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Abstract

A number of sophisticated estimators of longitudinal effects have been proposed for estimating the 

intervention-specific mean outcome. However, there is a relative paucity of research comparing 

these methods directly to one another. In this study, we compare various approaches to estimating 

a causal effect in a longitudinal treatment setting using both simulated data and data measured 

from a human immunodeficiency virus cohort. Six distinct estimators are considered: (i) an 

iterated conditional expectation representation, (ii) an inverse propensity weighted method, (iii) an 

augmented inverse propensity weighted method, (iv) a double robust iterated conditional 

expectation estimator, (v) a modified version of the double robust iterated conditional expectation 

estimator, and (vi) a targeted minimum loss-based estimator. The details of each estimator and its 

implementation are presented along with nuisance parameter estimation details, which include 

potentially pooling the observed data across all subjects regardless of treatment history and using 

data adaptive machine learning algorithms. Simulations are constructed over six time points, with 

each time point steadily increasing in positivity violations. Estimation is carried out for both the 

simulations and applied example using each of the six estimators under both stratified and pooled 

approaches of nuisance parameter estimation. Simulation results show that double robust 

estimators remained without meaningful bias as long as at least one of the two nuisance 

parameters were estimated with a correctly specified model. Under full misspecification, the bias 

of the double robust estimators remained better than that of the inverse propensity estimator under 

misspecification, but worse than the iterated conditional expectation estimator. Weighted 

estimators tended to show better performance than the covariate estimators. As positivity 

violations increased, the mean squared error and bias of all estimators considered became worse, 

with covariate-based double robust estimators especially susceptible. Applied analyses showed 
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similar estimates at most time points, with the important exception of the inverse propensity 

estimator which deviated markedly as positivity violations increased. Given its efficiency, ability 

to respect the parameter space, and observed performance, we recommend the pooled and 

weighted targeted minimum loss-based estimator.

Keywords

aiptw; causal inference; double robust; efficient influence function; iptw; longitudinal treatment; 
multiple testing; semiparametric models; tmle

1 Introduction

Estimating the effect of an exposure on an outcome is a common goal in research. In settings 

where the exposure of interest is longitudinal, or in other words, is comprised of multiple 

treatment decisions over time, identification of such causal parameters requires non-

traditional statistical estimands, such as that provided by the longitudinal g-computation 

formula under an assumption of sequential randomization [1, 2]. Many estimators have been 

developed that target these longitudinal causally-motivated parameters, including multiple 

approaches to double robust estimation. One such example is a survival function at discrete 

time points, but under a specific treatment intervention, e.g. never treat. In this paper we 

provide an overview of estimators for longitudinal causal effects, with a focus on a particular 

class of double robust estimators. We compare the performance of alternative double robust 

estimators, as well as G-computation and inverse probability weighted estimators using 

simulated and real data.

Available estimators for longitudinal causal effects differ in their efficiency, in their nuisance 

parameters (and their choice of estimator of the nuisance parameter, such as data-adaptive or 

parametric-model based), and in their robustness. For example, the consistency of the 

“classical” longitudinal g computation approach [1] relies on consistent estimation of a 

series of conditional densities of non-exposure variables, while inverse probability weighted 

estimators [3, 4] rely on consistent estimation of the exposure mechanism.

A number of these estimators are double robust (DR). In other words, they have the 

appealing property that if either of two nuisance parameters are estimated consistently, then 

the resulting estimator will be consistent. The DR estimators are also efficient in a semi-

parametric statistical model, in that they obtain the lowest possible asymptotic variance 

among regular asymptotically linear estimators if both nuisance parameters are estimated 

consistently at reasonable rates. Such DR semi-parametric efficient estimators include, 

among others, those based on estimating equations [5, 6] and sequential regression 

approaches based on iterated conditional expectations [7–12].

We focus here on a particular class of double robust efficient estimators based on the 

iterative conditional expectation representation of the longitudinal g-computation formula 

[7, 9, 10], an approach that can improve performance by dramatically reducing the 

dimensionality of one of the two nuisance parameters. Specifically, the approach avoids the 

need to estimate the entire conditional distribution of the outcome and instead relies upon 
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the conditional expectation. Within this class, DR efficient estimators may be defined either 

as solutions to estimating equations, or instead as substitution estimators (where we 

substitute the true distribution for the empirically observed one). The latter approach can 

improve stability in the face of data sparsity (in particular, near violations of the positivity 

assumption [13–15]) through ensuring that resulting estimates respect the parameter space.

While a number of sophisticated estimators of longitudinal effects have been proposed, there 

is a relative paucity of research comparing these methods directly to one another. The 

purpose of this study is to compare these various approaches to estimating a causal effect in 

a longitudinal treatment setting using both simulated data and data measured from a cohort 

of patients treated with human immunodeficiency virus (HIV). This HIV clinical cohort was 

established by the Academic Model Providing Access to Healthcare (AMPATH), one of the 

care and treatment programs that contributes data to the International Databases to Evaluate 

AIDS, East Africa Consortium. One of the goals of the consortium is to develop new 

methods to analyze data collected from large clinical cohorts, including the ability to assess 

programmatic interventions that are implemented organically. Among eligible patients in 

this cohort, scientists are interested in determining the causal effect of enrolling into a low-

risk express care program on all cause mortality and loss to follow-up rates.

Six distinct estimators are considered here. They are (i) a simple substitution estimator, 

based on estimating the iterated conditional expectation (ICE) representation of the 

longitudinal g-computation formula [7, 9], (ii) an inverse propensity weighted (IPW) method 

[3, 4, 13], (iii) an augmented IPW (AIPW) estimator that directly solves the efficient 

influence function (EIF) estimating equation [9, 10, 16, 17], (iv) a double robust iterated 

conditional expectation (DRICE) estimator as presented by Bang and Robins [7], Robins 

[9], Scharfstein, Rotnitzky, and Robins [10] using a “clever covariate” as part of a parametric 

model, (v) a modified version of DRICE in which the estimated inverse probabilities are 

applied as observational weights [18–20], and (vi) and (vii) modified versions of the 

DRICEs (iv) and (v), in which the sequential outcome regressions are first fit using machine-

learning and then updated in a second targeting step [9, 12]. Estimators (iv)–(vii) are specific 

implementations of the general targeted minimum-loss based estimation framework [8, 12, 

21, 22]. Estimators (iii)–(vii) are all semiparametric efficient estimators, solving the 

estimating equation corresponding to the EIF. We focus on estimators (i) and (iii)–(vii) due 

to their relation to each other (shared basis on the ICE representation of the g computation 

formula and corresponding EIF), and additionally include IPW due to its significance in the 

causal literature.

Our paper builds on the published evidence base comparing similar methods in several 

important ways. First, much prior work has focused on the point treatment setting, in which 

both the statistical parameters and corresponding estimators are substantially simpler than 

their longitudinal counterparts (for example, Petersen et al. [14], Kang and Schafer [18], 

Gutman and Rubin [23], Han and Wang [24], Hattori and Henmi [25], Li, Kleinman, and 

Gillman [26], Zhou, Zhang, Li, and Zhang [27]). Second, most of the prior work comparing 

the performance of estimators of longitudinal treatment effects has generally been limited to 

comparison of a single double robust efficient estimator (such as a single DRICE or AIPW 

estimator) to a simpler alternative such as IPW or g-computation (for example, Decker, 
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Hubbard, Crespi, Seto, and Wang [28], Neugebauer, Schmittdiel, and van der Laan [29]). In 

contrast, direct comparisons, as provided in this study, of the performance of a range of 

double robust estimators including those incorporating machine learning are rare (although 

see Schnitzer, Lok, and Bosch [30], for a comparison of DRICE estimators of the parameters 

of non-saturated marginal logistic regression model in the presence of censoring). 

Furthermore, this study directly evaluates the comparative performance of a range of DRICE 

estimators under gradually increasing levels of positivity violations [14, 15, 31]. Lastly, for 

the applied setting (although not in the simulation), it considers estimates from both the 

generalized linear modelling approach and by incorporating Super Learning [32], an 

ensemble data-adaptive machine learning algorithm.

