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ABSTRACT

A review is given of developments between 1973 and 1977 that
have added the concept of order to general S-matrix principles with

the aim of constructing a bootstrap theory of hadrons..
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CBAFTER I. INTRODUCTION

In 1975 there began an S-matrix approach to strong interac-
tions, based obn a combimatlon of unitarity, topology and Regge
behavior, that stirred widespread interest by generating certaiﬁ of
the predictions characteristic of quark models while showing the
power to go beyond these models. The approach evolved from the dual
models of the late sixties but was qualitatively distinct in rec-
ognizing unitarity from the start as an essential constraint.

Chan Hong-Mo and collaborators'l’2)

have dubbed the new epproach

"dual unitarization", while Venez:lemo(3 ) has called it the "topologicsl
expansion”. The adjective "topological" recognizes the need to
distinguish order from disorder--a central feature of the new approach.
Four years of work on dual topologicel unitarization (pTU) have
produced results sufficlently encoursging as now to warrant a review
article. Our survey here will describe the general picture as it
appears on July 1, 1977. Readers should bear in mind that the field
has n;Jt reached a state of maturity and that by the fime they see"this
article there may have occurred further important developments.

To capture the attention of readers not already impressed by
the pdtentialities of a topological investigation of unitarity, we
call immediate attention to the celebrated but mysterious Okubo-Zweig-
Iizuka (0ZI) rule. The approach characterized as DTU not only gen-
erates this rule but gives a quantitative account of the extent to
vhich the rule is broken. The accuracy of the rule is related to
other approximate hadronic regularities such as the limitation of

transverse momenta, the short-range character of rapidity correlatiors,

the absence of exotics and the exchange degeneracy of leading Regge
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trajectories. All these manifestations of regularity within the
hadron S matrix, as well as others less well recognized., are seen in
the DTU aprroach as different facets of a single principle of order.
Imperfections in order--a degree of disorder--is seen as an inevitable
consequence of unitarity. Yo arbitrary parameters {such as a gluon
coupling constant) are needed in DTU to determine the magnitude of
imperfection.
' Rather than following an historical line in this review we
shall proceed from general S-matrix principles, seeking their
satisfaction by starting from an approximation where the degree of
order is maximized. To the extent that we speak of "quarks" the
concept is not postulated but deduced as a ﬁ:anifestation of order.
Our rules for quark-line diagrams will nevertheless turn out to be the
same as those in appi-oaches vwhere quarks are :I.nserted ab initio.
Readers need not share the bootstrap viewpoint in order to follow our
presentation. The bulk of our review is restricted to the meson
sector of the S matrix, the extension of topologicel anmalysis to
baryons and baryonium being recent and incompletely understood. We
shall see that for mesons the> DTU approach appears remarkably
satisfactory.

Because the injection of order and or topology into hadron

theory is a new departure, we cannot derive the essential DTU concepts.

The reader should regard these concepts as(motivated by the exper-
imental observation of order in hadronic phenowena and justified by
mathematical self consistency. According to the bootstrap hypothesis
the nonlinear constraints of unitarity on a Poincare-invarient

apalytic S matrix are so demanding as to determine the S matrix

.

uniquely. The human mind is not su.fficiéntly 'powe-rf‘ul to find this
unique solution without hints from experiment, and different approaches
have in the past seized on different hixﬁ:s as a guide. The m'Uv
approach focuses on order as ite signpost.

Maximal order is represented through the concept of "plapar
S matrix", a ﬁmda_menﬁal notion developed in Chapter II in a form
suitable only to mesons but which may be generalized to include
baryons. Chapter III develops special internal-quantum-number
consequences for the meson sector, and Chapter IV interrupts the
theoretical argument to survey the extent wo which experimentally-
observed mesons are approximately "plapar"”. Having drawn attention
to the strikingly planar appearance of the meson sector, we proceed
in Chapter V to develop the S-matrix topological expanslon--intended
to correct systematically the failure of the plapar S matrix to
satisfy unitarity. The successive terms of. the topological .expansion
correspond to successively-increasing disorder, the planar S matrix
being the leading term. The concepts of handles and boundaries as
measures of disorder are introduced in Chapter V.

Chapter VI describes a peripheral mechanism tending to suppwess
topological-expansion components as their ;:omplexity increases, while
Chapter VII is concerx;ed with an entirely different convergence '
mechanism releted to internal quantum numbers. Chapter VIII discusses
the renormalization of planar S-matrix pc;les that results from the
higher terms of the topological expansion. ‘

The general portion of our review concludes with Chapter VIII
and we then turn to a variety of models that are based on the general

principles but that attempt quantitative predictions through sim-
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plifying approximations. Chapter IX describes a multiperipheral
bootstrap model that determines positions and couplings of léad\ing
planar Regge trajectories at moderate wvalues of ltl Chapter X
describes a corresponding mc?derate- ltl model of the leading corrections
to the planar components associated with the so-called "cylinder"
components of the topological expansion--with emphasis on the pomeron
picture" that emerges. Chapter X discusses the subtle relation between
SUN symmetry bresking and cylinder violations of planar order. In
Chapter XI we consider 0ZI-rule violation, and in Chapter XII models
of single-handle (torus) components are described, with application
to |:>-A2 splitting. Efforts to incorporate baryons and baryonium
into the DTU approach will be described in Chapter XIII.

The reader of this review is assumed to feel comfortable with
standard analytic S-matrix theory at the level, say, of the monographs
(%) (5)

by Martin and Spearman or Collins and Squires. If terms such as
"cluster-decomposition”, "connected part", "crossing", or "discon-
tinuity" are not familiar, there will be difficulty in following our
presentation. We do not, however, assume any knowledge of topology.
Those aspects of duality which are relevant to ouf discussion can be

found in a recent review by Fukugita and Igi.(s)

-6~

II. THE PIANAR S5 MATRIX; EXTERNAL REGULARITIES

The potion of maximal order within the S-matrix framework is
realized through the so-called "plenar S matrix"”. The concept of
Planar S matrix has not been "derived"”, it has been motivated by exper-
imental facts and is justified by self consistency.(l’ 2,3) The plapar
idea grew out of dual models but as we use it is not equivalent.
Readers who feel the need for experimental motivation may scan
Chapter IV, which surveys the observed approximate meson regularities
supporting planarity as a useful physical idea.

The Sequentially-Ordered S Matrix

Planarity is so closely related to order that we proceed by
immediately introducing the artificial, but profoundly useful notion
of a sequentially-ordered Hilbert space. A physical channel is
entirely specified by giving the momentum, spin and type of each
particle. In our ordered Hilbert space specification of an ordered
channel requires additionally that particles be assigned positions in
a8 sequence. For each N-partlicle physical channel there are N!
ordered channels, so ocur ordered Hilbert space is larger than the
physical Hilbert space.

We may formally represent an ordered asymptotic state by a

bra or ket column vector

>

>

A1 1
A2

|
i

; e
H . . 7

/
' .

where A1 denotes the type, momentum and helicity of the ith particle
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in the sequence. Within the ordered Hilbert space we can define an
S matrix connecting the ordered asymptotic states. We call this the

ordered S matrix and symbolize it as S Elements of the ordered S

o
matrix may then be represented graphically by Fig. II.1. Altﬁough a
similar pictorial representation is often used for physical S-matrix
elements, the ordering of particles there is irrelevant. Particle
ordering is needed even for the .physical S.matrix in the discussion
of statistics but channels which differ merely in particle order are
physically equiwvalent--the corresponding asyﬁptotic wave ﬁm;:tions
and S-matrix elements being equal up to phase factors. For the
ordered S matrix introduced here, changes of particle order generally
change the modulus of an element as well as the phase.

The ordered S matrix, whose elements we depict in Fig. II.1,

is supposed to be unitary with respect to the space of ordered states.

That is,
+ + : .
89 89 = 898, = 1, (11.1)
with .
A A
B B
1 = c Cl. (11.2)

The property of unitarity for SO guarantees a consistent
(factorizable) particle spectrum on which the DTU approdch can be
based. Achievement of such a base is the chief reason for introducing

the ordered S matrix.

-8-

There must of course be a rule for connecting the ordered S
matrix to physical observations--in effect contracting the Hilbert
space of asymptotic states. 'In Chapter V we shall find this rule to
be expressible through a "topological expansion”, in which a "planar
S matrix" emerges as the leading component, elements of the planar S
matrix being linearly related to elements of the ordered S matrix.

(It will quickly be seen why the adjective "planar" is appropriate.)
Planar S-matrix elements do.not depend on particle order and may be
compared to e_xperiment. At the same time, because of the linear
connection with elements of the ordered S matrix, certain striking
regularities are present. Enough of these "planar regularities” have
been approximately verifié;i by experimental observation (see Chapter
IV) to suggest that the leading component of the topological expansion
-~-the planar S matrix--is interestingly close to the physical S matrix.

Roughly speaking, characteristic planar regulax_*ities may be
dividéd into two categories: those associated with internal quantum
numbers and those associated with momentum and spin (including T, C

and P). We shall refer to the former regularities as "internal" and

" 40 the latter as "extermal". The present chapter will confine itself

to external p].énar regularities, while Chapter III will discuss
internal aspects of planarity--where the connection with the quark
concept begins to emerge.

Ordered Connected Parts; Ordered Crossing

We assume & cluster decomposition of the ordered S mtrix,
using "ring" diagrams to denote ordered comnected parts as in the
exanple of Fig. I1.2. The order of lines around each ring is

important, in contrast to the "bubble" diasgrams for physical connected
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parts, which look similar. We introduce the explicit symbol R to
remind the reader of this distinction. The essential feature in
ordered cluster decomposition is that particle lines drawn in a planpe
never cross each other. For example we do not admit decompositions
of the form shown in Fig. II.3. We shall find a similar character
for the pictorial representation of ring products that arise in
expressing unitarity for the ordered S matrix; on a planmar surface no
particle lines need cross. Ordering, in other words, is closely
related to planarity. 7

Assuming ordered connected parts té be analytic functions of
particle momenta, one may deduce an "ordered crossing” property that
relates certain continuations from positive to negative energy with
the replacement of ingoing particles by outgoing antiparticles (or
vice versa)g'() Ordered crossing follows from the unitarity of SO in
the same way that regular crossing follows from the'unitarity of S.
The difference is that each cyclic permutation of particle lines in a
ring connected-part represents a distinct amalytic function, and only
those crossings within a given ring that maintain the cyclic permuta-
tion correspond to elements of the ordered S matrix. .

Consider for example the analytic function corresponding to
the four-line ordered ring diagram of Fig. II.4. By suitably choosing
which energies are positive and which are negative this single

analytic function corresponds to the four ordered transitions such as

|
A> - <D { , shown in Fig. II.5, but does not correspond to
| B c

transitions between ordered channels conteining particles (A, C) and

(B, D). The latter transitions correspond to different analytic

-10-

functions associated with different ring diagrams.

We may use Figs. II.4 and II.5 to explain a phase convention
needed when fermions are present. Even though our simple sequential
ordering must be generalized in order to handle baryons, the basic
idea behind the following rule will survive. If a fermion line is
crossed twice in the same semse (say clockwise) a minus sign can be

(8)

shown to result. Thus, for example, if particle D 1is a fermion,
we have the relation of Fig. II.6. We shall employ the convention
that a reversal of sign occurs when a fermion is crossed at the top
of the ring, with no sign change when a fex;mion crosses at the bottom.
Because the total number of fermion lines is necessarily even, such a

(9,10) Suppose that particles

convention can be shown to be consistent.
C end D 4in Fig. II.4 are fermions, with A and B bosons. Our

convention then says that the first three amplitudes of Fig. II.5 are

- the analytic continuations of Fig. II.k with a positive sign, while

the remaining amplitude of Fig. II.5 carries a mipus sign.

In Chapter V ordered connected parts will constitute the
vertices from which the topological expansion is constructed. Let us
next consider the poles of ordered comnected parts, which in Chapter V
will allow a physicai meaning for lines connecting vertices.

Planar Poles

The same unitarity considerations that imply factorizable pdles
for physical connected parts, with a correspondence between poles and w
external particles, lead to a similar pole structure for ordered
connected parts. Each of the two factors 1n the residue of a pole in
an ordered connected part 1s itself an ordered connected part. Figure

I1.7 gives examples of poles in the connected part of Fig. IT.L
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corresponding to the different channels of Fig. II.5. Here the
residue factors are 5-line ordered connected parts; e.é such they
possess the ordered crossing property. Note that a pole, if regarded
as ;a single-particle channel in the ordered Hilbert space, is not
its;alf characterized by an order. For this reason it will be possible
to attempt a direct correspondence between physical particles--~the
poies of the physical S matrix--and poles of the ordered S matrix,
which we shall call "planar particles"”. The two sets of poles are
different but there must exist some degree of correspondence or there
would be no point in discussing vthe ordered S matrix. Chapter IV
deals with the question of which physically-cbserved hadrons may be
described as "approximately plapar'.

Assuming that some physical partic':les correspond at least
roughly to certain plapmar particles, one may seek to define a "planar
S matrix" whose poles are those of the ordered S matrix (i.e. the
planar poles) but whose multiparticle channels have no order. Elememts
of such an S matrix might then be compared with experiment.

Construction of the Plapar S Matrix from Ordered Connected Farts

We define the plapnar S matrix by giving a rule for constructing
its connected parts from ordered connected parts. Each N-line
conﬁected part of the plapar S matrix is a linear superposition of
the (N-1)! different ordered connected parts that involve the
corresponding plenar particles. This operation effectively contracts
the ordered Hilbert space. The relative coefficients in the super-
position are *1 according to whether an even or an odd number of

(10)

fermion transpositions 18 involved. Thus, in our k-line exampie,

with C and D fermions while A end B are bosons, the planar
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comnected part is given by the six-term superposition in Fig. II.8.
Such & superposition makes eqﬁivalent all particle orderings, up to a
1 phase facfor, and one sees that the spin-statistics rule for
identical particles is satisfied. TFull crossing is evidently échieved
for planar comnected parts. Furthermore, although not quite so

evident; a consistent pole structure is mintained.(lo)

It can be
shown that superposition, according to the rule illustrated in Fig
11.8, leads to factorizable residues of the poles in planar connected
parts-_-with factors which are themselves planar‘ connected parts. For
example, corresponding to Fig. II.7 the 4-line planar connected-part
poles could be represented as in Fig. II.9, where the 3-line connected-
part residue factors are given by superpositions of the type 1llus-
trated in Fig. 1I.10.
Uniterity

Now, 1f_ plansr connected parts have correct symmetry and
crossing properties and possess a consistent factorizable pole

structure, what is inadequate about the planar S matrix? The answer

is, unitarity. If one builds a planar S matrix out of planar connected

parts, one finds unitarity not satisflied--even though the ordered S

matrix in the larger Hilbert space of ordered asymptotic states is
unitary. The contraction rule illustrated by Fig. II.8 fails to
preserve unitarity.

The defect may already be seen in L-line connected parts.
Suppose we consider for a physical (A, B) - (G, D) amplitude the
normal-~-threshold discontinuity in the variables s = SAB = Sqp
= (pA + pB)2 = (pc + pD)Q, associated with a two-particle interme-

diate channel (E_), F). Uniterity implies a formula corresponding to
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Fig. 1I.11, where the bubble diagrams carry no meaning for particle
ordering. (The + and -~ designation :Lnd.icates that the two members
of the product are to be evaluated on opposite sides of the cut in
question. We shall always understand such a rule for unitarity
products and shall henceforth omit the + and - symbols.) We now
show, as indicated in Fig. II.12, that the formula of Fig. II.11l is
not satisfied by planar connected parts.

Iet us start by taking the s-discontinuity in question, term
by term within the 6-term superposition of Fig. II.8. We find a
superposition of four ordered s-discontinuities, as shown in Fig.
II.13. The remaining two terms in Fig. II.8 lack any s discontinuity
because they cannot be crossed so as to connect s channels of the
ordered S matrix. This 'property, crucial to the DIU approach, will be
derived more systematically in Chapter V. Let us next consider the
rule implied by unitarity of the adered S matrix for the discontinuities
of ordered comnected parts. The rule is similar to that of Fig. II.1l
except that particle ordering is everywhere meaningful. Figure II.1h
gives an example. The importanmt feature is that particle lines never _
cross in ordered discontinuity products; ordered discontinuities, in
other words, are planmar prqducts.

If the formulas like that of Fig. II.1lhk are substituted into
the equation of Fig. II.13, we find 2 X 4 = 8 different planar
products of ordered amplitudes making up the discontinuity of the
planar connected part in question, f.e. the left-hand side of Fig.
IT.12. On the other band, were each member of the product on the
right hand in Fig. II.12 expressed as a superposition of six (6)

ordered connected parts, we should find 6 X 6 = 36 different

~1h-

products. Each of these would indeed be plapar products, but there
would be in addition 36 - 8 = 28 nonplanar products--examples of
which are shown in Fig. II1.15. Because of these nonplanar components
of the right-hand side of Fig. I1.12, the left- and right-hand sides
cannot be -equal ; the ;ble.nar S matrix cannot be unitary.

It will be the task of Chapters V, VI and VII to show the
sense in which nonplanar discontinuity products are smaller than
their planar counterparts, so that the plapar S matrix has a chance
of approximating experiment. Chapter V develops a systematic expen-
sion for calculating the physical S matrix starting with the plapar
S matrix, based on the necessity of achieving unitarity for the
physical S matrix. .

The absence of nonplanar discontinuity products leads to
planar S-matrix regularities not present in the full S matrix. But
unitarity of the ordered S matrix, from which the planar S matrix is
constructed, st1ll implies an infinite set of nonlinear relations
between ordered connected parts. To the extent- that solutions of
these relations may not exist, there 1is no proof that an ordered
apalytic unitary S matrix exists, Just as there is no existence proof
for a physical unitary apslytic S matrix. In order to proceed we are
forced to assume the existence of an ordered apalytic S matrix with
plapar discontinuity formulas for 1ts connected parts.

Charge Conjugation in the Ordered S Matrix

Crossing implies that for every planar particle there exists
a corresponding planar antiparticle. TCP equivalence of the two
ordered amplitudes in Fig. II.16 then requires that the charge

conjugation of an arbitrary ordered channel
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w >

~ be . ’

> o)

that is, a channel where each particle has been replaced by the

corresponding antiparticle and the order has been inverted.(lo)

For
ordered connected parts charge conjugation invariance thus means that,
when particles are replaced by antiparticles and the cyclic order is
reversed, as indicated by the example of Fig. II.17, the value of the
connected part is unchanged up to a phase factor.

Self-conjugate planar ;articlgs will be important to certain
of our subsequent arguments. Each such particle 1s characterized by
being either even or odd under charge conJugation.I That is, in the

notation of a single-particle chanpel

(I) = CI(I), where c; = 1. (11.1)

It follows that an ordered connected part involving only self-conjugsa®e
particles has the property shown in Fig. II1.18. That is, inversion
of order is equivalent to multiplication by the overall product of

charge-conjugation sytmetry factors. (11,12)

This rule will turn out
in Chapter X to be of practical importance, especially when gen-
eralized to ordered connected parts involving ordered reggeons.

