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ABSTRACT 

A review is given of developnents between 1913 and 1977 that 

have added the concept of order to general S-matrix principles with 

the aim of constructing a bootstrap theory of he.drons •. 

* Work supported in part by the U. S. Department of Energy under 

Contracts W-7405 ENG-48 and EY-76-S-02-3533· 

CHAPI'ER I . INTRODUCTION 

In 1973 there began an S-matrix approach to strong interac-

tiona, based on a combination of unitarity, topology and Regge 

behavior, that stirred widespread interest by generating certain of 

the predictions characteristic of quark models while showing the 

power to go beyond these models. The approach evolved fran the dual 

models of the late sixties but was qualitatively distinct in rec-

ognizing unitarity from. the start as an essential constraint. 

Chan Hong-Mo and collaborators(l, 2 ) have dubbed the new approach 

"dual unitarization ", while Veneziano (3) bas called it the "topolog:lrel 

exJBnsion". The adjective "topological" recognizes the need to 

distinguish order from disorder--a central feature of the new approa~ 

Four years of work on dual topological unitarization (uru) have 

produced results sufficiently encouraging as now to warrant a review 

article. Our survey here will describe the general picture as it 

ap:pears on July 11 1977. Readers should bear in mind that the field 

bas not reached a state of maturity and that by the time they see this 

article there may have occurred further important developnents. 

To capture the attention of readers not already iuipressed by 

the potentialities of a topological investigation of unitarity, we 

call immediate attention to the celebrated but mysterious Okubo-Zweig­

Iizuka (OZI) rule. The approach characterized as uru not only gen­

erates this rule but gives a quantitative account of the extent to 

which the rule is broken. The accuracy of the rule is related to 

other approximate hadronic regularities such as the limitation of 

transverse momenta, the short-range character of rapidity correlatiom, 

the absence of exotics and the exchange degeneracy of leading Regge 
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trajectories. All these manifestations of regularity within the 

hadron S matrix, as well as others less well recognized, are seen in 

the Dl'U approach as different facets of a single principle of order .. 

Imperfections in order--a degree of disorder--is seen as an inevitable 

consequence of unitarity. No arbitrary parameters (such as a gluon 

coupling constant) are needed in Dl'U to determine the magnitude of 

imperfection. 

Rather than following an historical line in this review we 

shall proceed from general S-matrix principles, seeking their 

satisfaction by starting from an appraximtion where the degree of 

order is DBXimized. To the extent that we ·speak of "quarks" the 

concept is not postulated but deduced as a manifestation of order. 

Our rules for quark-line diagrams will nevertheless turn out to be the 

same as those in approaches where quarks are inserted ab initio. 

Readers need not share the bootstrap viewpoint in order to follow our 

presentation. The bulk of our review 'is restricted to the meson 

sector of the S matrix, the extension of topological analysis to 

baryons and baryonium being recent and incompletely understood. We 

shall see that for mesons the Dl'U approach appears remarkably 

satisfactory. 

Because the injection .of order and or topology into hadron 

theory is a new departure, we cannot derive the essential Dl'U concepts. 

The reader should regard these concepts as motivated by the exper­

imental observation of order in hadronic phenomena and justified by 

mathematical self consistency. .According to the bootstrap hypothesis 

the nonlinear constraints of unitarity on a Poincare-invariant 

analytic S matrix are so demanding as to determine the S matrix 
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uniquely. The human mind is not sufficiently powerful to find this 

unique solution without hints from experiment, and different approaches 

have in the past seized on different hints as a guide. The Dl'U 

approach focuses on order as its signpost. 

Maximal order is represented through the concept of "planar 

s matrix", a f'undamental notion developed in Chapter II in a form 

suitable only to mesons but which may be generalized to include 

baryons. Chapter III develops special internal-quantum-number 

consequences for the meson sector, and Chapter IV interrupts the 

theoretical argument to survey the extent wo which experimentally­

observed mesons are approximately "planar". Having drawn attention 

to the strikingly planar appearance of the meson sector, we proceed 

in Chapter V to develop the S-matrix topological expansion--intended 

to correct systematically the failure of the planar S matrix to 

satisfy unitarity. The successive terms of the topological expansion 

correspond to successively-increasing disorder, the planar S matrix 

being the leading term. The concepts of handles and boundaries as 

measures of disorder are introduced in Chapter V. 

Chapter VI describes a peripheral mechanism tending to suppress 

topological-expansion components as their complexity increases, while 

Chapter VII is concerned wi~h an entirely different convergence 

mechanism related to internal quantum numbers. Chapter VIII discusses 

the renormalization of planar S-matrix poles that results from the 

higher terms of the topological expansion. 

The general portion of our review concludes with Chapter VIII 

and we then turn to a variety of models that are based on the general 

principles but that attempt quantitative predictions_ through sim-
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plif'ying approxiuations. Chapter IX describes a multiperipheral 

bootstrap model that determines positions and couplings of lead,ing 

planar Regge trajectories at moderate values of. It 1. Chapter X 

describes a corresponding moderate-It I model of the leading corrections 

to the planar components associated with the so-called "cylinder" 

components of the topological expansion--with emphasis on the pomeron 

picture' that emerges. Chapter X discusses the subtle relation between 

SU symmetry breaking and cylinder violations of planar order. In 
N 

Chapter XI we consider OZI-rule violation, and in Chapter XII models 

of single-handle (torus) components are described, with application 

to p-A2 splitting. Efforts to incorporate baryons and baryonium 

into the DrU approach will be described in Chapter XIII. 

The reader of this review is assumed to feel canfortable with 

standard analytic S-matrix theory at the level, say, of the monographs 

by Mu-tin and Spearman ( 4) or Collins and Squires. (5 ) If terms such as 

"cluster-decomposition", "connected part", "crossing", or "discon-

tinuity" are not familiar, there will be difficulty in following our 

presentation. We do not, however, assume any knowledge of topology. 

Those aspects of duality which are relevant to our discussion can be 

found in a recent review by FukUgita and Igi.(6) 

-6-

II. THE PlANAR S MATRIX; EXTERNAL RIDUIARITIES 

The notion of maxiual order within the S-matrix framework is 

realized through the so-called "planar S uatrix". The concept of 

planar S uatrix bas not been "derived", it bas been motivated by exper-

(1,2,3) Tbe la imental facts and is justified by self consistency. p nar 

idea grew out of dual models but as we use it is not equivalent. 

Readers who feel the need for experimental motivation may scan 

Chapter IV, which surveys the observed approxiuate meson regularities 

supporting planarity as a useful physical idea. 

The Sequentially-Ordered S Matrix 

Planarity is so closely related to order that we proceed by 

immediately introducing the artificial, but profoundly useful notion 

of a sequentially-ordered Hilbert space. A physical channel is 

entirely specified by giving the momentum, spin and type of each 

particle. In our ordered Hilbert space specification of an ordered 

channel requires additionally that particles be assigned positions in 

a sequence. For each N-partlcle physical channel there are N! 

ordered channels, so our ordered Hilbert space is larger than the 

physical Hilbert space. 

We may formally represent an ordered asymptotic state by a 

bra or ket column vector 

where Ai denotes the type, momentum and helicity of the !th particle 

• 



... 

... 

',.. 

-7-

in the sequence. Within the ordered Hilbert space we can define an 

S matrix connecting the ordered asymptotic states. We call this the 

ordered S matrix and symbolize it as s
0

. Elements of the ordered S 

matrix may then be represented graphically by Fig. ILL Although a 

similar pictorial representation is often used for physical S-matrix 

elements, the ordering of particles there is irrelevant. Particle 

ordering is needed even for the physical s_matrix in the discussion 

of statistics but channels which differ merely in particle order are 

physically equivalent--the corresponding asymptotic wave functions 

and s-matrix elements being equal up to phase factors. For the 

ordered S matrix introduced here, changes of particle order generally 

change the modulus of ~n element as well as the phase. 

The ordered S matrix, whose elements we depict in Fig. n:1, 

is supposed to be unitary with respect to the space of ordered states. 

That is, 

1, 

with 

1 LI 
A,B,C• • • 

A 

B 

c 

(ILl) 

(II.2) 

The property of unitarity for s 0 guarantees a consistent 

(factorizable) particle spectrum on which the uru approAch can be 

based. Achievement of such a base is the chief reason for introducing 

the ordered S matrix. 
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There must of course be a rule.for connecting the ordered S 

matrix to physical observations--in effect contracting the Hilbert 

space of asymptotic states. In Chapter V we shall find this rule to 

be expressible through a "topological expansion", in which a "planar 

S matrix" emerges as the leading component, elements of the planar S 

matrix being linearly related to elements of the ordered S matrix. 

(It will quickly be seen why the adjective "planar" is appropriate.) 

Planar s-matrix elements do. not depend on particle order and may be 

compared to experiment. At the same time, because of the linear 

connection with elements of the ordered S matrix, certain striking 

regularities are present. Enough of these "planar regularities" have 

been approximately verified by experimental observation (see Chapter 

IV) to suggest that the leading component of the topological expansion 

--the planar S matrix--is interestingly close to the physical S matrix. 

Roughly speaking, characteristic planar regularities may be 

divided into two categories: those associated with internal quantum 

numbers and those associated with momentum and spin (including T, C 

and P). We shall refer to the former regularities as "internal" and 

~o the latter as "external". The present chapter will confine itself 

to external planar regularities, while Chapter III will discuss 

internal aspects of planarity--where the connection with the quark 

concept begins to emerge. 

Ordered Connected Parts; Ordered Crossing 

We assume a cluster decomposition of the ordered S matrix, 

using "ring" diagrams to denote ordered connected parts as in the 

example of Fig. II.2. The order of lines around each ring is 

important, in contrast to the ''bubble" diagrams for physical connected 
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plrts, which look similar. We introduce the explicit symbol R to 

remind the reader of this distinction. The essential feature in 

ordered cluster decomposition is that particle lines drawn in a plane 

never cross each other. For example we do not admit decompositions 

of the form. shown in Fig. II.3. We shall find a similar character 

for the pictorial representation of ring products that arise in 

expressing unitarity for the ordered S matrix; on a planar surface no 

particle lines need cross. Ordering, in other words, is closely 

related to planarity. 

Assuming ordered connected parts to be analytic functions of 

particle momenta, one may deduce an "ordered crossing" property that 

relates certain continuations from positive to negative energy with 

the replacement of ingoing particles by outgoing antiparticles (or 

vice versa)P) Ordered crossing follows from the unitarity of s
0 

in 

the same way that regular crossing follows from the unitarity of s. 

The difference is that each cyclic permutation of particle lines in a 

ring connected-part represents a distinct analytic function, and only 

those crossings within a given ring that maintain the cyclic permuta-

tion correspond to elements of the ordered S matrix. 

Consider for example the analytic function corresponding to 

the f'our-l.ine ordered ring diagram of Fig. II.4. By suitably choosing 

which energies are positive and which are negative this single 

analytic function corresponds to the four ordered transitions such as 

shown in Fig. II.5, but does not correspond to 

transitions between ordered channel.s containing particles (A, C) and 

(B, D). The latter transitions correspond to different analytic 
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functions associated with different ring diagrams. 

We may use Figs. II.4 and II.5 to explain a phase convention 

need.ed when ferm.ions are present. Even though our simple sequential 

ordering must be general.ized in order to handle baryons, the basic 

idea behind the following rule will survive. If a fermion line is 

eros sed twice in the same sense (say clockwise ) a minus sign can be 

shown to result. (B) Thus, for example, if particle D is a fermion, 

we have the relation of Fig. II.6. We shall employ the convention 

that a reversal of sign occurs when a fermion is crossed at the top 

of the ring, with no sign change when a fermion crosses at the bottom. 

Because-the total number of fermion lines is necessarily even, such a 

convention can be shown to be consistent. ( 9, 10) Suppose that particles 

C and D in Fig. II.4 are fermions, with A and B bosons. Our 

convention then says that the first three amplitudes of Fig. II.5 are 

the analytic continuations of Fig. II.4 with a positive sign, while 

the remaining amplitude of Fig. II.5 carries a minus sign. 

In Chapter V ordered .connected parts will constitute the 

vertices from which the topological expansion is constructed. Let us 

next consider the poles of ordered connected parts, which in Chapter V 

will allow a physical meaning for lines connecting vertices. 

Planar Poles 

The same unitarity considerations that imply :factorizable pales 

for physical connected parts, with a correspondence between poles and 

external particles, lead to a similar pole structure for ordered 

connected parts. Each of the two factors in the residue of a pole in 

an ordered connected part is itself an ordered connected part. Figure 

II.7 gives examples of poles in the connected part of Fig. II.4 

.. 
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corresponding to the different channels of Fig. II.5. Here the 

residue factors are 3-line ordered connected parts; as such they 

possess the ordered crossing property. Note that a pole, if regarded 

as a single-p;~.rticle channel in the ordered Hilbert sp;~.ce, is not 

itself characterized by an order. For this reason it will be possible 

to attempt a direct correspondence between physical p;~.rticles--the 

poles of the physical S matrix--and poles of the ordered S matrix, 

which we shall call "planar p;~.rticles". The two sets of poles are 

different but there must exist some degree of correspondence or there 

would be no point in discussing the ordered S matrix. Chapter IV 

deals with the question of which physically-observed hadrons may be 

described as "approximately planar". 

Assuming that ~ physical p;~.rticles correspond at least 

roughly to certain planar p;~.rticles, one may seek to define a "planar 

S matrix" whose poles are those of the ordered S matrix (i.e. the 

planar poles) but whose multip;!.rticle channels have no order. Eleuert:s 

of ~uch an S matrix might then be comp;~.red with experiment. 

Construction of the Planar s Matrix from Ordered Connected Rl.rts 

We define the planar S matrix by giving a rule for constru~ 

its connected p;~.rts from ordered connected p;!.rts, Each N-line 

connected part of the planar S matrix is a linear superposition of 

the (N-1)! different ordered connected parts that involve the 

corresponding planar particles. This operation effectively contracts 

the ordered Hilbert space. The relative coefficients in the super-

position are ±1 according to whether an even or an odd number of 

fermion transpositions is involved. (lO) Thus, in our 4-line example, 

with C and D fermions while A and B are bosons, the planar 
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connected part is given by the six-term superposition in Fig. II.8. 

Such a superposition makes equivalent all particle orderings, up to a 

±1 phase factor, and one sees that the spin-statistics rule for 

identical particles is satisfied. Full crossing is evidently achieved 

for planar connected parts. Furthermore, although not quite so 

evident, a consistent pole structure is maintained. (lO) It can be 

shown that superposition, according to the rule illustrated in Fig. 

II.8, leads to factorizable residues of the poles in planar connected 

parts--with factors which are themselves planar connected parts. For 

example, corresponding to Fig. II.7 the 4-line planar connected-part 

poles could be represented as in Fig. II.9, where the ;-line connected-

part residue factors are given by superpositions of the type illus-

trated in Fig. II.lO. 

Unitarity 

Now, if planar connected pl.rts have correct symmetry and 

crossing properties and possess a consistent factorizable pole 

structure, what is inadequate about the planar S matrix? The answer 

is, unitarity. If one builds a planar S matrix out of planar coililErled 

parts, one finds unitarity not satisfied--even though the ordered S 

matrix in the larger Hilbert spice of ordered asymptotic states ,!! 

unitary. The contraction rule illustrated by Fig. II.8 fails to 

preserve unitarity. 

The defect may already be seen in 4-line connected pl.rts. 

Suppose we consider for a physical (A, B) ~ (C, D) amplitude the 

normal-threshold discontinuity in the variables s = sAB = sCD 

2 = (pA + ~) = (p + p )2 associated with a two-nRrticle interme-C D ' ..,.... 

diate channel (E, F). Unitarity implies a formula corresponding to 
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Fig. II.ll, where the bubble diagrams carry no meaning for particle 

ordering. (The + and - designation indicates that the two members 

of the product are to be evaluated on opposite sides of the cut in 

question. We shall always understand such a rule for unitarity 

products and shall henceforth omit the + and symbols. ) We now 

show, as indicated in Fig. II.l2, that the formula of Fig. II.ll is 

not satisfied by planar connected parts. 

Let us start by taking the a-discontinuity in question, term 

by term within the 6-term superposition of Fig. II.8. We find a 

superposition of four ordered a-discontinuities, as shown in Fig. 

II.13. The remaining two terms in Fig. II.8 lack any s discontinuity 

because they cannot be crossed so as to connect s channels of the 

ordered S matrix. This property, crucial to the IJI'U approach, will be 

derived more systematically in Chapter v. Let us next consider the 

rule implied by unitarity of the crda"ed S matrix for the discontinuities 

of ordered connected p3.rts. The rule is similar to that of Fig. II.ll 

except that particle ordering is everywhere meaningful. Figure II.l4 

gives an example. The important feature is that p3.rticle lines never 

cross in ordered discontinuity products; ordered discontinuities, in 

other words, are planar products. 

If the formulas like that of Fig. II.l4 are substituted into 

the equation of Fig. II.l3, we find 2 )( 4 = 8 different planar 

products of ordered amplitu:les making up the discontinuity of the 

planar connected part in question, i.e. the left-hand side of Fig. 

II .12 . On the other hand, were each member of the product on the 

right band in Fig. II.l2 expressed as a superposition of six (6) 

ordered connected p3.rts, we should find 6 X. 6 = 36 different 
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products. Each of these would indeed be planar products, but there 

would be in addition 36 - 8 = 28 nonplanar products--examples of 

which are shown in Fig. II.l5. Because of these nonplanar components 

of the right-band s~de of Fig. II.l2, the left- and right-band sides 

cannot be equal; the planar S matrix cannot be unitary. 

It will be the task of Chapters V, VI and VII to show the 

sense in which nonplanar discontinuity products are smaller than 

their planar counterp3.rts, so that the planar S matrix bas a chance 

of approximating experiment. Chapter V develops a systematic exp3.n-

sion for calculating the physical S matrix starting with the planar 

S matrix, based on the necessity of achieving unitarity for the 

physical S matrix. 

The absence of nonplanar discontinuity products leads to 

planar S-matrix regularities not present in the t'ull S matrix. But 

unitarity of the ordered S matrix, fran which the planar S matrix is 

constructe~ still implies an infinite set of nonlinear relations 

between ordered connected p3.rts. To the extent that solutions of 

these relations may not exist, there is no proof that an ordered 

analytic unitary S matrix exists, just as there is no existence proof 

for a physical unitary analytic s matrix. In order to proceed we are 

forced to ~ the existence of an ordered analytic S matrix with 

planar discontinuity formulas for its connected p3.rts. 

Charge Conjugation in the Ordered S Matrix 

Crossing implies that for every planar p3.rticle there exists 

a corresponding planar antip3.rticle. TCP equivalence of the two 

ordered amplitudes in Fig. II.l6 then requires that the charge 

conjugation of an arbitrary ordered channel 
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A 

B 

be 

ii 
A 

tbat is, a channel where each p1.rticle bas been replaced by the 

corresponding antip1.rticle and the order has been inverted. (lO) For 

ordered connected p1.rts cbarge conjugation invariance thus means that, 

when JRrticles are replaced by antip!.rticles and the cyclic order is 

reversed, as indicated by the example of Fig. II.l7, the value of the 

connected JRrt is unchanged up to a pbase factor. 

Self-conjugate planar p1.rticles will be important to certain 

of our subsequent arguments. Each such p!.rticle is characterized by 

being either even or odd under cbarge conjugation. That is, in the 

notation of a single-JRrticle channel 

where ±1. (ILl) 

It follows that an ordered connected p1.rt involving only self-conjugate 

p!.rticles bas the property shown in Fig. II.l8. That is, inversion 

of order. is equivalent to multiplication by the overall product of 

cbarge-conjugation syrnnetry factors. (ll, 12 ) This rule will turn out 

in Chapter X to be of practical importance, especially when gen­

eralized to ordered connected p1.rts involving ordered reggeons. 

We point out here a confusing facet of charge-conjugation 

invariance for ordered and planar connected p1.rts. One expects 

charge-conjugation invariance to require vanishing of connected p1.rts 

for self-conjugate p!.rticles when the product of all symmetry factors 

is -1. Such vanishing, however, does not occur for ordered connected 
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p1.rts--where charge conjugation produces an inversion of order. The 

vanishing does occur for a planar connected p1.rt, because within the 

superposition by which the latter is constructed (e.g. Fig. II.8 with 

all plus signs because self-conjugate p!.rticles must be bosons) every 

ordered connected p1.rt may be p1.ired with one of opposite order. If 

the overall product of charge-conjugation symmetry factors is -1, 

the two members of each p1.ir cancel each other.(ll,l2) 

The consistent factorization of the poles of the planar S 

matrix ensures that they will respect the charge-conjugation selection 

rule. In Fig. II.9, for example, if p1.rticles A, B, c, D, E are all 

self conjugate, the pole residue is nonvanishing only if 

CE = CACB = CCCD. Discontinuities of planar connected p1.rts, however, 

do not generally respect charge-conjugation selection rules. For 

example, the eight-term superPosition corresponding to Figures II.l3 

and II.l4 (again, with all positive signs) does not vanish when 

CECF = -CACB = -CCCD' that is, when the intermediate channel has 

charge-conjugation symmetry opposite to that of the initial and final 

channels. (l:3) As discussed in Chapter XII it is necessary to include 

nonplanar terms such as that of Fig. II.l5a in order to achieve the 

expected cancellation. 