The remainder of the manuscript is structured as follows. Section 2 formalizes the data 

structure, statistical, and causal models. Section 3 defines the target parameter of interest and 

reviews its EIF. Section 4 presents each of the estimators being considered, details on the 

nuisance parameters required for estimation, and reviews Super Learning. Section 5 reviews 

practical implementation of the estimators and presents the results of the analyses for the 

simulations. Section 6 applies the estimators to non-simulated (i.e. real world) data. Lastly, 

Section 7 concludes with a discussion of the methods, results, and future directions. For 

reference, we include a notation list in Appendix A. Appendix B contains tables of all 

experimental results for the interested reader.

2 Data

Consider, as a working example, right censored survival data in which subjects are followed 

from a baseline time point t = 0 up to some final time point K + 1. At each time point t, 
subjects may enroll into a treatment program. Regardless of whether they enroll, each 

subject is followed until the first of either (i) some terminal event of interest is observed, (ii) 

the subject is right censored due to lost to follow-up, or (iii) the end of follow-up is reached. 

Time-varying covariates are measured at each time point t that may affect subsequent 

treatment, covariates, and the outcome. Additionally, baseline covariates are measured at 

baseline (t = 0).

More formally, we consider an independent and identically distributed (iid) statistical data 

structure. Let Y(t) be a failure indicator, a counting process which takes value 0 until the 

outcome event of interest is observed and subsequently switches to and remains at 1 for all 

remaining time points. We assume that Y(0) = 0 for everyone, i.e. that no subjects have 

experienced the event at the beginning of follow-up. Let L1(t) be the time-varying covariate 

values measured at each time point t. We define L1(0) to additionally include all baseline 

covariates measured at t = 0. We refer to the joint outcome and covariate variables at time t 
as L(t) = (Y(t), L1(t)) ∶t = 0, 1, …, K + 1. Let A1(t) be the indicator of enrollment into the 

treatment program and A2(t) be the indicator of censoring due to loss to follow-up. Each of 

these variables take value 0 until an enrollment or censoring event is observed, respectively, 

at which point they become fixed at 1. We collectively refer to the treatment and censoring 

processes as A(t) = (A1(t), A2(t)) : t = 0,1,…, K. For notational convenience, we define all 

variables after failure or right censoring occurs as deterministically equal to their last 
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observed value. Our data can now be represented as n independent and identically 

distributed (iid) copies of the longitudinal data structure

O = (L(0), A(0), L(1), … , A(K), L(K + 1))iidP0 . (1)

2.1 Likelihood

We first consider the likelihood L(O) for the data structure specified above. In particular, we 

use the following factorization, implied by the assumed time ordering L(t) → A(t) such that 

the likelihood for subject i is

p0(Oi) = p0(Li(0), Ai(0), Li(1), Ai(1), … , Li(K + 1)

= p0(Li(K + 1) |Li(K), Ai(K)) ⋅ p0(Ai(K) |Li(K), Ai(K − 1)

⋅ p0(Li(K) |Li(K − 1), Ai(K − 1)) ⋅ p0(Ai(K − 1) |Li(K − 1), Ai(K − 2))

⋯p0(Li(0)

=
t = 0

K + 1
p0(Li(t) Li(t − 1), Ai(t − 1))

q0, L(t)(L(t), Pa(L(t)))
⋅

t = 0

K
p0(Ai(t) Li(t), Ai(t − 1))

g0, A(t)(A(t), Pa(A(t)))

(2)

where we define X(t) ≡ (X(1), X(2), … , X(t)) to denote the history of variable X up to time t, 
p0(⋅) to denote the density of P0 with respect to some dominating measure, and A(−1) = 

L(−1) = ∅. We follow convention in using Pa(X) to denote the parents of the node defined 

as the variables which precede it, and denoting the conditional probabilities p0(L(t) | ⋅ ) and 

p0(A(t) | ⋅ ) as the q and g factors for the likelihood, respectively, such that 

q0, L(t)(L(t), Pa(L(t))) = p0(L(t) |L(t − 1), A(t − 1)) and 

g0, A(t)(A(t), Pa(A(t))) = p0(A(t) |L(t), A(t − 1)). For ease of notation, we collectively refer to the 

product of p0(L(t) | ⋅ ) and p0(A(t) | ⋅ ) over all t respectively as

q0 ≡
t = 0

K + 1
q0, L(t)(L(t) Pa(L(t)))

g0 ≡
t = 0

K
g0, A(t)(A(t) Pa(A(t))) .

(3)
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2.2 Statistical model

With our data and likelihood clear, we consider a statistical model ℳ for the true distribution 

P0, such that if 𝒬 and 𝒢 are the variationally independent sets of all possible values for q0 

and g0 respectively, then the statistical model can be represented as 

ℳ = P = q ⋅ g : q ∈ 𝒬, g ∈ 𝒢 . We assume a semiparametric model, which restricts the set of 

possible distributions for the g0 and q0 components of the likelihood. Specifically, to respect 

the factual details that we know about the data generating process, we force three model 

restrictions on the conditional distributions of g0,A(t), (A(t), Pa(A(t))) ∶ k = 0, 1, …, K, and 

q0,L(t), (L(t), Pa(L(t))) ∶ k = 0, 1, …, K + 1.

1. Once A1(t) = 1, we have that A1(t + 1) = 1.

2. Once A2(t) = 1, we have that A2(t + 1) = 1.

3. Once Y(t) = 1, we have that Y(t + 1) = 1.

where we define X(t + 1) ≡ (X(t + 1), X(t + 2), …, X (K + 1)) to denote the remaining 

history of X from time t + 1 to K + 1.

2.3 Causal model

In addition to the statistical model ℳ presented above, we can additionally represent further 

causal assumptions about our data generating mechanism using a causal model ℳℱ. The 

non-parametric structural equation model (NPSEM) [33] reflecting our beliefs about the 

time-ordering and relationships between the exposure, covariates, and outcome of interest is

L(t) = f L(t)(L(t − 1), A(t − 1), UL(t)): t = 0, 1, … , K, K + 1
A(t) = f A(t)(L(t), A(t − 1), UA(t)): t = 0, 1, … , K (4)

where U ≡ (UL(t), UA(t)): t = 0, 1, … , K + 1 are unmeasured exogenous variables from some 

underlying probability distribution PU and the function fA(t) is restricted according to 1 and 2 

above. Here, fO≡ (fL(t), fA(t) ∶ t= 0, 1, …, + 1) are causal functions which deterministically 

assign the observed values of O based on the values of the arguments provided. This casual 

model assumes that each measured variable may be affected by all measured variables 

preceding it. While we initially make no assumptions on PU, allowing any two measured 

variables to share an unmeasured common cause, some restrictions on this distribution will 

be needed to identify the causal effects of interventions on the treatment and censoring 

variables.

3 Target causal parameter and identifiability

As causal parameter we focus on the mean of the counterfactual outcome at specific time 

points under a specific treatment intervention; contrasts of this parameter under distinct 

treatment interventions can be used to summarize a wide range of casual effects. The 

intervention on the exposure(s) of interest at each time point corresponds to deterministically 

setting the values of A(t) to some fixed value a(t) for all t in the causal model ℳℱ specified 

above, resulting in a modified distribution Pa
0. The counterfactual outcome Ya(t∗) under this 
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intervention can be interpreted as the value of Y(t*) at some specific time point t* ≤ K + 1 

that would have been generated had A(t) been deterministically set to a(t) for all t. We 

denote the set of possible regimes of interest through time t* − 1 as 𝒜
t∗ − 1

, and only 

consider regimes under interventions to prevent loss to follow up (set a2 = 0). Under the 

untestable assumption of sequential randomization [1, 2] and the testable assumption of 

positivity [14, 15], this parameter 𝔼Ya(t∗) is identifiable from the observed data using the 

longitudinal g-computation formula [1]:

𝔼Ya(t∗) =
l (t∗ − 1)

𝔼(Y(t∗) L(t∗ − 1) = l (t∗ − 1), A(t∗ − 1), = a(t∗ − 1)) .

j = 0

t∗ − 1
P(l( j) L( j − 1) = l ( j − 1), A( j − 1) = a( j − 1))

(5)

We note that issues related to measurement error and interference are beyond the scope of 

the current paper and will be addressed in future work.

Sequential randomization

Sequential randomization [1], assumes that

Ya(t∗) ╨ A(t) Pa(A(t)): t = 0, 1, … , t∗ − 1, a(t∗ − 1) ∈ 𝒜
t∗ − 1

(6)

That is, our treatment is independent of the counterfactual outcome given its parents or 

informally, that measured covariates are sufficient to control for confounding of treatment 

and informative censoring. A sufficient condition for this assumption to be met is if all 

unmeasured exogenous variables affecting the treatment and censoring nodes UA(t) are 

independent of the exogenous variables affecting future Y(t) nodes given the observed past 

up to time t.