We point out here a confusing facet of charge-conjugation

invariance for ordered and planar connected parts. One expects

charge-conjugation invariance to require venishing of connected parts -

for self-conjugate particles when the product of all symmetry factors

is -1. Such vanishing, however, does not occur for ordered connected

-16-

parts--where charge conjugation produces an inversion of order. The
vanishing does occur for a planar connected part, 1;ece.us_e within the
superposition by which the latter 1s constructed (e.g. Fig. 11.8 with
all plus signs because self-conjugate particles must be bosons) every
ordered connected part may be paired with one of opposite order. If
the overall product of charge-conjugation symmetry factors is -1,
the two members of each pair cancel each other. (11,12)

The consistent factorization of the poles of the planar S
matrix ensures that the)‘r wiﬁ respect the charge-conjugation selection
rule. In Fig. II.9, for example, if particles A, B, C, D, E are all
self conjugate, the pole residue is nonvanishing only 1if

C Discontinuities of plenar connected parts, however,

E = CACB = CCCD'
do not generally resﬁect charge-conjugation selectlon rules. For
example, the eight-term superposition corresponding to Figures II.13
and II.1hk (again, with all positive signs) does not vanish when

CECF = -CACB = -CCCD, that 1s, when the intermediate channel has
charge-conjugation symmetry opposite to that of the initial and fipal
channels.(lj) As discussed in Chapter ?C[I it 18 necessary to include
nonplanar terms such as that of Fig. II.15a In order to achieve the
expected cancellation.

Exchange Degeneracy

We have remarked on the absence of poles and normal thresholds
in an ordered connected part from any channel invariant that does not
correspond to a cluster of adjacent particles in the cyclic order.
Within the 4-line ordered connected pert of Fig. II.l, for example,

12 sy, = (p + Dy )2, we have poles and normal thresholds in

1)

=8 and in s =5 but not in s =8

a3 = %cp AD BC AC BD’ De;ignating the
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three Mandelstam variables here as s = Sap = Scp? -t =8 = s

, AD = Spe
and u = BAC = BBD" the absence of u singularities means that both
in z, = cos eg.m. and z, = cos Qg.m. there is no "left-hand

cut"”. The Froissart-Gribov partial-wave amplitudes for both s and
t ordered reactions then have the property, called "exchange
degeneracy"”, that ordered amplitudes of opposite signature are equal.
(Signature need never be mtroduced;) Regge trajectories for ordered
connected parts correspondingly carry no signature label.

Although ordered Regge poles have neither well-defined
signature nor well-defined parity, the product of signature and parity
or "maturality” is meaningful. A similar statement applies to charge-
conjugation symmetry for ordered Regge trajectories containing self-
conjugate planar particles. The product of sigmature and charge-

conjugation symmetry is well defined. (10)

Moving along an ordered
trajectory planar particles alternate in signature, parity and charge-
conjugation symmetry.

When comnected parts for the six differént orders are super-
posed to form a four-line planar connected part (Fig. II.B), u
singularities will generally occur and exchange degeneracy will be
lost. Pole positions cannot, however, be altered by the superposition
so in planar connected parts Regge trajectories of opposite sigmturé
will continue to coincide. Regge residues of opposite signature are

not equal but are simply related.(lo)

One often characterizes this
planar regularity as exchange degeneracy, even though it applies only

to Regge poles and not to the full Froissart-Gribov planar amplitude. -

-18.

Absence of Regge Branch Points and Fixed Singularities
The absence of u singularities from the ordered connected
part of Fig. I1.4 means that the two double discontinuities psu and

both vanish. The usual arguments demanding Regge branch points
5)

ptu

in JS and J. t then disappear, together with the arguments

'dema.nding fixed singularities at nonsense points of unphysical

signature. Although no proof has been given,* the absence of Regge
branch points and fixed singularities from ordered connected parts has
been widely conjectured. Because superposition cannot create new
singularities, a similar regulé.rity would attach to planar connected
parts. In our review we shall adopt this conjecture and assume the

only planar Regge singularities to be moving poles.

Often invoked is Mandelstam's demonstration that nonplanar Feynman
diagrams are needed to generate Regge cuts. Perturbation arguments
are inadequate, however, because, as shown in Chapter VIII, the

ordered S matrix probably has no weak coupling limit.
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FIGURE CAFTIONS
Chapter II..

An element of the ordered S matrix.
Cluster decomposition of the oi'dered S matrix.
Nonadmissible decompositions of S,.
A four line, ordered, ring diagram.
Four ordered transitions related by ordered crossing.
Ordered crossing relationship 1f D is a fermion.
Poles in the ordered comnected part of Fig. II.h.
A planar comnected part defined as a superposition of
ordered connected parts.
Foles in & plapar connected part.
Residue factors of planar, three line connected part.
Physical unitarity relationship. Bubble diagrams carry
no information about ordering.” A
Graphical statement of the fact that planar connected
parts do not satisfy unitarity.
The s discontinuity of Fig. 11.8.
Two-particle discontinqity of an ordered connected part
implied by thé gnitarity of the ordered S matrix.
Compare to Fig. II.11. -
Examples of nonplanar products present on the right-hand
side of Fig. II.12.
TCP equivalence of two ordered amplitudes.
Charge conjugation invariance of ordéred cox;nected parts.
Charge conjugation relationship for ordered connected

parts of self-conjugate particles.
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ITI. INTERNAL PLANAR REGULARITIES; QUARK-LINE DIAGRAMS
Any connected pa.rt\must vanlish for combinations of incoming

particles that carry a nonzero amount of conserved quantity such as
electric charge, but with ordered amplitudes there may additionally
be a constraint on the allowable order of particles. Ord_.ered
connected parts for certain permutations may be required to vanish
even though there is a zero net flow of all conserved quantities "into
the ring". (An example the reader may anticipate is the vanishing of
any ordered amplitude where two planar :t+ rarticles are adjacent.)
The special ordered constraints will turn out to be describable
throughvdiagrams that associate plapar particles with oriented two-
dimensional "strips" whose two opposing edges "carry" the internal
quantum numberg. These two edges act in some ways like a quark-
antiquark pair, so we shall refer to the pictorial representation of
ordered constraints as "quark-line diagrams”. Much of the reasoning
used in this chapter is due to Weissmnn.(7)

| It bhas been shown by Weissmann that 1if ordered selection rules
exlst, ordered unitarity requires planar particles to group themselves
into distinct families, each family being labeled by a pair of indices
(1,3). The first index 1 labels another set of planar particles--
those allowed to dmmediately precede (clockwise sense) the (4,J3)
family members. These predecessor sets are unique and nonoverlapping
with each other. The index J 1labels the set of "successor” plamar
particles alloved to immediately follow the (4,)) family members.
Charge conjugation invariance means that for each predecessor set there
is a corresponding successor set made up of the antiparticles, so the

indices i and J cover the same range. A member of the (i,])

?’x
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family lies itself in the predecessor set j and at the same time in
the successor set 1.

- We present an outlined derivation derivation of these
statements as an example of Weissmann's reasoning. Consider a planar
particle A and denote by 1A the set of all plapar particles that
immediately precede A in the counterclockwise permutation of some
nonvanishing ordered connected part. According to charge conjugation
invariance, the antiparticles of iA constitute the set of all
particles that can immediately follow A. ‘Suppose now that some
particle C appears in both of two "predecessor" sets i, end iB,
asso;iated with two different ﬁarticles A and B. There must then
exist nonvanishing discontinuity products of the type shown in Fig.
III.1 implying that B appears in the predecessor set i, emd K'
in the predecessor set iB' A similar argument based on Fig. III.2
next allows the conclusiop that if any particle other than C, say
D, appears in ;A 1t must also appear in 1B' The two sets 1A and
iB ‘must therefore coincide completely if théy share any rarticle.
Conversely, each planar particle belongs to one and only one pred-
ecessor set, which may be designated by an index 1 that makes no
reference to any of the particles for which i‘ is the predecessor
set.

The foregoing line of reasoning evidently can be applied
also to the set of planar particles immediately following (clockwise
sense) some designated planar particle, leading to identification of
unique and nonoverlapping "successor” sets. We have already remarked

how charge conjugation invariance gauarantees that for each "pred-

ecessor” set 1 there is a successor set consisting of the cor-
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responding'antiparticles. A natural convention is to deslignate the
latter set with the same index 1, making explicit that predecessor
sets are in one-to-one correspondence wiﬁh successor sets.

These requirements are compactly summarized by requiring any
nonvanishing connected part to be representable through a diagram of
the type of Fig. II11.3, vwhere the family indices appear on directed
"links" connecting succeésive particles. Particle A belongs to the.
family (1,3), B to the family (Jj,k) and so on. For some
purposes it 1s helpful to visuallze the succession of directed 1links
in Pig. I1I1.3 as the boundary of a two-dimensional oriented surface.
Isolating an individual planar particle, we then associate it with an

oriented "strip" whose two edges--corresponding to predecessof and

" successor links--characterize the (internal) selection rules.

Now consider an additively-conserved internal quantum nﬁmber
Q , such as electric charge. How can conservation of Q be compat-
ible with the rules embodied in Fig. ITI.3? A patural guess is that
all plapar particles belonging to a family (1,3) share a common '
value of Q , a value that we designate as Qij' (We}ssmanp has
shown that, if such is not the case, then all values of Q from +w
to -0 must appear on particles in the plapar spectrum.) The
requirement that incoming Q's shall sum to zero can then be shown

to imply that Q depends on the indices 1 and J according to

1)
the rule:

N

= - . IIT.1
Q a, 9 ( )
Here we see the quark-antiquark role for the two links. The rule

(II1.1) is equivalent to saying that 1ink 1 ‘carries"” a charge 9 -
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The opposite direction _of the two links means that a planar particle
belonging to a family (i,J) bas charge equal to that of & "quark"
of type J plus that of an "antiquark" of type 1.

We are hoping to establish a correspondence between planar
particles and physical particles, so we are led to ask for the minimum
number of link types (predecessor or successor sets) capable of
accommodating the observed additively-conserved hadronic internal
quantun numbers. Putting aside baryon number for the moment, exper-
iment tells us thet at least strangeness and charm must be considered
in addition to electric charge. With no conserved quantities at all,
there would already be one link type, so in order to encompass three
conserved quantities we need 3 + 1 = 4 1ink types. Table ITI.1 -

shows one straightforwvard way of attaching quantum numbers to links.

Table III.1
Link type . Charge Strangeness Charm
(successor index)
1 n 0 0 o]
2 1 (o] O
3 0 1 o]
4 c o] .0 1

Should further conserved quantities be discovered, one adds mére link
types. A total of N different links can accommodate N-1
additively-conserved quantum numbers. In the language of flavors, ve
have one link type for each flavor.

Because the quantum numbers of a planar particle, according

to Formula (III.1), reflect only the differences of the quantum numbers
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attached to the two associated 1links, one may add any constant to the
latter without changing the ordered S matrix. In particular we may
uniformly subtract_ 1/3 from each entry in Column 1 of Table III.1l

so as to achieve the usually-as-signed fractional quark charges. (When
'baryong‘ are incorporated into an ordered S matrix the link quantum
numbers will become unambiguous.) |

We empﬁasize ‘that the planar family assigmments in Tabl.e ITr.1
are tentative and subject to self-consistency checks with respect to
ordered discontinuity formulas. Weissmann's rgasoning permits an
arbitrary collection of link t‘;ypes but this reasoning has only
considered _the topological constraints of ordered discontinuity
formulas--not the dynamical constraints flowing from the character of
the latter as nonlinear relations between ordered amplitudes. ‘ It may
be hoped that the existence of a variety of flavors is uniquely
'required by ordered unitarity. .

Why have we not included baryon number in Table III.1? It will
be seen in Chapter XIII that a more\::omplex notion of particle order].né
than & simple linearly-linked chain is needed in order to describe
baryons. The comnection with the quark concept reached in the present
chapter shows that sj.mple sequepfial ordering, togéther with ordered
selection rules, implies qq structure but not qgq. Chapter XIII
describes a generalization of the notion of particle order that

maintains the essential characteristics of planarity and that yields

a planar spectrum corresponding to gqaq and qqq , with certain

superpositions and contractions thereof. The more general ordered

T
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S matrix may be split into noncommunicating seétors* one of which,
containing only qa states with baryon number zero, is closely related
to the simple sequentially-ordered S matrix; all external and internal
regularities remain the same. The conslderations of the present
chapﬁer will survive the generalization but they apply only to
"ordinarya mesons.

The assignment in Table III.1, together with Fig. III.3, leads
to a collection of remasrkable "internal" planar regularities for »
mesons. In addition to the requirement that planar mesons fall'into
families with qq quentum numbers (no "exotics"), the demand that the

.succession of links constitute a single boundary leads'to the 0ZI rule
forbidding any reaction not dépictable in the connected form of Fig.

III.5. Consider for example the four-particle reaction

A{n,p) + B(p,n) - TN, & + DlgN) .

Although all internal quantum numbers are conserved, there is no
connected quark-line diagram, so the reaction 1s forbidden at the
planar level. Representation of this reaction requires two dis-
connected boundaries, and the reaction becomes allowed only at a
-higher level of the topological expansion (see Chapter XI).

An important special case of the 0ZI rule relates to planar
particles of the type (1,1), which carry overall zero quantum

mumbers but which have no planar communicetion with channels where the

Although the different sectors do not communicate through ordered
unitarity, a complete underétanding of any one ordered sector

involves a1l the others.

-32-

link type 1 fails to appear, even though the overall channei quantum
numbers are zero. Chapier IV will discuss the relevance of the 0ZI
rule to the stability of (c,c) (charmonium) and (N\,A) (strangeomium)
stateé like VY, V', ® and f'. The physical consequence for the
(n,n) and (p,p) families is more tricky because of isospin symmetry,
which means that every (n,n) planar particle has a degenerate (p,Dp)
partner. As always the case with degeperate quantum systems, one

then finds 1t physically useful to consider those special linear
superpositions that are unmixed by elements of the symmetry group. 1In
the present case the two superpositions are the symmetric and anti-
symmetric combinations 'J%§ ({n,n) * (p,p)], corresponding to

I=0,1 with Iz = 0. With such states the usual 0ZI rule becomes
replaced by a statement of degeneracy between I =0 and I =1 _in
the ordered S matrix. Chapter IV considers the experimental evidence
for such degeneracy. Notice that we have given no argument requiring
internel symmetry (such as isospin invariance) in the ordered S
matrix. Such arguments may eventually emerge from nonlinear unitarity
(dynamical) requirements.

Were SU3 symmetry exact (or almost exact), physical
éxpression of the 0ZI rule would be a prediction 6f syﬁmetry between
octets and singlets rather than a rule forbidding certain decays of
(MmA) states. To decide whether the internal planar regularity is
more usefully described as an 0ZI selection.rule or as an SUN
multiplet degeneracy, the important question is whether the breaking
of SUN symmetry is large or small compared to the departure from
planarity of the physical particles in question. SU2 symmetry

breaking is so small that here one chooses to emphasize 1sospin
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degeneracy, whereas SU3 and SUh symmetry breaking 1s so large
that one usually (although not always) chooses to think of an 0ZI
selection rule. Chapters X and XI discuss these subtle issues; a

superficial discussion unavoidably occurs already in Chapter IV.

Fig. III.1.

Fig. 1II.2.

Fig. ITI1.3.
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FIGURE CAFTIONS
Chapter III
(a) A nouvanishing discontinuity in which C appears as
a predecessor to A, and C as successor to B or,
(b) C as predecessor to B, and C as successor to A.
A discontinuity which establishes D as a predecessor

to B.
Quark-line diagram for an ordered comnected part.
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IV. HOW FLANAR IS THE PHYSICAL S MATRIX?

The plapar S matrix plays a central role in fhe topological
ex;éansion--serving as the starting point. It is correspondingly
important to know how closely the physical S matrix resembies its
p]azia.r counterpart; it would bé reassuring to establish that the
planar S matrix gives a reasonably accurate representﬁtion of‘ the .
real world. ‘I,n order to discuss baryons we shall need a generalization
of the simple sequential ordering on which the plapnar S matrix 1s
based, but for the meson sector of qa states the external
regularities described in Chapter II and the internal regularities
described in Chapter III will survive the generalization. ILet us
consider first the extent to which observed mesons exhibit the
characteristic external planar regularities required by ordered

unitarity.

Exchange Degeneracy of Regge Trajectories

At the hee;rt of planarity is the absence of certain dis-
continuities from ordered connected parts. We havev stressed in
Chapter II the consequence that Regge trajectories of the plsnar S
matrix occur in degenerate pairs of opposite sigoature--a property
known as exchange degeneracy (EXD). To what extent do physical meson
trajectories display E)d)?

The lesding (highest angular momentum at fixed mass) hadron
trajectories contain mesons of natural parity and "patural charge
conjugation symmetry". The tendency of this entire group of
trajectories to occur in EXD pairs is striking. The odd-signature,
zero-strangeness I = 1 trajectory, containing the p (J = 1) and

g (J = 3) mesons, has been experimentally determined over the
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interval -1 GeV < t <3 GeV. The corresponding even-signature
trajectory, containing tf;e A, (J = 2) meson, has been determined
over a comparable interval and, as shown in Fig. IV.1, 1s found to
deviate from the odd-signature t';ra,jectory by no more tha.h ~0.1 units
in J. The dév:lation near J =2 4s in fact much less. The accuracy
with which the A2 trajectory coincides with the p trajectory is
far better than the accuracy of SU3 symmetry, approaching the
accuracy of SUQ' symmetry. For the leading I =0 (nonstrange)
trajectories EXD is experimentally well satisfied for

t 2 0.5 Ge\F although for t < 0 there is an important degeﬁeracy
breaking associated with the concept of pomeron. We shall deal in
detail with the latter phenomenon in Chapter X, where we show that a
large deviation from planarity in the I = O low-t sector is to be '
expected. No such large deviation is expected in the I = 1/2 sector
and, indeed as seen in Fig. IV.1, the X* (J = 1) and K (J = 2)
trajectories display a degree of EXD comparable to that of p and

A,. In Chapter XII we shall see how even the small I = 1/2, 1
deviations from EXD may be systematically and quantitatively explained
through a nonplaner component of the topological expansion.

For the next group of meson trajectories--which have unnatural
parity--there 1s less experimental knowledge but the general pattern
appears similar. Eicept for I = 0 at low t the data is cm}ﬁtible
vwith reasonably-accurate EXD. For example, exchange-degeneracy
between the n and B trajectories. Thus within the meson sector
there is general édherence to exchange degeneracy--with the important
I=0, low<t exceptions, to which we intend to give extensive

attention.
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Weakness of Regge Cuts; Short-Range Order in Rapidity

Less striking than EXD but still worthy of note is the apparert
weakness of Regge cuts in observed physical amp‘litude»s. In Chapter II
we drew attention to the widesmread belief that the only Regge
singularities of the planar S matrix are factorizable (moving) poles.
A qualitatively-remarkable aspect of high-energy hadron reaction exper-
iments 1is the extent to which a simple Regge-pole description has
turned out to be successful both for exclusive and inclusive meas-
urements. The concept of short-range order in rapidity has been of
great phenomenological utility; such short-range -order--a consequence
of factorizable Regge poles--is not easily understood if Regge cuts
are important. The general success of Regge-pole repreéentations is
so well established that one easily forgets the need to understand
why other Regge singularities are less significant. If we are able
to explain why nonplanar components of the topological expansioq are
small, we expect automatically to understand why Regge 'cuts are wesak.

Isospin Degeneracy

Passing to internal planar regularities, let us consider the
property of v I =0, 1 degeneracy--predicting quartets of equivalent
nonstrange, noncharmed states. In the physical S matrix the (p,w)
and (Ae,f ) combinations provide outstanding examples with respect to
both masses and couplings. The observed déviations from degeneracy
are strikingly small. When the concept of isospin degeneracy is
extended to Regge trajectorles we find, Just as- for I = O exchange
degeneracy, that deviations become large at smazll t. The explamation,
discussed in Chapter X, 1s closely related to that for low~-t EXD

breaking.
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The lowest;mass unnatural-parity mesons, x and 1, seem to
display a large deviation from isospin degeneracy, but the dbreaking is
no larger than expected for such low-mass states from the nonplanar
components of the topological expansion needed to restore unitarity.
The degree of x4 isospin-degeneracy breaking is émmr in mag-
nitude to the EXD breaking responsible for pomeron phenomens.