Exchange Degeneracy 

We have remarked on the absence of poles and normal thresholds 

in an ordered connected p1.rt from any channel invariant that does not 

correspond to a cluster of adjacent p1.rticles in the cyclic order. 

Within the 4-line ordered connected part of Fig. II.4, for example, 

if we have poles and normal thresholds in 

sAB = BCD and in sAD = sBC but not in sAC = sBD' Designating the 
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three M:l.ndelste.m variables here as s sAB = sCD' · t = sAD = sEC 

and u = sAC = sBit the absence of u singularities means that both 

a cos ec.m. 
s 

Q
c.m. 

COB t there is no "left-hand 

cut". The Froissart-Gribov pu"tial-wave amplitudes for both s and 

t ordered reactions then have the property, called "exchange 

degeneracy", that ordered amplitudes of opposite signature are equal. 

(Signature need never be introduced.) Regge trajectories for ordered 

connected parts correspondingly carry no signature label. 

Although ordered Regge poles have neither well-defined 

signature nor well-defined parity, the product of signature and parity 

or "naturality" is meaningful. A similar statement applies to charge-

conjugation symmetry for ordered Regge trajectories containing self­

conjugate planar particles. The product of signature and charge­

conjugation symmetry is well defined. (lO) Moving along an ordered 

trajectory planar particles alternate in signature, parity and charge-

conjugation symmetry. 

When connected parts for the six different orders are super­

posed to form a four-line planar connected part (Fig. II.B), u 

singularities will generally occur and exchange degeneracy will be 

lost. Pole positions cannot, however, be altered by the superpositi~ 

so 1n planar connected parts Regge trajectories of opposite signature 

will continue. to coincide. Regge residues of opposite signature are 

not equal but are simply related. (lO) One often characterizes this 

planar regularity as exchange degeneracy, even though it applies only 

to Regge poles and not to the full Froissart-Gribov planar amplitude. 

-18-

Absence of Regge Branch Points and Fixed Singularities 

The absence of u singularities from the ordered connected 

part of Fig. II.4 means that the two double discontinuities p
8
u and 

ptu both vanish. The usual arguments demanding Regge branch points 

in Js and Jt then disappear, (5) together with the arguments 

demanding fixed singularities at nonsense points of unphysical 

* signature. Although no proof has been given, the absence of Regge 

branch points and fixed singularities from ordered connected parts has 

been widely conjectured. Because superposition cannot create new 

singularities, a similar regularity would attach to planar connected 

parts. In our review we shall adopt this conjecture and assume the 

only planar Regge singularities to be moving poles. 

* Often invoked is r.Bndelstam' s demonstration that nonplanar Feynman 

diagrams are needed to generate Regge cuts. Perturbation arguments 

are inadequat~, however, because, as shown in Chapter VIII, the 

ordered s matrix probably has no weak coupling limit. 

..... 



Fig. II.l. 

Fig. II.2. 

Fig. II.3. 

Fig. II.4. 

Fig. II.5. 

Fig. r±.6. 

Fig. II.7. 

Fig. u.B. 

-19-

FIGURE CAPriONS 

Chapter. II .. 

An element of the ordered S matrix. 

Cluster decomposition of the ordered S matrix. 

Nonadmissible decompositions of s0 • 

A four line, ordered, ring diagram. 

Four ordered transitions related by ordered crossing. 

Ordered crossing relationship if D is a fermion. 

Poles in the ordered connected :part of Fig. II. 4. 

A planar connected :part defined as a superposition of 

ordered connected :parts. 

Fig. n.9. Poles in a planar connected :part. 

Fig. II.lO. Residue factors of planar, three line connected :part. 

Fig. II.ll. Hlysical unitarity relationship. Bubble diagrams carry 

no information about ordering.· 

Fig. II.l2. Graphical statement of the fact that planar connected 

:parts do not satisf'y unitarity. 

Fig. II.l3. The s discontinuity of Fig. II.B. 

Fig. II.l4. Two-:particle discontinuity of an ordered connected :part 

implied by the unitarity of the ordered S matrix. 

Com:pare to Fig. II.ll. 

Fig. II.l5. 

Fig. II.l6. 

Fig. II.17. 

Fig. II.l8. 

EXamples of nonplanar products present on the right-band 

side of Fig. II.l2. 

TCP equivalence of two ordered amplitudes. 

Charge conjugation in variance of ordered connected :parts. 

Charge conjugation relationship for ordered connected 

:parts of self-conjugate Jarticles. 



:t -_ ~:-,.------s-o---"T"""I-_......e:;...-- :: 

Fig.II.l 

I' I I' I I' I 

~: I Sol ~ ·- 2' 2 + 2' 2 - ~RJ 3' 3 3' 3 
I 

N 
0 
I 

I' I I' I 

+ 2' ® 2 + ~:dRF~ 3' 3 

Fig.II.Z 

I' I 

2'~2 I' ~I ~: ~ ~ 
3' 3 

Fig.II.3 

'< ~ -r· ~:~ 



.:. ',!l 

(R) : ~ 
~ ~0-

Fig.II.4 

I : : (~) : : : : (~) : : N 
1-' 

I 

: : (~) : : ::c~):: 
Fig.II.S 

- D 

(R) -· ~ 
-----A 

(R) g 

Fig.II.6 



C A 
i5 B 

- F 
~ -+fR\ ~ .t;r-+ B 
D~C 

8-..,~ A c 
D 

c F 
8~0 A 

Fig. II.? 

@~ @~ + @~ + @~ 

-@~ @~ @ A 
D 

'~ 

Fig.II.8 

c 0 A 
B 

i~~ 8 c 
D 

Fig.II.9 

' 
,( 

t• _1 

I 
N 
N 

I 



-23-

f; 
ex m <l m 

ll&Jtnex lUOO 

(S 0 
+ 

ll&Jexm lUOO 

8 (5 
0 ..-< N 

..-< rl ..-< 

...... ...... ...... 

...... ...... ....... 
. . 

1:>0 IU 10 1:>0 IU 10 1:>0 
..... ..... ..... 
..... ..... ..... 

II 'H.. 

-· II II <l Ol ex m 

llU<lOl lUOO 

ffi (5 
1010 1010 

.•. 



I I O:r}):A - p c I B 
O:cD:A - - R c I B 

I c=:cp:e 
- R 0 I A 

I 

Fig.II.13 

I E 
0 

- - R O:r:v:::A --c I B 

5 E 
c~A 

F B 

(a) 

< 

c 
F 

Fi!?:.II.14 

F 
./ 

5~-"'~ 
c~A E B 

(b) 

Fig.ll.15 

+ 
- I O:cv:B - R 
C : A 

I 

c=:CD:A - R 0 I B 

I 

A 5 
N 

A .p.. 

B+C 
I 

B 
E 

- F 
g~A 

E ""B 

(c) 

't ::• 



-: ,. 

:~I 

0=$~ 

@!~ 

I~~ 

Fig.II.l6 

~c 
~~ 

Fig.II.l7 

c.caCc··· ~~ 

Fig.II.l8 

-~) 

I 
N 
Vl 

I 



-26-

lli. INTERNAL PLANAR RIDUIARITIES; QUARK-LINE DIAGRAMS 

Any connected J,:Brt must vanish for ccmbinations of incoming 

particles that carry a nonzero amount of conserved quantity such as 

electric charge, but with ordered amplitudes there may additionally 

be a constraint on the allowable order of particles. Ordered 

connected parts for certain permutations may be required to vanish 

even though there is a zero net flow of all conserved quantities "into 

the ring". (An example the reader may anticipate is the vanishing of 

any ordered amplitude where two planar n+ particles are adjacent.) 

The special ordered constraints will turn out to be describable 

through diagrams that associate planar particles with oriented two-

dimensional "strips" whose two opposing edges "carry" the internal 

quantum numbers. These two edges act in acme ways like a quark-

antiquark pair, so we shall refer to the pictorial representation of 

ordered constraints as "quark-line diagrams". Much of the reasoning 

used in this chapter is due to Weissmann. (7) 

It has been shown by Weissmann that if ordered selection rules 

exist, ordered unitarity requires planar particles to group themselves 

into distinct families, each family being labeled by a pair of indices 

(i,j). The first index i labels another set of planar particles-­

those allowed to immediately precede (clockwise sense) the ( i, j) 

family members. These predecessor sets are unique and nonoverlapping 

with each other. The index j labels the set of "successor" planar 

particles allowed to immediately~ the (i,j) family members. 

Char.ge conjugation invariance means ttat for each predecessor set there 

is a corresponding successor set made up of the antiparticles, so the 

indices 1 and j cover the same range. A member of the (i, j) 
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family lies itself in the predecessor set j and at the same time in 

the successor set i. 

We present an outlined derivation derivation of these 

statements as an example of Weissmann's reasoning. Consider a planar 

particle A and denote by iA the set of all planar particles_that 

immediately precede A in the counterclockwise permutation of some 

nonvanishing ordered connected part. According to charge conjugation 

invariance, the antiparticles of iA constitute the set of all 

particles that can immediately follow A. 'Suppose now that some 

particle C appears in ~ of two "predecessor" sets iA and ~' 

associated with two different particles A and B. There must then 

exist nonvanishing discontinuity products of the type shown in Fig. 

III.l implying that B appears in the predecessor set iA and A 

in the predecessor set iB. A similar argument based on Fig. III.2 

next allows the conclusion that if any particle other than c, say 

D, appears in iA it must also appear in ~· The two sets iA and 

iB ·must therefore coincide completely if they share ~ particle. 

Conversely, each planar particle belongs to one and only one pred­

ecessor set, which may be designated by an index i that makes no 

reference to any of the particles for which i is the predecessor 

set. 

The foregoing iine of reasoning evidently can be applied 

also to the set of planar particles immediately following (clockwise 

sense) some designated planar particle, leading to identification of 

unique and nonoverlapping "successor" sets. We have already remarked 

how charge conjugation invariance gaua.rantees that for each "pred­

ecessor" set i there is a successor set consisting of the cor-
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responding antiparticles. A natural convention is to designate the 

latter set with the same index i, making explicit that predecessor 

sets are in one-to-one correspondence with successor sets. 

These requirements are compactly summarized by requiring any 

nonvanishing connected part to be representable through a diagram of 

the type of Fig. III.3, where the family indices appear on directed 

"links" connecting successive p;l.rticles. !article A belongs to the. 

family (i,j}, B to the family (j,k) and so on. For some 

purposes it is helpful to visualize the succession of directed links 

in Fig. III.3 as the boundary of a two-dimensional oriented surface. 

Isolating an individual planar particle, we then associate it with an 

oriented "strip" whose two edges--corresponding to predecessor and 

successor links--characterize the (internal) selection rules. 

Now consider an additively-conserved internal quantum number 

Q , such as electric charge. How can conservation of Q be compat-

ible with the rules embodied in Fig. IIL3? A natural guess is that 

all planar particles belonging to a family (i, j) share a common 

value of Q , a value that we designate as Qij. (Weissmann has 

shown that, if such is not the case, then all values of Q from +oo 

to -oo must appear on particles in the planar spectrum.) The 

requirement that incoming Q's shall sum to zero can then be shown 

to imply that Qij depends on the indices i and j according ·to 

the rule: 

~· (III.l) 

Here we see the quark-antiquark role for the two links. The rule 

(III.l) is equivalent to saying that link i "carries" a charge ~ . 
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The .opposite direction of the two links means that a planar particle 

belonging to a family ( i, j) bas charge equal to that of a "quark" 

of type j plus that of an "antiqua.rk" of type 1. 

We are hoping to establish a correspondence between planar 

particles and physical particles, so we are led to ask for the minimum 

number of link types (predecessor or successor sets) capable of 

accommodating the observed additively-conserved badronic internal 

quantum numbers. Putting aside baryon number for the moment, exper-

iment tells us that at least strangeness and charm must be considered 

in addition to electric charge. With no conserved quantities at all, 

there would already be one link type, so in order to encompass three 

conserved quantities we need 3 + 1 = 4 l.ink types. Table III.l 

shows one straightforward way of attaching quantum nl.lllbers to links. 

Table III.l 

Link type 
(successor index) 

Charge strangeness Charm 

1 n 0 0 0 

2 p 1 0 0 

3 "' 0 1 0 

4 c 0 0 1 

Should f'urtber cons-erved quantities be discovered, one adds more l.ink 

types. A total of N different links can accommodate N-1 

additively-conserved quantum numbers. In the language of flavors, we 

have one link type for each flavor. 

Because the quantum numbers of a planar particle, according 

to Formula (III.l), reflect only the differences of the quantum numbers 
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attached to the two associated links, one may add any constant to the 

latter without changing the ordered S matrix. In particular we may 

uniformly subtract 1/3 from each entry in Column 1 of Table III .1 

so as to achieve the usually-assigned fractional quark charges. (When 

baryons are incorporated into an o.rdered S matrix the link quantum 

numbers will become unambiguous. ) 

We emphasize that the planar family assignments in Table TII.l 

are tentative and subject to self-consistency checks with respect to 

ordered discontinuity formulas. Weissmann's reasoning permits an 

arbitrary collection of link types but this reasoning bas only 

considered the topological constraints of ordered discontinuity 

formulas--not the dynamical constraints flowing from the character of 

the latter as nonlinear relations between ordered amplitudes. It may 

be hoped that the existence of a variety of flavors is uniquely 

required by ordered unitarity. 

Why have we not included baryon number in Table III.l? It will 

be seen in Chapter XIII that a more complex notion of particle ordering 

than a simple linearly-linked chain is needed in order to describe 

baryons. The connection with the quark concept reached in the present 

chapter shows tlBt simple sequential ordering, together with ordered 

selection rules, implies qq structure but not qqq. Chapter XIII 

describes a generalization of the notion of particle order that 

maintains the essential characteristics of planarity and that yields 

a planar spectrum corresponding to qqq and qqq , with certain 

superpositions and contractions thereof. The more general ordered 
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' * s matrix may be split into noncommunicating sectors one of which, 

containing only qq states with baryon number zero, is closely related 

to the simple sequentially-ordered S matrix; all external and internal 

regularities remain the same. The considerations of the present 

chapter will survive the generalization but they apply only to 

"ordinary" mesons. 

The assignment in Table III.l, together with Fig. III.3, leads 

to a collection of remarkable "internal" planar regularities for 

mesons. In addition to the requirement that planar mesons fall into 

families with q(i quantum numbers (no "exotics"), the demand that the 

succession of links constitute a single boundary leads to the OZI rule 

forbidding any reaction not depictable in the connected form of Fig. 

III.3. Consider for example the four-particle reaction 

A(n,p) + B(p,n) .... C{>-., c) + D{ e,>-.) • 

Although all internal quantum numbers are conserved, there is no 

connected quark-line diagram, so the .reaction is forbidden at the 

planar level. Representation of this reaction requires two dis-

connected boundaries, and the reaction becomes allowed only at a 

. higher level of the topological expansion (see Chapter XI ) . 

An important special case of the OZI rule relates to planar 

particles of the type (i, i), which carry overall zero quantum 

numbers but which have no planar communication with channels where the 

* Although the different sectors do not communicate through ordered 

unitarity, a complete understanding of any one ordered sector 

involves all the others. 
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link type i fails to appear, even though the overall channel quantum 

numbers are zero. Chapter IV will discuss the relevance of the OZI 

rule to the stability of (c,c) (charmonium) and (>-.,>-.) (strangeordum) 

states like 'lf, ~ 1 , cp and f 1
• The physical consequence for the 

(n,n) and (p,p) families is more tricky because of isospin symmetry, 

which means that every (n,n) planar particle has a degenerate (p,p) 

partner. As always the case with degenerate quantum systems, one 

then finds it physically useful to consider those special linear 

superpositions that are unmixed by elements of the symmetry group. In 

the present case the two superpositions are the symmetric and anti­

symmetric combinations h [(n,n) !: (p,p)), corresponding to 

I ~ 0,1 with Iz ~ 0. With such states the usual OZI rule becomes 

replaced by a statement of degeneracy between I ~ 0 and I ~ 1 in 

the ordered S matrix. Chapter IV considers the experimental evidence 

for such degeneracy. Notice that we have given no argument requiring 

internal symmetry (such as isospin invariance) in the ordered S 

matrix. Such arguments may eventually emerge from nonlinear unitarity 

(dynamical) requirements. 

Were su
3 

symmetry exact (or almost exact), physical 

expression of the OZI rule would be a prediction of symmetry between 

octets and singlets rather than a rule forbidding certain decays of 

(>-.,>-.) states. To decide whether the internal planar regularity is 

more usefully described as an OZI selection rule or as an SUN 

multiplet degeneracy, the important question is whether the breaking 

of SUN symmetry is large or small compared to the departure from 

planarity of the physical particles in question. su2 symmetry 

breaking is so small that here one chooses to emphasize isospin 
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degeneracy, whereas su3 and su4 synmetry breaking is so large 

that one usually (although not always) chooses to think of' an OZI 

selection rule. 8napters X and XI discuss these subtle issues; a 

superficial discussion unavoidablY occurs already in Chapter rv. 
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FIGURE CAPI'IONS 

Chapter III 

Fig. III.l. (a) A nonvanishing discontinuity in which C appears as 

a predecessor to A, and C as successor to B or, 

(b) C as predecessor to B, and C as successor to A. 

Fig. III.2. A discontinuity which establishes D as a predecessor 

to B. 

Fig. III.3. Quark-line diagram f'or an ordered connected p~.rt. 

'yl 
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IV. HOW PLANAR IS THE PHYSICAL S MATRIX? 

The planar S matrix plays a central role 1n the topological 

expansion--serving as the starting point. It is correspondingly 

important to know how closely the physical S matrix resembles its 

planar counterpl.rt; it would be reassuring to establish that the 

planar S matrix gives a reasonably accurate representation of the 

real world. In order to discuss baryons we shall need a generalization 

of the simple sequential ordering on which the.p1anar_S matrix is 

based, but for the meson sector of qq states the external 

regularities described in Chapter II and the internal regularities 

descri'Jed in Chapter III will survive the generalization. Let us 

consider first the extent to which observed mesons exhibit the 

characteristic external planar regularities required by ordered 

unitarity. 

Exchange negeneracy of Regge Trajectories 

At the heart of planarity is the absence of certain dis­

continuities from ordered connected p1.rts. We have stressed in 

Chapter II the consequence that Regge trajectories of the planar S 

matrix occur in degenerate J:Birs of opposite signature--a property 

known as exchange degeneracy (EXD). To what extent do physical meson 

trajectories display EXD? 

The let>.ding (highest angular momentum at fixed mass) hadron 

trajectories contain mesons of natural pl.rity and "natural charge 

conjugation symmetry". The tendency of this entire group of 

trajectories to occur in EXD p1.irs is striking. The odd-signature, 

zero-strangeness I = 1 trajectory, containing the p (J = 1) and 

g (J = 3) mesons, has been experimentally determined over the 

.. 
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interval -1 Gel :S t :S 3 Gel. The corresponding even-signature 

trajectory, containing t~ A2 (J = 2) meson, has been determined 

over a compu-able interval and, as shown in Fig. IV.l, is found to 

deviate from the odd-signature trajectory by no more than -0.1 units 

in J. The deviation near J = ·2 is in fact much less. The accuracy 

with which the ~ trajectory coincides with the p trajectory is 

far better than the accuracy of su 
3 

symmetry, approaching the 

accuracy of su2 symmetry. For the leading I = 0 (nonstrange) 

trajectories EXD is experimentally well satisfied for 

t ~ 0.5 Gel althoUgh for t :S 0 there is an important degeneracy 

breaking associated with the concept of pomeron. We shall deal in 

detail with the latter phenomenon in Chapter X, where we show that a 

large deviation from planarity in the I = 0 low-t sector is to be 

expected. No such large deviation is expected in the I = 1/2 sector 

and, indeed as seen in Fig. IV.l, the K* (J = 1) and K** (J = 2) 

trajectories display a degree of EXD comparable to that of p and 

A2 • In Chapter XII we shall see how even the small I = 1/2, 1 

deviations from EXD may be systematically and quantitatively explained 

through a nonplanar component of the topological expansion. 