Positivity

Our assumption of positivity [13–15, 31] states that:

P0(A(t) = a(t) L(t − 1), A(t − 1) = a(t − 1)) > 0: t = 0, … , t∗ − 1, a(t∗ − 1)

∈ 𝒜
t∗ − 1

a . e .
(7)

Informally, we require that there is adequate support for our intervention of interest 

regardless of covariate history, i.e. that there is no “finite sample” bias. As we demonstrate 

below in simulations, even in situations where this assumption on P0 holds, in finite samples 

certain covariate histories and treatment combinations may be poorly supported, resulting in 

data sparsity and, consequently, potential increases in estimator bias and variance which 

threaten valid inference.
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In the scenario where the required assumptions stated above are met, the longitudinal g-

formula eq. (5) provides our target statistical parameter to be estimated from the observed 

data, denoted Ψ(P0). For reasons that will become clear later, and following Bang and 

Robins [7], Robins [9], we note that by the tower property of expectations our target 

statistical parameter Ψ(P0) can also be expressed in an iterated conditional expectation form, 

such that

𝔼[Ya(t∗)] = 𝔼[𝔼[⋯𝔼[𝔼[Y(t∗) La(t∗ − 1)] La(t∗ − 2)]⋯ La(0)]] (8)

where for notational convenience, we define La(t) ≡ (L(t), A(t) = a(t)). We refer the interested 

reader to Robins [9] for further details on the derivation.

4 Estimation

Below, we first provide the efficient influence function, which underlies the four double 

robust estimators we consider in this paper. We next review two non-DR estimators (the ICE 

and IPW), followed by each of the DR estimators in turn. In estimating the nuisance 

parameters required for consistency of our target parameter, there are a number of 

approaches that can be taken. We review two specific details below. At a high level, the 

consistency of the IPW estimator relies on consistency of the estimator of the treatment 

mechanism g0, the consistency of the ICE estimator depends on the consistency of the 

estimator of the iterated outcome regressions in eq. (8), and the DR estimators remain 

consistent if either nuisance parameters are estimated consistently, but rely on consistent 

estimation of both for efficiency.

Throughout we use a subscript n to denote an estimator, and ψn to denote a point estimate of 

the true parameter value ψ0 = Ψ(P0). For ease of notation, we focus on the target parameter 

defined at a single final time point: t∗ = K + 1.

4.1 Efficient influence function (EIF)

An estimator is efficient if and only if it has an influence function (IF) equal to the EIF for 

Ψ(P0), endowing it with the lowest asymptotic variance among regular asymptotically linear 

estimators [34–36]. The EIF is thus the basis for constructing the four DR semiparametric 

efficent estimators described in this paper. The EIF for our target parameter, denoted D∗(P)

(O), has been derived previously [10, 12, 16]:

D∗(P0)(O) =
t = 0

K + 1
Dt

∗(q0, g0)(O)

=
t = 1

K + 1 𝕀(A(t − 1) = a(t − 1))
g0, 0: t − 1

a Q0, L(t + 1)
a − Q0, L(t)

a + Q0, L(1)
a − Ψ (Q0

a)
(9)
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where we define Q0, L(t)
a ≡ 𝔼0[Q0, L(t + 1)

a |L(t − 1), A(t − 1) = a(t − 1)] and 

g0, 0: t − 1
a ≡ ∏k = 0

t − 1 P0(A(k) = a(k) |L(k), A(k − 1) = a(k − 1)). For notational convenience, we use 

Q0, L(K + 2)
a  to represent Y(K + 1) under the true distribution P0.

There are a number of points worth reemphasizing here. Firstly, this EIF is simply a sum of 

time-specific IFs over all time points. Thus, estimators that solve the estimating equation 

corresponding to the EIF can be constructed such that they solve the estimating equations 

individually at each time point. Secondly, when K + 1 is equal to 1, i.e. there is only one 

time point, this IF reduces to the well known EIF for the point treatment setting [5, 16, 37]. 

Lastly, the IF has, in the denominator of the first term, the cumulative probability of 

treatment up to each time point t. Consequently, positivity violations or near violations eq. 

(7), where the probability of treatment given the past is extremely low, can have large effects 

on the performance of estimators solving the estimating equation for this IF.

4.2 Iterated conditional expectation estimation (ICE)

As stated in eq. (8), our parameter of interest can be represented as a series of iterated 

conditional expectations. From this representation, as described by Scharfstein, Rotnitzky, 

and Robins [38] and Robins [9], we can form an estimator which starts by estimating the 

inner most conditional expectation and iterating outward until reaching the outermost 

conditional expectation. In other words, one first regresses the outcome (at time K + 1) on 

past covariates among those who followed the treatment of interest until the outcome was 

measured. Estimation then steps backwards in time, where at each step, the fit from the prior 

regression serves as a new “outcome” and is regressed on past covariates among those who 

followed the treatment up to that time point. The parameter estimate ψn
ICE is then just the 

empirical mean of the final regression fit (which is now only a function of baseline 

covariates) over all the observations. The specific algorithm proceeds as follows:

1. Let T denote the failure time. Estimate the innermost conditional expectation 

Q0, L(K + 1)
a = 𝔼0[Y(K + 1) |L(K), A(K) = a(K)], where the expectation is known to 

be equal to if T < K + 1. We denote this estimate as Qn, L(K + 1)
a .

2. Given Qn, L(K + 1)
a , we can recursively iterate outwards for t = K, K − 1, K − 2, …, 

1, estimating Q0, L(t)
a = 𝔼0[Qn, L(t + 1)

a |L(t − 1), A(t − 1) = a(t − 1)], acknowledging 

our slight abuse of notation, where again the expectation is known to be equal to 

1 if T < t. We denote these estimates as Qn, L(t)
a .

3. At t = 1, we have the estimate Qn, L(1)
a , which now is a function of only L(0). As 

indicated in eq. (8), our parameter estimate is simply the empirical expectation 

over L(0), i.e., ψn
ICE = 𝔼nQn, L(1)

a .

As with the established parametric g-computation estimator (e.g. Robins [39], Taubman, 

Robins, Mittleman, and Hernán [40]), this estimator only relies upon the q0 portion of the 

likelihood in estimating our target parameter. Unlike the parametric g-computation 
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estimator, however, which relies on estimating each of the conditional probability 

distributions given in the g-computation formula above eq. (5), this estimator relies on only 

the iterated conditional expectations Q0
a ≡ Q0, L(t)

a , t = 1, …, K +1. Thus, we only need to 

correctly model the first conditional moments of these distributions. Consequently, it 

provides a substantial advantage over the parametric g-computation approach in that it 

avoids the need to estimate the full the conditional distributions (or densities) of each of the 

non-intervention factors given the past (e.g. the second or higher conditional moments).

4.3 Inverse probability weighted estimation (IPW)

Our parameter can also be estimated by up-weighting subjects from L1(t) that are under-

represented compared to the representation they would have had under a randomized 

treatment assignment [3, 4]. This approach can be understood as creating a pseudo-

population in which the measured covariates are balanced between treatment groups [41]. 

More formally, we implement the following estimator [4]:

ψn
HT =

1
n ∑i = 1

n 𝕀(Ai(K) = a(K))

gn, 0:K, i
a Y i(K + 1)

1
n ∑i = 1

n 𝕀(Ai(K) = a(K))

gn, 0:K, i
a

(10)

where gn, 0:K, i
a = ∏k = 0

K Pn(Ai(k) = a(k) |Li(k), Ai(k − 1) = a(k − 1)). This estimator relies upon 

the consistent estimation of g0 for consistency.

4.4 Augmented inverse probability weighted estimation (AIPW)

Realizing that the EIF in eq. (9) has mean zero and is a function of our target parameter [34, 

35], we can straight forwardly form an estimating equation and solve for our parameter [10, 

42]. In other words, we simply replace g0 and Q0
a, the true treatment mechanism and iterated 

conditional expectations, respectively, of the EIF with their corresponding estimates, set the 

coresponding estimating equation equal to 0, and solve for ψ. This naturally results in the 

estimating equation estimator

ψn
AIPW = 𝔼nD∗(Qn

a, gn)(Oi) + Ψ (Qn
a)

= 𝔼n
t = 1

K + 1 𝕀(Ai(t − 1) = a(t − 1))
gn, 0: t − 1, i

a Qn, L(t + 1), i
a − Qn, L(t), i

a + Qn, L(1), i
a

(11)

where again, for notational convenience, we use Qn, L(K + 2), i
a  to denote Yi(K + 1).

