a “full distribution” Bayesian method, using 

simulated noisy input-output seismic measurement data. The consistency in estimation results 

obtained from these two approaches is examined. It is shown that for precise and accurate 
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inference to be possible, the selected FE model must be identifiable. Although Bayesian 

calibration is theoretically robust against model non-identifiability, many numerical approximate 

methods of Bayesian inference do not perform well in case of non-identifiability. It is also shown 

that the non-identifiable model parameters can result in undesirable non-uniqueness in the 

parameter estimates when the inference is performed using methods that rely on point estimates 

(e.g., Kalman filter and its variants) motivating the need for model identifiability analysis prior 

to model updating in practice.  

Local and global sensitivity and identifiability analysis methods are described in this 

paper, especially focusing on their applicability to nonlinear FE models, a topic scarcely 

addressed in the literature. A local practical identifiability analysis method based on the Fisher 

information matrix is used in this paper to assess the practical identifiability of the unknown 

parameter vector of the FE model at a certain local region in the parameter space. The analysis 

results are used to choose the parameters to be included in the model updating stage. Due to the 

lack of a method to assess global practical identifiability, global sensitivity analysis based on 

Sobol’s method is used herein. Note however that Sobol’s method can only determine (globally) 

influent parameters but not globally identifiable ones. Total-order Sobol’ indices of individual 

parameters and parameter groups are used to select the influent parameters to be included in the 

model updating stage. It is demonstrated that removing non-identifiable and/or non-influent 

parameters resulted in better estimation results in terms of convergence and reduced the 

computational time.  

The emphasis of this paper is on updating nonlinear FE models of civil structural 

systems. However, the updating and identifiability methodologies described in the paper are 

general and applicable to any mathematical model. This paper paves the way to FE model 
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updating of large-scale nonlinear systems using real measurement data for structural health 

monitoring and damage prognosis purposes. Additional research is needed to (i) improve model 

identifiability by adding more sensors (measurement responses, e.g., long-gauge fiber optic 

sensors, rotational accelerometers), (ii) investigate the identifiability of parameters of nonlinear 

dynamic systems as a function of time, (iii) determine identifiable parameter combinations of an 

FE model, and (iv) develop methods for global practical identifiability analysis of FE models. 

There is also a pressing need to develop methods to accurately account for modeling uncertainty 

(or model form error) in dynamic (linear and nonlinear) systems to estimate physical parameters 

as such and not as tuning parameters.  
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2.8 Preview to Chapter 3 

As mentioned in Section 2.3, assuming the noise process to have zero-mean and time-

invariant diagonal covariance matrix (as in Eq. (2.2)) may not be sufficiently accurate especially 

in the presence of model-form error. Chapter 3 extends the framework presented in Section 2.3 

to accurately account for the model form uncertainty in Bayesian calibration focusing on linear 

dynamic systems. 
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3 Accounting for Model Form Uncertainty in Bayesian 

Calibration of Linear Dynamic Systems 

3.1 Abstract 

Accounting for model form uncertainty is one of the key challenges in the model 

calibration of physical systems. It has been traditionally ignored (or not properly accounted for) 

in the model calibration of structural systems. The state-of-the-art Kennedy and O’Hagan (KOH) 

approach to account for model form uncertainty has only been applied for calibration of systems 

under static or quasi-static loading. This paper proposes an extension of the KOH approach to 

account for model form uncertainty in the calibration of linear systems (i.e., estimating their 

physical parameters) subject to dynamic loading. A novel power spectral density – covariance 

function pair based on the theory of random vibrations is proposed that can potentially represent 

model form uncertainty arising in linear dynamic systems. The proposed methodology is 

illustrated and validated by calibrating structural engineering benchmark problems (single- and 

multi-degree-of-freedom systems) in the presence of model form uncertainty subject to dynamic 

loading (wind and earthquake loading). A bias in estimates of physical parameters is observed 

when the calibration is performed without properly accounting for model form uncertainty. This 

bias is eliminated when the calibration is performed using the proposed methodology. 

Keywords: Bayesian model calibration, parameter estimation, physical parameters, 

Kennedy and O’Hagan approach, spectral kernel, linear dynamic systems, spectral kernel 

mixture, fully Bayesian approach. 
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3.2 Introduction  

Physics-based mathematical models are used in engineering to understand and predict the 

behavior of many systems. Such models often contain parameters that are entirely unknown or 

only partially constrained, combinedly referred to as unknown parameters in this paper, and need 

to be calibrated using measurement data. These parameters can be broadly categorized into 

physical parameters (e.g., inertial parameters such as floor mass, stiffness-related parameters 

such as story stiffness), non-physical tuning parameters, and semi-physical parameters. Physical 

parameters are ubiquitous in models of structural systems and maintaining their physical 

interpretation during calibration is critical for understanding the underlying system and making 

accurate response predictions (Brynjarsdóttir and OʼHagan 2014). 

Model calibration involves learning the unknown parameters of the mathematical model 

using measurement data (Kennedy and O’Hagan 2001). The data are typically not sufficient to 

completely constrain the parameters however, and several sources of uncertainty (Chatfield 

1995; Kennedy and O’Hagan 2001) need to be  accounted for in the calibration process. Model 

form uncertainty arising from model inadequacies due to simplifying assumptions, hypotheses, 

and unmodeled physics is a major source of uncertainty in model calibration (Brynjarsdóttir and 

OʼHagan 2014; Kennedy and O’Hagan 2001; Plumlee 2017; Sargsyan et al. 2015). In the 

literature, model form uncertainty is also referred to as modeling uncertainty, model discrepancy, 

model bias, or uncertainty about the model structure. Accounting for model form uncertainty is 

challenging, especially in structural systems due to abundant possible modeling errors, including 

approximations about geometries, boundary and loading conditions, energy dissipation 

mechanisms, non-structural components, material properties, and constitutive equations. Hence, 

its formal treatment is traditionally ignored  in the model calibration of structural systems, 
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despite its importance in maintaining the meaning of physical model parameters. Accounting for 

model form uncertainty is an important aspect of model verification, validation, calibration, and 

uncertainty quantification and must not be ignored, despite the difficulty of its treatment. In 

recent years, there has therefore been an increased interest in accounting  for model form 

uncertainty in structural systems (Astroza et al. 2019a; Behmanesh et al. 2015; Goulet et al. 

2014; Goulet and Smith 2013). 

The Bayesian approach to model calibration (Tarantola 2005; Yuen 2010) is considered 

in this paper. Traditionally, the error between the output measurement response and the response 

predicted through the mathematical model has been modeled as Gaussian white noise (Ramancha 

et al. 2020a; Yuen 2010), but this statistical assumption is inaccurate in the presence of model 

form uncertainty. As a result, the physical parameters act as tuning parameters that contort the 

model to fit the measurement data at the expense of losing their physical interpretation 

(Brynjarsdóttir and OʼHagan 2014).  However, it is possible to retain the physical meaning of the 

parameters after calibration if all the uncertainty sources are precisely accounted for (including 

model form uncertainty) in the model calibration process. This will be demonstrated in this paper 

in the context of linear dynamic structural models. 

To the best of the author's knowledge, there are three approaches to account for model 

form uncertainty in the Bayesian framework: Kennedy and O’Hagan (KOH) approach (Kennedy 

and O’Hagan 2001), hierarchical Bayesian approach (Behmanesh et al. 2015), and embedded 

model form error approach (Sargsyan et al. 2019). In the KOH approach, a discrepancy model 

(referred to as the delta term in this paper) is added to the mathematical model to account for the 

model form uncertainty. The hierarchical Bayesian approach for model calibration (Behmanesh 

et al. 2015) considers the unknown physical parameters as random variables with underlying 
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probability distribution owing to model form uncertainty. Multiple sets of measurement data are 

then used to quantify the model form error. Obtaining these multiple data sets might be difficult, 

if not impossible, in the real world. The embedded model form error approach (Sargsyan et al. 

2019) is a newer method that is applicable if the source of modeling error is known and can be 

embedded inside the mathematical model. The KOH approach is considered here because it does 

not rely on multiple data sets and is more flexible than the embedded approach when error 

sources are not known precisely. 

The KOH approach proposed in (Kennedy and O’Hagan 2001) is directly applicable for 

estimating the physical parameters of systems under static loading or quasi-static loading. For 

dynamic loading scenarios, the difficulty lies in modeling the delta term to accurately represent 

model form uncertainties. This paper proposes an extension of the KOH approach to account for 

model form uncertainty in the calibration of linear systems subject to dynamic loading. Like in 

the KOH approach, the delta term  is modeled using a Gaussian process, but a novel power 

spectral density – covariance function pair based on the theory of random vibrations is proposed 

to model the covariance kernel of the delta term to accurately represent common model form 

uncertainties arising in linear dynamic systems. The proposed methodology is illustrated by 

calibrating structural engineering benchmark problems (single- and multi-degree-of-freedom 

systems) with dynamic loading (wind and earthquake loading). A comparison of calibration with 

and without delta term is performed. When model form uncertainty is not accurately accounted 

for, the support of the posterior probability distribution of physical parameters does not contain 

the true parameter values (biased estimates). This bias persists/worsens with the increase in 

input-output measurement data. On the other hand, accounting for this uncertainty using the 

proposed approach results in a posterior distribution of physical parameters whose support 
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contains the corresponding true values. The impacts of different sampling rates and sampling 

durations of measurement data are studied, and the general applicability of the approach is 

discussed. 

3.3 Bayesian Model Calibration with Model Form Error 

Model calibration is a process of learning unknown parameters of the mathematical 

model using measurement data from the system of interest. At the discrete-time kt  (or time step 

k ), let n
k 

uu  and ky   be the measured input and output, respectively, where nu  denotes 

the number of input measurement channels. For illustration purposes, a single output 

measurement channel is first considered (up to and including Section 3.3.2). Multi output 

measurement channels are considered in Section 3.3.3. Mathematically, the case of multiple 

output measurement channels is no different from the case of single output channel, just the 

equations become more cumbersome. Assuming the measurements are obtained for N  time 

steps, the input and output measurement data in vector form are 1: 1 2, ,...,
T

n NT T T
N N

 = 
 

uu u u u  

and  1: 1 2, ,...,
T N

N Ny y y= y , respectively. Thus, the entire input-output measurement dataset 

is ( )  ( )1: 1:1:
, , .i i N Ni N
y

=
= u u y  These measurements are obtained using the sensor array 

deployed on the structural system of interest.  

Let h  denote the physics-based mathematical model of the system developed from 

design or as-built drawings and using explicitly formulated assumptions and hypotheses. Often, 

such models contain unknown parameters that need to be calibrated using measurement data. Let 

( )1:, ;k kh t u θ  be the response of the model h  at time step k  when subjected to measurement 
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input time history 1: 1 2, ,...,
T

n kT T T
k k

 = 
 

uu u u u . Model h  is parameterized by an unknown 

time-invariant parameter vector 
n

 θθ , where nθ  denotes the number of unknown parameters. 

Usually, many parameters in physics-based models of structural systems are physical parameters, 

i.e., parameters with physical meaning (e.g., floor mass, story stiffness). Note that physics-based 

models can also contain non-physical or semi-physical parameters, however their estimation is 

not the focus of this paper. Also, model calibration of linear dynamic systems, i.e., estimating the 

system unknown parameters, can be performed to match: (1) the measured output response time 

histories (time domain data), (2) the transfer functions between measured input and output data 

(frequency domain data), or (3) the modal properties of the system observed/identified from the 

measured input and output data; we focus on (1) in this paper. Hence, this methodology can be 

extended to nonlinear dynamic systems. 

The discrepancy between measured output ky  and model response ( )1:, ;k kh t u θ  can be 

attributed to numerous uncertainties encountered in the real world. For structural systems, these 

include: (1) uncertainty in the measured input and output due to sensor measurement noise, (2) 

uncertainty about the structure/form of the model or model form uncertainty, i.e., the selected 

model class cannot exactly represent the real system, (3) uncertainty about the parameters of the 

model for a given model structure/form, and so on. Of all the uncertainties, model form 

uncertainty is a major source of uncertainty in model calibration and uncertainty quantification 

of structural systems. The intent of this paper is to accurately account for it in linear dynamic 

systems. The objective of model calibration is to learn the unknown physical parameters θ  of the 

model h  using measurement data  accounting for all pertinent sources of uncertainty. The 

Bayesian approach to model updating is attractive because it provides the framework to (1) 

account explicitly for the various uncertainties observed in the real-world during the estimation 
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process of unknown parameters and (2) characterize probabilistically the uncertainty in the 

parameter estimates (e.g., estimation uncertainty due to finite data, uncertainty due to model 

form error) (Stuart 2010; Tarantola 2005; Yuen 2010). The Bayesian approach models the 

unknown parameter vector θ  as a random vector.  

Three main ingredients are required to perform Bayesian model calibration: (1) 

measurement data , (2) the prior probability distribution ( )p θ  of the unknown parameters θ  

that encode prior beliefs about them, and (3) a measurement equation (i.e., model of the 

measurement process). The primary objective of Bayesian model calibration is to obtain 

( ) ( )1: 1:| | ,N Np pθ θ u y , referred to as posterior/updated probability distribution of θ . This 

posterior distribution of θ  accounts for both the prior knowledge ( )p θ  and the measurement 

data . After calibration, the predictions of the system response can be made using the posterior 

predictive distribution. 

3.3.1 Measurement Equation 

Measurement equation (i.e., a model of the measurement process) formulation is a crucial 

step of Bayesian model calibration as it leads to the likelihood function. The measurement 

equation is a joint physical-statistical model that relates the physical parameters θ  of the model 

h  to measurements ( )1: 1:,N N u y . Traditionally, the following measurement equation is used 

in the Bayesian model calibration of structural systems:  

 ( ) ( )  1:

error/ noisemathematical model

At time step : , ; ; 1, 2,...,k k k kk y h t w t k N= + u θ   (3.1) 
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In Eq. (3.1), at each time step k , the measured output ky  is expressed as a summation of 

the model response ( )1:, ;k kh t u θ  and an error/noise term ( )kw t  . The mathematical model 

primarily considered in this paper is an ordinary differential equation shown in Eq. (3.28) 

(equation of motion of an n -degree-of-freedom linear system with classical damping). With the 

measurement equation shown in Eq. (3.1), all the sources of real-world uncertainties are lumped 

and accounted for in the noise term. The accurate stochastic and statistical description of the 

noise process ( )w t  is therefore crucial for accurate model calibration. The noise process ( )w t  is 

traditionally modeled as a zero-mean Gaussian white noise, i.e., random variables ( )kw t  and 

( )lw t  are statistically independent for every pair of distinct time steps k  and l , and identically 

distributed with ( ) ( )20,w t   where ( ),μ Σ  denotes a joint Gaussian distribution with 

mean vector μ  and covariance matrix Σ . Hence, 2  is the variance of the noise process ( )w t . 

This statistical description of the noise process is inaccurate in the presence of model form 

uncertainty (Brynjarsdóttir and OʼHagan 2014; Kennedy and O’Hagan 2001; Simoen et al. 

2013). With Eq. (3.1), the main objective is to obtain θ  that best fits 1:Ny  in presence of zero-

mean noise. This causes the physical parameters to act as tuning parameters in model calibration 

thus leading to inaccurate parameter estimates and biased model response predictions (Section 

3.5.1).  

The measurement equation proposed by Kennedy and OʼHagan (KOH) is appropriate for 

model calibration in the presence of model form uncertainty (Kennedy and O’Hagan 2001). The 

central idea of the KOH approach is to include an additional term, referred to as delta term in this 

paper, in the measurement equation given in Eq. (3.1) to explicitly account for the model form 

uncertainty. However, the KOH approach introduced in (Kennedy and O’Hagan 2001) only 
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considers model calibration of systems subjected to static loading. For systems subjected to 

dynamic loads, the measurement equation proposed by KOH can be adapted accordingly as 

 ( ) ( ) ( )  1:

delta error/ noisemathematical model

At time step : , ; ; 1, 2,...,k k k k kk y h t w t k N= +  + u θ x   (3.2) 

In Eq. (3.2), at each time step k , the measured output ky  is expressed as a summation of 

model response ( )1:, ;k kh t u θ , delta term ( )k x , and an error/noise term ( )kw t  . n
 xx  

denotes the input of the delta process ( ) x  similar to time t  being the input of the noise process 

( )w t . In this paper, only time is considered as the input of the delta process, i.e.,  k kt=x , for 

the reasons mentioned at the beginning of Section 3.4. In the literature, the delta term is also 

referred to as the model inadequacy function or discrepancy model. 

The goal is to account for all uncertainties using both the delta and noise terms with the 

delta term exclusively accounting for the model form uncertainty. The delta term should explain 

that part of the true system response that cannot be explained by the mathematical model due to 

the model form uncertainty. The delta term adds flexibility to the measurement equation to fit 

measurement data allowing the calibrated physical parameters to retain their physical meaning 

and not act like tuning parameters when calibrating models with model form uncertainty (Section 

3.5.1). 

Both the noise and delta processes are modeled as stochastic processes. As in the 

previous case, the noise process ( )w t  is modeled as a zero-mean Gaussian white noise with 

( ) ( )20,w t  . Following the KOH approach, the delta process is modeled using a Gaussian 

process model with zero-mean and is denoted as ( ) ( )( )0, , ;k  x x x β , where ( ), ;k  x x β  

is the covariance function/kernel parameterized by parameter vector β . Hence, ( ) 0E  =  x  and 
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( ) ( ) ( ),k E =    x x x x , where  .E  is the expectation operator. The covariance function 

( ),k x x  can be interpreted as a measure of the correlation between ( ) x  and ( ) x . Hence, the 

covariance function ( ),k x x  is used to model the smoothness of ( ) x . The challenging aspect 

for accurate model calibration of dynamic systems is choosing the appropriate covariance 

function ( ), ;k x x β  and choosing the appropriate input x  of the delta term ( ) x . These aspects 

are focused in Section 3.4. 

Gaussian processes are non-parametric probabilistic models (Rasmussen and Williams 

2005). Compared to parametric models, non-parametric models like Gaussian processes require 

fewer (or weak) assumptions about the underlying process – ideal for modeling model form 

uncertainty. Gaussian processes also allow to incorporate prior knowledge about the underlying 

process (i.e., model form error in this case). Other machine learning techniques such as artificial 

neural networks and autoregressive-moving-average (ARMA) models can also be used to model 

the delta term (Lei et al. 2020; Yucesan et al. 2020). Note that Eq. (3.2) describes a case of 

fusing physics-based models h  with machine learning models   to explain the measurement 

data. The machine learning model   addresses the part of the true system response that cannot 

be explained by the physics-based model h , due to model form uncertainty. This is an extremely 

powerful and influential equation that can be used in various scientific fields for forecasting and 

predictions. 

3.3.2 Estimating Physical Parameters using Bayesian inference 

This section focuses on the estimation of the physical parameters θ  of the model h  using 

Bayesian inference considering both measurement equations defined in Section 3.3.1. In this 
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paper, Eqs. (3.1) and (3.2) are referred to as measurement equation without and with delta term, 

respectively. The primary objective of Bayesian model calibration is to obtain the posterior 

distribution of θ , ( )1: 1:| ,N Np θ u y . Model calibration using the measurement equation with delta 

term (i.e., Eq. (3.2)) is primarily described in this section. This methodology can be adapted 

accordingly for model calibration using the measurement equation without delta term (i.e., Eq. 

(3.1)). 

In Eq. (3.2), the total unknown parameters  , ,θ β  comprise the physical parameters θ , 

and hyperparameters β  (covariance function parameters) and   (standard deviation of the noise 

process). There are various approaches to obtain the posterior distribution ( )1: 1:| ,N Np θ u y  such 

as fully Bayesian approach, integrated likelihood approach (Wolpert et al. 1999), and modular 

Bayesian approach (Kennedy and O’Hagan 2001). Fully Bayesian analysis (Section 3.3.2.1) 

fully accounts for all sources of uncertainty consistently and rigorously and is therefore 

employed in this paper for model calibration. However, the fully Bayesian analysis is 

computationally expensive, might not be always practical, and requires careful consideration of 

prior knowledge of the hyperparameters (refer to Section 4.5 of (Kennedy and O’Hagan 2001)). 

Practical approaches such as the integrated likelihood approach and modular Bayesian approach 

are briefly described in Appendix B in the context of Bayesian model calibration accounting for 

model form error.  

3.3.2.1 Fully Bayesian Approach 

A fully Bayesian approach for model calibration requires first obtaining the joint 

posterior distribution of the physical parameters and hyperparameters ( )1: 1:, , | ,N Np θ β u y . 
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Then, the posterior distribution ( )1: 1:| ,N Np θ u y  is obtained by integrating out the 

hyperparameters  ,β . This accomplishes model calibration. The posterior predictive 

distribution is then obtained for response predictions. 

The joint posterior of all unknown parameters ( )1: 1:, , | ,N Np θ β u y  can be obtained by 

the following implementation of Bayes’ rule (a central equation in Bayesian inference) 

 ( )
( ) ( )

( )
1: 1:

1: 1:
1: 1:

| , , , , ,
, , | ,

|

N N
N N

N N

p p
p

p

  
 =

y u θ β θ β
θ β u y

y u
  (3.3) 

where ( )1: 1:| , , ,N Np y u θ β  is the likelihood function which measures the goodness of fit 

of the measurement equation to the measurement data ( )1: 1:,N Nu y  given the values of all the 

unknown parameters  , ,θ β . ( ), ,p θ β  is the joint prior distribution of all the unknown 

parameters. It is reasonable to assume the prior distributions of the physical parameters θ , and 

hyperparameters β and   to be statistically independent, thus ( ) ( ) ( ) ( ), ,p p p p = θ β θ β . The 

denominator ( )1: 1:|N Np y u  is a normalizing constant ensuring that ( )1: 1:, , | ,N Np θ β u y  

integrates to one. Eq. (3.3) can now be written as 

 ( ) ( ) ( ) ( ) ( )1: 1: 1: 1:, , | , | , , ,N N N Np p p p p    θ β u y y u θ β θ β   (3.4) 

To obtain the likelihood function ( )1: 1:| , , ,N Np y u θ β , the measurement equation 

defined in Eq. (3.2) is expanded for all time steps 1: N  and is written in the following vector 

form 

 ( ) ( ) ( )1: 1: 1: 1:;N N N Nt= + +y h u θ δ x w   (3.5) 
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where ( ) ( ) ( ) ( )1: 1 1 2 1:2 1:; , ; , , ; , , , ;
T N

N N Nh t h t h t =  h u θ u θ u θ u θ  is the response 

time history of the mathematical model, ( ) ( ) ( ) ( )1: 1 2, , ,
T N

N N =     δ x x x x  is the time 

history of the delta process, and ( ) ( ) ( ) ( )1: 1 2, ,
T N

N Nt w t w t w t =  w  is the time history of 

the noise process. 

As the delta process is modeled as a zero-mean Gaussian process, i.e., 

( ) ( )( )0, , ';k x x x β , the probability distribution of ( )1:
N

N δ x  is a multi-variate zero-

mean Gaussian distribution as 

 

( ) ( )( )

( )
( ) ( )

( ) ( )

1: 1: 1:

1 1 1

1: 1:

1

, , ; ; 

, ; , ;

, ;

, ; , ;

N N N

N
N N

N N

N N N

k k

k k



 
 

=  
 
 

δ x 0 K x x β

x x β x x β

K x x β

x x β x x β

  (3.6) 

Note that choosing the appropriate covariance function ( ), ;k x x β  and choosing the 

appropriate input x  of the delta term ( ) x  are discussed in Section 3.4. Since the noise process 

is modeled as a zero-mean Gaussian white noise, the probability distribution of ( )1:
N

Nt w  is 

a multi-variate zero-mean Gaussian distribution as 

 ( )2
1: ,N Nw 0 I   (3.7) 

where N N
N

I  denotes an identity matrix of size N . 

Now using Eqs. (3.5)-(3.7), the likelihood function ( )1: 1:| , , ,N Np y u θ β  is given by 

 ( ) ( ) ( )( )2
1: 1: 1: 1: 1:| , , , ; , , ;N N N N N Np  = +y u θ β h u θ K x x β I   (3.8) 
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The response time history of the mathematical model ( )1: ;Nh u θ  is the mean vector of the 

likelihood function ( )1: 1:| , , ,N Np y u θ β . The posterior distribution ( )1: 1:| ,N Np θ u y  can now be 

obtained by integrating out the hyperparameters  ,β  from the joint posterior 

( )1: 1:, , | ,N Np θ β u y  as 

 ( ) ( )1: 1: 1: 1:| , , , | ,N N N Np p d d



=   
β

θ u y θ β u y β   (3.9) 

After model calibration, predicting the response of the system *
jy  (at a certain time step 

j ) with a new measured input time history *
1: ju   conditioned on the entire measurement data  

can be achieved using the following distribution 

 ( ) ( ) ( )* * * *
1: 1:

joint posteriorposterior predictive

| , | , , , , , , |j j j jp y p y p d d d



=      
β θ

u u θ β θ β θ β   (3.10) 

The posterior predictive distribution ( )* *
1:| ,j jp y u  allows the prediction of the response 

of the system given all the information available in the measurement data . Using the 

measurement equation with delta term, ( )* *
1:| , , ,j jp y u θ β  is given by 

 ( ) ( ) ( )( )* * * * * 2
1: 1:| , , , , ; ,  , ;j j j j j jp y h t k = +u θ β u θ x x β   (3.11) 

where *
jx  denotes the input of the delta process at time step j . The distribution 

( )* *
1:| , , , ,j jp y u θ β  on the right-hand side in Eq. (3.10) is given by 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

* * * * * 2
1: 1:

1
* * * 2
1: 1: 1: 1: 1: 1: 1:

1
* * * * * 2 *

1: 1: 1: 1:

| , , , , , ; , , ,  , ; , ;

, ; , , , ; , ; , ; ;

, ; , , ; , ; , ; , ;

j j j j j j

j j j j j N N N N N N

j j j j j N N N N N j

p y h t k

h t h t

k k

−

−

 =   +

 = + + −

 = − +

u θ β u θ β x x β

u θ β u θ K x x β K x x β I y h u θ

x x β x x β K x x β K x x β I K x x β

  (3.12) 
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where ( ) ( ) ( ) ( )* * * * 1
1: 1: 1, ; , ; , ; , ;

T
N

j N N j j j Nk k  = = 
 

K x x β K x x β x x β x x β . For 

more details on the derivation of Eq. (12), see Section 2.2 of (Rasmussen and Williams 2005).  

