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ABSTRACT OF THE DISSERTATION 

 
 

Bridging the Gap Between Emission Simulators and Near-Road PM2.5 Measurements 

 

by 
 

 

Ayla Marie Moretti 

 

Doctor of Philosophy, Graduate Program in Chemical and Environmental Engineering 

University of California, Riverside, September 2021 

Dr. David R. Cocker III, Co-Chairperson 

Dr. Matthew J. Barth, Co-Chairperson 

 

Vehicle emissions are a major source of particulate matter (PM2.5) in urban areas with 

emissions from on-road vehicles significantly impacting human health and the 

environment. Emission simulators and near-road ambient studies are used to estimate PM2.5 

exposure; however, studies are emerging that emission simulators underestimate the 

vehicle emitted PM2.5 observed near-road. First, a statistical model examination of the 

relationship between weather parameters, traffic data, and the near-roadway PM2.5 yielded 

R2 < 0.24 indicating that something other than traffic and weather data was needed to better 

predict near-road PM2.5.; such as the gas-particle (G/P) partitioning of the organic PM2.5. 

The underestimation is due to emission simulators treating all PM2.5 as non-volatile and 

not accounting for the G/P partitioning of organics. Next, this dissertation describes a PM2.5 

correction factor (CF) to account for G/P partitioning of organics emitted from on-road 

gasoline and diesel vehicles. The CF accounts for sampling dilution and temperature, 

ambient temperature, background PM2.5, distance from the vehicle, and the vehicle’s initial 

reactive organic gas (ROGi) concentration and elemental carbon to organic carbon 

(EC:OC). Using the CF, a look-up table and four Random Forest (RF) models were created. 
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In building the RF it was found that generally the ambient temperature, vehicle’s EC:OC 

and ROGi concentration were the most important variables in predicting the CF. 

Implementing the CF with emission simulators and/or dispersion models would allow for 

a more realistic PM2.5 concentration thereby improving our understanding of how vehicle 

emissions affect human health, air quality, and the environment. Additionally, a case study 

is included within that evaluates the impacts of exposure-based routing in a Southern 

California disadvantaged community and demonstrates how the CF can be applied. Results 

indicated that re-routing heavy-duty diesel trucks along “low exposure routes” (LER) could 

reduce inhaled PM2.5 by 14+% depending on meteorological and traffic conditions. The 

reduction in PM2.5 inhalation could increase by an additional 50+% by selecting LER that 

are over 10m from the sensitive populations, and when accounting the CF.  
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Chapter 1. Introduction 

1.1 Introduction & Motivation 

The World Health Organization (WHO) estimates that ambient air pollution accounts 

for about 4.2 million deaths per year with around 91% of the world’s population living in 

places where the air quality levels exceed WHO limits [1]. One major outdoor pollution 

source is vehicles emissions. The major pollutants emitted from vehicles include 

particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), volatile organic 

compounds (VOCs), hydrocarbons (HCs), nitrogen oxides (NOx), and polycyclic aromatic 

hydrocarbons (PAHs) [2,3]. Many epidemiological studies have shown risk of illness and 

mortality for drivers, and individuals living near roadways due to these emissions [3,4]. 

The main cause of this mortality is due to fine particulate matter (PM2.5), particulate matter 

with an aerodynamic diameter less than 2.5 micrometers. In the United States, the 

Environmental Protection Agency (EPA) has established National Ambient Air Quality 

Standards (NAAQS) for PM2.5 to help provide public health protection, especially for 

“sensitive” populations such as children and the elderly, as well as protect the environment. 

PM2.5 poses a large health risk because it can penetrate deep into the lungs, leading to heart 

and lung diseases, and may even enter the bloodstream [5]. PM2.5 is also the main cause of 

reduced visibility around the world and depending on chemical composition can lead to 

environmental damage such as: water acidification, damaging crops and soil, and 

contributing to acid rain [5]. 

 



2 

 

  In California, light duty vehicles account for 70% of the transportation emissions 

with the pollutants from transportation, especially PM2.5, being a significant contributor to 

adverse health effects [6]. Researchers estimate, based on total population exposed to on-

road transportation PM2.5, there are approximately 3,100 premature deaths in California per 

year due to cardiovascular diseases and other illnesses due to PM2.5 exposure [7]. Emission 

simulators, such as the United States Environmental Protection Agency’s (US EPA) MOtor 

Vehicle Emission Simulator (MOVES), can be used to estimate exposure to on-road 

gasoline and diesel vehicles. The emission factors from emission simulators can then be 

used to estimate annual exposure and health impacts of PM2.5. Near-road ambient studies 

can be used to predict near-road air quality and validate emission simulators predictions. 

However, studies are finding that emission simulators substantially underestimate vehicle 

PM2.5 emissions when comparing laboratory, on-board, tunnel, and near-road ambient 

studies to modelled data [8]. The difference between emission simulators and near-road 

ambient studies could be due to the gas-particle partitioning of the organic PM2.5 and 

organic gases not currently accounted for by the emission simulators used for near roadway 

models. 

This dissertation aims to bridge the gap between measured near-road ambient PM2.5 

concentration and emission simulator predicted near-road PM2.5. First, an investigation is 

reported into the near-road correlation between PM2.5 and NOx concentrations, traffic and 

ambient parameters. An PM2.5 correction factor was then developed to bridge the gap 

between the near-road ambient PM2.5 measurements and emission simulators by 

introducing thermodynamics into emission simulators through a model accounting for gas-
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particle partitioning. The correction factor is then applied to a case study of the contribution 

of heavy-duty diesel vehicle emissions to inhaled PM2.5 in a near-by population. This 

dissertation specifically breaks down as follows: 

Chapter 2 examines the relationship between air quality, traffic and weather 

parameters to gain a better understanding of the near-freeway air quality. PM2.5 and 

nitrogen dioxide (NO2) measurement data and weather data were obtained from two near-

road air monitoring stations (AMS), managed by South Coast Air Quality Management 

District, along two different freeways in Southern California. The air pollutant 

concentrations were than statistically analyzed versus Caltrans Performance Measurement 

System (PeMS) traffic data and the AMS weather data. 

Chapter 3 develops a novel PM2.5 correction factor to bridge the gap between 

emission simulator predicted near-road PM2.5 and the near-road ambient PM2.5 

measurements. The correction factor was created by using the volatility basis set to account 

for variability in gas-particle partitioning as a function of different emission measurement 

strategies. This correction factor adds thermodynamics into emission simulator estimates 

of ambient PM2.5 by accounting for the gas-particle partitioning of the organics emitted 

from on-road gasoline and diesel vehicles that can then be applied to emission simulator 

outputs to better predict near-road PM2.5. 

Chapter 4 derives a look-up table and random forest model based on the correction 

factor introduced in Chapter 3. The look-up table uses MySQL; the random forest was 

created using the look-up table and Python version 3.9 and the package scikit-learn version 
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0.24. These novel tools allow the correction factor to be easily coupled with emission 

simulators or dispersion models to better predict the near-road PM2.5 concentrations. 

Chapter 5 evaluated the exposure-based routing in the San Bernardino Airport area, 

a largely disadvantaged community and demonstrates how the correction factor (derived 

in Chapters 3 and 4) can be applied. Exposure-based routing can navigate a heavy-duty-

diesel-truck through a disadvantaged community in a way that lowers the total exposure of 

community members to the pollutant emissions (PM2.5, NOx, and CO2) from the truck 

without significantly increasing travel time. 

Chapter 6 summarizes the chapters and the broader impact of this dissertation and 

proposes future work. 

Appendix A introduces a new instrument, an oxidation flow reactor (OFR), built 

and initially characterized in the University of California, Riverside Center for 

Environmental Research and Technology’s Atmospheric Processes Laboratory.  

1.2 References 

1. World Health Organization. Air Pollution. https://www.who.int/health-topics/air-

pollution#tab=tab_2 

2. Wu, G., Pham, L., Hao, P., Jung, H., & Boriboonsomsin, K. (2017). Prediction of 

real-time particulate matter concentrations on highways using traffic information 

and emission model. Transportation Research Board, 96th Annual Meeting. 

3. Zhang, K., & Batterman, S. (2013). Air pollution and health risks due to vehicle 

traffic. Science of the Total Environment, 450–451, 307–316, 

http://doi.org/10.1016/j.scitotenv. 2013.01.074. 

https://www.who.int/health-topics/air-pollution#tab=tab_2
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5. United States Environmental Protection Agency. Particulate Matter (PM) Pollution 

[online]. Available: https://www.epa.gov/pm-pollution 

6. Brown, A. L., Sperling, D., Austin, B., DeShazo, J., Fulton, L., Lipman, T., Murphy, 
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Engineering, University of California, Riverside, California 92521, United States 

 

  



7 

 

2.1 Abstract 

Near-road air quality measurement serves as a fundamental method to understand 

the impact of transportation emissions on ambient air quality and public health. In this 

study, 5-minute average fine particulate matter (PM2.5) and nitrogen dioxide (NO2) 

measurement data were obtained from two near-freeway air monitoring stations (AMS) in 

Southern California. In addition, 13 variables and more than 26,000 rows of data, including 

weather parameters, traffic speed, and traffic volume near the AMS were obtained. The 

Multiple Linear Regression (MLR) and Multivariate Adaptive Regression Splines (MARS) 

models were used to examine the relationship among the weather parameters, traffic data, 

and near-freeway air pollutant concentration. Both MLR and MARS showed that all 

weather parameters (e.g., relative humidity, pressure, temperature, wind) were significant 

variables. MLR coefficients indicated that the traffic speed on the direction closest to the 

AMS had up to 13 times larger impact than the speed on the opposite direction. For State 

Route 60 AMS, MLR gave the adjusted R2 as 0.18 and 0.27 for PM2.5 and NO2, 

respectively, and MARS gave the R2 as 0.30 and 0.46, respectively. For Interstate-710 

AMS, MLR gave the adjusted R2 as 0.14 and 0.36 for PM2.5 and NO2, respectively, and 

MARS gave the R2 as 0.21 and 0.57. Generally, NO2 concentration can be better explained 

by the selected variables than PM2.5. The test of traffic speed segmentation further indicates 

that the traffic speed has a considerable influence on near-road pollutant concentrations. 
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2.2 Introduction 

Vehicle emissions are major contributors of urban air pollution. Due to the 

continued growth of vehicle use and greater occurrence of traffic congestion, vehicle 

emissions are predicted to grow in the coming years [1,2]. Among many strategies of 

emission estimation and subsequent mitigation, near-road air quality measurements serve 

as a fundamental method to understand the impact of the traffic emissions on ambient air 

quality and public health. Extensive near-road measurement studies were performed to 

assess a variety of research purposes, including examining the relationship among near-

road air pollutants, exposure, and health effects [3,4,5,6], as well as evaluating the effects 

of traffic calming strategies [7,8,9]. For this study, a literature review was done focusing 

on studies which utilized near-road measurement data to analyze the impact of traffic, 

weather, and spatial parameters on the air quality in the road-side or other 

microenvironments [10,11,12,13]. For example, Zhang et al. (2011) found that hard vehicle 

acceleration can lead to an increase of hydrocarbon (HC) and carbon monoxide (CO) 

emissions due to the fuel rich mode, while deceleration can increase particulate matter 

(PM) and HC emissions due to unburned fuel. Based on a year-long road-side measurement 

campaign, Kimbrough et al. (2013) revealed that while the average wind speed appeared 

to be an important explanatory factor, the monthly average traffic volume and frequency 

of downwind conditions were not enough to explain the monthly average excess in monthly 

carbon monoxide concentrations. Bigazzi et al. (2012) combined 20-second interval 

freeway traffic data and in-vehicle ultrafine particulate (UFP) concentration data and found 
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that traffic states had a small but significant impact on in-vehicle UFP, and that vehicle 

ventilation was the dominant influence on in-vehicle UFP concentration. 

In addition, near-road measurements have be applied to predict the near-road air 

quality or aggregated traffic emission factors based on models [14,15,16]. For instance, 

Venkatram et al. (2007) investigated near-road micrometeorology parameters and air 

quality measurements, with their dispersion model showing that the measured 

micrometeorology and air quality data agreed well with the predicted values. Choudhary 

et al. (2016) found that, during peak hour, emission factors of CO and HC were about 4-7 

times higher than during off-peak hours, and that emission factor of nitrogen oxides (NOx) 

was about 2 times higher than that of off-peak hour. Wu et al. (2017) applied a Multivariate 

Adaptive Regression Splines model to mobile air quality measurements and traffic data - 

and identified eleven traffic-related variables that had the most impacts on in-source PM 

concentration prediction. 

In this study, fine PM (PM2.5) and nitrogen dioxide (NO2) measurement data (5-

minute average) were obtained from two near-road air monitoring stations (AMS) which 

are managed by South Coast Air Quality Management District. The objective of this study 

was to examine the relationship between air quality, and traffic and weather parameters. 

Utilizing air quality measurement spanning over four months, a better understanding of the 

near-freeway concentration, traffic speed, traffic flow, and weather parameters was 

obtained. 
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2.3 Data Collection and Processing 

2.3.1 Data Collection 

2.3.1.1 Air Monitoring Stations 

1-minute average concentration of PM2.5 and NO2 were obtained from two near-

roadway air monitoring stations (AMS) managed by the South Coast Air Quality 

Management District (SCAQMD) [17]. The locations of the two stations are marked in 

Figure 2.1a with street view images in Figure 2.1b and Figure 2.1c. Figure 2.2 presents a 

more detailed image of each of the AMS in relationship to the traffic count data collected. 

1. Ontario SR-60 Near Road (60NR) AMS: located at 2330 S Castle Harbour Pl, 

Ontario, CA 91761. 60NR is approximately 10 meters north to California State 

Route 60 (SR-60) between the Grove Ave and Vineyard Ave exits (figure 2a). The 

monitoring station is equipped with a Horiba APNA 370 NOx instrument for NO2 

measurements and a Thermo-Scientific 5014i for continuous PM2.5 measurements 

[18]. This site was selected by SCAQMD because this location is known for high 

traffic congestion during weekdays. The typical traffic mix is dominated by light 

duty vehicles.  

2. Long Beach I-710 Near Road (710NR) AMS: located at 5895 Long Beach Blvd. 

Long Beach, CA 90805. 710NR is located 20 meters east to Interstate 710 (I-710) 

between the exits for W. Del Amo Boulevard and Long Beach Boulevard (figure 

2b). The monitoring station is equipped with a Thermo-Scientific 42i NOx 

instrument for NO2 measurements and a Thermo-Scientific 5014i for continuous 

PM2.5 measurements [19]. This site was selected by SCAQMD because this location 
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is known for having a significant amount of heavy-duty trucks accounting for the 

majority of freeway traffic. 

The air quality data from the two AMS was collected from January 2018 through April 

2018. The 1-minute concentration values were then averaged to 5-minute values to match 

the time resolution of the traffic count data. 

 

Figure 2.1: (a) Illustration of the SCAQMD near-roadway AMS sites selected for this study in Google 

Maps. (b) Street view of 60NR AMS and (c) street view of 710NR AMS. 

2.3.1.2 Meteorological Data 

Meteorological conditions are critical factors for near-road PM2.5 and NO2 

concentration. The SCAQMD near-roadway AMS network also collects the following 

meteorological parameters: pressure, temperature, relative humidity (RH), wind direction 
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and wind speed. The 1-minute meteorological data was collected from January 2018 

through April 2018 and processed into 5-minute averaged data to match the time resolution 

of the traffic count data. An arithmetic mean was applied to concentration, humidity, 

temperature, atmospheric pressure. For wind speed and wind direction, vector average 

method was used [20]. 

2.3.1.3 Traffic Parameters 

The traffic metrics used in this study was obtained from the Caltrans Performance 

Measurement System (PeMS) [21]. PeMS receives real-time 30 second raw measurements 

on traffic count and lane occupancy from each inductive loop detector (ILD) throughout 

the California freeway system. The system detects missing and invalid data and would 

correct the wrong values or fill in the missing data [22]. Based on the traffic count and lane 

occupancy data for each lane, PeMS estimates an aggregated traffic speed at each inductive 

loop detector using the G-factor algorithm [23]. Raw data are aggregated at different 

temporal levels (e.g., per 5 minute, hourly, daily) in PeMS for different purpose. This study 

extracted the station-level 5-minute aggregated data. PeMS also records the latitude and 

longitude of each vehicle detection station (VDS) and the corresponding postmile. Using 

the PeMS “Station Metadata” and the nearest postmiles (Figure 2.2), the nearest upstream 

and downstream VDS along both directions for both the near-roadway AMS was identified. 

Data processing will be introduced in the next section. 



13 

 

 
Figure 2.2: Satellite images of the SCAQMD near-roadway AMS selected for this study (source: 

Google Maps and PeMS). 
Note: Figure (a) Shows the SCAQMD site (red marker) adjacent to SR-60 and the corresponding postmiles (blue 

markers). Postmile A corresponds to PeMS abs postmile 36.32 for SR-60 Eastbound and PeMS abs postmile 36.31 for 

SR-60 Westbound. Postmile B corresponds to PeMS abs postmile 37.65 for SR-60 Eastbound and PeMS abs postmile 

37.64 for SR-60 Westbound. (b) Shows the SCAQMD site (red marker) adjacent to I-710 and the corresponding postmiles 

(blue markers). Postmile A corresponds to PeMS abs postmile 6.04 for I-710 Northbound and PeMS abs postmile 5.99 

for I-710 Southbound. Postmile B corresponds to PeMS abs postmile 7.17 for I-710 Northbound and PeMS abs postmile 

6.93 for I-710 Southbound. 