021 Selection Rule

Chapter III drew attention to certain reactions forbidden at
the planar level because of not corresponding to single-boundary

(connected) quark-line diagrams.(lh)

To consider experimental evidence
on such reactions we need to associate physical particles with-planar
families. Within the group of leading physical mesons the following

association follows straightforwardly on the basis of quantum numbers:

Family J° - ot 17" ot
+ +
n,Dp x o A,
I W
}\’ P KO . KO KO
* N
A,n Kt k" k"

Isospin degeneracy allows the further identifications,

2. [on + p,p T ® £
Ve
2 {n,n - p,p] 7° o° . A2°

Va2

although as noted above the physical v 1s badly split from the n.

When antiparticles are considered we have accounted in the above

listing for 8 of the 9 planar families associated with the first three
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flavors (isospin and strangeness). What physical particles should be
associated with the remaining (A\,A) family? To the extent that SU,
nonet groupings are experimentally recognizable, it is natural to

assign the ninth member to this final category:
NA 1! ? £’

With this complete set of assignments we are in position to discuss
the expérimental status of the 02I rule.(lh)
The most celebrated examples of 0ZI-forbidden reactions are

decays of the type

{(»2) = (pn) + (m,p)

vwhich conserve all internal quantum numbers but which do not admit a

connected quark-line diagram. Illustrations are @ -+ n+p- and

£' - :r+:r'. When compared to the corresponding decays w - n+p and

b g 1t+:t' --allowed by the OZI rule--a dramatic suppression has been
experimentally found. The available evidence, recently compiled by
Okubo(15) indicates & high degree of planarity in this sector of the
physical S matrix. We shall see, furthermore, in Chapter XI that the
small observed rates of these 0ZI-forbidden decsys are understandable
through unitarity-required corrections to the plapar S matrix. All
2.particle decays of n and n' are forbidden by standard selection
rules, so no similar experimental tests of the 0ZI rule are possible
here.

Also reviewed by Okubo is evidence that ® and f' are
ﬁroduced much less frequently than ®w and f in reactions where

the other particles do not "contain" strange quarks. These reactions
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1lve baryons and cannot be systematically considered until a
tove 4 ¥ FIGURE CAPTION

generalization has been made of the planar S matrix. It is natural,
: : Chapter IV -

however, to anticipate some form of connected quar_k-line representation

] . Fig. IV.1l. The observed Regge trajectories for the lead bic
and a generalized OZI rule, with planar baryons classified into 1e e ,‘j ling amilies

) of mesons. The. various lines are not fits, but .
(1, 3, k) families (a baryon "without strange quarks” is one belonging s, but are meant

] . to guide the eye. For + > 0 EXD is seemn to b
to a planar family where neither 1 nor J nor k isa A). & = ’ °ve T

Reactions involving baryons may then be admitted inmto evidence and, good. Ve have assumed pomeron-f idfntity (see ?mpter X).
as shown by Okubo, (15) they give mﬁressive e.dditionai support to
plaparity as a good physical approximation. We famrk that, even when
initia.l particles contain no strange quarks, production of ¢ and f' ' .
may be allowed on & planar level if other "stranéeness-carrying" _
particles 1ike K or K* are produced. As discussed by Olubo, (15)
it 1s found experimehtaliy that reactions involving n' end 1
display less planarity than those involving ¢, o or f'. and f.
Thg degree of nonplanarity is, howevér, no greater than a].reaiiy
indicated by the si-q‘ - mass splitting. Chapter X will show that ‘all
these I = 0 deviations vfrom simple planar behavior are understandalle
through the second term of the topoiogical expansion-~the leading
. correction required by unitarity. ‘
The reader need hardly be r‘emindedvqf the spectacular. accuracy '
"of the 0ZI rule for charmonium (c,c) states. Again we refer to the
Okubc; rev:lew(lS) for details. In Chapter .XI we explai.ﬁ why mesons of
increasing mass are expected to show increasingly accurate plaparity. 7 ) :
To summarize this chapter, there exists widespread evidence
that the meson sector of the physical S matrix _igvéfproximtely planar.
It is ﬁhen reasonable to treat corrections to the.r plané._r S matrix by
perturbation techniéu'es gnd, e_;ccept for Chapters IX é.nd XIII, the

remainder of ourvreviéw is devoted to sﬁch corrections.
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V. THE S-MATRIX TOPOLOGICAL EXPANSION

It was emphasized in Chapter II that the extreme degree of
order embodied in the planmar S mtﬂx 16 inconsistent with unitarity.
The present chapter will show how one attempts systematically to regﬁin
unitarity through a succession of corrections to the plamar S matrix.
Since the succession 1s constructed through topological considerations
we begin by reviewing some properties of graphs with ordered vertices.
Physically the reader may anticipate that such vertices are to be
assoclated with the ordered comnected parts defined in Chapter _II.

Graphs with Ordered Vertices

By an ordered vertex we mean one whose attached lines lie in a
definite cyclic sequence--admitting the two-dimensional graphical
representation 1llustrated in Fig. V.1l. Here we show a 5-line vertex
with the cyclic order BEADC as well as a four-line vertex with the
order FGDC. (A convention must be adopted to associate the stated
order of lines with a sense of rotation sabout the vertex--clockwise or
counterclockwise. We bave chosen the clockwise sense in Fig. V.1,
consistent with Chapters II and III, and will continue this coﬁvention
throughout our review.) We have seen already in Chapter II how the
unitarity condition on the S matrix, which involves products of
connected parts, leads to .consid'eration of "producfs of ordered
vertices” where certain lines from one vertex are identified (Jjoined)
with certain lines from another vertex (Figs. II.1llk and 11.15).
éuppose in Fig. V.1, for example, that the initial channel contains
two particles corresponding to lines F and G while the final
channel contains three particles corresponding to the lines A, B

and E. Suppose further that a channel communicating with both of
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the foregoing channels contains two particles corresponding to the
lines C and D. Unitarity will then lead us to consider the product
graph corresponding to the dotted lines in Fig. V.1 joining the two
vertices. ‘

More generally, if unitarity is used to prescribé_ itémtiﬁ
corrections to a starting approximation based on ordered amplitudes,
one anticipates a characterization of S-matrix components through the
topology of graphs built from ordered vertices.

Boundaries and Handles as Expansion Parameters

It is known that each graph built from ordered vertices may be
mapped (without crossing of lines) onto a two-dimensional surface of
uniquely prescribable "minimal topological complexity". The surface
is characterized by the number of "handles" h and by the way in
which external lines are attached to varlous boundaries. We show
below, with egamples, how the classification of an arbitrary graph is
achieved. Let us tentatively assume, subject to the requirement of
consistency with unitarity, that a physical connected part describing
the interaction of particles A, B, C, '+ may be decomposed into a .
series of components each belonging to & definite two-dimensional
topology. Following Veneziano,e’ 16)“9 call this decomposition the

"topological expansion”:

e B b ,b » * 00
m B C = -;- 2 M.hl 2 ; (v.1)
B=0 b ,B 7

A boundary bi accommodates a subset of the extermal lines in a

definite cyclic order, so the possible values taken by boundary

indices are enumerable by dividing the total number of external lines
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into all possible subsets and within each subset considering all
possible cyclic orderings. To avoid misﬁnderstanding let us write out

the explicit boundary structure in the topological expansion of a

B - *
" 4-line commected part:

. T i
w8, CsD B Z; M:BCD . NQBDC . ,écnn . NQDBC . NQCDB . NQDCB
+’ MQB’CD . "ﬁc’BD . MJ;D,BC ,
. B N{;,DCB L A Gl Mﬁ,ABD . M_(t:l,DBA

. uDARC  \DsCEA

+ MQ’B’CD . Mf;,C,BD + MﬁB’C’D + Mﬁ’D’BC + MﬁC’B’D

R NQD,B,C + ,,Q,B,C:D . (v.2)

The order in which the different boundaries are listed 1s meaningless
and cyclic permutations of lines on a given boundary leave the

topology unaltered. For example,

Mg,ncn _ M:CD,A . MgDB,A.

It 1s evident that the total number of boundaries cannot exceed the

The internal quantum number selection rules of Chapter III may

require certain components to vanish.



-h7o ' -

total number of external lines. The reader will no doubt have

surmlised that the components with a single boundary and no handles

comprise Qhat we have in Chapter II called the planar S matrix. Iater .

in the present cf\apter we shalJ. return to this important physical
point, but first we deal with some purely mathematical \questions.

How does one determine the topol’ogical classification of a
graph built from ordered vertices? We state here a prescription given
by Bimonds, (a7) drawn to our attention by Stapp. Take any graph, such
as the l-vertex, 6-extermal line example of Fig. V.2. We assume that
all internal lines connect different vertices. Edmonds' rule avoids
the need to construct explicitly the two-dimensional surface on which
the graph is to be mapped. Working directly with the graph, start at
any external line and proceed clockwise aroumd the vertex until
reaching the first line that is not external. The;p follow that line
to the next vertgx, at which point the process is repeated--always
proceeding clockwise around each vertex. Eventually one will return
to the starting 'point. The complete closed orbit defines & boundary.
All external lines that have been crossed in such an orbit may be said
to exit from the same boundary and in a definite (cyclic) order. In
Fig. V.2, for example, the lines A,F,B and C, 1in that order escape ‘
from the dashed boundary, while the lines D and E -escape from the
thin boundary. Readers conditioned to quark-line diagrams may feel

the urge to associate quarks with Fdmonds' "orbit" connecting points

on the same boundary, but Edmonds presumably had never heard of quarks

when he devised this solution to a purely topological problem.
For a given graph let us introduce a parameter bmax giving

the total number of different boundaries that would occur if at least
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one additional external line were inserted between any adjacent pair
of internal lines at each vertex. More concisely, bmax is the total

number of different orbits that can be traced through the graph by

Bdmonds' rule regardless of whether the orbit crosses an external

1ine.* In the graph.of Fig. V.2, bmax = 3. The parameter bma.x is
important because of a formula due to Euler that determines the
(minimum) number of handles on the embedding two-dimensional surface.
If the total number of vertices is v and the total number of
internal lines is e (in Fig. V.2, v =14 and e = 7), then Euler’'s

formula for the minimum number of handles 1s

E}e-v-bmax
h = > . (v.3)

Using Euler's rule we f£ind that the minimum number of handles,
0;1 a two-dimensional surface capeble of accommodating the graph of
Fig. V.2, is h = 1. (Such a surface 1is often called a torus.) A
connected-part component with the topology of Fig. V.2 we designate
in the notation of Eq. (V.1) by My " ’"®. e reader may verify that
a connected-part component with the topology of Fig. V.1l would be
designated by MI;”BEA.

Graph Representations of Connected-Rart Components

A graph consisting of a single vertex (no internal lines) may
be mapped onto a surface with no handles and a single boundary. A

connected-part component with such topology 1s of the class MgBC“

--often characterized as the planar class. Conversely we may

All possible orbits will have been enumerated when each internal
line is seen to have orbits on both sides. The directions

of these two orbits are necessarily opposite.
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associate any component in this especially simple class with a single
vertex. Also lying in the plamar class are equivalent 2-vertex graphs
of the type illustrated in Flg. V.3, 1t being convenient to use a
2-vertex representation when discussing poles and discontinuities.
(We shall rarely need to go beyond 2-vertex representations.) The
topological equivalence of different graphs implies their physical
equivalence--a manifestation of duality.

With the constraint tbat internal lines must not begin and
end at the same vertex, rep:es'entation of connected-part components
with h = O but more than one boundary requires at least two
vertices. Consider components with no handles but two boundaries--
often called "cylinders". Figure V.4 shows several equivalent 2-vertex
representations of a cylinder component. Different graphical
representations are useful in comnection with different discontinuities.
In Fig. V.5 we show possible 2-vertex representations of a zero-
handle component with 3 boundaries. When handles are present we can
still find 2-vert;.ex representations, such As shown in Figr. ir.s for a
l-ﬁandle, 1l-boundary example. Although all topological informetion

by,b,. - -
resides in the notation Mh

we shall nevertheless often find
it helpfui vhen considering discontinuities to employ explicit
graphical representations.
Unitarity

The S-matrix topological expansion is physically useful
because 1t dovetails with the structure of the unitarity condition.
Suppose that we wish to calculate a two-particle discontinuity in the
AB » CD channel invariant of a four-line connected part, arising from

an intermediate channel EF. The general formula has the structure
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JB,CD (O DETF o (EFAB _—

let us substifute an expansion of the form (V.2) into both sides of
(v.4). By using graphical representations of the kind shown in Figs.
V.3-6, together with Edmonds' rule, it is straightforward to identify
the topology of any individual product term and to collect terms of
common topology. We find first of all

MI(\)BCD _ MgDFE@ MléIFAB + MgDEF® MgEAB , (v.5)

discAB(EF)

corresponding to Fig. V.6, with similar formlas for the discontinuity
of N%BDC’ Mf(\)CDB and MgDCB

of MQCBD and MJSDBC is found to vanish. We have here precisely

At the same time the discontinuity

the discontinuity prescription for an ordered connected part discussed
in Chapter II, a correspondence that can easily be extended to an
arbitrary discontinuity of an arbitrary ordered connected part.
Assuming amplitudes to be determined by their singularities, we may
now therefore consistently make the postulate that: the single-

boundary zero-handle components of the topological expansion are the

connected parts of the ordered S matrix. In making this postulate we

implicitly adopt as the basis for our Hilbert space the poles of the
ordered S matrix, i.e. the planar particles. These particle-poles
constitute a suitable basis because the unitarity of the ordered S
metrix guarantees their factorizabilitj.

Passing to the discontinuity of cylinder components with

h=0 b=2 wve find product members with h =0 but b =1 as

well as b = 2:
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C,BD _ CEDF _ EA CFDE _ \FEFA
discrp(gp) Mg = My & MgB My &My, .6
' V.

BC,D _ ,CEDF . FABF CFDE ABE
discAB(EF) M}(\) = My ® M, + Mg x© Mg

. MIS,CEF® MgEAB 4 Mg’CFEQQ MgFAB’

(v.7)
atscyn(er) Mg = 0T 4 MO @G
+ (Mlgcm‘ + MgDEF) & (M‘E‘)!FAB N Mgmm)
+ O+ Mg MO ) G0 gD
+ MgD:EF® (M.(E)rAB +M§FBA . Mgm +M§EBA)
+ MSD’EF ® Mg:F,AB . (v.8)

with analogous formulas for other orderings. These examples exhibit
the kind of unambiguous disc'ontinuity formula that exists for each
componeqt of the topological expansion. These are the DITU dynamical
equations, from which all quantitative predictions flow. In
subsequent chapters we shall return to the above cylinder formulas,
which have important physical implications.*

We do not attempt an exhaustive catalogue of properties for

topological discontinuity formwlas but point out that the number of

The intermediate particles E and F may be replaced by ordered
clusters of particles to obtain the general cylinder dis-

continuities.
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handles in any product camnot be less than the sum of the pumber of
handles in the two product members. Thus the discontinuity formula
for a component with h handles only involves components with handle
number less than or equal to h. We have seen an important special
case of thi_s rule in the above h = 0 illustrations. Another simi)le
rule is that adjacent particles on & single boundary of a product
member cannot appear on different boundaries of“ the product. Inspec-
tion of our h = O sample formulaes will verify this rule. We mention
fir;ally that if a ﬁroduct is to have fewer boundaries than the product
nlember with the larger boundary number, additional hardles must be
created. We recognize in such rules a kind of conservation law for
degree of 'complexity which will allow us systematically to build up
disorder starting from the maximal order of the planar S matrix.
Increasing degree of disorder is measured by a combination of the
number of handles and the number of boundaries.*
Convergence

The usefulness of the topological expans(ion (v.1) depends on
its rate of convergence, which 1s believed to be rapid in certain
important sectors of the,S\ matrix. Chapter IV has reviewed exper-
imental evidence suggesting that the components with zero handles and
orne boundary constitﬁte a good approximation in the meson sector.
These experimental indications, together with interpal quantum-number
convergence arguments that v}ill be reviewed in Chapter VII, encouraged
*. (18

Sursock

) has shown that the number of handles and boundaries
associated with a product of two ordered amplitudes is determiped

by the transpositions needed to bring the two orders into

correspondence.
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Veneziano in arriving at his proposal. Iater there developed
awareness(lg) of a dynamical mechanism tending to suppress components
of higher complexity, that is related to the peripheral character of
strong interactions. The mechanism, to be discussed in the following
chapter, may be described as "peripheral suppression of nonplanarity";
it stems from the absence of certain singularities from ordered

amplitudes.

Fig. V.1.

Fig. V.2.

Fig. V.3.

Fig. V.h,

Fig. V.5.

Fig. V.6.

Fig. V.7.

Fig. V.8.
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FIGURE CAPTIONS
Chapter V

A five line vertex BEADC, a four line vertex FGDC, and
their connection (dotted line) in a umitarity product.

A graph with b vertices, 6 external lines, and 7 intermal
lines (dark lines). The thin line, dotted line and dashed
line are orbit paths.

Equivalent 1 and 2 vertex graphs which are members of the
same planar class.

Equivalent 2-vertex representations of a cylinder component.
A possible 2-vertex representation of a zero-handle com-
ponent with 3 boundaries.

Possible 2-vertex representations for a l-handle,
l1-boundary component.

Graphical representation of Eq. (V.5), for ordered
unitarity.

Graphical representation of the cyiinder discontinuity

Eq. (V.6).
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VI. PERIPHERAL SUPFRESSION OF NONFLANARITY
In tinis chapter we show how the peripheral character of strong
interactions tends to suppress the importance of nonplanar components
within the topological expansion. We begin by expressing the notion
of peripheralism through the concept of "strips" in the space of -
‘channel invariants. '

Strip Structure of Connected Parts

A peripheral amplitude has the property of belng small except
in strips that run parallel to the asymptotic boundaries of physical
regions, that is, parallel .to the lines 8y = 0. Although never
mathematically proved, peripheralism is believed to be a consequence
of Regge behavior. With respect to a U-line connected part the origin
of peripheralism is seen in the following considerations: Decompose
the connected part into two portions corresponding to right- and left-

hand cuts in some 2z, --the cosine of the scattering angle in one of

i
the reactions described by the connected part. Make an appropriate

partial wave analysis of each portion,

R > (23 + 1) 2(z) %’R(S)
A
J .
and express the partial waves through Froissart-Gribov formulas in
terms of discontinuities in z 1 and second-kind representation

functions of the rotation g;rou,p(u’ 5)

refs) = X az pR(s,2) q(z) .
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The dependence of the partial-wave amplitudes (_both magnitude and
phase) on angular momentum is then seen to be smooth, with exponential
decrease at large J controlled by the = i singularities nearest to
the physical region.

. Because the Pirst-kind representation functions (e.g.,
PJ(z i)) in the ordimary legendre expension are all positive and
maximum at z, = 1, the "right-hand" (R) amplitude tends there to have
a maximzn. The "left-hand" (L) amplitude has a maximum at 2z, = -1.

i
As the scattering angle increases, the representation funétions
become more and more incoherent and the supérposition of partial waves
decreases. The angular rate of decrease is greater the larger 1s the
range of important J, the region of large values of the right-hand
amplitude being confined within an interval of fixed width in Sy s
the channel invariant proportional to 1 - zy- A corresponding
property holds for the left-hand amplitude. Regge behavior is
important to ensure that all partial waves, even the lowest one
(J =0 or 1/2) are part of a2 single smooth trend. Otherwise
cancellation through incoherence of the representation functions will
not be fully effective.