The posterior and posterior predictive probability distributions presented in this section 

can be derived accordingly for model calibration using the measurement equation without the 

delta term (i.e., Eq. (3.1)). For this case, the total unknown parameters  ,θ  comprise the 

physical parameters θ  and hyperparameter   (standard deviation of the noise process). The 

posterior and posterior predictive distributions for model calibration without and with delta term 

are compared in Table 3.1. A major disparity in the comparison is in the posterior predictive 

distribution. The posterior predictive distribution ( )* *
1:| ,j jp y u  based on the measurement 

equation without delta term is given by  

 ( ) ( ) ( )* * * *
1: 1:| , | , , , |j j j jp y p y p d d



=     
θ

u u θ θ θ   (3.13) 

Since the measurement equation without delta term is parametric, the following relation 

holds (Ghahramani 2013): 

 ( ) ( )* * * *
1: 1:| , , , | , ,j j j jp y p y = u θ u θ   (3.14) 

( )* *
1:| , ,j jp y u θ  can then be obtained from the measurement equation without delta term 

as 

 ( ) ( )( )* * * 2
1: 1:| , , , ; ,j j j jp y h t = u θ u θ   (3.15) 

Note that the measurement model with delta term is non-parametric since the delta term 

is modeled as a Gaussian process, a non-parametric model. Thus, Eq. (3.14) is not applicable 

(Ghahramani 2013).  
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Table 3.1: Overview of model calibration using measurement equation without and with delta 

term (fully Bayesian approach) 

Model calibration without delta term Model calibration with delta term 

Measurement equation at time step k  

( ) ( )1:

error/ noisemathematical model

, ;k k k ky h t w t= +u θ   

( ) ( )20,w t    

( ) ( ) ( )1:

delta error/ noisemathematical model

, ;k k k k ky h t w t= +  +u θ x   

( ) ( ) ( ) ( )( )20, 0, , ;w t k   x x x β   

Total unknown parameters 

 ,θ   , ,θ β  

Joint posterior of physical parameters and hyperparameters 

( )

( ) ( ) ( )

1: 1:

1: 1:

, | ,

| , ,

N N

N N

p

p p p



   

θ u y

y u θ θ
  

( )

( ) ( ) ( ) ( )

1: 1:

1: 1:

, , | ,

| , , ,

N N

N N

p

p p p p



   

θ β u y

y u θ β θ β
  

Likelihood function 

( )

( )( )
1: 1:

2
1:

| , ,

; ,

N N

N N

p 

= 

y u θ

h u θ I
 

( )

( ) ( )( )
1: 1:

2
1: 1: 1:

| , , ,

; , , ;

N N

N N N N

p 

= +

y u θ β

h u θ K x x β I
  

Posterior distribution of physical parameters ( )1: 1:| ,N Np θ u y  

( )1: 1:, | ,N Np d



=   θ u y   ( )1: 1:, , | ,N Np d d



=   
β

θ β u y β   

Posterior predictive distribution ( )* *
1:| ,j jp y u   

( ) ( )* *
1:| , , , , |j jp y p d d



=     
θ

u θ θ θ

where 

( ) ( )

( )( )

* * * *
1: 1:

* 2
1:

| , , , | , ,

, ; ,

j j j j

j j

p y p y

h t

 = 

= 

u θ u θ

u θ
 

Refer to Eqs. (3.14), (3.15) 

( ) ( )* *
1:| , , , , , , |j jp y p d d d



=      
β θ

u θ β θ β θ β

where 

( )

( ) ( )( )

* *
1:

* * * 2
1:

| , , , ,

, ; , , , , ; ,

j j

j j j j

p y

h t k



=   +

u θ β

u θ β x x β
 

Refer to Eq. (3.12) 
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3.3.2.2 Sampling Posterior and Posterior Predictive Distributions 

Computing the joint posterior distribution of all unknown parameters is often analytically 

intractable. Therefore, obtaining the posterior predictive distribution analytically is also not 

possible. Obtaining these distributions involves computing multi-dimensional integrals that are 

intractable. Simulation-based approaches can be used to generate samples from the target 

distribution (Bishop 2006). These include rejection sampling, importance sampling, Markov 

chain Monte Carlo (MCMC) sampling, and Transitional Markov chain Monte Carlo (TMCMC) 

sampling. In this paper, TMCMC sampling is used to sample from the joint posterior distribution 

of all unknown parameters. The TMCMC algorithm is very flexible, easy to implement, and 

applicable in general settings. TMCMC sampling is also inherently parallel. So, it can be used to 

perform model calibration of computationally expensive mathematical models using high-

performance computing resources. Refer to (Ching and Chen 2007; Minson et al. 2013) for the 

theory behind the TMCMC algorithm and refer to Table 2 of (Ramancha et al. 2022) for the 

TMCMC algorithm used in this paper. 

Sampling of the joint posterior ( )1: 1:, , | ,N Np θ β u y  and posterior predictive 

( )* *
1:| ,j jp y u  distributions for the case of the measurement equation with delta term is 

presented in this section. This can be adapted accordingly for the case of the measurement 

equation without the delta term. Let  ( ) ( ) ( )

1:
, ,

p

i i i

i N=
θ β  be the samples of the joint posterior 

distribution ( )1: 1:, , | ,N Np θ β u y  generated by any simulation-based approach, where pN  

denotes the number of samples. Thus,  ( )

1: p

i

i N=
θ are the samples of the posterior distribution 
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( )1: 1:| ,N Np θ u y . The posterior predictive distribution shown in Eq. (3.10) can be approximated 

using Monte Carlo integration as 

 ( ) ( )* * * * ( ) ( ) ( )
1: 1:

1

1
| , | , , , ,

pN
i i i

j j j j
p i

p y p y
N =

 u u θ β   (3.16) 

Using Eq. (3.12), Eq. (3.16) reduces to  

 ( ) ( ) ( ) ( )
2

* * * ( ) ( ) ( ) * * ( ) ( ) ( )
1: 1:

1

1
| , , ; , , , , ; ,

pN
i i i i i i

j j j j j j
p i

p y h t k
N =

 
   +  

 
u u θ β x x β   (3.17) 

Eq. (3.17) is a Gaussian mixture model of pN  components with equal weights. Thus, 

sampling from the Monte Carlo approximated posterior predictive distribution is the same as 

sampling from the Gaussian mixture model. Sampling from a mixture distribution is well 

established in the literature. 

3.3.3 Multi-Output Measurement Channels 

The model calibration methodology shown until now in this Section 3.3 focused on a 

single output measurement channel, i.e., ky k  . However, in structural systems, there are 

typically multiple output measurement channels. Let n y  be the number of output 

measurement channels and 
n

k 
yy  be the measured output at time step k . The measurement 

equation (with delta term) in Eq. (3.2) can be adapted for multi-output measurement channels as 

 ( ) ( ) ( )  1:

delta error/ noisemathematical model

At time step : , ; ; 1, 2,...,k k k k kk t t k N= + + y h u θ δ x w   (3.18) 

At each time step k , the measured output 
( )(1) y

T
n n

k k ky y = 
  

yy  is expressed as 

the summation of the model response 
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( ) ( ) ( )
( )(1)

1: 1: 1:, ; , ; , ;y
T

n n

k k k k k kt h t h t = 
 

yh u θ u θ u θ , delta term 

( ) ( ) ( )
( )(1) y

T
n n

k k k
 =   
 

yδ x x x , and an error/noise term 

( ) ( ) ( )
( )(1) y

T
n n

k k kt w t w t = 
 

yw . The superscript ( )j  indicates the measurement 

channel j . Note that measurement input  , 1:
n

k k N =uu  can also be a multi-variable 

(vector) excitation (i.e., 1n u ). In this paper, the noise term ( )ktw  is modeled as a Gaussian 

white noise vector with statistically independent components (i.e., statistical independence across 

measurement channels). Thus, 
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where 2
j  denotes the variance of the measurement noise process corresponding to the 

j th−  measurement channel. Following the KOH approach, the delta term is modeled as a zero-

mean vector-valued Gaussian process ( ) ( )( ), , ;δ x 0 k x x β , where 

( ) ( ) ( ), ;
n nT

E
  = 

 
y yk x x β δ x δ x  is a matrix-valued covariance function given by 
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( ) ( )
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 

 =  
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   
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y y
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  (3.20) 
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where ( )( , ) ,j jk x x  is the autocovariance function of ( ) ( )j
 x  and ( )( , ) , ,j lk j l x x  is the 

cross-covariance function between ( ) ( )j
 x  and ( ) ( )l  x . Estimating physical parameters 

described in Section 3.3.2 can now be adapted accordingly for the case of multi-output 

measurement channels.  

3.4 Modeling the Delta Term in Linear Dynamic Systems 

First consider the case of single output measurement channel; the delta term in Eq. (3.2) 

is modeled as a zero-mean Gaussian process ( ) ( )( )0, , ;k  x x x β . Ideally, at each time step 

k , the input of the delta process kx  should be the same as the input ( )1:,k kt u  to the 

mathematical model of the dynamic system, i.e., 
1

1:,
T

n kT
k k kt

+ = 
 

ux u . In such a case, the 

dimension of the input kx  ( )1n k= +u ) of the delta process grows linearly with the time step k . 

This is very difficult, if not impossible, to handle when the delta process is modeled using a 

Gaussian process. For analytical and therefore computational tractability purposes, the input size 

of the delta process should be kept constant. In this paper, only time is considered as the input of 

the delta process, i.e.,  k kt=x . A covariance function based on the theory of random vibrations 

is proposed to model the covariance kernel ( ), ;k t t β  for accurately capturing the model 

discrepancy time history using the delta process ( )t . True model discrepancy time history is 

defined as the error between the response of the true system and the mathematical model 

parameterized with the true parameter values (see Section 3.5 for more details). 

Consider the following stationary covariance function from the theory of random 

vibrations: 
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The parameters of the covariance kernel ( )SDOF , ;k t t β  are 3
0, ,

T
GP GP GPv =   

 
β . 

This covariance function has the following power spectral density: 

 ( )

( ) ( ) ( )

0
SDOF 2

2 2 2
2 2

0 0

;

4

GP

GP GP GP


  =

  
 − +     

   

β   (3.22) 

Note that the covariance function and power spectral density of a stationary random 

process form a Fourier transform pair (Lutes and Sarkani 2004). Knowledge of the power 

spectral density and knowledge of the stationary covariance function are equivalent since one 

can be deduced from the other via the Wiener-Khinchin theorem. In the context of structural 

dynamics, the power spectral density is a more intuitive and insightful description of the random 

process than the covariance function. In random vibrations, this covariance function – power 

spectral density pair characterizes the relative displacement response of a linear elastic SDOF 

system subjected to white noise excitation after the response has reached stationarity. The 

reasons for using this kernel over the standard kernels used in Gaussian process literature are 

discussed in Remark 3. 

A schematic representation of the power spectral density (Eq. (3.22)) and covariance 

kernel (Eq. (3.21)) is shown in Figure 3.1a and Figure 3.1b, respectively. Both plots are only 

shown on the positive axis as the power spectral density and covariance kernel are symmetric 

about the origin. The parameters 
GPv  and 0

GP  represent the variance (or mean-square value) 
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and predominant frequency of the underlying random process. The full width of the power 

spectral density at half maximum height is given by 02 GP GP   (Figure 3.1a). The hyperparameter 

(0,1)GP   controls the bandwidth of the underlying random process, with a small value of 
GP  

representing a narrowband process and a large value of 
GP representing a broadband process. 

As 
GP  approaches zero, the covariance function reduces to ( )0cos 'GP GPv t t −  and the 

underlying random process is periodic with frequency 0
GP  and variance GPv  (i.e., single 

random harmonic component).  

Figure 3.2 shows the power spectral density, covariance function, and a realization of the 

random process for different values of GPv , 0
GP , and 

GP . With a very small value of 
GP  in 

Figure 3.2b, the random process realization is quasi-periodic. An increase in 
GP  from Figure 

3.2a to Figure 3.2d causes an increase in bandwidth of the power spectral density which results 

in a realization that is more irregular (Figure 3.2d) as it contains more random harmonic 

components. An increase in GPv  from Figure 3.2a to Figure 3.2c results in a higher amplitude 

realization of the random process as GPv  controls the variance of the underlying process. The 

physical interpretation of the hyperparameters GPv , 0
GP , and 

GP  is extremely useful to set 

their prior distribution in Bayesian calibration. Also, the calibrated values of the hyperparameters 

can provide insights into the sources and level of model form uncertainty. The covariance 

function ( )SDOF , ;k t t β  can be used to model any narrowband or broadband stationary process 

with a single predominant frequency.  
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Figure 3.1: Schematic representation of (a) power spectral density (Eq. (3.22)) and (b) 

covariance function (Eq. (3.21)) 

Remark 1: the rationale behind using the covariance function ( )SDOF , ;k t t β  

The kernel ( )SDOF , ;k t t β  is the covariance function of the displacement response of an 

SDOF system (with natural frequency 0
GP  and damping ratio 

GP ) subjected to white noise (of 

mean square 0
GP ) base excitation (Lutes and Sarkani 2004). The idea is to consider the model 

discrepancy time history as an output response of a fictitious linear dynamic system excited by a 

fictitious stochastic excitation. The simplest stochastic excitation is a zero-mean Gaussian white 

noise and it allows for the computation of the covariance function of the response of any linear 

dynamic system in closed form. Also, the output response of any linear dynamic system 

subjected to a zero-mean Gaussian white noise is a zero-mean Gaussian process. This perfectly 

aligns with the KOH approach since it also models the delta process using a zero-mean Gaussian 

process. In summary, modeling the delta process as a zero-mean Gaussian process with the 

kernel given in Eq. (3.21) is equivalent to modeling the delta process as an output response of a 

fictitious SDOF system (with natural frequency 0
GP  and damping ratio 

GP ) subjected to a 

fictitious zero-mean Gaussian white noise (of mean square 0
GP ) base excitation (acceleration).  
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The kernel ( )SDOF , ;k t t β  can be used if the true model discrepancy is 

known/believed/assumed to be a stationary process (narrowband or broadband) with a single 

predominant frequency. In linear Multi-DOF (MDOF) systems, the output responses are usually 

characterized by multiple dominant frequencies (corresponding to the natural frequencies of 

vibration modes contributing significantly to the output responses). Hence, it can be argued that 

the model discrepancy time histories in such systems can also contain multiple dominant 

frequencies. Two different approaches to obtain a covariance function appropriate to model 

stationary processes with multiple dominant frequencies are presented next. They are referred to 

as the “MDOF covariance function” approach and the “mixture of SDOF covariance functions” 

approach, respectively. The single output measurement channel case is considered in Section 

3.4.1 to introduce these two approaches and then extended for the multiple-output measurement 

channels case in Section 3.4.2. 
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Figure 3.2: Power spectral density, covariance function, and a realization of the random process 

for different values of GPv , 0
GP , and 

GP . 

3.4.1 Single Output Measurement Channel 

3.4.1.1 MDOF Covariance Function Approach 

This approach is based on “Remark 1: the rationale behind using the covariance function 

( )SDOF , ;k t t β ”. The idea is to consider the model discrepancy time history (arising in MDOF 

systems) as an output response of a fictitious MDOF system subjected to a fictitious excitation. 

There exist numerous possible choices to construct a fictitious MDOF system for this purpose. 
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The first thought that comes to mind is to assume the fictitious MDOF system to be the 

mathematical model h  (of the dynamic system to be calibrated) with fictitious parameterization 

GPθ . That is, the fictitious MDOF system is assumed to have the same geometric and kinematic 

constraints as the mathematical model h . Regarding the fictitious excitation, we chose a 

univariate zero-mean Gaussian white noise excitation herein for the reasons mentioned at the end 

of this subsection. These assumptions may be too restrictive and limit the subset of stationary 

processes that can be represented by this approach – a significant limitation (see Remark 2 in 

next section). In summary, the model discrepancy time history in this approach is assumed an 

output response of a mathematical model h  with fictitious parameterizations GPθ  excited by a 

fictitious univariate zero-mean Gaussian white noise. The parameters θ  of the mathematical 

model h  of the actual dynamic system considered here and parameters GPθ  of the fictitious 

mathematical model are distinguished using the superscript GP .  

Let ( )MDOF , ;k t t β  denote the covariance function of the displacement response at the 

DOF corresponding to the output measurement channel of the mathematical model h  with 

fictitious parameterizations GPθ  and excited by a fictitious univariate zero-mean Gaussian white 

noise (of mean square 0
GP ) forcing function. The hyperparameters of the covariance function 

( )MDOF , ;k t t β  are ( ) 1
0 ,

T
T

nGP GP + 
=  
  

θβ θ . The power spectral density matrix and 

auto/cross-correlation matrix of the displacement responses at all degrees of freedom of an 

MDOF system subjected to white noise excitation can be obtained in closed-form and are 

presented in Appendix A.  



106 

The covariance function ( )MDOF , ;k t t β  is the diagonal term (at the DOF corresponding to 

the single output measurement channel) of the auto/cross-correlation matrix. ( )MDOF , ;k t t β  is 

used to model the kernel of the delta process in the measurement equation.  

In summary, modeling the delta process as a zero-mean Gaussian process with the kernel 

( )MDOF , ;k t t β  is equivalent to modeling the delta process as an output response of a fictitious 

mathematical model h  (i.e., with fictitious parameterizations GPθ ) subjected to a fictitious 

univariate zero-mean Gaussian white noise (of mean square 0
GP ) base excitation. 

Note that the fictitious excitation used in this paper is taken as a univariate zero-mean 

Gaussian white noise base excitation so that it is feasible to compute in closed form the power 

spectral density matrix and auto/cross-correlation matrix of the output responses of an MDOF 

system (Appendix A). In addition, the illustration examples (Section 3.5 and 3.6) considered in 

this paper are characterized by a univariate excitation. However, for the case in which the actual 

system is subjected to multiple excitations (e.g., three-component earthquake base excitation), 

this approach can be directly applied/adapted by considering a multi-variate fictitious excitation 

(e.g., set of statistically independent white-noise processes). Moreover, other forms of fictitious 

excitations (including non-white excitations, but for which closed form solutions may not be 

available) can also be considered in this approach. Section 3.4.1.2 presents a more general 

approach which does not need any assumptions on the fictitious MDOF system or on the 

fictitious input excitation. The approach presented in Section 3.4.1.2 is also directly applicable to 

the case of multiple excitations. 
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3.4.1.2 Mixture of SDOF Covariance Functions Approach 

The covariance function ( )SDOF , ;k t t β  – power spectral density ( )SDOF ;  β  pair 

described earlier is only ideal to model stationary processes with a single dominant frequency. 

However, a mixture of power spectral densities ( )SDOF ; i  β  with different hyperparameters iβ  

can be used to model stationary processes with multiple dominant frequencies (Shen 2019; 

Wilson and Adams 2013). Let ( )Mix-SDOF ;  β  denote a mixture power spectral density with 

m  components and ( )Mix-SDOF , ;k t t β  be its Fourier dual (inverse Fourier transform), then 

 

( ) ( )

( ) ( )

Mix-SDOF SDOF
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Mix-SDOF SDOF
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where 
3

0,, ,
T

GP GP GP
i i i iv =   

 
β  and 

3
1 2, , ,

T
T T T m

m
 = 
 

β β β β . The hyperparameter 

GP
iv  denotes the variance of component i  (also indicates the relative contribution of component 

i  to the total variance of the underlying delta process), 0,
GP

i  denotes the dominant frequency of 

component i  , and GP
i  controls the bandwidth of component i . The mixture covariance 

function ( )Mix-SDOF , ;k t t β  can be used to model the kernel of the delta process ( )t  if the model 

discrepancy time history is known/believed/assumed to contain m  dominant frequencies. 

Besides, the mixture power spectral density ( )Mix-SDOF ;  β  can approximate the power spectral 

density of any stationary process given enough mixture components (Wilson and Adams 2013).  

Recall that ( )SDOF , ; ik t t β  is the covariance function of the displacement response of an 

SDOF system subjected to white noise excitation. Thus, ( )Mix-SDOF , ;k t t β  is the covariance 
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function of the sum of statistically independent displacement responses of multiple white noise 

excited SDOF systems. This comes from the fact that the covariance function of the sum of 

statistically independent random processes is the sum of the covariance functions of the 

individual random process. 

Note that the output response of structural systems is typically dominated by a few 

modes. Hence, it is reasonable to assume that the true model discrepancy time history arising in 

MDOF systems contains few dominant frequencies as well. Based on this analogy, only a 

relatively small number of mixture components can be used to model the kernel of the delta 

process to accurately capture the true model discrepancy time history arising in most structural 

systems. Thus, we propose that m  (number of mixture components of the mixture covariance 

function) be the same as the number of modes needed to typically characterize the output 

response of the system at hand. 

A schematic representation of a mixture power spectral density and mixture covariance 

function with 3 mixture components is shown in Figure 3.3a and Figure 3.3b, respectively. 

 

Figure 3.3: Schematic representation of (a) mixture power spectral density and (b) mixture 

covariance function defined in Eq. (3.23) with 3 mixture components 

Remark 2: Comparison of ( )Mix-SDOF , ;k t t β  and ( )MDOF , ;k t t β  covariance functions 
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The geometric and kinematic constraints used to construct the covariance function 

( )MDOF , ;k t t β  limits the set of stationary processes that can be represented. While the covariance 

function ( )Mix-SDOF , ;k t t β  has no such restrictions and can represent any stationary process 

(given enough mixture components). Thus, ( )Mix-SDOF , ;k t t β  can represent a broader subset of 

stationary processes than the ( )MDOF , ;k t t β  covariance function. Also, in contrast to the 

( )MDOF , ;k t t β  covariance function, the subset of stationary processes represented by 

( )Mix-SDOF , ;k t t β  can be enlarged by increasing the value of m  (i.e., the number of mixture 

components). In fact, given enough mixture components, ( )Mix-SDOF , ;k t t β  can represent any 

stationary process. 

Remark 3: Standard vs random vibration based covariance kernel to model the 

delta term? 

In the approach proposed in this paper, the power spectral density ( )SDOF , ;k t t β  – 

covariance function ( )SDOF ;  β  pair is a building block used to construct the covariance kernel 

of the delta term to account for model form uncertainty arising in linear MDOF dynamic 

systems. The power spectral density of any response quantity of a linear dynamic system 

subjected to stochastic excitation typically looks like a mixture of bell-shaped functions (the 

location of each bell curve is around a significant mode of the system). If the input excitation is 

white noise, each bell-shaped function is of the form given by ( )SDOF ;  β .  

The power spectral density of standard kernels, such as squared exponential kernel, are 

centered at zero. Thus, these standard kernels are not ideal for modeling response time histories 

(e.g., model discrepancy time histories) arising when dealing with linear dynamic systems since 
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their power spectral densities are centered around the dominant non-zero natural frequencies. In 

addition, unlike the mixture of SDOF covariance functions, the mixture of squared exponential 

kernels can only represent a small subset of possible stationary processes.  

Unlike standard periodic kernels, ( )SDOF , ;k t t β  has negative correlations. ( )SDOF , ;k t t β  

is also more apt to capture the correlation structure seen in the real world because it is rooted in a 

physical understanding of the system and thus has more structure than the standard periodic 

kernels. The parameters of ( )SDOF , ;k t t β  have a physical meaning which is extremely useful to 

set their prior distribution. We believe that this random vibration-based covariance function 

( )SDOF , ;k t t β  will be a valuable addition to the existing set of standard kernels for Gaussian 

process regression which can be used to model any stationary processes (narrow or wide band) 

with a single dominant frequency and the mixture covariance function ( )Mix-SDOF , ;k t t β  can be 

used to model any stationary process, including processes with multiple dominant/natural 

frequencies.   

3.4.2 Multi-Output Measurement Channels 

As described earlier, time t  is considered as the input x  of the delta vector process ( )δ x

. Thus, ( ) ( )( ), , ;t t tδ 0 k β . Knowledge about the cross-covariance function (across 

measurement channels) between ( ) ( )j
t  and ( ) ( )l

t , i.e., ( )( , ) ,j lk t t j l  , is seldom available. 

The simplest approach is to model the delta random process corresponding to each measurement 

channel as statistically independent from the others and treat them separately. We have found 

that sufficiently accurate results are obtained with this assumption. Thus, the random processes 
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( ) ( ) j
t  and 

( ) ( ) l
t  are statistically independent for all j l  (i.e., random variables ( ) ( )j

t  

and ( ) ( )l
t  are statistically independent for all ,  't t  and for all j l ). This is equivalent to 

modeling the non-diagonal terms of the matrix ( ), ;t tk β  as 0, i.e., ( )( , ) , 0,j lk t t j l =   . Thus, 

 ( ) ( )( , )

0

, ; ,

0

n nj jt t k t t


 
 

 =  
 
 

y yk β   (3.24) 

If the output measurement channels are closely spaced, then it might be useful to model 

the cross-correlation between the delta processes corresponding to the output measurement 

channels. The Gaussian process framework can easily handle this (see Section 9.1 of (Rasmussen 

and Williams 2005)). However, this is beyond the scope of this paper. 