4.5 Double robust iterated conditional expectation (DRICE)

As shown by Bang and Robins [7], we can form a DR estimator as a sequential regression 

estimator quite similar to the ICE approach from Section 4.2. This approach, however, 

additionally uses the inverse cumulative probability of treatment estimate 
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gn, 0: t − 1(a(t − 1))−1 times the indicator of following treatment 𝕀(Ai(K) = a(K)) as a covariate 

in estimating Q0, L(t)
a , consequently augmenting the original estimate of the conditional mean. 

In other words, we use essentially the same algorithm as in the non-double robust ICE 

estimator, with the difference that each iterated outcome regression now includes as 

additional covariate an indicator of following the treatment regime of interest divided by the 

inverse of the estimated probability of following that reigme. Our iterated conditional 

expectation algorithm is therefore updated as follows:

1. Estimate g0, 0: t − 1
a : t = K, K − 1, … , 0. We denote the estimates as gn, 0: t − 1

a .

2. Let T denote the failure time. Similar to the ICE estimator, we estimate the 

innermost conditional expectation Q0, L(K + 1)
a = 𝔼0[Y(K + 1) |L(K), A(K) = a(K)], 

where the expectation is known to be equal to 1 if T < K + 1. Using generalized 

linear models, we augment this initial estimate by adding, as an extra covariate, 

𝕀(A(K) = a(K)) × g0, 0:K
a, − 1. We denote this estimate as Qn, L(K + 1)

a, g .

3. Given Qn, L(K + 1)
a, g , we can recursively iterate outwards fo t = K, K − 1, K – 2,…,1 

estimating Q0, L(t)
a = 𝔼0[Qn, L(t + 1)

a, g |L(t − 1), A(t − 1) = a(t − 1)]. The expectation is 

also known to be equal to 1 if T < t. Using generalized, each estimate is 

augmented by adding, as extra covariate, 𝕀(A(t − 1) = a(t − 1)) × g0, 0: t − 1
a, − 1 . We 

denote these estimates as Qn, L(t)
a, g .

4. At t = 1, we have the estimate Qn, L(1)
a, g , which now is a function of only L(0). As 

indicated in eq. (8), our parameter estimate is simply the empirical expectation 

over L(0), i.e.ψn
DRICE = 𝔼nQn, L(1)

a, g .

We note that use of the linear link function, even for a continuous outcome, can result in an 

unstable estimator as there is not guarantee that the estimate will respect the bounds of the 

parameter space. In contrast, use of the logit link for either a binary outcome or an 

appropriately transformed continuous outcome [12] ensures that the estimator respects the 

parameter space and is a substitution estimator. Although the general targeted maximum 

likelihood framework was not recognized at the time, the resulting estimator is a targeted 

maximum likelihood estimator.

4.5.1 DRICE weighted—Rather than using the inverse probability estimates gn, 0: t − 1
a  as 

part of a covariate as presented by Bang and Robins [7], an alternative approach uses inverse 

of gn, 0: t − 1
a  as observational weights and estimates Q0, L(t)

a  in the same manner as the 

approach above, but instead using 𝕀(Ai(t − 1) = a(t − 1)) as a covariate [18–20]. We refer to 

this estimator as the weighted DRICE and to the previous estimator as covariate DRICE.

The approach of applying the inverse of probability estimates (in generalized linear models) 

gn, 0: t − 1
a  as weights can potentially aid us in the presence of positivity violations, since 
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small values of gn, 0: t − 1
a  can potentially skew the estimates of Q0, L(t)

a  as an outlier if 

included in the clever covariate.

4.6 DRICE with targeted update of initial fit (Targeted minimum loss-based estimation 
(TMLE))

While the two estimators described in Section 4.5 are TMLEs, van der Laan and Gruber[12] 

subsequently explicitly placed these estimators in the more general TMLE framework. The 

targeted minimum loss-based framework requires a number of ingredients, including (i) the 

EIF D*(q, g)(O) defined above, (ii) a generalized loss function possibly indexed by a 

nuisance parameter ℒ
t, QL(t + 1)

a (QL(t)
a ), (iii) a least favorable parametric submodel QL(t)

a (ϵt)

chosen such that the linear span of the generalized score at zero fluctuation spans the EIF, 

and (iv) an updating algorithm which iteratively minimizes the generalized loss-based 

empirical risk over the parameters of the least favorable parametric submodel. Using this 

framework, van der Laan and Gruber [12] described the following the algorithm for 

estimation:

1. Estimate g0, 0: t − 1
a : t = K + 1, K, … , 1. We denote the estimates as gn, 0: t − 1

a .

2. Let T denote the failure time. Estimate 

Q0, L(K + 1)
a = 𝔼0[Y(K + 1) |L(K), A(K) = a(K)], where the expectation is known to 

be equal to 1 if T < K + 1. We donate this estimate as Qn, L(K + 1)
a .

3. Update the initial fit Qn, L(K + 1)
a  based on the K + 1-th chosen loss function 

ℒ
K + 1, QL(K + 2)

a (QL(K + 1)
a (ϵK + 1)) and using the parametric submodel 

QL(K + 1)
a (ϵK + 1). By setting ϵn, K + 1 = argmin

ϵ
Pnℒ

K + 1, QL(K + 2)
a (QL(K + 1)

a (ϵ)), an 

updated fit is formed Qn, L(K + 1)
a, ∗ = QL(K + 1)

a (ϵn, K + 1) that is targeted at the 

parameter Ψ (P0).

4. Given Qn, L(K + 1)
a, ∗ , we can recursively for t = K, K − 1, K – 2,…,1:

a. Estimate the conditional expectation 

Q0, L(t)
a = 𝔼0[Qn, L(K + 1)

a, ∗ |L(t − 1), A(t − 1) = a(t − 1)], where again the 

expectation is known to be equal to1 if T < t. We donate this estimate as 

Qn, L(t)
a .

b. Similar to Step 3, update Qn, L(t)
a  using the loss function 

ℒ
t, QL(t + 1)

a (QL(t)
a ) with the parametric submodel QL(t)

a (ϵt). Again, 

minimizing the empirical loss function 
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ϵn, t = argmin
ϵ

Pnℒ
t, QL(t + 1)

a (QL(t)
a (ϵ)) result in the updated fit 

Qn, L(t)
a, ∗ = QL(t)

a (ϵn, t) for time t.

5. At t = 1, we have the estimate Qn, L(1)
a, ∗ , which now is a function of only L(0). Our 

parameter estimate is simply the empirical expectation over L(0), i.e.

ψn
TMLE = 𝔼nQn, L(1)

a, ∗ .

In practice, the non-negative log likelihood loss is typically chosen as the generalized loss 

ℒ
t, QL(t + 1)

a (QL(t)
a ) along with the submodel

logitQL(t)
a (ϵt) = logitQn, L(t)

a + ϵth(t)

where the covariate h(t) = 𝕀(A(t) = a(t))/gn, 0: t
a .

Similar to the DRICE estimators described in Section 4.5, this approach generates a 

substitution estimator that solves the EIF estimating equation. In terms of practical 

implementation, the primary difference between the two approaches is that for each 

sequential regression in turn, TMLE first forms the initial fit and subsequently uses the 

inverse probability estimates to update this initial fit, resulting in a 2-step approach. 

Conversely, DRICE presented in Section 4.5 includes the clever covariate in the initial fit of 

a parametric model for each sequential regression. Under parametric models, meaningful 

differences would not be expected. However, the two step approach makes possible 

integration of machine learning at the stage of the initial fit of the sequential outcome 

regressions. Of note, outside the more general TMLE framework, Robins [9] and Rotnitzky, 

Lei, Sued, and Robins [20] also proposed such a two step fit. While both the one and two 

step DRICE estimators are TMLEs, we use “TMLE” for the remainder of this paper to refer 

to the two step estimator described in this section, as this corresponds to the longitudinal 

TMLE that to our knowledge is in most common use.