 

2.3.2 Data Preparation 

2.3.2.1 Data Cleaning 

The raw database obtained from near-road AMS and PeMS required further data 

processing, including examining outliers, averaging values, and removing missing values.  

All the data were within the reasonable range and there were no detectable outliers. For 5-

minute average values, the entry would be labeled as null if there were more than 3 data 

points missing within the five minutes.  

After synchronizing 5-minute data for concentration, traffic, and weather 

parameters, listwise deletion was applied to handle missing information, i.e., the row of 
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data would be removed if there were any null values (e.g. concentration, traffic, or weather 

parameters) in the row. There was one exception: all the atmospheric pressure data for 

710NR AMS was missing, therefore the analysis of 710NR AMS excluded pressure values.  

2.3.2.2 Variable Transformation 

Box-cox transformation was performed to transform non-normal concentration 

values to a normal-distribution shape. Lambda of 0.5 was applied for PM2.5 concentration 

(µg/m3), and the comparison of before and after transformation is presented in Figure 2.3. 

Before the transformation, the PM2.5 concentration distribution had a skewness of 1.501 

(Figure 2.3a), and after the transformation it conformed much better to a normal 

distribution with a skewness of 0.235 (Figure 2.3b). The Box-cox transformation did not 

improve NO2 distribution and therefore was not applied to NO2 concentration values.  

 
Figure 2.3: Histogram and Q-Q plot of PM2.5 before and after box-cox transformation with λ= 0.5. 

The Pearson correlation coefficients was calculated to examine the linear relationship 

between any two numerical variables [24]. This was done to identify potential 
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multicollinearity issues among the variables. The results indicated that the explanatory 

variables were not linearly related with each other.  

2.4 Models and Results 

Two different regression models were applied to the database: 1) multiple linear 

regression (MLR); and 2) multivariate adaptive regression splines (MARS). All the 

regression models were executed using R version 3.5.1 [25]. 

2.4.1 Multiple Linear Regression (MLR) 

The Multiple Linear Regression (MLR) model is the simplest multivariate 

regression method that models the linear relationship between the explanatory variables on 

the observed traffic, and meteorological parameters on PM2.5, NO2 concentration. The 

general equation for the MLR model can be written as 

𝑦 =  𝛽0 + ∑ 𝛽𝑖 ∗ 𝑥𝑖 + 𝜀𝑖𝑖             (2.1) 

where y represents the estimated model output; β0 is the intercept; βi is the regression 

coefficient associated with the i-th variable, xi is the value of the i-th variable (Table 2.1); 

and εi is an independent, normally distributed, random error with zero mean and constant 

variance [26]. 
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Table 2.1: Description of the explanatory variables for 60NR and 710NR 
 

 60NR 710NR  

i xi xi unit 

0 Intercept - 

1 Relative Humidity % 

2 Temperature Fahrenheit 

3 Pressure - Hg bar 

4 Wind Speed MPH 

5 Wind Direction Degree 

6 Speed West – Postmile A Speed North – Postmile A MPH 

7 Speed West – Postmile B Speed North – Postmile B MPH 

8 Speed East – Postmile A Speed South – Postmile A MPH 

9 Speed East – Postmile B Speed South – Postmile B MPH 

10 Flow West – Postmile A Flow North – Postmile A Vehicle/5 minutes 

11 Flow West – Postmile B Flow North – Postmile B Vehicle/5 minutes 

12 Flow East – Postmile A Flow South – Postmile A Vehicle/5 minutes 

13 Flow East – Postmile B Flow South – Postmile B Vehicle/5 minutes 

2.4.1.1 MLR Results at 60NR AMS  

The results of MLR analysis for NO2 and PM2.5 measured from the two near-

roadway AMS are shown in Table 2.2. At 60NR AMS, results indicated that for both PM2.5 

and NO2, all the weather parameters are significant with at 5% α-level. Relative humidity 

and temperature are positively related with PM2.5 concentration, however, the two factors 

are negatively related with NO2 concentration. Atmospheric pressure is positively related 

with both pollutant concentrations. Wind speed is always negatively related with both 

pollutant concentrations, indicating that higher wind speeds, and unstable atmospheric 

conditions, will lead to lower near-road air pollution concentrations. 
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Table 2.2: List of regression coefficients for 60NR and 710NR MLR analysis of PM2.5 and NO2 

 

For PM2.5, traffic speed on west bound at both postmiles is significant, and traffic 

flow on both directions is significant, with p-values less than 5%. As shown in Figure 2.1 

and Figure 2.2, the west bound of SR-60 is directly facing the AMS, therefore it could be 

expected that the traffic speed on west bound had a more significant impact than that of 

east bound. However, because similar traffic volume could reflect different traffic 

speed/congestion levels, flow’s influence on the pollutant concentration is not consistent 

and cannot be well explained. However, because similar traffic volume could reflect 

different traffic speed/congestion levels, flow’s influence on the pollutant concentration is 

not consistent and cannot be well explained. To further consider the impact of traffic speed, 

a segmented regression and MARS will be applied in the following sections.  

At 60NR AMS, the adjusted R2 values are 0.27 and 0.18 for the NO2 and PM2.5, 

respectively, implying that NO2 could be better explained by the explanatory variables than 

PM2.5. 
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2.4.1.2 MLR Results at 710NR AMS 

At 710NR AMS, similar as that of 60NR AMS, all meteorological parameters are 

statistically significant. The similar effects of relative humidity, temperature, and wind 

speed are observed for both air pollutants at the 710NR AMS as that of 60NR site. Table 

2.2 also showed that for PM2.5, all variables are statistically significant except for the 

traffic speed at north bound postmile B (downstream to AMS). For NO2, all the 

explanatory variables become statistically significant at 5% α-level. The magnitude of the 

coefficient of the north bound traffic speed (e.g. -1.12E-1 at postmile A) is 13 times 

larger than that of the south bound (e.g. -8.41E-3 at postmile A) traffic speed, which is 

reasonable as the 710NR AMS is directly adjacent to the north bound lanes (Figure 2.2). 

Similarly, the results of total flow could not be well explained by the relative locations 

and hypothesis. Future improvements, truck flow and near-road carbon dioxide 

measurement could help explain the concentration variations. 

The adjusted R2 values are 0.36 and 0.14 for NO2 and PM2.5, respectively, which 

also implies that NO2, for both 710NR and 60NR, could be better explained by the selected 

variables than PM2.5. The hypothesis for this observation was that on-road traffic 

contributes a large portion to the ambient primary NO2. On the other hand, a large 

percentage of PM2.5 comes from secondary formation, therefore PM2.5 cannot be well 

explained by simultaneous traffic and weather factors. Figure 2.4 illustrates the comparison 

between observed and MLR-modelled NO2 and PM2.5 concentrations for both 60NR and 

710NR. For PM2.5, there is a small number of points which stand outside of the point cloud. 
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For NO2, the cluster is tighter with less scattered points. Generally, MLR tends to 

underestimate the averaged near-road concentrations.  

 
Figure 2.4: Predicted vs. observed graphs using the MLR model (a) 60NR PM2.5 (b) 60NR NO2 (c) 

710NR PM2.5 (d) 710NR NO2. The axes for the PM2.5 figures (a and c) are raised to the 0.5 due to the 

Box-cox transformation. 

2.4.1.3 Traffic Speed Segmentation 

Due to the non-linearity between traffic speed and volume, segmenting the traffic 

speed could help to better understand the impact of traffic speed and volume. Four different 

congestion speeds as well as a transition period are tested using the MLR model. As listed 

in the first two rows in Table 2.3, for example, considering SR-60 West, it was assumed 

that congestion would occur when all speeds become less than 30 mph at both postmiles, 
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and free-flow status would return when all speeds were greater than or equal to 30 mph in 

the West direction, with no speed constraints for the east direction. One transition period 

between 30 to 45 mph is considered as shown in the second to the last row in Table 2.3. 

The segmenting speed improved nearly all adjusted R2 values when compared with 

Table 2.2, except for a few cases. In the congestion section, nearly all the adjusted R2 values 

improved significantly, especially for the SR-60 West and I-710 North, which are directly 

adjacent to the AMS. 

Table 2.3: MLR adjusted R2 values for 60NR and 710NR speed segment results. 

 

PM2.5 NO2 PM2.5 NO2 PM2.5 NO2 PM2.5 NO2

0.175 0.274 0.175 0.274 0.143 0.358 0.14 0.35

 (27,294)  (27,294)  (27,200)  (27,200)  (25,760)  (25,760)  (24,719)  (24,719)

0.582 0.61 0.226 0.468 0.762 - 0.679 0.209

      (114)      (114)      (111)      (111)        (18)        (18)        (58)        (58)

0.173 0.27 0.176 0.274 0.143 0.357 0.138 0.346

 (26,906)  (26,906)  (26,337)  (26,337)  (22,513)  (22,513)  (24,006)  (24,006)

0.44 0.49 0.102 0.534 0.386 0.541 0.394 0.414

      (232)      (232)      (406)      (406)        (75)        (75)      (153)      (153)

0.171 0.266 0.178 0.272 0.135 0.359 0.137 0.346

 (26,175)  (26,175)  (25,409)  (25,409)  (24,441)  (24,441)  (23,427)  (23,427)

0.394 0.507 0.105 0.51 0.262 0.533 0.301 0.447

      (564)      (564)    (1,116)    (1,116)      (197)      (197)      (283)      (283)

0.17 0.265 0.177 0.273 0.133 0.358 0.139 0.347

 (25,343)  (25,343)  (24,723)  (24,723)  (21,899)  (21,899)  (22,799)  (22,799)

0.298 0.469 0.133 0.482 0.167 0.531 0.264 0.389

   (1,131)    (1,131)    (1,880)    (1,880)      (308)      (308)      (436)      (436)

0.17 0.265 0.177 0.273 0.133 0.358 0.139 0.347

 (25,343)  (25,343)  (24,723)  (24,723)  (21,899)  (21,899)  (22,799)  (22,799)

0.219 0.493 0.158 0.475 - - 0.3 0.413

      (842)      (842)    (1,515)    (1,515)        (14)        (14)      (268)      (268)

0.582 0.61 0.226 0.468 0.762 - 0.679 0.209

      (114)      (114)      (111)      (111)        (18)        (18)        (58)        (58)

30 - 45 Transition

< 30 MPH Congestion

>45 MPH Free-Flow

< 45 MPH Congestion

> 45 MPH Free-Flow

< 35 MPH Congestion

> 40 MPH Free-Flow

< 40 MPH Congestion

710NR

SR-60 West SR-60 East I-710 North I-710 South

> 30 MPH Free-Flow

MLR model

adjusted R
2
 values

(Number of data points)

60NR

< 30 MPH Congestion

> 35 MPH Free-Flow
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2.4.2 Multivariate Adaptive Regression Splines (MARS) 

To further explore the impacts of selected variables, a nonparametric regression 

technique, Multivariate Adaptive Regression Splines (MARS) model [27], is also applied 

to the dataset used in this study. Even though the statistical properties of the resulting 

estimators are more difficult to determine, compared to the MLR model, the non-

parametric regression techniques require fewer assumptions and can provide a better fit 

than the parametric techniques. The following description of MARS referenced Wu et al., 

2017 [15]. The MARS model can also be regarded as an extension of the linear models that 

automatically captures nonlinearities and interactions using the equation: 

𝑓(𝑥) =  ∑ 𝑐𝑖 ∗ 𝐵𝑖(𝑥)𝑖              (2.2) 

where f(x) is the estimated model output; Bi(x) is the i-th basis function which can be a 

constant 1, a hinge function, or a product of two or more hinge functions. With the hinge 

function can take the form: 

max (0, 𝑥 − 𝑐𝑜𝑛𝑠𝑡. )             (2.3) 

or, 

max (0, 𝑐𝑜𝑛𝑠𝑡. −𝑥)             (2.4) 

and automatically partition the input data so that the effects of any outliers can be 

attenuated. The MARS model tends to have a good bias-variance tradeoff due to the 

flexible but sufficiently constrained form of the basis functions to model nonlinearity with 

relatively low bias and variance. 
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2.4.2.1 MARS Results at 60NR AMS 

In Table 2.4, results for PM2.5 indicates that the explanatory variables of importance 

include all meteorological parameters, traffic speed on west bound postmile A 

(downstream to AMS), traffic speed on east bound for both postmiles, and traffic volume 

on east bound for both postmiles. For NO2, the important variables also include all the 

meteorological parameters, traffic speed on west bound postmile A (downstream to AMS) 

and east bound postmile B (downstream to AMS), and all the traffic flow factors on both 

freeway directions for both postmiles.  

The variable of importance as well as the values in the corresponding basis 

functions represents the associated values that are critical to the partitioning for that set of 

explanatory variables. For example, looking at x4 (wind speed) for PM2.5 in Table 2.4, 5.06 

mph is a critical partitioning point for the wind speed values. The R2 values are 0.298 for 

PM2.5 and 0.456 for NO2, which are improvements compared to that of the MLR model.  
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Table 2.4: List of basis functions and the associated coefficients for MARS analysis at 60NR AMS 

 

2.4.2.2 MARS Results at 710NR AMS 

Similar to the MARS results at 60NR AMS and previous MLR results, all the 

meteorological parameters are important variables for near-road concentration (note that 

pressure data were missing for 710NR). For traffic parameters, Table 2.5 shows that the 

variables of importance are traffic speed on north bound for both postmiles and south 

bound at postmile B (upstream to AMS) for PM2.5. For NO2, except for traffic speed and 

volume on south bound at postmile B (upstream to AMS), all other variables are 

significant. Therefore, it can be seen that the traffic conditions on north bound, where the 

AMS is directly next to, always play an important role on the near-road pollutant 
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concentration. The R2 values are 0.208 and for PM2.5 and 0.568 for NO2. When comparing 

the MARS results for NO2, (Table 2.4 & Table 2.5) 710NR has a higher R2 value than that 

of 60NR. When comparing the MARS results for PM2.5 (Table 2.4 & Table 2.5), the R2 

value for the 60NR is higher than that of 710NR. The comparisons are consistent with what 

are observed based on the MLR results. 

Table 2.5: List of basis functions and the associated coefficients for MARS analysis of PM2.5 and NO2 

at 710NR AMS 

 

Figure 2.5 plots the comparison between observed and MARS-modelled NO2 and PM2.5 

concentrations for both 60NR and 710NR. Similar with the MLR model, there is a small 

number of points which stand outside of the point cloud for PM2.5. On the other hand, the 
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cluster of NO2 points is tighter with less scattered points. The overall prediction 

performance of MARS is better than that of MLR. 

 
Figure 2.5: Predicted vs. observed graphs using the MARS model (a) 60NR PM2.5 (b) 60NR NO2 (c) 

710NR PM2.5 (d) 710NR NO2. The axes for the PM2.5 figures (a and c) are raised to the 0.5 due to the 

Box-cox transformation. 

2.5 Conclusions and Future Work 

In this study, 13 variables and more than 26,000 rows of data were collected, 

including weather parameters, traffic speed, and traffic volume near the AMS. The MLR 

and MARS models were applied to the data to examine the relationship among the weather 

parameters, traffic data, and near-freeway air pollutant concentration. Both MLR and 
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MARS shows that all weather parameters (e.g., relative humidity, pressure, temperature, 

wind) are significant variables. MLR coefficients indicates that for 710NR AMS, the traffic 

speed on the direction closest to the AMS had up to 13 times larger impact than the speed 

on the opposite direction. For 60NR AMS, MLR gives the adjusted R2 as 0.18 and 0.27 for 

PM2.5 and NO2, respectively, and MARS gives the R2 as 0.30 and 0.46, respectively. For 

710NR AMS, MLR gives the adjusted R2 as 0.14 and 0.36 for PM2.5 and NO2, respectively, 

and MARS gives the R2 as 0.21 and 0.57. Generally, NO2 concentration can be better 

explained by the selected variables than PM2.5; this could be due to organic PM2.5 

undergoing gas-particle partitioning as it rapidly dilute and cools in the ambient 

atmosphere. Many studies have shown that the gas-particle partitioning of the organic 

PM2.5 is important for modelling realistic atmospheric conditions and that a majority of the 

PM2.5 emitted from on-road gasoline vehicles is organic [28,29,30,31]. 