3.4.2.1 MDOF Covariance Function Approach 

The MDOF covariance approach presented in Section 3.4.1.1 is extended here for 

multiple output measurement channels. The matrix-valued covariance function constructed using 

this approach is referred to as ( )MDOF , ;t tk β . The j th−  diagonal element of the matrix 

( )MDOF , ;t tk β  (shown in Eq. (3.24)) is modeled using ( )
( , )

MDOF
, ;

j j
k t t β  where ( )

( , )

MDOF
, ;

j j
k t t β  

denotes the diagonal element, at the DOF corresponding to the j th−  measurement channel, of 

the auto/cross-correlation matrix shown in Appendix A. In this approach, the hyperparameters 

are ( ) 1
0 ,

T
T

nGP GP + 
=  
  

θβ θ .  
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3.4.2.2 Mixture of SDOF Covariance Functions Approach 

The mixture of SDOF covariance functions approach presented in Section 3.4.1.2 is 

extended here for multiple output measurement channels. The matrix-valued covariance function 

constructed using this approach is referred to as ( )Mix-SDOF , ;t tk β . The diagonal elements of the 

matrix ( )Mix-SDOF , ;t tk β  (shown in Eq. (3.24)) are modeled as the mixture of SDOF covariance 

functions described in Section 3.4.1.2. Thus, the j th−  diagonal element of the matrix ( ), ;t tk β  

is defined by ( )( , ) ( )

Mix-SDOF
, ;

j j jk t t β  where 

 ( ) ( )( , ) ( ) ( )
SDOFMix-SDOF

1

, ; , ;

m
j j j j

i

i

k t t k t t
=

 =β β   (3.25) 

in which 
( ) ( ) ( )( ) 3

0,, , 
j j j T

j GP GP GP
i i i iv ==   

  
β  are the hyperparameters characterizing 

the i th−  component of the mixture. It is physically reasonable to assume the hyperparameters 

( ) ( )

0, ,
j jGP GP

i i   of the i th−  component of the mixture to be the same for all output channels. In 

other words, the delta processes at different channels (i.e., ( ) ( ),  1:
j

yt j n = ) are modeled as the 

sum of identical fictitious SDOF ( 0, , ;  1:GP GP
i i i m  = ) responses but with different relative 

contributions (
( )jGP

iv ). Hence, 
( )( ) 3

0,, , 
j T

j GP GP GP
i i i iv ==   

  
β  (superscript ( )j  is dropped for 

0,  and GP GP
i i  ). This assumption is motivated by the fact that, according to modal analysis, the 

response of any MDOF system at two different degrees of freedom can be written as the sum of 

responses of identical SDOF systems (i.e., with the same natural frequency and damping ratio) 

but with different relative contributions. If there are ny  measurement channels and m  
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components are used in the mixture, the size of the total hyperparameter vector β  characterizing 

the matrix-valued covariance function ( ), ;t tk β  is ( )2n m m+y . 

3.5 Illustration Example 1: Linear SDOF System 

Consider a water tower structure subjected to wind excitation along one horizontal 

direction. The structure can be represented as an equivalent linear single-degree-of-freedom 

(SDOF) oscillator with appropriate mass, stiffness, and damping ratio. In this illustrative 

example, an SDOF system with mass 
2true 3630 kN s mm = , stiffness 

true 422 10k kN m=  , and 

damping ratio 
true 0.10 =  is assumed to perfectly represent the real system thus referred to as 

the true system. This true system has a natural period of 0.8sec . A different SDOF model, 

parameterized by an unknown mass m  and stiffness k , and with the damping ratio 
model 0.05 =  

is considered as the mathematical model h  of the system. Thus, the unknown parameter vector is 

 ,
T

m k=θ . Both m  and k  are parameters with physical meaning representing the effective 

mass and stiffness of the water tower structure, respectively. Note that in this 

illustration/application example, the modeling error is mimicked (represented) by the incorrect 

damping parameter value (damping is a prevalent source of modeling error in structural 

systems).  
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Figure 3.4: Loading, displacement, and model discrepancy time history of the linear SDOF 

illustrative example 

The wind force time history shown in Figure 3.4a is simulated based on the Davenport 

wind velocity spectrum – velocity is converted to pressure using Bernoulli’s principle and then to 

force by multiplying with the effective area of the structure. This wind force time history is 

assumed to represent the measured input time history u . The displacement response time 

histories of the true system and the mathematical model parameterized with true parameter 

values (i.e. 
true true true,

T
m k =
 

θ ) subjected to the wind loading are shown in Figure 3.4b. The 

difference between these two responses represents the true model discrepancy time history and is 

shown in Figure 3.4c. All the time histories are normalized with respect to the maximum 

absolute displacement response of the mathematical model with true parameters. To simulate the 

output measurement data y , it is assumed that the displacement measurements are obtained 

every 0.05sec until 3.5sec. These measurements are obtained by polluting the true system 
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displacement response with Gaussian white noise of root mean square (RMS) 1.0mm to simulate 

the output measurement noise (see crosses in Figure 3.4b).  

The output measurement noise and model form uncertainty are the only sources of 

uncertainty considered in this application example. Under this setting, the unknown physical 

parameters  ,
T

m k=θ  will be correctly estimated when using the measurement equation with 

delta term (i.e., Eq. (3.2)), if the delta process ( )t  captures the true model discrepancy time 

history (Figure 3.4c) and the noise process ( )w t  accounts for the added Gaussian white output 

noise of RMS 1.0mm. 

3.5.1 Results and Discussions 

This section shows and compares the model calibration and prediction results of the 

linear SDOF illustration example by considering the measurement equations without and with 

delta term. In the case of the measurement equation with delta term, the kernel of the delta 

process is modeled using the covariance function shown in Eq. (3.21). The unknown physical 

parameter vector is taken as  ,
T

m k=θ . 

3.5.1.1 Prior distribution of unknown physical parameters and hyperparameters 

To construct the prior distribution ( )p θ , the physical parameters m  and k  are assumed 

statistically independent. This independent assumption is not necessary, if one has prior 

knowledge about the correlation of these physical parameters, it can be easily incorporated into 

the prior.  ( )
2

true true0.76 , 0.38m m
 
 
 

 and ( )
2

true true0.78 , 0.40k k
 
 
 

 are selected as the prior 

for the physical parameters m  and k , respectively. Since m  and k  are positive definite, both 
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the prior distributions are truncated at zero (see Figure 3.5 where the red line indicates the true 

parameter value).  

 

Figure 3.5: Prior distribution of unknown physical parameters and hyperparameters 

For model calibration using the measurement equation without delta term, the noise 

process ( ) ( )20,w t   accounts for both model discrepancy and measurement noise. 

( )20,1  truncated at zero is used as prior ( )p  . For model calibration using the measurement 

equation with delta term, the delta process ( ) ( )( )0, , ;SDOFt k t t β  should ideally account 

for the model discrepancy while the noise process ( ) ( )20,w t   should account for the 

measurement noise. To construct the prior ( )p β , statistical independence is assumed between 

parameters 0, ,  and GP GP GPv   . ( )20.05,0.20 , ( )28.0,3.0 , and ( )20.01,0.10  

distributions truncated at zero are assumed as prior distributions for 0, , and GP GP GPv   , 

respectively (see Figure 3.5). ( )20,1  truncated at zero is used as prior ( )p  . Note that fully 

Bayesian approach requires careful consideration of prior knowledge of the hyperparameters. 

3.5.1.2 Posterior distribution 

The joint posterior distribution of all unknown parameters (defined in Section 3.3.2.1 – 

fully Bayesian approach) considering the measurement equation without and with delta term is 
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sampled using the TMCMC algorithm. 250 particles are used to approximate the joint posterior 

distribution of all unknown parameters in each case.  

 

Figure 3.6: Pairs plot of physical parameters constructed from the posterior samples obtained 

using the measurement equation (a) without delta term and (b) with delta term  (red lines and 

dots indicate true parameter values) 

Figure 3.6a and Figure 3.6b show the “pairs plot” of the physical parameters  ,
T

m k=θ  

constructed from the posterior samples  ( )

1:250

i

i=
θ  obtained using the measurement equation 

without and with delta term, respectively. A pairs plot is a grid of scatter plots of pairs of 

parameters. The plots along the diagonal show the histograms and kernel density estimates of the 

marginal distributions and the red line indicates the true parameter value. The coefficient of 

variation (  ) conveys the sharpness (or width) of the marginal distributions, an indicator of the 

remaining estimation uncertainty after model calibration. The plots above the diagonal show the 

posterior samples in the space of each pair of parameters, the plots below the diagonal depict the 

contour plots of the corresponding bivariate kernel density estimates where r  denotes the 

Pearson correlation coefficient, and the red dot indicates the true parameter values. In Figure 

3.6a, the supports of the marginal posteriors of both parameters do not enclose the true parameter 
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values. Thus, model calibration performed using the measurement equation without delta term 

resulted in biased estimates of the physical parameters. On the other hand, the support of the 

marginal posterior of each parameter encloses the corresponding true parameter value in Figure 

3.6b. Thus, adding the delta term in the measurement equation and modeling the kernel of the 

delta term using ( )SDOF , ;k t t β  resulted in improved estimates of the physical parameters. 

 

Figure 3.7: Posterior marginal distributions of hyperparameters for the case of model calibration 

with delta term 

Figure 3.7 shows the posterior marginal distribution of all hyperparameters after model 

calibration with the delta term. When dealing with real-world structures with real measurement 

data, the calibrated values of the hyperparameters can provide insights into the sources and level 

of model form uncertainty. For example, the results presented in Figure 3.7 show that the 

predominant frequency of the model discrepancy time history, as indicated by maximum a 

posteriori (MAP) value of 0
GP approximately equal to 8.1 Hz, is slightly above the true natural 

frequency (7.85 Hz) of the SDOF system. They also indicate that the bandwidth of the model 

discrepancy time history is very narrow (MAP value of 
GP  approximately equal to 0.5%) and 

the mean-square value of the normalized model discrepancy time history is 0.02 (MAP value of 

GPv ).  
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3.5.1.3 Model Response 

The samples,  ( )

1:250

i

i=
θ , defining the posterior distribution of the unknown physical 

parameters θ , shown in Figure 3.6a and Figure 3.6b are propagated through the mathematical 

model h  of the dynamic system (by using the same input excitation as the one used for model 

calibration, see Figure 3.4a) and the corresponding response time histories are shown in Figure 

3.8a and Figure 3.8b, respectively. Each plot provides the true dynamic response (black line), 

output measurement data used for model calibration (black crosses), and the ensemble responses 

(corresponding to the samples  ( )

1:250
)i

i=
θ  of the mathematical model (red lines). Note that the 

measurement data is only available until 3.5sec, however, the predictions are made for the entire 

0-12sec range. Since model calibration, when performed using the measurement equation 

without delta term, resulted in biased estimates of the physical parameters (Figure 3.6a), the 

ensemble of model response time histories does not enclose the true response (Figure 3.8a). 

However, the ensemble of model predictions encloses the true response (Figure 3.8b) when 

model calibration is performed using the measurement equation with delta term.  

 

Figure 3.8: Model response time histories after model calibration performed using the 

measurement equation (a) without delta term and (b) with delta term 
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3.5.1.4 Posterior Predictive Distribution 

The posterior predictive distribution ( )* *
1:| ,j jp y u , at discrete-time jt  from 0 to 12sec, 

is sampled and these ensemble response time histories (grey lines) are shown in Figure 3.9a and 

Figure 3.9b for the measurement equation without and with delta term, respectively. The 

posterior predictive distribution for each measurement equation is given in Table 3.1 and its 

sampling is described in Section 3.3.2.2. In Figure 3.9, the ensemble of predictive response time 

histories (grey lines) enclose the true response time history (black line) in both plots. This 

indicates that the Bayesian model calibration is doing its job in both cases. However, note that 

the predictions without the delta term are much more irregular than the predictions made with the 

delta term. This is a result of the additive white noise trying to capture the model discrepancy 

when there is no delta term. The realizations with the delta term are more representative of 

reality. 

  

Figure 3.9: Realizations of the response posterior predictive distribution when model calibration 

is performed using the measurement equation (a) without delta term and (b) with delta term 

3.5.1.5 Delta term 

Figure 3.10 compares the true model discrepancy (black line) time history with the 

ensemble of predicted model discrepancy time histories (grey lines) for the case of model 
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calibration with delta term. The true model discrepancy is defined as the difference between the 

true response (i.e., response of the true dynamic system parameterized by true
θ ) and the response 

of the mathematical model h  parameterized by true
θ  - black line in Figure 3.10. The predicted 

model discrepancy is defined as the difference between the true response and mathematical 

model response parameterized by ( )i
θ , where ( )i

θ  denotes the thi  sample of the estimated 

posterior distribution ( )1: 1:| ,N Np θ u y  - grey lines in Figure 3.10. All the time histories are 

normalized with the same criteria described in the beginning of Section 3.5. It can be observed 

that the ensemble of time histories of the predicted model discrepancy (which can be viewed as 

approximate posterior realizations of the delta process when the measurement noise is small 

relative to the measured response) enclose the true model discrepancy time history. Thus 

modeling the delta term with the covariance kernel ( )SDOF , ;k t t β  allows the true model 

discrepancy to be captured well. Note that, in real world applications, one does not know the true 

response, hence such plots cannot be made to evaluate the working of the covariance kernel. 

 

Figure 3.10: A comparison of the true and predicted model discrepancy time histories for the 

case of model calibration with delta term 

3.5.1.6 Effect of the sampling rate of the measurement data on the posterior distribution 

This section illustrates the effect of the sampling rate of the input-output measurement 

data on the posterior distribution of the unknown physical parameters. Three sampling rates (20 
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Hz, 25 Hz, 33.33 Hz) from 0. to 5.0 sec are considered for the input-output datasets, 

corresponding to sampling time steps of 0.05 sec, 0.04 sec and 0.03 sec, respectively.  

 

Figure 3.11: Effect of the sampling rate of the input-output measurement data on the posterior 

distribution of the unknown physical parameters (red line indicates the true parameter value) 

Figure 3.11a and Figure 3.11b show the marginal posterior distributions of the physical 

parameters obtained when using the measurement model without and with delta term, 

respectively. Each plot shows the marginal kernel density estimate of the posterior distribution 

based on samples of the latter obtained from model calibration using each dataset considered in 

this section (and the red line represents the true parameter value). In the case of model 

calibration without delta term, as the sampling rate of the measurement data increases, the 

posterior is getting narrower at an incorrect parameter value for both parameters. On the other 

hand, in the case of model calibration with delta term, the posterior does not change much and its 

support encloses the true parameter value. Since increasing the sampling rate (beyond a certain 

level) adds no new information about the physical parameters, the posterior is expected to not 

change significantly as in the case of model calibration with delta term (see Figure 3.11b). Note 
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that in the case of model calibration without delta term, the posterior distribution gets narrower 

with the increase in sampling rate and would converge to a Dirac delta function at incorrect 

values of the physical parameters – a serious issue in the model calibration of systems under 

dynamic loading. This problem is eliminated by incorporating the delta term in the model 

calibration process. 

3.5.1.7 Effect of the duration of the measurement data on the posterior distribution 

This section illustrates the effect of the duration of the input-output measurement data on 

the posterior distribution of the unknown physical parameters. Three input-output measurement 

datasets are considered corresponding to a sampling frequency of 20Hz (time step of 0.05sec) for 

a duration of 3.5sec, 5.0sec, and 7.0sec. Figure 3.12a and Figure 3.12b show the marginal 

posterior distributions of the physical parameters obtained when using the measurement model 

without and with delta term, respectively. Each plot shows the marginal kernel density estimate 

of the posterior distribution using samples of the latter obtained from model calibration using 

each dataset considered in this section (and the red line represents the true parameter value). In 

the case of model calibration without delta term, as the duration of the measurement data 

increases, the mode of the posterior distribution (or maximum a posteriori estimate) is away from 

the true parameter value for both parameters (i.e., bias persists). On the other hand, in the case of 

model calibration with delta term, the posterior distribution is getting narrower and most 

importantly its support encloses the true parameter value. Since increasing the duration of the 

measurement data may contribute to an increase in information about the physical parameters, 

the posterior is expected to become narrower or not change significantly as in the case of model 

calibration with delta term (see Figure 3.12b). 
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Figure 3.12: Effect of the duration of the input-output measurement data on the posterior 

distribution of the unknown physical parameters (red line indicates the true parameter value) 

True system, true model discrepancy, and true parameter values do not exist when 

dealing with model calibration of real-world structures using real measurement data. Since this 

paper considers simulated measurement data, the underlying true model and true parameter 

values are known and help assess the working of the proposed approach. In a real-world 

situation, the best we can do is to compare the measurement data with an ensemble of posterior 

predictive responses (e.g., Figure 3.9 with the black line replaced by the measured response time 

history). 

3.6 Illustration Example 2: Linear 2-DOF System 

Consider a linear 2-DOF system (Figure 3.13a) subjected to earthquake base acceleration. 

In this system, two one-story structures with masses 1m  and 2m , story stiffnesses 1k  and 2k  are 

connected by a spring of stiffness k . The damping ratios are 1  and 2  for modes 1 and 2, 

respectively. The 2-DOF system with parameters 1 2
246 kN s mm m = = , true 3

1 17 10k kN m=  , 
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true 3
2 42 10k kN m= , 

38.5 10k kN m=  , and 1 2 0.05 =  =  is considered as the true system 

which is used to simulate/generate the measurement data used for model calibration. The two 

natural frequencies (periods) of the system are 22.5 / secrad  and 36.5 / secrad  (0.28 sec and 

0.17 sec). 

 

Figure 3.13: (a) 2-DOF system, (b) input earthquake excitation, (c) normalized relative 

displacement response time histories, and (d) normalized true model discrepancy time histories 

In the mathematical model h  of the system, the story stiffnesses 1 2 and k k  are considered 

unknown and need to be estimated using the measurement data. Thus, the unknown parameter 

vector is  1 2,
T

k k=θ . In the mathematical model used to estimate the unknown parameters, the 

damping ratios are set to 1 2 0.015 =  = . The other parameters 1m , 2m , and k  of the 



126 

mathematical model are considered to be the same as in the true system. Thus, the modeling 

error is mimicked (represented) by the incorrect damping (damping is a prevalent source of 

modeling error in structural systems).  

The 1940 El Centro ground motion acceleration time history shown in Figure 3.13b is 

taken as the measured input time history u . The relative displacement response time histories of 

the true system and of the mathematical model parameterized with the true parameter values, i.e., 

true true true
1 2, ,

T
k k =
 

θ  when subjected to the El Centro ground motion are shown in Figure 3.13c. 

The differences between these two responses represent the true model discrepancy time histories 

shown in Figure 3.13d. All the displacement response time histories are normalized with respect 

to the maximum displacement response (of the corresponding DOF) of the mathematical model 

parameterized with the true parameter values. To simulate the output measurement data y , it is 

assumed that the displacement measurements at both DOFs are recorded every 0.02sec until 

6.0sec. These measurements are obtained by polluting the true system displacement responses 

with zero-mean Gaussian white noise of root mean square 1.0mm to simulate the output 

measurement noise (Diakonikolas et al. 2019; Kane et al. 2019; Karingula and Lovett 2020).  

3.6.1 Single Output Measurement Channel 

Model calibration is first performed by utilizing only the output measurement data 

corresponding to the second DOF displacement response (relative to the ground). This is the case 

of model calibration of linear MDOF systems with a single output measurement channel (Section 

3.4.1). The joint posterior distribution of the physical parameters and hyperparameters (see 

Section 3.3.2.1 – fully Bayesian approach) considering the measurement equation without and 

with delta term is sampled (approximated) using the TMCMC algorithm with 250 particles in 
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each case. Figure 3.14 shows the histograms and kernel density estimates of the posterior 

marginal distributions of the unknown physical parameters  1 2,
T

k k=θ  with the red line 

indicating the true parameter value.  

Figure 3.14a compares the posterior marginal distributions of the physical parameters 

with the corresponding true parameter values when the calibration is performed without delta 

term. The support of the posterior marginal distribution of each parameter does not enclose the 

true parameter value. Thus, model calibration performed using the measurement equation 

without delta term results in biased estimates of the physical parameters. Figure 3.14b and Figure 

3.14c show the posterior marginal distributions of the physical parameters when the calibration is 

performed with the delta term using the covariance kernel ( )MDOF , ;k t t β  (Section 3.4.1.1) and 

( )Mix-SDOF , ;k t t β  (Section 3.4.1.2) with 2 mixture components, respectively. The support of the 

posterior marginal distribution of each parameter encloses the corresponding true parameter 

value in both figures. Thus, adding the delta term to the measurement equation and modeling the 

kernel of the delta term with either ( )MDOF , ;k t t β  or ( )Mix-SDOF , ;k t t β  results in improved 

estimates of the physical parameters, which can now be estimated as physical parameters and not 

tuning parameters. 

3.6.2 Multi-Output Measurement Channels 

Model calibration is now performed utilizing the output measurement data corresponding 

to both DOF relative displacement responses. This is the case of model calibration of linear 

MDOF systems with multiple output measurement channels (Section 3.4.2). The joint posterior 

distribution of all physical parameters and hyperparameters is sampled (approximated) using the 
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TMCMC algorithm with 250 particles. Figure 3.14d compares the posterior marginal 

distributions of the physical parameters with the corresponding true parameter values when the 

calibration is performed without the delta term. The support of the posterior marginal distribution 

of each parameter does not enclose the true parameter value. Figure 3.14e and Figure 3.14f show 

the posterior marginal distributions of the physical parameters when the calibration is performed 

with the delta term using the random vibration based matrix-valued covariance function 

( )MDOF , ;t tk β  and ( )Mix-SDOF , ;t tk β  (with 2 mixture components), respectively. The support of 

the posterior marginal distribution of each parameter encloses its corresponding true value in 

both cases. However, the true parameter values are near the tails of the posterior marginals in 

Figure 3.14e. Note that the covariance kernel derived using the “MDOF Covariance Function 

Approach” is too restrictive (i.e., over-constrained) to capture all kinds of stationary model 

discrepancy time histories (as discussed in Remark 2), thus resulting in biased parameter 

estimates in some cases. However, the covariance kernel derived using “A Mixture of SDOF 

Covariance Functions Approach” can capture any stationary model discrepancy time histories 

given enough mixture components.  
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Figure 3.14: Comparison of posterior marginal distributions of physical parameters with the 

corresponding true parameter values (indicated by red lines) for the cases of model calibration 

without and with delta term.  

3.7 Overview of the Proposed Approach  

For the generic case of MDOF systems with multiple output measurement channels, the 

measurement equation for model calibration purposes is given by 

 ( ) ( ) ( )  1:

delta error/ noisemathematical model

At time step : , ; ; 1, 2,...,k k k k kk t t t k N= + + y h u θ δ w   (3.26) 

The random process ( )tw  is modeled as a zero-mean white noise process (see Eq. (3.19)

). The random process ( )tδ  is modeled as a zero-mean Gaussian process with covariance kernel 

( ), ;t tk β , where β  are the parameters of the kernel, as 
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 ( ) ( )( ) ( ) ( )( , )

0

, , ; ;   , ; ,

0

n nj jt t t t t k t t


 
 

  =  
 
 

y yδ 0 k β k β   (3.27) 

MDOF Covariance Function Approach:  ( ) ( )
( , )( , )

MDOF
, ; , ;

j jj jk t t k t t =β β , where 

( )
( , )

MDOF
, ;

j j
k t t β  denotes the diagonal element, at the DOF corresponding to the j th−  

measurement channel, of the auto/cross-correlation matrix shown in Appendix A. The 

hyperparameters are ( ) 1
0 ,

T
T

nGP GP + 
=  
  

θβ θ . 

Mixture of SDOF Covariance Functions Approach: ( ) ( )
( , )( , )

Mix-SDOF
, ; , ;

j jj jk t t k t t =β β  

where ( ) ( )( , ) ( ) ( )
SDOFMix-SDOF

1

, ; , ;

m
j j j j

i

i

k t t k t t
=

 =β β  , and 
( )( ) 3

0,, , 
j T

j GP GP GP
i i i iv ==   

  
β . This 

approach is also directly applicable to multi-variate input excitation. 

The proposed approaches and power spectral density – covariance function pair are 

appropriate to account for model form uncertainty in the model calibration of linear dynamic 

systems  if model discrepancy time histories are known/believed/assumed to be stationary 

processes. Although stationarity of the model discrepancy time history is required in this paper, 

which implies stationarity of the linear elastic system response and therefore of the excitation, 

limited relaxation of this requirement still yields successful results. This was shown in the first 

illustration example where the wind excitation is stationary, but the system response is not 

strictly stationary due to the at rest initial conditions, and in the second illustration example 

where the input earthquake excitation and therefore the system response are not strictly 

stationary. The proposed approach in this paper does not apply directly to linear dynamic 

systems subjected to strongly nonstationary (in both amplitude and frequency content) excitation 
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and to nonlinear (elastic and hysteretic) dynamic systems subjected to broadband stationary or 

nonstationary excitations. In both these cases, the proposed approach could be extended by using 

a nonstationary covariance kernel and/or by including the input loading u  in the input of the 

delta process in addition to the time t . 

3.8 Conclusions 

This paper proposes a generic methodology to account for the model form uncertainty in 

Bayesian calibration of linear dynamic systems. The proposed methodology is based on the 

Kennedy and O’Hagan (KOH) approach – add a delta term to the measurement equation to 

explicitly account for the model form uncertainty. This paper extends the KOH approach to 

account for model form uncertainty in linear systems subjected to dynamic loading (i.e., linear 

dynamic systems). A novel power spectral density – covariance kernel pair based on the theory 

of random vibrations is proposed to capture common model discrepancy time histories arising in 

linear dynamic systems. Model calibration without and with the delta term is illustrated using a 

benchmark linear SDOF system subjected to wind loading and the corresponding estimates of 

unknown physical parameters are compared. The key findings are: 

(1) The calibration performed without the delta term resulted in a posterior 

probability distribution of the unknown physical parameters the support of which 

does not contain the true parameter values. The bias persists and the estimates 

become more confident about incorrect parameter values with an increase in the 

sampling rate of the measurement data. This bias does not improve (i.e., reduce) 

with an increase in the duration of the input-output measurement data. 
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(2) The calibration performed with the delta term (with the proposed covariance 

kernel) resulted in a posterior distribution of the physical parameters with a 

support enclosing the true parameter values. The parameter estimates become 

more confident about the true parameter values when increasing the duration of 

the measurement data as this increases the amount of information about the 

parameters in the data. The posterior distribution of the physical parameters does 

not change when increasing the sampling rate of the measurements as this does 

not add any new information about the parameters. 