The conclusion is that a physical four-line connected part is
large only within 3 strips on the Mandelstam diagrath, as shown in
Fig. VI.l.* " such peripheral behavior--so familiar expermenﬁlly as
to be taken for granted--is highly nontrivial from a theoretical

standpoint. Since the underlying basis seems to apply separately to

*  our argument has applied omly to physical regions, but analyticity

considerations suggest that ﬁhe strip structure is general.
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each component of the topological expansion, we shall assume that
each component is large only within certain strips. ‘

Generslization of the strip concept to comnnected parts with
mofe than 4-external particles is tricky because of kinematic
constr_a.ints on the invariants. A possible rebsolution of the kinematic
problem is reache;d through Toller variables, each set of which is
assoclated with a tree graph. Thus, for a 5-1line connected part we

have distinct sets of Toller variables associated with each of the

~tree graphs of Fig. VI.2. EFach set contains a pair of invariants,

associated with internal stems of the tree,.tl"xat may be simultaneously
small. We define a "generalized strip” as the region where all the
channel invariants belonging to a particular Toller tree graph are
small. In other words we make a one-to-one association between tree
graphs and strips. (The tree-graph generalization of the strip
concept adapts itself to ordered amplitudes because tree graphs drawn
in a plane are automatically ordered.)

Strips in Ordered Components

App:_[ying the strip concept to a U-line ordered conmected part
one finds either a forward or a backward peak in certain channels but

not always both. Strips of large amplitude parallel to s i = 0 occur

only when s, 1is an adjacent-particle channel inveriant, i.e. only

i

when there are singularities in s The strength of the sin-

*
4"
gularities determines the amplitude magnitude within the strips, and

It is tempting to associate the nearness of singularities with the
size of the amplitude, but such a notion is treacherous and will

be avoided in this paper.
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for ordered amplitudes there are supposed to be poles as well as

. branch points in all adjacent-particle invariants. Experience suggests
that, when poles are present, amplitudes within strips parallel to the
poles are relatively large. We thus expect the ordered amplitude
MSBCD to be large within the two strips shown in Fig. VI.3 and small
elsevhere. There 1s no tendency for Mg'BCD to be -large in a strip
parallel to s

AC AC’
When different ordered amplitudes are superposed all three strips will

= 0 because there are no singularities in s

of course be populated.

Poles in Nonplanar Components

Since all components of the topological expansion are supposed
to be determined by their discontinuites, we may infer the singularity
structure of nonplanar components from their discontinuity formulas.
Now because adJacent particles on a boundary attached to one factor
in a discontinuity product never appear on different boundaries of the
product, analysis o:f:’ the discontinuity formulas reveels something like
the Steinmann rule: that poles do not occur in channels containing
particles from more than a single boundary. In other words, particles

»*
on different boundaries do not resonmate with each other. The point
*

An exception must be made for a boundary containing only one
particle or, equivalently, when all particles on a boundary are
included in the channel whose resomances are under consideration.
This exception is related to the cylinder renormslization discussed
in Cha.pter VIII of the special class of particles carrylng zero
internal quantum numbers. The mechanism discussed in the present
chapter should be understood as applying after consistent cylinder
renormalization of external particles.

-

is tricky because channel invariants for particles on different
boundaries do have discontinuities, as shown for example by Formula
(v.6) for a two-boundary cylinder component. Nevertheless, to the
extent that planar poles are "transmitted” in & process of iteration
starting from single-boundary, zero-handle components (the orderezi
S matrix), one expects poles to appear only in sdjacent-particle
invariants.

Strips in Nonplanar Components

The foregoing pole principle 1s connected with peripheralism
through the assumption that emplitudes are large in peripheral strips

only when poles occur in conjunction with the associated discontinuity.

Our general reasoning about peripheral peaks did not include any
statement about the absolute magnitude of a peak. We are now
proposing that peripheral peaking is strong only when poles run
parallel to the strips. With respect to the strips we have identified
for ordered amplitudes, parallel poles are guaranteed to be present,
and experience suggests that wherever strong periphez:gl strips occur,
there are parallel poles. Such a statement is equivﬁient to saying
that discontinuities are weak except in the proximity of poles.*
So we are led to assume that the important peripheral strips in
nonplanar amplitudes correspond to fixed small values for adjacent-
particle channel invariants.

let us apply this concept to the two-boundary cylinder

component }%B’CD. We are then led to the strip structurg shown in

* Chapter XI will describe an evaluation of "weak strips" associated

with discontinuities in the absence of poles.
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Fig. VI.L, the important distinction wit;h the ordered strip structure
of Fig. VI.3 being that now there is only one strip instead of two.

As will be discussed in Chapter IX, at low 5B
component MSB’CD is Just as large as a planar component, but the

the cylinder

fact that its largeness does not extend over so wide a region will
provide a 'basié for convergence of the topological expansion. In
particular, Fig. VI.4 will be found immediately to explain the
increasing accuracy of the OZI rule with increasing energy.

Readers may wonder why a lengthy discussion of the origin of
peripheralism was needed in order to justify Fig. VI.4. A simple
statement that the only poles of MgB’CD are in the variable s AB
would not suffice. Sucl:l poles might continue to make this amplitude
lé.rge at large values of s,_.. It 1s angular momentum interference

AB

that requires smallness except near the physical boundaries z,, =1

AC

and 2z, = 1. But peaks at these boundaries we have assumed to be

AD
small unless there are poles in s,, and (or) 8pp: The only way to
resolve such conflicting requirements is for MgB’CD to be small over
the entire angular range at large Spp’
The wmore boundafies a component possesses the fewer poles it
can have and the smaller the domain over which the component is large.
Here is a promising mechanism for convergence of the topological
expansion with respect to increasing boundary number. But what about
handles? What, for example, is the basis for expecting that the
single-boundary component LQBCD 1s small? We here appeal to the
notion, explained in Chapter VII, that a handle is like :an internal

two-boundary cylinder, intermediate particle subchannels flowing into

-6h4-

one "boundary" end out the other. The implication of Fig. VI.l is
then that only low-mass subchannéls are allowed to flow through a
handle. There is no constraint on the energy 61’ intermediate sub-
channels that pess in an ordered fashion on the two-dimensional
surface, so the total contribution from ordered intermediate paths
tends to be greater than that from handles. Chapter XII will

elaborate the foregoing mechanism.
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FIGURE CAPTIONS
Chapter VI
Mandelstam diagram for four~-line comnected part. Strips
vhere .amplittxie is large are indicated 't;y wavey lines.
Tree graphs used to define Toller variables.
Peripheral strip structure for four-line ordered
connected part.

The peripheral strip structure for the cylinder component

.



-66-.-

(9)

3qg

.8Vg

7 IA'814

(9q)

(D)

T IABTd




-67~

P IA-STq

$ IABTd




-68.

VII. INTERNAL QUANTUM NUMBER SUPPRESSION OF NONFLANARITY ;
SINGLET IMPOTENCE

Quark-line diagrams have emerged from two different consid-
erations. In Chapter V the "orbits" in Fdmonds' rule for analyzing
nonplanar topological structure were séen to have quarklike appearance,
while in ChapterIiI Weissmann's analysis of ordered internal-quantum
number selection rules had already, independently, led to quark-line
diagrams. What does one learn from dimgrams that simultaneously
convey information about boundary-handle structure and about internal
quantum numbers?

An important observation is that of vanishing net flow of any
internal quantum number into an individual boundary; more precisely,
quantum numbers must flow into each separate boundary according to the
closed-cycle (1---1) pattern of Fig. III.3, for the A(4,3)---E(m,1)
connected part. We shall refer to this as the "cylinder flow pattern"
since it applies to the quantum number flow through any boundary of a
cylinder. .

An arbitrary ordered subchannel will not be compatible with
such an extremely restrictive pattern. Consider for example a physicel
A, B, C, D connected part with the family assignments, A(n,p),
B(p,A), C{Ac), D(c,n). No ordered subchannels here conform to the
cylinder flow pattern, so in the topological expansion there can
occur only single-boundary components NQBCD --components with more -
than one boundar.y (including cylinders) all vanishing. The foregoing
is an extreme example but, in general for a given set of particles
A,B°** the larger the number of boundaries the less likely is the

possibility of satisfying the cylinder flow pattern.
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In the presence of SUN symnetry a quantitative statement
becomes possible. The pattern of Fig. III.3 means that if one forms
superpositions corresponding to irreducible representations of the
symmetry group, only SUN singlet channels are allowed to flow into

an individwal boundary. (20)

Singlet channels constitute a fraction
inversely related to N of all possible ordered channels, so the
disfavoring of increasing numbers of boundaries can be related to
inverse powers of N . We return below to this question.

It should be emphasized that certain special reactions
involving singlet subchannels (such as a single ®(A\,A)) receive
important contributions from multiboundary expansion components.
Confusion exists on this point with respect to the 0ZI rule. 1In
particular, the statistical mechanism discussed in the present chapter
does not explain the stability of strangeonium and charmonium states.
As will be seen in Chapter XI, the peripheral mechanism of the
Preceding chapter is needed in order to understand these celebrated
0ZI-rule manifestations.

We next observe that the flow pattern of Fig. ITI.3 also
a.pplies‘ to handles. Consider the single-boundary, single-handle
example of Fig. V.6. Compressing the four external lines into a local
region of the boundary so &s to focus attention on the internal lines
that connect the two vertices, the associated quark-line diagrem is
shown in Fig. VIII.1l with dotted lines added to identify the handle.
The internal lines flowing into one end of the handle and out the
other are seen to exhibit the (1,1) cylinder flow pattern, with the
added requirement that the channel flowing into one end 1s the same

as that fiowing out the other. Although the representation given by
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Fig. V.6 of & single-handle, single-boundary component is not unique,
any representation must contain a subchannel of intermediate lines
exhibiting the cylinder flow pattern. A minimally-required handle may
always be visualized as a cylinder that transports a subset of inter-
mediate particles. If the flow pattern is not that of a cylipder the
handle is not needed.(zl)

It was observed by Veneziano that because of the foregoing

extreme restriction the mumber of intermediate channels, with a fixed

set of (external) boundaries, will systematically decrease as the
number of handles increases. Suppose that we think of the topology
of Fig. VII.l as arising in a 3-particle AB discontinuity of PQBCD,
as indicated in Fig. VII.2. Compare to the corresponding planar
discontinuity of MgBCD indicated in Fig. VII.3. In the former case
the intermediate-particle families {(k,1)(1,1){i,1)) are completely
determined by the external-perticle families ((1,3)(3,k)(k,2¢)(¢,1)).
In the latter (planar) case the intermediate-particle familiés é.re
less constrained, there being two free boundary indices {m,m). With
N different possible values for the boundary index (N different
flavors) there are then N2 different family comblnations possible
in the planar product's intermediate 3~particle channel.

Veneziano(j) showed generally that products with the same
number of boundaries, but a difference A h 1in the number of handles,
will differ in the ﬂumber of intermediate channels bj a factor
(N2 )Ah . Herein evidently lies a helpful mechanism for convergence
of the topological expansion. The mechanism is less effective than
the experimental fact, N > L , might lead one at first sight to

suppose because there is kinematical (phase-space) suppression of
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flavors with high thresholds. Intermediate channels of high threshdld,
that is to say, a.re~ in any case unimportant--even if allowed by
topological selection rules. The existence of charm, in particular,
does little to improve convergence of the topological expansion. Even
strangeness tends to be kinematically suppressed. Isospin symmetry
nevertheless guarantees an effective value for N 1larger than 2 , so
a respectable role remains for the Veneziano mechanism.*

Veneziano's result has been qualitatively rest:e.ted(]‘5 ) 80 &8
to emphasize the connection between boundaries, handles and flavor
singlets. When internal symmetry is present we have noted that the
S matrix may be diagonalized according to irreducible representations
of the symmetry group, only those channels vwhich are singlets with
respect to the symmetry group being allowed to pass through
(communicate with) an 4individual boundary. Now we have seen in
Chapter III that, with SUN symmetry, planar particles are grouped
into multiplets of size N2 Within such a planar multiplet there is
only one singlet state, so the probability that an arbitrary planar
particle is permitted to pass (alone) into a boundary is l/l\l2 This
same factor applies also to any multiparticle ordered channel, since
the quantum-number structure is similar to that for a single planar
particle. Extending the reasoning to intermediate channels or sub-
channels we see that the probability for an arbitrary channel to be
able to pass through a handle is 1/N2 Veneziano's mechanism may in

this way be ascribed to the statistical impotence of flavor singlets.
]

Simple models allow one to determine an effective N which 1s

approximately 2.5 when symmetry-breaking is taken into

account. (13,22)

=T2-

We have already warned the reader not to interpret Veneziano's
rule as saying that cylinder connections between singlet channels are
smaller than planar connections. For reactioms involving external
singlet channels, cylinder components (h = O, b > 1) of the S
matrix may be Just as large as planar components (h =0, b=1).
Veneziano's mechanism rests on the relative scarcity of internal
singlet channels--channels that may pass through handles.

The existence of at least two different convergence mechanisms
for the topological expansion renders extremely difficult any general
analysis of convergence. Additionally, from the bootstrap point of
view (see the end of Chapter IX) one hopes that eventually N (or,
more precisely, the distribution of flavor thresholds) will be deter-
mined by ordered unitarity, so ‘N is not necessarily a free parameter

in the DIU approach.
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FIGURE CAFTIONS

Chapter VII

Fig. VII.1l. Quark line diagram for the l-boundary, l-handle example
of Fig. V.6. Dotted 1line identifies the quark structure
of the handle.

Fig. ViI.2. _ The three-particle contribution to the AB discontinuity
of Fig. VII.1l.

Fig. VII.3. A planar, three-particle contribution to AB

discontinuity of an ordered connected part.
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VIII. RENORMALIZATION OF PIANAR POLES; CYLINDER UNITARITY

The Hilbert space underlying the S-matrix topological expan-
sion is based on the planar particles. Although the planar spectrum
is not specified a priori, supposedly being determined through ordered
unitarity (i.e. the "ordered bootstrap"; see Chapter IX), plamar poles
constitute the fabric from which the topological expansion 1s con-
structed. Actual poles of the physical S matrix--the sum of all
components in the topological expansion--will nevertheless not
coincide with planar po;es. Such a slippery situation becomes man-
ageable if we remember that full physical unitarity gﬁarantees a
consistent factorization pattern for physicalvpoles, Just as ordered
unitarity guarantees a consiétent factorization pattern for planar
poles. Thus, even though we work in a plapar basls, we can use
factorization to define physical Aconnected parts with physical
external particles. Figure VIII.1l sketches a multiple-pole structure
in a physical connected part that has been calculated in the planar
basis, i.e. with planar external particles. The residue structure in
this example allows the extraction of 3-line, 4-1line and 5-1line
physical c'onnected parts.

Although we are aware of no argument that guarantees a ome-to-
one correspondence between plapnar poles and physical poles, there was
implicit in the discussion of Chapter IV the assumption that a
correspondence can be made between any planar particle and some
physical particle. (When planar degeneracies occur, spch as isospin
degeneracy, 1t may be necessary to make the correspondence via linear
superpositions of planar particles.) It is believed, in other words,

that the physical asymptotic Hilbert space may be larger than the
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Plapar Hilbert spece but not smaller. The s'implest possibility-~that
the two spaces contain the same number of particles--remains open,
both from a thepretical and an experimental point of view. No mesons
have Yyet been discovered that camnnot be put into correspondence with
some planar meson.

Even should a one-to-one correspondence exist, we must learn
how to deal with pole renormalization. The present chapter deals with
one aspect of this question--related to the cylinder components. We
are concerned with poles in a two-boundary cylinder, occurring in the
channel invariant corresponding to the total (squared) energy flowing
into one boundary and out the other, that is, "along the cylinder
axis". For example in MgB’ CDE we are concerned with poles in
Spp = Scpg* According to the reasoning of Chapter VII these poles
are also relevant to handles.

In Formula (V.8) we exhibited the two-particle AB discon-

CD, AB

tinuity of MO Veneziano observed that this complicated formula

could be simplified by defining a quantity
ECD,AB - M‘\BCD . MBAC'I) . MABDC . MBAN . MCD,AB.
0 .0 0 0 [¢] (0]
(virzr.i)

Remembering the planar discoatinuity formulas, typified by (V.5), ve

find, following Veneziano, (@3)
dise,, W AB - §DEF g HEFAR (VIII.2)

A straightforward generalization can be made for channels with any

number of particles.(lj) One defines WBC‘ "ATBICT as

MABC"',A'B'C"'
[¢]

all cyclic permutations within the two separate subsets. The general

Plus the superposition of ordered amplitudes for
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discontinuity formula for _ﬁo then will have the structure of

(vi1I.2), = result that may be described as unitarity in a "cylinder
Hilbert space”, where the states are cyclically-symmetric superposi-
tions of ordered channels, each channel satisfying the cloged-bourﬂa:’y .
patter of Fig. III.3. For example the 3-particle (A,B,C) state in

the cylinder Hilbert space is

1 A | B c
—_— B + Cc + A
V3 c A B
A(VIII.3)

where the particle families are of the type A(i,3j) B(j,k) Cc(k,1). As
noted earlier, cylinder channels are SUN singlets in the presence of

SU, symmetry. The connected parts of the unitary "cylinder S matrix"

N
e nt Fooo
are precisely the amplitudes EgBC »A'BIC

Cylinder unitarity
guarantees tmﬁ the poles of these amplitudes should be factorizable.

Comparing Formula (VIII.1) to the full superposition of zero-handle

B,C,D
’

components in the physical connected part MA’ as given by

Formula (V.2), and remembering the general rule sbout where poles may

occur, we see that ﬁgD’ AB subsumes all the zero-handle components

*

that are allowed to contain poles in s AR’ By studying this

* To simplify the discussion we here assume that each of the four

particles .A, B, C, D carries nonzero intermal qua;ntum numbers so
that none can appear alone on a single boundary. If one or more
external particles carry zero quantum numbers, then in the order of
the expansion considered in this chapter we must be prepared to

- identify cylinder renormalization of these external particles. It
is unnecessarily confusing to consider simultaneously internal and '

external renormalizations. Factorization guarantees that if we

understand one we also understand the other.
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quantity we therefore expect to learn a’pout pole 'renonnaliza't'fion at
the zero-handle level. .
Discontinuity formulas of the type (VIII.2), which apply also
to ordered and to physical connected parts, may be projected onto
individual partial waves in angular momentum and échemtically written

in the matrix product form

M - M = 21M oM, (VIII.4)

where M' and M~ are the same analytic matrix function M. eval-
uated on opposite sides of the cut and p 1is a (diagonal matrix)
phase-space factor. Equation (VIII.4) requires not only that the
poles of M be factorizable but that poles on one sheet of the
Riemann surface be matched by zeros in the determimant of 1 - 21Mp
at corresponding points on the othér sheet. Now 1if we ‘express the

generalization of Eq. (VIII.1) as

ﬁo = P+ C, ' (vi11.5)
vwhere P 1s the planar superposition specified above and C 1is the
cylinder, then we see that it would only accidentally be true that
zefos of .det(l - 21 ﬁo p) would exactly coinc;ide with zeros of
det(1 -21 R p), R being the matrix of ordered connected-part
rertial waves of which P i1s a particular linear superposition. 1In
"other words one does not expect poles of ﬁo at the positions of the
ordered poles.

On the other hand we discussed in Chapter VI a systematic

preripheral mechanism that is presumed to suppress the magnitude of the

cylinder except at small values of the energy flowing along its axis.
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If the magnitude of C 1s small and that of P 1is not, the poles of
ﬁo occur close to the zeros of det(1 - 21 P p); which one can show
will be ciose to the poles of R.. As the cylinder becomes weak, that
is to say, the poles of ﬁo either approach the planar poles or their
residues become small.