For the next group of meson trajectories--which have unnatural 

parity--there is less experimental knowledge but the general pattern 

appear!\ similar. E::cept for I = 0 at low t the data is compatible 

with reasonably-accurate EXD. For example, exchange-degeneracy 

between the :rc and B trajectories. Thus within the meson sector 

there is general adherence to exchange degeneracy--with the important 

I = O, low-t exceptions, to which we intend to give extensive 

attention. 

Weakness of Regge Cuts; Short-Range Order in Rapidity 

Less striking than EXD but still worthy of note is the appared; 

weakness of Regge cuts in observed physical amplitudes. In Chapter II 

we drew attention to the widespread belief that the only Hegge 

singularities of the planar S matrix are factorizable (moving) poles. 

A qualitatively-remarkable aspect of high-energy hadron reaction expe~ 

iments is the extent to which a simple Hegge-pole description has 

turned out to be successful both for exclusive and inclusive meas­

urements. The concept of short-range order in rapidity has been of 

great phenomenological utility; such short-range, ·order--a consequence 

of factorizable Hegge poles--is not easily understood if Regge cuts 

are important. The general success of Hegge-pole representations is 

so well established that one easily forgets the need to understand 

why other Regge singularities are less sign~icant. If we are able 

to explain why nonplanar components of the topological expansion are 

small, we expect automatically to understand why Hegge cuts are weak. 

Isospin Degeneracy 

Passing to internal planar regularities, let us consider the 

property of I = O, 1 degeneracy--predicting quartets of equivalent 

nonstrange, noncbarmed states. In the physical S matrix the (p,ro) 

and (A
2

, f) combinations provide outstanding examples with respect to 

both masses and couplings. The observed deviations from degeneracy 

are strikingly small. When the concept of isospin degeneracy is 

extended to Regge trajectories we find, just as for I = 0 exchange 

degeneracy, that deviations become large at small t. The explanation, 

discussed in Chapter X, is closely related to that. for low-t EXD 

breaking. 
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The lowest-mass unnatural-pu-ity mesons, lt and f1, seem to 

display a large deviation from isospin degeneracy, but the breaking is 

no larger than expected for such low-mass states from the nonplanar 

components of the topological expansion needed to restore unitarity. 

The degree of 7f""' isospin-degenere.cy breaking is similar in mag-

nitude to the EXD breaking responsible for pomeron phenomena. 

OZI Selection Rule 

Chapter III drew attention to certain reactions forbidden at 

the planar level because of not corresponding to single-boundary 

(connected) quark-line di.agrams. (l4) To consider experimental evidence 

on such reactions we need to associate physical particles with/planar 

famil.ies. Within the group of lee.ding physical mesons the following 

association follows straightforwardly on the basis of quantum numbers: 

Family .rc = o-+ 1 --
+ + n,p 7( p 

:>..,p Ko o* 
K 

:>..,n K+ +* 
K 

Isospin degeneracy allows the further identifications, 

~ (n,n + p,p] 

1 

-{2 
[n,n - p,p] 

(!) 

0 
p 

2++ 

~+ 

o** 
K 

+** K 

A o 
2 

although as noted above the physical f1 is badly split from the lt. 

When antiparticles are considered we have accounted 1n the above 

listing for 8 of the 9 planar families associated with the first three 
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flavors (isospin and strangeness). What physical particles should be 

associated with the remaining (:>..,:>..) family? To the extent that su
3 

nonet groupings are experimentally recognizable, it is natural to 

assign the ninth member to this final category: 

Tj I fl . 

With this complete set of assignments we are 1n position to discuss 

the experimental status of the OZI rule. (l4) 

The most celebrated examples of OZI-forbidden reactions are 

decays of the type 

(:>..,:>..) -+ (p,n) + (n,p) 

which conserve all internal quantum numbers but which do not admit a 

connected quark-line diagram. Illustrations are cp -+ lt + p- and 

f 1 -+ 7f + 7f-. When compared to the corresponding decays (!) -+ 7f + p and 

f -+ lt + 7f- --allowed by the OZI rule--a dramatic suppression has been 

experimentally found. The available evidence, recently compiled by 

Okubo (l5) indicates a high degree of planarity 1n this sector of the 

physical S matrix. We shall see, furthermore, 1n Chapter XI that the 

small observed rates of these OZI-forbidden decays are understandable 

through unitarity-required corrections to the planar S matrix. All 

2-particle decays of f1 and 11 1 are forbidden by standard selection 

rules, so no similar experimental tests of the OZI rule are possible 

here. 

Also reviewed by Okubo is evidence that cp and f 1 are 

produced much less frequently than (!) and f in reactions where 

the other particles do not "contain" strange quarks. These reactions 
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involve baryons and cannot be systematically considered until a 

generalization has been made of the planar S matrix. It is natural, 

however, to antici]Rte some form of connected quark-line representat:bn 

and a generalized OZI rule, with planar baryons c:)..assified into 

(i, j, k) families (a baryon "without strange quarks" is one belong:lng 

to a planar family where neither i nor j nor k is a ~). 

Reactions involving baryons may then be admitted into evidence and, 

as shown by Okubo, (l5) they give 1m~essive additional support to 

planarity as a good physical approximation. We remark tmt, even when 

initial ]Rrticles contain no strange quarks, production of q> and. f' 

may be allowed on a planar level if other "strangeness-carrying" 

]Rrticles like K or JC"" are produced, As discussed by Okubo, (l5) 

it is fOUDi experimentally that reactions involving T\' and T\ 

display less planarity than those involving q>, w or f' and f. 

The degree of nonplanarity is, however, no greater than already 

indicated by the ri"'' . mass splitting. Chapter X will show that all 

these I = 0 deviations from simple planar behavior are understandable 

through the second term of the topological ex]Rnsion~-the leading 

correction required by unitarity. 

The reader need hardly be reminded of the spectacular accuracy 

of the OZI rule for charmonium 

Okubo review(l5 ) for details. 

(c,c) states. Aga~n we refer to the 

In Chapter XI we explain why mesons of 

increasing mass are expected to show increasingly accurate planarity . 

To summarize this chapter, there exists widespread evidence 

that the meson sector of the physical S matrix is approximately planar. 

It is then reasonable to treat corrections to the planar s matrix by 

perturbation techniques and, except for CiBpters IX and XIII, the 

remainder of our review is devoted to such corrections. 
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FIGURE CAPl'ION 

Chapter IV 

Fig. IV.l. The observed Regge trajectories for the leading families 

of mesons. The various lines are not fits, but are meant 

- to guide the eye. For t > 0 ElCD is seen to be very 

good. We have assumed pomeron-f identity (see Chapter X). 
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V. 'lHE S-MATRIX T01QLOOICAL EXB\NSION 

It was emphasized in Chapter II that the extreme degree of 

order embodied in the planar S matrix is inconsistent with unitarity. 

Tile present chapter will show how one attempts systematically to regain 

unitarity through a succession of corrections to the planar S matrix. 

Since the succession is constructed through topological considerations 

we begin by reviewing sane properties of graphs with ordered vertices. 

Physically the reader may anticipate that such vertices are to be 

associated with the ordered connected parts defined in Chapter II. 

Graphs with Ordered Vertices 

By an ordered vertex we mean one whose attached lines lie in a 

definite cyclic sequence--admitting the two-dimensional graphical 

representation illustrated in fi8. V .1. Here we show a 5-line vertex 

with the cyclic order BEADC as well as a tour-line vertex with the 

order FUDC. (A convention must be adopted to associate the stated 

order of lines with a sense of rotation about the vertex--clockwise or 

co~terclockwise. We have chosen the clockwise sense in Fig. V.l, 

consistent with Chapters II and III, and will continue this convention 

throughout our review.) We have seen already in Chapter II how the 

unitarity condition on the S matrix, which involves products of 

connected JBrts, leads to consideration of "products of ordered 

vertices" where certain lines f'rom one vertex are identified (joined) 

with certain lines f'rom another vertex (Figs. II.l4 and II.l5) . 

Suppose in Fig. V.l, for example, that the initial.channel contains 

two particles corresponding to lines F and G while the final 

channel contains three particles corresponding to the lines A, B 

and E. Suppose f'urther that a channel communicating with both of 
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the foregoing channels contains two IBrticles corresponding to the 

lines C and D. Unitarity will then lead us to consider the product 

graph corresponding to the dotted lines in Fig. V.l joining the two 

vertices. 

More generally, if unitarity is used to prescribe iterative 

corrections to a starting approximation based on ordered amplitudes, 

one anticiiBtes a characterization of S-matrix components through the 

topology. of graphs built from ordered vertices. 

Boundaries and Handles as ExiBnsion Iarameters 

It is known that each graph built frcm ordered vertices may be 

mapped (without crossing of lines) onto a two-dimensional surface of 

uniquely prescribable "minimal topological ccmplexity". The surface 

is characterized by the number of ''handles" h and by the way in 

which external lines are attached to various boundaries. We show 

below, with examples, how the classification of an arbitrary graph is 

achieved. Let us tentatively assume, subject to the requirement of 

consistency with unitarity, that a physical connected part describing 

the interaction of particles A, B, c, · · · may be deccmposed into a 

series of ccmponents each belonging to a definite two-dimensional 

topology. Following Veneziano,B,l6) 1e call this deccmposition the 

"topological expansion": 

?: .~. 
1 2 

(V.l) 

A boundary bi accommodates a subset of the external lines in a 

definite cyclic order, so the possible values taken by boundary 

indices are enumerable 'by dividing the total number of external lines 
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into all possible subsets and within each subset considering all 

possible cyclic orderings. To avoid misunderstanding let us write out 

the explicit boundary structure in the topological expansion of a 

" * 4-line connected part : 

.,.f1 B, C, D 

+ ~B,CD + ~C,BD + ~D,BC 

+ {' BCD + ~~ DCB + r{' ACD + ~' DCA + {' ABD + {'DBA 

_ _n,ABC _n, CBA 
+ M}i + Mb. 

+ ~,B,CD + {,C,BD + ~,C,D + {,D,BC + ~C,B,D 

,,AD, B, C ,,A, B, C, D 
+ vb + ~b • (V.2) 

The order in which the different boundaries are listed is meaningless 

and cyclic permutations of lines on a given boundary leave the 

topology unaltered . For example, 

{'BCD = ~,A ~B,A 

It is evident that the total number of boundaries cannot exceed the 
" 

* The internal quantum number selection rules of Chapter III may 

require certain components to vanish. 
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total number of external lines. The reader will no doubt have 

surmised that the components with a single boundary and no handles 

comprise what we have in Chapter II called the planar S matrix. later 

in the present chapter we shall return to this important physical 

point, but first we deal with some purely mathematical questions. 

How does one determine the topological classification of a 

graph built from ordered vertices? We state here a prescription given 

by E:l.monds, (l7) drawn to our attention by Stapp. Take any graph, such 

as the l.t--vertex1 6-external line example of Fig. V .2. We assume that 

all internal lines connect different vertices. Etlmonds' rule avoids 

the need to construct explicitly the two-dimensional surface on which 

the graph is to be mapped. Working directly with the graph, start at 

any external line and proceed clockwise around the vertex until 

reaching the first line that is not external. Then follow that line 

to the next vertex, at which point the process is repeated--always 

proceeding clockwise around each vertex. Eventually one will return 

to the starting 'point. The complete closed orbit defines a boundary. 

All external lines that have been crossed in such an orbit may be said 

to exit from the same boundary and in a definite (cyclic) order. In 

Fig. V.21 for example, the lines A,F,B and C1 in that order escape 

from the dashed boundary, while the lines D and E escape from the 

thin boundary. Readers conditioned to quark-line diagrams may feel 

the urge to associate quarks with Ellinonds' "orbit" connecting points 

on the same boundary, but Ellinonds presumably had never heard of quarks 

when he devised this solution to a purely topological problem. 

For a given graph let us introduce a parameter bmax giving 

the total number of different boundaries that would occur if at least 
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one additional external line were inserted between any adjacent pair 

of internal lines at each vertex. More concisely, bmax is the total 

number of different orbits that can be traced through the graph by 

Edmonds' rule regardless of whether the orbit crosses an external 

* line. In the graph.of Fig. V.21 bmax = 3· The parameter bmax is 

important because of a formula due to Euler that determines the 

(minimum) number of handles on the embedding two-dimensional surface. 

If the total number of vertices is v and the total number of 

internal lines is e (in Fig. V.21 v = 4 and e = 7)1 then Euler's 

formula for the minimum number of mndles is 

h 
2+e-v-b max 

2 
(V.3) 

Using Euler's rule we find that the minimum number of handles, 

on a two-dimensional surface capable of accommodating the graph of 

Fig. V.21 is h = 1. (Such a surface is often called a torus.) A 

connected-part component with the topology 

( · ,,AFBC DE 
in the notation of Eq. V.l) by ,.'1 ' . 

of Fig. V.'2 we designate 

The reader may' verify that 

a connected-part component with the topology of Fig. V.l would be 

. .m BFA designated by MQ_, • 

Graph Representations of Connected-Bart Components 

A graph consisting of a single vertex (no internal lines) may 

be mapped onto a surface with no handles and a single boundary. A 

connected-part component with such topology is of the class tt.BC· .. 
0 

--often characterized as the planar class. Conversely we may 

* All possible orbits will have been enumerated when each internal 

line is seen to have orbits on both sides. The directions 

of these two orbits are necessarily opposite. 



-49-

associate any component in this especially simple class with a single 

vertex. Also lying in the planar class are equivalent 2-vertex graphs 

of the type illustrated in Fig. V.3, it being convenient to use a 

2-vertex representation when discussing poles and discontinuities. 

(We shall rarely need to go beyond 2-vertex representations.) The 

topological equivalence of different graphs implies their physical 

equivalence--a manifestation of duality. 

With the constraint that internal lines must not begin and 

end at the same vertex, representation of connected-part components 

with h = 0 but more than one boundary requires at least two 

vertices. Consider components with no handles but two boundaries-­

often called 11 cylinders 11
• Figure V. 4 shows several equivalent 2 -vertex: 

representations of a cylinder component. Different graphical 

representations are useful in connection with different discontinuities. 

In Fig. V.5 we show possible 2-vertex representations of a zero-

handle component with 3 boundaries. When handles are present we can 

still firid 2-vertex representations, such as shown in Fig. v.6 for a 

1-handle, 1-boundary example. Although all topological information 
bl' b2· •• 

resides in the notation 1\ we shall nevertheless often find 

it helpful when considering discontinuities to employ explicit 

graphical representations. 

Unitarity 

The S-matrix topological expansion is physically useful 

because it dovetails with the structure of the unitarity condition. 

Suppose that we wish to calculate a two-particle discontinuity in the 

AB .... CD channel invariant of a four-line connected part, arising from 

an intermediate channel EF. The general formula has the structure 

tf 1 B,C,D 
discAB(EF) 

-50-

(v.4) 

Let 'lS substitute an expansion of the form (V.2) into both sides of 

(V.4). By using graphical representations of the kind shown in Figs. 

v.3-6, together with Edmonds' rule, it is straightforward to identify 

the topology of any individual product term and to collect terms of 

common topology. We find first of all 

~BCD 
discAB(EF) 0 (V.5) 

t Fig V 6 ith Similar formulas for the discontinuity corresponding o . • , w . 

ABDC ACDB d _ADCB At the same time the discontinuity of MO , M0 an M0 · 
of ~CBD and ~DBC is found to vanish. We have here precisely 

the discontinuity prescription for an ordered connected part discussed 

in Chapter II, a correspondence that can easily be extended to an 

arbitrary discontinuity of an arbitrary ordered connected part. 

Assuming amplitudes to be determined by their singularities, we may 

now therefore consistently make the postulate that: the single­

boundary zero-handle components of the topological expansion are the 

connected parts of the ordered S matrix. In making this postulate we 

implicitly adopt as the basis for our Hilbert space the poles of the 

ordered s matrix, i.e. the planar particles. These particle-poles 

constitute a suitable basis because the unitarity of the ordered S 

matrix guarantees their factorizability. 

Passing to the discontinuity of cylinder components with 

h = o, b = 2 we find product members with h = 0 but b = 1 as 

well as b = 2: 

... 



-

~AC,BD 
discAB(EF) K0 

. ABC,D 
discAB(EF) K0 
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(v.6) 

~ .D, CEF r.;-, ~ _FEAB MD, CFE "- ~ _EFAB + MQ \Cl MQ-- + 0 d MQ , 

CD,AB 
discAB(EF) M0 

+ ( ~ .DCEF CDEF) . x (· EFAB . .EFBA) MQ + M0 \L. M{) + M{)-· 

+ (MCDFE ~ .DCFE MCDEF + ~ .DCEF) !)(' ~ _EF, AB 
o +MQ +o MQ ·MQ 

MCD,EF r;,.; ~_EF1 AB 
+ 0 ~- MQ 

(V.7) 

(v.8) 

with analogous formulas for other orderings. These examples exhibit 

the kind of unambiguous discontinuity formula that exists for each 

component of the topological expl.nsion. These are the lJl'U dynamical 

equations, from which all quantitative predictions flow. In 

subsequent chapters we shall return to the above cylinder formulas, 

* which have important physical implications. 

We do not attempt an exhaustive catal~ue of properties for 

topological discontinuity formulas but point out that the number of 

* The intermediate particles E and F may be replaced by ordered 

clusters of pl.rticles to obtain the general cylinder dis-

continuities. 
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handles in any product cannot be less than the sum of the number of 

handles in the two product members. Thus the discontinuity formula 

for a component with h handles only involves components with handle 

number less than or equal to h. We have seen an important special 

case of this rule in the above h = 0 illustrations. Another simple 

rule is that adjacent pl.rticles on a single boundary of a product 

member cannot appear on different boundaries of the product. Inspec­

tion of our h = 0 sample formulas will verify this rule. We mention 

finally that if a product is to have fewer boundaries than the product 

' 
member with the larger boundary number, additional handles must be 

created.· We recognize in such rules a kind of conservation law for 

degree of complexity which will allow us systematically to build up 

disorder starting from the maximal order of the planar S matrix. 

Increasing degree of disorder is measured by a combination of the 

* number of handles and the number of boundaries. 

Convergence 

The usefulness of the topological expl.nsion (V.l) depends on 

its rate of convergence, which is believed to·be rapid in certain 

important sectors of the S matrix. Chapter IV has reviewed exper-

!mental evidence suggesting that the components with zero handles and 

one boundary constitute a good approximation in the meson sector. 

These experimental indications, together with internal quantum-number 

convergence arguments that will be reviewed in Chapter VII, encouraged 

* Sursock(lB) has shown that the nUmber of handles and boundaries 

associated with a product of two ordered amplitudes is determi~ed 

by the transpositions needed to bring the two orders into 

correspondence. 



-53-

Veneziano in arriving at his proposal. I.e.ter there developed 

awareness (l9) of a dynamical mechanism tending to suppress components 

of higher complexity, that is related to the peripheral character of 

strong interactions. The mechanism, to be discussed in the following 

chapter, may be described as "peripheral suppression of nonpl.anarity"; 

it stems from the absence of certain singularities from ordered 
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FIGURE CAPriONS 

Chapter V 

Fig. V .1. A f1 ve line vertex BEADC, a four line vertex :FUDC, and 

their connection (dotted line) in a unitarity product. 

Fig. v.2. A graph with 4 vertices, 6 external lines, and 7 internal 

lines (dark lines). The thin line, dotted line and dashed 

amplitudes. line are orbit paths. 

Fig. v.3. Equivalent 1 and 2 vertex graphs which are members of the 

same planar class. 

Fig. v.4. Equivalent 2-vertex representations of a cylinder component. 

Fig. v.5. A possible 2-vertex representation of a zero-handle com­

ponent with 3 boundaries. 

Fig. V.6. Possible 2-vertex representations for a 1-handle, 

!-boundary component. 

Fig. v.7. Graphical representation of Eq. (V.5), for ordered 

unitarity. 

Fig. v.8. Graphical representation of the cylinder discontinuity 

Eq. (V.6). 
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VI. PERIPHERAL SUPffiE3SION OF NONPLANARITY 

In this chapter we show how the peripheral character or strong 

interactions tends to suppress the importance or nonplanar components 

within the topological expansion. We begin by expressing the notion 

of peripheral ism through the concept of "strips" in the space of 

channel invariants. 