Similar findings have been observed with the KOH framework in other application areas. 

Our findings are novel in the context of linear dynamic systems. 

“Two novel approaches to constructing a covariance kernel, namely the “MDOF 

Covariance Function Approach” and the “Mixture of SDOF Covariance Functions Approach”, 

are also proposed in this paper to accurately account for model form uncertainty arising in linear 

MDOF systems with single and multiple output measurement channels. The effectiveness of 

these kernels is illustrated by calibrating a 2-DOF structural system subjected to earthquake base 

excitation. The proposed methodology to account for model form uncertainty enables physical 

model parameters to be estimated/calibrated as such (and not as tuning parameters with non-

physical values). The proposed approaches and power spectral density – covariance function pair 

are appropriate to account for model form uncertainty in the model calibration of linear dynamic 

systems  if model discrepancy time histories are known/believed/assumed to be stationary 

processes. Although the examples provided in the paper are 2D low-dimensional problems with 

single excitation, the proposed approaches to represent the model form uncertainty in linear 

dynamic systems can be applied/adapted to 3D structures with multi-variate input loading and 
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multiple-output measurement channels. We believe that the “mixture of SDOF covariance 

functions approach” is a generic method to construct the kernel of the delta process and thus 

should be a default choice. This generic method also allows to represent the model discrepancy 

flexibly but informatively in the context of linear dynamic systems. This is a crucial aspect since 

incorrect modeling of the model discrepancy can lead to biased parameter estimates.” 

In future work, other forms of modeling errors (e.g., approximations about geometries, 

FE mesh size, boundary and loading conditions, energy dissipation mechanisms, non-structural 

components, material properties, and material constitutive models) need to be investigated to 

further validate the robustness of the proposed covariance kernels. Additional investigation is 

needed to account for model form uncertainty using the proposed methodology considering 

measurement data from heterogenous sensor arrays. While our examples focus on displacement 

measurements, other types of observations, such as absolute acceleration, can also be used in our 

framework. The power spectral density shown for displacements in Section 3.4 could be used 

directly or a similar procedure could be used to derive the power spectral density of alternative 

observable quantities. The KOH approach suffers from the issue of identifiability – 

compensation/confounding between the delta term ( ).  and the physical parameters θ  

(Brynjarsdóttir and OʼHagan 2014). To minimize this confounding, it is important to use the best 

and most realistic modeling choices for the delta term along with the best prior information about 

the physical parameters (Brynjarsdóttir and OʼHagan 2014). The proposed covariance kernels 

model the delta term informatively to help reduce the confounding effect. This confounding issue 

needs to be further investigated in future work. The extension of the proposed methodology to 

account for model form uncertainty in linear dynamic systems subjected to strongly 

nonstationary (in both amplitude and frequency content) excitation and to nonlinear (elastic and 
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hysteretic) dynamic systems subjected to broadband stationary or nonstationary excitations is 

currently being investigated by the authors. 

3.9 Appendix A: Power spectral density matrix and auto/cross-

correlation matrix of response of MDOF systems subjected to 

white noise base excitation 

The power spectral density matrix and auto/cross-correlation matrix of the displacement 

response (at all degrees of freedom) of a linear MDOF system subjected to white noise base 

excitation are briefly summarized below. The equation of motion of an n -degree-of-freedom 

linear system with classical damping subjected to a single loading (forcing) function can be 

expressed as  

 ( ) ( ) ( ) ( )t t t F t+ + =Mq Cq Kq p   (3.28) 

where M , C , and K  denote the n n  mass, damping, and stiffness matrices, 

respectively, q  is the 1n  vector of nodal displacements, ( )F t  is the loading (forcing)  

function considered here as a stationary random process, and p  is the 1n  load influence vector 

that distributes ( )F t  to the DOF’s of the structure. Using modal decomposition, the nodal 

displacement vector can be written as 

 ( ) ( )
1

n

i i i

i

t s t
=

= q φ   (3.29) 
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where iφ  denotes the i th−  mode shape/eigenvector, ( ) ( )T T
i i i i = φ p φ Mφ  is the 

participation factor for the i th−  mode, and ( )is t  is the standardized modal displacement 

response for the i th−  mode. The standardized modal equations of motions are given by 

 ( ) ( ) ( ) ( )22 ,  1, ...,i i i i i is t s t s t F t i n+   + = =   (3.30) 

where i  and i  denote the i th−  mode natural frequency and damping ratio, 

respectively. Eq. (3.29) can be re-written as ( ) ( )t t=q ΦΓs  where 

   ( ) ( )

1

, ,i i in n

n n n

t s t


 

   
   

= =  =
   
      

0

Φ φ Γ s

0

  (3.31) 

Let ( )qqΦ  and ( )ssΦ  denote the power spectral density matrices of the stationary 

response vectors ( )tq  and ( )ts , respectively. Then (Lutes and Sarkani 2004), 

 ( ) ( ) ( )( )
T

 = qq ssΦ ΦΓ Φ ΦΓ   (3.32) 

The auto/cross cross-correlation matrix ( )qqR  of the displacement response vector 

( )tq  can be expressed as  

 

( ) ( ) ( )( )

( ) ( )( )
1 1

i j

T

n n

s si j
i j= =

 = 

= 

qq ssR ΦΓ R ΦΓ

ΦΓ R ΦΓ
  (3.33) 

where   denotes the time lag, ( ) ( )
i js s

n n

  = 
 ssR R  is the auto/cross-correlation matrix 

of the normalized modal displacement response vector ( )ts . If the single loading function ( )F t  
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is a zero-mean white noise process of mean square 0 , then from the theory of random 

vibrations, the auto/cross-correlation matrix ( )
i js s R  is given by  
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  (3.34) 

Consider the 2-DOF system with parameters 1 2
246 kN s mm m = = , 

true 3
1 17 10k kN m=  , true 3

2 42 10k kN m= , 
38.5 10k kN m=  , and 1 2 0.05 =  =  defined in 

Section 3.6. The terms of the power spectral density matrix ( )qqΦ  and auto/cross-correlation 

matrix ( )qqR  of the displacement response vector ( ) ( ) ( )1 2,
T

t q t q t=   q   ( ( )1q t  and ( )1q t  

are depicted in Figure 3.13a) are plotted in Figure A.1. 
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Figure A.1: (a) Power spectral density matrix (magnitude) and (b) auto/cross-correlation matrix 

of displacement response vector for 2-DOF illustration/application example 

3.10 Appendix B: Alternatives to Fully Bayesian Approach 

3.10.1 Integrated Likelihood Approach 

The integrated likelihood approach (Wolpert et al. 1999) focuses on directly obtaining the 

posterior ( )1: 1:| ,N Np θ u y  by integrating out the hyperparameters  ,β  as 

 ( ) ( ) ( ) ( ) ( )1: 1: 1: 1:

integrated likelihood

| , | , , ,N N N Np p p p d d p



 
     
 
 
 
β

θ u y y u θ β β β θ   (3.35) 

The multi-dimensional integral over the hyperparameters shown in Eq. (3.35) is 

analytically intractable in most cases. It can be approximated using numerical quadrature. Unlike 

the fully Bayesian approach, the integrated likelihood approach does not attempt to learn the 

hyperparameters  ,β . The hyperparameters are treated as nuisance parameters and integrated 

out straight from the start. Nuisance parameters are parameters which are not of immediate/direct 
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interest,  ,β  in our case, but must be accounted for to learn the parameters which are of 

interest, physical parameters θ  in our case. In this approach, the distribution of the 

hyperparameters is never updated. Only the distribution of the physical parameters θ  is updated 

accounting for the uncertainty of the hyperparameters  ,β  encoded in their prior distribution 

( ) ( )p p β . The posterior predictive distribution is then obtained as 

 ( ) ( ) ( ) ( ) ( )* * * *
1: 1:| , | , , , , |j j j jp y p y p p d d p d



 
 =    
 
 
  
θ β

u u θ β β β θ θ   (3.36) 

3.10.2 Modular Bayesian Approach 

The modular Bayesian approach for model calibration was introduced by KOH in 

(Kennedy and O’Hagan 2001) as a practical alternative to the fully Bayesian approach. This 

modular approach first focuses on deriving plausible estimates of the hyperparameters  ,β  

and then on inferring physical parameters θ  conditioned on the estimated hyperparameter 

values. The hyperparameters can be estimated using  

 ( ) ( ) ( ) ( ) ( )1: 1: 1: 1:, | , | , , ,N N N Np p p p p
 

     
 
 

θ

β u y y u θ β θ β   (3.37) 

The maximum likelihood estimate or maximum a posteriori estimate can be used as a 

plausible estimate of the hyperparameters, denoted by  ˆ ˆ,β . Instead of the posterior 

( )1: 1:| ,N Np θ u y , a posterior of the physical parameters θ  conditioned on the estimated values of 

the hyperparameters  ˆ ˆ,β  is considered in this approach. This conditioned posterior is given by 

 ( ) ( ) ( )1: 1: 1: 1:
ˆ ˆˆ ˆ| , , , | , , ,N N N Np p p   θ u y β y u θ β θ   (3.38) 
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Hence, the modular Bayesian approach does not account for the estimation uncertainty of 

the hyperparameters in the model calibration. In this approach, a posterior predictive distribution 

conditioned on the estimated hyperparameters  ˆ ˆ,β  is used for response prediction. It is 

obtained as 

 ( ) ( ) ( )* * * *
1: 1:

ˆ ˆ ˆˆ ˆ ˆ| , , , | , , , , | , ,j j j jp y p y p d =   
θ

u β u θ β θ β θ   (3.39) 

To further reduce the computational complexity of model calibration, the mathematical 

model ( ) 1:, ;k kh t→θ u θ  is modeled using Gaussian process regression in (Kennedy and 

O’Hagan 2001).  
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3.12 Preview to Chapter 4 

Bayesian model updating of large-scale civil infrastructure system using high-fidelity FE 

model is computationally extremely expensive as it requires repeated evaluations of the high-

fidelity FE model. Surrogate modeling can be used as the fast emulators of the FE model to 
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decrease the model updating run time. Chapter 4 considers Bayesian model updating using direct 

FE model evaluation versus surrogate model evaluations in the context of updating a high-

fidelity FE model of the miter gate structural system. 
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4 Bayesian Model Updating with Finite Element vs. 

Surrogate Models: Application to a Miter Gate Structural 

System 

4.1 Abstract 

 Bayesian finite element (FE) model updating using direct model evaluations of large-

scale high-fidelity FE models is extremely computationally expensive. Surrogate models can be 

used as fast emulators of FE models to accelerate the model calibration process. The 

physics/mechanics-based FE models are still the underpinning behind the surrogate models. This 

paper evaluates the loss in accuracy and the gain in computational time while performing 

Bayesian model updating by using surrogate model evaluations compared to using direct FE 

model evaluations. This evaluation is crucial before entirely relying on surrogate models in 

model updating for structural health monitoring (SHM) and damage prognosis (DP) purposes. 

This paper also demonstrates Bayesian updating and surrogate model construction of large-scale 

high-fidelity FE models of infrastructure systems. In this regard, the miter gate structural system 

is considered as the testbed structure. Three predominant damage modes (loss of contact between 

gate and wall, loss of thickness due to corrosion, and loss of tension in the diagonal rods) are 

considered for model updating purposes. The high-fidelity FE model of the gate is constructed in 

the Abaqus FEA software and has 97201 nodes, 94955 elements, and 550488 free degrees of 

freedom. Bayesian model updating is performed using direct FE evaluations by leveraging 

parallel computing. Two types of surrogates, namely polynomial chaos expansion (PCE) and 

Gaussian process regression (GPR), are developed for the miter gate. Model updating is 
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performed again using the trained surrogate models, and the updating results are compared with 

their counterparts obtained using the direct FE evaluation results. FE model updating is with 

respect to the FE model parameters which are also the input parameters of the surrogate models. 

The posterior distribution of the FE model parameters obtained using the trained surrogates are 

sufficiently accurate with respect to the posterior obtained utilizing the direct FE evaluations. In 

addition, a decrease in the computational time of ~4 times was observed when using surrogate 

model evaluations instead of direct FE evaluations for model updating. 

Keywords: Bayesian model updating, surrogate modeling, large-scale systems, high-

fidelity FE models, miter gate, polynomial chaos expansion, Gaussian process regression 

4.2 Introduction  

Degrading infrastructure conditions have a cascading impact on a nation’s economy. The 

American Society of Civil Engineers (ASCE) 2021 report card rated America’s infrastructure as 

C- (mediocre) (American Society of Civil Engineers 2021). Given this, there is an operational 

need for structural health monitoring (SHM) and damage prognosis (DP) for large-scale 

infrastructure systems. Well-calibrated physics/mechanics-based finite element (FE) models can 

be leveraged for comprehensive and accurate damage identification (existence, localization, 

classification, extent) and damage prognosis in such systems. The process of calibrating a FE 

model of the system with sensor measurement data collected from the system using the Bayesian 

inference framework is known as Bayesian FE model updating (Yuen 2010). Such a process can 

form the core of a “digital twin” emulator of the system behavior over its life cycle. 

The last few decades have witnessed tremendous progress in modeling and analysis 

methods for civil engineering structural, geo-structural, and soil-foundation-structural systems 
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subjected to static, quasi-static, and dynamic loading, mainly from natural hazards such as 

earthquakes. Mechanics-based nonlinear FE models (of various complexities) of civil 

engineering systems (e.g., buildings, bridges, dams, miter gates) are now able to capture the 

damage and failure mechanisms developing in such systems in a critical loading environment or 

progressively over time (i.e., wear and tear). Numerical models have increased in fidelity, 

becoming more complex and potentially more accurate. But the computational time to run an 

analysis using such numerical models is still prodigious even with the latest computing 

resources. In addition, updating the FE model requires executing the model multiple times, 

making it an extremely computationally expensive undertaking for large-scale high-fidelity FE 

models.  

Surrogate models can be used as fast emulators of FE models to accelerate the model 

updating process (Forrester et al. 2008). The key idea is to replace an expensive-to-evaluate FE 

model fully or partially with a cheaper-to-evaluate surrogate model for updating purposes. Note 

that the mechanics-based FE model is still the underpinning behind the surrogate model. The 

surrogate model of a physical system is just used to accelerate model calibration computations 

but not as a complete replacement of the FE model. After performing model updating, the 

mechanics-based FE model should be used for SHM/DP purposes as the surrogate model by 

itself has no physical basis or meaning. There also exist some limitations in surrogate modeling 

of physical systems. As mentioned, a surrogate model is just a mapping between the designated 

FE inputs and outputs. After training, the output response of the expensive to evaluate FE model 

at designated output can be obtained cheaply by just evaluating the trained surrogate model. 

However, if we want to know the output response of the system at an undesignated output (i.e., 

type of output different than the designated output used to train the surrogate model), then we 
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must rely on the expensive to evaluate FE model. In addition, if the FE model is modified or the 

designated inputs-outputs are changed/updated, the entire surrogate model needs to be retrained 

to correspond to the modified FE model with updated FE input and output designations.  

Previous work in model updating of civil engineering systems focused on using 

simplified empirical or semi-empirical models. Unlike full-scale high-fidelity physics-based 

models, these empirical models cannot be used for damage classification, extent, and prognosis. 

Some recent studies (Astroza et al. 2015; Ebrahimian et al. 2017; Moaveni et al. 2010; 

Ramancha et al. 2020a, 2022) focus on using physics-based models for model updating. 

However, these studies do not use surrogate modeling. Surrogate modeling is a relatively new 

area of research, and its applicability to Bayesian updating of FE models of large-scale civil 

infrastructure systems is seldom studied in the literature and is the focus of this paper. Few 

studies (Jin and Jung 2016; Vega and Todd 2020) focus on surrogate modeling for the purposes 

of FE model updating. However, these studies do not present any comparative model updating 

results when relying on FE models vs. surrogate models. Before entirely relying on surrogate 

models in model updating for SHM/DP purposes, it is crucial to evaluate the loss in accuracy and 

the gain in computational time when using trained surrogate models instead of physics-based FE 

models in Bayesian model updating, so that appropriate judgment may be applied in surrogate 

model design, use, and application. This is the done in this paper in the context of updating a 

full-scale high-fidelity FE model. 

This paper considers Bayesian model updating of a miter gate structural system using a 

full-scale high-fidelity FE model considering three predominant damage modes occurring in 

such systems. Model updating is first performed using direct FE model evaluations. Then, two 

global surrogate models of the FE model are constructed using polynomial chaos expansion 
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(PCE) and Gaussian process regression (GPR) techniques to accelerate the model updating 

process. Model updating is repeated using surrogate model evaluations in the updating process. 

Finally, the loss of accuracy in the model updating results and gain in computational time (which 

includes the training time of the surrogate models) are investigated and compared when model 

evaluations are performed using trained surrogate models instead of FE models in model 

updating. The main objective of this paper is not to develop new surrogate modeling techniques; 

rather, it is to perform a comparative study to analyze the advantages and disadvantages of using 

surrogate models for model updating purposes and to fill the gap in the literature in the context 

of full-scale high-fidelity FE models of civil infrastructure systems. In addition, this paper also 

demonstrates the procedures for surrogate model construction and FE model updating of miter 

gate structural systems. These procedures can be adapted for any structural system. 

This paper is outlined as follows. Section 4.3 presents an overview of the Bayesian FE 

model updating framework and describes the challenges in updating large-scale systems. Section 

4.4 presents the surrogate modeling workflow and the overview of PCE and GPR surrogate 

modeling techniques. Section 4.5 focuses on the miter gate application example, describes the 

considered damage/failure mechanisms, shows surrogate modeling of miter gate system, and 

model updating using direct FE vs surrogate model evaluations.  

4.3 Bayesian Finite Element Model Updating 

FE model updating aims to estimate the unknown parameters of the FE model using 

measurement data. Let h  be the FE model of the system of interest developed using as-built 

drawings and with explicitly formulated assumptions and hypotheses. FE models contain 

parameters known with little/no uncertainty (e.g., dimensions of the system) and known with 
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significant uncertainty (e.g., the strength of concrete). The latter are referred to as unknown 

parameters in this paper. Let 
n

  θ

θθ  represent the time-invariant unknown parameter 

vector of the FE model h , where nθ  denotes the number of unknown parameters. These 

unknown parameters need to be estimated using input-output measurement data from the system. 

Sensors are deployed on and around the system to collect input excitation (from various sources) 

and output response (at several locations) measurement data. Collecting the data from large-scale 

structural systems is generally challenged by susceptibility to environmental/operational changes 

and installation and maintenance concerns, resulting in being the economically expensive part of 

model updating. The raw data acquired using the sensors also need to be pre-processed 

(accessed, moved, organized, transformed, and cleansed) for FE model updating.  

Let 
n

 uu  be the measured input (i.e., loading) and 
n

 yy  be the measured output 

response of the system, where nu  and ny  denote the number of input and output measurement 

channels. Let ( );
n

 yh u θ  be the response predicted by the FE model, at the locations of the 

sensors measuring the output response, to the input u , parameterized by the unknown parameter 

vector θ . FE model updating aims to find the range of values of the unknown parameter vector 

θ  that are consistent with the measurement data ( , )u y . Numerous real-world sources of 

uncertainty need to be accounted for in the FE model updating process. These include 

measurement noise in input and output measurement data due to various sources of noise in the 

measurement process (e.g., sensor, cable and data acquisition noise), model form uncertainty 

arising from modeling assumptions or unmodeled physics, uncertainty in model parameters 

(given a model form) due to lack of knowledge, and environmental variability.  
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The two approaches for FE model updating are the classical (deterministic) and Bayesian. 

In classical model updating, the unknown parameter vector θ  is estimated to minimize the error 

(e.g., L2 norm) between the output measurements y  and the FE response ( );h u θ . 

Computational optimization techniques are used to perform this minimization. Classical model 

updating does not accurately account for all uncertainties resulting in overfitting and incorrect 

parameter estimates and does not attempt to quantify the estimation uncertainty of the unknown 

parameter vector θ . Classical approaches are also not good at handling multiple solutions that 

usually exist in inverse problems. On the other hand, the probabilistic Bayesian methodology is a 

rigorous probabilistic framework that can accurately account for the various sources of 

uncertainty in the model updating process. The unknown parameters in the vector θ  are modeled 

as random variables, and the prior knowledge is incorporated using a probability distribution 

( )p θ . In Bayesian model updating, this prior distribution ( )p θ  is updated to a posterior 

distribution ( | , )p θ u y  accounting for the measurement data ( , )u y  using Eq. (4.1). The posterior 

distribution ( | , )p θ u y  encodes the remaining estimation uncertainty after model updating.  

The prior distribution is formulated using domain knowledge and expert opinion. For 

example, if an unknown parameter is the yield strength of steel, then the nominal value provided 

by the manufacturer can be used to construct its prior. In civil structural systems, some prior 

knowledge is available for most physical parameters (at least a nominal value and/or bounds of 

the parameters are typically known). If no prior knowledge exists about a parameter, a non-

informative prior can be used. Converting expert knowledge or prior information into the prior 

probability distribution ( )p θ  is not a focus of this paper (refer to (Jaynes 1968) for this issue).  

 
( | , ) ( )

( | , )
( | )

p p
p

p


=

y u θ θ
θ u y

y u
  (4.1) 
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In Eq. (4.1), ( | , ) ( )p Ly u θ θ  is the likelihood function (also referred to as goodness of 

fit function) viewed as a function of θ . ( )L θ  can be viewed as a distribution over θ  according 

to the likelihood of observing the observed measurement data. 1 2( ) ( )L Lθ θ  indicates that the 

observed measurement data is more likely for 1=θ θ  than for 2=θ θ . In Bayesian model 

updating, the denominator ( | )p y u  is just a normalizing constant that ensures the posterior 

( | , )p θ u y  integrates to one. Thus, 

 ( | , ) ( | , ) ( )p p p θ u y y u θ θ   (4.2) 

The posterior, likelihood, and prior in Eq. (4.2) are all viewed as functions of θ  in FE 

model updating. The likelihood function is formulated using a measurement equation – a model 

of the measurement process. A measurement equation is a joint statistical-physical model that 

relates the unknown parameter vector θ  to the output measurements y . Most FE model updating 

methods use the following measurement equation: 

 
error / noiseoutput measurements FE response

( ; )= +y h u θ w   (4.3) 

In Eq. (4.3), the error/noise term 
n

 yw  captures the difference between the measured 

output y  and FE predicted response ( ; )h u θ , and all the sources of real-world uncertainty are 

lumped and accounted for in the noise term w . Hence, w  is modeled as a vector of random 

variables (or random vector). In this paper, the probability distribution of the random vector w  

is assumed as a zero-mean Gaussian distribution as  

 ( ), ww 0 Σ   (4.4) 
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where ( ), w0 Σ  denotes the multi-variate Gaussian distribution with mean vector 0  

and covariance matrix wΣ . Using Eq. (4.3) and Eq. (4.4), the likelihood function ( | , )p y u θ  is 

given by 

 ( )( | , ) ( ; ),p = wy u θ h u θ Σ   (4.5) 

The likelihood shown in Eq. (4.5) when viewed as a function of θ  is Gaussian if and 

only if ( ; )h u θ  is a linear function of θ . In most cases, ( ; )h u θ  is nonlinear in θ  (and often not 

explicitly available), thus the likelihood viewed as a function of θ  is some 

undefined/complicated function.  

4.3.1 Challenges in FE Model Updating of Large-scale Structural Systems 

Deriving the posterior ( | , )p θ u y  analytically is not possible for most cases of FE model 

updating. Methods such as Laplace approximation or variational Bayes approximate the joint 

posterior distribution analytically (Bishop 2006). These approximations offer fast computability 

and scalability. However, the accuracy of such approximations is an open question and cannot be 

improved with more intensive computations. Alternatively, simulation-based methods can be 

used to draw samples from the posterior distribution ( | , )p θ u y  (Bishop 2006). These samples 

can then be used to approximate the posterior distribution. The accuracy of this approximation 

increases with the number of samples generated, and thus is only limited by the available 

computational resources. Popular simulation-based methods include rejection sampling, 

importance sampling, particle filtering (PF), Markov chain Monte Carlo (MCMC) sampling, and 

Transitional MCMC (TMCMC) sampling. All these methods require repeated evaluations of the 

likelihood function which in turn requires repeated evaluations of the FE model. High-fidelity FE 
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models of large-scale structural systems are computationally intensive to evaluate (especially in 

the case of nonlinear material and/or geometric models), and often contain numerous unknown 

model parameters. Thus, sampling the high-dimensional joint posterior ( | , )p θ u y  involving 

large-scale FE models is an extremely computationally costly endeavor. A few approaches can 

be used to mitigate the computational burden of FE model updating of large-scale structural 

systems. They include: (1) using efficient sampling algorithms, (2) leveraging parallel 

computing, (3) using surrogate modeling, and (4) reducing the dimensionality of the unknown 

parameter vector θ . These aspects are described below. 

MCMC to obtain samples from the posterior distribution is the workhorse method in 

model calibration. However, the repeated evaluations of the FE model are sequential which is a 

considerable limitation in model updating of large-scale systems. Performing each individual FE 

analysis on parallel machines is a viable choice to reduce the computational time. In this regard, 

FE analysis software frameworks/architectures such as Abaqus FEA and OpenSees use domain-

level parallelization to split the FE model into topological domains and assign each domain to a 

processor. They also support a message passing interface (MPI) and thread-based parallelization. 