The reader may be perplexed at what is me_ant by the cylinder )
being "small" in the neighborhood of ; pale of b_do vhich after all
g_l_sﬁ must be a pole of C 1if it does not exactly coinclde with one
of the planar poles contained in P. The resolution of the puzzle 1s
achieved by realizing that if h_do does not contain the plamar poles,

then C not only possesses the poles of io _but must contain addi-

tional poles at the location of the planar poles of P --the additiaml

‘poles exactly cancelling those of P. Speaking of & "weak” cylinder

means, if P-pole residues are large, that there is close coincidence
in both position and residue between a pole of HO and a pole of P,
so that in C the two corresponding poles a.lmosi: compensate each

other. Turning the argument around, if we accept the peripheral

mechanism of Chapter VII as ensuring a weak cylinder component at

high (positive) energy where planar poles are not negligi’bl‘e, then
we require a near cancellation at high energy between pairs of cylinder
poles.

Fmploying the Regge notion of simultaneous analyticity in
energy and angular momentum one expects to be able to*identify at any

energy a correspondence between a Regge pole of ﬁo and that planar

* o1t 4s speculated, although unproved, that the only Regge

singularities of M, (and C) in the axis-channel angular

(2k)

momentum are simple factorizable poles.

’
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Regge pole which it will approach at high energy. Such an adiabatic
connection allows one to speak of pole renormalization", even though
the renormalization in position and residue may become l.é.rge at low

energy--the pole of MO

*
planar pole. Note that these large shifts are expected only for

having very different properties from any

poles that communicate with channels in the cylinder Hilber_b space,
which we have seen to be a relatively small subset-- SUN singlets in
the presence of SUN symetﬁ.

The general considerations of this chapter will be given flesh
and bone in the models discussed in Chapters X and XI, dealing with
certain special leading poles. Because discontinuities of topological-
expansion components with h > 0 never are bilinear in components
with this same number of handles h , we do not again encounter for
any individual component a discontinuity structure like Fomﬁa
(VIII.4)--demanding pole renormalization. So long as one works with
a finlte number of terms in the topological expansion, therefore, it
is believéd that the only renormalization is that discussed in the
present chapter--of poles communicating with the two-boundary cylinder.

It is believed at the same time, as explained in Chapter XII, that

For © - -0, where ¢ 1s‘the invariant mass squared flowing
along the cylinder axis, one does not require the positions of ﬁo
poles to approach the positions of planar poles even though the
cylinder becomes weak, because here the residues of 'gcr_tt_x sets of
poles independently tend strongly to zero. Pole cancellation at
negative t 1is not required in order to achieve peripheral strip.

structure for the cylinder.
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the sum over an infinite nu.mber.of handles will produce renormalization
of all planar poles as well as a further renormalizetion of cylinder
poles.* Both experimental evidence and the models reviewed in

Chapter XII s{zpport the view that such general renormalization is
quantitatively less important than the cylinder shift, which applies

only to a modest subset of planar poles.

*
Reggeon calculus deals with the relatively small renormalization

of the "bare pomeron'--the leading Regge trajectory of the

cylinder.
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FIGURE CAPTION
Chapter VIII

Multiple -pole structure in a physical connected part

calculated via factorization from the plapar poles.
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IX. MULTIPERIPHERAL BOOTSTRAP MODEL OF THE ORDERED S MATRIX
The ordered unitary S matrix lies at the heart of the topolog-

ical exj:ansion; unless the concept S, makes sense the entire DTU

0
approach is meaningless. The ordered S matrix not only provides the
logical DIU underpinnings but specifies the planar approximation

and all corrections thereto. Two intimately-related issues must be
faced: (1) Does an apalytic unitary 8§, exist? (2) How can §,

be calculated?

The problem of existence is elusive because ordered unitarity,
while simpler tl_:an physical unitarity, still implies an infinite set
of nonlinear relations between ordered connected parts. No irreconcil-
able contradiction in these relations ‘has been found but we remain far
from a proof >that a solution exists. So far all attacks on the ordered
consistency (bootstrap) problem have focused on the presumed simplicity
of Regge structure in ordered'connected parts. Assuming that ordered
Regge singularities ére all factorizable poles, avenues of approach
beckon that seem less promising for the full physical S matrix--where
Regge cuts and fixed singularities abound. This chapter describes the .
most promising type of model so far developed for the ordered S-matrix
bootstrap. The model is crude and represents only the beginning of
what may be & long and arduous effort.

"In Chapter VI it was asserted that ordered connected parts are
large only in certain "strips". The model now to be described depends
on this peripheral aspect of strong interactions, together with the
assumption that contributions from a few leading Regge poles constitute
& reasonable approximation. We shall be led to self-consistency

conditlions on the parameters of leading ordered poles within strip

regions.
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Consider an n-particle intermediate-channel contribution to
the discontinuity of the UY-line ordered comnected part shown in Fig.
IX.1. (To avoid ambiguity we here mean stable particle when we say

"particle”.) One of the peripheral strips of large amplitude for
: T 1

c ‘o
the ordered amplitude associated with the reaction < >-> ! .
: : A

/
|
\ 7/

will correspond to the tree diagram of Fig. IX.2. For small values

of s the other reaction occurring on the right-hand side of Fig.

AB

IX.1 will be large in a corresponding strip. Other strips also exist,

but the so-called "multiperipheral” strip of Fig. IX.2 is expected to
AC

goal the determination of the leading ordered Regge poles in the

(A> Ind ( C) channel at small values of SAB’ 1t 1is then
B D

plausible to keep only the contribution from the multiperipheral strip.

glve the largest contribution in the 1imit s, ., -+ ®. Setting as our

A well-kmown property of the phase-space region corresponding
to the multiperipheral strip is that rapildity ordering tends to
coincide with particle ordering 1 :-- n. Let us then divide the
total phase space into two segments, assigning some fraction of the
total rapidity interval between C and A +to one segment and the
remainder to the other segment. The fraction is unimportant; for
definiteness we méy dividg the total interval into two halves. The
important point i1s that among the n ordered intermediate particles
the subset 1 to 1 +tends to fall into one segment while the subset
i +1 to n tends to fall into the other. Now suppose that the
average rapidif;y gap between particle 1 and particle 1 + 1 1is
large enough to allow factorized Regge representations of the form

shown 1n Fig. IX.3. Then performing the sum over all possible values
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of n 1is equivalent to performing independently the s@s over all
possible number of ordered particles within the two separate rapidity-
segments. By invoking ordered unitarity for 2-reggeon, 2 particle
ordered gmplitudes, we are led to the result shown in Fig. IX.k, where
it is to be understood that each of the two discontinuities appearing
at the extreme right in Fig. IX.4 is evaluated at a sub-s whose upper

limit is proportional to sé

AC ? corresponding to its half of the

total rapidity interval.
To the extent that the rapldity gap spanned by the reggeon
may be small, it 1s necessary to sum over all possible reggeons--not
simply the leading omes--but no investigators have so far seriously
pursued this point of potentially profound consequences. The
assumption has béen made that the reggeon expansion converges ra.éidly,
a good approximation being given by the highest-lying trajectories.
Here we keeyp, for simplicity, only a single trajectory in the loop.
In the 1imit of large s \

AC. .
IX.4 will be dominated by the leading ordered reggeon with the quantum

= 8 the lefjt-}mn_d side of Fig.

numbers of the AB channel, whose trajectory we desigmate by a(t),

wherg t = SAp°

(g JAB)’ the point J = O belng already a nonsense point as 1is

i

the case for the leading physical reggeons, p, w, £, A2, then the

discontinuity in question bas the asymptotic structure

7AB(t) 7DC(t) sa(t)
Pla(t)) ’

the gamma functlon providing the sequence of zeros needed to prevent

(1x.1)

poles in the amplitude at nonsense points. The right-hand side of

- to satisfy the sum rule

If this reggeon has no physical particles for J <1
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Fig. IX.4 is more complicated, involving the product of discontinuities.
of reggeon-reggeon, particle-particle amplitudes. v Consider the
discontinuity involving the particles A and B, which we designate
AA.B(S', t, t4) vhere s' 15 the square of the "cluster mass". In
Fig. IX.4 an integration 1s implied over the invariant s'. Because

AAB is the discontinuity of an ordered amplitude with Regge behavior

in s' and supposedly with no Regge cuts, one expects this quantity
(25)

S'
X
© 7,p(t) &%, ty)

ds' A, (s', t, t,) ~
AB T 8! -+ 1"(C}t('l;))
(6] max

a(t)-a(t )-alt )
) * B

1]
(Sma.x

alt) -alt,) - aft_) +1

(1x.2)

where g(t, ti) is the triple Regge coupling. There will be a
similar - sum rule for ADC We see then that in the equation of Fig.
IX.4 the dependence on the external particles factors out, leaving a
condition involving only the leading ordered reggeon--a coﬁdition with
the structure indicated in Fig. _IX.5.

Remembering that s' = Vs, and using standard rules
for the reggeon lo_op phase space together wii:h the ordered single-

alts)

reggeon propagator (-s) I'(1 - aft,)) one finds the schematic

equation of Fig. IX.5 taking the following explicit form, first

written down by Rosenzweig and Venezianoz(zs)
2

Solt, t4) &7 (t, ty)

a (1x.3)
? (a(t) - a(t+) - a(t_) + 1)

1 = =N

where



-89-

I‘(l - a(t+)>1‘<l - a(t_)}cos n(z(t_*).- a(t_))
fa(t) - a(t+)~ -aft ) + 1] I‘(a(t))

- 8plts ty)

- (1IX.b)

1s the orderéd 2-reggeon loop "propagator"”. The factor N 1s the
number of different equivalept ordered reggeon loops contributing to

the right-hand side of Fig. IX.5; with SUN symmetry the quark-line

diegram of Fig. IX.6 shows that N flavors mean N loops. The loop
phase space d9 1in Eq. (IX.3) 1s
1 -3 '
ap = ;6? at, dt_ <-x(t, t, t_)) o(-\) (1x.5)

with A the usual triangle function.

The 'boc;tstmp equation (IX.3) is a nonlinear condition on the
trajectory and residue of the leading ordered reggeon. The trajectory
is presumed to be a smooth function, but an infinite sequence of zeros
and poles is anticipated in the triple-Regge coupling g(t, t t)’ as
defined here. First it can be shown that there must be zeros at the
points a(t) = a(t+) +aft)-n, n=1, 2 ---, if Regge branch
points are not to occur in ordered amplitudes.(25’ 27) At the same
time it can also be shown that such zeros are redundant with propagator
discontinuity zeros at a(t) = 0, -1, -2, -.+ when the helicities
a(ti) become physical integers and the triple reggeon coupling becames
& particle-particle-reggeon coupling. We thus expect g(t, t,) to
have the form*

Such a form is exhibited by the explicit triple-Regge coupling of

the dual resonance model.

-
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T(a(t))
rlo(t) - alt,) - alt_) + 1)

x smooth function. (1X.6)

With this assumption it is possible to find apprc_ndmaté solutions of
the ordered bootstrap equation (IX.3) that correspond reasonably with
the experimentally observed properties of leading physical Reggé
trajectories. Before discussing quantitative matters, let us make a
general observation. (

Equation (IX.3) or its physical equivalent has been derived by
& variety of different approaches, many of which require great éare in

(2,28-30) Some of

order to avoid miscounting intermediate étates.
these alternative approaches have' called attention to the remarksble -
nature of the requirement that Regge cuts be absent from ordered
amplitudes. For such to be the case there must exist further sum
rules going beyond that of Eq. (IX.2).(31) At the time of this
writing uncertainty comtinues about the full implications of the
widely-employed assumption that the only Regge singularities of

(25, 27,31,32) The reader

ordered amplitudes are factorizable poles.
should also remember that to achieve viable bootstrap equations
another assumption i1s needed: dominance of the loop by a small number
of leading ordered reggeons. There has been no proof of convergence
of an expansion based on the location of ordered reggeons within the
loop.

A lesz_s simple but more accurate approach to the ordered boot-
strap has been made by Chan, Paton and Tsou (CPT). (1) The physical
idea is similar to the foregoing but in counting intermediate states

use is made of the "cluster" concept which has proved useful in .
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phenomenological studies of experimental data. The CPT equations must
be studied by computer, but it is correspondingly possible to be more
realistic about kinematical facts of 1life. Each ingredient in the CFPT

equations has been thoroughly tested for physical meaning.

Numerical studies of equations of the general type (IX.3) have

been encouraging. If. has been possible to satisfy Eq. (IX.3) over a
range -1.0 GeV? st <10 GeV2 with a linear trajectory and a
coupling of the form (1x.6).(133-35) me 1leading intercept turns out
to be a(0) = 0.5 and the magnitude of the coupling is within a
factor 2 of that indicated experimentally. 'i'he Rutherford Group(l)
re_esults, allowing more flexibility in the t:t dependence, are even
‘closer to experiment. Balazs, by using a modified and extended form
of thé bootstrap condition discussed here, has deribved, with no free
parameters, & reasonable infinitely-rising trajectory.(js)

Of deep significance is the fact that ordered unitarity seems
capable of determining both the positions and residues of poles. It
appears, in ofher words, that the entire ordered S matrix may be
determina'ble. ﬁ'om self consistency. A puzzling question in this
regard is how the breaking of SUN symmetry will be fixed. A
preliminary study by Konishi and Kwiecj.msk:l(3 6) has been based on
combining a bootstrap equation of the "propagator” type of Fig. IX.h
with one of the "vertex" type of Fig. IX.7. It was found that for
small symmetry breaking the pattern of trajectory intercepts must

follow the "additive erk".rule:

ai,j = o + € + e'j . (1xX.7)

iJ

For the ordered triple-Regge coupling g s corresponding to the:

quark-line diagram of Fig. IX.8, where the discontinuity cuts the

-%-

Regge pole; the other two legs corresponding to helicity poles, the
rattern of small symmetry breaking is found to be

gij = g + T - . | (1x.8)

The trajectory pattern (IX.7), discovered earlier in a varie;ty of less

systematic theoretical studies, (22,37,38)

is in striking agreement
with experiment. Experimental evidence about couplings is still too
crude to check Formula (IX.8).

A challenge to and opportunity for the DIU approach 1s the

calculation of the symmetry breaking parameters ei and T]i . It

“would seem that ordered unitarity should determine these parameters

of the ordered S matrix along with & and E . By the same token,
ordered unitarity eventually should determine how many flavors occur.
Before such questions can be answered, however, ordered bootstrap
models must be vastly improved over the model-T versions currently
available, which all have been modest adaptations of pre-~DIU
aprroaches. We are not yet close to exhausting the full content of

ordered unita.rity .
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FIGURE CAFTIONS

Chapter IX

An n-particle intermediate-channel contribution to the
discontinuity of a U-line ordered comnected part.

Tree diagr;am corresponding to the multiperipheral strip
of large amplitude for (C,A) - (1,2,°°n).

A factorized Regge representation for th.e right-hand side

of Fig. IX.1l.

The discontinuity of the 4-line ordered connected part

expressed, via ordered unitarity, in terms of reggeon
loop.
The planar reggeon bootstrap equation.

Quark-line diagram for the right-hand side of Fig. IX.5

with the closed quark loop responsible for the factor

of N in Eq. (IX.3).

£
Unitarity bootstrap equation for a three-reggeon vertex.
Definition of the triple Regge coupling with respeét to

its indices in terms of a quark-line diagram.
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X. MULTIPERIPHERAL MODEL FOR LEADING CYLINDER POLES

Chapter VIII dealt with general aspects of "axis-communicating"
poles in the 2-boundary cylinder, using as a basis the discontinuity,
cutting between the two boundaries, in the invariant that contains the
poles. The present chapter describes a model of these same poles
based on "boundary-slicing' discontinuities--in invariants formed by
combining a portion of one boundary with a portion of the other.
Historically 1t was models of this latter kind, directed at pomeron
properties, that were in large part responsible for arousing interest

in the topological expansion. (39-11)

A remarkable variety of physical
insights have emerged from boundary-slicing cylinder models.

According to standard Froissart-Gribov theory(5 ) the Regge
singularities in J AB --the angular momentum in a reaction AB - CD

--are "built" from the discontinuities in and s One thus

Sac AD"
may hope to comstruct a model of the AB poles‘ in IV%B’CD in terms
of the AC and AD discontinuities.* Since both discontinuilties are
nonvanishing, there is no exchange degeneracy; cylinder reggeons carry
a signature label. We may nevertheless treat separately right-hand
and left-hand cuts in the cosine of the angle conjugate to JAB' Let
us then proceed to consider the AC discontinuity of M’gB’ CD.
The form of the two-particle contribution to a boundary-

slicing discontinuity has been given in Formula (V.6) but with a

Recall (Chep. VI) that there are no poles of M‘gB’CD in the
invariants sAc and SAD' Regge branch points in these channels

Play an important role in the considerations of Chapter XI.
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different assignment of particles to boundaries. With the present

assignment we have for the EF contribution

asc, N%B, D _ MgEDF & M(r)'cm N MISFDE ® Mgc:m ,
(x.1)

the Pirst term on the right-hand side being depicted in Fig. X.ls,
while Fig. X.1b indicates the generalization to an arbitrary multi-
particle intermediate state. Note how the intermediate particles fall
into two distinct ordered subsets.

' The leading J

AB
Froissart-Gribov projection to the asymptotic behavior of the AC

singularities are related through the

discontinuity as s8,., * 00o. Since each of the factors in an

AC
individual coptribution to the cylinder AC discontinuity is an
ordered connected part, whose asymptotic behavior 1s controlled by
ordered reggeons, one hopes to relate the leading cylinder Regge
singularities to the leading Regge poles of the ordered S matrix. It
is necessary however to sum over an infinite number of individual

contributions to the AC discontinuity.

Multiperipheral Model

One assumes dominance by the mulﬁiperipheral strip of Fig.
X.2, characterized by small magnitudes of the invariants tl, t2,
We have here a model analogous to the ordered bootstrap models
discussed in Chapter IX. The difference is that the ordering of the
subset 1, 2, 3, ‘is independent of the subset 1', 2', 3',
In other words, we have as many different strips as tree graphs that
interleave the two sequences in different ways. But if we assume for

& particular tree graph (i.e. a particular strip) that the rapidity

interval between a particle in one subset and & 'neighboring perticle"
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(in the sense of the tree graph) in the other subset is large enough.
to permit reggeon factorization at that link, then we can sum over all
tree graphs (all strips) and obtain a simple result. Such an

assumption 1s at least as justified as was the reggeon factorization

that allovwed construction in Chapter IX of the multiperipheral ordered -

bootstrap model. In both cases question must be raised about single-
reggeon dominance of a modest rapidity interwval.

In Fig. X.2 we have marked with dots those links in the Toller
graph that join a particle in one subset with a particle in the
opposite subset. Each way of distributing dots along the chain
corresponds to a different strip. - A possible way to perform the
(triple) sumation over the particles in each subset as well as the
distribution of dots is to fix first the number of dots and sum over
all possible numbers of particles between dots. Since by construction
all particles between dots belong to _the same ordered subset we are
thereby performing the summation that ylelds the discontinuity of an
;:>rdered connected part. See Fig. X.3. The cylinder AC discontinulty
then_a.ssumes the form shown in Fig. X.4, where an integration remains
to be made over each reggeon loop between ordered clusters, the loop
phase space being similar to that in Fig. IX.4. PEach cluster mass
also is to be integrated over, but a significant difference between
the equation represented in Fig. X.4 and the equation in Fig. IX.h is
that for the former we had to restrict the rapidity interval covered
by each ordered cluster so as to awvoid double counting. There is no
such restriction on the clusters in Fig. X.4; each is allowed to span

the full kinematically-allowed range of cluster masses.
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Charge Conjugation and Signature

What is the significance of the nonplapar-product ordering

indicated for the reggeon products ih Fig. X.4? 1In effect the order
of lines in every alternmate ordered discomtinuity is reversed with
respect to plapar-product ordering. If it be recalled that the
reggeons arose from links in Toller graphs between nonadjacent
particles in ordered amplitudes one realizes that the reggeon prop-
agators in Fig. X.4 should all be real; i.e., there are no associated
discontinuities. Here is another significant difference between Fig.
X.4 and Fig. IX.L4, where reggeon propagators carry & phase & A
further significance of the ordering in Fig. X.h relates to charge
conjugation, as discussed in Chapter II. The rule presented(u’l‘?)
was that reversal of order in an ordered connected part changes the
phase by the product of charge-conjugation symmetry factors. Ordered
reggeons do not have well-defined charge conjugation symmetry but they
have well-defined values of the product of signature and charge
conjugation symmetry. Let us call this parameter Ei = %31, Conbining
the foregoing considerations ini_:o a single rule we may say that rever-
sal of ordér in a reggeon ordered connected part changes the phase by

the product of factors exp(inai) for each reggeon. For physical

&
particles this factor is just charge conjugation symmetry.