Strip Structure of Connected Barts 

A peripheral amplitude bas the property of being small except 

in strips that run parallel to the asymptotic boundaries of physical 

regions, that is, parallel to the lines si = 0. Although never 

mathematically proved, peripheralism is believed to be a consequence 

of Regge behavior. With respect to a 4-line connected part the origin 

of peripheralism is seen in the following considerations: Decompose 

the c:;onnected part into two portions corresponding to right- and le:f't-

hand cuts in same zi --the cosine of the scattering angle in one of 

the reactions described by the connected JBrt. r.llke an appropriate 

partial wave analysis of. each portion, 

and expr-ess the partial waves through Froissart-Gribov formulas in 

terms of discontinuities in zi and, second-kind representation 

functions of the rotation group( 
4
, 5) 
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The dependence of the p:~.rtial-wave amplitudes (both magnitude and 

phase) on angular momentum is then seen to be sJD,ooth, with exponential 

decrease at large J controlled by the zi singularities nearest to 

the physical region. 

Because the first-kind representation functions (e.g., 

pJ(zi)) in the ordinary Legendre exp:~.nsion are all positive and 

maximum at 

a maximum. 

z = 1, the "right-hand" (R) amplitude tends there to have 
i 

The "le:f't-hand" (L) amplitude has a mximum at zi = -1. 

As the scattering angle increases, the representation functions 

become more and more incoherent and the superposition of p:~.rtial waves 

decreases. The angular rate of decrease is greater the larger is the 

range of important J, the region of large values of the right-hand 

amplitude being confined within an interval of fixed width in si , 

the channel invariant proportional to 1 - zi. A corresponding 

property holds for the le:f't-hand amplitude. Regge behavior is 

important to ensure that all p:~.rtial waves, even the lowest one 

(J = 0 or 1/2) are p:~.rt of a single smooth trend. Otherwise 

cancellation through incoherence of the representation functions will 

not be fully effective. 

The conclusion is that a physical four-line connected p:~.rt is 

large only within ~ strips on the Mlndelstam diagram, as shown in 

* Fig. VI.l. - Such peripheral behavior--so familiar experimentally as 

to be taken for granted--is highly nontrivial from a theoretical 

standpoint. Since the underlying basis seems to apply sep:~.rately to 

* our ar:gument has applied only to physical regions, but analyticity 

considerations suggest that the strip structure is general. 
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each component of the topological exp:~.nsion, we shall assume that 

each component is large only within certain strips. 

Generalization of the strip concept to connected p:~.rts with 

more than 4-externa.l p:~.rticles is tricky because of kinematic 

constraints on the invariants. A possible resolution of the kinematic 

problem is reached through Toller variables, each set of which is 

assoc_iated with a tree graph. Thus, for a 5-line connected p:~.rt we 

have distinct sets of Toller variables associated with each of the 

tree graphs of Fig. VI .2. Each set contains a p:~.ir of invariants, 

associated with internal stems of the tree, that may be simultaneously 

small. We define a "generalized strip" as the region where all the 

channel invariants belonging to a particular Toller tree graph are 

small. In other words we make a one-to-one association between tree 

graphs and strips. (The tree-graph generalization of the strip 

concept adapts itself to ordered amplitudes because tree graphs drawn 

in a plane are automatically ordered.) 

Strips in Ordered Components 

Applying the strip concept to a 4-line ordered connected part 

one finds either a forward or a backward peak in certain channels but 

not always both. Strips of large amplitude parallel to si = 0 occur 

only when si is an adjacent-particle channel invariant, i.e. only 

* when there are singularities in si The strength of the sin-

gularities determines the amplitude magnitude within the strips, and 

* It is tempting to associate the nearness of singularities with the 

size of the amplitude, but such a notion is treacherous and will 

be avoided in this paper. 
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for ordered amplitudes there are supposed to _be poles as well as 

branch points in all adjacent-particle invariants. Experience sugges1B 

that, when poles are present, amplitudes within strips parallel to the 

pol.es are relativel.y large. We thus expect the ordered amplitude 

rt:CD to be large w1 thin the two strips shown in Fig. VI . ) and small 

elsewhere. There is no tendency for ~ to be·large in a strip 

parallel. to sAC = 0 because there are no singularities in sAC" 

When different ordered ampl'-tudes are superposed all. three strips will 

of course be populated. 

Fbles in Nonplanar Components 

Since all. components of the topological expansion are supposed 

to be determined by their discontinuites, we may infer the singularity 

structure of nonplanar components from their discontinuity formulas. 

Now because adjacent particles on a boundary attached to one factor 

in a discontinuity product never appear on different boundaries of the 

product, analysis of the discontinuity formulas reveals something like 

the Steinmann rul.e: that pol.es do not occur in channels containing 

particles from more than a single boundary. In other words, particles 

* on different boundaries do not resonate with each other. The point 

An exception must be made for a boundary containing only one 

particl.e or, equivalently, when ~ particles on a boundary are 

included 1n the channel whose resonances are umer consideration. 

This exception is related to the cylinder renormalization discussed 

in Chapter VIn of the special class of particl.es carrying zero 

internal quantum numbers. The mechanism discussed in the present 

chapter shoul.d be understood as applying ~ consistent cylinder 

renormalization of external particles. 

-~-

is tricky because channel invariants for particles on different 

boundaries do have discontinuities, as shown for example by Formula 

(V.6) for a two-boundary cylinder component. Nevertheless, to the 

extent that planar poles are "transmitted" in a process of iteration 

starting from single-boundary, zero-handle components (the ordered 

S matrix), one expects poles to appear only in adjacent-particle 

invariants. 

Strips in Nonplanar Components 

The foregoing pole principle is connected with peripheralism 

through the assumption that amplitudes are large in peripheral strips 

onl.y when poles occur in conjunction with the associated discontinuity. 

Our general reasoning about peripheral peaks did not include any 

statement about the absolute magnitude of a peak. We are now 

proposing that peripheral. peaking is strong only when poles run 

parall.el to the strips. With respect to the strips we have identified 

for ordered amplitudes, parallel poles are guaranteed to be present, 

and experience suggests that wherever strong periphe~l strips occur, 

there are parallel poles. Such a statement is equivalent to saying 

* that discontinuities are weak except in the proximity of poles. 

So we are led to assume that the important peripheral strips in 

nonplanar amplitudes correspond to fixed small values for adJacent-

particle channel invariants. 

Let us apply this concept to the two-boundary cylinder 

,,AB CD 
component Mo ' . We are then led to the strip structure shown in 

* Chapter XI will describe an evaluation of "weak strips" associated 

with discontinuities in the absence of poles. 
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Fig. VI. 4, the important distinction with the ordered strip structure 

of Fig. VI. 3 being that now there is only one strip instead of two. 

As will be discussed in Chapter IX, at low sAB the cylinder 

component ~~CD is just as large as a planar component, but the 

fact that its largeness does not extend o~r so wide a region will 

provide a basis for convergence of the topological expmsion. In 

particular, Fig. VI.4 will be found immediately to explain the 

increasing accuracy of the OZI rule with increasing energy. 

Readers may wonder why a lengthy discussion of the origin of 

peripheralism was needed in order to justify Fig. VI. 4. A simple 

statement that the only poles of ~,CD are in the variable sAB 

would not suffice. Such poles might continue to make this amplitude 

large at large values of sAB. It is angular momentum interference 

that requires smallness except near the physical boundaries zAC = 1 

and zAD = 1. But peaks at these boundaries we have assumed to be 

small unless there are poles in sAC and (or) sAD. The only way to 

resolve such conflicting requirements is for ~,CD to be small over 

the entire angular range at large sAB. 

The more boundaries a component possesses the fewer poles it 

can have and the smaller the domain over which the component is large. 

Here is a premising mechanism for convergence of the topological 

expansion with respect to increasing boundary number. But what about 

handles 'l What, for example, is the basis for expecting that the 

single-boundary component ~ECD is small 'l We here appeal to the 

' notion, explained in Chapter VII, that a handle is like an internal 

two-boundary cylinder, intermediate particle subchannels flowing into 
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one ''boundary" and out the other. The implication of Fig. VI.4 is 

then that only low-mass subchannels are allowed to flow through a 

handle. There is no constraint on the energy of intermediate sub-

channels that pass in an ordered fashion on the two-dimensional 

surface, so the total contribution from ordered intermediate paths 

tends to be greater than that from handles. Chapter XII will 

elaborate the foregoing mechanism. 
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FIGURE CAPl'IONS 

Chapter VI 

Fig. VI .1. M:l.Ddelstam diagram for four -line connected part. Strips 

where amplitude is large are indicated by wavey lines. 

Fig. VI.2. Tree graphs used to define Toller variables. 

Fig. VI.3. Peripheral strip structure for four-line ordered 

connected ps.rt. 

Fig. VI.4. The peripheral strip structure for the cylinder canponent 

_AB,CD 
Mo- • 
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VII. INI'rnNAL QUANI'UM NUMBER SUPffiE3SION OF NONPIANARITY; 

SINGLE!' IM:rorENCE 

Quark-line diagrams m ve emerged from two different consid­

erations. In Chapter V the "orbits" in El:lmonds 1 rule for analyzing 

nonplanar topological structure were seen to have quarklike appearance, 

while in Chapter ·III Weissmann 1 s analysis of ordered internal-quantum 

number selection rules had already, independently, led to quark-line 

diagrams. What does one learn from diagrams that simultaneously 

convey information about boundary-handle structure and about internal 

quantum numbers? 

An important observation is that of vanishing net flow of any 

internal quantum number into an individual boundary; more precisely, 

quantum numbers must flow into each seiSrate boundary according to the 

closed-cycle (i···i) pattern of Fig. III.3, for the A(i,j)···E(m,i) 

connected part. We shall refer to this as the "cylinder flow pattern" 

since it applies to the quantum number flow through any boundary of a 

cylinder. 

An arbitrary ordered subchannel will not be compatible with 

such an extremely restrictive pattern. Consider for example a physical 

A, B, C, D connected ISrt with the family assignments, A(n, p ), 

B(p,A), C(A,c), D(c,n). No ordered subchannels here conform to the 

cylinder flow pattern, so in the topological expansion there can 

occur only single-boundary components ~BCD --components with more 

than one boundary (including cylinders) all vanishing. The foregoing 

is an extreme example but, in general for a given set of particles 

A,B··· the larger the number of boundaries the less likely is the 

possibility of satisfying the cylinder flow pattern. 



In the presence of SUN symmetry a quantitative statement 

becomes possible. The :pattern of Fig. III.3 means that if one forms 

superpositions corresponding to irreducible representations of the 

symmetry group, only SUN singlet channels are allowed to flow into 

an individual boundary. (
2

0) Singlet channels constitute a fraction 

inversely related to N of all possible ordered channels, so the 

disfavoring of increasing numbers of boundaries can be related to 

inverse powers of N . We return below to this question. 

It should be emphasized that certain ~cial reactions 

involving singlet subchannels (such as a single cp(/1., 11.)) receive 

important contributions from multiboundary ex:pansion ccmponents. 

Confusion exists on this point with respect to the OZI rule. In 

:particular, the statistical mechanism discussed in the present chapter 

does ~ explain the stability of strangeonium and charmonium states. 

As will be seen in Chapter XI, the peripheral mechanism of the 

preceding chapter is needed in order to understand these celebrated 

OZI-rule manifestations. 

We next observe that the flow pattern of Fig. III.3 also 

applies to handles. Consider the single-boundary, single-handle 

example of Fig. V. 6. Compressing the four external lines into a local 

region of the boundary so as to focus attention on the internal lines 

that connect the two vertices, the associated quark-line diagram is 

shown in Fig. VIII.l with dotted lines added to identity the handle. 

The internal lines flowing into one end of the handle and out the 

other are seen to exhibit the (i,i) cylinder flow pattern, with the 

added requirement that the channel flowing into one end is the same 

as that flowing out the other. Although the representation given by 
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Fig. v.6 of a single-handle, single-boundary component is not unique, 

any representation must contain a subchannel of intermediate lines 

exhibiting the cylinder flow pattern. A minimally-required handle may 

always be visualized as a cylinder that transports a subset of inter-

mediate particles. If the flow pattern is not that of a cylinder the 

handle is not needed. (21 ) 

It was observed by Veneziano that because of the foregoing 

extreme restriction the number of intermediate channels, with a fixed 

set of (external) boundaries, will systematically decrease as the 

number of handles increases. Suppose that we think of the topology 

of Fig. VII.l as arising in a 3-particle AB discontinuity of ~BCD, 

as indicated in Fig. VII.2. Compare to the corresponding planar 

discontinuity of ~CD indicated in Fig. VII.3. In the former case 

the intermediate-particle families ((k,i)(i,i)(i,i)) are completely 

determined by the external-particle families ((i,j)(j,k)(k,t)(t,i)). 

In the latter (planar) case the intermediate-particle families are 

less constrained, there being two free boundary indices (n,m). With 

N different possible values for the boundary index (N different 

flavors) there are then ~ different family ccmbinations possible 

in the planar product's intermediate 3-particle channel. 

Veneziano (3 ) showed generally that products with the same 

number of boundaries, but a difference 6h in the number of handles, 

will differ in the number of intermediate channels by a factor 

(~ )6 h . Herein evidently lies a helpful mechanism for convergence 

of the topological expansion. The mechanism is less effective than 

the experimental fact, N ~ 4 , might lead one at first sight to 

suppose because there is kinematical (phase-space) suppression of 
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flavors with high thresholds. Intermediate channels of high threshold, 

that is to say, are in any case unimportant--even if allowed by 

topological selection rules. The existence of charm, in particular 1 

does little to improve convergence of the topological expansion. Even 

strangeness tends to be kinematically suppressed. Isospin symmetry 

nevertheless guarantees an effective value for N larger than 2 1 so 

* a respectable role remains for the Veneziano mechanism. 

Veneziano's result has been qualitatively restated (l3) so as 

to emphasize the connection between boundaries, handles and flavor 

singlets. When internal symmetry is present we have noted that the 

S matrix may be diagonalized according to irreducible representations 

of the symmetry group, only those channels which are singlets with 

respect to the syumetry group being allowed to pass through 

(communicate with) an individual boundary. Now we have seen in 

Chapter III that, with SUN synmetry, planar particles are grouped 

into multiplets of size ~. Within such a planar multiplet there is 

only one singlet state, so the probability that an arbitrary planar 

particle is permitted to pass (alone) into a boundary is 1/~. This 

same factor applies also to any multiparticle ordered channel, since 

the quantum-number .structtn"e is similar to that for a single planar 

particle. Extending the reasoning to intermediate channels or sub-

channels we see that the probability for an arbitrary channel to be 

able to pass through a handle is 1/~. Veneziano's mechanism may in 

this way be ascribed to the statistical impotence of flavor singlets. 

* Simple models allow one to determine an effective N which is 

approximately 2. 5 when symmetry-breaking is taken into 

account. (l3, 22 ) 
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We have already warned the reader not to interpret Veneziano's 

rule as saying that cylinder connections between singlet channels are 

smaller than planar connections. For reactions involving external 

singlet channels, cylinder components (h = 01 b > 1) of the S 

matrix may be just as large as planar components (h 0, b = 1). 

Veneziano's mechanism rests on the relative scarcity of internal 

singlet channels--channels that may pass through handles. 

The existence of at least two different convergence mechanisms 

for the topological expansion renders extremely difficult any general 

analysis of convergence. Additionally, from the bootstrap point of 

view (see the end of Chapter IX) one hopes that eventually N (or, 

more precisely, the distribution of flavor thresholds) will be deter­

mined by ordered unitarity, so ·N is not necessarily a free parameter 

in the DTU approach. 
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FIGURE CAPriONS 

Chapter VII 

Fig. VII.l. Quark line diagram for the 1-bound.ary, 1-ha.ndle example 

of Fig. V.6. Dotted line identifies the quark structure 

of the handle. 

Fig. VII.2. The three-JBrticle contribution to the All discontinuity 

of Fig. VII.l. 

Fig. VII.~. A planar, tbree-JBrticle contribution to AB 

discontinuity of an ordered connected JBrt. 
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VIII. RENORMALIZATION OF PLANAR R>LES; CYLINDER UNITARITY 

The Hilbert space underlying the_ S-matrix topological expan­

sion is based on the planar particles. Although the planar spectrum 

is not specified a priori, supposedly being determined through ordered 

unitarity (i.e. the "ordered bootstrap"; see .Chapter IX), planar poles 

constitute the fabric from which the topological expansion is con­

structed. Actual poles of the physical S matrix--the sum of all 

components in the topological expansion--will nevertheless not 

coincide with planar poles. Such a slippery situation becomes man­

ageable if we remember that full physical unitarity guarantees a 

consistent factorization pattern for physical poles, just as ordered 

unitarity guarantees a consistent factorization pattern for planar 

poles. Thus, even though we work in a planar basis, we can use 

factorization to define physical connected parts with physical 

external particles. F:4!;ure VIII.l sketches a multiple-pole structure 

in a· physical connected part that has been calculated in the planar 

basis, i.e. with planar external particles. The residue structure in 

this example allows the extraction of 3-line, 4-line and 5-line 

physical connected parts. 

Although we are aware of no argument that guarantees a one-to­

one correspondence between planar poles and physical poles, there was 

implicit in the discussion of Chapter IV the assumption that a 

correspondence can be made between any planar particle and ~ 

physical particle. (When planar degeneracies occur, such as isospin 

degeneracy, it may be necessary to make the correspondence via linear 

superpositions of planar particles.) It is believed, in other words, 

that the physical asymptotic Hilbert space may be larger than the 
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planar Hilbert SJ:Bce but not smaller. The simplest possibility--that 

the two sp1.ces contain the same number of p!.rticles--remains open, 

both f'rom a theoretical and an experimental point of view. No mesons 

have yet been discovered that cannot be put into correspondence with 

some planar meson. 

Even should a one-to-one correspondence exist, we must learn 

how to deal with pole renormalization. The present chapter deals with 

one aspect of this question--related to the cylinder components. We 

are concerned with poles in a two-boundary cylinder, occurring in the 

channel invariant corresponding to the total (squared) energy flowing 

into one boundary and out the other, that is, "along the cylirrler 

" .AB CDE axis . For example in M0 ' we are concerned with poles in 

According to the reasoning of Chapter VII these poles 

are also relevant to handles. 

In Formula (V. 8) we exhibited the two-p!.rticle AB discon-

tinuity of Mgo'AB Veneziano observed that this complicated formula 

could be simplified by defining a quantity 

-MCDO I AB • - AOBCD - .BACD - A'RDC M.:: + MQ- + M
0
-

(VIII.l) 

Remembering the planar discontinuity formulas, typified by (V .5 ), we 

fii!d, following Veneziano, (23) 

(VIII.2) 

A straightforward generalization can be made for channels with any 

(13) --A'RC···,A'B'C'··· number of J:Brticles. One defines M- as 

J;_BC· ··,A 'B'C' · · · 
0 plus the superposition of ordered amplitudes for 

all cyclic permutations within the two sep1.rate subsets. The general 

discontinuity formula for M0 then will have the structure of 

(VIII.2 ), a result that may be described as unitarity in a "cylinder 

Hilbert sp!.ce", where the states are cyclically-symmetric superposi-

tions of ordered channels, each channel satisfying the closed-boundary 

patter of Fig. III.3. For example the 3-particle (A,B,C) state in 

the cylinder Hilbert space is 

{ ~) . + :>} ~) 1 

. (VIII.3) 

where the particle families are of the type A(i,j) B(j,k) C(k,i). As 

noted earlier, cylinder channels are SUN singlets in the presence of 

SUN symmetry. The connected parts of the unitary "cylinder S matrix" 

are precisely the amplitudes --ABC···,A'B'C'··· MO . Cylinder unitarity 

guarantees that the poles of these amplitudes should be factorizable. 

Comparing Formula (VIII.l) to the full superposition of zero-handle 

_A,B,C,D
1 components in the physical connected p1.rt M- as given by 

Formula (V.2 ), and remembering the general rule about where poles may 

~DAB 
occur, we see that M0 ' subsumes all the zero-handle components 

* 
that are allowed to contain poles in sAB" By studying this 

* To simplify the discussion we here assume that each of the four 

particles A, B, c, D carries nonzero internal quantum numbers so 

that none can appear alone on a single boundary. If one or more 

external particles carry zero quantum numbers, then in the order of 

the exp~.nsion considered in this chapter we must be prep1.red to 

identify cylinder renormalization of these external particles. It 

is unnecessarily confusing to consider simultaneously internal and 

external renormalizations. Factorization guarantees that if we 

understand one we also understand the other. 
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quantity we therefore expect to learn about pole renormalization at 

the zero-handle level. 