Alternatively, methods such as TMCMC and PF progress sequentially in stages, and the repeated 

FE model evaluations within each stage can be performed in parallel. Hence these methods are 

more appropriate to perform model updating of large-scale FE models using high-performance 

computing (HPC) resources. In this paper, TMCMC (Ching and Chen 2007; Minson et al. 2013) 

is used for drawing samples from the posterior distribution (see Section 4.3.2 for more details). 

Other methods such as adaptive and multi-stage MCMC methods have been developed recently 

for efficient sampling of the posterior distribution. 
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Another approach to reducing the computational burden of model updating is to decrease 

the cost of the likelihood function evaluations. This can be achieved by approximating the FE 

model or the likelihood function using surrogate models. This paper considers the approximation 

of the FE model using a global surrogate model. The idea is to replace an expensive-to-evaluate 

FE model fully with a cheap-to-evaluate surrogate model (Forrester et al. 2008). The surrogate 

model is constructed by regression of the data simulated using the input-output relation/mapping 

of the FE model. Techniques such as reduced-order models and hierarchical multi-fidelity 

models (FE models spanning different fidelity levels) can be used to alleviate the computational 

runtime of FE model updating (Frangos et al. 2010); these aspects are outside the scope of this 

paper. 

Large-scale structural systems have several damage and failure modes, and each 

damage/failure mode is typically characterized by a finite subset of unknown parameters 

contributing to the overall dimensionality of the unknown parameter vector. Such large-scale 

systems also exhibit spatial variability of some properties (e.g., material properties), which 

requires modeling these properties using random fields, leading to high dimensionality of the 

unknown parameter vector. Using techniques such as the truncated Karhunen–Loève expansion 

instead of a stochastic (or random field) mesh allows representing a random field with a 

relatively small number of random variables. The input-output measurement data may not 

provide (sufficient) information about all the unknown parameters. A parameter screening and 

selection process should be performed to select the most influent parameters to be used in the 

updating process (Saltelli et al. 2007). Sensitivity and identifiability analyses can be performed 

to identify the influential parameters (Ramancha et al. 2022).  
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4.3.2 Sampling Posterior Distribution using TMCMC 

The idea behind TMCMC is to avoid sampling directly the target distribution (i.e., 

posterior ( | , )p θ u y ) but rather sample an easier-to-sample distribution and then weigh, 

resample, and perturb the samples in a series of stages to approximate the target distribution. To 

achieve this, TMCMC constructs a series of intermediate distributions ( | , ) , 0,1,...,jp j m=θ u y , 

referred to as tempered posteriors, that start from the prior distribution ( )p θ  (easy to sample) 

and converge to the posterior distribution ( | , )p θ u y  (hard to sample) as  

 0 1( | , ) ( | , ) ( ), 0,1,..., , 0 ... 1j

j mp p p j m


  = =    =θ u y y u θ θ   (4.6) 

where j  is the tempering parameter at stage j . At the initial stage ( 0j = ), the 

tempered posterior 0( | , )p θ u y  is just the prior ( )p θ  since 0 0 = , and at the final stage ( j m= ), 

the tempered posterior ( | , )mp θ u y  is the target posterior ( | , )p θ u y  since 1m = . The tempered 

posterior distribution ( | , ) jp θ u y  at each stage j  is approximated by a set of weighted samples 

(also known as particles). The 
thj  stage tempered posterior ( | , ) jp θ u y  particles are obtained by 

weighing, resampling, and perturbing (using Markov chain Monte Carlo) the particles 

approximating the ( 1)thj −  stage tempered posterior 1( | , ) jp −θ u y . In plain English, the samples 

representing the prior distribution (stage 0j = ) are weighed, resampled, and perturbed multiple 

times, once at every stage, until they approximate the posterior distribution (stage j m= ). In this 

paper, resampling is performed using random sampling, and the perturbation of particles is 

performed using a few MCMC steps with the Metropolis-Hastings algorithm. At each stage, each 

particle’s perturbation (through a few MCMC steps) is independent of the others and hence these 

particle perturbations can be parallelized. However, note that the TMCMC stages still proceed 
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sequentially and thus cannot be parallelized. Refer to (Ching and Chen 2007; Minson et al. 2013) 

for the theory behind the TMCMC algorithm and refer to Table 2 of (Ramancha et al. 2022) for 

the TMCMC algorithm used in this paper. 

4.4 Surrogate Modeling 

Surrogate modeling can be used to reduce the computational time of expensive 

physics/mechanics-based numerical simulations by replacing them with approximate functions 

that are much faster to evaluate. As the name suggests, the surrogate model is used as a substitute 

for the FE model. Note that the physics-based model is still the underpinning behind the 

surrogate model construction. Surrogate modeling can be used for model calibration, 

identifiability and sensitivity analysis, uncertainty quantification, engineering design, 

optimization, and for any purpose that requires repeated model evaluations. In the literature, 

surrogate models are also known as response surface models, metamodels, or model emulators. 

The goal is to construct a cheap-to-evaluate “surrogate” model g  that emulates the response of 

an expensive-to-evaluate mathematical model h  (Forrester et al. 2008; Gramacy 2020).  

Let zz   be a scalar output FE response of interest of FE model (.)h  

parameterized by n  x
xx , i.e., ( )z h= x . Vector x  contains quantities such as unknown 

parameters and input loading parameters of the FE model. The FE output/response of interest z  

is assumed scalar in this section to illustrate the surrogate modeling. In general, a surrogate 

model is constructed for each FE output of interest. The surrogate model is a mapping 

: zg  →x , where ( )g x  denotes the surrogate predicted response at x . For building a 

surrogate model, the FE model (.)h  is assumed continuous in x  and is known at n  discrete 
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observations or samples 
( ) ( ) ( ){ ( ) | 1,..., }i i iz h i n→ = =x x . Such model regularity assumption is 

needed for surrogate modeling. Under this setting, the objective is to construct an approximation 

g  for cheaper prediction of the FE response of interest at any x . 

Local and global are the two primary variants of surrogate modeling. In local surrogate 

modeling, the goal is to approximate the FE model only in a certain local region of interest of the 

parameter space x , e.g., where the posterior distribution is mainly concentrated (Li and 

Marzouk 2014; Takhtaganov and Müller 2018). Global surrogate modeling aims at 

approximating the FE model over the entire parameter space x . This paper considers global 

surrogate modeling. 

4.4.1 Surrogate Modeling Workflow 

There exist numerous approaches for surrogate modeling in the literature. However, they 

all follow a similar workflow (Forrester et al. 2008) (Figure 4.1): (1) Generating initial samples 

of parameter vector x  by a sampling strategy or design of computer experiments, (2) evaluating 

the FE model at these samples to generate a training data set, (3) fitting or training the surrogate 

model, (4) assessing the fitted surrogate model, and (5) enhancing or updating the training data. 
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Figure 4.1: Surrogate modeling workflow.  

4.4.1.1 Sampling Strategy/ Design of Computer Experiments 

The goal is to construct a surrogate model for the entire parameter space x  (global 

surrogate). In such a case, space-filling or exploratory designs are primarily used as a sampling 

strategy (Santner et al. 2003). In such designs, the sample points are spread throughout the 

parameter space x  as uniformly as possible. Such uniform spreading is ideal if one has no 

reason to sample a particular region of parameter space more densely than other regions. Full-

factorial design, designs based on measures of distance (e.g., maximin distance design), designs 

based on pseudo-random sampling (e.g., uniformly distributed random numbers/sequences, Latin 

hypercube sampling), designs based on quasi-random sampling (e.g., Sobol sequence, Halton 

sequence, Hammersley set) are methods available for space-filling (Santner et al. 2003). In this 

paper, Sobol sequence is used for space-filling. The sequence property allows adding new 

training points to the training set without discarding the previous training samples. Thus, the new 
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training set (previous samples + new samples) maintains the space-filling nature. Therefore, if 

the surrogate model needs improvement at the surrogate model assessment stage, new training 

points can be added to the original training set, while maintaining the space-filling nature. Let 

( ){ | 1,..., }i i n=x  be the initial training samples, where n  denotes the number of initial samples. 

4.4.1.2 FE Model Evaluations 

Once the initial training samples 
( ){ | 1,..., }i i n=x  are determined, the FE model ( )h x  

needs to be evaluated at these training samples to obtain the response of interest z . Parallel 

computing can be leveraged since here the FE analyses are independent of each other. After 

assembling the initial training samples and their corresponding FE outputs, the initial training 

dataset is defined by 
( ) ( ) ( ){ ( ) | 1,..., }i i iz h i n→ = =x x . 

4.4.1.3 Surrogate Model Construction 

The goal is to construct a global surrogate model over the entire parameter space x . As 

defined earlier, the surrogate model is a mapping : zg  →x  and ( )g x  denotes the surrogate 

predicted response at x . The loss function is the cost  ( ),L g zx  of predicting ( )g x  when the 

truth is z  (FE response). The loss function is usually zero if there is no error and positive 

otherwise, for example, the squared error loss   ( )
2

( ), ( )L g z z g= −x x . The goal is to find the 

optimum surrogate model g  that minimizes the loss  ( ),L g zθ . Constructing the optimal 

surrogate or training the surrogate model depends on the type of surrogate model. There exist 

many types of surrogate models in the literature; popular ones include PCE, GPR, support vector 

machines, and artificial neural networks. This paper considers the PCE and GPR surrogate 
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modeling methods, the training of which are briefly described in Sections 4.4.2 and 4.4.3, 

respectively. 

4.4.1.4 Surrogate Model Assessment 

Let ˆ( )g x  be the fitted/trained surrogate model with training data 

( ) ( ){( , ) | 1,..., }i it z i n= =x . A fitted model usually does well on the training data but may not 

generalize well. Techniques such as split sampling, cross validation, or bootstrapping can be 

used to assess the generalization ability of the fitted surrogate model. This paper uses split 

sampling, which requires a test set different from the training set to assess the surrogate model. 

The error of the fitted surrogate model ˆ( )g x  on the test set 
( ) ( ){( , ) | 1,..., }i it z i n   = =x  can be 

computed as 

 
( ) ( )

1

1
ˆ( ),

n
i i

i

err L g z
n



=

  =
 

 x   (4.7) 

where err  provides an estimate of the average generalization error of the fitted surrogate 

model ˆ( )g x . 

4.4.1.5 Enhancing the Training Data 

If the test set error err  is larger than the acceptable threshold, the existing training set 

can be enhanced by adding new training samples. Since the Sobol sequence is used in this paper 

as the space-filling strategy, the most straightforward approach is to add the subsequent samples 

of the Sobol sequence as new training points to the existing training set. Thus, the new training 

set (existing training set + new samples) maintains the space-filling property. However, one 

could also add new training samples at strategic locations (a process known as active learning) 
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(Liu et al. 2017). For example, when using a GPR surrogate, new training samples can be added 

at places where the variance of the fitted surrogate is high. 

4.4.2 Polynomial Chaos Expansion Overview 

PCE is the most celebrated method for uncertainty propagation and computing Sobol 

indices in variance-based global sensitivity analysis (Smith 2013; Sudret 2007, 2014). PCE is 

used in this paper as a surrogate modeling tool. The FE model h  is viewed as a mapping 

between the parameter vector n  x
xx  and scalar output zz  . The probability 

distribution of x  is denoted by ( )p x . Let us define the following function space:  

 2{ :  such that ( ) }
n

f E f = → 
 

x
x x   (4.8) 

where 
2 2( ) ( ) ( )E f f p d  =

  x
x

x x x x . The functional space  is a collection of 

functions (
n →x ) that have finite variance or finite second moment under ( )p x . It can be 

shown that  is a vector space ( 1 2 1 2,  and , ,f f a b a f b f    +  ). Let us also define a 

function .,. :  →  as 

  1 2 1 2 1 2 1 2( ), ( ) ( ) ( ) ( ) ( ) ( ) , ,f f E f f f f p d f f= = x
x

x x x x x x x x   (4.9) 

The function .,.  is an inner product, as it satisfies all properties of an inner product. The 

functional space  defined in Eq. (4.8) with the inner product defined in Eq. (4.9) is a Hilbert 

space. Note that a Hilbert space is a generalization of the standard Euclidean space and all the 

theorems of vector algebra (or linear algebra) for Euclidean spaces (e.g., orthonormality, 

normalization, orthonormal basis, Gram-Schmidt orthogonalization procedure) are also valid for 

our Hilbert space . For example, any vector in the standard Euclidean vector space  can be 
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expressed as a linear combination of the orthonormal basis vectors of . This is also valid for 

our Hilbert space .  

Let sequence of functions 1 2( ), ( ), ...  x x  form an orthonormal basis of the 

functional space . So, the sequence of functions must satisfy ( ), ( ) 0i j i j  =  x x  and 

( ), ( ) 1i i i  = x x . Assuming the FE model ( )h x  belongs to the functional space , i.e., 

( )h x  (equivalent to assuming that : nh →x  is a function with finite variance), ( )h x  of 

space  can be expressed as 

 
1

( ) ( ) ( ), ( )i i i i

i

h c with c h


=

=  = x x x x   (4.10) 

where 1{ }i ic 
=  are the coefficients. Eq. (4.10) is an infinite orthogonal series expansion of 

function ( )h x . In addition, as the basis 1 2( ), ( ), ...  x x  is made of orthonormal polynomials, 

Eq. (4.10) is termed an orthonormal polynomial expansion or polynomial chaos expansion of 

( )h x .  

There are many approaches to find a set of orthonormal polynomials that form an 

orthonormal basis of the functional space . One such approach is by using Gram-Schmidt 

orthogonalization procedure. For the case of a scalar unknown parameter x  (or parameter vector 

x  contains only one element x ), one can start with the monomial sequence 
2 31, , , , ...x x x  and 

perform the Gram-Schmidt orthogonalization procedure to build the orthonormal basis 

1 2( ), ( ), ...x x   . Classical families of orthogonal polynomials have been discovered 

previously to solve various problems of physics, engineering, etc. (Sudret 2014). Note that the 

orthogonal polynomials sequence will depend on the probability distribution function ( )p x . For 
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the vector case of unknown parameters 1,...,
T

nx x =  x
x , the orthonormal basis of the functional 

space  (  
1

( )i i



=
 x  ) can be built using Gram-Schmidt orthogonalization procedure as well. 

For the special case when 1,...,
T

nx x =  x
x  contains statistically independent components (i.e., 

1

( ) ( )
n

j

j

p p x
=

=
x

x ), the orthonormal polynomial sequence  
1

( )i i



=
 x  can be built by taking the 

tensor product of the orthonormal polynomial sequences  
1

( )ij i



=
 x  of component jx  

( )1, ,j n= x  .  

The PCE of model h  given by Eq. (4.10) is an infinite series expansion, which cannot be 

handled in practice. A truncation should be performed to enable practical computations. The 

orthonormal polynomial ( )i x  of polynomial degree   is of the form 

 1

1

1

... 11
...

( ) ... ; ,...,n

n

n

ii
i i i nn

i i

a x x i i W
+ + 

 =  x

xxx

x

x   (4.11) 

where W  represents the set of whole numbers. Note that the degree of a polynomial is the 

highest degree of all its monomials (individual terms) and the degree of a monomial is the sum 

of all exponents of all variables ( 1,..., nx x
x

).  

The standard way of truncation is to consider all orthonormal polynomials from the 

sequence  
1

( )i i



=
 x  that have a polynomial degree less than   (defined by the modeler). The 

exponents 1, , ni i
x
 satisfy 1 ni i+ +  

x
. The hyperbolic cross truncation scheme is another 

scheme to further reduce the number of terms from the standard truncation (Sudret 2014). The 

idea behind it is to only include the terms for which the exponents 1, , ni i
x
 satisfy  
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( )1/ 1/
1( ) ( )ni i


 + +  

x
 where   is the cross-truncation factor. If 1 = , the hyperbolic 

truncation scheme reduces to the standard truncation scheme.  

The truncated PCE considering only orthonormal basis functions ( ) 'i s x  according to 

some selected truncation scheme is given by 

 
1

( )

( ) ( ) ( ), ( )
P

i i i i

i

g

h c with c h
=

=

  = 

x

x x x x   (4.12) 

where P  is the total number of ( ) 'i s x  in accordance with the selected truncation 

scheme. This truncated PCE approximation of the FE model h  can be used as the surrogate 

model g . 

Training the surrogate model involves computing the coefficients 1{ }P
i ic = . The integral 

structure of the coefficients  ( ), ( ) ( ) ( ) ( )i i ic h h p d=  = xx x x x x x  can be exploited to 

compute them. Integration methods using quadrature rules (Gaussian quadrature or Clenshaw-

Curtis quadrature) and sparse grids (e.g., Smolyak’s sparse grid), Monte Carlo integration, or 

Bayesian quadrature can be used to numerically evaluate the integral (Smith 2013). In this paper, 

we use the least-squares method to compute the coefficients. This approach is simpler and does 

not exploit the integral structure of the coefficients.  

In this approach, the FE response ( ( )h x  or z ) is considered as the sum of a truncated 

series ( ( )g x , shown in Eq. (4.12)) and a residual term (  ) as 

 
1

( )  ; ( ) ( )
P

j j

j

z g g c
=

= +  = x x x   (4.13) 
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We consider the squared error loss, i.e.,   ( )
2

( ), ( )L g z z g= −x x , as loss function and 

assume a zero-mean residual term  . This is a typical linear regression problem using basis 

functions { ( ),  1, ..., }j j n =x  subject to a least-squares minimization. Hence, the decision rule is 

given by 

 

2

( ) ( )

1 1

1
ˆDecision rule : arg min  ( )

n P
i i

j j

i j

z c
n = =

 
= −  

  
 

c
c x   (4.14) 

For the training samples 
( ) ( ){( , ) | 1, ..., }i it z i n= =x , Eq. (4.13) can be written as 

 

(1) (1) (1)
1 1 1

( ) ( ) ( )
1 111

( ) ( )

 

( ) ( )

P

n n n
P nP npn n P

z c

cz   

       
     

= +     
                 

c εz Φ

x x

x x

  (4.15) 

where nz  denotes the vector of FE responses, n PΦ  denotes the design matrix, 

Pc  is the vector of unknown coefficients of the PCE surrogate model, and nε  is the 

residual vector. The decision rule in Eq. (4.14) leads to the following normal equations: 

 ˆ( )T T=Φ Φ c Φ z   (4.16) 

If n P  and ( )rank P=Φ , then the estimate of c  according to the decision rule in Eq. 

(4.14) is 

 
1ˆ ( )T T−=c Φ Φ Φ z   (4.17) 

If ( )rank PΦ  and/or n P , the normal equations in Eq. (4.16) have infinite solutions 

for ĉ . In this case, out of all the possible solutions, the sparse solutions ( ĉ  that contains a small 

number of non-zero coefficients) can be obtained by solving the regularized least squares 
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problem (regularized with the L1 norm of c ). This is referred to as the Lasso regression method 

of which the decision rule of which is given by 

 

2

( ) ( )

1 1 1

1
ˆDecision rule : arg min  ( )

n P P
i i

j j j

i j j

z c c
n = = =

 
= −  + 

  
  

c
c x   (4.18) 

The least angle regression (LARS) algorithm can be used to efficiently solve the Lasso 

regression problem (Blatman and Sudret 2011; Hastie et al. 2009). As the value of   increases, 

the sparsity of the solution ĉ  increases. The optimum value of  , controlling the level of 

sparsity in the coefficients ĉ , is selected using a cross-validation technique in this paper. 

Selecting the truncation polynomial degree   can be difficult in practice. In this paper, 

we select a large enough  , resulting in a very large value of P . This most likely lands the 

regression problem in the n P  scenario – high dimensional regression. We perform Lasso 

regression using the LARS algorithm. Since Lasso encourages sparsity in coefficients, the 

corresponding coefficients of polynomial terms that are not required will automatically shrink to 

zero (Hastie et al. 2009). (Chrisnata et al. 2019; Lovett et al. 2018; Rao and Prabhakaran 2014). 

4.4.3 Gaussian Process Regression Overview 

Gaussian processes for nonlinear curve fitting have been used increasingly in surrogate 

modeling. Recall that the surrogate model is a mapping : zg  →x . This mapping (.)g  is 

unknown and modeled as a random process (or field). The Gaussian process model is a flexible 

and convenient class of models to represent the random process (.)g  (Rasmussen and Williams 

2005). For surrogate modeling, ( )g x  is modeled as a zero-mean Gaussian process with 

covariance function ( , )k x x  denoted as 
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 ( )( ) ~ 0, ( , )g k x x x   (4.19) 

The choice of covariance function determines almost all the generalization properties of 

( )g x . The training data consists of { , }t = X z  where  (1) ( ),..., n=X x x  and (1) ( ),...,
T

nz z =
 

z . 

We assume that this training data is obtained from the following measurement model: 

 ( ) 2( )  ; ( ) ~ 0, ( , ) and   ~ (0, )z g g k 
= +   x x x x   (4.20) 

where ( )g x  and   are statistically independent. From Eqs. (4.19) and (4.20), the 

Gaussian process ( )g x  conditioned on the training data t  is also a Gaussian process with mean 

function ( )m x  and covariance function ( , )k x x  as (Rasmussen and Williams 2005)  

 ( )( ) |  ~  ( ), ( , )g t m k x x x x   (4.21) 

where  
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  (4.22) 

in which 
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  (4.23) 

From Eqs. (4.20) and (4.21), the predictive distribution ( )| ,p z tx  (for predicting the 

response at x  conditioned on the training data t ) is given by 
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 ( ) ( )2| , ( ), ( , )p z t m k = +x x x x   (4.24) 

The mean function ( )m x  is, by definition, the fitted surrogate model ˆ( )g x , i.e.,  

 ˆ( ) ( )g m=x x   (4.25) 

Let γ  be the parameters of the covariance function ( , ).k x x  For example, the length 

scale l  and variance 2  are the parameters γ  of the standard radial basis covariance function 

defined as 

 ( )
22

2
1

1
( , ) exp ,

2

n
n

i i

i

k x x
l =

 
 =  − −   

 


x

xx x x   (4.26) 

The hyperparameters { , }γ  can be obtained utilizing the training data { , }t = X z  with 

the following application of Bayes theorem: 

 ( ) ( ) ( ), | , | , , ,p p p      γ X z z X γ γ   (4.27) 

Using Eq. (4.20), the likelihood function ( )| , ,p z X γ  is given by 

 ( ) ( )( )2| , , , , ; np   = +z X γ 0 K X X γ I   (4.28) 

Note that the dependence of ( , )K X X  on the hyperparameter vector γ  is shown explicitly 

in Eq. (4.28). Instead of obtaining the full posterior distribution ( ), | ,p γ X z , the maximum 

likelihood estimate, denoted by ˆ ˆ{ , }γ , is used in this paper as a plausible estimate of the 

parameters { , }γ  (Rasmussen and Williams 2005). Thus, 

 

( ) 

( )( ) ( )

,

1
2 2

,

ˆ ˆ, arg max log | , ,

1 1
 arg max , ; log , ; log 2

2 2 2

T
n n

p

n





 


−

 


 = 

 
= − + − + −  

 

γ

γ

γ z X γ

z K X X γ I z K X X γ I

  (4.29) 
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The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is used to solve the 

unconstrained nonlinear optimization problem defined in Eq. (4.29) (Kane and Rao 2018; Lovett 

et al. 2020; Rao and Vardy 2016). 

4.5 Application Example 

The inland waterways of the United States consist of more than 25,000 miles of 

navigable waters. During most seasons, navigation through many of the inland waterways is not 

possible without the use of hydraulic infrastructure. Wicket dams are installed to maintain an 

operational water elevation suitable for navigation, leading to discontinuities in water elevation 

along the inland waterways. Therefore, navigation/lock chambers have been constructed for 

cargo ships to transition between different water elevations (Figure 4.2).  

Miter gates (sets of two leaves) are steel structures that allow passage of cargo ships 

through the navigation chamber so that the water level can be raised or lowered. Each navigation 

chamber has two miter gates, the upper and lower gates. Figure 4.2 shows a vessel approaching 

the upper gate from the upstream end and the flow of water from upstream to the navigation 

chamber through the upper culver valves.  

 

Figure 4.2: Navigation Chamber (Government Accountability Office 2018).  

Figure 4.3a shows the actual miter gate (in its closed configuration) while Figure 4.3b, 

Figure 4.3c, and Figure 4.3d show a schematic representation of the plan view, elevation view 
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with various gate components labeled, and side view with the upstream and downstream water 

elevations of the closed gate. The U.S. Army Corps of Engineers (USACE) maintains and 

operates 236 gates at 191 sites in the United States (Eick et al. 2018b). In a recent survey, it was 

found that more than half of these structural assets have surpassed their 50-year economic design 

life (Foltz 2017).  

 

 

Figure 4.3: (a) Real miter gate (John T. Meyers locks, Kentucky, USA along the Ohio River), (b) 

top view, (c) elevation view, and (d) side view schematic of the gate.  

4.5.1 Finite Element Model 

The Greenup miter gate located in Kentucky, USA, along the Ohio River is considered as 

the testbed structure in this paper. A full-scale, mechanics-based, high-fidelity FE model of the 
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gate was developed using the Abaqus FEA software. Figure 4.4a and Figure 4.4b show the 

assembly view and mesh of the FE model, respectively. The geometric model of the gate is 

discretized (meshed) into 3D linear shell elements (using Abaqus element types S4R and S3R) 

except for the diagonal rods and anchors that are discretized into beam elements (using Abaqus 

element type B31). 3D shell elements are used instead of 3D solid elements to reduce the 

computational cost of the FE analysis. The full-scale FE model of the gate includes 97201 nodes 

and 94955 elements resulting in 550488 free degrees of freedom (translations and rotations).  