Using the foregoing rule we see that the first term on the
right-hand side of the equation in Fig. X.l differs from the
corresponding planar product not only by the reggeon propagator

phases exp ( 1n(a(t+) - a(t_)]] but by the charge conjugation
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symmetry of thé AB » CD (cylinder axis) channel.” This term is
positive for positive charge conjugation and negative for negative
charge conjugatioh. The same will be true for all terms with an odd
number of reggeon loops; those with an even number have the same valwe
for both odd and even charge conjugation.

When the AD discontinuilty 1s consldered, the relative signs

are such that positive signature for the projection carries

Inp
positive charge-conjugation symmetry and negative signature carries
negative charge-conjugation symmetry. Keeping track of charge
conjugation will thus simultaneously identify sigpature.

Cylinder Regge Poles

Examination of the series in Fig. X.l reveals that for forward
‘elastic scattering (B =A, D =C), where all terms are real and
positive, fhe left-hand side must asymptotically grow with Sac
least as fast ags the discontinuity of an ordered connected part. The

at

leading cylinder Regge singularity, in other words, cannot lie below
a .

To understand as well as possible the leading cylinder sin-
gularities, let us now exploit the analysis in Chapter VIII showing
that pole structure is simplified if certain planar terms are added to
the cylinder so as to form ﬁ‘oAB’ CD. Taking the s

AC
IT(OAB’ CD, we are led to augment the right-hand side of the equatim

discontinuity
of

in Fig. X.4 by the ordered terms shown in Fig. X.5. It may now be

We here assume that the two reggeons forming a loop are the same
1
so that §i§i = 1. Such need not always be the case. The

leading §i = -1 trajectory is the A1 .
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recognized that if external particles are replaced by the reggeons
appearing internally we have achleved a linear integral equation for
the discontinuity of ﬁo s where both the inhomogeneous term and the
kernel are controlled by the four-reggeon ordered discontinuity. The
structure of the equation is schematically indicated in Fig. X.6, where
the crosses on the reggeon lines indicate the two phase requirements
assoclated with order inversion: (1) The reggeon propagaetors are real.
(2) The loop integral reverses sign when charge conjugation symmetry
is reversed.

Diagonalizing the equation of Fig. X.6 with respect to axis-

channel angular momentum will put it into Fredholm form(lo)

and allow
the cylinder to be constructed from a knowledge of the ordered S matrix,
even though the poles of the cylinder are shifted. The equation also
can be solved by direct numerical iterationgl’ 2) Let us consider the
pole-shifting phenomenon in terms of formal Fredholm theory. Suppose
that projection has been made onto a definite (continuous) J , so as

to yleld a matrix function ﬁO(J, t) (T =J,, t=-s in the

AB AB)
*
space of a pair of ordered-reggeons. The equation of Fig. X.6 then

take the operator form
MO(J, t) = R(J, t) + R(J, t) Scyl(t) MO(J, t) (x.2)

in the ordered reggeon Hilbert siaa.ce. The operator R(J, t) 1is
analytic in J except for poles at J = ai(t), the trajectories of
the ordered reggeons; the singularity structure in t 1s standard.

The twisted-loop "propagator” (t) 1s a diagonal operator in the

Scyl

*
The reggeons in this space correspond to helicity poles.
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2-reggeon space whose form will be discussed below. Equation (X.2)

may be formally solved to give

- -1
MO(J, t) [1-R(, ) scyl(t)] R(J, t)

Rz, £) - 8 (&), (x.3)

cyl

a result showing explicitly that ﬁo(J, t) is finite at the poles of
R(J, t), as expected from the more general argument in Chapter VIII.

The poles of ﬁo(J, t) occur at points where

det[R(g, t)"t - s

(8] = 0, (x.)

points which systematically approach the positions of ordered poles
when the "propagator" Scyl(t) tends to zero. In such & sense there
will be a one-to-one correspondence between poles of ﬁo and ordered
poles of appropriate quantum numbers. According to the multiperipheral
model the cylinder shifts poles but does not create new ones.(l2’ he, k)

Cylinder Quenching

In Chapters VI and VIII it was argued that the cylinder shift
of ordered poles should approach zero as t = +0oo. Within the model
considered here, such an effect requires that Scyl(t) +0 ast - +m.
Since the model is based on a low-t strip approximation it cannot be
" taken seriously for large t but one expects to see a tendency in the
direction indicated by general arguments.

The cylinder loop pro‘pe,gator Scyl(t ), a diagonal operator in
the space of helicity poles, a(t+), a(t_), aiffers in two ways from
the corresponding untwisted reggeon loop propegator in the multi-

peripheral ordered bootstrap (Eq. IX.3): (1) 5, reverses sign

y1
when charge conjugation (or signature) 1s reversed (2) Scyl carries
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1a(t,)

no factors e These differences translate in effect into the

replacement of So(t, ti) as given in Formula (IX.4) by
So(t, t,, t)
cos x(a(t,) - als_))

It is the inverse cosine factor, arising from reggeon phase change

yt) = 2 (x.5)

Scyl(t’ t+

under order inversion that quenches Scyl(t) for large positive t.
To see this quenching it is convenient to change variables

from ti to k and w saccording to

t, = %;t-ke- 2ruyE (X.6)

the loop phase space in the new variables becoming
o] o] i
—1;1 (x.7)
a9 = dk dw . X.7
8y
[0] -0 ’

For a linear leading ordered trajectory

a(t) = a(0) + a't- (x.8)

we then have

1 1
= ’ (X—9)
cosh 2na'w ﬁ

cos n:[a(t+) - a(t_)]

which for positive t produces a quenching of the 2-reggeon
"propagator”. At negative t there is no quenching; & point to
which we return below.

The reader may be puzzled by the fact that the function
So(t, t,) was defined in Eq. (IX.h) to contain a cosine factor. How
can it be claimed that quenching results merely by eliminating the

cosine? The explanation can be given in either of two alternative

forms :
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(1) Formula (IX.4) for so(t, t,) contains a product of
gamma functions with the cosine factor, there being an important sense
in which the product is simpler than the gamma ﬁmctions.alone. This
sense relates to the requirement that ordered particle-pole residues
all have the same sign; such a property is manifested by the product

eim(t+)F<l - ot ))

+
but not by the gamma function alone--whose poles at a(t+) =1, 2,
have residues that alternate in sign. Coherence of ordered poles is
an essential facet of ordered unitarity; the coherent ordered
propagator, if written in terms of a gamma function, must carry an

im.- By removing such &

(46, 47)

additional altermating factor (-1)% = e
factor, residue sign altermation 1s generated. Such incoherence
reflects a decrease in order when passing from thg Hanar S matrix to the
cylinder and makes the cylinder small for large positive t . One
notes the similarity of such a.. mechanism to that producing
"peripherality" (discussed in Chapter VI): destructive interference
between different angular momentum values. |

(2) since the ordered bootstrap equation (IX.3), with a left-
hand side independent of t , is supposed to hold over a range of t
values the integrand on the right-hand side must on the average be
independent of %t ; t dependence from the cosine factor in SO(J, ti)
must be compensated by t dependence from gamme functions. One then
recognizes that a positive-t quenching tendency will result from
removal of the cosine factor. The averaging notion wil]' be exploited
below to obtain a transparent formula for the cylinder shift of the

leading plapar pole.
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Restriction to a Finite Number of Ordered Reggeons

The kernel of the cylinder integral equation (X.2) is
determined by the ordered amplitude R(J, t), whose poles are
factorizable. 1In consequence, if we approximate R(J, t) by a
finite number of Regge poles we achieve a kernel inv the form of a
finite number of factorizable terms. The integral equation then
becomes equivalent to & set of linear algebraic equations coupling
together the different ordered poles. In a vector space based on

these ordered poles let us define the diagonal pole matrix

—_1 0 0 SN
g - ozl(t)]
P, t) = 0 —_— 0
g - ae(t)]
o o 1
g - or_j(t)]
(X.10)

as well as the off-diagonal cylinder loop mwatrix

ko (t) = =« [dcp s’:;‘l(t, ty) g (t, t,) g (6, t,) (x.11)

corresponding to the twisted quark-line disgram of Fig. X.T7. The loop
reggeons are understood to be the highest-lying ordered reggeons in
the families appropriate to the involvedAvertices. The g, are the
corresponding ordered triple-Regge couplings. The cylinder equation

then assumes the (finite) matrix form

ﬁO(J, t) = P(J, t) + P(J, t) k(t) ﬁO(J, ), (X.12)
with the eigenvalue condition determining the cylinder poles:

aetlp (g, £) - k@) = 0. - (x.13)
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Simple Pole-Shift Formula with SU, Symmetry: Bmérgence of the Pomeron

Suppose only the leading SUN multiplet of N2 ordered poles
is kept in approximating R(J , t). With SU; symmetry one may make
superpositions corresponding to irreducible representations, and the
cylinder will be found to couple only to the SUN singlet. The
corresponding cylinder pole, according to (X.13), is located at

3 o= at) + salt) (X.14)
where

Aalt) = N k(t). (x.15)

(With SUy symmetry all ¥ elements of the matrix k are equal.)

*
Comparing Formulas (X.11) and (X.5) to (IX.3) we see that

+ a(t) ~a(t,) - a(t ) +1
Lo (E) = * * = , (X.16)
cos x[a(t+) - a(t_ )]

the average belng taken over the loop integral with the weighting
. function of.(IX.3). - The plus sign goes with even charge conjugation
symmetry and the minus sign with odd. The numerator of (X.16)
increases linearly with t but the denomimator increases expo-
nentially, so the shift tends strongly to zero as t - +.
Formua (X.16) was first obtained st & = O and positive
charge con,juggtion by H. Lee.(39) At this especially simple point

where t+ = t_ we have

The extra factor of a(t) - o:(t+) -a(t)) +1 comes from the
difference in the phase space integration between the planar and

cylinder loops.
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Adt(0) = a(0) - 2(a) + 1-,

so the leading cylinder pole is located at

a(0) + sd*(0)

a*(0)

1 + 2la(0) - {a)] . (x.17)

Thus, 1f the strip width on the negative-t side is small so that
(@) = a(0), one expects the leading cylinder pole to have the
t = 0 properties of the pomeron: intercept near 1, even charge
conjugation, positive signature and zero isospin.

Interpretation of the leading multiperipheral cylinder-model
pole as the pomeron has not been universally accepted, because of the
implication that the pomeron is the upward-shifted leading planar
trajectory carrying the same quantum numbers as the pomeron. Such a
trajectory, as we saw in Chapter IV, contains as its first particle

pole a good approximation to the f meson (JPc = 2++).

According
to the multiperipheral cylinder model, the pomeron trajectory contains
the f meson; there is no semmrate f trajectory. A varlety of
arguments (which we comment on below) have been made to suggest that
the pomeron should be a "new" singularity--not already contained in
the planar spectrum. These arguments are insufficiently compelling,
however, to requﬁe abandonment of the model described in this chapter.
E’aving alerted the reader to a point of controversy, we continue to
discuss the multiperipheral model's consequences.

Formula (X.16) turns out to be less meaningful for negative
charge conjugation symmetry than for positive because of the influence

of neglected lower-lying poles in R(J, t). The direction of the
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cylinder shift of the leading odd charge conjugation pole is downward,
bringing it into close proximity with lower-lying poles. The
calculation must then be expanded in order to be meaningful. With the
availability of computers it is of course possible to avoid
inessential approximations. We have discussed Formula (X.16) because
of its historical role with respect to the pomeron and because it
exhibits so explicitly the magnitude of the cylinder shift, including
the large~t damping.

The Cylinder and SU5 Symmetry Breaking

It was remarked in Chapter III that the OZI rule takes on
different aspects depending on whether SUN symnetry breaking is
large or small compared to deviations from planarity. Now that we
have a model of the cylinder we can explore this subtle question.
Let us assume that | SU2 symmetry 1is exact but that the breesking of

SU, symmetry in the ordered S matrix is similar to that observed for

3
the physical S matrix. We assume, in particular, on the basis of the
observed mass difference between physical ® and physical ¢ (or
between £ and £') that the shift between leading ordered trajec-
tories of the (m,n) or (p,p) class and those of the (A,A) class
is about O.4 units of J. We then have the interesting situation that
for t S0 the cylinder shift 1s comparable to or larger than SU3
symmetry breaking while for large positive t the cylinder shift is
smeller. We now describe a simple model that allows study of the
transition between these two regimes.

Suppose that in R(J, t) we keep the leading poles in each
of the 3 families (n,n), (p,p) and (\A). To achieve maximum

simplicity let us follow Ref. (U2) and assume that symmetry breaking
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of the ordered pole positions in P 1s more importent than symmetry
breaking of the cylinder coupling coefficients k . Such a simplifying
assumption, although inessential, 1is consistent in spirit with the
general pole-dominance approach; all nine cylinder elements are then
approximated by a single mumber k(t). SU5 symmetry breaking is

entirely characterized by the ordered-trajectory spacing 4(t)

aq(t) = o(t) = ogt) + At), (x.18)

the displaced trajectories and assoclated elgenvectors being determined
by the ratio between k(t) ‘and &(t). This ratio, that is to say,
determines the degree of 0ZI-rule violation. Models of this type have
been extensively studied in the literature; we now describe the
qualitative lessons that have been learned.

At large positive t where k(t) is smaller than A(t), the
ecylinder shift of each ordered trajectory not only is small but the
coupling shifts are also small. After projection on I = 0, the
underlying ordered Hilbert spece becomes reduced from three states to
two, f - f' for even charge conjugation and w - @ for odd charge
conjugation. The coupling shift may consequently be characterized for
each pole by & 'mixing angle”, giving the superpositions of the two
ordered states that constitutes the associated eigenvector of Pk.
Cylinder mixing angles are zero in the limit k = O corresponding to
f and ®© being purely of the type Vlz {(p,p) + (n,n)] while f£'
and @ are purely of the type (A A). The mixing angles are
proportional to k(t) for small k(t) and grovw in magnitude as t
diminishes., Trajectory shifts also grow with k(t); f and f'

trajectories are displaced upward while « and ¢ trajectories are
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displaced downward, The sign of the mixing angles is such that £
and @ move in the direction of becoming SU.j singlets ‘&s the ratio
k/A grows, while o and f' tend to become SU, octets. All

3

estimates agree that near t = 0 +the magnitude of k/A 1is of the
order unity so that the eigenvectors are roughly halfway between the
ordered (sometimes called "ideal") 1imit and the "strong cylinder"
1imit corresponding to irreducible representations of SU3 . Most
models predict that as t becomes more and more negative the ratio
k/ A will continue to increase, meking SU3 symmetry more and more
accurate for cylinder-communicating poles.

The latter point can be confusing because, according to the
peripheral strip hypothesis (Chap. VI) the cylinder amplitude MOAB’ cD
is small except for small values of Itl = 'SAB" However, the
cylinder amplitude is proportional to k(t) only for small k; the
cylinder coupling Xx(t) may be large even though the cylinder
amplitude is small. The quantity x(t) controls the shift of a
trajectory and its SU3 content but does not control the magnitude
of the Regge residue, which throughout maintains the same order of
magnitude as the ordered residues. |

All the foregoing features find at least qualitative support
from experiment, as discussed in Refs. (4B-51). We have seen in
Formula (X.16), which is an approximation to * 3k, that the
magnitude and sign of k at t = O 1s satisfactory. Assigning to
k a roughly exponential variation with ¢ ,

-t/ .
k(t) oc e ¢, (x.19)

with the "eylinder-quenching interval" t, X (a')'l, semi-

quantitatively correlates such diverse experimental facts as the
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pomeron slope, the £ - A  mass difference, the difference between

2
np and Kp high energy elastic differential cross sections as a
function of ¢, and the deviation of ¢ from ideal mixing. (The
latter point is treated further in Chapter XI.) If the averéging
indicated in Formula (X.16) 1s carried out with the ordered triple-
Regge couplings that satisfy the ordered bootstrap equation (IX.3),
one indeed finds for small Itl a t-dependence close to

(x.19). (19,34 15,51)

The multiperipheral model of the cylinder thus
appears 1n good shape from an experimental standpoint.

Pomeron-f Identity

The pomeron-f identity 1s a source of uneasiness about'; the
cylinder model described in this chapter. Many physicists are
troubled, partly because of the phenomenological successes(52) of the
Harari-Freund picture employing exchange-degenerate o, £, Az, w
plus a pomeron, and partly because of QCD expectations of "glueballs"
--states made of gluons rather than quarks. (The highest glﬁeba]l
trajectory is expected to have the quantum mumbers of the pomeron.)
We are not deeply concemedbabout the latter viewpoint as such, partly
because no reliable way yet exists to evaluate the QCD predictions for
glueballs and partly because the poles of the ordered S matrix should
not be viewed as literal qq composities. The quark-line diagrams
of the II'U program are merely representations of ordered relationships.
We are more concerned about reasoning by Veneziano, (53) stimulated by
QCD but within the DIU framework, which calls attention to the
artificial mature of the reggeon links in the equation of Fig. X.h.
Veneziano points out, for example, that particle 1' in Fig. X.2 can

resonate with particle 2', even though these particles appear in two



<113-

separate clusters in the équation of Fig. X.U. Veneziano urges that
in neglecting such correlations, the distinctive character of the
pomeron may have been lost. We have two remerks in response to
Veneziano's concern: (1) The same criticism of artificial
separation may be made of the ordered bootstrap model. Farticles in
the first cluster in Fig. IX.3 actually caen resonate with particles
in the second cluster. Factorization on a reggeon link is a ques-
tionable feature of any multiperipheral model; it does not seem to us
especially dangerous for the cylinder model. In fact, because the
definition of the strip regipn of Fig. X.2 demands rapidity ordering,
the requirement that at least one particle of the opposing subset
stand in rapldity between particles 1' and 2' means that the
rapidity gap between the latter will on the average be larger than
the rapidity gap separating Ithe two clusters of Fig. IX.3. Reggeon
factorization may thus be a bm approximation for the cylinder
model than for the ordered model. The neglected correlations should
in principle be accounted for by including nonleading reggeon
exchanges. Wpile one expects these lower trajectories to change the
quantitative results, whether they will change the results qualitatively,

(5% 55) (2) The physical

as Venezlano suggests, 1s an open question.
picture of the pomeron as the shadow of multiperipheral-dominated prod-
uction Processes, emerging from the above model, coincides with the
bulk of particle-production phenomenology. More detailed models,
making contact with this phenomenology, find the £ intercépt to be
shifted from near 0.5 to near 1.0.

’ So far as the phenomenological successes of the Harari-Freund

picture are concerned, we believe that the multiperipheral cylinder
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model has already gone further in explaining experimental facts.* In
additlon, the general unitarity arguments of Chapter VIII show that
the f cannot survive--maintaining its ordered position and residue--
when the cylinder is added. Even if the pomeron is a new singularity,
with no counterpart in the plaﬁar spectrum, cylinder unitarity still
requires the f +to undergo a substantial shift.