Suggestions on how to improve the near-road prediction of PM2.5 and NO2 and 

future work is to include the following: heavy-duty diesel truck flow, near-road carbon 

dioxide measurements, near-road air quality measurements of PM2.5 and other desired air 

pollutants up- and down-wind of the freeway to investigate the background ambient PM2.5 

into the models, and accounting for the gas-particle partitioning of the organic PM2.5 

emitted from on-road gasoline and diesel vehicles. With these suggestions and more near-

road air quality data collected, it could help better explain the concentration variations and 

better predict the near-road air pollutant concentrations in the future. 
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3.1 Abstract 

The gas-particle partitioning of the organic particulate matter (PM2.5) is important 

for modeling realistic atmospheric conditions, with a majority of the PM2.5 emitted from 

on-road gasoline vehicles being volatile organic PM2.5. Despite this, emission simulators 

continue to treat the PM2.5 as non-volatile and do not adjust the PM2.5 based on the gas-

particle partitioning. This leads to emission simulators and atmospheric dispersion models 

being unable to account for the gas-particle partitioning that occurs to the organic PM2.5 

emitted from on-road vehicles as emissions rapidly dilute and cool in the ambient 

atmosphere. A model was developed using published volatility basis set (VBS) data to 

improve the prediction of near-road PM2.5 from on-road gasoline and diesel vehicles. Using 

the VBS method (method developed in this research), the gas-particle partitioning of OA 

from on-road gasoline and diesel vehicles were modeled using Python to create a correction 

factor (CF) that helps bridge the gap between regulatory model estimations and what is 

measured near-road. Results indicate that, the CF is sensitive to the sampling dilution and 

temperature (from the PEMS and dynamometers), ambient temperature and background 

PM, distance from the vehicle, and the vehicles EC/TC ratio, and shows that there is a bias 

in predicted roadside PM2.5 using the current transportation models. Including a correction 

factor for G/P partitioning will help emission simulators better predict near-road PM2.5 as 

the tailpipe emissions rapidly dilute and cool in the ambient atmosphere.  
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3.2 Introduction 

On-road gasoline and diesel vehicle emissions are a major source of particulate 

matter (PM2.5) in urban areas, with emissions from on-road vehicles having a significant 

impact on human health and the environment. Many epidemiological studies have shown 

risk of illness and mortality for drivers and individuals living near busy roadways due to 

these emissions [1,2], with PM2.5 being strongly associated with illness and mortality [3,4]. 

Two of the main methods researchers currently use to measure vehicle emissions are a 

dynamometer in series with a constant volume sampler (dilution tunnel) and/or a portable 

emissions measurement system (PEMS). Dilution tunnels measure vehicle exhaust in the 

laboratory using a set driving cycle under controlled conditions, whereas the PEMS can 

either measures on-road emissions under real-world driving conditions or in the laboratory. 

Using the emission factors (EF) from the PEMS and dilution tunnels, emission simulators 

can be used to predict near-roadway PM2.5 due to on-road vehicles. However, the PEMS 

and dilution tunnel operate at temperatures and dilution ratios that are not representative of 

the ambient atmosphere, this can lead to emission simulators being unable to account for 

the gas-particle partitioning (G/P partitioning) that occurs as the emissions rapidly dilute 

and cool in the ambient atmosphere. 

Many studies have shown that the G/P partitioning of the organic aerosol (OA) is 

important for modeling realistic atmospheric conditions, and that a majority of the PM2.5 

emitted from on-road gasoline vehicles (LDGV) is volatile [5,6,7]. For example, May et 

al. 2013a tested 51 LDGV from the California in-use fleet spanning model years 1987-

2012 and found that none of the POA should be considered non-volatile and that the 
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primary OA (POA) EF measured using the dilution tunnel was often biased high relative 

to typical atmospheric conditions [5]. May et al. 2013b also found that a majority of the 

POA from medium-duty and heavy-duty diesel vehicles (HDDV) should not be considered 

non-volatile [3]. Lastly, Li et al. 2018 used a thermodenuder to determine the volatility of 

vehicle emitted primary particles, and concluded that ~72% of the particle mass is 

composed of volatile material that evaporates at 250°C and that the total particle number 

decreased by 69% in the thermodenuder [6]. Despite these findings, emission simulators 

such as the U.S. Environmental Protection Agency’s Motor Vehicle Emission Simulator 

(MOVES) continues to treat OA as non-volatile and does not adjust the PM2.5 based on the 

G/P partitioning [8]. 

G/P partitioning can be predicted through thermodynamic models [7]. Absorption 

is assumed to be the dominate G/P partitioning mechanism in the atmosphere [5,7], with 

adsorptive partitioning possibly being important in source-dominated cases such as dilution 

tunnels [7]. The POA EF (EFOA) can be expressed as (Robinson et al. 2010 & May et al. 

2013): 

EFOA = EFtot ∑ fi (1 +
Ci

∗(T)

COA
)i        (3.1) 

Where EFtot is the total emissions (vapors + particles), fi is the mass fraction of 

species i in EFtot, Ci
* is the effective saturation concentration of species i, and COA is the 

mass concentration of OA. Equation 3.1 can be used to predict the contribution of organic 

emissions to ambient PM2.5 [7]. A challenge to applying this to vehicle emissions is that 

the thermodynamic properties of all the emissions must be known. Therefore, the G/P 

partitioning of the bulk POA can be estimated using a surrogate set of compounds and the 
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volatility basis set (VBS) [9,10,11,5,7]. The VBS [9,10,11] approach provides a framework 

for the G/P partitioning: the organic species are organized according to their volatility to 

investigate the G/P partitioning of the organic vehicle emissions. A detailed explanation of 

the VBS can be found in Donahue et at. [9,10,11].  

Current emission simulators treat all PM2.5 as non-volatile and do not account for 

the additional vehicle emitted PM2.5 due to G/P partitioning. This manuscript utilizes the 

VBS to improve the prediction of EFOA as a function of temperature and dilution ratio, 

while also accounting for the varying measurement strategies (PEMS vs. dilution tunnel), 

to provide a correction factor (CF) that can be directly applied to emission simulators to 

better predict near-road PM2.5. The volatility distribution of the organic LDGV and HDDV 

emissions were used to account for G/P partitioning due to temperature and dilution ratio 

(DR) changed, enabling the estimation of the CF. 

3.3 Methodology 

The volatility distribution of the organic aerosol from LDGV and HDDV were 

obtained using data from May et al 2013ab, respectfully [5,3]. This work used the median 

volatility distribution corresponding to each log(C*) bin. The experimental distribution 

used here represents the mass fraction of organics from the vehicle exhaust derived from 

TD-GC-MS analyses of bare-quartz filters [5,3]. An additional set amount was added to 

the mass fraction corresponding to log(C*) greater than one to account for gases that may 

also be present in those bins. The addition to the log(C*) bins greater than one were done 

to make sure that there was enough room for the G/P partitioning, especially at the higher 

temperatures as seen in the PEMS. 
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The Clausius Clapeyron equation estimates saturation concentration (C*) as a 

function of temperature and enthalpy of vaporization (ΔHv) [12].  

C∗(T2) = C∗(T1) ∗ exp (−
ΔHv

R
∗ (

1

T2
−

1

T1
))      (3.2) 

ΔHv varies between the different C* bins, with the lower volatility compounds 

having higher ΔHv. ΔHv was estimated by assuming that all the compounds from the LDGV 

and HDDV could be represented as n-alkanes ranging from carbon number 10 to 30 to span 

the log10(C
*) range of 6 to -2 µg/m3 at 25oC [9]. Therefore, the ΔHv was estimated to range 

from 40 to 160kJ/mole at 25oC [13,14], assuming adequate viscosity such that the gas-

particle equilibrium is reached instantly [15]. Using the VBS method and previously 

published volatility distributions, Python version 3.9 [16] code is created to estimate the 

CF accounting for the G/P partitioning between the traditional approach used by emission 

simulators to that of a VBS approach using the EF from the PEMS and dilution tunnel. 

3.3.1 Modelled Parameters 

The VBS PM2.5 loading is a function of temperature and dilution ratio (DR), with 

DR being defined as the amount of dilute exhaust per amount of undiluted exhaust [17]. 

For example, if there was two parts of clean air and one part vehicle exhaust that would be 

a ratio of 2:1 and a DR of 3. The DR and sampling temperature (Tsamp) for the PEMS was 

allowed to vary between 2 to 10 and 50oC to 70oC, respectfully for both the LDGV and 

HDDV, representing operating conditions typical for PEMS measurements [18,19]. The 

dilution tunnel used a Tsamp that varied between 42oC to 52oC, since federal regulations 
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requires that samples be collected at 47+5oC [7,20]; and a DR that varied between 7 to 30 

and 6 to 30 for LDGV and HDDV, respectfully. 

Tailpipe elemental carbon varied between 0 μg/m3 to 1,000,000 μg/m3, to capture 

a range of organic carbon to elemental carbon (OC:EC) ratios from 1:0 to 0:1. The OC was 

obtained through the VBS modeled Python code, and total carbon (TC) is the sum of the 

EC and OC. An EC/TC value of zero describes PM2.5 that is entirely OC whereas an EC/TC 

value of one describes PM2.5 that is entirely EC. The ambient temperature (Tamb) and 

background ambient PM2.5 were also varied; Tamb was varied from 0°C to 40°C and 

ambient background OC (OCamb) and EC (ECamb) varied between 0 μg/m3 to 10 μg/m3 and 

0 μg/m3 to 1 μg/m3, respectively, to simulate a pristine to polluted urban environment.  

To assist current emission simulators in accurately accounting for the G/P 

partitioning of the OA emitted from on-road vehicles, a correction factor (CF) was 

developed by taking the ratio of the predicted near-road PM2.5 from the method developed 

in this manuscript (accounting for G/P partitioning using VBS method) to the traditional 

methods used by emission simulators assuming all species are conservative (traditional 

approach). The CF was calculated by using Equation 3.3: 

CF =
TCVBS

TCDRsamp
∗

DRsamp

DRtot
         (3.3) 

Where TCVBS is the predict-near road total carbon (TC) from the method developed 

in this manuscript, TCDRsamp is the TC predicted by the PEMS or dilution tunnel at the 

sampling DR, DRtot is the total DR, and DRsamp is the sampling DR of the PEMS or dilution 

tunnel. 
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3.4 Results & Discussion 

A sample correction factor heat map showing the ratio in estimated PM2.5 when 

accounting for G/P partitioning to not accounting for G/P partitioning, is shown (Figure 

3.1) for a LDGV whose emissions were sampled using a PEMS with a Tsamp of 60oC and 

at DR varying between 2 to 10. 

 

Figure 3.1: Correction factor sensitivity for a LDGV emission captured using a PEMS at a sampling 

temperature of 60oC with a varying sampling DR assuming an ambient temperature of 25oC. 

In this (Figure 3.1) and the following heat maps (Figure 3.2-Figure 3.5), a 

correction factor (color bar value) greater than one means that the traditional approach 

underestimates predicted near-road PM2.5; a value of one means the traditional approach 

and VBS method agree; and a CF value less than one means that the traditional approach 

overestimates predicted near-road PM2.5. 
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The following sections explore G/P partitioning corrections as a function of 

sampling conditions, environmental parameters, and EC-OC composition. 

3.4.1 Sampling Conditions 

G/P partitioning is a function of measurement and ambient temperature (equation 

2). To explore the sensitivity of CF to measurement temperature, the CF with varying Tsamp 

were investigated (Figure 3.2). Figure 3.2a shows CF for a LDGV sampled with a PEMS 

with a DRsamp of 3 and Tamb of 25oC when the Tsamp varies between 60oC + 10oC. In Figure 

3.2a at lowest DRtot and the highest Tsamp the CF tends to be above 1, however, as the Tsamp 

is lowered and the DRtot increases the CF drops below 1. Increasing the DRsamp to 10 

(Figure 3.2b) and holding all other simulation conditions constant the CF followed a similar 

trend with the main differences between the two figures being the CF scale. In Figure 3.2b 

the CF increases to 2.25 (compared to 1.6 in Figure 3.2a) indicating that the higher DRsamp 

the larger the required CF; however, the CF decreases to 0.5 (compared to 0.4 in Figure 

3.2a). In Figure 3.2b the effect of the vapor pressure (Pvap) is greater than that of the dilution 

with respect to CF. 

Similar trends are observed for the dilution tunnel varying the Tsamp between 47oC 

+ 5oC (Figure 3.1c-Figure 3.1d) with the CF closer to 1 for the dilution tunnel compared 

with the PEMS. The dilution tunnel has CF closer to 1 due to the lower Tsamp and higher 

DRsamp that the dilution tunnel is generally operated at. Comparing Figure 3.2b and Figure 

3.2c both are at a DRsamp of 10 but have different Tsamp, the CF ranges from 1.2 to 0.4 in 

Figure 3.2c (compared to 2.25 to 0.5 in Figure 3.2b). This again shows the effect of Pvap, 

and how decreasing the Tsamp decreases the Pvap leading to a CF closer to 1. Increasing the 
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dilution tunnel DRsamp increases the CF (compared to Figure 3.2c) also consistent with the 

fact that the effect of Pvap is greater than that of the dilution. However, when comparing 

Figure 3.2b and Figure 3.2d, Figure 3.2d shows how increasing the DRsamp while also 

decreasing the Tsamp results in evaporation starting to overcome condensation resulting in 

a CF closer to 1. 

 
Figure 3.2: Correction factor (CF) sensitivity to varying the sampling temperatures for a LDGV 

sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, assuming an 

ambient temperature of 25oC. a) CF for PEMS results with a sampling DR of 3; b) CF for PEMS results 

with a sampling DR of 10; c) CF for dilution tunnel results with a sampling DR of 10; d) CF for dilution 

tunnel results with a sampling DR of 30. 

The HDDVs, when all things are held equal, have the same general trends for CF; 

the heat maps showing the sensitivity of the CF with varying Tsamp are found in SI Figure 
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3.1. The initial hypothesis was that the HDDV would have a CF closer to 1 due to HDDV 

typically having a higher EC/TC ratio resulting in less volatile PM. A comparison between 

the HDDV and LDGV to investigate the CF sensitivity (holding all sampling conditions 

constant, including the initial reactive organic gases emitted from the vehicle) and varying 

only the EC/TC ratio was performed (SI Figure 3.2-3.3). The HDDV was found to have 

CFs further away from one, when compared to the LDGV. This is attrinted to the HDDV, 

when compared to the LDGV, having a larger mass fraction in the 0 to 2 log(C*) bins (May 

et al. 2013ab). These are the bins most sensitive to G/P partitioning for the ambient 

conditions studied. The DRsamp also impacts CF and will be vetted in the following section. 

3.4.2 Environmental parameters 

G/P partitioning is a function of suspended organic aerosol mass concentration, 

which is dictated by the plume dilution and ambient background OC (OCamb). Further, 

ambient background EC (ECamb) affects the CF by averaging the CF towards 1 since the 

traditional approach predicts total PM2.5 and correctly accounts for emitted EC. Therefore, 

it is needed to quantify the CF for a variety of ambient conditions from pristine to polluted. 

The sensitivity of the CF with and without OCamb and ECamb concentrations is explored 

(Figure 3.3).  

Figure 3.3a shows the CF needed for a LDGV whose emissions were captured using 

a PEMS at a Tsamp of 60oC and DR varying between 2 to 10, Tamb of 25°C, and no OCamb 

and ECamb. In Figure 3.3a at the lowest DRtot the CF is above 1; however, as the DRtot 

increases past 100 to 360 (depending on DRsamp) the CF drops below 1. The CF below 1 is 

a result of the OA concentration becoming sufficiently low resulting in the evaporation of 
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the OA dominating over condensation. Simulations of the CF for more polluted 

atmospheres, with background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations 

(Figure 3.3b), holding all other simulation conditions the same followed similar trends to 

pristine ambient atmosphere. The CF is above 1 for the at the lowest DRtot then drops below 

1 as the DRtot increases (Figure 3.3b). The difference between the pristine and polluted 

atmospheres is in the CF in the more polluted atmosphere only approaches 1 at the highest 

DRtot, whereas in the pristine atmosphere the CF continues to drop. This is due to the 

background PM2.5 concentrations starting to dominate the OC pool available for G/P 

partitioning making the difference between the VBS method and traditional approach 

negligible. Similar trends are observed for the dilution tunnel (Figure 3.3c-Figure 3.3d) 

with the CF closer to 1 for emissions developed from dilution tunnels than developed from 

PEMS. The CF is closer to 1, in these scenarios, due to the dilution tunnel operating at 

lower temperatures and generally higher DR than the PEMS, explained in detail in the 

Sampling Conditions section above.  

The blue “parabolic” coloration with background PM2.5 (Figure 3.3b and Figure 

3.3d) highlights the non-linearity of the response of Pvap versus DR. This coloration occurs 

when the effects of Pvap is much greater than those of dilution and shows why it is important 

to account for the G/P partitioning when predicting near-road PM2.5.  
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Figure 3.3: Correction factor (CF) sensitivity looking at with and without OCamb and ECamb 

concentrations for a LDGV sampled from a PEMS and dilution tunnel obtained from a modelling VBS 

method, assuming an ambient temperature of 25oC and sampling temperature for the PEMS and 

dilution tunnel at 60oC and 47oC, respectfully. a) CF for PEMS results assuming no OCamb and ECamb 

concentrations; b) CF for PEMS results assuming background OCamb (10 µg/m3) and ECamb (1 µg/m3) 

concentrations; c) CF for dilution tunnel results assuming no OCamb and ECamb concentrations; d) CF 

for dilution tunnel results assuming background OCamb (10 µg/m3) and ECamb (1 µg/m3) 

concentrations. 

G/P partitioning is also a strong function of Tamb (equation 2). To explore this, the 

effects of varying the Tamb on CF were investigated (Figure 3.4). The CF for Tamb of 0oC 

(Figure 3.4a), 25oC (Figure 3.4b), and 40oC (Figure 3.4c) for a LDGV emissions sampled 

using a PEMS at a Tsamp of 60oC and a background OCamb (10 µg/m3) and ECamb (1 µg/m3) 

concentrations, indicate a large range of CF (0.4 to 4.0) for changes in Tamb (0
oC to 40oC). 