The Greenup gate is equipped with strain gauges at various locations on the gate for 

damage detection purposes. The 46 uniaxial strain sensors used in this study, displayed 

according to their exact locations on the actual Greenup gate, are shown in the assembly view of 

the gate (Figure 4.4a). Greenup is a relatively new gate and the FE model considered herein was 

previously validated, assuming undamaged condition, using the strain data recorded from the 

uniaxial strain gauges installed on  the gate (Eick et al. 2018a). 
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Figure 4.4: (a) Assembly view (red dots indicate locations of uniaxial strain gauges and blue 

arrows indicate their orientations), and (b) mesh of the FE model.  

4.5.2 Damage Modes 

As revealed by inspection results, some of the aspects of concern from an SHM 

perspective are (Eick et al. 2018b): (1) loss of contact or formation of a gap at the gate-wall 

and/or gate-gate interface; (2) loss of thickness in the gate components due to corrosion; (3) loss 

of tension in the diagonals resulting in gate misalignment; (4) cracking due to fatigue in various 

gate members such as welded connections of horizontal girders, skin plates, and pintles; (5) 

damage due to barge impact; and (6) general wear and tear of gate components. The first three 

aspects of concern are considered in this paper, and the unknown parameters associated with 

these damage modes are estimated using the FE model updating framework described in Section 

4.3. 
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4.5.2.1 Loss of Contact between Gate and Wall 

A miter gate experiences everyday time-varying hydraulic loads during operations. When 

the gate is closed, the hydrostatic loads are transferred from skin plate to vertical diaphragms and 

from there to horizontal girders. The gate components are labeled in Figure 4.3b and Figure 4.3c. 

The loads from the horizontal girders are transferred to the quoin and miter ends. The horizontal 

loads collected at the quoin end are transferred to the wall from gate top to bottom through quoin 

blocks (shown in red color in Figure 4.3c). The loads collected at the miter end are transferred to 

the other gate leaf.  

Figure 4.5 show the gate quoin block and wall quoin block which are attached to the gate 

and wall, respectively. The quoin blocks (gate and wall) are also illustrated in Figure 4.3c. The 

hydraulic load is transferred from the gate to the wall, from top to bottom, through these quoin 

blocks. 

 

Figure 4.5: (a) Plan view with hydrostatic loading, (b) quoin blocks schematic, and (c) picture of 

quoin blocks from a real miter gate.  

The loss of contact between the quoin blocks (through the formation of gap) is a common 

problem; it changes the load path causing the gate internal forces to redistribute leading to high 

stresses in undesirable parts of the gate. The internal force redistribution causes the gap to grow, 
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eventually leading to failure of the miter gate. For instance, the horizontal loads should not be 

supported by the pintle region as per design. However, the development of such a gap at the 

bottom of the gate leads to force aggregation in the pintle region. This is hugely problematic as 

this force redistribution in a region prone to fatigue cracking reduces the remaining useful life of 

the miter gate system. 

In this study, only the loss of contact between the wall and the gate at the bottom near the 

pintle area is considered and is referred to as the “gap” from now on. The gap is visually 

inaccessible during operations, as the bottom part of the gate is always submerged under water 

during operations. For continuous operations, the idea is to estimate the amount of loss of contact 

(referred to as gap length) using the FE model updating framework and the strain measurement 

data.  

 

Figure 4.6: (a) Ideal approach (contact-type constraint between gate quoin block and wall quoin 

block), and (b) simplified approach (pinned boundary condition along the gate quoin block above 

the gap).  

The ideal (most accurate) approach to modeling the gap between the wall and gate quoin 

blocks at the bottom of the gate (in the FE model) is by introducing a contact-type constraint 

between them (Figure 4.6a). However, in this paper, we employ a simplified approach where a 

pinned boundary condition is directly imposed along the gate quoin block above the gap instead 
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of modeling the wall quoin block and inserting a contact-type constraint between the two quoin 

blocks to support the gate laterally. To model the effect of a gap formation of length GapLength

, the gate quoin block is left unrestrained (i.e., unpinned) over the length of the gap as shown in 

Figure 4.6b. The Ideal approach (contact-type constraint) captures the effect of partial gap 

closure after the gate is subjected to the hydrostatic loads. This approach requires a nonlinear FE 

analysis using an incremental-iterative solution strategy and is computationally very expensive. 

However, since the portion of the gap which closes is small under most hydrostatic loading 

scenarios, the simplified approach is a reasonable choice and is computationally highly 

advantageous. 

4.5.2.2 Loss of Thickness due to Uniform Corrosion 

A miter gate can be subdivided into three environmental zones defined by the 

upstream/downstream water elevations ((Estes et al. 2004; Evans et al. 2019)): (1) the 

atmospheric zone, (2) the splash zone, and (3) the submerged zone as shown in Figure 4.7a (side 

view of the gate). Figure 4.7b shows a real miter gate (from the John T. Myers locks along the 

Ohio River in Kentucky, USA) depicting the three zones. The atmospheric zone is the region of 

the gate that is generally not in contact with water even when the water elevation changes. This 

zone incurs the least damage due to corrosion and is visually accessible for monitoring (Spencer 

et al. 2019). The splash zone is the region of the gate that is in contact with air and water mainly 

from the changes in water elevation that allow the passage of marine transportation. This zone 

incurs the greatest damage due to corrosion, which is attributed to the water elevation changes in 

the chamber (Melchers 2004). Finally, the submerged zone is the region of the gate that is always 

underwater during operations. Monitoring for corrosion in the splash and submerged areas is not 

trivial as these regions are typically visually inaccessible while a miter gate is in operations. 
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Dewatering a lock chamber for inspections or sending a diver is a costly endeavor as it halts the 

navigation through the chamber. 

 

Figure 4.7: (a) Side view schematic of the gate showing the three environmental zones, and (b) 

picture of a real miter gate depicting the three zones. 

In this study, only uniform corrosion in the splash and submerged zones is considered. In 

the FE model, corrosion is modelled as a uniform thickness loss in the steel plates (e.g., girder 

webs, girder flanges, and skin plates) in each zone.  (Estes et al. 2004). The losses of thickness in 

the splash and submerged zones are denoted by parameters .splTl  and .subTl , respectively. Based 

on the design drawings of the Greenup gate provided by USACE, the following initial 

thicknesses (at pristine condition) are used: (1) 12.7mm  for the skin plates, horizontal girder 

webs, and vertical girders; (2) 15.9mm  for the end vertical girder web (at each side of a gate 

leaf).  
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4.5.2.3 Loss of Tension in the Diagonal Rods 

The diagonal rods across the gate are pretensioned to resist torsional loads during 

opening and closing of the gate (Eick et al. 2018b). It also resists sagging of the gate due to its 

self-weight and keeps the gate plumb for achieving good miter contact. The diagonals gradually 

lose tension over time causing stress redistribution inside the gate. For FE modeling and 

parameter estimation, it is assumed that the three positive diagonal rods have the same remaining 

tension, .posP , and the three negative diagonal rods have the same remaining tension, .negP . 

Based on the design drawings of the Greenup gate provided by USACE, the initial tension is 

965MPa  for each of the positive diagonal rods and 620MPa  for each of the negative diagonal 

rods.  

4.5.3 Surrogate Modeling 

A global surrogate of the miter gate FE model is developed in this section. The unknown 

parameter vector is . . . .[ ., , , , ]Tpos neg spl subGapLen P P Tl Tl=θ  and the input loading vector is 

[ , ]Tdown uph h=u  where uph  and downh  denote the upstream and downstream water elevation 

levels, respectively (as depicted in Figure 4.3d). The idea is to construct a surrogate model that 

maps parameters 
7,

T
T T = 

 
x θ u  to the FE output response of interest (strain at each of the 

46 uniaxial strain gauge locations) 46z . 

In this paper, we used an Intel Xeon W-2155 @ 3.30 GHz CPU with 10 cores / 20 threads 

and 128 GB RAM workstation for FE analysis, surrogate model construction, and FE model 

updating. This computer is simply referred to as the workstation henceforth. 
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Table 4.1: Upper and lower bounds of parameters for space filling.  

 Unknown parameters Input loading 

bounds 
.GapLen    

[m] 

.posP

[MPa] 

.negP

[MPa] 

.splTl

[mm] 

.subTl

[mm] 

downh   

[m]  

uph      

[m] 

lower 0.0 0.0 0.0 0.0 0.0 2.5 12.7 

upper 4.6 965 620 10.0 10.0 5.8 15.2 

The lower and upper bounds (for space filling) of five unknown and two input loading 

parameters are shown in Table 4.1. These values are chosen based on the literature ((Eick et al. 

2018b; Estes et al. 2004)) and discussions with USACE engineers. The Sobol quasi-random 

sequence is used as the space filling method and the first 200 samples of the sequence,

( ){ | 1,..., 200}i i =x , are drawn and utilized. The FE model is evaluated at these sample points and 

the strain at each of the 46 strain gauge locations is recorded 
( ) ( ) 46{ ( ) |  1, ..., 200}i i i=  =z h x . 

Parallel computing is leveraged since the FE analyses are independent of one another. Ten FE 

analyses are performed in parallel, one on each core of the workstation. The runtime of each FE 

analysis is in the range 2 min ± 10 sec on a single core (two threads) of the workstation. The 

domain decomposition capability of Abaqus FEA is used to distribute each FE analysis on two 

threads. The first 100 samples are used as test samples for surrogate model assessment and the 

next 100 samples are used as initial training samples for surrogate model construction. 

Therefore, the test set and initial training set are given by 
( ) ( ){( , ) |  1, ...,100}i it i = =x z  and 

( ) ( ){( , ) |  101, ..., 200}i it i= =x z , respectively. 

A surrogate model is typically constructed considering each output measurement channel 

separately, thus requiring constructing 46 different surrogate models for the miter gate 

application example in this paper. However, principal component analysis (PCA) can be used to 
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reduce the dimensionality of the output space since the strains at closely spaced strain gauge 

locations are correlated. 

A PCA is performed on the training data matrix (101) (200) 46 100, ...,  = 
 

Z z z . A 

centered data matrix 46 100
c

Z  is created as 

   100 11
where  1,...,1

TT
c

n

= − = Z Z Z 11 1   (4.30) 

The sample covariance matrix 46 46Σ  of the training data is given by 

 
1

100 1

T
c c=

−
Σ Z Z   (4.31) 

The singular value decomposition of T
cZ  is given by  

 
46 46100 46 46 46100 46

 with    and  T T T T
c

 

= = =Z U Π V U U I V V I   (4.32) 

where the columns of U  and V  are the left singular and right singular vectors, 

respectively, and Π  is a diagonal matrix of singular values. Using Eq. (4.32), the sample 

covariance matrix Σ  given in Eq. (4.31) becomes 

 
21

100 1

T 
=  

− 
Σ V Π V   (4.33) 

Noting that 
46 46V  is an orthonormal matrix and 2 46 46Π  is a diagonal matrix, 

Eq. (4.33) is the eigenvalue decomposition of 46 46Σ . The eigenvectors of Σ  are the 

columns of V  (also known as principal components) and the eigenvalues of Σ  are 

( )2 2 / 100 1k k =  − , 1,...,46k = . 2
k  is also the variance of the training data along the principal 

component 46 1
k

v . 



177 

Let PCAn  be the number of principal components required to capture more than 95% of 

the variance of the training data. It was found that 6PCAn =  for the training data matrix 

46 100Z . Using the computed principal components, any vector 46 1z  can be 

transformed to 1, ,
PCAT

PCA PCA n
kz  = 

 
z  and vice versa as 

 1 1
46 1 46 11 1

46 46

, , ; , ,PCA PCA

PCA PCA

PCA PCA
PCA

T
PCA PCA

n n
n n

n n

  
 = 

   = 
   

V

z v v z z v v z   (4.34) 

where 46 1
k

v  is the k th−  eigenvector, and the eigenvectors are ordered in the 

decreasing magnitude of their corresponding eigenvalues 2
i . Only PCAn  surrogate models now 

need to be constructed, one for each principal component ,  {1, 2, ..., }PCA PCA
kz k n . 

 

Figure 4.8: Scatter plot of sample points from final training set (blue) and test set (red).  
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Let kg  denote the surrogate model that maps x  to the output PCA
kz  and let the 

trained/fitted surrogate model be denoted by ˆkg . The training of PCE and GPR surrogate models 

for the miter gate FE model are described in Sections 4.4.2 and 4.4.3, respectively. After 

surrogate model construction, the fitted surrogate model ˆkg  is assessed by computing the root 

mean square error (RMSE) over the test set 
( ) ( ){( , ) |  1, ...,100}i it i = =x z  as 

 ( )
100 2

( ) ( )

1

1
ˆ ( ) ,    {1, 2, ..., }

100

i PCA i PCA
k kk

i

err z g k n
=

= −  x   (4.35) 

where 
( ) ( )i PCA T i
k

k
z  =

 
V z . If kerr  is less than some specified threshold for all 

{1, 2, ..., }PCAk n , then the fitted surrogate models ˆ ,  {1, 2, ..., }PCA
kg k n  are final. Otherwise, 

the training set is enhanced by adding new sample points and the surrogate model is trained 

again. At every iteration, the training set is enhanced by adding ten subsequent sample points to 

the Sobol sequence. Thus, after the first iteration, the ten subsequent sample points are 

( ){ | 201, ..., 210}i i =x  and the enhanced training set is 
( ) ( ){( , ) |  101, ..., 210}i it i= =x z . The 

surrogate model is now retrained using the enhanced training set.  

Table 4.2 shows the pseudo-code of the surrogate model construction procedure used in 

this paper. After 15 iterations, it was observed that 6 principal components are sufficient to 

capture more than 95% of the variability of the training data (thus 6PCAn = ) with the test errors 

{1, 2, ..., 6}kerr k   within the acceptable threshold for PCE and GPR surrogates (see Sections 

4.4.2 and 4.4.3 for more details). Hence, the final training set is 
( ) ( ){( , ) |  101, ..., 350}i it i= =x z  

for both the PCE and GPR surrogates. The scatter plot of the test set t  and final training set t  is 
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shown in Figure 4.8. The vertical axes correspond to the PCA transformed FE output PCA
z  and 

the horizontal axes correspond to x  with each component of x  normalized as  

 
j j

j
j j

x lower
x

upper lower

 −
=  
 − 

  (4.36) 

where jx  denotes the normalized version of jx . The bounds of each component jx  of x , 

jlower  and jupper , are provided in Table 4.1. The subplot at grid location ( , )k j  of Figure 4.8 

shows the sample points ( ) ( ){( , ) |  1, ..., 350}i i PCA
j kx z i =  in the scatter plot. The red dots 

correspond to the test set ( 1:100)i =  while the blue dots correspond to the final training set 

( 101:350)i = . From the scatter subplots, it can be seen that 1
PCAz  is sensitive to .splTl , 2

PCAz  to 

.subTl , 3
PCAz  and 4

PCAz   to .GapLen , 5
PCAz  to uph  and downh , 6

PCAz  to .posP . 
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Table 4.2: Surrogate model construction procedure (pseudo code).  

Initialize: Draw sequence of sample points from Sobol sequence, 
( ){ | 1, ..., 200}i i =x  

Run FE analyses 
( ) ( ) 46{ ( ) |  1, ..., 200}i i i=  =z h x  

Initial training set: 
( ) ( ){( , ) |  101, ..., 200}i it i= =x z , test set: 

( ) ( ){( , ) |  1, ...,100}i it i = =x z  

Initialize iteration number: 1iterNum =   

while true do 

 Perform PCA of the training data matrix Z  and obtain 
PCAn  and V  (Eq. (4.34)) 

 Construct the surrogate models ,  1, ..., PCA
kg k n=  using training set t  (Note: kg  denotes the 

surrogate model that maps x  to the output PCA
kz ) 

 Compute the test error kerr  for each fitted surrogate ˆkg   

 if ( )min kerr threshold  

  break 

 else 

  Update the training set 
( ) ( ){( , ) |  101, ..., 200 10 }i it i iterNum= = + x z  

  Update the training data matrix 
(101) (200 10 ), ..., iterNum+  =

 
Z z z  

  1iterNum iterNum= +  

 end 

end  

4.5.3.1 PCE Surrogate Model Training 

To construct the PCE surrogate models, the probability distribution ( )p x  is taken as  

 ( )
7

1

( ) ( ); ( ) ~ ,j j j j

j

p p x p x lower upper
=

=x   (4.37) 

where ( ),j jlower upper  denotes a uniform distribution with lower bound jlower  and 

upper bound jupper . The bounds of each component jx  of x , jlower  and jupper , are shown in 
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Table 4.1. The uniform distribution is chosen in order to fill the parameter space uniformly for 

PCE construction. However, note that the prior probability distribution of the unknown 

parameters in FE model updating (Section 4.5.5) is taken as normal. The constructed PCE 

surrogate can be used to replace the FE model in model updating for any prior probability 

distribution.  

For the vector case  1 7, ,
T

x x=x  with independent components, the orthonormal 

polynomial sequence  
1

( )i i



=
 x  can be constructed by building an orthonormal polynomial 

sequence  
1

( )i j i
x



=
  for each component jx  and then taking their tensor product. Since 

( )( ) ~ ,j j jp x lower upper , the orthonormal Legendre polynomials form the orthonormal 

polynomial sequence  
1

( )i j i
x



=
  for component jx , i.e.,  

 

2
1 2 2

5
( ) 1, ( ) 3 , ( ) (3 1),    

2

where  2 1

j j j j j

j j
j

j j

x x x x x

x lower
x

upper lower

 =  =  = −

 −
= − 

 − 

  (4.38) 

Truncation is performed by considering only the orthonormal polynomials from the 

sequence  
1

( )i i



=
 x  that have a polynomial degree less than 13= . Hyperbolic cross truncation 

with cross-truncation factor 0.5 =  is also employed to further reduce the number of 

orthonormal polynomials. This leads to a total number of polynomials considered in the 

truncated PCE expansion of 589P = . Lasso regression with the LARS algorithm is used to 

compute the coefficients 589
1{ }i ic = . The optimum value of   (amount of penalization) in Eq. (4.18) 

is obtained using a 5-fold cross-validation technique. Note that this PCE surrogate training is 
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performed for each surrogate kg , {1, 2, ..., }PCAk n  at each iteration shown in Table 4.2. After 

15 iterations, 6PCAn =  and the final fitted PCE surrogates are ˆkg , {1, 2, ..., 6}k . The number of 

zero coefficients out of 589 coefficients, and the test error kerr  (root mean square error) of the 

final fitted surrogates ˆkg , {1, 2, ..., 6}k  are reported in Table 4.3. The table also shows the 

relative root mean square error over test set of the final fitted surrogates ˆkg , {1, 2, ..., 6}k , 

which is defined as 

 

( )

( )

100 2
( ) ( )

1

100 2
( )

1

1
ˆ ( )

100
,    {1, 2, ..., }

1

100

i PCA i
kk

i PCA
k

i PCA
k

i

z g

RRMSE k n

z

=

=

−

= 





x

  (4.39) 

The relative root mean square error over test set is below 10% for all the fitted PCE 

surrogates ˆkg , {1, 2, ..., 6}k . 

Table 4.3: Final fitted PCE surrogate details.  

 Fitted surrogate models 

 1ĝ  2ĝ  3ĝ  4ĝ  5ĝ  6ĝ  

# zero coeff. /589 468 465 412 445 415 443 

Test error kerr   0.08×10-4 0.05×10-4 0.11×10-4 0.19×10-4 0.04×10-4 
0.03×10-

4 

kRRMSE  (test set) 1.5 % 1.6 % 4.3 % 9.2 % 2.6 % 2.9 % 

Figure 4.9a shows the fitted PCE surrogate 3ĝ  as a function of 1x  ( .GapLen  normalized 

using Eq. (4.36)), while the remaining parameters are fixed at the mid value of their 

corresponding range, i.e., ( )0.5 2, ..., 7jx j= = . The blue dots indicate the final training set, and 

the red dots indicate the test set. This is a slice plot of the fitted PCE surrogate, and it shows that 

the fitted PCE surrogate captures very well the highly nonlinear mapping from the FE parameter 



183 

GapLength  to the PCA transformed FE response 3
PCAz . Similarly, Figure 4.9b and Figure 4.9c 

show the fitted PCE surrogate 4ĝ  and 1ĝ  as a function of 1x  (normalized .GapLen ) and 4x  

(normalized .splTl ), respectively, while the remaining parameters are fixed at their mid value; 

again the PCE surrogates capture very well the nonlinear mappings between FE model 

parameters and transformed FE responses.  

 

Figure 4.9: Final fitted PCE surrogates as a function of a parameter (black line) along with final 

training set (blue dots) and test set (red dots).  

Figure 4.10a compares all PCE surrogates predicted responses 

( )( )ˆ ( ) 1, ..., 6  and  1, ..., 350i
kg k i =  =x  with the PCA transformed FE responses 

( )( )  1, ..., 6  and  1, ..., 350i PCA
kz k i =  = . Figure 4.10b plots the residuals 

( )( )  1, ..., 6  and  1, ..., 350i
kr k i =  =  versus all PCE surrogate predicted responses 

( )( )ˆ ( ) 1, ..., 6  and  1, ..., 350i
kg k i =  =x  where the residual ( )i

kr  is defined as 

( ) ( ) ( )ˆ ( )i i PCA i
kk kr z g= − x . The blue dots indicate the final training set 101,...,350i =  and the red 

dots indicate the test set 1,...,100i = . Figure 4.10a shows a very high correlation between the 

fitted PCE surrogate responses and corresponding PCA transformed FE responses. Figure 4.10b 

shows that the residuals are clustered around zero and the relative root mean square error of the 
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fitted PCE surrogate on the training and test sets are 1.4% and 3.5%, respectively. Both these 

figures indicate that the fitted PCE surrogate models predict very well the PCA transformed FE 

responses.  

 

Figure 4.10: (a) PCA transformed FE response versus PCE surrogate predictions, and (b) 

residuals versus PCE surrogate predictions.  

The total runtime to obtain the final fitted PCE surrogate model (i.e., running the 

algorithm outlined in Table 4.2 for 15 iterations) is 15.2hrs on the workstation. Parallel 

computing is leveraged to perform the FE analyses needed to construct the initial training set, the 

test set, and while enhancing the training set at each iteration defined in Table 4.2.  

4.5.3.2 GPR Surrogate Model Training 

The covariance function ( , )k x x  in Eq. (4.19) is taken as 
7

1

( , ) ( , )j j

j

k k x x
=

 =x x , where 

each ( , )j jk x x  is modeled using the radial basis kernel (or covariance) function with length scale 

jl  and variance 2
js   as 
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 ( )
22

2

1
( , ) exp

2
j j j j j

j

k x x s x x
l

 
  = − −

 
 

  (4.40) 

The hyperparameters  
1: 7

,j j j
s l

=
=γ  and   are estimated by solving an MLE problem 

(Eq. (4.29)) using the BFGS algorithm. Note that other kernels such as the Matérn class of 

covariance functions can also be used instead of the standard (most popular) radial basis kernel. 

After 15 iterations, 6PCAn =  and the final fitted GPR surrogates are ˆkg , {1, 2, ..., 6}k ; the test 

errors kerr , {1, 2, ..., 6}k , are reported in Table 4.4. The table also shows the relative root mean 

square error over test set (defined in Eq. (4.39)) of the final fitted surrogates ˆkg , {1, 2, ..., 6}k . 

The relative root mean square error over test set is below 10% for all the fitted GPR surrogates 

ˆkg , {1, 2, ..., 6}k .  

Table 4.4: Final fitted GPR surrogate test errors. 

 1ĝ  2ĝ  3ĝ  4ĝ  5ĝ  6ĝ  

Test error kerr  0.14×10-4 0.11×10-4 0.09×10-4 0.07×10-4 0.14×10-4 
0.06×10-

4 

kRRMSE  (test set) 2.7 % 3.1 % 3.4 % 4.0 % 9.1 % 5.3 % 

Similar to Figure 4.9, the final fitted GPR surrogates 3ĝ , 4ĝ , and, 1ĝ  as a function of 1x  

(normalized .GapLen ), 1x , and, 4x  (normalized .splTl ), respectively, are shown (black lines) in 

Figure 4.11. In each subplot, the remaining parameters are fixed at the mid value of their 

corresponding range. These slice plots indicate that the fitted GPR surrogates capture very well 

the highly nonlinear mappings from the FE model parameters to the PCA transformed FE 

responses.  
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Figure 4.11: Final fitted GPR surrogates as a function of a parameter (black line) along with final 

training set (blue dots) and test set (red dots). 

Like in Figure 4.10, the PCA transformed FE responses 

( )( )  1, ..., 6  and  1, ..., 350i PCA
kz k i =  =  and residuals ( )( )  1, ..., 6  and  1, ..., 350i

kr k i =  =  

are plotted versus the corresponding GPR surrogate predicted responses 

( )( )ˆ ( ) 1, ..., 6  and  1, ..., 350i
kg k i =  =x  in Figure 4.12. Figure 4.12a shows a very high 

correlation between the fitted GPR surrogate responses and corresponding PCA transformed FE 

responses. Figure 4.12b shows that the residuals are symmetrically clustered around zero and the 

relative root mean square error of the fitted GPR surrogates on the training and test sets are 2.7% 

and 3.6%, respectively. Both these figures indicate that the fitted GPR surrogate models predict 

very well the PCA transformed FE responses. 

The total runtime to obtain the final fitted GPR surrogate model (i.e., running the 

algorithm outlined in Table 4.2 for 15 iterations) is 15.3hrs on the workstation. Parallel 

computing is leveraged to conduct the FE analyses required to construct the initial training set, 

the test set, and while enhancing the training set at each iteration defined in Table 4.2.  
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Figure 4.12: (a) PCA transformed FE response versus GPR surrogate predictions, and (b) 

residuals versus GPR surrogate predictions. 