Unnatural Parity

Although not yet as well understood, the cylinder shift of
leading unnatural parity trajectories deserves mention. FPEmploying the
multiperipheral model in the same spirit as for natural parity, one
expects shifts of the four I = O trajectories 17, n', H and H'

away from the I =1 (58’60)

n and B trajectories. The magnitude
of k(t) needed here to explain the experimentally-observed shift:, of
n from =n 1is similar to that for natural parity, but the sign of the
required cylinder loop coupling is reversed. The latter fact has been
explained by Millan through the nonidentity of the two ordered

(61, €2) Unnatural-parity within the cylinder is

reggeons in the loop.
clouded by uncertainty concerning unnatural perity at the planar
level. Because the two ordered reggeons within the leading loop here

have different trajectories (having opposite naturality), reggeon

_phase factors play a role qualitatively different from that for purely

natural parity. Finding a consistent ordered triple-Regge coupling
g(t) 1s tricky when there is a displacement between the two helicity.

poles.(3 4) It is plausible that solution of the problem will involve

Careful comparison with experiment requires attention to threshold

effects, as emphasized especially by Dash and collaborators. (56’ 57)
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a dynamical zero physically related to —the Adlef zero; since the most
successful dual resonance models of nnt amplitudes have contained
such zeros when the spacing between x and p trajectories is
approximately O..5. At the time of this writing, a consistent unnatural-
parity multiperipheral ordered bootstrap model remains a tantalizing

goal. When such a model is achieved, the corresponding cylinder model
will unambiguously follow.

Fig. X.1.

Fig. X.2.

Fig. X.3.

Fig. X.h.

Fig. X.5.

Fig. X.6.

Fig. X.7.
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- - . . FIGURE CAPTIONS

Chapter X

(a) A two-particle contribution to & boundary slicing
discontinuity of the cylinder.

(b) The generalization of Figure & to a multiparticle
intermediate state.

The multiperipheral strip which is assumed to dominate the
ordered amplitude appearing on the right-hand side of
Fig. X.1b. The significance of the dots is explained in
the text.

Sumnation over subset of intermediate states which leads
to a discontinuity of an ordered, four-reggeon connected
part. -

The AC discontinuity of Fig. X.l after the summation,
as discussed in the text, over intermediate states is
performed.

An ordered term to be added to the discontinuity of Fig.
X.h,

The linear integral equation for the discontinuity of ﬁo

Twisted quark-line diagram for the cylinder loop matrix.
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2°X *31d

T°X *3td
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¢ t)

Fig.X.3
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9°X"314

§'x'314
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XI. CYLINDER VIOLATION OF OZI SELECTION RULES

Chapter X has discussed the breaking of isospin and exchange
degeneracy-~-cylinder violations of planar regularities. Also
discussed have been the coupling shifts of ordered reggeons away
from the "ideal" ordered limit--another departure from the maximal
regularity of the planar S matrix. We did not, howeve;', explicitly
discuss the violation of 0ZI selection rules, for the reason that
most of the experimental evidence regarding the latter requires
going outside the low-t strip--into & region not describable by the
multiperipheral model. The latter model does describe the transverse
structure of the low-t strip cylinder damping resulting from pole-
residue sign alternation in reggeon propagators. Nevertheless, large
positive t requires an understanding of two other, quite different,
strips. The present chapter will describe a large-t model based on
Regge branch poipts in the cylinder.

The reader should remember that we are continuing here to deal
with the same component of the topological expansion as formed the
subject of Chapters VIII and X; the discontinuity formula underlying
our apnalysis of cylinder unitarity will also form the basis for the
Regge-cut model. In moving from small t to large t, physical

emphasis shifts from Regge-pole properties to the violation of OZI

selection rulées, but both categories of physical effects are controllel’

by the cylinder. With the aim of f£irming this bridge in the reader's
mind, we begin the present chapter by explicitly relating OZI-rule
violating decays of ¢ and f' +to & rough but conceptually useful

notion introduced in Chapter X--that of mixing angles.
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,
Mixing Angles

Approximating the cylinder through only'.two ordered poles
sﬁch as @ and o (odd charge conjugation) or f' and f (even
charge conjugation) allows pole-residue shifts to be represented by a
mixing angle. The coupling in the multiperipheral model is to the
set of channels that dominate the ordered bootstrap, but the same
mixing angle applies to all channels. In conventional quantum-

mechanical notation one expresses such a notion by writing

lcpcyl(t)) = cos 87 (t) Iq’orﬁ“” + sin 87(t)’ |word(t)) ’

(x1.1)
lwcyl(t)) = -sin 6 (t) ICpord(t)) + cos 8 (t) lword(t)) s
' ' ' (X1.2)

with a corresponding pair of formulas for f‘cy and f;y in terms

1 1
of an angle e*. These formulas arose in describing ratios of

couplings to the dominant 2-reggeon loops in the multiperipheral

equations. For example

L] +
M(f = Pra

+ -
cyl )

+. 2
sin 8 (m ,)M(fordH p +p

e ord ord

ord)

(x1.3)

but in an approximation based on only two ordered poles the same angle
9+(mf2,) also describes the relative couplings of f£' and f to
ﬂ+ﬂ-. The measured ratio between the 0Z1 forbidden decéy £ - n
and the allowed decay f - nn thex:} translates into a velue of 8+ .
The notion of a single angle to describe all coupling ratios
for a pair of trajectories can at best be a rough approximation, since

many more than two ordered poleé communicate through the cylinder, but
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as a way of éompactly characterizing certain types of 0ZI-rule
violation, the mixing angle concept is widely employed.* We shall
often in this chapter, for example, refer to the experimentally-
measured value of 6~(mq92 ), based on the ratio of the forbidden
decay Prp+ tg the allowed décay w -+ p+ 7, tacitly treating
9'(mcp2) as an intrinsic property of the physical ¢ --independent
of the chamnel to which @ may be coupled.

We have discussed how, in the cylinder multiperipheral model,
the mixing angles ei(t) are proportional to twisted loop integrals
when the lat*:er are small. For example, in the simplified model of
Chapter X that was characterized by the single ratio k(t)/A(t), one

finds(he )

o (4) & tZ k(t)/At) . (XT.b)

Although at large t the multiperipheral model eventually loses

validity, one may continue qualitatively to think of 0ZI-rule violation

in terms of mixing angles, and it may be hoped that at the physical

¢ and f' masses--on the "fringe" of the strip--Formula (XI.L)

One important difference in our use of the mixing angle is that
we explicitly consider the t-dependence {(mass-dependence ) of

mixing angles.
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. * ) : - - o
maintains qualitative significance. In Chapter X we pointed out that If the mixing-angle concept is applied to the unnatural-
- 2 +, 2 :

the small measured values of 8 (mcp ) and 6" (m,7) are compatible perity 7n-n' system, experimental measurements imply that e+(mn2)

" through Formula XI.lU with the large pomeron-f shift at t = O if (58,59, 66)

and 9+(mn2,) are much larger than the corresponding mixing

k(t) 1s an exponentially decreasing functlon. One of the special angles for mtural parity. The smallness of the 7 mass leads us

virtues of (XI.4), which so far as we know is not shared by other here to expect large deviation from ideal coupling, but the

models, is that it correctly predicts the signs of the mixing angles substantial deviation observed for 1' , even though mﬂz' & mcp2 x

+, 2 - 2 .
® (mf ) and @ (mq)') in addition to their magunitude. 1 Geve, implies & slower cylinder gquenching rate for umnatural parity

EY

* -
than for matural. Put differently, the low-t strip appears to be

The multiperipheral cylinder model contains & mechanism, also broader when the cylinder carries unnatural perity. Nevertheless the
= deducible from general unitarity arguments, (19,653-65) that in n-n' system can be successfully described in terms of mixing angles,

effect gives an imsginary part to the mixing angle. In the with the t-variation (i.e. 9+(mﬂ2) > 9+(mn21)) now very

loop integral there occur chammel hresholds, associsted with inportant. (00759)

poles of the reggeon propegators, and careful evaluation Begge-Cut Model of the Cylinder

produces an associated imaginary part of k(t) for t above To hapdle large values of t , outside the strong low-t

these thresholds. Physically one may say that ¢ (or £') ' cylinder strip, a model has been proposed by Veneziano(ej) and by

decays into KK which then makes a transition via o (or f) Chan, Kwiecinski and Roberts, (67) that 1s based on the other two

to np (or =), each of the two processes in this succession cylinder strips, which are weaker because of the absence of parallel

being allowed at the planar level. The effect turns out to be / poles but which nevertheless dominate MOAB’CD as SAB(t) - o at

relatively small because ordered resonance decay widths are either fixed Spc ©F fixed Spp° Cylinder-communicating states of

small compared to the w - ¢ (or f - fl) mass differences. high mass but low angular momentum may then be considered.

Additionally, when many channels are "open", interchannmel The model rests on the discontinuity (V.8), cutting between

cancellations result from the alternating signs of pole residues. cylinder boundaries, that formed the basis of Chapter VIII. For

present purposes, assuming the cylinder to be weak for large Spp ?

* As remarked at the end of Chapter X, no calculation of the

unnatural-parity cylinder loop integral can be mede until the
correspondihg ordered triple-Regge couplings have been determined

from the ordered unnatural-parity bootstrap.
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we neglect all terms in the discontinuity formula that contain the
cylinder itself and keep only products of ordered amplitudes, i.e.
four terms of the type shown in Fig. XI.1. Two of these terms tend

to populate the strip where is small and two populate the strip

Sac
where sAb is small. We focus attention on the former. Let us
tentatively assume that the intermediate-particle cluster (1, 2,--:n)
tends to be separated in rapidity from the cluster (1', 2', --- n'),
so that the link between the clusters may be represented by the
leading reggeon with appropriate quantum numbers. Summing over
particles within the two separate clusters then leads to the
approximation schematically indicated in Fig. XI.2. Remembering the
strip structure of ordered amplitudes discussed in Chapter VI (see
Fig. VI.2.), we see that for small Spc = SBD the separate ordered
discontinuities appearing on the right-hand side in Fig. XI.2 are
large only when their other channel invariants are also small. The
cluster masses, in particular, tend to be small--confirming
a_posteriori the assumption of a large intercluster rapidity gap. As
in previous models one must integrate over cluster masses, but ordered
peripheral strip structure sharply confines the mass interval from
which significant contributions arise.

As sAB(t) -+ o0 the product in Fig. XI.2 has the power
behavior .

o (¢, ) (¢ )-1
SpB ;
that is to say, the leading Regge singularity in the AC - BD channel

1s & branch point at J,, = cx+(t+) +a (t ) ~ 1. The product is small

c

for two reasons--corresponding respectively to the location of the
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branch point and to the associated discontinuity: (1) First of all,

small the power of s corresponding to the Regge cut is

ac AB
less than that corresponding to an ordered pole. Consider the quark-

for

line diagram associated with Fig. XI.2, shown in Fig. XI.3(a) in

comparison to an ordered diagram, Fig. XI.3{b). At Spc = 0 the

leading power for the ordered amplitude in the large Spp

akJ(O), where akj 1s the leading reggeon in the (3,k) family,

limit 1is

whereas the leading power for the cylinder is akj(o) + aﬂ'(o) - 1
The power differemce is 1 - aiL(O), ensuring that asymptotically s
cylinder amplitude becomes negligible compared to the corresponding
planar amplitude, 1f aiL(O) <1l. (2) Even were aiL(O) close to 1,

the cylinder would be weak because outside the low-s,_ strip the

AB
cluster-mass integrals on the right-hand side of Fig. XI.2 are
numerically small, corresponding to the smllnesé of the Regge-cut
discontinuity. Smallness of these cluster-mass integrals is related
to smallness of the peripheral strip width, which in turn is related
to destructive interference from different values of angular momentum.

That is, by keeping small the nonadjacent channel invariants s and

AC

Sep in the ordered discontinuities of Fig. XI.2, we are in effect

evaluating these quantities near "backward" directions as the cluster
mass attempts to grow, Factors of (-1)J are correspondingly present.
The integral over an ordered discontinuity with a fixed nonadjacent
channel invariant 1s often characterized by a dimensionless parameter
(16,17, 68, 69)

€ The strength of the Regge cut is proportional to
€2, most estimates agreeing that 62 £ 0.1. To sumarize, in the
Regge~cut model the order of magnitude of the cylinder-planar ratio

at large t and low is

Sac
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a.,(0)-1
E(a't) 1'_“ , _ (X1.5)

assuming the energy scale to be set by the slope of leading ordered
trajectories.

(67, 70)

Chan, et al. have employed the Regge-cut model to

explain a variety of qualitative experimental observations concerning

charmonium decay. We may appreciate the nature of their considerations

by examining ﬁhe already-discussed parallel problem of the
"strangeonium" decay @ = p + n. Choose the particles A and B to
be K and K, with an order such that a {(A,\) family enters one
cylinder boundary. Let particles C and D be n+ and p , with
and order such that a (p,p) family exits from the other boundary.
Project then on J AB 1l and make the a_;emilocal duality assumption
that the smboth discontinuity given by the Regge-cut representation

corresponds to an average over resomances in the AB <+ CD channel.

Knowing the resonance spacing, the Regge-cut model thus ylelds J = 1

pole residues, and one factor of the @ residue corresponds to the
desired coupling ® = pn .
According to Formula (XI.5), the ratio of the latter OZI-

violating coupling to an allowed coupling is of order

0)=-1
' n? ()t (XI.6)

Since a'mq;2 happens to be close to 1, we find the Regge-cut model
of the cylinder predicting the mixing angle 9-(m(p2) to be of the
order €. Sucha statement sounds completely different from (XI.4)
--the multiperipheral model result. Is it accldental that both

models agree with experiment (e'(mpz) % 0,1 radians)?
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Relation between Multiperipheral and Regge-Cut Models

The Cp ma.ss happens to lie in the transition region--on the
outer fringe of the low-t strip and at the beginning of the high-t
interval where semi-local duality gilves meaning to crossed-channel
Regge representations. Although both multiperipheral and Regge-cut
models are here being stretched to their limits of validity, there is
precedent for supposing thai; ﬁn overlap region exists where high-t
and low-t approximations are simultaneously meaningful. It is
furthermore the case that in both models the smallness of the
predicted mixing angle is attributable to (-1 )J destructive
interference.

The f‘aét that the multiperipheral model ylelds an exponential
decrease of cylindér strength while the Regge-cut model ylelds a
pover decrease is understandable through the strip structure of Fig.

VI.3> . The former model is concerned with the strong low- strip

} °AB
while the latter concerns itself with the weak (~€2) strips at low
and low SAD'
structure of the strong strip while the power behavior refers to the

Spc The exponential behavior refers to the transverse

longitudinal structure of the weak strips.

0ZI-Rule Violation in L-Line Connected Parts

As an example of 0ZI-rule violation that cannot completely be
expressed through a mixing é.ngle, consider the two-boundary cylinder
component Mg’ BCD for a reaction forbidden at the planar level,
where particle A and only particle A has quantum numbers allowing
comnunication with the cylinder axis. An 1llustration might be

o +

A=9 B=x, C=mnx, D = n . There are poles in all three

channel invariants s and Bppy with three corresponding

Sag* ®ac
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strip regions. When only one invariaent is small and the other two
large, a single strip 1s important and one may use a representation
in terms of the ordered  Regge poles perallel to this strip. Roughly
speaking, the only difference in this region from a corresponding
ordered amplitude (nonvanishing in the same strip) is a mixing-angle
factor. In our 1t+n' Ind (Pno illustration if we go to the strip where
s

AB
the ratio to the allowed amplitude x+:r' - ax® is Just the ratio of

is large and SAC. is small, the leading Regge pole is D+ and

the Regge couplings p+(sAC) -9 to p+(sAC) - x'w, which we
*
expect to be of order é . The situation, however, is more

complicated in the region where all three invariants Spp?  Sac and

s are small.

AD
In this central region of the Mandelstam diagram the sin-
gu.]a.rity‘struc{:ure of M‘g’ BCD is qmiitative]y different from that
of an ordered connected part such as N%'BCD, which has poles in only
two of the three invariants. Crude models of this central region,
based on the discontinuity formula (V.7), suggest that where all three
strips converge the amplitude IV%’BCD becomes comperable in magnitude
to an ordered amplitude. Only when the energy is high enough to allow
contributions from many different intermediate channels does (-1 )J

destructive interference reduce the cylinder magnitude.('m"?h)

As shown by Kwiecinski, (1) the mixing angle 9-('%2) is strictly-
speaking relevant only to the physical points on the rho trajectory

where ap:l, 2, .

Fig. XI.1.

Fig. XI.2.

Fig. XI.3.
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FIGURE CAPI'IONS

Chapter XI -

Product of ordered amplitudes conﬁributing to the AB
discontinuity of _the cylinder.

A reggeon loop approximation to the cylinder discontinuity
depicted in Fig. XI.1.

(a) ‘The quark line diagram corresponding to Fig. XI.2.
(®) A quérk line diagram for an ordered connected part,

to be compared to a.
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XII. TORUS
Cylinder corrections to the plénar S matrix are expected on
the basis of the two convergence mechanisms discussed in Chapters VI
and VII to be more important than corrections involving handles.
According to experimental observations, as described in Chapter IV,
such seems indeed to be the case; the most visible departures from
planar regularities involve cylinder-communicating channels. Small
irregularities are nevertheless inevitable in all channels as a result
of h # 0 components of the topological expansion. This chapter
considers the co;ponent with one handle and one boundary--commonly
described as a "torus"--that is expected to constitute the most
significant h £ O correction. |
As explained in Chapter VII such a component will be smaller
than the corresponding planar component by a "statisticél" factor
'l/Ne, N being the average number of flavors allowed by phase space
to be effective in intermediate states. We Imve interpreted the l/N2
factor as manifestiﬁg the constraint that only SUN singlet channels
are allowed to flow through handles. Additionally, aé explained in
"Chapter VI, intermediaste handle-traversing chénnels»are cdnstrained
- by peripheral dynamics to bé of low energy. The comb;nation of these
two suppressive mechanisms ensures relative smallness for,tﬁe torus.
Speaking loosely, if one associates the pomeron with the
cylinder and regards a handle as an "internal cylinder", one may say
that adding a handle is like adding an internal pomeron link. A
confiection is thep recognized between the summation éver many handles
and Gribov's reggeon calculus, which 1s a generalization of the idea

of "absorptive" corrections through pomeron insertions. The weakness

of pomeron couplihgs; on which reggeon calculus depends, is seen &8s a
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manifestation of the convergence mechanisms within the topological
expansion. The connection between DI'U and reggeon calculus has been
studied by Ciafaloni, Marchesini and Veneziano.(ls) We shall not

venture into this arena, restricting our attention to a simpler

although physically-related question that requires only a single hanile:

* .
the torus shift of planar trajectories. A lesson will emerge: The
shift cannoct be calcu]aﬁed in terms of pomeron couplings. The handle
structure is more subtle.

Crossed-Channel Torus Discontinuilty

Suppose we wish to correct the ordered AB-channel Regge poles
of MgBCD by adding Mi'BCD. We assume the 1sospin of the AB channel

not to be I = O, so there is no communicating cylinder component.

Strictly-speaking, a single-handle compoment does not by 1tself

shifb a pole but generates a double pole at the same position. Tt

may nevértheless be shown by standard renormalization considerations

that the double pole is the first of an infinite correlated
sequence of multiple poles, the pole order increasing with the

number of handles and the series summing to & shifted pole:

Understanding the single-handle (double pole) term thus yields

the shift 4.