For colder Tamb, the CF ranges from 1.4 to 4.0; but, as Tamb increases the CF begins to lower 
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past 1. This is due to greater evaporation, which leads to lower OC concentration with 

increasing Tamb. 

Similar results (Figure 3.4d-Figure 3.4f) are observed for the dilution tunnel with a 

Tsamp of 47oC assuming background OCamb (10 µg/m3) and ECamb (1 µg/m3) 

concentrations, with the CF closer to 1 for EF developed from dilution tunnel 

measurements than PEMS based measurements. This difference is due to the DRsamp and 

Tsamp differences between the PEMS and dilution tunnel, explained in detail in the 

Sampling Conditions section above. 

 
Figure 3.4: Correction factor (CF) sensitivity to ambient temperatures with background OCamb (10 

µg/m3) and ECamb (1 µg/m3) concentrations for a LDGV sampled from a PEMS and dilution tunnel 

obtained from a modelling VBS method, assuming sampling temperature for the PEMS and dilution 

tunnel at 60oC and 47oC, respectfully. a) CF for a PEMS at 0oC; b) CF for PEMS at 25oC; c) CF for 

PEMS at 40oC; d) CF for dilution tunnel at 0oC; e) CF for dilution tunnel at 25oC; f) CF for dilution 

tunnel at 40oC. 

HDDV have similar trends with the heat maps showing the sensitivity to the diesel 

CF to background ambient PM2.5 and varying Tamb (SI Figures 3.4-3.5). 
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3.4.3 Composition 

With changing vehicle technology, aftertreatments, engine ages, and fuel blends the 

relative amount of the vehicle’s EC/OC will vary. To explore this, the effects of the 

vehicle’s EC/TC ratio on the sensitivity of the CF was investigated (Figure 3.5). EC is a 

non-volatile conservative species, therefore closer to pure EC (EC/TC = 1) the less 

important G/P partitioning is. 

Figure 3.5a shows the sensitivity of the CF for a LDGV sampled using a PEMS 

with a Tsamp of 60oC and a DRsamp of 3 assuming an Tamb of 25oC and a background OCamb 

(10 µg/m3) and ECamb (1 µg/m3) while varying the vehicle’s EC/TC ratio from 0 to 1. At 

the lowest EC/TC ratios and when the DRtot is below ~100 the CF is above 1; however, as 

the DRtot increases further the CF starts to drop below 1. For all DRtot when the EC/TC 

ratio is greater than ~0.6 the CF is at or around 1. This is due to PM2.5 having a larger 

EC/TC ratio, with EC being a non-volatile species the effect of the G/P partitioning is less 

important than when the EC/TC ratio is lower.  

Increasing the DRsamp to 10 (Figure 3.5b) and holding all other simulation 

conditions constant, similar results are observed as for the DRsamp of 10. The CF has the 

largest deviation from 1 at the lowest EC/TC ratios and approaches 1 as the EC/TC ratio 

approaches 1. When the DRsamp is increased to 10, the CF is only above 1 when closest to 

the vehicle (DRtot less than ~300) with almost all DRtot greater than ~300 leading to a CF 

below 1.The dilution tunnel also has similar trends as the PEMS (Figure 3.5c-Figure 

3.5d), with the CF generally being closer to 1, especially when the DRsamp is highest. The 
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difference, between the PEMS and dilution tunnel, is due to the DRsamp and Tsamp 

differences, which is explained in detail in the Sampling Conditions section above. 

The initial amount of hydrocarbon (HCi) can affect which species can be present in the 

particle-phase. The sensitivity of the CF to HCi is shown in SI Figure 3.6; holding all 

sampling conditions the same as in Figure 3.5 with just the HCi reduced by a factor of 10. 

Decreasing the HCi by a factor of 10 impacts the realtive ratio of the emitted OC to the 

OCamb resulting in the OCamb having a larger relative impact. This results in a smaller 

amount of OC available for the G/P partitioining resuling in the CF generally being closer 

to 1 for these LDGV scenarios (SI Figure 3.6).  
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Figure 3.5: Correction factor (CF) sensitivity to a vehicle’s EC/TC ratio with background OCamb (10 

µg/m3) and ECamb (1 µg/m3) concentrations for a LDGV sampled from a PEMS and dilution tunnel 

obtained from a modelling VBS method, assuming an ambient temperature of 25oC and sampling 

temperature for the PEMS and dilution tunnel at 60oC and 47oC, respectfully. a) CF for a PEMS at a 

DRsamp of 3; b) CF for PEMS a DRsamp of 10; c) CF for dilution tunnel a DRsamp of 10; d) CF for dilution 

tunnel at a DRsamp of 30. 

3.4.3.1 Percentage of Organic Carbon evaporated 

The percentage of OC evaporated (%OC evaporated) is a function of dilution and 

suspended OA mass concentration (emitted OA + OCamb). As the %OC evaporated 

changes so does the composition and species of the PM2.5 present. The composition is 

important because it may dictate the potential toxicity per gram as well as affect the light 

refraction, hygroscapicity of the particles and more. The additional %OC evaporated 
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between the VBS method and traditional approach shows how the G/P partitioning could 

affect the composition of the particles (Figure 3.6).  

Figure 3.6a show the additional %OC evaporated for LDGV sampled from a 

PEMS with a Tsamp of 60oC and a background OCamb (10 µg/m3) and ECamb (1 µg/m3) 

concentrations assuming an Tamb of 25oC. At the lowest DRtot the traditional approach is 

overestimating the amount of %OC evaporated (negative color bar values) and as the 

DRtot increases the traditional approach starts to underestimate the %OC evaporated 

(positive values); these results are in agreement with what were observed in Figure 3.3b. 

Similar results are observed for a dilution tunnel with a Tsamp of 47oC holding all ambient 

parameters constant (Figure 3.6b), with the %OC evaporated being closer to zero for the 

dilution tunnel. The differences observed between the PEMS, and dilution tunnel is 

explained in detail in the Sampling Conditions section.  

The additional vehicle %OC evaporated due to the VBS method were also 

investigated (SI Figure 3.7) by subtracting out the background PM2.5 and holding all other 

sampling conditions the same as in Figure 3.6. SI Figure 3.7 shows similar trends to Figure 

3.6; however, when only considering the additional vehicle %OC evaporated the %OC 

evaporated ranges from -60% to 60% (compared to -60% to 30% in Figure 3.6). The higher 

upper bound (60%) in SI Figure 3.7 implies that when only accounting for the additional 

vehicle %OC evaporated the traditional approach will have a larger overestimation of the 

predicted near-road PM2.5 at the largest DRtot. This is due to inaccuracies in accounting for 

the additional evaporated OA (dilution) and not considering the OCamb, both of which are 

parameters in G/P partitioning. 
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Figure 3.6: Additional %OC evaporated between the VBS method and traditional approach sensitivity 

to the sampling DR with background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations for a 

LDGV sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, assuming 

an ambient temperature of 25oC and sampling temperature for the PEMS and dilution tunnel at 60oC 

and 47oC, respectfully. a) additional %OC evaporated for a PEMS; b) additional %OC evaporated 

for a dilution tunnel 

As the temperature and dilution changes the species present can also change leading 

to potential health implications. To explore this, the emitted EC/TC ratio based on DRsamp 

was investigated (Figure 3.7). Predicted near-road PM2.5 for a LDGV whose emissions 

were sampled using a PEMS (Figure 3.7a) assuming a Tsamp of 60oC, near-road ambient 

(Figure 3.7b) and dilution tunnel (Figure 3.7c) assuming a Tsamp of 47oC. All subfigures 

assumed an initial undiluted tailpipe EC of 1,000 µg/m3, an Tamb of 25oC, and a background 

OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations. Figure 3.7 shows that the PM2.5 

collected on filters from the PEMS, and dilution tunnel have different EC/TC ratio than 

that of ambient. The different EC/TC ratios have different species present in the PEMS, 

dilution tunnel and ambient conditions. This could imply that the PM2.5 toxicity per mass, 

a function of organic content, increases with the decreasing EC/TC ratio resulting in health 

implications--future works needs to be done to look more into this. 
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Figure 3.7: EC/TC variation between the VBS method and traditional approach sensitivity to the 

sampling DR with background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations for a LDGV 

sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, assuming an 

ambient temperature of 25oC and sampling temperature for the PEMS and dilution tunnel at 60oC and 

47oC, respectfully. a) PEMS using the traditional approach; b) near-road using the VBS method; c) 

dilution tunnel using the traditional approach. 

HDDVs exhibited similar trends when looking at how composition affects the CF, 

%OC evaporated and the EC/TC variation between the PEMS, dilution tunnel and ambient, 

the diesel figures can be seen in SI Figures 3.8-3.11. 

3.5 Conclusion 

Many studies have shown that the G/P partitioning of the OA is important for 

modeling realistic atmospheric conditions and that a majority of the PM2.5 emitted from 

LDGV and HDDV is volatile OA [3,5,6,7]. G/P partitioning is a function of temperature, 

dilution ratio, and suspended organic aerosol mass concentration. 

The Tamb and DRtot had the largest impact on the correction factor. When Tamb is at 

0oC the CF is always above 1 with a maximum around 4, and when the Tamb is at 40oC the 

CF is always below 1. Generally, the CF is above 1 at the lowest DRtot and drops below 1 

as the DRtot increases. However, when assuming a background OCamb (10 µg/m3) and 

ECamb (1 µg/m3) concentrations the CF approaches 1 at the highest DRtot, as the 

background PM2.5 concentrations start to dominate and making the difference between the 

VBS method and traditional approach negligible. 
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The vehicle’s EC/TC ratio also impacts the CF. When the EC/TC ratio is closest to 

0 the CF has the largest divergence from 1 whereas when the EC/TC ratio approaches 1 so 

does the CF. This is due to the traditional approach inaccurately accounting for OC 

evaporated as the emissions dilute and cool in the ambient atmosphere. The CF is also 

sensitive to the sampling temperature with the CF greater than 1 at the highest Tsamp. 

When comparing the results from emission factors developed using PEMS 

measurements to that of the dilution tunnel, the results indicate that generally the emission 

factors developed using dilution tunnel had CF values closer to one. This manuscript 

provides a range of these variations and can be used to better estimate the near-road PM 

estimation. HDDV, when environmental and sampling parameters are held constant, were 

observed to have similar trends with the CF typically be further from 1 for the PEMS and 

dilution tunnel, when compared to LDGV, SI Figures 3.1–3.7. This was due to the HDDV 

having a larger mass fraction in the 0 to 2 log(C*) bins, which are the bin sin the VBS 

which are most affected by the G/P partitioning for the ambient PM2.5 loadings studied. 

Overall, these results show that there is a bias in predicted roadside PM2.5 using 

current transportation models. Including a correction factor would help emission 

simulators better predict near-road PM2.5 by accounting for the G/P partitioning that occurs 

as the emissions rapidly dilute and cool in the ambient atmosphere. 
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3.7 Appendix 3A. Supporting Information 

 
SI Figure 3.1: Correction factor (CF) sensitivity to varying the sampling temperatures for a diesel 

vehicle sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, assuming 

an ambient temperature of 25oC. a) CF for PEMS results with a sampling DR of 3; b) CF for PEMS 

results with a sampling DR of 10; c) CF for dilution tunnel results with a sampling DR of 10; d) CF for 

dilution tunnel results with a sampling DR of 60. 

The comparison between the correction factor (CF) between the Light-Duty 

Gasoline Vehicle (LDGV) and Heavy-Duty Diesel Vehicle (HDDV) holding all simulation 

conditions constant are shown for emissions captured from a PEMS and dilution tunnel, SI 

Figure 3.2 and SI Figure 3.3, respectfully. The PEMS was operated at a DRsamp of 3 and 
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Tsamp of 60oC with an ambient temperature of 21oC and background OCamb (10µg/m3) and 

ECamb (1µg/m3) concentrations (SI Figure 3.2). The dilution tunnel was operated at a 

DRsamp of 11 and Tsamp of 47oC with an ambient temperature of 21oC and background OCamb 

(10µg/m3) and ECamb (1µg/m3) concentrations (SI Figure 3.3). 

 
SI Figure 3.2: Correction factor (CF) comparison between a gasoline and diesel vehicle at two different 

DRtot. Sampled from a PEMS with a DR of 3 and Tsamp of 60C. Assuming an Tamb of 21C and 

background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations and same initial HC in µg/m3. 
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SI Figure 3.3: Correction factor (CF) comparison between a gasoline and diesel vehicle at two different 

DRtot. Sampled from a dilution tunnel with a DR of 11 and Tsamp of 47C. Assuming an Tamb of 21C and 

background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations and same initial HC in µg/m3. 
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SI Figure 3.4: Correction factor (CF) sensitivity looking at with and without OCamb and ECamb 

concentrations for a diesel vehicle sampled from a PEMS and dilution tunnel obtained from a 

modelling VBS method, assuming an ambient temperature of 25oC and sampling temperature for the 

PEMS and dilution tunnel at 60oC and 47oC, respectfully. a) CF for PEMS results assuming no OCamb 

and ECamb concentrations; b) CF for PEMS results assuming background OCamb (10 µg/m3) and ECamb 

(1 µg/m3) concentrations; c) CF for dilution tunnel results assuming no OCamb and ECamb 

concentrations; d) CF for dilution tunnel results assuming background OCamb (10 µg/m3) and ECamb 

(1 µg/m3) concentrations. 
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SI Figure 3.5: Correction factor (CF) sensitivity to ambient temperatures with background OCamb (10 

µg/m3) and ECamb (1 µg/m3) concentrations for a diesel vehicle sampled from a PEMS and dilution 

tunnel obtained from a modelling VBS method, assuming sampling temperature for the PEMS and 

dilution tunnel at 60oC and 47oC, respectfully. a) CF for a PEMS at 0oC; b) CF for PEMS at 25oC; c) 

CF for PEMS at 40oC; d) CF for dilution tunnel at 0oC; e) CF for dilution tunnel at 25oC; f) CF for 

dilution tunnel at 40oC. 
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SI Figure 3.6: Correction factor (CF) sensitivity to a vehicle’s EC/TC ratio with the initial HC cut by 

a factor of 10, a background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations for a gasoline 

vehicle sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, assuming 

an ambient temperature of 25oC and sampling temperature for the PEMS and dilution tunnel at 60oC 

and 47oC, respectfully. a) CF for a PEMS at a DRsamp of 3; b) CF for PEMS a DRsamp of 10; c) CF for 

dilution tunnel a DRsamp of 10; d) CF for dilution tunnel at a DRsamp of 60. 
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SI Figure 3.7: Additional vehicle %OC evaporated between the VBS method and traditional approach 

sensitivity to the sampling DR with background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations 

subtracted out for a gasoline vehicle sampled from a PEMS and dilution tunnel obtained from a 

modelling VBS method, assuming an ambient temperature of 25oC and sampling temperature for the 

PEMS and dilution tunnel at 60oC and 47oC, respectfully. a) additional %OC evaporated for a PEMS; 

b) additional %OC evaporated for a dilution tunnel. 
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SI Figure 3.8: Correction factor (CF) sensitivity to a vehicle’s EC/TC ratio with background OCamb 

(10 µg/m3) and ECamb (1 µg/m3) concentrations for a diesel vehicle sampled from a PEMS and dilution 

tunnel obtained from a modelling VBS method, assuming an ambient temperature of 25oC and 

sampling temperature for the PEMS and dilution tunnel at 60oC and 47oC, respectfully. a) CF for a 

PEMS at a DRsamp of 3; b) CF for PEMS a DRsamp of 10; c) CF for dilution tunnel a DRsamp of 10; d) 

CF for dilution tunnel at a DRsamp of 60. 
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SI Figure 3.9: Additional %OC evaporated between the VBS method and traditional approach 

sensitivity to the sampling DR with background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations 

for a diesel vehicle sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, 

assuming an ambient temperature of 25oC and sampling temperature for the PEMS and dilution 

tunnel at 60oC and 47oC, respectfully. a) additional %OC evaporated for a PEMS; b) additional %OC 

evaporated for a dilution tunnel 

 

 
SI Figure 3.10: Additional vehicle %OC evaporated between the VBS method and traditional 

approach sensitivity to the sampling DR with background OCamb (10 µg/m3) and ECamb (1 µg/m3) 

concentrations subtracted out for a diesel vehicle sampled from a PEMS and dilution tunnel obtained 

from a modelling VBS method, assuming an ambient temperature of 25oC and sampling temperature 

for the PEMS and dilution tunnel at 60oC and 47oC, respectfully. a) additional %OC evaporated for a 

PEMS; b) additional %OC evaporated for a dilution tunnel. 
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SI Figure 3.11: EC/TC variation between the VBS method and traditional approach sensitivity to the 

sampling DR with background OCamb (10 µg/m3) and ECamb (1 µg/m3) concentrations for a diesel 

vehicle sampled from a PEMS and dilution tunnel obtained from a modelling VBS method, assuming 

an ambient temperature of 25oC and sampling temperature for the PEMS and dilution tunnel at 60oC 

and 47oC, respectfully. a) PEMS using the traditional approach; b) near-road using the VBS method; 

c) dilution tunnel using the traditional approach. 
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4.1 Abstract 

This work bridges ambient PM2.5 estimated from emission simulators to ambient 

PM2.5 concentrations by developing a correction factor (CF) method that accounts for gas-

particle partitioning of organic gases and particulate. The CF is developed to account for 

gas-particle partitioning of organics using the volatility basis set (a thermodynamic based 

model). A look-up table is created for a user to easily look up the CF with CF ranging from 

0 to 29.95 for the conditions studied. Cases with CF greater than 1 imply traditional 

emission simulators underestimate predicted near-road PM2.5 and vice-versa for CF less 

than 1. The CF is dependent on a few key variables: fuel and vehicle type, sampling 

temperature and dilution ratio (DR), vehicle tailpipe elemental carbon to organic carbon 

(EC:OC) and initial reactive organic gas (ROGi) concentration, total DR, ambient 

temperature and background PM2.5. In lieu of the look-up table or for values not listed 

within the lookup table, a Random Forest (RF) approach is also developed to ascertain the 

CF as well. The two most important variables when predicting CF using RF is ambient 

temperature and tailpipe EC:OC followed by the vehicle’s ROGi. The look-up table and 

RF developed in this work can be used with emission simulators and/or dispersion models 

to improve ambient PM2.5 estimates from tailpipe emissions. 
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4.2 Introduction 

Vehicle emissions are a major source of particulate matter (PM) in urban areas, 

with emissions from on-road gasoline and diesel vehicles significantly impacting human 

health and the environment. Many epidemiological studies have shown a link between 

PM2.5 and adverse health effects such as asthma, Alzheimer’s, autism, heart attacks, and 

premature death [1,2,3]. Currently diesel and gasoline vehicle emissions are commonly 

measured either in the laboratory using a dynamometer in series with a constant volume 

sampler (dilution tunnel) or on-road with a portable emissions measurement system 

(PEMS). Emission simulators, such as the U.S. Environmental Protection Agency (EPA) 

Motor Vehicle Emission Simulator (MOVES), uses the emission factors derived from these 

systems to predict the on-road vehicle emitted PM2.5. However, studies have found that 

emission simulators are substantially underestimating the vehicles PM2.5 emissions [4]. 