Discontinuity formulas of the type (VIII.2), which apply also 

to ordered and to physical connected parts, may be projected onto 

individual partial waves in angular momentum and schematically written 

in the matrix product form 

M (VIII.4) 

where M+ and M- are the same analytic matrix function M eval-

uated on opposite sides of the cut and p is a (diagonal matrix) 

phase-space factor. Equation (VIII.4) requires not only that the 

poles of M be factorizable but that poles on one .sheet of the 

Riemann surface be matched by zeros in the determinant of 1 - 21Mp 

at corresponding points on the other sheet. Now if we express the 

generalization of Eq. (VIII.l) as 

p + c ' (VIII.5) 

where P is the planar superposition specified above and C is the 

cylinder, then we see that it would only accidentally be true that 

zeros of det(l - 2i M0 p) would exactly coincide with zeros of 

det(l - 2i R p), R being the matrix of ordered connected-part 

partial waves of which P is a particular linear superposition. In 

· other words one does not expect poles of M0 at the positions of the 

ordered poles. 

On the other hand we discussed in Chapter VI a systematic 

peripheral mechanism that is presumed to suppress the magnitude of the 

cylinder except at small values of the energy flowing along its axis. 
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If the magnitude of C is small and that of P is not, the poles of 

M0 occur close to the zeros of det(l - 2i P p), which one can show 

will be close to the poles of R As the cylinder becomes weak, that 

is to say, the poles of M0 either approach the planar poles or their 

residues become small. 

The reader may be perplexed at what is meant by the cylinder 

being "small" in the neighborhood of a pole of M0 which after all 

~ must be a pole of C if it does not exactly coincide with one 

of the planar poles contained in P. The r.esolution of the puzzle is 

achieved by realizing that if M0 does not contain the planar poles, 

then C not only possesses the poles of M0 but must contain addi­

tional poles at the location of the planar poles of P --the additiacal 

poles exactly cancelling those of P. Speaking of a "weak" cylinder 

means, if' P-pole residues are large, that there is close coincidence 

in both position and residue between a pole of ~O and a pole of P , 

so that in C the two corresponding poles almost compensate each 

other. Turning the argument around, if we accept the peripheral 

mechanism of Chapter VII as ensuring a weak cylinder component at 

high (positive) energy where planar poles are not negligible, then 

we require a near cancellation at high energy between pairs of cylinar 

poles. 

Employing the Regge notion of simultaneous analyticity in 

energy and angular momentum one expects to be able to identify at any 
* 

energy a correspondence between a Regge pole of M0 and that planar 

It is speculated, although unproved, that the only Regge 

singularities of M0 (and C) in the axis-channel angular 

momentum are simple factorizable poles. (24 ) 
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Regge pole which it will approach at high energy. Such an adiabatic 

connection allows one to speak of pole "renorma.lization", even though 

the renorma.lization in position and residue may become large at low 

energy--the pole of M'0 having very different properties from any 

* planar pole. Note that these large shifts are expected only for 

poles that COOIIIIUilicate with channels in the cylinder Hilbert sp:Lce, 

which we have seen to be a relatively small subset-- SUN singlets in 

the presence of SUN symmetry. 

The general considerations of this chapter will be given flesh 

and bone in the models discussed in Chapters X and XI, dealing with 

certain special leading poles. Because discontinuities of topological-

expansion components with h > 0 never are bilinear in components 

with this same number of handles h , we do not again encounter for 

any individual ccmponent a discontinuity structure like Formula 

(VIII.4)--demanding pole renorma.lization. So long as one works with 

a finite number of terms in the topological expansion, therefore, it 

is believed that the only renorma.lization is that discussed in the 

present chapter--of poles communicating with the two-boundary cylinder. 

It is believed at the same time, as explained in Chapter XII, that 

* For t .. -oo, where t is the invariant mass squared flowing 

along the cylinder axis, one does not require the positions of M
0 

poles to approach the positions of planar poles even though the 

cylinder becomes weak, because here the residues of both sets of 

poles independently tend strongly to zero. Pole cancellation at 

negative t is not required in order to achieve peripheral strip. 

structure for the cylinder. 
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the sum over an infinite number of handles will produce renormalizatlon 

of ~ planar poles as well as a further renorma.lization of cylinder 

* poles. Both experimental evidence and the models reviewed in 

Chapter XII support the view that such general renormalization is 

quantitatively less important than the cylinder shift, which applies 

only to a modest subset of planar poles. 

* Reggeon calculus deals with the relatively small renormalization 

of the "bare pomeron"--the leading Regge trajectory of the 

cylinder. 
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FIGURE CAPriON 

Chapter VIII 

Fig. VIII.l. Multiple -pole structure in a physical connected IBrt 

calculated via factorization from the planar poles. 
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IX. MULTIPERIPHERAL BOOTSTRAP MODEL OF THE ORDERED S MATRIX 

The ordered unitary S matrix lies at the heart of the topolog­

ical expansion; unless the concept s
0 

makes sense the entire DTU 

approach is meaningless. The ordered S matrix not only provides the 

logical DTU underpinnings but specifies the planar approximation 

and all corrections thereto. Two intimately-related issues must be 

faced: (1) Does an analytic unitary s
0 

exist? (2) How can S
0 

be calculated? 

The problem of exist.ence is elusive because ordered unitarity, 

while simpler than physical unitarity, still implies an infinite set 

of nonlinear relations between ordered connected parts. No irreconcil­

able contradiction in'these relations has been found but we remain far 

from a proof that a solution exists. So far all attacks on the ordered 

consistency (bootstrap) problem have focused on the presumed simplicity 

of Regge structure in ordered connected parts. Assuming that ordered 

Regge singularities are all factorizable poles, avenues of approach 

beckon that seem less promising for the full physical S matrix--where 

Regge cuts and fixed singularities abound. This chapter describes the . 

most promising type of model so tar developed for the ordered S-matrix 

bootstrap. The model is crude and represents only the beginning of 

What may be a long and arduous effort. 

In Chapter VI it was asserted that oi-dered connected parts are 

large only in certain "strips". The model now to be described depends 

on this peripheral aspect of strong interactions, together with the 

assumption that contributions from a few leading Regge poles constitute 

a reasonable approximation. We shall be led to self-consistency 

conditions on the parameters of leading ordered poles within strip 

regions. 
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Consider an n-particle intermediate-channel contribution to 

the discontinuity of the 4-line ordered connected part shown in Fig. 

IX.l. (To avoid ambiguity we here mean stable particle when we say 

"particle".) One of the peripheral strips of large amplitud~ 

the ordered amplitude associated with the reaction ~:~ ~ 
; 

n I 

will correspond to the tree diagram of Fig. IX.2. For small values 

of sAB the other reaction occurring on the right-hand side of Fig. 

IX.l will be large in a corresponding strip. Other strips also exist, 

but the so-called "multiperipheral" strip of Fig. IX.2 is expected to 

give the largest contribution in the limit sAC ~ co. Setting as our 

goal the determination of the leading ordered Regge poles in the 

(:) ( ~.) channel at small values of sAB' it is then 

plausible to keep only the contribution from the multiperipheral strip. 

A well-lmown property of the phase-space region corresponding 

to the multiperipheral strip is that rapidity ordering tends to 

coincide with particle ordering 1 ··· n. Let us then divide the 

total phase space into two segments, assigning some fraction of the 

total rapidity interval between C and A to one segment and the 

remainder to the other segment. The fraction is unimportant; for 

The definiteness we may divid~ the ~ interval into two halves. 

important point is that among the n ordered intermediate particles 

the subset 1 to i tends to fall into one segment while the subset 

i + 1 to n tends to fall into the other. Now suppose that the 

average rapidity gap between particle i and particle i + 1 is 

large enough to allow factorized Regge representations of the form 

shown in Fig. IX.3. Then performing the sum over all possible values 



of n is equivalent to performing independently the sums over all 

possible number of ordered .J;Brticles within the two se];Brate rapidity 

segments. By invoking ordered unitarity for 2-reggeon, 2 .J;Brticle 

ordered amplitudes, we are led to the result shown in Fig. IX.4, where 

it is to be understood that each of the two discontinuities appearing 

at the extreme right in Fig. IX.4 is evaluated at a sub-s whose upper 

limit is proportional to s!c , corresponding to its half of the 

total rapidity ·interval. 

To the extent that the rapidity gap S.J;BDDed by the reggeon 

may be small, it is necessary to sum over all possible reggeons--not 

simply the leading ones--but no investigators have so :far seriously 

pursued this point of potentially profound consequences. The 

assumption has been made that the reggeon ex];Bnsion converges rapidly, 

a good approximation being given by the highest-lying trajectories. 

Here we keep, for simplicity, only a single trajectory in the loop. 

In the limit of large sAC" e_ .• s ___ th~left-:_hall;d side of Fig. 

IX.4 will be dominated by the leading ordered reggeon with the quantum 

numbers of the AB channel, whose trajectory we designate by a(t}, 

where t • If this reggeon has no physical .J;Brticles for J < 1 

the point J = 0 being already a nonsense point as is 

the case for the leading physical reggeons, p, w, f, ~~ then the 

discontinuity in question has the asymptotic structure 

,.AB(t) "nc(t) 

r(a(t)) 

a(t) s , (IX.l) 

the gamma function providing the sequence of zeros needed to prevent 

poles in the amplitude at nonsense points. The right-hand side of 
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Fig. IX.4 is more complicated, involving the product of discontinuities 

of reggeon-reggeon, particle-particle amplitudes. Consider the 

discontinuity involving the particles A and B, which we designate 

AAB(s 1
, t, t±) where s 1 is the square of the "cluster mass". In 

Fig. IX.4 an integration is implied over the invariant s 1
• Because 

AAB is the discontinuity of an ordered amplitude with Regge behavior 

in s 1 and supposedly with no Regge cuts, one expects this quantity 

·to satisfy the sum rule (25 ) 

fs

1 

x ds 1 AAB(s 1 , t, t±) 
s' _.ro 

~ rAB(t) g{t, t±) 

r(a(t)) 
0 max 

a(t )-a(t )-a(t ) 
(s~) + -

.x 
a(t} - a(t+) - a(t_) + 1 

(IX.2) 

where g{t, t±) is the triple Regge coupling. There will be a 

similar sum rule for ~· We see then that in the equation of Fig. 

IX.4 the dependence on the external .J;Brticles :factors out, leaving a 

condition involving only the leading ordered reggeon--a condition with 

the structure indicated in Fig. IX.5. 

Remembering that 
I 

smax ex: and using standard rules 

for the reggeon loop phase space together with the ordered single-

a(t+) 
reggeon propagator (-s) - r(l - a(t±)) one finds the schematic 

equation of Fig. IX.5 taking the following explicit form, first 

written down by Rosenzweig and Veneziano:(26 ) 

(IX.)) 

where 

.. 



rQ. - a(t+))r(1 - a(tJ)cos n~(t+) - a(tJ) 

[a(t) - a(t+) - a(t_) + 1] r(a(t)) 

(IX.4) 

is the ordered 2 -reggeon loop "pro:pagator". The factor N is the 

number of different equivalent ordered reggeon loops contributing to 

the right-hand side of Fig. IX.5; with SUN symmetry the quark-line 

diagram of Fig. IX.6 shows that N flavors mean N loops. The loop 

phase Splce dq> in Eq. (IX.3) is 

1 
1 -2 

dq> = 161t4 dt+ dt_ ~>..(t, t+, tJ) 9(->..) (IX.5) 

with >.. the usual triangle fUnction. 

The bootstrap equation (IX.3) is a nonlinear condition on the 

trajectory and residue of the leading ordered reggeon. The trajectory 

is presumed to be a smooth function, but an infinite sequence of zeros 

and poles is anticiplted in the triple-Regge coupling g(t, t±)' as 

defined here. First it can be shown that there must be zeros at the 

points a(t) = a(t ) + a(t ) - n, n = 1, 2, ••• , if Regge branch 
+ -

points are not to occur in ordered amplitudes. (25, 27) At the same 

time it can also be shown that such zeros are redundant with prope..ga:lxJr 

discontinuity zeros at a(t) = o, -1, -2, ••• when the helicities 

a(t±) become physical integers and the triple reggeon coupling becanes 

a :IBrticle-:IBrlicle-reggeon coupling. We thus expect g(t, t±) to 

* ba ve the form 

* Such a form is exhibited by the explicit triple-Regge coupling of 

the dual resonance model. 

-90-

r(a(t)) 

) 
x smooth function. 

r~(t) - a(t+) - a(t_) + 1 
(IX.6) 

With this assumption it is possible to fim approximate solutions of 

the ordered bootstrap equation (IX.3) that correspond reasonably with 

the experimentally observed properties of leading physical Regge 

trajectories. Before discussing quantitative matters, let us make a 

general observation. 

Equation (IX.3) or its physical equivalent bas been derived by 

a variety of different approaches, many of which require great care in 

order to avoid miscounting intermediate states. (l, 28-30) Some of 

these alternative approaches have called attention to the remarkable 

nature of the requirement that Regge cuts be absent from ordered 

amplitudes. For such to be the case there must exist fUrther sum 

rules going beyond that of Eq. (IX .2). (3l) At the time of this 

writing uncertainty continues about the fUll implications of the 

widely-employed assumption that the only Regge singularities of 

ordered amplitudes are f'actorizable poles. (25127, 3l, 32 ) The reader 

should also remember that to achieve viable bootstrap equations 

another assumption is needed: dominance of the loop by a small number 

of leading ordered reggeons. There has been no proof of convergence 

of an explosion based on the location of ordered reggeons within the 

loop. 

A less simple but more accurate approach to the ordered boot­

strap has been made by Chan, Th.ton and Tsou (CPI'). (l) The physical 

idea is similar to the foregoing but in counting intermediate states 

use is made of the "cluster" concept which bas proved useful in 
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phenomenological studies of experimental data. The CPI' equations must 

be studied by computer, but it is correspondingly possible to be more 

realistic about kinematical facts of life. Each ingredient in the CPI' 

equations bas been thoroughly tested for physical meaning. 

Numerical studies of equations of the general type (IX.3) have 

been encouraging. It has been possible to satisf'y Eq. (IX.3) over a 

range -1.0 Ge¥2 ~ t ~ 1.0 Ge¥2 with a linear trajectory and a 

coupling of the form (IX.6). (l,33-35) The leading intercept turns out 

to be cx(O) ~ 0.5 and the magnitude of the coupling is within a 

factor 2 of that indicated experimentally. The Rutherford Group(l) 

results, allowing more flexibility in the t± dependence, are even 

·closer to experiment. Balazs, by using a modified and extended form 

of the bootstrap condition discussed here, has derived, with no free 

" (35) parameters, a reasonable infinitely-rising trajectory. 

Of deep significance is the fact that ordered unitarity seems 

capl.ble of determining both the positions and residues of poles. It 

appears, in other words, that the entire ordered S matrix may be 

determinable from self consistency. A puzzling question in this 

regard is how the breaking of SUN symmetry will be fixed. A 

preliminary study by Konishi and Kwiecinski (36 ) has been based on 

combining a bootstrap equation of the "propagator" type of Fig. IX.4 

with one of the "vertex" type of Fig. rx.7. It was fouDl that for 

small symmetry breaking the pattern of trajectory intercepts must 

follow the "additive quark" .rule: 

ex + + (IX. 7) 

For the ordered triple-Regge coupling g!j , corresponding to the 

quark-line diagram of Fig. IX.8, where the discontinuity cuts the 

-~-

Regge pole, the other two legs corresponding to helicity poles, the 

pl.ttern of small symmetry breaking is found to be 

(IX.8) 

The trajectory pattern (IX.7), discovered earlier in a variety of less 

systematic theoretical studies, (22•37, 38 ) is in striking agreement 

with experiment. Experimental evidence about couplings is still too 

crude to check Formula (IX.8). 

A challenge to and opportunity for the uru approach is the 

calculation of the symmetry breaking parameters "i and T)i • It 

· would seem that ordered unitarity should determine these parameters 

of the ordered s matrix along with a and g By the same token, 

ordered unitarity eventually should determine how many flavors occur. 

Before such questions can be answered, however, ordered bootstrap 

models must be vastly improved over the model-T versions currently 

available, which all have been modest adaptations of pre-uru 

approaches. We are not yet close to exhaust:l.!:g the full content of 

ordered unitarity. 

• 
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FIGURE CAPITONS 

Chapter IX 

Fig. IX.l. An n-pu'ticle intermediate-channel contribution to the 

discontinuity of a 4-line ordered connected part. 

Fig. IX.2. Tree diagram corresponding to the multiperipheral strip 

of large amplitude for (C,A) .... (1,2, • • ·n). 

Fig. IX.). A :f"actorized Regge representation for the right-hand side 

of Fig. IX.l. 

Fig. IX.4. The discontinuity of the 4-line ordered connected part 

expressed, via ordered unitarity,. in terms of reggeon 

loop. 

Fig. IX.5. The planar reggeon bootstrap equation. 

Fig. IX.6. Quark-line diagram far the right-hand side of Fig. IX.5 

with the closed quark loop responsible for the :f"actor 

of N in Eq. (IX.)). 
r 

Fig. IX. 7. Unitarity bootstrap equation for a three-reggeon vertex. 

Fig. rx.8. Definition of the triple Regge coupling with respect to 

its indices in terms of a quark-line diagram. 
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X. MULTIPERIPHERAL MODEL FOR LEADING CYLINDER Rl~ES 

Chapter VIII dealt with general aspects of' "axis-communicating" 

poles in the 2-boundary cylinder, using as a basis the discontinuity, 

cutting between the two boundaries, in the invariant that contains the 

poles. The present chapter describes a model of these same poles 

based on 'boundary-slicing" discontinuities--in invariants formed by 

combining a portion of one boundary with a portion of the other. 

Historically it was models of this latter kind, directed at pomeron 

properties, that were in large part responsible for arousing interest 

in the topological exp~.nsion. (39-41 ) A remarkable variety of physical 

insights have emerged from boundary-slicing cylinder models. 

According to standard Froissart-Gribov theory (5) the Hegge 

singularities in JAB --the angular momentum in a reaction AB- CD 

--are 'built" from the discontinuities in and SAC 

may hope to construct a model of the AB poles in 

* 

One thus 

in terms 

of the AC and AD discontinuities. Since both discontinuities are 

nonwanishing, there is no exchange degeneracy; cylinder reggeons carry 

a signature label. We my nevertheless treat sep~.rately right-hand 

and left-hand cuts in the cosine of the angle conjugate to JAB. Let 

us then proceed to consider the AC discontinuity of ~'CD. 

The form of the two-p~.rticle contribution to a boundary-

slicing discontinuity has been given in Formula (V.6) but with a 

* Recall (Chap. VI) that there are no poles of ~,CD in the 

invariants Hegge branch points in these channels 

play an important role in the considerations of Chapter XI. 
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different assignment of particles to boundaries. With the present 

assignment we have for the EF contribution 

di 
_ AR, CD _ _ ~EDF ® -FCFA 

scAC M0- - MQ x MQ 
(X.l) 

the first term on the right-hand side being depicted in Fig. X.la, 

while Fig. X.lb indicates the generalization to an arbitrary multi-

p~.rticle intermediate state. Note how the intermediate p~.rticles fall 

into two distinct ordered subsets. 

The leading JAB singularities are related through the 

Froissart-Gribov projection to the asymptotic behavior of the AC 

discontinuity as sAC - oo. Since each of the factors in an 

individual contribution to the cylinder AC discontinuity is an 

ordered connected p~.rt, whose asymptotic behavior is controlled by 

ordered reggeons, one hopes to relate the leading cylinder Hegge 

singularities to the leading Hegge poles of the ordered S matrix. It 

is necessary however to sum over an infinite number of individual 

contributions to the AC discontinuity. 

Multiperipheral Model 

One assumes dominance by the multiperipheral strip of Fig. 

X.2, characterized by small magnitudes of the invariants t 1, t 2, ·•• 

We have here a model analogous to the ordered bootstrap models 

discussed in Chapter IX. The difference is that the ordering of the 

subset 1, 2, 3, is independent of the subset 1', 2', 3', 

In other words, we have as many different strips as tree graphs that 

interleave the two sequences in different ways. But if we assume for 

a particular tree graph (i.e. a p9.rticnlar strip) that the rapidity 

interval between a particle in one subset and a "neighboring p~.rticle" 
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(in the sense of the tree graph) in the other subset is large enough 

·to permit reggeon factorization at that link, then we can sum over all 

tree graphs (all strips) and obtain a simple result. Such an 

assumption is at least as justified as was the reggeon factorization 

that allowed construction in Chapter IX of the multiperipheral ordered· 

bootstrap model. In both cases question must be raised about single­

reggeon dominance of a modest rapidity interval. 