13-

As usual we may think of AB poles as arising from AC and AD
discontinuities. Now a correction to the AD discontinuity will not
disturb the standard planar regularities, since this discontinuity
is already nonzero in the ordered amplitude. 0dd and even signatured
trajectories, in particular, receive a common shift from a torus
contribution to the AD discontinuity; there 1s no breaking of

(15) On the other hand, with the torus contribu-

exchange degeneracy.
tion to the AC discontinuity, exchange degeneracy is broken, Sé we
concentrate attention on the AC discontinuity of Mi'BCD.

The discontinuity formula turns out to involve two classes of
terms: planar times plapar and planar times cylinder. The former
appears first in a 3-particle discontinuity, while the latter appears
in a 2-particle discontinuity. Understanding as usual the.t inter-

mediate "particles” are ordered clusters, we have

BCD FEDG GFCE EDFG GCEF
dtseyg 77 = KT @ MO+ P @ o

+ MEF,DEG) MISFCE . M?)EDF® N%F,EC .

(xx1.1)

When Spc 18 large and SAB

are large in the dou'bly-peripheral'strip indicated in Fig. XII.l.

is small the planar times planar terms

Representing intercluster rapidity gaps by reggeons and summing over
clusters, we are led to the gpproximation of Fig. XII.2 for the
plapar times plapar portion of the torus AC discontinuity. Applying
the reasoning that led us in Fig. XI.2 to conclude that both cluster
masses there were limited leads here to the conclusion of a limited

central-cluster mass. Bach of the two end clusters in Fig. XI1.2 is
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unrestricted in mass,f hovever, and one cannot argue for & large
rapidity gap between clusters.

Some investigators have at this point followed the spirit of
the multiperipheral ordered and cylinder models where reggeon links

were employed for small as well as large rapidity gaps.(lq’ 68, 76)

Other investigators (77, 78)

have invoked techniques from reggeon
calculus in an effort to include the effect of-the central cluster's
merging into one of the end clusters. There 1s unresolved controvefsy
about which approach gives the more reliable result. All investigatars
agree on the order of magnitude (see below), but the sign is in
question. In any event one should not ignore those terms in Formula
(X11.1) that involve the cylinder.

The cylinder times planar contribution is indicated in Fig,
XII.3 and corresponds to two ordered clusters, each ofvunrestricted
mass. No reliable calculation has yet been made of this contribution,
but estimates indicate that near t = SaB = 0 +the cylinder times

(19)

plapar terms are comparable to the planar times planar. Indeed,
our experience with Formula (V.8) suggests that simplification of the
calculation may result by considering simultaneously the two sets of
terms. Certainly, if the cylinder contribution is adequately to be
evaluated, one must not forget those cylinder poles vthat precisely

cancel I = 0 planar poles.

" .
Two unrestricted clusters corresponds to the statement (preceding

footnote) that the JAB projection has a double pole as its

leading Regge singularity.
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‘The small magnitude of the planar times planar portion of the
torus AC discontinuity follows partially from the smallnéss of the
integral over the central (twisted) cluster in Fig. XII.2. Char-
acterizing the smallness of this integral by the parameter € used
to charé.cterize the twisted cluster integral in Fig. XI.2, the order
of magnitude of the ratio of a torus discontinuity to a corresponding
ordered discontinuity is estimated to be e/l\ﬁffp When translated into
a trajectory shift, an angular momentum displacement of this same
order is anticipated, which for N_,, % 2.5 and e} ~ 0.3 1s indeed
the experimentally-observed order of magnitude--as seen in Fig. IV.1.
A convincing quantitative calculation of the trajectory shift, however,
has not yet been achieved through the crossed-channel discontinuity.(79)

Direct-Channel Torus Discontinuity

The shift of an AB ordered pole is in some respects easier
to understand through the AB torus discontinuity than through the
AC discontimuity. 8% The two-particle (two ordered cluster) dis-
continuity involves the four cylinder times planar terms shown in
Fig. XII.lt.* The intermediate cluster E , because it attaches by
itself to an isolated boundary of a cylinder, must have I = O and

contain pairs of poles that tend to cancel each other, with the

*
We ignore the torus times planar terms and the planar times planmar.

terms which enter at the 3-particle level. The latter should to
a large extent be incorporated through our use of cylinder poles

for the E cluster.
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residual difference between the two shrinking as their mass increases.
We have discuésed how the lé.rgest difference occurs for the lowest-
mass I = O particles. Thus we may approximate the E cluster,
which may be thought of as "the handle", by a rapidly converging
seq_uexice of cylinder-shifted particles minus the corresponding planar

particles. The dominant contribution should be 1 - 1 which,

planar

to the extent that 1 is degenerate with = , we may approximete

plaﬁar
as 1N - . For all other physical particles the cylinder shift is
extremely small.

The 1ink F must carry the interral quantum mmbers of the
AB channel (which we have agreed is not I = 0), and the residues of
poles in both E and F 1links alternate 11-1 sign with J (or with
charge conjugation). Both links, that is to say, can be shown to» be
"twisted" in the same sense as were the links in the reggeon loops of
the multiperipheral cylinder moé.el.

suppose ve are interested in p - A2 trajectory splitting,
S0 IAB = 1. The leading poles in the F_ 1ink then have isospin 1
and appear with the relative signs =n - B, A.2 - p, etec. Cor-
respondingly, the lowest-mass contributions to the. AB torus

discontinuity carry the relative coefficients

(n - n)(x -B+4A, -p). (XI1.2)

Such a superposition of intermediate states is precisely that
dictated by G-parity conservation, which we emphasized in Chapter II
1s not obeyed by intermediate states at the planmar level. Consider,
for example, the terms in Formula (XII.2) that correspond to pairs of

pseudoscalar mesons:
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LESR ¥ (X11.3)

G parity allows fn to communicate with A, but not with p , while

2
the reverse vis} true for sn , so the difference of the discontinuities.
contributing to A2 and p , with observance of G parity, will
contain the combination (XII.3). It can be shown that the complete
structure of the torus two-particle AB discontinuity, including the
sign alternation with charge conjugation, may be deduced from the
G-parity requirement on states that 4o not communicate with the

(80)

cylinder.

If one assumes that the trajectory displacement

aAz(t‘) - ap(t) (x11.%)

va.ﬁishes smoothly as ltl -+ ®m, satisfying an unsubtracted dispersion
relation In t , a calculation of the displacemenf may be based on the
measured partial widths for the decays A2 = qn, WO, P > MM, T,
etc. into the two-particle channels represented in (XII.2).* When
such a calculation is pez_'formed, the lowest-threshold AB-communicating
intermediate two-particle channels give a seml-quantitative account
of the A2 - p displacement, explaining the sign, the magnitude and
the derivative.(ao) The dominant contribution arises from the n=x
channel, which because it contributes to p and not to A2 , lifts

the former above the latter.

Unitarity relates the imaginary part of & trajectory to the

width of the physical-particle states occurring on the

(5)

trajectory.
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The success of the direct-channel dispersive calculation glves
empirical support to the conjecture that a trajectory-difference such
as (XII.4) should satisfy an unsubtracted dispersion relation--
implying that at large negative t as well as at large positive t
the tx;a,jectories sﬁoothly approach each other. {(Inhibition on high-
mass flow through a handle may be the source of convergence.) The
calculation of the torus through its direct-chanmel discontinuity is
then much easier than through the crossed channel.* The mechanisms

ensuring a small torus magnitude operate in either approach.

*
We are here assuming that it will eventually be possible to

compute in the plapar plus cylinder approximation the various
relévant three-particle couplings (e.g. p - nn, A2 - nn, ete.).
Up to the present time, as emphasized at the end of Chapter IX,
there exist no ordered or cylinder models for unmatural-parity

particles.

Fig. XII.1.
Fig. XII.2.
Fig. XII.3.
Fig. XII.h.
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FIGURE CAPTIONS

Chapter XII

Product of tree diagrams, indicating the strips where
the amplitude is expected to be large. Darker lines
represént clusters.

Reggeon loop approximation for Fig. XII.1. .

The cylinder times planmar contribution to the crossed
channel torus discontinuity. Darker lines represent
clusters.

Cylinder times planar contribution to the direct channel

torus discontinuity. Darker lines represent clusters.



Fig.XII.1
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Fig.XII.2

Fig.XII.3
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XIII. BARYONS AND BARYONIUM

The success of DIU in describing mesons encoursges search for
a generalization. Dual models, the nonunitary forerunners of DIU,
were early constfucted for baryons with moderate success.(s) It was
gquickly realized by Rosner(sl) that duality for baryons implies a new
particle family corresponding in quark-disgram language to qaaq
~-a combination of two quarks wi'th two antiquarks. Such exotic
particles would necessarily communicate strongly with baryon-
antibaryon channels,. and it was conjectured that there would ;:ze only
weak coupling to the ordimary qq mesons. For many years tﬁe
absence of experimental support for these exotics caused doubt abéut
the relevance of dual models to baryons, but recently evidence has

begun to accumu.la.te(ae)

for a class of high-mass narrow resonances
with zero baryon number produced :fn reactioné where baryon-entibaryon
combinations occur. Assuming these new states to be the long-sought
Rosner exotics, they have tentatively been dubbed "baryonium". (&)

To date it has not been established that any baryonium state
carries quantum numbers such as I = 2 +that cannot be mﬁied by a
nonexotic qq meson. Until such cha.racteristically—exotic quantum
numbers are established, there will remain doubt about the theoretical
status of the new particle family. Nevertheless, the impetus to
extend DTU has been increased by the recent explosion of baryonium
candidates. There 1s presently a big theoretical push to find an
OZI~-rule generalization c_a.pable of explaining the stability of
baryonium states through a mechanism analogous to that stabilizing
(84)

strangeonium and charmonium.
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Further experimental impetus to vextend. DTU comes from the
observation of approximately exchange-degenerate patterns for certain
(6) ‘

baryon trajectorles. It is plausible that such regularities are a
manifestation of an ordered S matrix, just as we have seen to be the
cage for nonexotic mesons. lLast but far from least, there is the
experimental fact that many baryon properties can be understood in
termms of & qgq structure. It is tempting to seek an explanmation
through order, just as we did for the qq meson properties through a
sequentially-ordered S matrix.

What should be expected from a genex;a;lization of the IIU
apﬁroach described in Chapters II, III, and V? The central desired
feature is an ordered unitary S watrix whose factorizable poles
provide basis for a sequence of approximations that systematically
approach a unitary physical S matrix. We expect the ordered S mtfix
to display special regularities--degeneracies and selection rules,
among these being the qc-l meson regularities already discussed; one
of the additional regularities should be an ordered-pole subset with
qqq properties. A candidate for an ordered S matrix with such
(85,86)

attributes has recently been found.

Generalization of the Sequentislly-Ordered S Matrix

The order introduced in Cl'_lapter’II assigns to each particle
a predecessor and a successor; each particle is "connected” to two
other particles. Suppose we allow any number of interparticle
connections and try to define a unitary ordered S matrix--a.cting‘ in a
Hilbert space of ordered chamnels. It turns out that most conmnection
patterns are incompatible with unitarity. The most general

unitarizable pattern so far found implies a speétrum of ordered
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particles that bears encouraging resemblance to the observed spectrum
of hadrons.

Represrent with a graph the comnection pattern within an
ordered amplitude, the labeled vertices of the graph correspondiﬁg
to the poles (particles) of the ordered S matrix. The graph edges
represent interparticle comnections, a "tadpole" edge connecting a
vertex to itself not being/admitted. Sequentially-ordered amplitudes
. correspond to "ring" graphs such as shown in Fig. XIII.1(a). More
general connections are illustrated by (b)+--(e) in the same figure.
We know that connections of Type (a) are admitted by ordered
unitarity. What about (b)---(e)? It turms out that (d) is allowed
but (b), (c) or (e) are not. Why?

For an amplitude to correspond to a transition between two
ordered channels, the specification of the channel pair must
determine uniq',uely the amplitude. The most patural and only known
way to accompl:ish this end is to associate ordered channels with
those graphs achieved by cutting amplitude graphs into two connected
portions. (Looking back at Chapter II the reader may verify the
agsociability of sequelitially-ordered channels with connected graphs

cut away from ring graphs.) There should furthermore be a unique

prescription for recombining the two channel graphs to form the ampli-

tude graph. Since each vertex corresponds to a particle, the pole-
factorization aspect of unitarity demands that .any vertex of an
amplitude graph be isolatable by a cut that leaves connected the
remainder of the graph. This requirementvimediately eliminates
‘graphs with "pendant” vertices, illustrated by Fig. XII.1(b). In

this example the vertex C cannot be isolated by a legal cut. Other
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aspects of unitarity eliminate many other types of graph.
To make a long story short the only amplitude graphs so far
found to be consistent with unitarity are those without pendant

vertices that, when split in all possible ways into two comnected

portions, always yleld channel graphs with unique "spanning trees"..

A spanning tree of an arbitrary graph is a tree graph reached by
successively removing edges to eliminate cycles (closed loops), at
each stage eliminating any vertex at which two and only two edges have
a junction.* Figure XIII1.2 shows the spanning trees 61’ some graphs
that can be formed by cutting the graphs of Fig. XIII.1. Notice tha.t
only the graphs in the (a) and () groups have unique spanning trees.
These graphs are of the type that corresponds to ordered channels.**
Color

To achieve the essential objective that a pair of channel
graphs be recombinable (into an amplitude graph) in only one possible
way, it turns out that graph edges must be colored. With the appro-
priate coloring there then 1s a unique prescription for imbedding
graphs on & spherical surface. Precisely three colors turn out to be

required! Although the connection between DIV color and QCD color is

not yet understood, we have here an outstanding instance of pramised

If tadpoles are created in the process, they are to be erased,
together with the connecting edge.

It can be shown that ordered amplitudes lcorrespond to graphs thaﬁ
are reducible to rings by repetition of the folloﬁng contractions:
(1) Replace by a single edge any set of edges that compect the

same pair of vertices. (2) Remove 2-vertices.
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physical illumination from DTU. Many qualitative ‘featu.res of the DIU
approach are potentially understandable from QCD, but the lagrangian
approach so far gives no hint-of the number of colors needed to
describe strong interactions. The number 3 arises in DI'U because
within graph theory the 3-vertex plays a special role.

It is natural to assume symmetry under interchange of
different colors. In passing from the ordered S matrix to a plapar
S matrix (in the sense of Chapter II), it i;; expected that the color
degree of freedom will disappear as the Hilbert space is contracted
to eliminate order. This contraction has not been exhaustively
investigated, but let us proceed to consider the spectrum of ordered
rarticles assuming it to be colncident with the planar spectrum--the
situation prevailing for sequential ordering.

The Ordered-Particle Spectrum

Apalysis of ordered'unitérity reveals a splitting of the
ordered Hilbert space into a collection of noncommunicating sectors,
each sector being characterized by a colored spénning-tree skeleton
(imbedded on a planar surface) with 3-vertices only. The simplest
skeletons are shown in Fig. XIII.3, the three colors being indicated
by numbers 1, 2, 3. The connnu.ni-cating channels within a given sector

.are those whose spanning trees share the skeleton in question;
. communicating poles (particles) are naturally labeled by their sector
skeleton. |

Replacing each particle vertex in an amplitude graph by the
appropriate sector skeleton, one achieves a graph containing only

3-vertices. Two classes of vertex occur (when the graph is imbedded

on a spherical surface): those with clockwise color order (1,2,3)
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and those with counterclockwise coior order. AdJjacent vertices can
be shown to have opposite orientation, so in an amplitude graph there
are equal numbers of each orientation. One may then assign a
conserved quantum number +1 to the clockwise 3-vertex, with the
counterclockwise 3-vertex carrying -1; it is natural to associate
this conserved quantity with baryon number. We then see that ordered
S-matrix sectors (a) and (c) in Fig. XIII.3 carry baryon number zero,
Sectors (b) and (d) carry baryon number * 1, while Sector (e) carries
baryon number * 2. Sectors evidently exist with indefinitely-high .
baryon number. It is natural to associate ordered particles of Sector
(b) with ordinary (nonexotic) baryons and ordered particles of Sector

(2) with nonexotic mesoms. Particles in Sector (c) presumably

~ correspond to baryonium, while those in (d) constitute a class of

exotic haryons.

Contact with quark langusge can be made by attaching a
direction to each edge according to the orientation of the 3-vertices
connected by the edge. Choosing the conventional edge direction to
be avay from the clockwise oriented vertex toward the ccuntefdodndse-
oriented vertex, we may, if we choose, say that the edge carries
baryon number 1/3 and think of the edge as a quark.* The various
sectors shown in Fig. XIII.3 might then be characterized as in Fig.
XIII.4. Note that the ordered S matrix does not tolerate "single-

quark" or "two-quark" sectors. All states have integer beryon number.

Weissmann, by generalizing the considerations of Chapter III, has
shown that flavors also behave as if carried along the directed

cages.{T)

I
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(Single-quark states were eliminated by the unitarity inhibition on
pendant vertices.)

Ordered baryonium states (Type (c)) do not communicate with
Type (a) ordered meson states. There is similar absence of _
communication between Type (d) ordered exotic baryons and Type (b)
ordered baryons. The desired extension of the OZI rule has thus been
achieved. The ordered S matrix has furthermore generated qqq
structure for (Type (b)) baryons in an exchange-degenerate pattern,
while maintaining qfi structure for ordinary mesons.*
Conclusion -

The future of the DTU approach at this point looks bright.
Many questions remain unanswered but substantial portions of the quark
plcture have emerged as manifestations of an ordered relationship
between S-matrix poles. The topological expansion based on sequential
ordering has expiained the existence ‘a.nd properties of the pomerc;n at
the same time as providing a quantitative description of 0ZI-rule
violations. In the most general order so far found to be compatible
with unitarity, a hint has appeared of the necessity and sufficiency
of 3 coiors. There has not yet been developed for the general S matrix
the equivaleht of Chapter V's meson-sector topological expansion, so
there can presently be no claim to understanding the mechanisms that
may suppress corrections to the general planar S matrix. In particular

we do not at this juncture know how, even in principle, to calculate

Within the gqgq sector 21l the regularities of the seqixentia_l_‘l.y-
ordered S matrix are preserved, even though this sector includes

communicating ordered chanmels with baryon-antibaryon pairs.
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the width of baryonium states. The accelerating rate of recent
progress nevertheless makes promising the outlook for a ;bootstrap
theory of _had.rons keyed to ordered relationships. '

This progress rate foretells a short useful iifetime for our
review. TIdeas that have been described here will soon be generalized,
simplified and thelr logical inter-relationship reorganized.
Mathematical tools of which we are presently unaware will shortly be
brought to bear on the augmentation of S-metrix theory by the concept
of order. We accept this fate for our effort, having no choice in
the matter. If this review succeeds in engaging the interest of a |
few physiclsts previously unaware or unimpressed by the DIU approach,

we count our effort worthwhile.

ACKNOWLEDGMENTS
Many colleagues have assisted in the preparation of this
review. Especlally worthy of mention are Yoav Eylon, Philip Lucht,

Jean-Plerre Sursock, Ceoarge Welssmann, Fritjof Capra and Henry Stapp.



Fig.

Fig.

Fig.

Fig.

XI1I.l.

XIII.2.

XIII.3.

XIIT.hL.

-151-

FIGURE CAPIIONS

Chapter XIII

Candidate amplitude graphs representing connection
patterns between particles. Only graphs a and é
represent connectionsvadmitted by ordered uﬁitarity.
Spanhing trees for varioué cuts of the amplitude graphs
of Fig. XIII.l. Only graphs & and d 1lead to uniqﬁe
spanning graphs.

Spanning tree skeletons for the most simplevsectors of
the ordered Hilbert space. The three colors are indicated
by the numbers 1, 2, 3.

Characterization of the sectors of Fig. XIII.3 in quark
diégram language. The arrows represent the flow of

baryon nuber 1/3.
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