4.6.1 TMLE weighted—As with the one step DRICE of Section 4.5, the TMLE of 

Section 4.6 can also be implemented using an alternative choice for our loss function and 

submodel [12]. The submodel

logitQL(t)
a (ϵt) = logitQn, L(t)

a + ϵt

and loss function

ℒ
t, QL(t + 1)

a (QL(t)
a ) = − 𝕀(A(t) = a(t))

gn, 0: t
a Qn, L(t + 1)

a logQn, L(t)
a + (1 − Qn, L(t + 1)

a )log(1 − Qn, L(t)
a )
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also satisfy the generalized score condition required for the TMLE. For the remainder of this 

paper, we refer to the estimator as the weighted TMLE and the prior estimator as the 

covariate TMLE.

4.7 Conditioning nuisance parameter estimation on a

One approach to estimating the nuisance parameters g0, 0: t − 1
a  and Q0, L(t)

a , presented by Bang 

and Robins [7] and van der Laan and Gruber [12], conditions each factor on having followed 

the treatment regime of interest a (up to time t) and uses only these subjects to estimate g0 

and Q0
a.

An alternative approach is to instead pool across all subjects regardless of treatment history 

in estimating g0 and Q0
a and then to evaluate each on at A(t) = a(t): t = 0, 1, … , K. We refer to 

this latter approach as the pooled estimator and the approach that conditions on following a
as the stratified estimator. The pooled approach provides potentially more stability due to the 

increased sample size used to estimate each nuisance parameter, albeit at a potential cost of 

increased bias in nuisance parameter estimates. We note that if, as in our working example, 

A(t) is a counting process that jumps to one once and remains there deterministically, the 

stratified and pooled approaches to estimating g0 will be identical (n.b. the deterministic 

nature of A(t) naturally implies conditioning on prior A(t−1) = 0 when estimating g0). 

Therefore, the stratified approach for the IPW estimator is equivalent to the pooled 

approach.

4.8 Data adaptive estimation

In estimating these nuisance parameters, both parametric generalized linear model 

approaches and data-adaptive machine learning approaches are possible. Potential machine 

learning approaches include gradient boosting machines [43, 44], support vector machines 

[45, 46], neural networks [47], k-nearest neighbors [48], and data-adaptive parametric 

models such as ridge regression [49], least absolute shrinkage and selection operator [50], 

and elastic nets [51]. To prevent overfitting of the data, cross validation is employed in 

determining the best fit. Additionally, these candidates can be combined to provide one 

overall fit in an approach known as stacking or model averaging [52]. One such approach 

which incorporates all of these is known as Super Learning [32]. This algorithm uses V-fold 

cross validation to select the best convex combination of conditional density or probability 

fits within a user-specified library of potential candidates. If none of the candidates in the 

library is a correctly specified parametric model, then Super Learner has been proven to 

perform at least as well asymptotically as an oracle selector that selects the best candidate 

from the library based on the (unknown in practice) true distribution P0. Otherwise, (e.g. if a 

correct parametric model is among the members of the Super Learner library) the Super 

Learner achieves the rate of convergence of log(n)/n[32], which is almost parametric (with 

rate 1/n). We therefore relied on Super Learner in our applied analyses, and refer the 

interested reader to van der Laan, Polley, and Hubbard [32] for further details.

Most of the double robust estimators considered, with the exception of DRICE and weighted 

DRICE, can incorporate machine learning while retaining valid theory based inference 
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(assuming adequate rates of convergence for estimators of g0 and Q0). The exception is the 

one step DRICEs of Section 4.5, which are only defined for parametric models on the 

iterated conditional expectations. We therefore did not consider the data-adaptive approaches 

for DRICE and weighted DRICE. In contrast, theory-based inference is no longer supported 

when machine learning approaches are used for nuisance parameter estimation in the IPW 

and ICE estimators, representing an additional advantage of using double robust estimators 

such as AIPW or TMLE.

5 Simulations

To evaluate and compare the performance of these longitudinal causal estimators, we first 

implement a simulation with a known data generating distribution and evaluate the bias, 

variance, and mean squared error of each estimator. We note that, due to computational 

limitations for our simulations, estimators were implemented using correctly specified and 

misspecified parametric models, rather than machine learning. Specifically, the number of 

simulations required to accurately estimate performance metrics of the estimators made the 

use of machine learning infeasible. Our applied analysis in Section 6 only requires that we 

run the machine learning models once.

5.1 Data generating distribution P0

Our data were generated for times t = 0, 1, 2, …, 6 using the data structure described in 

Section 2 under a sample size of n = 500 as follows:

W1, W3 N(0, 1)
W2 Ber(logit−1( − 1))

Y(t) Y(t − 1) = 0 Ber(logit−1( − 1.9 + 1.2W1 − 2.4W2 − 1.8L11(t
− 1)

− 1.6L12(t − 1) + L11(t − 1)L12(t − 1) − A1(t − 1)))
L11(t) Y(t − 1) = 0 N(0.1 + 0.4W1 + 0.6L11(t − 1) − 0.7L12(t − 1)

− 0.45A1(t − 1), 0.5)
L12(t) Y(t − 1) = 0 N( − 0.55 + 0.5W1 + 0.75W2 + 0.1L11(t − 1)

+ 0.3L12(t − 1) − 0.75A1(t − 1), 0.5)
A1(t) Y(t − 1) = 0, A1(t − 1) = 0 Ber(logit−1( − 1 − 1W1 + 0.75W2

+ 1.2L11(t) − 1.8L12(t) + 0.8L11(t) ∗ L12(t)))
)

(12)

Let L(t) = (Y(t), L11 (t), L12 (t)) where at time t = 0, we have that the baseline L(0) = (W1, 

W2, W3, Y(0), L11 (0), L12 (0)) and A(t) = (A1(t)) for all t. We defined L11 (−1) = L12 (−1) 

= A1(−1) = 0 and fixed Y(0) = 0 Once a subject experiences a failure, i.e. Y(t) = 1, all the 

remaining values remain at 1. Subjects enrolling, i.e. having A1(t) = 1, stayed enrolled for 

the remainder of follow-up. The resulting observed data consisted of 500 i.i.d. copies of 

Oi = (Ai(5), Li(6)) P0.
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Our justification for generating data this way is to create data that is similar to what we 

observe in our applied setting (presented below in Section 6). For example, our observed 

data shows a noticeable amount of positivity violations (or near violations). To mimic this, 

we consider large parameter values for the treatment conditional distribution A1(t), i.e. 1.2 

and −1.8. Furthermore, our desired outcome is a counting process. We consequently set up 

our simulation such that it is also monotonic (i.e. it can only increase from 0 to 1 and stays at 

1 once it occurs for some time point t† for all t ≥ t†.) We also note that, as our applied setting 

(most) likely has confounding present, we simulate this in our simulation through the use of 

W1, W2, W3, L11, L12.

5.2 Target parameter Ψ(P0)

We considered the intervention of interest to be “never enroll”, i.e.a(t) = 0: t = 0, 1, … , K, and 

estimated the target casual parameter 𝔼(Ya(t∗)), or the counterfactual cumulative failure 

probability through time t∗ under an intervention to never enroll, for t∗ = 1, 2, …, 6. Because 

the needed identifying assumptions hold by design in this simulation, the target causal and 

statistical parameter values are identical.

We determined the true parameter value ψ0(t∗): = t∗ = 1, 2, … , 6 by drawing observations 

under the post-intervention data generating distribution P0
a with a sample size of 8×106, 

where data were generated according to eq. (12) but setting A1(t∗) = 0. Defining our true 

parameter as ψ0 ≡ (ψ0(1), ψ0(2), …, ψ0(6)), this resulted in the true parameter value

ψ0 ≈ (0.232, 0.335, 0.390, 0.428, 0.460, 0.489) . (13)

Failing to adjust for confounders would result in underestimation of ψ0(t*) for low values of 

t* and overestimation for high values of t*.

5.3 Positivity

Under the specified distribution P0, the degree of practical positivity violations increases 

with t*. Figure 1 shows the marginal densities of g
0, 0: t∗ − 1
a : t∗ = 1, 2, … , 6 for each final time 

point t* under a(t∗ − 1) = 0, allowing us to obtain a sense of the severity of the violations. 