In Fig. X.2 we have IIBrked with dots those links in the Toller 

graph that join a plrticle in one subset with a p1rticle in the 

opposite subset. Each way of distributing dots along the chain 

corresponds to a different strip.· A possible way to perform the 

(triple) summation over the particles in each subset as well as the 

distribution of dots is to fix first the number of dots and sum over 

all possible numbers of particles between dots. Since by construction 

all particles between dots belong to the same ordered subset we are 

thereby performing the summation that yields the discontinuity of an 

ordered connected part. See Fig. X.3. The cylinder AC discontinul.ty 

then_assumes the form shown in Fig. X.4, where an integration remains 

to be made over each reggeon loop between ordered clusters, the loop 

phase space being similar to that in Fig. IX. 4. Each cluster I!Bss 

also is to be integrated over, but a significant difference between 

the equation represented in Fig. X.4 and the equation in Fig. IX.4 is 

that for the former we had to restrict the rapidity interval covered 

by each ordered cluster so as to avoid double counting. There is no 

such restriction on the clusters in Fig. X.4; each is allowed to spin 

the full kinematically-allowed range of cluster masses. 
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Chai"ge Conjugation and Signature 

What is the significance of the nonplanar-product ordering 

indicated for the reggeon products in Fig. X.4? In effect the order 

of lines in every alternate ordered discontinuity is reversed with 

respect to planar-product ordering. If it be recalled that the 

reggeons arose from links in Toller graphs between nonadjacent 

plrticles in ordered amplitudes one realizes that the reggeon prop­

agators in Fig. X.4 should all be real; i.e., there are no associated 

discontinuities. Here is another significant difference between Fig. 

X.4 and Fig. IX.4, where reggeon prop1gators carry a phase eina 

further significance of the ordering in Fig. X.4 relates to charge 

conjugation, as discussed in Gt!l.pter II. The rule presented (ll, 
12

) 

was that reversal of order in an ordered connected p1rt changes the 

A 

phase by the product of charge-conjugation symmetry factors. Ordered 

reggeons do not have well-defined charge conjugation symmetry but they 

have well-defined values of the product of signature and charge 

conjugation symmetry. Let us call this p1rameter ~i = ± 1. Combini~ 

the foregoing considerations into a single rule we may say that rever-

sal of order in a reggeon ordered connected p1rt changes the phase by 

the product of factors ~i exp(inai) for each reggeon. For physical 

particles this factor is just charge conjugation symmetry. 

Using the foregoing rule we see that the first term on the 

right-hand side of the equation in Fig. X.4 differs from the 

corresponding planar product not only by the reggeon prop1gator 

phases exp ( irt[a(t ) - a(t )ll but by the charge conjugation 
+ -
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* symmetry of the AB-+ CD (cylinder axis) channel. This term is 

positive for positive charge conjugation and negative for negative 

charge conjugation. The same will be true for all terms with an odd 

number of reggeon loops; those with an even number have the same valre 

for both odd and even charge conjugation. 

When the AD discontinuity is considered, the relative signs 

are such that positive signature for the JAB projection carries 

positive charge-conjugation synmetry and negative signature carries 

negative charge-conjugation synmetry. Keeping track of charge 

conjugation will thus simultaneously identif'y signature. 

Cylinder Regge Poles 

Examioation of the series in Fig. X.4 reveals that for forward 

elastic scattering (B = A, i5 = C), where all terms are real and 

positive, the left-hand side must asymptotically grow with sAC at 

least as fast as the discontinuity of an ordered connected JS.rt. The 

leading cylinder Regge singularity, in other words, cannot lie below 

a • 

To understand as well as possible the leading cylinder sin-

guiarities, let us now exploit the aoalysis in Chapter VIII showing 

that pole structure is simplified 1f certain plaoar terms are added to 

-A.B,CD the cylinder so as to form M0 • Taking the sAC discontinuity 

of M
0
AB,CD, we are led to augment the right-hand side of the equation 

in Fig. X.4 by the ordered terms shown in Fig. x.5. It IIBY now be 

* We here assume that the two reggeons forming a loop are the same 

so tmt si si = 1. Such need not always be the case. The 

leading si = -1 trajectory is the ~ . 
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recognized that if external JS.rticles are replaced by the reggeons 

appearing internally we have achieved a linear integral equation for 

the discontinuity of ~ , where both the inhomogeneous term and the 

kernel are controlled by the four-reggeon ordered discontinuity. The 

structure of the equation is schematically indicated in Fig. X.6, where 

the crosses on the reggeon lines indicate the two phase requirements 

associated with order inversion: (1) The reggeon propagators are real. 

(2) The loop :i.ntegral reverses sign when charge conjugation symmetry 

is reversed. 

Dia.gonalizing the equation of Fig. x.6 with respect to axis­

channel angular manentum will put it into Fredholm form(lO) and allow 

the cylinder to be constructed from a knowledge of the ordered S matr.tx, 

even though the poles of the cylinder are shifted. The equation also 

can be solved by direct numerical iteration~1' 2 ) Let us consider the 

pole-shifting phenomenon in terms of formal Fredholm theory. Suppose 

tmt projection ms been made onto a definite (continuous) J , so as 

to yield a matrix function M0 (J, t) (J = JAB' t = sAB) in the 

* space of a pair of ordered-reggeons. The equation of Fig. X.6 then 

take the operator form 

(X.2) 

in the ordered reggeon Hilbert space. The operator R(J, t) is 

analytic in J except for poles at J = ai (t ), the trajectories of 

the ordered reggeons; the singularity structure in t is standard. 

The twisted-loop "propagator" S 
1 

( t) is a diagonal operator in the 
cy 

* The reggeons in this SJS.ce correspond to helicity poles. 
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2-reggeon space whose form will be discussed below. Equation (X .2) 

may be formally solved to give 

(1 - R(J, t) S 1(t)J-l R(J, t) cy 

-1 
acyl (t)J , (X.3) 

a result showing explicitly that M
0
(J, t) is finite at the poles of 

R(J, t), as expected from the more general argument in Chapter VIII. 

The poles of ~(J, t) occur at points where 

det [R(J, t f 1 s l(t)J cy 0 , (x.4) 

points which systematically approach the positions of ordered poles 

when the "propagator" Scyl (t) tends to zero. In such a sense there 

will be a one-to-one correspondence between poles of M
0 

and ordered 

poles of appropriate quantum numbers. According to the mUltiperipheral 

model the cylinder shifts poles but does not create new ones. (l2,42, 44 ) 

Cylinder Quenching 

In Chapters VI and VIII it was argued that the cylimer shift 

of ordered poles should approach zero as t -+ +oo. Within the model 

considered here, such an effect requires that S 
1 

( t) -+ 0 as t -+ +m • cy 

Since the model is based on a low-t strip approximation it cannot be 

taken seriously for large t but one expects to see a tendency in the 

direction indicated by general arguments. 

The cylinder loop propagator S (t), a diagonal operator in cyl 

the space of helicity poles, a(t ), a(t ), differs in two ways from 
+ -

the corresponding untwisted reggeon loop propagator in the multi-

peripheral ordered bootstrap (Eq. IX.3): (1) s cyl 
when charge conjugation (or signature} is reversed 

reverses sign 

(2) S carries cyl 
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no factors e Theae differences translate in effect into the 

replacement of s0(t, t±) as given in Formula (IX.4) by 

s l(t, t , t ) 
cy + -

(X.5) 

It is the inverse cosine factor, arising from reggeon phase change 

under order inversion that quenches s l(t) cy for large positive t. 

To see this quenching it is convenient to change variables 

from t± to k and w according to 

t± 1 t 
4 

2 2 -v-t - k - w ± w -t (x.6) 

the loop phase space in the new variables becoming 

00 00 

Jd~ 
1 f f ~ 

dk dw • 

0 -CD 

(X. 7) 

For a linear leading ordered trajectory 

a(t) = a(o) + a't · (X.8) 

we then have 

1 1 
(X.9) 

cos nfa(t ) - a(t )J 
+ -

cosh 2na'w >{t 

which for positive t produces a quenching of the 2-reggeon 

"propagator". At negative t there is no quenching; a point to 

which we return below. 

The reader may be puzzled by the fact that the function 

s0(t, t±) was defined in Eq. (IX.4) to contain a cosine factor. How 

can it be claimed that quenching results merely by eliminating the 

cosine7 The explanation can be given in either of two alternative 

forms: 



.. 
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(1) Formula (IX.4) for s0 (t, t±) contains a product of 

gamma functions with the cosine factor, there being an important sense 

in which the product is simpler than the gamma functions alone. This 

sense relates to the requirement that ordered particle-pole residues 

all have the same sign; such a property is manifested by the product 

but not by the gamma f'unctiim alone--whose poles at a(t ) = 1, 2, · · · 
+ 

have residues that alternate in sign. Coherence of' ordered poles is 

an essential facet of ordered unitarity; the coherent ordered 

propagator, if written in terms of a gamma f'Unction, ~ carry an 

additional alternating factor ( -1 )a = eirta. By removing such a 

factor, residue sign alternation is generated.(4G,47) Such incoherence 

reflects a decrease in order when passing from the :Piamr S matrix to the 

cylinder and makes the cylinder small for large positive t One 

notes the similarity of such a mechanism to that producing 

"peripherality" (discussed in Chapter VI): destructive interf'erence 

between different angular momentum values. 

(2) Since the ordered bootstrap equation (IX.3), with a left­

band side independent of t , is supposed to hold over a range of t 

values the integrand on the right-band side must on the average be 

independent of t ; t dependence from the cosine factor in so(J, t±) 

must be compensated by t dependence from gamma f'Unctions. One then 

recognizes that a positive-t quenching tendency will result f'rom 

removal of the cosine factor. The averaging notion will be exploited 

below to obtain a transparent formula for the cylinder shift of the 

leil.d.ing planar pole. 
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Restriction to a Finite Number of Ordered Reggeons 

The kernel of the cylinder integral equation {X.2) is 

determined by the ordered amplitude R(J, t), whose poles are 

factorizable. In consequence, if we approximate R(J, t) by a 

finite number of Regge poles we achieve a kernel in the form of a 

finite number of' factorizable terms. The integral equation then 

becomes equivalent to a set of linear algebraic equations coupling 

together the different ordered poles. In a vector space based on 

these ordered poles let us define the diagonal_ pole matrix 

1 
0 0 

[J - ~ (t)l 

P(J, t) 0 
1 

0 
[J - a

2
(t)l 

0 0 
1 

[J - ~ (t)l 

(X.lO) 

as well as the of'f-diagonal cylinder loop matrix 

k (t) 
nm rr ;rd~ s~1 (t, t±) ~(t, t±) ~(t, t±) (X.ll) 

corresponding to the twisted quark-line diagram of Fig. X. 7. The loop 

reggeons are understood to be the highest-lying ordered reggeons in 

the families appropriate to the involved vertices. The gn are the 

corresponding ordered triple-Regge couplings. The cylinder equation 

then assumes the (finite) matrix form 

P(J, t) + P(J, t) k(t) M
0

(J, t), (X.l2) 

with the eigenvalue condition determining the cylinder poles: 

k(t) l 0 . (X.l3) 
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-
Simple Pole-Shift Formula with su~ s~etry: Emersence of the Pomeron 

Suppose only the leading SUN multiplet of if ordered poles 

is kept in approximating R(J, t). With SUN symmetry one may make 

superpositions corresponding to irreducible representations, and the 

cylinder will be found to couple only to the SUN singlet. The 

corresponding cylinder pole, according to (X.l3 ), is located at 

J a(t) + 6 a(t) (X.l4) 

where 

6 a(t) N k(t) (X.l5) 

(With SUN symmetry all Nf elements of the matrix k are equal.) 

* Com:p~.ring Formulas (X.ll) and (X.5) to (DC.3) we see that 

± (a(t) - a(t+) - a(t_) + 1) 
1 

cos rda(t ) - a(t ) l · 
+ -

(X.l6) 

the average being taken over the loop integral with the weighting 

-function of, (DC..}) •. The plus sign goes with even charge conjugation 

symmetry and the minus sign with odd. The numerator of (X.l6) 

increases linearly with t but the denominator increases expo-

nentially, so the shift tends strongly to zero as t- +co. 

Formula (X.l6) was first obtained at t = 0 and positive 

charge conj~tion by H. Lee. (39) At this especially simple point 

where t = t we have 
+ 

* The extra factor of' a ( t) - a( t ) - a( t ) + 1 comes from the + ... 

difference in the phase s:p~.ce integration between the planar and 

cylinder loops. 
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6 a+(o) = o:(o) - 2(o:) + 1 , 

so the leading cylinier pole is located at 

= 1 + 2[a(o) - (a)) (X.l7) 

Thus, if the strip width on the negative-t side is small so that 

(a) ~ o:(o) , one expects the leading cylinder pole to have the 

t = 0 properties of the pomeron: intercept near 1, even charge 

conjugation, positive signature and zero isospin. 

Interpretation of the leading multiperipheral cylinder-model 

pole as the pomeron has not been universally accepted, because of the 

implication that the pomeron is the upward-shifted leading planar 

trajectory carrying the same quantum numbers as the pomeron. Such a 

trajectory, as we saw in Chapter IV, contains as its first :p~.rticle 

pole a good approximation to the f meson (JPC = 2++). According 

to the multiperipheral cylinder model, the pomeron trajectory contains 

the f meson; there is no se:p~.rate :f' trajectory. A variety of 

arguments {which we cooment on below) have been made to suggest that 

the pomeron should be a "new" singularity--not already contained in 

the planar spectrum. These arguments are insufficiently compelling, 

however, to require abandonment of' the model described in this chapter. 

Efa.ving alerted the reader to a point of controversy, we continue to 

discuss the multiperipheral model's consequences. 

Formula (X.l6) turns out to be less meaningful for negative 

charge conjugation symmetry than for positive because of the influence 

of neglected lower-lying poles in R(J, t). The direction of the 

.. 
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cylinder shi:rt of the leading odd charge conjugation pole is downward, 

bringing it into close proximity with lower-lying poles. The 

calculation must then be exp3.nded in order to be meaningful. With the 

availability of computers it is of course possible to avoid 

inessential approximations. We have discussed Formula (X.l6) because 

of its historical role with respect to the pomeron and because it 

exhibits so explicitly the magnitude of the cylinder shi:rt, including 

the large-t damping. 

The Cylinder and su3 Symmetry Breaking 

It was remarked in Chapter III that the OZI rule takes on 

different aspects depending on whether SUN symmetry breaking is 

large or small compared to deviations from planarity. Now that we 

have a model of the cylinder we can explore this subtle question. 

Let us assume that. su
2 

symmetry is exact but that the breaking of 

su3 symmetry in the o:::-dered s matrix is similar to that observed for 

the physical S matrix. We assume, in pl.rticular, on the basis of the 

observed mass difference between physical w and physical cp (or 

between f and f') that the shi:rt between leading ordered trajec­

tories of the (n,n) or (p,p) class and those of the (~,~) class 

is about 0. 4 units of J. We then have the interesting situation that 

for t :5 0 the cylimer shi:rt is comrerable to or larger than su3 

symmetry breaking while for large positive t the cylinder shi:rt is 

smaller. We now describ.e a simple model that allows study of the 

transition between these two regimes. 

Suppose that in R(J, t) we keep the leading poles in each 

of the 3 families (n,n), (p,p) and (~,~). To achieve maximum 

simplicity let us follow Ref. (142) and assume that symnetry breaking 
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of the ordered pole positions in P is more important than symmetry 

breaking of the cylinder coupling coefficients k • Such a simplifying 

assumption, although inessential, is consistent in spirit with the 

general pole-dominance approach; all nine cylinder elements are then 

approximated by a single number k(t). su3 symmetry breaking is 

entirely characterized by the ordered-trajectory srecing ~t) 

Oi(t) = ~(t) = ~(t) + ~t)' (X.l8) 

the displaced trajectories and associated eigenvectors being determined 

by the ratio between k(t) and 6(t). This ratio, that is to say, 

determines the degree of OZI-rule violation. Models of this type have 

been extensively studied in the literature; we now describe the 

qualitative lessons that have been learned. 

At large positive t where k ( t ) is smaller than ~ t ) , the 

cylinder shi:rt of each ordered trajectory not only is small but the 

coupling shi:rts are also small. A:rter projection on I = O, the 

underlying ordered Hilbert srece becomes reduced from three states to 

two, f - f' for even charge conjugation and w - cp for odd charge 

conjugation. The coupling shi:rt may consequently be characterized for 

each pole by a ''mixing angle", giving the superpositions of the two 

ordered states that constitutes the associated eigenvector of Pk. 

Cylinder mixing angles are zero in the limit k .... 0 corresponding to 

f and w being purely of the type :h [ (p, p) + (n, n)] while f 1 

and cp are purely of the type ( ~ ~). The mixing angles are 

proportional to k(t) for small k(t) and grow in magnitude as t 

diminishes. Trajectory shi:rts also grow with k(t); f and f' 

trajectories are displaced upward while w and ~ trajectories are 
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displaced downward. The sign of the mixing angles is such that f 

and cp move in the direction of becoming su
3 

singlets as the ratio 

k/ /:;. grows, While til and f I tend tO beCOme su
3 

OCtets • All 

estimates agree that near t = 0 the DBgnitude of k/ t;. is of the 

order unity so that the eigenvectors are roughly halfWay between the 

ordered (sometimes called "ideal") limit and the "strong cylinder" 

limit corresponding to irreducible representations of su
3 

. Most 

models predict that as t becomes more and more negative the ratio 

k/ t;. will continue to increase, making su
3 

symmetry more and more 

accurate for cylinder-communicating poles. 

The latter point can be confusing because, according to the 

AB CD peripheral strip hypothesis (Chap. VI) the cylinder amplitude M0 ' 

is small except for small values of It I = lsAB 1. However, the 

cylinder amplitude is proportional to k(t) only for sDBll k; the 

cylinder coupling k(t) may be large even though the cylinder 

amplitude is small. The quantity k(t) controls the shift of a 

trajectory am its su
3 

content but does not control the magnitude 

of the Regge residue, which throughout maintains the same order of 

magnitude as the ordered residues. 

All the foregoing features find at least qualitative support 

from experiment, as discussed in Refs. ( 48-51). We have seen in 

Formula (X.l6), which is an approximation to ± 3k, that the 

magnitude and sign of k at t = 0 is satisfactory. Assigning to 

k a roughly exponential variation with t , 

-t/t 
k(t) c:c e c (X.l9) 

with the "cylinder-quenching interval" 

quantitatively correlates such diverse experimental facts as the 
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pomeron slope, the f - A2 mass difference, the difference between 

~p and Kp high energy elastic differential cross sections as a 

function of t, and the deviation of cp from ideal mixing. (The 

latter point is treated further in Chapter XI. ) If the averaging 

indicated in Formula (X.l6) is carried out with the ordered triple­

Regge couplings that satisfy the ordered bootstrap equation (IX.3 ), 

one indeed finds for small ltl at-dependence close to 

(X.l9). (l9,34, 45,5l) The multiperipheral model of the cylinder thus 

appears in good shape from an experimental standpoint. 

Pomeron-f Identity 

The pomeron-f identity is a source of uneasiness about the 

cylinder model described in this chapter. Many physicists are 

(52) troubled, partly because of the phenomenological successes of the 

Harari-Freund picture employing exchange-degenerate P, f, ~~ til 

plus a pomeron, and partly because of QCD expectations of "glueballs" 

--states made of gluons rather than quarks. (The highest glueball 

trajectory is expected to have the quantum numbers of the pomeron.) 

We are not deeply concerned about the latter viewpoint as such, partly 

because no reliable way yet exists to evaluate the QCD predictions for 

glueballs and partly because the poles of the ordered S matrix should 

not be viewed as literal qq composities. The quark-line diagrams 

of the DTU program are merely representations of ordered relationships. 

We are more concerned about reasoning by Veneziano, (53 ) stimulated by 

QCD but ~ the DTU framework, which calls attention to the 

artificial nature of the reggeon links in the equation of Fig. X. 4. 