4.5.4 Measurement Data Simulation 

Two sets of strain measurement data ( ) 1, 2i i =  are generated, and the model updating 

is performed considering each measurement data set separately. To generate each data set

( ) 1, 2i i = , the FE model parameters are set to the parameter values shown in Table 4.5. The 

corresponding input loading parameters ,
T

down uph h =  u  defined in Table 4.5 are used and the 

uniaxial strains are recorded at the 46 strain gauge locations (Figure 4.4a) on the FE model. To 

simulate sensor measurement noise, a random Gaussian noise of standard deviation 
40.2 10−  

(Eick et al. 2018a) is added to each of the 46 recorded (computed) strain measurements, 

assuming statistical independence of the measurement noise across different strain 

measurements. The polluted strain response is taken as the simulated strain measurement data 

46 1y . 
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Table 4.5: Parameter values to simulate the strain measurement data. 

 Unknown parameters Input loading 

Data set 
.GapLen    

[m] 

.posP

[MPa] 

.negP

[MPa] 

.splTl

[mm] 

.subTl

[mm] 

downh   

[m]  

uph      

[m] 

1  1.16 531 482 2.53 1.38 3.9 13.7 

2  4.06 241 289 5.80 3.10 4.9 14.4 

4.5.5 FE Model Updating 

The FE model updating procedure described in Section 4.3 is employed to obtain the 

posterior distribution of the unknown parameter vector θ  considering each strain measurement 

data set separately. Let us first consider the simulated data set 1  for model updating. The 

covariance matrix wΣ  of error/noise term w  (Eq. (4.4)) in the measurement equation is 

modeled as 2
46= w wΣ I  where 46I  denotes the identity matrix of size 46. The parameter w  is 

also unknown and is inferred jointly with the unknown parameter vector θ . The samples of the 

joint posterior distribution ( , | , )p wθ u y  are obtained using the TMCMC sampling method 

described in Section 4.3.2.  

To construct the joint prior distribution ( , )p wθ , θ  and w  are assumed statistically 

independent, i.e., ( , ) ( ) ( )p p p = w wθ θ . In addition, the components of θ  are assumed 

mutually statistically independent to construct the prior ( )p θ . The prior distribution of each 

component of θ  is taken as ( )( .) 0,4.6p GapLen m= , ( )( )2

.( ) 620 , 345posp P MPa MPa= , 

( )( )2

.( ) 345 , 345negp P MPa MPa= , ( )( )2

.( ) 3 , 1.5splp Tl mm mm= , 
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( )( )2

.( ) 1.5 , 1.5subp Tl mm mm= . All distributions are truncated with their corresponding upper 

and lower bounds given in Table 4.1. The prior of w  is taken as 4( ) (0,0.7 10 )p − = w  (true 

value of w  is 40.2 10− ) and is truncated at zero (half normal distribution).  

In the TMCMC method to obtain samples of the joint posterior distribution 

( , | , )p wθ u y , 250 particles are used to approximate the intermediate distribution at every stage. 

The number of MCMC steps in the perturbation phase of each TMCMC stage is set to 15. Direct 

FE model evaluations are utilized to evaluate the likelihood function in the TMCMC algorithm 

to obtain the joint posterior samples.  

The kernel density estimates (KDEs) of the marginal distribution of each component of 

θ  constructed using 250 samples at the first TMCMC stage (prior samples) and last TMCMC 

stage (posterior samples) are shown in Figure 4.13 for the strain measurement data set 1 . In 

each plot, the red dashed line represents the prior KDE, the green dashed line represents the 

posterior KDE obtained utilizing direct FE model evaluations, and the black vertical line 

indicates the true parameter value. In this figure, each component of θ  is normalized according 

to Eq. (4.36). The total runtime to obtain the 250 posterior samples using TMCMC and relying 

on direct FE model evaluations is 60.2hrs on the workstation. Parallel computing (10 FE 

analyses performed in parallel, one on each core) is leveraged in the perturbation phase at each 

stage of the TMCMC algorithm.  

FE model updating is repeated to obtain the samples of the joint posterior now utilizing 

the developed surrogate models for evaluating the likelihood function in the TMCMC algorithm. 

The KDEs of the marginal distribution of each component of θ  obtained using 250 samples at 

the last TMCMC stage (posterior samples) while employing the constructed PCE and GPR 
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surrogates for model evaluations are shown in Figure 4.13 in orange solid and blue solid lines, 

respectively. It is observed that the marginal posterior KDEs obtained using direct FE model 

evaluations, and evaluations of the constructed PCE and GPR surrogate models to compute the 

likelihood function are qualitatively similar. 

The total runtime to obtain the 250 posterior samples using TMCMC and the constructed 

PCE or GPR surrogate models is ~1min on the workstation. Parallel computing (10 surrogate 

model evaluations performed in parallel, one on each core) is leveraged in the perturbation phase 

at each stage of the TMCMC algorithm. Note that when using surrogate model evaluations in the 

Bayesian model updating, it is feasible to draw, at very low computational cost, many more than 

250 samples from the posterior distribution of θ . However, for a fair comparison (in terms of 

accuracy and computational time) of the model updating results obtained when utilizing direct 

FE vs surrogate model evaluations, we chose to approximate the posterior with 250 samples in 

each case. 

Table 4.6 compares the total runtimes to perform the Bayesian model updating when 

using direct FE model versus surrogate model evaluations to compute the likelihood function. 

For the considered miter gate study on the workstation, a ~4-fold reduction in computational 

time is observed when using the surrogate models instead of the FE model for the likelihood 

function evaluations in Bayesian model updating. 
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Figure 4.13: Marginal kernel density estimates (KDEs) of each component of θ  for the strain 

measurement data set 1 . 

The FE model updating procedure is now repeated considering the strain measurement 

data set 2 using the same prior distribution. Similar to Figure 4.13, Figure 4.14 compares the 

marginal posterior KDEs obtained utilizing direct FE model evaluations, and evaluations of the 

constructed PCE and GPR surrogate models. Again, it is observed that the marginal posterior 

KDEs obtained utilizing direct FE model versus PCE and GPR surrogate model evaluations for 

the likelihood function evaluations are qualitatively similar. 
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Table 4.6: Total runtimes to perform Bayesian model updating for measurement data set 1  or 

2  

 Runtime on the workstation (Intel Xeon W-2155 @ 3.30 GHz CPU 

with 10 cores / 20 threads and 128 GB RAM workstation) 

 Surrogate model 

construction 

TMCMC (250 samples) Total 

Direct FE model  - ~60hrs ~60hrs 

PCE surrogate ~15hrs ~1min ~15hrs 

GPR surrogate ~15hrs ~1min ~15hrs 

 

 

Figure 4.14: Marginal kernel density estimates (KDEs) of each component of θ  for the strain 

measurement data set 2 . 

4.6 Conclusions 

This paper compares the Bayesian model updating results in the context of high-fidelity 

FE models of a large-scale civil structure when the updating is performed utilizing direct FE 
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evaluations versus surrogate model evaluations. In this regard, a miter gate structural system is 

used as the testbed structure, and the polynomial chaos expansion and Gaussian process 

regression methods are used as surrogate modeling techniques. Three common (dominant) 

damage modes of miter gate systems are considered for Bayesian model updating purposes using 

simulated strain measurement data. Five system parameters associated with these three damage 

modes are estimated in the model updating process. It took ~60hrs to perform model updating 

using the TMCMC algorithm when using direct FE evaluations on an Intel Xeon W-2155 @ 3.30 

GHz CPU with 10 cores / 20 threads and 128 GB RAM workstation. Parallel computing was 

leveraged at each stage of the TMCMC algorithm. In contrast, it took ~15hrs to construct the 

PCE or GPR surrogate model and ~1min to perform Bayesian model updating using the 

surrogate model evaluations. Compared to the kernel density estimates of the posterior marginal 

distributions of the unknown parameters obtained using direct FE evaluations, those obtained 

using surrogate model evaluations were found sufficiently accurate (qualitatively). Thus, for the 

considered miter gate testbed application, Bayesian FE model updating relying on surrogate 

model evaluations is ~4 times faster than when using direct FE model evaluations and provides 

relatively accurate posterior results (compared to those obtained using direct FE evaluations). 

Investigations of the efficiency and accuracy of Bayesian FE model updating (for large-scale 

civil infrastructure systems) based on surrogates of the FE model, such as the study presented in 

this paper, are necessary before completely relying on surrogate models in Bayesian model 

updating, which in turn can be used for SHM/DP purposes. 
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4.8 Preview to Chapter 5 

Chapters 2, 3, and 4 develops the Bayesian FE model updating considering simulated 

measurment data. The goal of the next chapter is on validating the developed Bayesian FE model 

updating using real experimental data. In this regard, the model updating framework is applied to 

a full-scale bridge column which was tested on the large high-performance outdoor shake table 

(LHPOST) here at UC San Diego in 2010 .This column was subjected to a series of ten 

earthquake ground motion records and was densely instrumented with an array of 278 

heterogeneous sensors. The data measured by these sensors is used for FE model updating of the 

bridge column. Validating the Bayesian FE model updating framework using real data for 

different levels of nonlinearity (in the structural response behavior) is necessary for real world 

SHM/DP of any civil infrastructure system. 
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5 Bayesian Nonlinear Finite Element Model Updating of a 

Full-Scale Bridge-Column using Sequential Monte Carlo 

5.1 Abstract 

Digital twin-based approaches for structural health monitoring (SHM) and damage 

prognosis (DP) are emerging as a powerful framework for intelligent maintenance of civil 

structures and infrastructure systems. Model updating of nonlinear mechanics-based Finite 

Element (FE) models using input and output measurement data with advanced Bayesian 

inference methods is an effective way of constructing a digital twin. In this regard, the nonlinear 

FE model updating of a full-scale reinforced-concrete bridge column subjected to seismic 

excitations applied by a large shake table is considered in this paper. This bridge column, 

designed according to US seismic design provisions, was tested on the NEES@UCSD Large 

High-Performance Outdoor Shake Table (LHPOST). The column was subjected to a sequence of 

ten recorded earthquake ground motions and was densely instrumented with an array of 278 

sensors consisting of strain gauges, linear and string potentiometers, accelerometers and Global 

Positioning System (GPS) based displacement sensors to measure local and global responses 

during testing. This heterogeneous dataset is used to estimate/update the material and damping 

parameters of the developed mechanics-based distributed plasticity FE model of the bridge 

column. The sequential Monte Carlo (SMC) method (set of advanced simulation-based Bayesian 

inference methods) is used herein for the model updating process. The inherent architecture of 

SMC methods allows for parallel model evaluations, which is ideal for updating computationally 

expensive models.  
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5.2 Introduction 

Structural health monitoring (SHM) is the general process of making an assessment, 

utilizing measurement data, about the current ability of the system to perform its intended design 

functions. Damage prognosis or prognostics (DP) extends this process by combining it with a 

probabilistic description of future loading to estimate metrics such as remaining useful life 

(RUL) of the system (Kadry 2012). With the tremendous increase in computational capabilities 

and with the advent of new algorithms to solve complex machine learning tasks, the statistical 

pattern recognition paradigm for SHM/DP of civil structures is gaining popularity among 

researchers. This paradigm is especially attractive because it offers the possibility of automating 

the SHM process, i.e., removing the need for interventions of human experts as far as possible. 

One main objective of the SHM system is to detect, localize, classify and quantify the damage on 

the structure of interest (Farrar and Worden 2007). To achieve this, in a pattern recognition 

perspective, the data corresponding to all the conceivable damage states/mechanisms of the 

structure of interest are required (Farrar and Worden 2012). One of the potential ways of 

obtaining this data for civil infrastructure systems is using digital twins/cyber models (hybrid 

data-physics models). A potential way of constructing digital twins for full-scale structural 

systems is by using the finite element (FE) model updating framework. 

The last few decades have witnessed tremendous progress in nonlinear modeling and 

analysis methods for civil engineering structural, geo-structural, and soil-foundation-structural 
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systems subjected to static, quasi-static, and dynamic loading, particularly from natural hazards 

such as earthquakes. Mechanics-based nonlinear FE models (of various complexities) of civil 

engineering systems (e.g., buildings, bridges, dams, miter gates) are now able to capture the 

damage and failure mechanisms developing in such systems in critical loading environment. The 

current state-of-the-art nonlinear FE modeling techniques allow reasonably accurate predictions 

of the actual response of civil structural systems if realistic and “well-calibrated” values are used 

for the unknown parameters of the FE model. These parameters for civil systems generally 

include inertial, damping, hysteretic material law, loading, boundary conditions, and geometric 

parameters. When input-output measurement data are available, the FE model updating 

framework allows to estimate/update the unknown parameters of the FE model (Astroza et al. 

2015, 2019a; Ebrahimian et al. 2017; Ramancha et al. 2020b). The Bayesian approach to model 

updating is attractive because it accounts for various sources of uncertainties observed in the real 

world (i.e., noisy output measurements, unknown/partially known/noisy input measurements, 

uncertainty in FE model parameters, FE model form uncertainty) during estimating/updating the 

unknown parameters and characterizes the remaining estimation uncertainty. This confidence 

level associated with the parameter estimates is extremely useful for SHM/DP as it supports 

rigorous decision-making. In Bayesian model updating, the modeler needs to specify the 

probabilistic description of unknown parameters (referred to as prior knowledge). The prior 

knowledge is then updated (referred to as posterior) accounting for the measurement data using 

Bayesian inference. The FE model characterized by the posterior probabilistic description of the 

unknown parameters is referred to as the updated FE model. This updated model, which is 

essentially a fusion of heterogeneous measurement data and a physics-based FE model, is the 

digital twin/cyber model and can be utilized for SHM/DP purposes. 
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Bayesian Nonlinear FE Model updating of a full-scale reinforced-concrete bridge column 

tested on the large high-performance outdoor shake table (LHPOST) at UC San Diego (UCSD) 

(Schoettler, Restrepo, Guerrini 2015) is considered in this paper. The bridge column was 

subjected to a sequence of ten recorded earthquake ground motions (uniaxial excitation) and was 

densely instrumented with an array of 278 sensors consisting of strain gauges, linear and string 

potentiometers, accelerometers and Global Positioning System (GPS) based displacement 

sensors to measure local and global responses during testing. First, a frame-type FE model with 

distributed plasticity of the bridge column is developed. Then, the measurement data from the 

first earthquake excitation (EQ1) are used to update five key structural parameters (Young’s 

modulus of concrete cE  and steel sE ; Rayleigh damping model parameters 1 2 and a a ; and 

tensile strength of concrete ctf  and tension stiffening parameter  ) of the nonlinear FE model 

using the sequential Monte Carlo (SMC) method (Ching and Chen 2007; Minson et al. 2013) – a 

class of Bayesian inference methods. The novelty of this study lies in the use of real-world input-

output measurement data of a full-scale structural system to update a detailed mechanics-based 

nonlinear finite element model using a “fully” Bayesian inference technique (SMC). 

5.3 Finite Element Model Updating using Bayesian Inference 

Let k
n

 uu  and k

n
 yy  denote the vector of measured input and output responses, 

respectively, of the structure of interest at the time kt  (or time step k ). These measurements are 

obtained from the heterogeneous sensor array mounted on the real structure. Assuming the 

measurement responses are obtained for N  time steps, the measured/observed input-output 
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dataset is ( ),= u y , where 
( )

1 2

1
, ,...,

T
T T T

N

n N 
 = 
 

u
u u u u  and 

( )
1 2

1
, ,...,

T
T T T

N

n N 
 = 
 

y
y y y y . 

At time step k , let ( )1: ;FE
k k k

n
=  yy h u θ  denote the response predicted by the FE 

model h  parameterized by the unknown parameter vector 
n

 θθ  when subjected to the 

measured input time-history 
( ) 1

1: 1 2, ,...,
T n kT T T

k k
  = 

 
uu u u u . For the methodology described 

in this paper, the parameter vector θ  can include any unknown time-invariant parameters such as 

inertial, damping, hysteretic material law, loading, boundary conditions and geometric 

parameters of the FE model. In practice, the measured response y  and the FE predicted response 

FE
y  do not match due to numerous sources of uncertainty (Chatfield 1995). These include 

(1) Uncertainty in the measured output due to sensor noise 

(2) Unmeasured/partially measured input and sensor noise associated with measured 

inputs 

(3) Uncertainty about the structure/form of the model, i.e., the selected model class 

cannot represent the real system. This model form error, if not accounted for, can 

introduce bias in estimation and handicap the predictive utility of the model. 

(4) Uncertainty about the parameters of the model, assuming the structure/form of the 

model is known. 

Put in simple terms, the goal of Bayesian model updating is to estimate/update the 

unknown parameter vector θ  accounting  for all the pertinent sources of uncertainties and 

characterize the remaining estimation uncertainty. To achieve this, first, the likelihood function 

should be constructed using a measurement equation, i.e., a model of the measurement process. 
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This is also referred to as a joint statistical-physical model that relates model parameters to 

measurements/observations. The following measurement equation is used in this paper 

 ( )1: ;

/

Measument equation at time step k k k k

measured output error noiseFE predicted response

k → = +y h u θ w   (5.1) 

where 1, 2, ,, ,...,
T

k k k n kw w w =
 y

w  is the measurement error/noise at time step k  and ,i kw  

denotes the discrepancy between measured and FE predicted responses corresponding to the thi  

output measurement channel at time step k . In the measurement equation, the noise term, 

lumping all the sources of uncertainties, is assumed additive to the FE predicted response. 

Therefore, the accurate statistical description model of the noise process 1 2, ,...,
T

T T T
N

 =
 

w w w w  

is crucial in Bayesian inference. In this paper, the noise process w is assumed temporally white (

1 2, ,...w w  are statistically independent) and random vector kw  is assumed to follow a zero-mean 

Gaussian probability density function (PDF) with independent components (i.e., noise/error 

terms across all measurement channels are assumed statistically independent). 

 

( )

( ) ( )

2
1

2
2

1 1
2

0 0

0 0
~ , ; ~ ,

0 0

k
n n N

n N n Nn
n n

  

  


         
     
  =   
     
            

y y

y yy
y y

Σ 0 0

0 Σ 0
w 0 Σ w 0

0 0 Σ

  (5.2) 

where 2
i  denote the variance of the discrepancy between measured and predicted 

responses of the 
thi  output measurement channel. These noise variances are also typically 

unknown in the real world. Therefore, in this paper, the unknown vector 1 2, ,...,
T

n
 =   
 y

σ  is 

estimated/updated jointly with the unknown FE model parameter vector θ . With the 
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measurement model described by Equations (5.1) and (5.2), the likelihood function for the 

unknown parameters  andθ σ  is given by 

 

( ) ( )

( )
( ) ( )

1:

1

1
1: 1:

1

1 2

2

| , , | , ,

1 1
exp ; ;

22

N

k k

k

N
T

k k k k k k

k
n

p p
=

−

=

−

=

 
   = − − −    

 




y

y u θ σ y u θ σ

Σ y h u θ Σ y h u θ

  (5.3) 

The modeler also needs to specify the prior PDF of the unknown parameter vector ,

( ),p θ σ . The prior PDF is then updated to obtain the posterior PDF, which accounts for the prior 

knowledge and the observed data, using Bayes rule as 

 ( ) ( )
( ) ( )

( )

| , , ,
, | , | ,

,

priorlikelihood

posterior
evidence

p p
p p

p


 =

y u θ σ θ σ
θ σ θ σ u y

u y
  (5.4) 

However, determining analytically the complete joint posterior is an intractable problem. 

Many numerical approximations methods such as Bayesian Kalman filters, particle filters, 

Markov chain Monte Carlo methods (MCMC), sequential Monte Carlo (SMC) methods (SMC), 

etc., have been developed to perform this computation and most of these methods rely on 

sampling the joint posterior. In this paper, SMC is used to sample the joint posterior PDF defined 

in Equation (4). 

5.3.1 Sequential Monte Carlo 

SMC methods are a class of Bayesian inference techniques that sample the joint posterior 

PDF of the unknown parameters. In the literature, there are several closely related algorithms 

that are referred to as transitional Markov chain Monte Carlo, particle filters, bootstrap filters, 

condensation algorithm, survival of the fittest and population Monte Carlo (Kemp 2003). SMC 
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methods do not require the Gaussian assumption about the prior and posterior PDFs of the 

unknown parameters, an inherent assumption in Bayesian Kalman filters (e.g., unscented 

Kalman filter, extended Kalman filter). Unlike standard MCMC methods, SMC methods are 

parallelizable, they can be used to perform model updating of high-fidelity large-scale nonlinear 

FE models using high-performance computing (HPC) resources.  

The idea of SMC is to sample from a series of simpler intermediate PDFs that converge 

to the target posterior PDF, thus circumventing the need to directly sample the target posterior. 

To achieve this, SMC samplers proceed through a series of stages, starting from the prior 

distribution until the posterior distribution. All these distributions (called tempered posterior 

distributions) are controlled by the tempering parameter   as 

 ( ) ( ) ( ), | , | , , ,p p p



 θ σ u y y u θ σ θ σ   (5.5) 

When 0 = , the tempered posterior is just the prior PDF and when 1 =  the tempered 

posterior is the true posterior PDF. The SMC sampler starts with 0 = and progresses by 

monotonically increasing the value of  , at each stage, until it reaches the value of 1. The 

tempered posterior distribution at every stage in SMC is represented by a set of weighted 

samples (also called particles). Also, at each stage, SMC uses independent Markov chains (which 

start at the samples of the current tempered posterior distribution) to reach the next tempered 

posterior distribution. Therefore, the SMC sampling algorithm can also be thought of as a 

parallel MCMC algorithm that can effectively sample high-dimensional parameter spaces 

(Minson et al. 2013). Due to its inherent parallel nature, SMC can be used to efficiently perform 

model updating of high-fidelity large-scale nonlinear FE models using high-performance 

computing resources. In contrast to MCMC, SMC can effectively sample from posterior 

distributions with flat peaks and multiple peaks which arise in non-identifiable and locally-
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identifiable problems, respectively. SMC also computes the model evidence (denominator of 

Equation (4)) as a by-product, which can then be used for Bayesian model class selection and 

model averaging (Ching and Chen 2007). The SMC algorithm used in this paper to sample the 

joint posterior in Equation (4) is presented in Table 5.1. 

Table 5.1: Sequential Monte Carlo Algorithm 

Notation: : number of particlespN , : effective sample sizeESS , : tempering parameter

, :stage numberj   

  , : unknown parameter vector to be updated
T

T T =
 

α θ σ ,

:  particle of  at stage ji th
j iα α  

Initialize: pN , 0j = , 0 pESS N= , 0 0 = ,  

  Generate pN  samples  0; 1,...,i
j pi N= =α  from the prior PDF ( )p α  

while 1j  : 

 stage number 1j j= +   

 choose j  such that 10.95j jESS ESS −=  , ( )min ,1j j =   

 weighting:  ( ) 1

1| ,
j ji i

j jw p
− −

−= y u α  for 1,..., pi N=   

 resampling:  1
i l
j j−=α α  with probability 

l
jw  for 1,..., pi N=  

 perturbation:  start an MCMC chain at 
i
jα  and take MCMCN  steps with target distribution 

( )| ,
j

p


α u y  for each 1,..., pi N= . Gather last sample of each MCMC chain to obtain 

 ; 1,...,i
j pi N=α  

end  

save last stage m j=  

 ; 1,...,i
m pi N=α are the samples of the target posterior ( )| ,p α u y  
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5.4 Full-scale reinforced-concrete bridge Column  

A full-scale reinforced-concrete bridge column was tested on the large high-performance 

outdoor shake table (LHPOST) at the University of California, San Diego (UCSD) from July 

through September 2010 (Schoettler, Restrepo, Guerrini 2015) (see Figure 5.1). The 7.3m (24ft) 

high and 1.2m (4ft) diameter column was designed and detailed according to the California 

Department of Transportation (Caltrans) seismic design guidelines. The objective of the test was 

to validate the current seismic design guidelines in terms of the structural seismic response of 

bridge columns. For this purpose, the column was tested under dynamic loading conditions by 

subjecting it to a series of ten earthquake ground motion records (uniaxial excitation along the 

table’s longitudinal axis or east-west direction). A concrete superstructure block weighing 

2.32MN (522 kips) was cast on top of the column for mobilizing the inertial forces during the 

dynamic tests. This block was designed such that its center-of-mass coincided with the top of the 

column. This test specimen was densely instrumented with an array of 278 sensors consisting of 

strain gauges, linear and string potentiometers, accelerometers and Global Positioning System 

(GPS) based displacement sensors to measure local and global responses during testing 

(Schoettler, Restrepo, Guerrini 2015).  
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Figure 5.1: Full-scale reinforced-concrete bridge column tested on the LHPOST@UCSD 

5.4.1 Finite Element Model of the column 

With a height-to-diameter ratio of 6, the test specimen was intended to respond in the 

nonlinear range with predominant flexural behavior. FE models using beam-column elements 

with distributed plasticity have been proven to capture the observed nonlinear behavior of such 

flexural dominated systems extremely well. Due to their accuracy in matching experimental 

results, formulation simplicity, and computation feasibility and efficiency, such FE model types 

are widely used in research and engineering practice (Taucer 2019). In this paper, the 7.3m (24ft) 

tall bridge column is modeled using two nonlinear fiber-section Euler-Bernoulli force-based 

beam-column elements. The top and bottom element have five and two Gauss-Lobatto 

integration points (monitored cross-sections), respectively, along the length of each element (see 

Figure 5.2). Each element cross-section is discretized into longitudinal fibers as shown in Figure 

5.2. The section nonlinear response behavior is simulated from the uniaxial material constitutive 

laws used for the fibers. Uniaxial Popovics material model (Popovics 1973) is used for modeling 

confined and unconfined concrete behavior at the fiber level and the Dodd Restrepo Carreno 

uniaxial steel material model (Dodd and Restrepo-Posada 1995) is used for modeling 
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longitudinal steel fibers as shown in Figure 5.2. The effects of nonlinear geometry are accounted 

for using the corotational formulation. The inherent damping properties representing sources of 

energy dissipation beyond the hysteretic energy dissipated through inelastic material behavior 

are modeled using Rayleigh damping (proportional to the mass matrix Mand initial tangent 

stiffness matrix TK ). The footing is approximated as a fixed restraint and the inertial effect of 

the superstructure is lumped on the top node of the column.  