Because g
0, 0: t∗ − 1
a : t∗ = 1, 2, … , 6 are functions of L(t∗ − 1), the marginal densities were 

derived by taking the conditional probabilities marginally over the distributions of L(t∗ − 1)
for each final time point t*. The density plot for time t* = 1 shows a somewhat uniform 

distribution for g0, 0:0
a = 0 , with only 4% of the marginal distribution below 0.01. As t* increases, 

however, the cumulative probability of remaining unenrolled, i.e. having a(t∗ − 1) = 0
decreases significantly. For example, 40% of the marginal distribution g0, 0:5

a = 0  for time t* = 6 

was below 0.01. The resulting distributions become increasingly concentrated close to 0, 

indicating that the probability of remaining unenrolled is near 0 at later time points. Indeed, 

we saw in the realized simulations that on average, only 6% of observations were still 

unenrolled and at risk of failure at t = 5.
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Following previous suggestions [17, 53], estimates of g
0, 0: t∗ − 1

(a(t∗)) were truncated at 

0.001 before being used in the estimators below.

We provide summaries below of how each estimator presented above is implemented in our 

simulation. For ease of presentation, we describe estimation of our target parameter for the 

final time point t∗ of interest, i.e. K + 1 = 6.

5.4 Estimator implementation

5.4.1 ICE—We first condition our data on survival up to the penultimate time point t = 5, 

as well as optionally conditioning on the subset of subjects having A(K) = a(K) (depending 

on whether we are using the stratified versus pooled approach described in Section 4.7), 

where as stated in Section 5.1.1, a(K) = 0. With this subset, we carry out a logistic 

regression, regressing Y(6) onto A(K) and L(K) under a correctly specified logistic model 

implied by the data generating distribution.

This logistic regression provides us with estimates β = (β0, β1, … , β p), resulting in a fitted 

object Qn, L(K + 1) for time t = 6. With this fit, we estimate Q0, L(K + 1)
a  for everyone, where 

the conditional expectation is known to be equal to 1 if Ti < 6. We iterate this by now 

conditioning on survival up to time t = 4, using the estimates Qn, L(K + 1), i
a  as the outcome, 

and regressing it onto A(K − 1) and L(K − 1) using the same logistic model but replacing the 

predictors for time t = 5 with those of time K − 1. It is important to note that the use of the 

same logistic model at times t < 6 is technically incorrectly specified, as the conditional 

expectation is more complex than this. To reflect this, we refer to this specification as the 

correctly† specified model.

This gives us a fitted object Qn, L(K) for time t = 5, which we use to estimate Q0, L(K)
a  for each 

subject i by setting A1(K − 1) = 0 for everyone and again calculating estimates under the 

fitted object, again setting it equal to 1 if Ti < 5. We continue iterating these steps backwards 

over t until we reach time t = 1, at which we will have the estimates Qn, L(1)
a  as a function of 

only L(0). The target parameter is then estimated by taking the empirical mean over the 

sample, ψn
ICE = 1

n ∑i = 1
n Qn, L(1), i

a .

We also considered the performance of this estimator using the same algorithm above, but 

under the following mis-specified logistic model (acknowledging a slight abuse of notation):

logit 𝔼[Y(6) L(5), A1(5)] = β0 + β1W2 + β2L11(5) + β3A1(5) (14)

5.4.2 IPW—At each time point t = 0, 1, …, 5, we condition our data on survival and 

having not enrolled yet, i.e.Y(t) = 0 ∩ A1(t − 1) = 0, and estimate g0 by using maximum 

likelihood to fit a logistic regression of our treatment variable A1(t) on L(t): t = 0, 1, … , K
under a correctly specified logistic model gA(t) for each time point t. We separately used a 

mis-specified model in which we omitted W2, L12(t) and the interaction term L11(t)L12(t). 
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We evaluate these fits at A1(t) = 0 for each time point t and subject i and take the cumulative 

product over all time points up to time K. The resulting subject specific estimates of 

following the longitudinal intervention “never enroll” gn, 0:K, i
a  are used in eq. (10) to form 

the estimate ψn
IPW, with Yi =Yi (K + 1).

5.4.3 AIPW—In implementing this estimator, g0 was estimated as for the IPW estimator, 

using the same correctly† specified and misspecified parametric models. In contrast to the 

IPW estimator, which only requires an estimate of each subject’s cumulative probability of 

never enrolling through time (i.e.gn, 0:K
a = 0 ), for the AIPW estimator, we compute gn, 0: t

a  for t = 

0, 1, …, K, i.e. each subject i’s predicted cumulative probability of not enrolling up to each 

time point t.

We first condition our data on survival up to the penultimate time point t = 5, as well as 

optionally conditioning on the subset of subjects having A(K) = a(K) (depending on whether 

we are using the stratified versus pooled approach, as described in Section 4.7), and where 

as stated in Section 5.1.1, a(K) = 0. We use this subset to estimate Q0, L(K + 1)
a  by carrying out 

a logistic regression of Y(K + 1) on L(K). Both the correctly† specified model and the mis-

specified model from eq. (14) were considered (where under the stratified approach the 

coefficient on the A1(t) covariate in the logistic model is absorbed into the intercept). The 

resulting logistic regression fit Qn, L(K + 1)
a  is then evaluated for each subject i in the study, 

setting the predicted value equal to 1 if Ti < 6. This allows us to evaluate the functional

DK + 1
∗ (Qn

a, gn)(Oi) =
𝕀(Ai(K) = a(K))

gn, 0:K, i
a Yi(K + 1) − Qn, L(K + 1), i

a : i = 1, 2, … , n .

We iterate this by now conditioning on survival up to time t = 4 and on the subset of subjects 

having A(K − 1) = a(K − 1), using the estimates Qn, L(K + 1), i
a  as the outcome, and regressing 

this outcome onto L(K − 1) using the correctly† specified or misspecified logistic model but 

replacing the predictors for time 5 with those of time K – 1. This gives us a fitted object 

Qn, L(K)
a  for time 5, which we evaluate for each subject i setting the predicted value equal to 1 

if Ti < 5. The fit is then used to evaluate

DK
∗ (Qn

a, gn)(Oi) =
𝕀(Ai(K − 1) = a(K − 1))

gn, 0:K − 1, i
a Qn, L(K + 1), i

a − Qn, L(K), i
a : i = 1, 2, … , n .

This procedure is iterated until all of Di
∗(Qn, gn

a )(Oi): t = 1, … , K + 1 are evaluated and 

Qn, L(1), i
a : i = 1, 2, … , n is estimated. The target parameter is then estimated by simply taking 

the empirical mean of the sum of Qn, L(1), i
a

, and Dt
∗(Qn, gn

a )(Oi) over t, i.e.
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ψn
AIPW = 1

n i = 1

n
Qn, L(1), i

a +
i = 1

K + 1
Dt

∗(Qn
a, gn)(Oi) .

5.4.4 DRICE—This estimator is very similar to the ICE approach, with the added step of 

using the inverse estimates gn, 0: t − 1
a, − 1  times the indicator 𝕀(Ai(t − 1) = a(t − 1)) as an additional 

predictor in estimating Q0, L(t)
a : t = 1, 2, … , K + 1. Similar to Section 5.1.5, We first compute 

gn, 0: t − 1
a  for t = 1, 2, …, K + 1.

We then take the subset of subjects conditioned on survival up to the penultimate time point t 
= 5; if using the stratified approach we further conditioned on having A(K) = a(K). With this 

subset, we carry out a logistic regression, regressing Y(K + 1) on A(K), L(K), and 

𝕀(A(K) = a(K))/gn, 0:K
a  such that the correctly† specified and misspecified models respectively 

are

logit 𝔼[Y(6) |L(5), A1(5)] = β0 + β1W1 + β2W2 + β3L11(5) + β4L12(5)

+ β5L11(5)L12(5) + β6A1(5) + β7
𝕀(A(5) = a(5))

gn, 0:5
a

logit 𝔼[Y(6) |L(5), A1(5)] = β0 + β1W2 + β2L11(5) + β3A1(5)

+ β4
𝕀(A(5) = a(5))

gn, 0:5
a ,

(15)

noting that in the stratified approach the coefficient on A1(K) is simply absorbed into the 

intercept. Following this approach of fitting Q0, the remaining steps are implemented 

identically to the ICE approach in Section 5.1.3 resulting in the estimate ψn
DRICE(cov).

We noticed a small proportion of the time that convergence was not achieved (at level 10−4). 

This occurrence increased with the presence of practical positivity issues. To ensure that 

resulting estimates would not be biased, we therefore relied upon a customized optimization 

function which would directly solve the EIF in this situation. This function is included in the 

R package referred to below (uploaded to github).