Veneziano points out, for example, that particle 1' in Fig. X.2 can 

resonate with particle 2', even though these particles appear in two 
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sep;lrate clusters in the equation of Fig. X.4. Veneziano urges that 

in neglecting such correlations, the distinctive character of the 

pomeron may have been lost. We have two remarks in response to 

Veneziano's concern: (1) The same criticism of artificial 

sep:1ration may be made of the ordered bootstrap model. rarticles in 

the first cluster in Fig. IX.) actually can resonate with particles 

in the second cluster. Factorization on a reggeon link is a ques-

tionable feature of ~ multiperipheral model; it does not seem to us 

especially dangerous for the cylinder model. In fact, because the 

definition of the strip region of Fig. X.2 demands rapidity ordering, 

the requirement that at least one particle of the opposing subset 

stand in rapidity between particles 1 1 and 2' means that the 

rapidity gap between the latter will on the average be larger than 

the rapidity gap sep:1rating the two clusters of Fig. IX.). Reggeon 

factorization may thus be a better approximation for the cylinder 

model than for the ordered model. The neglected correlations should 

in principle be accounted for by including nonleading reggeon 

exchanges. While one expects these lower trajectories to change the 

quantitative results, whether they will change the results qualitatively, 

as Veneziano suggests, is an open question. (54, 55) (2) The physical 

picture of the pomeron as the shadow of multiperipheral-dominated prod­

uction processes, emerging from the above model, coincides with the 

bulk of particle-production phenomenology. More detailed models, 

making contact with this phenomenology, find the f intercept to be 

shifted from near 0.5 to near 1.0. 

So far as the phenomenological successes of the Harari-Freund 

picture are concerned, we believe that the multiperipheral cylinder 
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* model has already gone further in explaining experimental facts. In 

addition, the general unitarity arguments of Chapter VIII show that 

the f cannot survive--maintaining its ordered position and residue-­

when the cylinder is added. Even if the pomeron is a new singularity, 

with no counterp:1rt in the planar spectrum, cylinder unitarity still 

requires the f to undergo a substantial shift. 

Unnatural Parity 

Although not yet as well understood, the cylinder shift of 

leading unnatural J;Srity trajectories deserves mention. Employing the 

multiperipheral model in the same spirit as for natural parity, one 

expects shifts of the four 

away from the I = 1 :n: 

I = 0 trajectories ~~ ~·, 

and B traJectories.(5B-6o) 

H and H' 

The magnitude 

of k(t) needed here to explain the experimentally-observed shift of 

~ from :n: is similar to that for natural J;Srity, but the sign of the 

required cyli!rler loop coupling is reversed. The latter fact has been 

explained by Millan through the nonidentity of the two ordered 

reggeons in the loop. (6l,6e) Unnatural-parity within the cylinder is 

clouded by uncertainty concerning unnatural parity at-the planar 

level. Because the two ordered reggeons within the leading loop here 

have different trajectories {having opposite naturality), reggeon 

_phase factors play a role qualitatively different from that for purely 

natural parity. Finding a consistent ordered triple-Regge coupling 

g(t) is tricky when there is a displacement between the two helicity 

poles. (; 4) It is plausible that solution of the problem will involve 

* Careful comparison with experiment requires attention to threshold 

effects, as emphasized especially by Dash and collaborators. (5~57) 
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a dynamical zero physically related to the Adler zero, since the most 

successful dual resonance models of' 11:11: amplitudes have contained 

such zeros when the spacing between 11: and p trajectories is 

approximately 0.5. At the time of' this writing, a consistent unnatural­

parity multiperipheral ordered bootstrap model remains a tantalizing 

goal. When such a model is achieved, the corresponding cylinder model 

will unambiguously follow. 
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FIGURE CAPI'I9NS 

Chapter X 

Fig. X.l. (a) A two-particle contribution to a boundary slicing 

discontinuity of the cylinder. 

(b) The generalization of Figure ~ to a multi particle 

intermediate state. 

Fig. x.2. The multiperipheral strip which is assumed to dominate the 

ordered amplitude appearing on the right-hand side of 

Fig. X.lb. The significance of the dots is explained in 

the text. 

Fig. x.3. SUillllation over subset of intermediate states which leads 

to a discontinuity of an ordered, four-reggeon connected 

part. 

Fig. X.4. The AC discontinuity of Fig. X.l after the summation, 

as discussed in the text, over intermediate states is 

performed. 

Fig. x.5. An ordered term to be added to the discontinuity of Fig. 

x.4. 

Fig. x.6. 

Fig. X.7. 

The linear integral equation for the discontinuity of Mb· 
Twisted quark-line diagram for the cylinder loop matrix. 
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XI. CYLINDER VIOlATION OF OZI SELIOC'ITON RULES 

Chapter X bas discussed the breaking of isospin and exchange 

degeneracy--cylinder violations of planar regularities • Also 

discussed have been the coupling shifts of ordered reggeons away 

from the "ideal" ordered limit--another departure from the maximal 

regularity of the planar S matrix. We did not, however, explicitly 

discuss the violation of OZI selection rules, for the reason that 

most of the experimental evidence regarding the latter requires 

going outside the low-t strip--into a region not describable by the 

multiperipheral model. The latter model does describe the transverse 

structure of the low-t strip cylinder damping resulting from pole­

residue sign alternation in reggeon prop!.gators. Nevertheless, large 

positive t requires an understanding of two other, quite different, 

strips. The present chapter will describe a large-t model based on 

Hegge branch points in the cylinder. 

The reader should remember that we are continuing here to deal 

with the same component of the topological expansion as formed the 

subject of Chapters VIII and X; the discontinuity formula underlying 

our analysis of cylinder unitarity will also form the basis for the 

Regge-cut model. In moving from small t to large t, physical 

emphasis shifts from Regge-pole properties to the violation of OZI 

selection rules, but both categories of pbysical_effects are contrOned 

by the cylinder. With the aim of firming this bridge in the reader's 

mind, we begin the present chapter by explicitly relating OZI-rule 

violating decays of cp and f' to a rough but conceptually useful 

notion introduced in Chapter X--that of mixing angles. 
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Mixing Angles 

Approximating the cyliDier through only two ordered poles 

such as ~ and w (odd charge conjugation) or f' and f (even 

charge conjugation) allows pole-residue shifts to be represented by a 

mixing angle. The coupling in the multiperipheral model is to the 

set of channels that dominate the ordered bootstrap, but the same 

mixing angle applies to all channels. In conventional quantum-

mechanical notation one expresses such a notion by writing 

lw 
1
(t)) 

cy 

with a corresponding pair of formulas for f 
1 

and cy 
f' 
cyl 

(XI.l) 

(XI .2) 

in terms 

of an angle e+. These formulas arose in describing ratios of 

couplings to the dominant 2-reggeon loops in the multiperipheral 

equations. For example 

(XI.3) 

but in an approximation based on onli two ordered poles the same angle 

+ 2 
6 (mf,) also describes the relative couplings of f' and f to 

1f + 1f-. The measured ratio between the OZI forbidden decay f' .... 1flt 

and the allowed decay f .... 1f1f then translates into a value of e+ 

The notion of a single angle to describe ~ coupling ratios 

for a pair of trajectories can at best be a rough approximation, since 

many more than two ordered poles communicate through the cylinder, but 
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as a way of compactly characterizing certain types of OZI-rule 

* violation, the mixing angl<" concept is widely employed. We shall 

often in this chapter, for example, refer to the experimentally­

measured value of 6-(m~2 ), based on the ratio of the forbidden 

decay ~ .... P + lt to the allowed decay w .... p + lt, tacitly treating 

9- (m~2 ) as an intrinsic property of the physical ~ --independent 

of the channel to which ~ may be coupled. 

We have discussed how, in the cylinder multiperipheral model, 

+ 
the mixing angles e-(t) are proportional to twisted loop integrals 

when the latter are small. For example, in the simplified model of 

Chapter X that was characterized by the single ratio k( t )/ 6( t ), one 

finds( 42 ) 

(XI.4) 

Although at large t the multiperipheral model eventually loses 

validity, one may continue qualitatively to think of OZI-rule violation 

in terms of mixing angles, and it may be hoped that at the physical 

~ and f' masses--on the "fringe" of the strip--Formula (XI.4) 

* One important difference in our use of the mixing angle is that 

we explicitly consider the t-dependence (mass-dependence) of 

mixing angles. 
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* maintains qualitative significance. In Chapter X we pointed out that 

the small measured values of a- (mcp2 ) and e+(mf ~) are comp3.tible 

- through Formula XI. 4 with the large pomeron-f shift at t = 0 if 

k(t) is an exponentially decreasing function. One of the special 

virtues of (XI. 4 ), which so far as we know is not shared by other 

models, is that it correctly predicts the signs of the mixing angles 

e+(m""2) -( 2) ~ and a mcp in addition to their magnitude. 

* The multiperipheral cylinder model contains a mechanism, also 

- deducible from general unitarity arguments, (l9, 63-65) that in 

effect gives an imaginary p3.rt to the mixing angle. In the 

loop integral there occur channel thresholds, associated with 

poles of the reggeon prop3.gators, and careful evaluation 

produces an associated imaginary p3.rt of k(t) for t above 

these thre~holds. Physically one may say that cp (or f 1 ) 

decays into KK which then makes a transition via m (or f) 

to ~P (or ~~), each of the two processes in this succession 

being allowed at the planar level. The effect turns out to be 

relatively small because ordered resonance decay widths are 

small comp.l.red to the m - cp (or f - f 1 ) mass differences. 

Additionally, when many channels are "open", interchannel 

cancellations result from the alternating signs of pole residues. 
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If the mixing-angle concept is applied to the unnatural-

parity TJ-TJ 1 

and a+(mTJ ~) 

+ 2 
system, experimental measurements imply that e (mTJ ) 

are much larger (5B, 59, 66 ) than the corresponding mixing 

angles for natural p3.rity. The smallness of the TJ mass leads us 

here to expect large deviation from ideal coupling, but the 

substantial deviation observed for 
2 2 

TJ 1 
, even though mTJ 1 ~ mcp ~ 

1 Ge-..l, implies a slower cylin:ier quenching rate for unnatural p3.rity 

* than for natural. 

": .. 
Put differently, the low-t strip appears to be 

broader when the cylinder carries unnatural parity. Nevertheless the 

TJ-TJI system can be successfully _described in terms of mixing angles, 

with the t-variation 

important. (58,59 ) 

(i.e. + 2 + 2 a (mTJ) >a (mTJ 1 )) now very 

Regge-Cut Model of the Cylinder 

To handle large values of t , outside the strong low-t 

cylinder strip, a model has been proposed by Veneziano (
23) and by 

Chan, Kwiecinski and Roberts, (67 ) that is based on the other two 

cylinder strips, which are weaker because of the absence of parallel 

AB CD 
poles but which nevertheless dominate M0 ' as sAB ( t) -+ ro at 

either fixed sAC or fixed sAD' Cylinder-coumunicating states of 

high mass but low angular momentum may then be considered. 

The model rests on the discontinuity (V.8), cutting between 

cylinder boundaries, that formed the basis of Chapter VIII. For 

present purposes, assuming the cylinder to be weak for large sAB , 

* As remarked at the end of Chapter X, no calculation of the 

unnatural-parity cylinder loop integral can be made until the 

corresponding ordered triple-Regge couplings have been determined 

from the ordered unnatural-parity bootstrap. 
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we neglect all terms in the discontinuity formula that contain the 

cylinder itself and keep only products of ordered amplitudes, i.e. 

four terms of the type shown in Fig. XI.l. Two of these terms tend 

to populate the strip where sAC is small and two populate the strip 

where sAD is small. We focus attention on the former. Let us 

tentatively assume that the intermediate-particle cluster (1, 2,···n) 

tends to be separated in rapidity from the cluster (1', 2', ••· n'), 

so that the link between the clusters may be represented by the 

leading reggeon with appropriate quantum numbers. Summing over 

particles within the two separate clusters then leads to the 

approximation schematically indicated in Fig. XI.2. Remembering the 

strip structure of ordered amplitudes discussed in Chapter VI (see 

Fig. VI.2.), we see that for small sAC= sBD the separate ordered 

discontinuities appearing on the right-hand side in Fig. XI.2 are 

large only when their other channel invariants are also small. The 

cluster masses, in particular, tend to be small--confirming 

a posteriori the assumption of a large intercluster rapidity gap. As 

in previous models one must integrate over cluster masses, but ordered 

peripheral strip structure sharply confines the mass interval from 

which significant contributions arise. 

As sAB(t) ... oo the product in Fig. XI.2 has the power 

behavior 

a+ (t +)-+a _(t _)-1 
SAB 

that is to say, the leading Regge singularity in the AC -+ BD channel 

is a branch point at JAC = a+(t+) + a_(t_) - 1. The product is small 

for two reasons--corresponding respectively to the. location of the 
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branch point and to the associated discontinuity: (1) First of all, 

for sAC small the power of sAB corresponding to the Regge cut is 

less than that corresponding to an ordered pole. Consider the quark­

line diagram associated with Fig. XI.2, shown in Fig. XI.3(a) in 

comparison to an ordered diagram, Fig. XI.3(b). At sAC = 0 the 

leading power for the ordered amplitude in the large sAB limit is 

akj(o), where ~ is the leading reggeon in the (j,k) family, 

whereas the leading power for the cylinder is akj(O) + ait(O) - 1. 

The power difference is 1 - a it ( 0 ), ensuring that asymptotically a 

cylinder amplitude becomes neglfgible compared to the corresponding 

planar amplitude, if ait(O) < 1. (2) Even were ait(O) close to 1, 

the cylinder would be weak because outside the low-s 'strip the 
AB 

cluster-mass integrals on the right-hand side of Fig. XI.2 are 

numerically small, corresponding to the smallness of the Regge-cut 

discontinuity. Smallness of these cluster-mass integrals is related 

to smallness of the peripheral strip width, which in turn is related 

to destructive interference from different values of angular momentum. 

That is, by keeping small the nonadjacent channel invariants sAC and 

sBD in the ordered discontinuities of Fig. XI.2, we are in effect 

evaluating these quantities near 'backward" directions as the cluster 

mass attempts to grow. Factors of (-l)J are correspondingly present • 

The integral over an ord.ered discontinuity with a fixed nonadjacent 

channel invariant is often characterized by a dimensionless parameter 

( 46, 47, 68,69) 
E • The strength of the Regge cut is proportional to 

2 2 < E , most estimates agreeing that e _ 0.1. To summarize, in the 

Regge-cut model the order of I!Bgni tude of the cylinder..:planar ratio 

at large t and low sAC is 
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2 a.,(o)-1 
e (a't) 1

' (XI.)) 

assuming the energy scale to be set by the slope of leading ordered 

trajectories. 

(67, 70) Chan, et al. have employed the Regge-cut model to 

explain a variety of qualitative experimental observations concerning 

charmonium decay. We may appreciate the nature of their consideratiom 

by examining the already-discussed parallel problem of the 

"strangeonium" decay q>-+ p + rr. Choose the particles A and B to 

be + -K and K, with an order such that a (A., A.) family enters one 

cylinder boundary. Let particles C and D be 1T + and p , with 

and order such that a ( ) famil it - t p, p y ex s u om he ?ther boundary. 

Project then on JAB = 1 and make the semilocal duality assumption 

that the smooth discontinuity given by the Regge-cut representation 

corresponds to an average over resonances in the AB-+ CD channel. 

KnoWing the resonance spacing, the Regge-cut model thus yields J = 1 

pole residues, and one factor of the q> residue corresponds to the 

desired coupling q> -+ P1T • 

According to Formula (XI.5), the ratio of the latter OZI­

violating coupling to an allowed coupling is of order 

2 2 ~ (0)-1 
E (a' m ) P q> 

Since a'mq>2 happens to be close to 

of the · cylinder predicting the mixing 

(XI.6) 

1, we find the Regge-cut model 

angle -( 2) 9 mq> to be of the 

order e2
. Such a statement sounds completely different from (XI.4) 

--the multiperipheral model result. Is it accidental that both 

models agree With experiment 
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Relation between Multiperipheral and Regge-CUt Models 

The <+> mass happens to lie in the transition region--on the 

outer fringe of the low-t strip and at the beginning of the high-t 

interval where semi-local duality gives meaning to crossed-channel 

Regge representations. Although both multiperipheral and Regge-cut 

models are here being stretched to their limits of validity, there is 

precedent for supposing that an overlap region exists where high-t 

and low-t approximations are simultaneously meaningful. It is 

furthermore the case that in both models the smallness of the 

predicted mixing angle is attributable to (-l)J destructive 

interference. 

The tact that the multiperipheral model yields an exponential 

decrease of cylinder strength while the Regge-cut model yields a 

power decrease is understandable through the strip structure of Fig. 

VI.3 • The former model is concerned with the strong 1 t i ow-sAB s r p 

while the latter concerns itself with the weak (-e2
) strips at low 

sAC and low BAD' The exponential behavior refers to the transverse 

structure of the strong strip while the power behavior refers to the 

longitudinal structure of the weak strips. 

OZI-Rule Violation in 4-Line Connected Parts 

As an example of OZI-rule violation that cannot completely be 

expressed through a mixing angle, consider the two-boundary cylinder 

component ?Jt., BCD f ti f b 0 or a reac on or idden at the planar level, 

where particle A and only particle A has quantum numbers allowing 

communication with the cylinder axis. An illustration might be 

A = q>, B = 1t
0

1 C rr+ D Th = , = rr • ere are poles in all three 

channel invariants SAB' with three corresponding 



-129-

strip regions. When only one invariant is small and the other two 

large, a single strip is important and one may use a representation 

in terms of the ordered· Regge poles parallel to this strip. Roughly 

speaking, the only difference in this region from a corresponding 

ordered amplitude (nonvanishing in the same strip) is a mixing-angle 

factor. In our ~+~- ~ ~0 illustration if we go to the strip where 

sAB is large and sAC is small, the leading Regge pole is p + and 

the ratio to the allowed amplitude ~+~- ~ ron:0 is just the ratio of 

which we 

expect to be of order 2 * e The situation, however, is more 

complicated in the region where all three invariants and 

sAD are small. 

In this central region of the Ma.ndelstam diagram the sin-
A BCD .. 

gularity structure of ~o' is qualitatively different from that 

of an ordered connected part such as ~' which has poles in only 

two of the three invariants. Crude models of this central region, 

based on the discontinuity formula (V.7), suggest that where all three 

strips converge the amplitude {'BCD becomes comparable in magnitude 

to an ordered amplitude. Only when the energy is high enough to allow 

contributions from many different intermediate channels does ( -1 )J 

destructive interference reduce the cylinder magnitude. (72-74) 

* (71) - 2 As shown by Kwiecinski, the mixing angle 9 (mcp ) is strictly-

speaking relevant only to the physical points on the rho trajectory 

where ap = 1, 2, 
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FIGURE CAPI'IONS 

Chapter XI 

Fig. XI.l. Product of ordered amplitudes contributing to the AB 

discontinuity of the cylinder. 

Fig. XI.2. ~ reggeon loop approximation to the cylinder discontinuity 

depicted in Fig. XI .1. 

Fig. XI.3. (a) The quark line diagram corresponding to Fig. XI.2. 

(b) A quark line diagram for an ordered connected part, 

to be compared to ~· 
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XII. TORUS 

Cylinder corrections to the planar S matrix are expected on 

the basis of the two convergence me~hanisms discussed in Chapters VI 

and VII to be more important than corrections involving handles. 

According to experimental observations, as described in Chapter IV, 

such eeems indeed to be the case; the most visible de:rartlires from 

planar regularities involve cylinder-communicating channels. Small 

irregularities are nevertheless inevitable in all channels as a result 

of h ~ 0 components of the topological ex:ransion. This chapter 

considers the component with one handle and one boundary--commonly 

described as a "torus" --that is expected to constitute the most 

significant h ~ 0 correction. 

As explained in Chapter VII such a component will be smaller 

than the corresponding planar component by a "statistical" factor 

N being the average number of flavors allowed by phase space 

to be effect! ve in intermediate states. We lave interpreted the 1/rf­

factor as manifesting the constraint that only SUN singlet channels 

are allowed to flow through handles. Additionally, as explained in 

"Chapter VI, intermediate handle-traversing cruannels are constrained 

by peripheral dynamics to be of low energy. The combination of these 

two suppressive mechanisms ensures relative smallness for.the torus. 

· Speaking loosely, if one associates the pomeron with the 

cylinder and regards a handle as an "internal cylinder", one may say 

that adding a handle is like adding an internal pomeron link. A 

connection is then recognized between the summation over many handles 

and Gribov's reggeon calculus, which is a generalization of the idea 

of "absorptive" corrections through pomeron insertions. The weakness 

of pomeron couplings; on which reggeon calculus depends, is seen as a 
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manifestation of the convergence mechanisms within the topological 

exp:~.nsion. The connection between JJ.rU and reggeon calculus has been 

studied by Ciafaloni, Mlrchesini and Veneziano. (l6 ) We shall not 

venture into this arena, restricting our attention to a simpler 

although physically-related question that requires only a single hanne: 

* the torus shift of planar trajectories. A lesson will emerge: The 

shift cannot be calculated in terms of pomeron couplings. The handle 

structure is more subtle. 