This underestimation could be due to the PEMS and dilution tunnels measuring PM2.5 

emissions operating at temperatures and DRs not representative of the atmosphere. 

Differences in temperature and DR leads to inaccuracy in ambient estimates from current 

emission simulators that do not currently account for gas-particle (G/P) partitioning 

processes of organic gas and particulate emissions as they cool and dilute. 

PM2.5 can either be inorganic or organic, with organic PM2.5 often referred to as 

organic aerosol (OA). Figure 4.1 shows an illustration of possible gas-particle partitioning 

processes as the exhaust cools and dilutes in the atmosphere; this figure is for illustration 

purposes only as the actual condensation or evaporation is a function of actual DR and 

temperature. As exhaust is emitted into the atmosphere, the plume rapidly dilutes, which 
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drives evaporation of OA into organic gases; however, the plume also rapidly cools which 

drives condensation of organic gases into OA. 

 
Figure 4.1: Illustration of gas-particle partitioing. Actual condenstation and evaporation is determined 

by the actual diltuion ratio and temperarue  

Many studies have shown that the gas-particle partitioning of OA is important for 

modeling realistic atmospheric conditions and that a majority of the PM2.5 emitted from 

on-road gasoline and diesel vehicles is volatile [5,6,15,31]. For example, May et al. 2013a 

tested 51 light-duty gasoline vehicles from the California in-use fleet spanning model years 

1987-2012 and found that none of the primary OA (POA) should be considered non-

volatile and that the POA emission factor measured from using the dilution tunnel was 

often biased high relative to typical atmospheric conditions [5]. Looking at diesel vehicles, 

May et al. 2013b also found that a majority of the POA from diesel vehicles should not be 

considered non-volatile [6]. Despite these findings, emission models such as the EPA’s 

MOVES continue to treat OA as non-volatile and do not adjusting the PM2.5 based on the 

gas-particle partitioning [9]. 
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This paper describes a correction factor (CF) developed using the volatility basis 

set (VBS) to account for the varying measurement strategies (PEMS vs. dilution tunnel) 

and OA emission factor as a function of temperature and dilution ratio. There are two main 

goals of this work: 1) present a look-up table so that the CF can be looked up based on six 

variables and 2) present a model which can be used in place of the look-up table when 

extrapolation is needed to determine the CF.  

4.3 Methodology 

The VBS is a thermodynamic based model used to predict gas-particle partitioning 

of organics. The VBS [10,11,12] approach provides a framework for understanding and 

quantifying G/P partitioning; organic compounds are organized according to their volatility 

to investigate the G/P partitioning of the organic gasoline and diesel vehicle emissions. A 

full explanation of the VBS is found in Donahue et at. [10,11,12]. The volatility distribution 

of the organic aerosol from gasoline and diesel vehicles emissions was obtained using data 

from May et al 2013 ab, respectively [5,6]. The May et al 2013 ab [5,6] work provided the 

median volatility distribution corresponding to each bin. The VBS uses the volatility 

distribution, temperature changes and changes in dilution to account for the gas-particle 

partitioning of the volatile OA. Within the VBS, compounds are distributed according to 

their mass-equivalent effective saturation concentration (C*,μg/m3). As the temperature 

decreases, from the tailpipe, PEMS and/or dilution tunnel to ambient, individual organic 

compounds shift towards lower C* allowing for some of these compounds to further 

partition from the gas-phase to the aerosol-phase. A full explanation of the methodology 
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used in creating the correction factor and the thermodynamics and G/P partitioning 

observed through the development of the model can be found in Chapter 3. 

To assist current emission simulators account for the G/P partitioning of organics 

emitted from on-road vehicles, a correction factor (CF) was developed. The CF was 

calculated by taking the ratio of the predicted near-road PM2.5 (VBS approach) to the 

traditional method used by emission simulators (traditional approach). The VBS approach 

accounts for the G/P partitioning of the organic PM2.5 and organic gases whereas the 

traditional approach assumes all PM species are conservative and therefore do not undergo 

gas-particle partitioning. The correction factor was calculated using the following 

equation: 

𝐶𝐹 =
𝑇𝐶𝑉𝐵𝑆

𝑇𝐶𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐷𝑅
∗

𝐷𝑅𝑠𝑎𝑚𝑝

𝐷𝑅𝑡𝑜𝑡
        (4.1) 

Where TCVBS is the predicted near-road total carbon (TC) using the method 

developed in this manuscript, TCsampling DR is the TC predicted by the PEMS or dilution 

tunnel at the sampling DR, DRtot is the total DR, and DRsamp is the sampling DR of the 

PEMS or dilution tunnel. The CF is a function of the variables listed in Table 4.1 as well 

as the fuel type (gasoline or diesel). 

Table 4.1: description of the explanatory variables 

i xi Unit 

1 Initial Reactive Organic Gases µg/m3 

2 Sampling Dilution Ratio - 

3 Total Dilution Ratio - 

4 Sampling Temperature K 

5 Ambient Temperature K 

6 Vehicle’s EC:OC - 

7 Ambient Background Organic Aerosol µg/m3 
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CF is evaluated for a range of environmental and sampling conditions: sampling 

(PEMS or dilution tunnel) temperature and dilution ratio (DR), tailpipe elemental carbon 

to organic carbon (EC:OC), ambient temperature, background PM and distance from the 

vehicle. The DR is defined as the amount of dilute exhaust per amount of undiluted exhaust 

[13]. The sampling DR and the temperature for the PEMS varied between 2 to 10 and 50oC 

to 70oC, for both gasoline and diesel vehicles [14,15]. The dilution tunnel sampling 

temperature was evaluated for temperature ranging between 42oC to 52oC based on federal 

regulations requiring that sample be collected at 47+5oC [8,16]; and a DR that varied 

between 7 to 30 and 6 to 60 for gasoline and diesel vehicles, respectfully. The initial 

concentration of undiluted Reactive Organic Gases (ROGi) from the vehicle was obtained 

from California Air Resources Board EMission FACtor (EMFAC) [17] and the following 

equation: 

𝑅𝑂𝐺𝑖 =
𝑅𝑂𝐺𝑟𝑢𝑛

𝐶𝑂2 𝑟𝑢𝑛
∗ %𝐶𝑂2        (4.2) 

where ROGi is the initial un-diluted ROG emitted from the vehicle, ROGrun is the 

ROG EMFAC running emission, CO2 run is the CO2 EMFAC running emission, and %CO2 

is the percent of CO2 in the un-diluted exhaust. The ROGrun and CO2 run were obtained 

through EMFAC assuming the light-duty gasoline vehicle (LDGV) was the EMFAC LDA 

and the heavy-duty diesel vehicle (HDDV) was the EMFAC T7 tractor. Both values were 

estimated for California statewide levels and using aggregated speed over all model years. 

The %CO2 was calculated by using the ideal stoichiometric air-fuel ratio of 14.7:1 for 

gasoline and 14.5:1 for diesel [18]. ROGi ranged from 2,000 µg/m3 to 300,000 µg/m3 and 
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3,500 µg/m3 to 26,000 µg/m3 for LDGV and HDDV, respectively. Tailpipe elemental 

carbon varied between 0 μg/m3 to 1,000,000 μg/m3, to capture a range the vehicle’s EC:OC. 

The ambient temperature and background ambient PM were also varied; ambient 

temperature was varied from 0oC to 40oC and the ambient background OC (OCamb) and EC 

(ECamb) was varied between 0μg/m3 to 10μg/m3 and 0μg/m3 to 1μg/m3, respectively, to 

simulate a range of pristine to polluted urban environments. Lastly, the total DR ranged 

from 0 to 10,500 to capture a range of distances away from the vehicle. The total DR can 

be correlated to distance from the vehicle through dispersion modeling. For example, if a 

dispersion model is solved assuming: a line source, stability class “C”, wind speed of 1m/s, 

source height of 2.5 meters (~8.2ft), and a receptor height (average adult female) of 1.65 

meter (~5.5ft), then total DR of 1,500 and 10,500 would correspond to 13m and 104m from 

the vehicle, respectfully. 

4.4 Results & Discussion 

The CF can be used by either using a look-up table or through a Random Forest 

(RF), both of which are described below. The look-up table uses MySQL [19] while the 

RF was created using the look-up table, Python version 3.9 [20], and the package scikit-

learn version 0.24 [21]. 

4.4.1 Look-up Table 

Table 4.2 and Table 4.3 shows a snippet of the look-up table generated for a LDGV 

and a HDDV, respectively. The look-up table was built based on the variables in Table 4.1 

and can be used to manually look-up the CF for specific conditions. For example, an CF 

factor of 2.10 and 2.03 is obtained for a LDGV and HDDV, respectively, when both 
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sampled from a PEMS at an ambient temperature of 0oC and with a total DR of 1,500 while 

assuming a background PM2.5 concentrations of 11µg/m3 (10µg/m3 OCamb and 1µg/m3 

ECamb). The CF, including LDGV and HDDV vehicles for the PEMS and dilution tunnel, 

ranged from 0 (complete evaporation) to 29.95. A CF greater than one implies that the 

traditional approach underestimates the predicted near-road PM2.5. Since most emission 

simulators are currently treating all PM2.5 emitted from on-road vehicles as non-volatile 

(CF=1), using CF through the look-up table allows for correction for G/P partitioning. 

Table 4.2: Snippet of the look-up table for a light-duty gasoline vehicle. 

 

Table 4.3: Snippet of the look-up table for a heavy-duty diesel vehicle. 

 

The look-up table can be used when the variables from Table 4.1 are known and 

similar to those used in the look-up table, the SI contains a link to be able to use the look-

Sampling Type ROGi Sampling DR Total DR Sampling Temperature (K) Ambient Temperature (K) EC:OC Background PM2.5 (µg/m
3
) Correction Factor

2084.32 3 1500 333.15 273.15 0.7 11 1.16

34488.73 3 1500 333.15 273.15 0.17 11 2.1

34488.73 3 1500 333.15 273.15 0.18 0 2.41

34488.73 3 1500 333.15 273.15 0.67 11 1.77

34488.73 3 10500 333.15 273.15 0.16 11 1.37

34488.73 3 10500 333.15 273.15 0.18 0 2.21

34488.73 3 1500 333.15 298.15 0.17 11 0.67

2084.32 11 1500 320.15 273.15 0.69 11 1.16

34488.73 11 1500 320.15 273.15 0.17 11 2.17

34488.73 11 1500 320.15 273.15 0.19 0 2.51

34488.73 11 1500 320.15 273.15 0.69 11 1.81

34488.73 11 10500 320.15 273.15 0.16 11 1.38

34488.73 11 10500 320.15 273.15 0.19 0 2.3

34488.73 11 1500 320.15 298.15 0.17 11 0.69

PEMS

Dilution Tunnel

Sampling Type ROGi Sampling DR Total DR Sampling Temperature (K) Ambient Temperature (K) EC:OC Background PM2.5 (µg/m
3
) Correction Factor

3584.43 3 1500 333.15 273.15 0.66 11 1.41

25502.51 3 1500 333.15 273.15 0.11 11 2.03

25502.51 3 1500 333.15 273.15 0.11 0 2.4

25502.51 3 1500 333.15 273.15 0.61 11 1.7

25502.51 3 10500 333.15 273.15 0.1 11 1.34

25502.51 3 10500 333.15 273.15 0.11 0 2.35

25502.51 3 1500 333.15 298.15 0.11 11 0.57

2084.32 11 1500 320.15 273.15 0.69 11 1.16

25502.51 11 1500 320.15 273.15 0.11 11 2.11

25502.51 11 1500 320.15 273.15 0.12 0 2.53

25502.51 11 1500 320.15 273.15 0.64 11 1.75

25502.51 11 10500 320.15 273.15 0.11 11 1.36

25502.51 11 10500 320.15 273.15 0.12 0 2.48

25502.51 11 1500 320.15 298.15 0.11 11 0.59

Dilution Tunnel

PEMS



76 

 

up table. In lieu of look-up tables or for values not listed within the lookup tables, a RF 

approach is developed to ascertain CF as well. 

4.4.2 Random Forest 

Due to the non-linearity of the response of vapor pressure versus dilution when 

modeling the gas-particle partitioning, a regression tree (RT) and random forest (RF) were 

used to provide an alternate method to estimate CF. A RT captures the non-linearity of a 

dataset by partitioning the data into smaller groups and then fitting a model for each 

subgroup [22]. The RF is then created by growing many RT; the RF predicts the CF by 

having each RT give a predicted CF and then the trees “vote” on a CF and the RF chooses 

the CF having the most votes [23]. The variables used to create the RT and grow the RF 

are shown in Table 4.1. In order to have the most accurate prediction of the CF four 

different RF were developed: 1) a LDGV with the emissions sampled from a PEMS 

(LDGV PEMS); 2) a LDGV with emissions sampled from a dilution tunnel (LDGV DT); 

3) a HDDV with the emissions sampled from a PEMS (HDDV PEMS); and 4) a HDDV 

with the emissions sampled from a dilution tunnel (HDDV DT).  

Within each RF the feature importance [24] was used to assist in determining which 

variables are the most and least relevant when building the RF and in making a CF 

prediction (Table 4.4). For each RF, the feature importance sums up to 1 and the higher the 

importance score (maximum = 1) the more relevant that variable is in creating the RF and 

predicting the CF. Overall, the ambient temperature, ROGi and the vehicle’s EC:OC were 

the most relevant variables. It was found that the ambient background elemental carbon 
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(ECamb) had a feature importance of zero and is excluded from the results and the RF. 

Excluding the ECamb from the RF also reduces computational costs. 

Table 4.4: Feature importance for each model and variable 

 

The RT fit training data very well (high R2 and low mean squared error), but they 

tend to fail to generalize new input data, which is commonly referred to as overfitting. One 

solution to prevent overfitting is to prune each of the RT in a RF to optimize the number 

of trees within the RF. Pruning the tree depth is important because the deeper the tree the 

higher the accuracy of the prediction and the more complex the model; however, if the tree 

depth is too high the RT could overfit the data leading to increases in the testing error. The 

number of trees in the RF correlates to computational cost; generally, the greater number 

of trees in a RF improves the model but also increases the computational cost. In order to 

find the ideal tree depth and number of trees within the RF, a hyperparameter [25] and k-

fold cross-validation [26] were used. Figure 4.2 shows the hyperparameter tuning used to 

optimize the number of trees (Figure 4.2a) and tree depth (Figure 4.2b) for the LDGV 

PEMS model. 

 

Random 

Forest Models
Initial ROG

Sampling 

Dilution Ratio

Total 

Dilution 

Ratio

Sampling 

Temperature

Ambient 

Temperature

Vehicle’s 

EC:OC

Ambient 

Background 

Organic 

Aerosol

LDGV PEMS 0.138 0.035 0.042 0.063 0.429 0.293 0

LDGV DT 0.164 0.023 0.048 0.013 0.503 0.25 0

HDDV PEMS 0.129 0.109 0.027 0.182 0.241 0.312 0

HDDV DT 0.101 0.098 0.031 0.03 0.34 0.4 0
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Figure 4.2: LDGV PEMS Hyperparameter tuning based on mean squared error for the testing and 

training data to find the optimized values for a. the number of trees in the random forest and b. the 

depth of each tree.  

The number of trees in the RF was selected by finding the number of trees that 

yielded the lowest mean squared error, before improvement became negligible, resulting 

in 100 trees in the RF (yellow line in Figure 4.2a). Tree depth was found using the same 

method and yielded an optimized tree depth of 15 (yellow line in Figure 4.2b). Finding the 

optimized number of trees and max depth were repeated for each model. Resulting in the 

same tree depth and number of trees for each model, 15 and 100, respectfully. 