5.4.5 DRICE weighted—As discussed in Section 4.5.1, it is also possible to form a DR 

estimator by instead using the inverse probability estimates gn, 0: t − 1
a, − 1  as observational 

weights. This approach is similar to the DRICE approach above, with the lone exception that 

the inverse probability estimates gn, 0: t − 1
a, − 1  are used as observational weights in the logistic 

regressions, leaving the indicator of treatment 𝕀(Ai(t − 1) = a(t − 1)) as the model covariate. 

We denote estimates under this approach as ψn
DRICE(wt).
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5.4.6 TMLE—This estimator differs from the DRICE approach in that at each sequential 

regression step, Q0, L(t)
a  is first estimated without use of the estimated inverse probability, and 

then this initial fit is updated in a second regression step, using the initial fit as offset, and 

including the identical term 𝕀(Ai(t) = a(t)) as a single covariate. As noted in Section 4.5.1, this 

modification facilitates the use of machine learning approaches for Q0, implemented in the 

subsequent section.

As with the DRICE approach, we first take the subset of the data conditioned on survival up 

to the penultimate time point t = 5 (as well as optionally, A(K) = a(K)). With this subset, we 

carry out a logistic regression, regressing Y(K + 1) onto A(K), L(K). Both the correctly† 

specified and misspecified models were considered. The transformed fit logit Qn, L(K + 1)
a  is 

then used as an offset in a univariate logistic regression with no intercept and the covariate 

h(K) = 𝕀(A(K) = a(K))/gn, 0:K
a  to form the following parametric submodel

logitQn, L(t)
a (ϵt) = logitQn, L(t)

a + ϵth(t) (16)

where t = K + 1. The sole parameter ϵK+1 is estimated using maximum likelihood 

estimation, i.e. the negative log likelihood loss function, resulting in the estimate ϵn, K + 1. 

This allows the initial fit Qn, L(K + 1)
a  to be updated Qn, L(K + 1)

a (ϵn, K + 1), which we donate 

Qn, L(K + 1)
a, ∗ . This updated fit is evaluated for each subject i in the study, setting equal to 1 if 

Ti < K + 1. We iterate by now conditioning on survival up to time t = 4, using the estimates 

Qn, L(K + 1), i
a, ∗  as the outcome, and regressing it onto A(K − 1) and L(K − 1) using the logistic 

model but replacing the predictors for time K with those of time K – 1. This gives us an 

initial fitted object Qn, L(K)
a  for time t = 5, which we again update using the parametric 

submodel specified in eq. 16, with t = K covariate 

h(K − 1) = 𝕀(A(K − 1) = a(K − 1))/gn, 0:K − 1
a . The updated fit is evaluated for each subject i in 

the study setting equal to 1 if Ti < 5, and the procedure is iterated backwards over t until we 

reach time t = 1, at which we will have the estimate Qn, L(1)
a, ∗  as a function of only L(0). The 

target parameter is then estimated by taking the empirical mean over the sample, 

ψn
TMLE(cov) = 1

n ∑i = 1
n Qn, L(1), i

a, ∗ . Similar to DRICE, we also noticed some convergence issues 

with this estimator as practical positivity issues increased and therefore implemented our 

own customized optimization function to directly solve the EIF in this situation.

5.4.7 TMLE weighted—We also implemented the weighted version of TMLE which 

uses the covariate ht = 1 and observational weight 𝕀(A(t) = a(t))/gn, 0: t
a  as discussed in Section 

4.6.1. We denote estimates under this approach as ψn
TMLE(wt).

5.4.8 R-packages—While TMLE is potentially complex in its execution, we note that 

an ltmle R-package has been developed for this estimator [8, 54, 55] and uploaded to The 
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Comprehensive R Archive Network (CRAN). Additionally, estimates using the ICE and 

IPW estimators can be obtained using this package. A built in option allows the user to 

either stratify or pool the subjects when estimating Q0, L(t)
a  and gn, 0: t − 1

a  for t = 1, 2, …, K+1. 

Furthermore, it can conduct the estimations using either a parametric generalized linear 

model or the Super Learner estimation approach discussed in Section 4.8. We used version 

0.9–6 of this package for this study.

We additionally developed a new lrecCompare R-package which was designed specifically 

for all of the remaining analyses for the current study. This package contains all of the 

functions to generate the simulation data, as well as code to perform the AIPW and DRICE 

computations. Similar to the ltmle R-package, a built in option allows the user to either 

stratify or pool the subjects and computations can be conducted using either a parametric 

generalized linear model or Super Learner. A further option allows the user to use the 

modified version of the DRICE estimator. This package has been uploaded to to an online 

public repository at http://www.github.com/tranlm/lrecCompare.

5.4.9 Performance—Estimator performance was evaluated by comparing the bias, 

variance, and mean squared error of each estimator across 1000 iterations. While the sample 

variance of the estimated IF/n can provide a straightforward variance estimator for most of 

the estimators considered (with the exception of the ICE estimator), IF based variance 

estimation has been shown in past work to result in anti-conservative confidence intervals in 

settings, such as the one deliberately studied here, with practical positivity violations (e.g. 

Petersen et al. [8]). While the comparative evaluation of variance estimators is an exciting 

area in its own right, we focused here on performance of estimators of the target parameter 

ψ0. We therefore omitted evaluation of the coverage of the estimators for the simulations.

5.5 Results

The mean squared error of each estimator is presented in Figure 2. Further results are also 

presented in Table 1 and Table 2 in Appendix B. for the interested reader. We note again that 

estimates of g
0, 0: t∗ − 1

(a(t∗)) were truncated at 0.001.

5.5.1 No positivity violations—At the first time point, as predicted by theory, when 

nuisance parameters were estimated using correctly specified parametric models, all 

estimators were without meaningful bias. MSE was also similar across estimators, although 

the MSE of IPW and AIPW were slightly higher. No meaningful differences were observed 

when nuisance parameters were fit stratifying vs. pooling on treatment regime.

The non-DR estimators exhibited well-understood susceptibility to misspecification of 

nuisance parameter models. Recall that the misspecified g0 and Q0
a models omit the W1 and 

L12 variables. The bias of the ICE estimator increased substantially when Q0
a was estimated 

using a misspecified model, while the bias of the IPW estimator increased substantially 

when g0 was estimated using a misspecified model.
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As predicted by theory, all 5 DR estimators remained without meaningful bias as long as at 

least one of the two nuisance parameters, g0 and Q0
a, were estimated with a correctly 

specified model, and all 5 exhibited lower bias than the IPW and ICE estimators under 

comparable misspecification. When both g0 and Q0
a were estimated using misspecified 

models, the bias of the DR estimators remained better than that of the IPW estimator under 

misspecification, but worse than the ICE estimator. Weighted estimators tended to show 

better performance than the covariate estimators for both DRICE and TMLE. Pooled 

estimation of the nuisance parameters also showed better performance, particularly when 

using misspecified models.

5.5.2 Performance under increasing positivity violations—As the extent of 

positivity violation increased with increasing time points, the MSE and bias of all estimators 

considered became worse. As positivity violations increased, the ICE estimator maintained 

the lowest MSE of all estimators under correct† specification for g0 and Q0
a, under both 

stratified and pooled approaches, with the expected susceptibility to bias from 

misspecification of the model used to estimate Q0
a.

As has been observed previously [14] the IPW estimator was particularly susceptible to 

increasing positivity violation. Under correct† specification for estimators of g0 and Q0
a, the 

MSE of the IPW estimator at time point 6 exhibited the highest bias and among the highest 

MSE of all estimators considered. The MSE of the IPW estimator at time point 6 was 15 

fold higher than at time point 1 under the correctly† specified model.

The covariate-based DR estimators also proved highly susceptible to positivity violations. 

When stratifying by treatment regime followed, under correct† specification, the covariate 

DRICE estimator at time point 6 had a bias almost as high as and an MSE even higher than 

IPW. The covariate-based TMLE had lower bias and MSE than the corresponding covariate-

based DRICE, but still underperformed alternative DR estimators. Bias and MSE of the 

covariate-based DR estimators decreased, and the differences between the two estimators 

were less pronounced when estimators were implemented pooling across treatment regimes 

followed; however, both covariate-based DR estimators continued to have higher bias and 

lower MSE than alternative DR estimators.