Crossed-Channel Torus Discontinuity 

Suppose we wish to correct the ordered AB-channel Regge poles 

of ~CD 
0 

,;.BCD 
by adding '"'1 • We assume the isospin of the Al3 channel 

not to be I = O, so there is no coumunicating cylinder component. 

* Strictly-speaking, a single-handle component does not by itself 

shift a pole but generates a double pole at the same position. It 

may nevertheless be shown by standard renormalization considerations 

that the· double pole is the first of an infinite correlated 

sequence of multiple poles, the pole order increasing with the 

number of handles arid the series summing to a shifted pole: 

1 

(J _ a)h+l J-o-t> 

Understanding the single-handle {double pole) term thus yields 

the shift t>. • 
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As usual we may think of AB poles as arising frcm AC and AD 

discontinuities. Now a correction to the AD discontinuity will not 

disturb the standard planar regularities, since this discontinuity 

is already nonzero in the ordered amplitude. Odd and even signatured 

trajectories, in p:~.rticular, receive a cCIIIIIIOn shift from a torus 

contribution to the AD discontinuity; there is no breaking of 

exchange degeneracy. (75) On the other hand, with the torus contribu-

tion to the AC discontinuity, exchange degeneracy ~ broken, so we 

concentrate attention on the AC discontinuity of ~en. 

The discontinuity formula turns out to involve two classes of 

terms: planar times planar and planar times cylinder .• The former 

appears first in a 3-p:~.rticle discontinuity, while the latter appears 

in a 2-p:~.rticle discontinuity. Understanding as usual that inter-

mediate "p:~.rticles" are ordered clusters, we have 

-.BF, DE® _ AFCE + MQ l( Mo--
. .BEDF IV\ _AF,EC 

+ MQ vvMo- • 

(XII.l) 

When sAC is large and sAB is small the planar times planar terms 

are large in the doubly-peripheral strip indicated in Fig. XII.l. 

Representing intercluster rapidity gaps by reggeons and summing over 

clusters, we are led to the approximation of Fig. XII.2 for the 

planar times planar portion of the torus AC discontinuity. Applying 

the reasoning that led us in Fig. XI.2 to conclude that both cluster 

masses there were limited leads here to the conclusion of a limited 

central-cluster mass. Each of the two end clusters in Fig. XII.2 is 
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* unrestricted in mass, however, and one cannot argue for a large 

rapidity gap between clusters. 

Some investigators have at this point followed the spirit of 

the multiperipheral ordered and cylinder models where reggeon links 

(47, 68, 76) 
were employed for small as well a.s large rapidity gaps. 

Other investigators (77, ..,S) have invoked techniques from reggeon 

calculus in an effort to include the effect of the central cluster's 

merging into one of the end clusters. There is unresolved controversy 

about which approach gives the more reliable result. All investigators 

agree on the order of magnitude (see below), but the sign is in 

question. In any event one should not ignore those terms in Formula 

(XII.l) that involve the cylinder. 

The cylinder times planar contribution is indicated in Fig. 

XII.3 and corresponds to two ordered clusters, each of unrestricted 

mass. No reliable calculation has yet been made of this contribution, 

but estimates indicate that near t = sAB = 0 the cylinder times 

plamr terms are comparable to the planar times planar. <79 ) Indeed, 

our experience with Formula (V.8) suggests that simplification of the 

calculation may result by considering simultaneously the two sets of 

terms. Certainly, if the cylinder contribution is adequately to be 

evaluated, one must not forget those cylinder poles that precisely 

cancel I = 0 planar poles. 

* Two unrestricted clusters corresponds to the statement (preceding 

footnote) that the JAB projection has a double pole as its 

leading Regge singular! ty. 
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. The small magnitude of the planar times planar portion of the 

torus AC discontinuity follows partially from the smallness of the 

integral over the central (twisted) cluster in Fig. XII.2. Char­

acterizing the Blll&llness of this integral by the :tarameter € used 

to characterize the twisted cluster integral in Fig. XI.2, the order 

of magnitude of the ratio of a torus discontinuity to a corresponding 

ordered discontinuity is estimated to be E/reft:' When translated into 

a trajectory shift, an angular momentum displacement of this same 

order is antici:tated, which for Neff~ 2.5 and lEI- 0.3 is indeed 

the experimentally-observed order of magnitude--as seen in Fig. IV.l. 

A convincing quantitative calculation of the trajectory shift, however, 

has not yet been achieved through the crossed-channel discontinuity. <79) 

Direct-Channel Torus Discontinuity 

The shift of an AB ordered pole is in some respects easier 

to understand through the AB torus discontinuity than through the 

AC discontinuity. (Bo) The two-particle (two ordered cluster) dis-

continuity involves the four cylinder times planar terms shown in 

* Fig. XII. 4. The intermediate cluster E , because it attaches by 

itself to an isolated boundary of a cylinder, must have I = 0 and 

contain :tairs of poles that tend to cancel each other, with the 

* We ignore the torus times planar terms and the planar times planar 

terms which enter at the 3-:tarticle level. The latter should to 

a large extent be incorporated through our use of cylinder poles 

for the E cluster. 



-137-

residual difference between the two shrinking as their mass increases. 

We have discussed how the largest difference occurs ·ror the lowest-

mass I = 0 ];articles. Thus we 1119.y approximate the E cluster, 

which may be thought of as "the handle", by a rapidly converging 

sequence of cylinder-shifted ];articles minus the corresponding planar 

particles. The dominant contribution should be TJ - T}planar which, 

to the extent that TJplanar is degenerate with 1! , we may approximate 

as TJ - 1!. For all other physical particles the cylinder shift is 

extremely small. 

The link F must carry the internal quantum numbers of the 

AB channel (which we have agreed is not I = o), and the residues of 

poles in both E and F links alternate in sign with J (or with 

charge conjugation). Both links, that is to say, can be shown to be 

"twisted" in the same sense as were the links in the reggeon loops of 

the multiperipheral cylinder model. 

Suppose we are interested_in p - ~ trajectory splitting, 

so IAB = l. The leading poles in the F link then have isospin 1 

and appear with the relative signs 1! - B, ~ - P, etc. Cor­

respondingly, the lowest-mass contributions to the AB torus 

discontinuity carry the relative coefficients 

(TJ - _1!)(1! - B + ~ - p) • (XII.2) 

Such a superposition of intermediate states is precisely that 

dictated by G-];Srity conservation, which we emphasized in Chapter II 

is not obeyed by intermediate states at the planar leveL Consider, 

for example, the terms in Formula {XII .2) that correspond to ];airs of 

pseudoscalar mesons: 

T}1! 1(1( • (XIL-3) 

G ];Srity allows T}1! to conmunicate with A
2 

but not with P , while 

the reverse is true for 1!1! , so the difference of the discontinuities 

contributing to A2 and P , with observance of G IBrity, will 

contain the combination (XII.3 ). It can be shown tmt the complete 

structure of the torus two-particle AB discontinuity, including the 

sign alternation with charge conjugation, may be deduced from the 

G-];Srity requirement on states that do not communicate with the 

(So) 
cylinder .. 

If one assumes that the trajectory displacement 

(XII.4) 

vanishes smoothly as It I -+ CD, satisfying an unsubtracted dispersion 

relation in t , a calculation of the displacement may be based on the 

measured ];artial widths for the decays ~ -+ 1!T}, 1!P, P -+ 1!1!1 =, 
* etc. into the two-particle channels represented in (XII .2). When 

such a calculation is performed, the lowest-threshold AB-communicatirg 

intermediate two-];Srticle channels give a semi-quantitative account 

of the ~ - p displacement, explaining the sign, the magnitude and 

the derivative. (8o) The dominant contribution arises from the 1!1! 

channel, which because it contributes to p and not to ~ , lifts 

the former above the latter. 

* Unitarity relates the imaginary ];art of a trajectory to the 

width of the physical-particle states occurring on the 

trajectory. (5 ) 

• 
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The success of the direct-channel dispersive calculation gives 

empirical support to the conjecture that a trajectory-difference such 

as (XII.4) should satisfy an unsubtracted dispersion relation--

implying that at large negative t as well as at large positive t 

the trajectories smoothly approach each other. (Inhibition on high-

mass flow through a handle may be the source of convergence.} The 

calculation of the torus through its direct-channel discontinuity is 

* then much easier than through the crossed channel. The mechanisms 

ensuring a small torus magnitude operate in either approach. 

* We are here assuming that it will eventually be possible to 

compute in the planar plus cylinder approximation the various 

relevant three-particle couplings (e.g. P - 1t1t1 ~ - 1CTJ1 etc. ) • 

Up to the present time, as emphasized at the end of Chapter IX, 

there exist no ordered or cylinder models for unnatural-parity 

particles • 
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FIGURE CAPITONS 

Chapter XII 

Fig. XII.l. Product of tree diagrams, indicating the strips where 

the amplitude is expected to be large. Iarker lines 

represent clusters. 

Fig. XII.2. Reggeon loop approximation for Fig. XII .1. 

Fig. XII.3. The cylinder times planar contribution to the crossed 

channel torus discontinuity. Iarker liries represent 

clusters. 

Fig. XII.4. Cylinder times planar contribution to the direct channel 

torus discontinuity. Iarker lines represent clusters. 
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XIII. BARYONS AND BARYONIUM 

The success of DTU in describing mesons encourages search for 

a generalization. Dual models, the nonunitary forerunners of DTU, 

were early constructed for baryons with moderate success. (6 ) It was 

quickly realized by Rosner(
8
l) that duality for baryons implies a new 

p1rticle family corresponding in quark-diagram language to qqqq 

--a combination of two quarks wlth two antiquarks. Such exotic 

particles would necessarily communicate strongly with baryon­

antibaryon channels, and it was conjectured that there would be only 

weak coupling to the ordinary qq mesons. For many years the 

absence of experimental support for these exotics caused doubt about 

the relevance of dual models to baryons, but recently evidence has 

begun to accumulate(ee) for a class of high-mass narrow resonances 

with zero baryon number produced in reactions where baryon-antibaryon 

combinations occur. Assuming these new states to be the· long-sought 

Rosner exotics, they have tentatively been dubbed ''baryonium". (
83) 

To date 1t has not been established that any baryonium state 

carries quantum numbers such as I = 2 that cannot be carried by a 

nonexotic qq meson. Until such characteristically-exotic quantum 

numbers are established, there will remain doubt about the theoretical 

status of the new particle family. Nevertheless, the impetus to 

extend DTU has been increased by the recent explosion of baryonium 

candidates. There is presently a big theoretical push to find an 

OZI-rule generalization capable of explaining the stability of 

baryonium states through a mechanism analogous to that stabilizing 

strangeonium and charmonium. (84) 
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Further experimental impetus to extend uru comes from the 

observation of approximately exchange-degenerate patterns for certain 

baryon trajectories. (6 ) It is plausible that such regularities are a 

manifestation of an ordered S matrix, just as we have seen to be the 

case for nonexotic mesons. Iast but far from least, there is the 

experimental fact that many baryon properties can be understood in 

terms of a qqq structure. It is tempting to seek an explanation 

through order, just as we did for the qq meson properties through a 

sequentially-ordered S matrix. 

What should be expected from a generalization of the uru 

approoch described in Chapters II, III, and V7 The central desired 

feature is an ordered unitary S matrix whose factorizable poles 

provide basis for a sequence of approximations that SY,stematically 

approoch a unitary physical S matrix. We expect the ordered S matrix 

to display special regularities--degeneracies and selection rules, 

among these being the qq meson regularities already discussed; one 

of the additional regularities should be an ordered-pole subset with 

qqq properties. A candidate for an ordered S matrix with such 

attributes has recently been found. (85, 86 ) 

Generalization of the Sequentially-Ordered S Matrix 

The order introduced in Chapter II assigns to each particle 

a predecessor and a successor; each particle is "connected" to two 

other particles. Suppose we allow any number of interparticle 

connections and try to define a unitary ordered S matrix--acting 1n a 

Hilbert space of ordered channels. It turns out that most connection 

patterns are incompatible with unitarity. The most general 

unitarizable pattern so far found implies a spectrum of ordered 

• 
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particles that bears encouraging resemblance to the observed spectrum 

o:r hadrons. 

Represent with a graph the connection pattern within an 

ordered amplitude, the labeled vertices o:r the graph corresponding 

to the poles (particles) o:r the ordered S matrix. The graph edges 

represent interparticle connections, a "tadpole" edge connecting a 

vertex to itsel:f not being admitted. Sequentially-ordered amplitudes 

correspond to "riDg" graphs such as shown in Fig. XIII.l{a). More 

general connections are illustrated by (b)· • • (e) in the same figure. 

We know that connections of Type {a) are admitted by ordered 

unitarity. What about {b) .. •(e)? It turns out that (d) is allowed 

but {b), (c) or (e) are not. Why? 

For an amplitude to correspond to a transition between two 

ordered channels, the specification of the channel pair must 

determine uniquely the amplitude. The most natural and only known 

way to accomplish this end is to associate ordered channels with 

those graphs achieved by cutting amplitude graphs into two connected 

portions. (Looking back at Chapter II the reader may verify the 

associability of sequentially-ordered channels with connected graphs 

cut away from r1Dg graphs. ) There should fUrthermore be a unique 

prescription :for recombining the two channel graphs to form the ampli-

tude graph. Since each vertex corresponds to a particle, the pole-

factorization aspect of unitarity demands that any vertex of an 

amplitude graph be isolatable by a cut that leaves connected the 

remainder of the graph. This requirement immediately eliminates 

graphs with "Pendant" vertices, illustrated by Fig. XII.l{b). In 

this example the vertex C cannot be isolated by a legal cut. other 
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aspects of unitarity eliminate many other types of graph. 

To make a long story short the only amplitude graphs so far 

found to be consistent with unitarily are those without pendant 

vertices that, when split in all possible ways into two connected 

portions, always yield channel graphs with unique "spanning trees" •. 

A spanning tree of an arbitrary graph is a tree graph reached by 

successively removing edges to eliminate cycles (closed loops), at 

each stage eliminating any vertex at which two and only two edges have 

* a junction. Figure XIII.2 shows the spanning trees of some graphs 

that can be formed by cutting the graphs of Fig. XIII.L Notice that 

only the graphs in the {a) and (d) groups have unique spanning trees. 

** These graphs are of the type that corresponds to ordered channe:ls. 

Color 

To achieve the essential objective that a pair of channel 

graphs be recombinable (into an amplitude graph) in only one possible 

way, it turns out that graph edges must be colored. With the appro­

priate coloring there then is a unique prescription for imbedding 

graphs on a spherical surface. Precisely ~colors turn out to be 

required! Although the connection between I1I'U color and QCD color is 

not yet understood, we have here an outstanding instance of promised 

* 

-
If tadpoles are created in the process, they are to be erased, 

together with the connecting edge. 

It can be shown that ordered amplitudes correspond to graphs that 

are reducible to rings by repetition of the following contractions: 

(1) Replace by a single edge any set of edges tm t connect the 

same pair of vertices. (2) Remove 2-vertices. 
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physical illumination from uru. Many qualitative features of the Ul'U 

approach are potentially understandable from QCD, but the Lagrangian 

approach so far gives no hint of the number of colors needed to 

describe strong interactions. The number 3 arises in DTU because 

within graph theory the 3-vertex plays a special role. 

It is natural to assume symmetry under interchange of 

different colors. In p1ssing from the ordered S matrix to a planar 

S matrix (in the sense of Chapter II), it is expected that the color 

degree of freedom will disappear as the Hilbert sp1ce is contracted 

to eliminate order. This contraction has not been exhaustively 

investigated, but let us proceed to consider the spectrum of ordered 

particles assuming it to be coincident with the planar spectrum--the 

situation prevailing for sequential ordering. 

The Ordered-Particle Spectrum 

Analysis of ordered.unitarity reveals a splitting of the 

ordered Hilbert space into a collection of noncommunicating sectors, 
~ 

each sector being characterized by a colored spanning-tree skeleton 

(imbedded on a planar surface) with 3-vertices only. The simplest 

skeletons are shown in Fig. XIII.3, the three colors being indicated 

by numbers 1, 2, 3. The communicating channels within a given sector 

are those whose spanning trees share the skeleton in question; 

camnunicating poles (particles) are naturally labeled by their sector 

skeleton. 

Replacing each particle vertex in an amplitude graph by the 

appropriate sector skeleton, one achieves a graph containing only 

3-vertices. Two classes of vertex occur (when the graph is imbedded 

on a spherical surface}: those with clockwise color order (1,2,3) 
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and those with counterclockwise color order. Adjacent vertices can 

be shown to have opposite orientation, so in an amplitude graph there 

are equal numbers of each orientation. One may then assign a 

conserved quantum number +1 to the clockwise 3-vertex, with the 

counterclockwise 3-vertex carrying -1; it is natural to associate 

this conserved quantity with baryon number. We then see that ordered 

S-matrix sectors (a} and (c) in Fig. XIII.3 carry baryon number zero, 

Sectors (b) and (d) carry baryon number ± 1, while Sector (e) carries 

baryon number ± 2. Sectors evidently exist with indefinitely-high 

baryon number. It is natural to associate ordered particles of Sector 

(b} with ordinary (nonexotic} baryons and ordered particles of Sector 

(a} with nonexotic mesons. Rl.rticles in Sector (c) presU!OO.bly 

correspond to baryonium, while those in (d) constitute a class of 

exotic baryons. 

Contact with quark language can be made by attaching a 

direction to each edge according to the orientation of the 3-vertices 

connected by the edge. Choosing the conventional edge direction to 

be away from the clockwise oriented vertex toward the counterclod!wise­

oriented vertex, we may, if we choose, say that the edge carries 

* baryon number 1/3 and think of the edge as a quark. The various 

sectors shown in Fig. XIII.3 might then be characterized as in Fig. 

XIII. 4. Nate that the ordered S matrix does not tolerate "single-

quark" or "two-quark" sectors. All states have integer baryon number. 

* Weissmann, by generalizing the considerations of Chapter III, has 

shown that flavors also behave as if carried along the directed 

edges.( 7) 

.. 
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(Single-quark states were eliminated by the unitarity inhibition on 

pendant vertices.) 

Ordered baryonium states (Type (c)) do not communicate with 

Type (a) ordered meson states. There is similar absence of 

communication between Type (d) ordered exotic baryons and Type (b) 

ordered baryons. The desired extension of the OZI rule has thus been 

achieved. The ordered S matrix has furthermore generated qqq 

structure for (Type (b)) baryons in an exchange-degenerate p:~.ttern, 

* while maintaining qq structure for ordinary mesons. 

Conclusion 

The future of the IJI'U approach at this point looks bright. 

Many questions remain unanswered but substantial portions of the quark 

picture have emerged as manifestations of an ordered relationship 

between S-matrix poles. The topological expansion based on sequential 

ordering has explained the existence and properties of the pomeron at 

the same time as providing a quantitative description of OZI-rule 

violations. In the most general order so far found to be comp:~.tible 

with unitarity, a hint has appeared of the necessity and sufficiency 

of 3 colors. There has not yet been developed for the general S matrix 

the equivalent of Chapter V's meson-sector topological expansion, so 

there can presently be no claim to understanding the mechanisms that 

may suppress corrections to the general planar S matrix. In p:~.rticuJar 

we do not at this juncture know how, even in principle, to calculate 

* Within the qq sector all the regularities of the sequentially-

ordered S matrix are preserved, even though this sector includes 

communicating ordered channels w1 th baryon-anti baryon p:~.irs. 
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the width of baryonium states. The accelerating rate of recent 

progress nevertheless makes promising the outlook for a bootstrap 

theory of hadrons keyed to ordered relationships. 

This progress rate foretells a short useful lifetime for our 

review. Ideas that have been described here will soon be generalized, 

simplified and their logical inter-relationship reorganized. 

Mathematical tools of which we are presently unaware will shortly be 

brought to bear on the augmentation of s-matrix theory by the concept 

of order. We accept this fate for our effort, having no choice in 

the matter. If this review succeeds in engaging the interest of a 

few physicists previously unaware or unimpressed by the IJI'U approach, 

we count our effort worthwhile. 
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FIGURE CAPI'IONS 

Chapter XIII 

Candidate amplitude graphs representing connection 

patterns between particles. Only graphs ~ and d 

represent connections admitted by ordered unitarity. 

Spanning trees for various cuts of the amplitude graphs 

of Fig. XIII.l. Only graphs a and d lead to unique 

spanning graphs. 

Fig. XIII.3. Spanning tree skeletons for the most simple sectors of 

the ordered Hilbert space. The three colors are indica "lEd 

by the numbers 1, 2, 3. 

Fig. XIII.4. Characterization of the sectors of Fig. XIII.3 in quark 

diagram language. The arrows represent the flow of 

baryon number 1/3. 
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