 

Figure 5.2: Finite Element Model Hierarchy of Bridge Column 

5.4.2 FE Model Updating Setup 

The measured input-output data corresponding to the first earthquake excitation (EQ1) 

are utilized to update the developed FE model of the column. During EQ1 excitation, it was 

observed that the column response was essentially linear elastic with no observable damage. 

Only hairline cracks (less than 0.1mm wide) were observed at the base of the column (above the 

footing) (Schoettler, Restrepo, Guerrini 2015). Therefore, only the parameters that govern the 
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linear elastic behavior of the column (Young’s modulus of concrete cE  and steel sE ; Rayleigh 

damping parameters corresponding to EQ1 1 1
1 2 and EQ EQa a ) along with the tensile strength of 

concrete, parameter ctf , and tension stiffening parameter of concrete model, parameter  , are 

assumed unknown and estimated using the measured input-output data; thus, 

1 1 6 1
1 2, , , , ,

T
EQ EQ

c s ctE E f a a  =  
 

θ  (see Figure 5.2).  

The parameters of concrete ( cE , ctf , and  ), steel ( sE ), and Rayleigh damping model (

1 1
1 2 and EQ EQa a ) were determined experimentally by testing 6 in x 12 in concrete cylinders, 

reinforcing steel bars, and subjecting the column to white noise excitation, respectively. These 

experimentally determined parameter values (reported in (Schoettler, Restrepo, Guerrini 2015)) 

are shown in Table 5.2 and will be referred to as parameter values reported in the PEER report or 

PEER parameters in brief. These reported values are utilized to construct the prior PDF. To 

construct the prior PDF, lower and upper bounds to each parameter are set according to literature 

and expert opinion. These bounds are essential and allow the parameter values to lie within the 

range set by bounds after calibration. Without bounds, the physical parameters might act as 

tuning parameter in the model calibration and lose their physical meaning. That is, the parameter 

values of physical parameters after calibration can be completely non-physical values as the 

parameters are merely tuned to fit the FE model to the measurement data. 

The accelerometers mounted at the footing of the column are used as the measured EQ1 

input excitation to the column (see Figure 5.3). This measured column base acceleration is then 

used as input data u  in model updating. The accelerometers and displacement string 

potentiometers mounted on the superstructure mass are used to reconstruct the absolute 

horizontal and rotational acceleration response and relative (to the base of the column) horizontal 



208 

displacement response at the top of the column. This reconstructed absolute acceleration and 

relative displacement responses are used as output data y  in model updating. Thus, 

 

Absolute Horizontal Acceleration of the top of the column at time step 

Absolute Rotational Acceleration of the top of the column at time step 

Relative Horizontal Displacement at the top of the co

k

k

k=y
3 1

lumn at time step k



 
 


 
  

 (5.6) 

The measurement equation described in Equation (5.1) is utilized for model updating. 

The noise/error term kw  is assumed to have Gaussian independent components white in time, 

i.e., w  is modeled as a vector Gaussian white noise, i.e.,  
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2
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−
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Σ 0 0

0 Σ 0
w 0 w 0

0 0 Σ

  (5.7) 

where 2
hor accel− , 2

rot accel− , and 2
hor disp−  denote the variance of the discrepancy between 

measured and FE predicted responses for the horizontal acceleration, rotational acceleration, and 

horizontal displacement response quantities, respectively.  

The six parameters of the FE model (
1 1 6 1

1 2, , , , ,
T

EQ EQ
c s ctE E f a a  =  

 
θ ) together 

with the noise standard deviations hor accel− , rot accel− , and hor disp−  are estimated using the 

SMC algorithm described in Table 5.1. The prior PDF is constructed by assuming that the nine 

parameters are mutually statistically independent. Truncated normal distributions with mean 

values taken as the parameter values reported in the PEER report are used to construct the prior 

PDF of the FE model parameters , , ,  andc s ctE E f  . Truncated is performed using the lower and 

upper bounds shown in Table 5.2. The standard deviations of the priors are selected to obtain 

coefficients of variation of 0.30, 0.20, 0.60, and 0.60 for , , , and c s ctE E f  , respectively. 
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Uniform prior with bounds shown in Table 5.2 is used as priors for damping parameters 

1 1
1 2,EQ EQa a . Half normal distributions are used as priors for noise parameters hor accel− , rot accel−

, and hor disp− , respectively. At each stage of SMC, the tempered posterior is represented using 

1000pN =  particles and during the perturbation phase, the number of MCMC steps is set as

5MCMCN = . Parallel computing (message passing interface MPI) across 20 compute nodes 

(1000 cores) on Frontera supercomputer is used for evaluating the likelihood function at every 

step of  the perturbation phase of each SMC stage. It took ~6 min to obtain 1000 samples of the 

posterior using SMC algorithm considering only EQ1 data. 

 

Figure 5.3: Input (acceleration at top of footing) and output (absolute horizontal and rotational 

acceleration and drift ratio at the top of the column) measurement data for model updating. 
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5.4.3 Results 

5.4.3.1 Posterior after calibrating using EQ1 data 

The pair plot of six unknown FE parameters constructed using the posterior samples 

obtained from SMC is shown in Figure 5.4. In the figure, the posterior samples are normalized 

with PEER values shown in Table 5.2. The plots along the diagonal show the histogram and 

kernel density estimates of the marginal posterior PDF of each parameter (normalized with 

PEER values). The marginal posterior PDFs are very sharp (conveyed by very small coefficients 

of variation, CV), implying that the remaining estimation uncertainty after model updating is 

very low. The plots above the diagonal show the posterior samples in the space of every 

parameter pair and the plots below the diagonal show the contour plots of the corresponding 

kernel density estimates where r  is the Pearson correlation coefficient. The sample mean values 

of the posterior SMC samples are compared in Table 5.2 with the corresponding parameter 

values reported in the PEER report. The marginal posterior PDFs are very sharp (conveyed by 

very small coefficients of variation in Table 5.2), implying that the remaining estimation 

uncertainty after model updating is very low. 
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Table 5.2: Parameter values reported in PEER report vs the mean values of the posterior SMC 

samples 

Parameter 
Values from 

PEER report 
Bounds 

Sample mean of SMC 

posterior samples 

Coefficient of 

variation of 

marginal 

posterior 

𝐸𝑐 22.9 𝐺𝑃𝑎 ±20% 0.80 ∗ 22.9 𝐺𝑃𝑎 2.5 ∗ 10−4 

𝐸𝑠 196 𝐺𝑃𝑎 ±8% 0.94 ∗ 196 𝐺𝑃𝑎 5.3 ∗ 10−4 

𝑓𝑐𝑡 2.1 𝑀𝑃𝑎 9% − 21% of 𝑓𝑐
′ 1.7 ∗ 2.1 𝑀𝑃𝑎 5.2 ∗ 10−4 

𝛽 0.1 0.05 – 0.7 3.7 ∗ 0.1 4.5 ∗ 10−2 

𝑎1
𝐸𝑄1

 

𝑎2
𝐸𝑄1

 

𝜉1
𝐸𝑄1 = 4.3 % 

𝜉2
𝐸𝑄1 = 1.3 % 

0.5 – 3% 

for 𝜉1
𝐸𝑄1

 and 𝜉2
𝐸𝑄1

 

𝜉1
𝐸𝑄1 = 1.0 % 

𝜉2
𝐸𝑄1 = 3 % 

1.0 ∗ 10−2 

1.4 ∗ 10−3 
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Figure 5.4: Pair plot using normalized posterior samples of six unknown FE parameters obtained 

using sequential Monte Carlo 

5.4.3.2 Response comparison before and after calibration using EQ1 data 

The FE predicted acceleration and relative displacement responses of the bridge column 

obtained using the parameter values reported in the PEER report (i.e., before FE model updating) 

and using the sample mean values of the posterior SMC samples (i.e., after FE model updating) 

are compared with the experimentally measured responses in Figure 5.5. The relative-root-mean-

square error (RRMSE) is used as a metric to measure the discrepancy between two time series. 

The FE responses predicted using the PEER parameters (i.e., before FE model updating) match 

poorly the corresponding experimental responses (high RRMSE), while the responses predicted 

using the sample mean of the posterior samples (i.e., after FE model updating) match the 

experimental responses very well (low RRMSE). This demonstrates that by fusing detailed 
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mechanics-based FE modeling with input-output measurement data through Bayesian inference, 

one can capture the observed response of a full-scale structural system extremely well.  

 

Figure 5.5: Response prediction of the FE model vs experimentally measured response, before 

and after model updating 

5.4.3.3 Response prediction before and after calibration using EQ1 data 

Figure 5.6 compares the experimentally measured drift response of the column for EQ1 

to EQ4 with the FE predicted drift response. In Figure 5.6a, the FE prediction is performed using 

the PEER parameters, i.e., before FE model updating. The FE predicted response before model 

updating does not match well with that of the experimental response as conveyed by the high 

RRMSE (show in Figure 5.6a). In Figure 5.6b, the FE prediction is performed using the posterior 

sample mean given in (), i.e., after model updating using EQ1 data. Now the FE predicted 

response matches very well with the experimental response for EQ1 since the Bayesian 

calibration finds parameter values such that there is a good match between FE predicted and 

measured response. No improvement in FE response predicted is observed for EQ2 after model 

updating using EQ1 data as conveyed by no change in RRMSE (EQ2) which is 93%. A slight 
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improvement in response prediction is observed for EQ3 and EQ4 after model updating 

compared to before model updating using EQ1 data as conveyed by decrease in RRMSE (EQ3) 

from 51% to 46% and RRMSE (EQ4) from 52% to 49%.  

Note that the bridge column was in a different nonlinear regime during each earthquake 

excitation during the experiment. For example, during EQ1 excitation, the column was pretty 

much linear elastic with tensile cracking observed at the base and after EQ3 excitation, a fully 

developed plastic hinge was formed at the base of the column. Therefore, one cannot expect a 

great improvement in results for EQ3 prediction (fully nonlinear regime) by calibrating the FE 

model using EQ1 data (linear elastic regime +  tensile cracking only). This throws some light at 

the practical limitations of a living digital twin for response prediction. 

5.4.3.4 FE model updating and response prediction after updating using EQ2 data 

The FE model updating of the bridge column is repeated but now only considering the 

data corresponding to EQ2 excitation. Yielding of the steel rebars was observed during EQ2 

excitation in the experiment. Therefore, the yield strength of steel parameter yf  is estimated in 

addition to   2 2
1 2, , , , , and EQ EQ

c s ctE E f a a .  In Figure 5.6c, the FE prediction is performed using 

the posterior sample mean after model updating using EQ2 data. As expected,  the FE predicted 

response matches very well with the experimental response for EQ2 as conveyed by low 

RRMSE (EQ2) of 33% since the Bayesian calibration finds parameter values to yield a good 

match between FE predicted and measured responses. A slight improvement in response 

prediction is again observed for EQ3 and EQ4 after model updating using EQ2 data compared 

after model updating using EQ1 data as conveyed by decrease in RRMSE (EQ3) from 46% to 

40% and RRMSE (EQ4) from 49% to 44%. However, the FE response does not match well with 
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the experimental response in EQ1 regime and in fact, a decrease in quality of the fit is observed 

as conveyed by increase in RRMSE (EQ1) from 38% to 67%. This can be attributed to the 

selected FE model being not perfect (as in the case of most models in the real world), i.e., having 

model discrepancy. The developed fiber-based distributed plasticity FE model of the column 

does not capture flexure-shear interaction and the bar pullout is not modeled. For these reasons, 

due to model discrepancy, the physical parameters merely act as tuning parameters during model 

calibration. However, the parameter values after calibration at least stay in the physical range as 

the prior distribution is bounded. In a hypothetical scenario with a perfect model with no missing 

physics, we could expect the FE response prediction quality in Figure 5.6c to remain similar to 

Figure 5.6b in the EQ1 regime. However, these aspects need to be further studied and are beyond 

the scope of this thesis. This throws some additional light at the limitations of a living digital 

twin with imperfect models (as all models are wrong). 
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Figure 5.6: Drift response comparison of the FE model (a) before model updating, (b) after 

model updating using EQ1 data, and (c) after model updating using EQ2 data with the 

experimentally measured drift response. 
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5.5 Conclusions 

This paper focuses on model updating of civil structures using Bayesian inference. A full-

scale reinforced-concrete bridge column tested on the LHPOST@UCSD is selected as the 

testbed structure. The parameters of the FE model are updated using the sequential Monte Carlo 

method, a fully Bayesian inference method, using measured input-output data corresponding to 

the earthquake excitation applied by the shake table. The framework shown here can be used to 

tune the unknown parameters of the FE model to match the measured response (model 

calibration). The updated nonlinear FE model acts as a digital twin of the structure of interest and 

can subsequently be interrogated for the presence, location, type, and extent of damage (i.e., 

losses in stiffness, strength, ductility capacity, …) in the structure. The updated FE model can 

also be used to better predict the future performance/functionality of the structure by using it in 

conjunction with probabilistic descriptions of future loading (damage prognosis). The chapter 

also illustrates the concept of a living digital twin of structural systems and highlights its 

potential limitations. 
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6 Conclusions 

6.1 Summary of Research Work 

This dissertation presents a framework for model updating in the time domain using 

Bayesian inference and shows its application to civil infrastructure systems using mechanics-

based finite element (FE) models. The advantage of model updating in the time domain is that it 

can be applied to update a linear or a nonlinear FE model. The updated FE model of the system 

can then be used for structural health monitoring (SHM) and damage prognosis (DP) purposes 

for optimal risk-based operations and infrastructure asset management. Model updating of civil 

infrastructure systems is challenging due to the sheer complexity of modeling them and the 

presence of wide-ranging real-world uncertainties that need to be accounted for in the model 

updating process. In addition, the computational cost of FE model evaluations is still prodigious, 

making the updating process a computationally highly expensive endeavor, and the non-

identifiability of parameters poses significant challenges in the model updating process. Some of 

these challenges are addressed in this dissertation. 

Chapter 2 presents a framework for model updating and identifiability assessment of 

mechanics-based FE models. The discrepancy between the measured output and FE predicted 

response is modeled as a zero-mean Gaussian white noise independent across measurement 

channels in the updating framework. A FE model of a large-scale civil structural system will 

likely contain non-identifiable parameters. Methods based on the Fisher information matrix and 

global sensitivity analysis are formulated in Chapter 2 to detect the practically locally 

identifiable and influent parameters, respectively. The model updating and identifiability 

methodologies are applied to an idealized 2D nonlinear FE model of Pine flat concrete gravity 
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dam. Simulated data is used for model updating, and only uncertainty in input and output 

measurement data due to sensor measurement noise is considered in the data simulation stage. It 

is also shown that the non-identifiable model parameters can result in undesirable non-

uniqueness in the parameter estimates when the inference is performed using methods that rely 

on point estimates (e.g., Kalman filter and its variants), motivating the need for model 

identifiability analysis before model updating in practice.  

In Chapter 3, the model updating framework presented in Chapter 2 is extended to 

account for model form uncertainty focusing only on linear dynamic systems. Modeling the 

discrepancy between the measured output and FE predicted response as a zero-mean Gaussian 

white noise independent across measurement channels is not accurate in the presence of model 

form error. Accounting for model form uncertainty is highly challenging, especially in structural 

systems due to abundant possible modeling errors. The extended framework is based on the 

Kennedy and O’Hagan (KOH) approach – add a delta term to the measurement equation to 

explicitly account for the model form uncertainty. A novel power spectral density – covariance 

kernel pair based on random vibrations theory is proposed to capture common model 

discrepancy time histories arising in linear dynamic systems. The presented extended framework 

is validated on 1-DOF and 2-DOF simple structural benchmark problems using simulated data. 

Uncertainties due to measurement noise and modeling error are considered in data simulation. 

The model updating performed without the delta term (i.e., using the framework shown in 

Chapter 2) resulted in a posterior probability distribution of the unknown physical parameters the 

support of which does not contain the true parameter values. However, the calibration performed 

with the delta term (i.e., using the extended framework shown in Chapter 3) resulted in a 

posterior distribution of the unknown physical parameters whose support contains the true 
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parameter values. Thus, the extended framework enables the physical parameters to remain as 

such and not act as mere tuning parameters. 

Chapter 4 describes computational hurdles in updating mechanics-based FE models of 

civil infrastructure systems and focuses on surrogate modeling to minimize the computational 

cost. Two types of surrogate modeling techniques, Gaussian process regression and polynomial 

chaos expansion, are considered in the chapter. The goal is to investigate the loss of accuracy and 

gain in computational time when performing model updating using direct FE evaluations versus 

surrogate evaluations. In this regard, the Greenup miter gate is used as the testbed structure, and 

three predominant damage modes are considered for the model updating. In addition, simulated 

measurement data is used for model updating, and only uncertainty due to measurement noise is 

considered for data simulation. For the considered miter gate testbed application, Bayesian FE 

model updating relying on surrogate model evaluations is ~4 times faster than when using direct 

FE model evaluations and provides relatively accurate posterior results (compared to those 

obtained using direct FE evaluations). Studies of the type presented in this chapter are necessary 

before entirely relying on surrogate models in Bayesian model updating to be used for SHM/DP 

purposes. 

Most research in updating mechanics-based FE models focuses on simulated data. 

Chapter 5 attempts to validate the Bayesian FE model updating framework using experimental 

data. In this regard, a full-scale bridge column tested on the UC San Diego large high-

performance outdoor shake table is selected as the testbed structure. The specimen was densely 

instrumented with a heterogenous sensor array to measure global and local responses of the 

system and was subjected to a series of ten earthquakes. Through this loading protocol, the 

specimen experienced various levels of nonlinearity from pristine condition to collapse. Thus, 
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the measurement dataset contains data of the structure at different nonlinear regimes throughout 

its life cycle and is ideal for validating the framework. Chapter 5 also illustrates the concept of a 

living digital twin. 

6.2 Recommendations for Future Research 

This dissertation scratches the surface of an emerging topic, cybermodeling based 

SHM/DP for optimal asset management of structural systems. Digital twins form the core of the 

cybermodel and Bayesian model updating framework used in this dissertation to develop digital 

twins of structural systems. Physics/mechanics-based models underpin the digital twin and are 

needed to bring the predictive capabilities to the cybermodels. There are four key phases in 

cybermodeling for SHM/DP: (1) Sensor placement and data collection, (2) Physics/mechanics-

based modeling of the system/asset of interest, (3) Model updating using Bayesian inference, and 

(4) Decision making using the updated model (aka digital twin). Numerous challenges exist in 

each phase of cybermodeling that need to be studied further to enable robust SHM/DP of 

structural systems. The scope of research and/or challenges corresponding to each phase are 

described in the following subsections. 

6.2.1 Sensor placement and data collection 

Sensors are deployed on and around the system to collect input excitation (from various 

sources) and output response (at several locations) measurement data. Collecting the data from 

large-scale structural systems is generally challenged by susceptibility to 

environmental/operational changes and installation and maintenance concerns for the sensors and 

data acquisition system, resulting in the economically expensive part of model updating. The raw 
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data acquired from the sensors also need to be pre-processed (accessed, moved, organized, 

transformed, and cleansed) for FE model updating. Therefore, limited financial resources need to 

be allocated optimally. Significant research already exists in the literature for optimal sensor 

selection and sensor placement. This research needs to be extended to be applicable to large-

scale civil structures. Ideally, the data collected from the optimally designed sensor array should 

enable detection of all the potential damage modes of the system and should possibly enable 

unique estimation of all the unknown parameters in the FE model updating phase. 

6.2.2 Physics/mechanics-based modeling of the system 

Identifying potential failure modes and the sequence of damage stages leading to the 

identified failure modes are essential aspects for the SHM/DP of any civil infrastructure system. 

Civil structures are complex and have several sequences of damage states that lead to failure. 

The potential failure modes need to be carefully studied for a system of interest and the FE 

model should be able to capture these potential damage and failure modes, preferably using 

mechanics-based modeling. Tremendous progress in FE modeling techniques and analysis 

methods over the last few decades enables us to appropriately capture the complex behavior of 

large-scale civil structural systems subjected to static, quasi-static, and dynamic loading, 

particularly in the case of natural hazards, such as earthquakes. Physics/mechanics-based 

nonlinear FE models of civil structural systems (e.g., buildings, bridges, dams, miter gates) can 

reasonably capture the damage and failure mechanisms developing in such systems under critical 

loading environments or due to progressive deterioration over time. Even though mechanics-

based FE models are extensively used for design and analysis of civil infrastructure systems, 

they are seldom used for structural health monitoring and damage prognosis purposes. Future 
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research needs to focus on this aspect. Each civil structure is different; hence it needs a different 

FE model, and the model should be developed by an individual with domain knowledge (expert), 

i.e., the FE model should be vetted before being subjected to Bayesian updating and then used 

for SHM/DP purposes. Boundary conditions and initial conditions of the system should be 

carefully identified and should be appropriately imposed on the FE model for accurate SHM/DP. 

Thus, developing digital twins is currently an expert-driven task. 

6.2.3 Model updating using Bayesian inference 

FE model updating is a research area that has taken significant strides in the past decade. 

However, many hurdles for updating mechanics-based FE model of civil structures still remain 

and must be carefully studied. The major challenge is listing all the sources of uncertainty and 

appropriately accounting for them by suitably formulating the measurement equation in the 

Bayesian FE model updating framework. Some of the real-world uncertainties in civil structures 

are due to noisy output measurements, unknown/partially known/noisy input measurements, 

uncertainty in FE model parameters, FE model form uncertainty, environmental variability, and 

operational variability. Most research work in FE model updating of structural systems focused 

on accounting for measurement noise in input and output measurements using simulated data. 

Chapter 3 of this dissertation focused on accounting for model form uncertainty using the KOH 

approach but only applicable to linear dynamic FE models. More research is needed to develop a 

framework to account for model form error in nonlinear FE models – an extremely challenging 

task. Uncertainty due to environmental variability is another area less focused on in the literature. 

More work is needed to account and compensate for it appropriately in the model updating 

framework. This dissertation mainly considers a single measurement dataset (containing multiple 
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input and/or output measurement channels) for model updating using Bayesian inference. 

However, in some cases, multiple measurement datasets can be used simultaneously for model 

updating using the hierarchical Bayesian inference framework. This framework might allow to 

account comprehensively for all sources of uncertainty. This aspect needs to be carefully studied 

further. After a framework is developed to account properly for all sources of uncertainty, 

research is necessary to validate the framework using real measurement data in various nonlinear 

regimes of the structure to update a mechanics-based nonlinear FE model (that can capture the 

potential failure modes of the structure).  

Bayesian FE model updating using simulation-based approaches is exceptionally 

computationally demanding as it requires repeated evaluation of an expensive-to-evaluate high-

fidelity FE model. A few approaches can be used to mitigate the computational burden of FE 

model updating for large-scale structural systems. They include: (1) using efficient sampling 

algorithms, (2) leveraging parallel computing, (3) using reduced-order models or surrogate 

models, and (4) reducing the dimensionality of the unknown parameter vector θ . The repeated 

model evaluations in MCMC sampling (workhorse method for Bayesian inference) are 

sequential – not ideal for updating expensive-to-evaluate FE models. Sampling methods such as 

Transitional MCMC and particle filters progress sequentially in stages, and the repeated FE 

model evaluations within each stage can be performed in parallel. Other methods such as 

adaptive and multi-stage MCMC methods have been developed recently for efficient sampling of 

the posterior distribution. More research is needed to develop new efficient sampling algorithms 

tailored to update expensive-to-evaluate FE models. Software architectures/packages need to be 

developed that enable seamless integration of FE models (or numerical discretization of partial 

differential equations) with computational Bayesian methods for model updating. If the 
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algorithms support parallelization, one can leverage high-performance computing resources such 

as supercomputers to speed up the model updating process. Message passing interface (MPI) can 

be used to send parallel jobs (such as parallel FE model evaluations) on supercomputers.  

Surrogate models as fast emulators of expensive-to-evaluate mathematical models is an 

area of research that has seen tremendous interest in recent years. Most research focused on 

surrogate modeling of linear and nonlinear FE models subject to static loading using machine 

learning models (e.g., neural networks, Gaussian processes, polynomial regression, and support 

vector machine). However, for comprehensive and robust SHM/DP purposes, surrogate 

modeling of linear and nonlinear FE models subject to dynamic loading should be addressed – an 

area still mainly untapped in the existing literature. Nonlinear FE models of civil structures are 

path-dependent. Thus, techniques such as GP-NARX (Gaussian processes – nonlinear 

autoregressive models with exogenous inputs), PCE-NARX (polynomial chaos expansion-

NARX), and LSTM (long short-term memory) models can be leveraged to approximate the 

dynamic input-output behavior of nonlinear path-dependent FE models.  

6.2.4 Decision making using the updated model 

Decision-making is the most influential part of cybermodeling for SHM/DP and most 

important for the stakeholders. The Bayesian decision theory framework can be combined with 

the updated FE model (aka the digital twin) to enable robust risk-informed decision making for 

intelligent asset management – the goal of the cybermodel. More research is needed in this area.  
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6.3 Final Thoughts 

A lot of research, industry-academia partnerships, and investments are needed to enable 

the development of robust digital twins at scale. We can envision a future where all the assets in 

a portfolio have their corresponding digital twins that dynamically update enabling robust and 

intelligent decision making at the portfolio level. This vision can be extrapolated for intelligent 

infrastructure management at the city or the country level. We still have a long way to go to 

achieve this objective. 
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