80% of the data was used to train the RF leave 20% to test. The SI show a small 

snippet of one of the RT within the LDGV PEMS RF and contains a link to be able to 

download and run the RF to predict the CF or use the look-up table. 

4.4.3 Applications 

The CF derived in this research accounts for the evaporation and condensation 

compared to measured emission factors (CVS or PEMS) due to the temperature and 

dilution of organics emitted from on-road gasoline and diesel vehicles. The CF could either 
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be applied before or after a dispersion model is applied to the emission simulators. 

Applying the CF after the emission simulator output data but before the dispersion model 

could allow for correction between PM2.5 results for CVS and PEMS due to differences in 

dilution and temperature. Applying the CF after dispersion modeling could improve 

ambient PM2.5 estimates. 

The user will get the most accurate correction factor if specific sampling, 

environmental and composition variables are known; however, if the values are not known 

the nominal range could be used as a starting point (Table 4.5). For example, the HDDV 

has two nominal ranges for the EC:OC for model years 2009 and newer. The first being 

0.05 to 0.25 for a HDDV sampled with a Diesel Particulate Filter (DPF) and Selective 

Catalytic Reduction (SCR) with the vehicle sampled with a hot start cycle having an 

EC:OC of 0.05 to 0.08 and a cold start having an EC:OC of 0.1 to 0.25. The second is for 

HDDV with no SCR and a broken or damaged DPF (such that it is not working properly) 

the EC:OC ratio for this scenario is 10-13.  
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Table 4.5: Nominal values to use to calculate CF if specific parameters are unknown assuming a typical 

LDGV and HDDV (not gross emitter). 

x  PEMS Dilution Tunnel Unit 

ROG 
LDGV 2,000 – 300,000 

µg/m3 
HDDV 3,500 – 26,000 

Sampling Dilution 

Ratio 

LDGV 
2 - 10 

7 - 30 
- 

HDDV 7 - 60 

Total Dilution 

Ratio 

LDGV 

& 

HDDV 

0 - 10,500 - 

Sampling 

Temperature 

LDGV 

& 

HDDV 

60+10 47+5 oC 

Ambient 

Temperature 

LDGV 

& 

HDDV 

0 - 40 oC 

Ambient 

Background 

Organic Aerosol 

LDGV 

& 

HDDV 

0 - 10 µg/m3 

EC:OC 

LDGV 0.2 to 0.5 [27] 

- 
HDDV 

With DPF and SCR – Cold start: 0.1 to 0.25 

[28] 

With DPF and SCR – Hot start: 0.05 to 0.08 

[28] 

Without SCR and broken/damaged DPF: 10-

13 [28] 
 

4.5 Conclusion 

G/P partitioning of the organics is important for modeling realistic atmospheric 

conditions. Many studies have shown that a majority of the PM emitted from on-road 

gasoline and diesel vehicles is volatile organic PM. Despite these observations, current 

emission simulators treat all PM2.5 as non-volatile not accounting for the additional (or 

lesser) vehicle emitted PM2.5 due to G/P partitioning. G/P partitioning is a function of 

temperature, dilution, and suspended OA mass concentrations, which are dictated by the 

vehicle emissions and ambient PM2.5. 
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This paper provides a look-up table, for the CF, that can be used to easily lookup 

the CF without running any code. The CF was developed based on changes in temperature, 

dilution, and suspended OA mass concentrations. The rapid changes in temperature and 

dilution, as a plume is emitted, affects the G/P partitioning in different ways. The decrease 

in temperature drives condensation of organic gases into OA, which can increase the CF 

past 1; however, the increasing dilution drives evaporation of OA into organic gases, which 

can then decrease the CF closer to or below 1. Whether the condensation or evaporation 

dominates then depends on the ambient temperatures and suspended OA mass 

concentrations, which is dictated by the plume’s EC:OC and ambient background OC. 

Changes in technology, aftertreatments, engine ages, and fuel blends all affect the vehicle’s 

EC:OC and therefore G/P partitioning. With EC being a conservative species, the closer 

the emitted PM2.5 is to pure EC (without any organics) the less important G/P partitioning 

is. A detailed description on how each parameter affects the CF. 

Further, an optimized RF is developed and provided that can be used in lieu the 

look-up table. Sensitivity analysis from the RF indicates that ambient temperature, ROGi, 

and vehicle’s EC:OC were the most important parameters. The look-up table and the RF 

models developed in manuscript can be used with emission simulators and/or dispersion 

models to better predict the near-road PM2.5 concentrations by accounting for the G/P 

partitioning that occurs after emissions dilute and cool in the atmosphere. 
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4.7 Appendix 4A. Supporting Information 

The look-up table and the Random Forest models are available at 

https://gitlab.com/ayla.moretti/Vehicle-PM-CF. 
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5.1 Abstract 

This research utilizes a chain of vehicle emission modelling, dispersion modelling 

and exposure assessment to assess how much of the fine particulate matter (PM2.5) and 

nitrogen oxides (NOx) emissions from heavy-duty diesel trucks (HDDT) were inhaled by 

the nearby population when these trucks travel in disadvantaged communities. Specific 

HDDT routes were calculate from the four corners of the study area in San Bernardino, 

California, to and from the San Bernardino Airport to calculate the impact of pollutant 

inhalation on the surrounding neighborhoods as well as HDDT travel time and distance. 

“Low-exposure routes” (LER) were calculated and compared to the traditional routes at 10 

A.M. and 3 P.M. On average, these LER resulted in lower pollutant inhalation for the 3 

P.M. scenario compared to that of the 10 A.M. scenario, illustrating that traffic and 

meteorological conditions can play an important role in determining the inhalation values. 

The effects of breathing rate were also investigated, comparing between a population 

averaged and an age-group specific breathing rate. Results indicated that the breathing rate 

slightly affects the inhalation, with the NOx inhalation affected more than the PM2.5 

inhalation. Lastly, a PM2.5 correction factor was applied to predict near-road PM2.5 

concentration by accounting for the gas-particle partitioning that affects the organic PM2.5 

emitted from the HDDT. Results suggest that rerouting the HDDT at least 10m away from 

the sensitive receptors would reduce the PM2.5 inhalation by an additional 50% or more 

after accounting for the PM2.5 correction factor. 
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5.2 Introduction 

Heavy-Duty diesel trucks emit a complex mix of pollutants including fine 

particulate matter (PM2.5) and nitrogen oxides (NOx). Diesel exhaust contains more than 

40 cancer-causing substance and is estimated to be responsible for about 70% of 

California’s toxic air contaminants cancer risk [1] with exposure to diesel PM2.5 expected 

to increase in urban environments over the next decade [2]. The highest levels of diesel 

related air pollution often occur at ports, distribution centers and freeways leading to an 

increased exposure for the people living in communities nearby. Typically, low income 

and minority communities experience the highest vehicle emitted PM2.5 and NOx 

concentrations leading to increased pollutant exposure and adverse health effects [3]. 

There has been an increased level of awareness to these environmental justice issues 

leading to the designation of disadvantaged communities in California per Senate Bill 535 

(SB 535) [4]. Disadvantaged communities are now receiving additional funds aimed at 

improving public heath, quality of life and economic opportunities per Assembly Bill 1550 

(AB 1550) [4,5]. Additionally, in response to Assembly Bill 617 (AB 317) the California 

Air Resources Board is focusing on reducing exposure in communities that are most 

impacted by air pollution [6].  

As a particular case study area, the San Bernardino International Airport is a public 

airport located two miles southeast of San Bernardino City in San Bernardino County, 

California. The airport mainly supports air cargo operations, and it is recently approved to 

undergo a major expansion as an Amazon regional air hub [7]. Residents, communities, 

and organizations have been expressing concerns about future employment opportunities 



89 

 

and environmental impacts [8]. This community is largely part of a SB 535 Disadvantaged 

Communities area [9], and it is located east to Muscoy, which is one of the AB 617 

community designated [10] in 2018 (red shaded area in Figure 5.1). To help reduce the 

adverse effects of heavy-duty trucks, exposure-based routing can navigate a heavy-duty-

diesel-truck (HDDT) through a disadvantaged community in a way that lowers the total 

exposure of community members to the pollutant emissions from the truck without 

significantly increasing travel time [11].  

 

Figure 5.1: Map of study area. Red shading shows the disadvantaged communities in the study area 

[4].  

One objective of this research is to evaluate the exposure-based routing in the San 

Bernardino Airport case study area. This area is bounded by Freeway I-215 in the west, I-

10 in the south, and I-210 curving from south to north then connecting the east to west side. 

The potential HDDT trips from the four corners to and from the airport and the travel time, 

distance, and inhalation values are evaluated in detail in this study. Another objective, and 

novel contribution, of this research is to examine the impact of breathing rate assumption 

and near-road PM2.5 prediction on the effects of low exposure route.  
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5.3 Modelling Method 

Figure 5.2 presents the methodological framework of exposure-based routing that 

has been applied in previous studies [12]. It involved a modelling chain that started with 

vehicle emission modelling to air dispersion modelling, human exposure assessment, and 

finally a vehicle route calculation. In addition, the key inputs at each step are listed in the 

orange boxes in Figure 5.2. 

 

Figure 5.2: Methodological framework of exposure-based routing 

5.3.1 Vehicle Emission Modelling 

To determine vehicle emission factors (in the unit of gram/mile), link-based traffic 

activities (e.g., average traffic speed) and vehicle characteristics (e.g., vehicle type and 

model year) are needed as inputs. The link-level emissions were calculated using equation 

below. 

𝐸𝑖,𝑗 = 𝑉𝑖,𝑘 × 𝐿𝑖 × 𝐸𝐹𝑗,𝑘        (5.1) 
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where Ei,j is mass emission of pollutant j on link i; Vi,k is HHDT volume on link i with link 

speed k; Li is length of link i; and EFj,k is emission factor of pollutant j at speed k. 

The emission factors for heavy-duty diesel trucks were obtained from CARB’s 

EMFAC2017 emission model for the following model run specifications: 

• Source – EMFAC2017 (v1.0.2) Emission Rates [13,14] 

• Region Type – County 

• Region – Los Angeles, assuming trucks come from LA County. 

• Calendar Year – 2018 

• Season – Annual 

• Vehicle Classification – EMFAC2011 Categories 

• Model Year – 2012 

For this study, the modelling of vehicle emissions was performed for a heavy-duty 

diesel truck of model year 2012, and the calculation of its tailpipe emissions were done for 

all the roadway links in the modelling area. It was assumed that this truck would be 

traveling at the speed equal to the average speed at each roadway link. The data regarding 

average speed on roadway links were obtained from a commercial digital roadway map. 

Running exhaust PM2.5, NOx, and CO2 emissions factors of the truck were obtained from 

EMFAC2017 [13,14], which was the latest version of EMFAC at the time of study. 

5.3.2 Dispersion Modelling 

An atmospheric dispersion model is needed to estimate the concentration of air 

pollutants emitted from vehicular sources at specific receptor locations. In this study, R-

LINE, a research grade dispersion model for near-roadway assessment was used [15,16]. 
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Micrometeorology data inputs for R-LINE such as temperature, wind speed, wind 

direction, surface friction velocity, and Monin-Obukhov length were obtained for Redlands 

Station from a South Coast Air Quality Management District website [17]. As part of the 

case study time period, the data for Monday May 9, 2016 was used. Source height was 

assumed to be 2.5 meters (~8.2 ft), which represents a typical height of exhaust stacks of 

heavy-duty diesel trucks. Receptor height was assumed to be 1 meter (~3.3 ft), which 

represents an average height of 5 years old children. 

5.3.3 Exposure Assessment 

In this research, pollutant exposure is referred to the amount of pollutant inhaled by 

a group of subjects. Therefore, inhaled mass (IM) was used to represent the pollutant 

exposure, which is calculated as: 

𝐼𝑀 = C ∗ Pop ∗ t ∗ BR         (5.2) 

where C is pollutant concentration (µg/m3) in a given microenvironment; Pop is number of 

subjects in the microenvironment; t is truck travel time on the road link (hour); and BR is 

breathing rate (m3/hour/capita) of the subjects exposed to the pollutant. 

Breathing rates of population in different age groups were based on the U.S. EPA’s 

Exposure Factors Handbook [18]. In addition, the California Office of Environmental 

Health Hazard Assessment’s Technical Support Document of Exposure Assessment and 

Stochastic Analysis included detailed breathing rate scenarios [19]. It is desirable to reduce 

population exposure to traffic-related air pollutants because tailpipe emissions, such as 

PM2.5 and NOx, are associated with health risks in young children, older adults, patients, 
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and even healthy adults [20,21,22,23]. Thus, in this research both population-wide average 

breathing rate of 15 m3/day and population-specific breathing rate were applied. 

5.3.4 Vehicle Routing Calculation 

In previous studies, a weighting method that transformed the multi-objective 

Vehicle Routing Problem (VRP) [24] into a single-objective VRP was used. The specific 

methods can be found in a companion study [12]; since there are only four OD pairs, the 

freeway routes were compared to manually selected alternative routes that have similar 

travel time. 

5.4 Results 

5.4.1 Network-Wide Inhalation Values 

To model the HDDT running emission, the EMFAC T7 Tractor for model year 

(MY) 2012 was selected for the modelling scenarios since they were the most common 

HDDT used for goods transportation in 2018 in the Los Angeles and inland region. PM2.5 

and NOx were selected for the primary pollutants for evaluation due to their adverse health 

and environmental effects; CO2 emissions were also presented. All scenarios were 

modelled for a typical workday, with meteorological parameters extracted for 10 A.M. and 

3 P.M. on Monday May 9, 2016. Four entry/exit points along the major freeway 

intersections were selected and one truck stop located near the airport is marked in yellow 

star in Figure 5.3; it was assumed that a HDDT would enter or exit the study area through 

one of these four corners. Corner one, two, three and four corresponds to the Northwest, 

Northeast, Southeast, and Southwest corners of the San Bernardino city area, respectively. 



94 

 

The sensitive receptors for this study include daycares, schools (elementary to high 

schools), assisted living homes, and public parks. The population data was projected to 

calendar year 2018 at census block level based on 2010 Census and 2018 American 

Community Survey. Population at sensitive receptors were estimated based on school 

enrollment data and census population. Population at residential blocks were estimated 

based on several sources including population by age groups [12,25], employment data 

[26,27,28], and school enrollment rate [29,30]. 

 

Figure 5.3: Map of population, sensitive receptors, and truck trip attractions in San Bernardino City 

Figure 5.4 shows the colored map of modelled PM2.5 IM values at sensitive 

receptors and census blocks based on the meteorological conditions at 10 A.M. on May 9, 

2016, assuming a population-averaged breathing rate of 15 m3/day. For instance, a PM2.5 

IM value of 0.23 µg/link means that there would be 0.23 µg of PM2.5 inhaled by the nearby 

population after the truck traversed this roadway link in the given scenario. As air 
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pollutants from one roadway link can reach multiple facilities/blocks within 1,500 meters, 

the IM values of roadway links are generally higher for those near large sensitive receptors 

and densely populated census blocks. Figure 5.4 also shows the wind direction, and it can 

be observed that roadway links upwind of large sensitive receptors and densely populated 

census blocks generally have higher IM values than those downwind. 

  

Figure 5.4: Inhaled mass of PM2.5 (µg/link) at (left) sensitive receptors and (right) census blocks at 10 

A.M. assuming a population-averaged breathing rate of 15 m3/day. 

Figure 5.5 shows the aggregated PM2.5 IM values from both sensitive receptors and 

census blocks based on the meteorological conditions at 10 A.M. and 3 P.M. on May 9, 

2016, assuming a population-averaged breathing rate of 15 m3/day. The aggregated PM2.5 

IM values are generally higher at 10 A.M., when compared to that of 3 P.M., due to the 

more turbulent condition in the afternoon contributes to faster dispersion of air pollutants. 

The comparison shows how the meteorological conditions can affect the IM values. 
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Figure 5.5: Total inhaled mass of PM2.5 (µg/link) at 10 A.M. (left) and 3 P.M. (right) assuming a 

population-averaged breathing rate of 15 m3/day. The numbers in the parentheses show how many 

links fall into the corresponding PM2.5 IM range. 

5.4.2 Low Exposure Routes Comparison 

For trips that connect four corners and the warehouse, both a freeway route (FR) 

and a low exposure route (LER) were determined. The selection methods were based on 

freeway routes and local street routes that have similar travel time. 
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Figure 5.6: FR and LER for an example trip in San Bernardino City for all four corners. Corner 1 

(left); Corner 2 (center); Corner 3 (top right); and Corner 4 (bottom right). 

Figure 5.6 illustrates an example trip from each of the four corners; the coral routes 

show the FR, and the green routes show LER. Originating from corner one, the LER 

selected took Mill Street (left) to the warehouse area. Corner two (center) and three (top 

right) both took an LER that traveled along San Bernardino Ave to the warehouse area. 

Lastly, corner four (bottom right) the LER took Tippecanoe Ave to the warehouse area. 

The comparison of route attributes is summarized in Table 5.1, assuming a population-

averaged breathing rate of 15 m3/day. Generally, the driving distance decreased when 

choosing the LER over the FR; however, the driving duration only decreased for corners 

one and four. The largest decrease in CO2 emissions occurred at corner one’s LER, the 

reduction in CO2 emissions was 26%; this could be due to the LER diverting the HDDT 

away from the I-215 and I-10 interchange which consist of bridges and typically higher 

levels of stop-and-go traffic. The PM2.5 inhalation was reduced in every scenario, when 
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comparing the LER to the FR, by 14%, 29%, 48% and 40% for corner one, corner two, 

corner three and corner four, respectfully.  

NOx inhalation only reduced in the LER for corners two and three by 28% and 43%, 

respectfully, with corner one and four seeing an increase in NOx by 9% and 16%, 

respectfully. The increase in NOx inhalation could be due to HDDT being heavy emitters 

of NOx with slow stop-and-go driving on arterial roads, increasing the NOx emission. One 

possible way to help reduce the NOx emissions on the LER would be signal controls which 

could decrease the number of stop-and-go scenarios; future work is needed to investigate 

this further. 

Table 5.1: Comparison of route attributes for an example trip in San Bernardino City at all four 

corners at 10 A.M., assuming a population-averaged breathing rate of 15 m3/day. 

 

5.4.2.1 Varying breathing rates 

Influence of varying breathing rate were also examined. Two different breathing 

rate scenarios were applied: an averaged breathing rate of 15 m3/day, and an age-group 

specific breathing rates (in m3/day) as shown in Table 5.2.  

Driving 

Distance 

(miles)

Driving 

duration 

(minutes)

PM2.5 IM (µg) NOx IM (µg) CO2 (kg)

Freeway Route (FR) 11.45 12.99 0.22 21.27 18.65

Low Exposure Route (LER) 8.16 11.32 0.19 23.27 13.73

Freeway Route (FR) 9.36 13.00 0.09 10.14 14.31

Low Exposure Route(LER) 7.99 13.30 0.06 7.34 12.81

Freeway Route (FR) 4.74 7.27 0.05 6.73 8.33

Low Exposure Route(LER) 4.96 9.54 0.03 3.85 8.60

Freeway Route (FR) 5.72 8.13 0.05 6.55 9.95

Low Exposure Route(LER) 5.21 7.94 0.03 7.57 9.08

Corner 1 -29% -13% -14% 9% -26%

Corner 2 -15% 2% -29% -28% -10%

Corner 3 5% 31% -48% -43% 3%

Corner 4 -9% -2% -40% 16% -9%

May 9th 2016, 10 A.M.

Corner 1

Corner 2

Corner 3

Corner 4

Percent Difference (LER vs. FR)
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Table 5.2: Recommended Mean Point Estimates for Long-Term Daily Breathing Rates [19]. 

Age group 0-2 2-9 2-16 16-30 16-70 

m3/day 6.2 10.7 13.3 15 13.9 

Table 5.3 shows the inhaled PM2.5 and NOx weighted change for the LER for all 

four corners at 10 A.M. for the different breathing rate scenarios. Similar to the population 

averaged breathing rate, the age-group specific breathing rate showed a decrease in PM2.5 

inhalation for all four corners, and the NOx inhalation decreased by over 25% for corners 

two and tree, when compared to the FR. When comparing the population averaged and the 

age-group specific breathing rates, the PM2.5 and NOx inhalations (in µg) were typically 

7% to 15% higher and 8% to 18% higher, respectfully, when using the population averaged 

breathing rate. However, comparing the percent difference for each corner the two 

breathing rates only vary by + 2% for the PM2.5 inhalation with the NOx inhalation has a 

slighter larger variation of 7%, -2%, -3% and -2% for corners one, two, three and four, 

respectfully. 
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Table 5.3: Comparison of PM2.5 and NOx inhalation based on a population-averaged and age-group 

specific breathing rates for an example trip in San Bernardino City at all four corners at 10 A.M. 

 

Table 5.4 shows the inhaled PM2.5 and NOx weighted change for the LER for all 

four corners at 3 P.M. for the different breathing rate scenarios. Comparing the 10 A.M. 

and the 3 P.M. scenarios, at 3 P.M. the PM2.5 and NOx inhalation (in µg) decreased for all 

four corners. However, the percent difference (LER vs FR) only has noticeable changes 

for PM2.5 inhalation for corners one and two and NOx inhalation for corners one, two and 

four.  

PM2.5 IM (µg) NOx IM (µg) PM2.5 IM (µg) NOx IM (µg)

Freeway 

Route (FR)
0.22 21.27 0.19 18.51

Low Exposure 

Route (LER)
0.19 23.27 0.16 19.02

Freeway 

Route (FR)
0.09 10.14 0.08 8.92

Low Exposure 

Route(LER)
0.06 7.34 0.06 6.64

Freeway 

Route (FR)
0.05 6.73 0.05 5.90

Low Exposure 

Route(LER)
0.03 3.85 0.03 3.54

Freeway 

Route (FR)
0.05 6.55 0.04 5.75

Low Exposure 

Route(LER)
0.03 7.57 0.03 6.76

Corner 1 -14% 9% -16% 3%

Corner 2 -29% -28% -28% -26%

Corner 3 -48% -43% -46% -40%

Corner 4 -40% 16% -40% 18%

Percent 

Difference 

(LER vs. FR)

May 9th 2016, 10 A.M.

Population-averaged 

breathing rate of 15 m3/day

Age-group specific breathing 

rates (m3/day)

Corner 1

Corner 2

Corner 3

Corner 4



101 

 

The comparison between the two breathing rates at 3 P.M. is almost identical to the 

comparison at 10 A.M. with the only a few differences in the NOx inhalation. When looking 

at the inhalations (in µg) the NOx inhalation is 9% to 19% higher for the population-

averaged breathing rate, when compared to the age-group specific breathing rates. 

Additionally, the percent difference for the NOx inhalation decreased by 3%, compared to 

the 2% decrease at 10 A.M., for corner four when comparing the population averaged to 

the age-group specific breathing rates. 

Table 5.4: Comparison of PM2.5 and NOx inhalation based on a population-averaged and age-group 

specific breathing rates for an example trip in San Bernardino City at all four corners at 3 P.M. 

 

PM2.5 IM (µg) NOx IM (µg) PM2.5 IM (µg) NOx IM (µg)

Freeway 

Route (FR)
0.14 13.96 0.13 12.12

Low Exposure 

Route (LER)
0.13 16.35 0.11 13.29

Freeway 

Route (FR)
0.06 6.47 0.05 5.68

Low Exposure 

Route(LER)
0.04 4.88 0.04 4.41

Freeway 

Route (FR)
0.03 3.87 0.03 3.36

Low Exposure 

Route(LER)
0.02 2.19 0.01 2.00

Freeway 

Route (FR)
0.03 3.89 0.02 3.39

Low Exposure 

Route(LER)
0.02 4.68 0.01 4.18

Corner 1 -11% 17% -13% 10%

Corner 2 -26% -25% -25% -22%

Corner 3 -48% -43% -46% -40%

Corner 4 -40% 20% -40% 23%

Population-averaged 

breathing rate of 15 m3/day

Age-group specific breathing 

rates (m3/day)

Corner 1

Corner 2

Corner 3

Corner 4

Percent 

Difference 

(LER vs. FR)

May 9th 2016, 3 P.M.
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Overall, the scenarios suggest that the different breathing rates affect the NOx 

inhalation slightly more than the PM2.5 inhalation; with the time-of-day variation (10 A.M. 

vs. 3 P.M.) having a slightly larger impact on the inhalation for both pollutants. 

5.4.2.2 PM2.5 Correction Factor 

Many studies have shown that the gas-particle (G/P) partitioning of the organic 

PM2.5 is important for modelling realistic atmospheric conditions and that a majority of the 

PM2.5 emitted from on-road vehicles is organic PM2.5 [28,29,31]. G/P partitioning is a 

function of temperature, dilution and suspended organic PM mass concentrations, which is 

dictated by the vehicle emissions and ambient PM. Elemental carbon (EC) is a conservative 

species, therefore the closer the emitted PM2.5 is to pure EC (without any organics) the less 

important G/P partitioning is; however, organic carbon (OC) behaves differently than the 

EC and undergoes G/P partitioning. The EC relative to the OC is reported as the elemental 

carbon to organic carbon (EC:OC) ratio, with the smaller the EC:OC ratio being the more 

OC, relative to EC, emitted from the HDDT and therefore the more important the G/P 

partitioning. 

As the HDDT exhaust is emitted the plume rapidly dilutes, which leads to the 

evaporation of the organic PM2.5 into organic gases; however, the plume also rapidly cools 

which leads to the condensation of organic gases into organic PM2.5. As part of our 

research, a correction factor is being developed to help emission and dispersion models 

better predict near-road PM2.5 by accounting for the G/P partitioning that occurs as the 

vehicle emissions rapidly dilute and cool in the ambient atmosphere [34]. 
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Using the 10 A.M. scenario assuming an ambient temperature of 20oC and that the 

initial emissions from the HDDT was captured using a dynamometer in series with a 

constant volume sampler (dilution tunnel) at a sampling temperature of 47oC and sampling 

dilution ratio of 10. The correction factor was applied to investigate how much the PM2.5 

would vary accounting for the G/P partitioning that occurred as the exhausted diluted and 

cooled in the ambient atmosphere (Table 5.5). Based on results from the 200-vehicle study 

it was assumed the HDDT was a the EMFAC T7 Tractor MY 2014 certified diesel vehicle 

with a diesel particulate filter and selective catalytic reduction with an EC:OC ratio ranging 

from 0.05 to 0.25 [35] with the distance from the roadway varying between 1m to 600m. 

Table 5.5: PM2.5 percent change based on a correction factor accounting for the gas-particle portioning 

of the volatile organic PM2.5 emitted from the HDDT [34].  

 Distance (m) 1 5 10 50 100 600 

PM2.5 

Percent 

Change 

EC:OC of 0.05 +7% -44% -85% -97% -100% -100% 

EC:OC of 0.25 +7% -31% -48% -68% -75% -75% 

The PM2.5 percent change results in Table 5.5 indicate how much EMFAC and 

RLINE are over- or underestimating the predicted near-road PM2.5. For example, at 1m 

EMFAC and RLINE are underestimating the near-road PM2.5 by 8% whereas at 600m they 

are overestimating between 75% to 100%, depending on the HDDT EC:OC ratio. This is 

due to EMFAC and RLINE assuming the PM2.5 is non-volatile conservative species and 

therefore are not accounting for the G/P partitioning the volatile organic PM2.5 undergoes. 

At the 1m distance the temperature change between the tailpipe and ambient is dominating 

resulting in condensation of organic gases into organic PM2.5 and the positive PM2.5 percent 
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change. However, as the distance from the roadway increases the effect of dilution starts 

to dominate, resulting in the organic PM2.5 evaporating into organic gases and, 

consequently, the negative PM2.5 percent change. While the PM2.5 percent change seems 

to indicate that evaporation of the organic PM2.5 is complete (100m to 600m distances in 

Table 5.5), over longer timescales the organic PM2.5 is expected to age, oxidize and 

recondense [36]. These results suggest that rerouting trucks at least 10m away from the 

sensitive receptors and dense populations would reduce the PM2.5 inhalation by an 

additional 50% or more. 

5.4.2.3 Travel Delay on a Signalized Corridor 

With the proposed LERs on a signalized local corridor, the travel time delay due to 

stoplights along Mill St. were also investigated. Using Google Maps [37], it was discovered 

that from corner one to the warehouses the FR had approximately two stops, whereas the 

LER along Mill St. had approximately twelve possible stops.  

To estimate the travel time of a heavy-duty vehicle driving on Mill Street, this study 

referred to a real-world measurement study [38] during which the local transit bus’s 

emission and trajectory were measured. The bus services San Bernardino City area and the 

trajectory referenced is on Baseline Street, which is approximately two miles north of Mill 

Street. 

The driving duration between exiting the freeway and arriving at the warehouse 

were compared. In the original scenario, the HDDT had a driving duration 5.72 minutes on 

Mill Street. The synthesized speed trajectory scenario estimated that the HDDT had a 

driving duration of 9.87 minutes, leading to a 4-minute (67%) delay in driving duration. 
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This delay in driving duration, due to the increased stop-and-go driving at the stoplights, 

could also increase the fuel usage, the CO2 emitted, and the NOx inhalation to the 

surrounding area. In the future, the goal is to leverage in-use measurement and up-to-date 

microscopic emission model to evaluate the emission changes. To mitigate the increasing 

driving time and the emissions from stop-and-go events, the use of vehicle and signal 

control technologies have shown promising results [39,40]. 

5.4.2.4 Safety 

When redirecting heavy duty trucks to other streets, safety concerns always arise if 

it will increase the number of collisions on the streets. Historical collision data [41] from 

2009 through 2019 on Mill were collected and is shown in Figure 5.7. 

 

Figure 5.7: Historical vehicle collision map in Corner 1 LER, Mill Street. 

The number of collisions by involved party is summarized in Figure 5.8. Looking 

at Figure 5.8, it showed that after 2013 and 2014, the number of total collisions increased 

significantly, and the trend continued to 2019. It can also be seen that most of the collisions 

are passenger vehicle related. From 2009 to 2019, 13 out of the 120 collisions involved a 

truck. In order to improve both safety and mobility, there needs to be a combination of 
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technology improvements, such as improved visibility as well as signal controls, and 

education to reduce collisions. 

 

Figure 5.8: Summary the number of collisions by involved party type on Mill Street. 

5.4.3 Weighted Results based on Truck Flow Analysis 

Truck flow between each corner and the warehouse were estimated so that a truck 

flow weighted comparison of the route attributes between the freeway route and low 

exposure routes in the San Bernardino City could be analyzed. The truck flow data was 

obtained by using the Caltrans Performance Measurement System (PeMS) truck flow at 

mainline loop detector stations (LDS) [42] for June 2020. To find the number of trucks 

entering and exiting from the four corners was estimated using a proportional truck flow 

as well as the truck flow from the corresponding corner. Figure 5.9 shows the number of 

trucks coming inbound from the corresponding corner and going to the warehouse and the 
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number of trucks going outbound from the warehouse to the corresponding corner at both 

10 A.M and 3 P.M. 

 

Figure 5.9: Summary of inbound and outbound truck count for all for corners in June 2020 

Table 5.6 shows the weighted change of the LER for all four corners at 10 A.M. 

(top) and 3 P.M. (bottom), including the trucks heading outbound from all four corners and 

inbound from corners one and four. The overall, as compared with the FR at 10 A.M., the 

LER would be 5% longer in travel time, but would reduce distance by 7%, PM2.5 inhalation 

by 54%, NOx inhalation by 43%, and CO2 by 7%. Whereas at 3 P.M. the overall, as 

compared with the FR, the LER would be 1% longer in travel time, but would reduce 

distance by 9%, PM2.5 inhalation by 47%, NOx inhalation by 32%, and CO2 by 9%. The 

PM2.5 values presented in Table 5.6 does not account for the PM2.5 correction factor, future 

work will look at implementing the correction factor over the whole network.  
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Table 5.6: Summary of route attributes based on truck flow at 10 A.M. (top) and 3 P.M. (bottom), 

assuming an averaged breathing rate of 15 m3/day 

 

When comparing the 10 A.M. (Table 5.6 top) to 3 P.M. (Table 5.6 bottom), the 10 

A.M. scenarios had a greater PM2.5 and NOx inhalation reduction. The higher reduction in 

PM2.5 and NOx inhalation at 10 A.M. could be due to the atmosphere being more static in 

the morning allowing for a higher pollutant build-up (Figure 5.5), therefore a bigger impact 

on the reduction, when compared to 3 P.M. This time-of-day effect can also be applied to 

reduce population inhalation as fleet operations. 

5.5 Discussion & Conclusions 

The main objective of this research was to evaluate the exposure-based routing in the 

San Bernardino Airport area. This research evaluated the potential HDDT trips from the 

major freeway junctions to and from the airport and compared the travel time, distance, 

and inhalation values. The following summarizes the finding in this work: 

1) At 10 A.M. the LERs, for all four corners, showed a decrease in the PM2.5 inhalation 

and corners two and three see a decrease in NOx inhalation. 

Corner #
No. of 

Trucks

Driving 

Distance 

(miles)

Driving 

duration 

(min)

PM2.5 IM 

(ug)

NOx IM 

(ug)
CO2 (kg)

Driving 

Distance 

(miles)

Driving 

duration 

(min)

PM2.5 IM 

(ug)

NOx IM 

(ug)
CO2 (kg)

Driving 

Distance 

(miles)

Driving 

duration 

(min)

PM2.5 IM 

(ug)

NOx IM 

(ug)
CO2 (kg)

1 Inbound 56 641.34 727.51 12.14 1191.23 1044.42 456.90 633.66 10.48 1303.18 769.03 -184.44 -93.86 -1.66 111.95 -275.39

1 Outbound 19 202.16 233.29 4.38 430.55 330.89 143.80 203.47 3.97 478.26 242.90 -58.36 -29.82 -0.41 47.71 -87.99

2 Outbound 30 280.68 389.99 2.64 304.25 429.17 239.64 399.15 1.88 220.22 384.31 -41.05 9.15 -0.76 -84.03 -44.86

3 Outbound 237 1122.50 1722.28 12.65 1594.75 1973.66 1174.77 2260.36 6.64 912.72 2038.62 52.28 538.07 -6.01 -682.03 64.96

4 Inbound 186 1064.18 1511.84 8.76 1218.59 1851.44 969.34 1476.62 5.24 1408.27 1688.25 -94.84 -35.22 -3.53 189.68 -163.19

4 Outbound 474 2528.72 3387.33 20.56 2909.19 4328.83 2436.82 3369.99 0.20 49.80 4131.14 -91.90 -17.34 -20.35 -2859.39 -197.69

Total 1002 5840 7972 61 7649 9958 5421 8343 28 4372 9254 -418.31 370.99 -32.72 -3276.11 -704.17

-7% 5% -54% -43% -7%

Corner #
No. of 

Trucks

Driving 

Distance 

(miles)

Driving 

duration 

(min)

PM2.5 IM 

(ug)

NOx IM 

(ug)
CO2 (kg)

Driving 

Distance 

(miles)

Driving 

duration 

(min)

PM2.5 IM 

(ug)

NOx IM 

(ug)
CO2 (kg)

Driving 

Distance 

(miles)

Driving 

duration 

(min)

PM2.5 IM 

(ug)

NOx IM 

(ug)
CO2 (kg)

1 Inbound 85 973.47 1104.26 12.24 1186.68 1585.29 693.51 961.80 10.94 1389.86 1167.28 -279.95 -142.46 -1.29 203.18 -418.01

1 Outbound 9 95.76 110.51 1.39 135.33 156.74 68.11 96.38 1.29 158.80 115.06 -27.65 -14.12 -0.10 23.47 -41.68

2 Outbound 106 991.74 1377.98 5.96 685.56 1516.41 846.71 1410.32 4.41 516.85 1357.90 -145.03 32.34 -1.55 -168.72 -158.51

3 Outbound 149 705.70 1082.79 4.41 577.00 1240.82 738.57 1421.07 2.30 326.22 1281.66 32.87 338.28 -2.11 -250.78 40.84

4 Inbound 310 1773.63 2519.74 8.66 1205.19 3085.73 1615.56 2461.04 5.18 1450.64 2813.75 -158.06 -58.70 -3.49 245.45 -271.98

4 Outbound 508 2710.10 3630.31 13.27 1883.63 4639.34 2611.61 3611.72 0.13 33.37 4427.46 -98.49 -18.59 -13.14 -1850.26 -211.87

Total 1167 7250.40 9825.58 45.93 5673.39 12224.32 6574.09 9962.33 24.25 3875.73 11163.11 -676.32 136.76 -21.68 -1797.66 -1061.21

-9% 1% -47% -32% -9%

MY 2012 3pm Freeway Route Low Exposure Route Difference (v.s. Freeway Route)

June 2020 Truck Flow at 10AM

MY 2012 10am Freeway Route Low Exposure Route Difference (v.s. Freeway Route)

June 2020 Truck Flow at 3PM
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The LER for corner one (11.32 minutes) takes less time than the freeway 

route (12.99 minutes) and was significantly more fuel efficient than the freeway 

route (26% decrease in CO2 emissions), given the assumption of constant speed on 

signalized street. The PM2.5 inhalation was also reduced by 14% when taking the 

LER over the FR for corner one. This reduction in PM2.5 inhalation could increase 

by an additional 50+% by selecting LERs that are over 10m from the sensitive 

receptors, and when accounting for the PM2.5 correction factor and therefore the 

G/P partitioning of the organic PM2.5. Furthermore, the latest Google Maps and land 

use data show that there are few residential houses but mostly commercial zone 

directly adjacent to Mill Street, making it appropriate for truck route. However, for 

LER, when considering stop-and-go activities on Mill Street, it was estimated that 

the HDDT would have approximately 4-minutes delay in driving duration, which 

also means increased fuel and pollutant emissions. It requires microscopic emission 

model to analyze the speed trajectories on both signalized street and freeway to 

determine the emissions, which is highly dynamic in real world. In future work, a 

portable emission measurement system can be used to assess in-use emissions. In 

addition, the stop-and-go activities on signalized street can be minimized with 

smart technologies such as Freight Signal Priority [39,40] and Eco Approach and 

Departure [43]. 

2) The comparison between the population-averaged breathing rate of 15µg/m3 and 

an age-group specific breathing shows that the varying breathing rates slightly 

affects the inhalation. The NOx inhalation was affected more than the PM2.5 
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inhalation. A time-of-day comparison between 10 A.M. and 3 P.M. was also done 

and found that the time-of-day has a slightly larger impact on the inhalation than 

the different breathing rates. The comparison of the PM2.5 inhalation based on 

varying breathing rate does not account for the PM2.5 correction factor, future work 

will look at implementing the correction factor along with the varying breathing 

rates. 

3) The weighted results based on truck flow analysis shows that at 10 A.M. there is a 

greater reduction in PM2.5 and NOx inhalation, 54% and 43%, respectfully, when 

compared to the 3 P.M. scenario. This time-of-day effect can also be applied to 

reduce population inhalation as fleet operations. However, at 3 P.M. there is a 

greater reduction in CO2 emissions which could be due to there being more HDDT 

traveling to the warehouse at 3 P.M. leading to larger weighted reduction, when 

compared to 10 A.M.. The weighted PM2.5 inhalation results does not account for 

the PM2.5 correction factor, future work will look at implementing the correction 

factor over the whole network. 

These results suggest that effectiveness of the exposure-based routing depends on time 

of day and vary based on the population of residences and sensitivity receptors. Overall, 

the results demonstrate the potential for the exposure-based routing strategy to help 

mitigate the impacts of truck emission on a disadvantaged community. 

Increased vehicle collisions along the LERs are also a concern and could be reduced with 

technology and education. Future work needs to be done to help mitigate the safety 
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concerns along the LERs. Some recommendations for the city and airport authority would 

include:  

1) Meet with the freight transportation companies and discuss the frequent routes 

used. 

2) Comprehensively inspects and improve the street sections for visibility (e.g., 

obstruction, signages, surface marking etc.) and mobility (e.g., potholes, pavement 

condition, traffic signal timing, etc.) issues to better accommodate future increase 

of heavy-duty vehicles. 

3) Seek guidance and sponsorship through various funding resources [4,5,6]. Meet 

and inform the business and residents along the streets that will be impacted most. 

Provide education and support to improve their environmental health and safety. 

4) Collect city-level data, for instance, total volume and heavy-duty vehicle volume 

by time of day at key locations and use them for future decision making.  
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Chapter 6. Conclusions 

One way that researchers can better predict near-road PM2.5 and therefore human 

exposure is through the use of emission simulators; however, the predicted PM2.5 from 

emission simulators is not in agreement with measured PM2.5 from near-road studies. This 

dissertation bridged the gap between predicted and measured near-road PM2.5 by creating 

a PM2.5 correction factor that accounts for the gas-particle portioning that the organic PM2.5 

undergoes as it dilutes and cools in the ambient atmosphere. 

Chapter 2 applied two statistical models to examine the relationship among the weather 

parameters, traffic data, and the near-freeway air pollutant concentration of PM2.5 and NO2 

at two different near-road air monitoring stations in Southern California. Both statistical 

models showed that all weather parameters were significant variables, however the 

significance of traffic data depended on the air monitoring station location and pollutant of 

concern. Traffic data correlated better with near-freeway NO2 concentrations than the 

PM2.5 concentrations; this could be due to organic PM2.5 undergoing gas-particle 

partitioning as it rapidly dilutes and cools in the ambient atmosphere. To better predict the 

near-road air pollutant concentrations the following recommendations are made: include 

heavy-duty diesel truck flow; measure ambient background PM2.5; account for the gas-

particle partitioning of the organic PM2.5.  

Chapter 3 developed a PM2.5 correction factor based on the gas-particle partitioning of 

the organic aerosols emitted from on-road gasoline and diesel vehicles. Results indicate CF 

is sensitive to the sampling dilution & temperature (from the PEMS and dynamometers), 

ambient temperature and background PM2.5, distance from the vehicle, and the vehicles 
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EC/TC ratio, and shows that there is a bias in predicted roadside PM2.5 using the current 

transportation models.  

Chapter 4 developed a look-up table and random forest models based off the correction 

factor developed in Chapter 3. In building the random forest generally the ambient 

temperature, vehicle’s EC:OC and initial reactive organic gas (ROGi) concentration were 

determined to be the most important variables for predicting the CF. The correction factor 

can be coupled with emission simulators or dispersion models to better predict near-road 

PM2.5 and inhaled mass. The suggested future work for the PM2.5 correction factor is to 

broaden the fuel types and types of vehicles, such as light duty diesel vehicles and natural 

gas vehicles to better predict a wide range of vehicle emitted PM2.5. The correction factor 

should also be validated by direct measurement--the correction factor was built based on 

established science but field measurements and/or lab measurements would verify the 

results. 

Chapter 5 evaluated the potential heavy-duty diesel truck trips from major freeway 

junctions to and from the airport and compared the travel time, distance, and inhalation 

values in a disadvantaged community as well as showed how the correction factor 

developed in Chapters 3 and 4 could be applied. Results suggest that effectiveness of the 

exposure-based routing depends on time of day and vary based on the population of 

residences and sensitive facilities. Implementing the correction factor, developed in 

Chapters 3 and 4, showed that when the gas-particle partitioning was considered that the 

emission simulator and dispersion model was underestimating the near-road PM2.5 by 8% 

when 1m from the roadway and overestimating between 38% to 100% for 5m-600m from 
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the roadway. The PM2.5 estimates suggest that rerouting trucks at least 100m away from 

the sensitive receptors and dense populations would reduce the PM2.5 inhalation by an 

additional 75% or more. Overall, the results demonstrate the potential for the exposure-

based routing strategy to help mitigate the impacts of truck emission on a disadvantaged 

community. The suggested future work is to investigate, with a portable emission 

measurement system, how the NOx and/or PM2.5 varies on atrial roads (with the slower 

speeds and higher stop-and-go scenarios) to see if the low exposure routes reduce the 

pollutant inhalation in real-world scenarios. 

Appendix A introduces a new oxidation instrument that was built for the laboratory, 

the oxidation flow reactor (OFR). A preliminary experiment using α-pinene was conducted 

and showed that the OFR had comparable SOA produced, to that of Chhabra et al. 2010. 

Further work needs to be done to further optimize the OFR including flow simulation, 

examining wall loss, and varying the power supplied to the UV lamps and RH to 

understand how they affect the mixing ratios of O3, OH and HO2 generated inside the OFR. 

The research presented in this dissertation is critical in understanding how vehicle 

emissions interact with the ambient air, immediately after being emitted, which can greatly 

improve our understanding of how vehicle emissions affect human health, air quality, and 

the environment. Currently, emission simulators are treating all PM2.5 as non-volatile and 

are therefore not adjusting the PM2.5 based on the gas-particle partitioning; this leads to 

emission simulators and dispersion models being unable to accurately predict the near-road 

PM2.5. Implementing the correction factor with emission simulators and/or dispersion 
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models would allow for a more realistic PM2.5 concentration thereby improving estimates 

of human exposure to PM2.5. 
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Appendix A: Oxidation Flow Reactor 

A.1 Abstract 

This chapter introduces a new instrument, an oxidation flow reactor (OFR), built and 

initially characterized for the Atmospheric Process Lab to evaluate gas-phase chemical 

reactions leading to particulate formation. The OFR was built in 2018 and is a vertical 

cylindrical stainless steel continuous flow reactor, with a volume of ~14L and a nominal 

flow rate of 5LPM. A preliminary OFR experiment was ran with α-pinene to test the 

feasibility of the OFR. Comparing the HR-ToF-AMS m/z fragment table from the 

preliminary experiment to Chhabra et al. 2010 (Figure A.2) shows that the secondary 

organic aerosol (SOA) produced from the OFR is comparable to the SOA produced from 

Chhabra et al. 2010. The preliminary results indicate that the α-pinene is being oxidized by 

OH within the OFR. An initial OH calibration experiment was conducted by measuring the 

decay of benzene due to the reaction with OH; it was estimated that the OH exposure inside 

the OFR is about 1.33*1012 molecules s cm-3 (7.8*109 molecules cm-3). This OH exposure 

level corresponds to about 10 days of atmospheric oxidation, assuming typical atmospheric 

OH levels of 1.5*106 molecules cm-3. Since the OFR was built my research went in another 

direction leading to me to be unable to optimize the OFR. However, the OFR has been a 

useful instrument within the laboratory for others to use, uses include being used as a 

radical source, additional aging, and to help understand additional influences on the particle 

composition.  
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A.2 Introduction 

Organic aerosol (OA) accounts for ~20% to 90% of the aerosol mass in the lower 

troposphere [1]. Secondary OA (SOA) production is typically studied in environmental 

smog chambers. These smog chambers are large batch-style Teflon bags with volumes up 

to 90m3 and residence times of several hours. Smog chambers are designed to simulate 

SOA formation and further oxidation within the atmosphere; however, they are not 

designed to track the fast changes of precursor gases due to their large volumes and 

therefore long response times [2]. An alternative approach is a direct, fast measurement of 

the aerosol formation potential using a small chamber, the oxidation flow reactor. 

The concept of the Oxidation Flow Reactor (OFR) is that all precursor gases are 

rapidly oxidized with extreme amounts of oxidants resulting in aerosol formation [2]. Due 

to the highly oxidizing environment inside the OFR, it simulates atmospheric oxidation on 

a timescale ranging from a day to several days in a few minutes [2,3]; thus, allowing the 

OFR to produce atmospheric levels of oxidation that are not possible in the traditional 

environmental smog chambers [4].  

A.3 Building the Oxidation Flow Reactor 

The OFR was built in 2018 and is a vertical cylindrical stainless steel continuous 

flow reactor, with a volume of ~14L and a length of 46cm and a diameter of 20cm, a 

schematic diagram of the OFR is shown in Figure A.1. The flow rate through the chamber 

is 5LPM which gives a residence time of 170s; however, since the OFR does not exhibit a 

plug flow behavior; therefore, the outflow consists of a mix of residence times [2,5] 
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Figure A.1: Schematic diagram of the OFR chamber setup 

There are 1-4 UV lamps inside of the OFR, the UV lamps are low pressure Hg 

lamps which produces mainly 185nm and 254nm light. OH radicals are generated inside 

the OFR due to the photolysis of water (H2O + ℎ𝑣(185nm) → OH + H) [6]. The water is 

introduced into the OFR by passing some of the purified dry air though a bubbler while the 

majority bypasses the bubbler to create the desired relative humidity. O3 is also formed 

inside the OFR due to O2 photolysis (Reaction A.1) with the amount of OH formed (n) 

depending on the amount of H2O in the OFR [11]. 

Reaction A.1: OH and O3 production inside the OFR [6] 

 

A.4 Results 

A preliminary OFR experiment was ran with α-pinene to test the feasibility of the 

OFR. The preliminary experiment used: a Scanning Mobility Particle Sizer (SMPS) to 

measure the size distribution and number concentration [7], the Aerosol Particle Mass 

Monitor (APM, Kanomax) in series with an SMPS to measure particle effective density 
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[8], and the Aerodyne high-resolution time-of-flight Aerosol Mass Spectrometer (HR-ToF-

AMS) to get the bulk chemical composition of organic particulates [9]. The goal of the 

preliminary experiment was to see if the α-pinene was reacting with the OH to produce 

SOA. The APM calculated a density of 1.4 g cm-3, which is in agreement with the assumed 

SOA density. Comparing the HR-ToF-AMS m/z fragment table from the preliminary 

experiment to Chhabra et al. 2010 (Figure A.2) shows that the SOA produced from the 

OFR is comparable to the SOA produced from Chhabra et al. 2010 [10]. These results 

indicate that the α-pinene is being oxidized by OH inside the OFR. 

 

Figure A.2: M/Z fragment table for a-pinene. A) α-pinene/OH experiment from the OFR and B) α-

pinene/O3 experiment from Chhabra et al. 2010 [10] 
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The SOA likely comes from the reaction of OH with α-pinene, due to the reaction 

of α-pinene by O3 being relatively slow compared to the reaction of α-pinene by OH. The 

rate constants of α-pinene with OH and O3 are about 5.5*10-11 molecule-1 cm3 s-1 and 

8.2*10-17 molecule-1 cm3 s-1 from 288K to 295K [2]. 

OH exposure in the OFR is defined as the OH concentration (molecules cm-3) 

integrated over residence time of the OFR [12]. OH exposure determines how fast the 

precursor is oxidized within the OFR. An initial OH calibration experiment was conducted 

by measuring the decay of benzene due to the reaction with OH (rate constants ~ 1.22*10-

12 cm3 molecule-1 s-1 [11]. Using a gas chromatography (GC) it was estimated that the OH 

exposure inside the OFR is about 1.33*1012 molecules s cm-3 (7.8*109 molecules cm-3). 

This OH exposure level corresponds to about 10 days of atmospheric oxidation, assuming 

typical atmospheric OH levels of 1.5*106 molecules cm-3 [12].  

A.5 Discussion & Conclusions 

Since the OFR was built my research went in another direction leading to me to be 

unable to optimize the OFR. The OFR has been a tool within the laboratory that has been 

used as a radical source, used for additional aging, and to help understand additional 

influences on the particle composition. 

Future steps to further optimize the OFR will include determining the flow inside 

the OFR, examine wall loss, and varying the power supplied to the UV lamps and RH to 

understand how they affect the mixing ratios of O3, OH and HO2 generated inside the OFR. 
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