In particular, despite being substitution estimators, and thus expected to exhibit improved 

robustness to data sparsity, when substantial positivity violations were present, both 

covariate based DR estimators exhibited higher bias and MSE than the estimating equation-

based AIPW estimator. Importantly, however, a proportion of AIPW estimates were outside 

the parameter boundary of [0,1], and this proportion increased with time and increasing 

positivity violation. For example, at t = 1 between 0.1% to 0.05% of the estimates were 

outside [0,1], while this increased to as much as 2.1% at t = 6.

The weighted DR estimators consistently outperformed all other DR estimators in terms of 

both bias and MSE, whether or not stratification on treatment regime was used, and both 

when g0 and Q0
a were correctly† specified as well as across most misspecification scenarios. 
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As expected given that these two estimators do not differ meaningfully, minimal differences 

were seen between the performance of the two weighted DR estimators. The improved 

robustness to positivity violations conferred by using a weighted vs covariate approach, 

demonstrated here in the longitudinal setting, echo earlier observations in the point treatment 

setting by Kang and Schafer Kang and Schafer [18] and Robins et al. [19].

6 Application: Impact of a task shifting program on the retention and 

mortality of HIV patients in Eastern Africa

We evaluate an HIV care program designed to shift patient care tasks to different clinic 

personnel for patients considered at low-risk, which has been described in detail previously 

[56]. To summarize, this task shifting program was implemented in 15 HIV clinics in Kenya 

between 2007 and 2009 from the Academic Model Providing Access to Healthcare 

(AMPATH). As part of the program, 75% of patient care tasks were shifted from doctors and 

clinical officers to nurses for patients deemed low risk. Once eligible, program enrolment 

occurred at the treating clinician’s discretion, resulting in time-dependent confounding as 

patients who became sicker over the course of follow up were less likely to be enrolled. 

Patients enrolled in this low-risk express care (LREC) program subsequently had their care 

shifted for all subsequent clinical visits.

To examine all of the estimators considered, we focus on estimating the counterfactual 

probability of in-care survival (remaining alive and not lost to follow up) over time under a 

single hypothetical intervention to “never enroll in the LREC program”.

Formally, our cohort data are defined using the same data structure defined in Section 2. The 

baseline time point, t = 0, is the first point is the first time point at which a patient is eligible 

for LREC enrollment after the LREC program has been initiated at the clinic in which the 

patient receives care. We discretize follow-up time into 90-day intervals. Let Y(t) be an 

indicator of failure by the end of interval t (defined as an observed mortality or loss to follow 

up). Let L1(t) consist of the following time-varying covariates: CD4 count, clinic type, 

calendar date, WHO HIV stage, ART use and adherence, pregnancy, and whether the subject 

had a clinical visit during the interval (noting that all patients had a visit during t = 1). We 

define L1(0) to additionally include the following non-time varying covariates: age at 

baseline, gender, use of a second-line protease inhibitor based regimen, tuberculosis 

treatment, and clinic type. Let A1(t) be an indicator of enrollment into the LREC program, 

A21(t) be an indicator of censoring due to clinic transfers, and A22(t) be an indicator of 

administrative censoring due to database closure. We refer to the outcome and covariate 

process as L(t) = (Y(t), L1(t)) and the treatment and censoring processes as A(t) = (A1(t), 
A21(t), A22(t)). Our cohort data are O = (O1, O2, …, O15,225) for the 15,225 subjects in our 

data set, where for each subject i, we have

Oi = (Li(0), Ai(0), Li(1), Ai(1), … , Ai(K), Li(K + 1)) . (17)

We assume here that the data are independent and identically distributed, such that for each 

subject i we have that Oi
iidP0. One approach to addressing potential dependence between 
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subjects due to shared clinic level characteristics would be to include clinic as an adjustment 

variable (a clinic fixed effect approach); here, we instead adjusted for clinic characteristics, 

which entails stronger assumptions. In addition, causal effects in this example may be 

subject to “interference”, in which the effect of an individual’s enrollment in the program 

depends on the number of other individuals in the same clinic concurrently enrolled; this 

issue, together with potential responses, is explored in detail in Miles, Petersen, and van der 

Laan [57].

Within the 15,225 subjects in our cohort, 2,011 immediately enrolled into the program at the 

start of followup (i.e. within the first 90 day interval). During follow-up, subjects continued 

to enroll into the LREC program. By 21 months from initial eligibility, 1,819 subjects were 

still alive and remained unenrolled. The patients cumulatively contributed a total of 229,941 

person-months (Interquartile range: 6,18) of follow-up to the analyses; 1,440 experienced 

either loss-to-follow-up (1,362) or death (78) by 24 months, while 140 were censored due to 

clinic transfers. Subjects for whom the database closed less than 24 months after eligibility 

were administratively censored. We imputed values for missing adjustment covariates by 

using either their last observation carried forward (for time-varying covariates with prior 

measures) or by using the median of the value across all subjects. This did not noticeably 

change any of the overall summary statistics for the covariates when compared to a complete 

case analysis.

6.1 Target parameter

We are interested in estimating the probability of remaining alive and in-care over time 

under a hypothetical intervention to prevent enrollment at all time points (a1 = 0) and 

enforce no censoring (a2 = 0). Under the counterfactual intervention we estimate 1 minus the 

counterfactual probability of failure by time t*, ψa(t∗) = 𝔼
Pa

0[Ya(t∗)] for each time point t* = 

1,2, …, 7, where t* = 7 corresponds to the 24th month of follow-up.

6.2 Estimation results

We first used parametric generalized linearmodels (GLMs) to estimate the g0 and Q0
portions of the likelihood. Fits for g0 were formed by pooling observations over the 7 time 

points, as opposed to stratifying by each time point and fitting separate models (as was done 

in the simulations). This aided us in estimating the clinic transfer mechanism, as the number 

of subjects transferring clinics was low (n = 140). Figure 3 shows the estimated marginal 

densities of g
n, 0: t∗ − 1
a : t∗ = 1, 2, … , 7 at each time point t* taken marginally over the 15,225 

subjects. While the trend of shifting to lower probabilities over time is similar to that seen in 

the simulated data (Figure 1), the degree of positivity violations is less extreme.

Figure 4 shows the results of applying each estimator to our data using the GLM fits. 95% 

confidence intervals were calculated using standard error estimates based on each 

estimator’s estimated influence function (for the ICE estimator, the EIF was used for 

comparative purposes only, noting that it is not theoretically valid). At early time points, all 

approaches yielded very similar estimates. Most estimators remained in close agreement 
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over later time points, with the important exception of IPW, which deviated markedly as 

positivity violations increased. Confidence interval width also increased with time, 

consistent with decreasing data support. Pooling observations across treatment regimes 

versus stratifying by regime when fitting the nuisance parameters did not affect the estimates 

noticeably. The estimators all (within rounding errors) respected the monotonicity of the 

cumulative failure distribution over time.

As stated in Section 4.8, Super Learner was also used to estimate the conditional probability 

g0 and conditional expectations Q0. The library of potential candidates used here consisted 

of: a generalized linear model, Bayesian generalized linear model, multivariate adaptive 

regression spline, gradient boosting machine, support vector machine, neural network, 

LASSO, ridge regression, and a stepwise selected model using the Akaike information 

criterion. We took the linear combination which minimized the cross-validated (10 folds) 

non-negative binomial likelihood risk.

Figure 5 shows the estimated density for g
n, 0: t∗ − 1
a  for time point t∗ = 1, 2, …, 7 using Super 

Learner. A comparison of the GLM and Super Learner plots implies that the fits between the 

two approaches are very similar, with Super Learner generally resulting in more 

concentrated distributions. Correlations in the estimated cumulative probabilities at each 

time point t∗ resulting from the two approaches varied from 0.56 to 0.97, with higher 

correlations toward the later time points. Estimates of probabilities tended to be higher for 

g
n, 0: t∗ − 1
a = 0  fits using Super Learner. Figure 6 shows the resulting estimates of our target 

parameter, with influence curve based 95% confidence intervals. We excluded DRICE here, 

as a number of the candidates we used in the Super Learner library were non-linear. While 

the estimates are similar to the approach using GLMs, a number of differences are seen. 

Firstly, the similarity of the estimates across the set of estimators (within each time point) is 

reduced. A noticeable reduction is seen in estimates from TMLE with inverse probability 

estimate as covariate at the later time points. Monotonicity is still preserved (within 

rounding errors). Confidence intervals were generally larger than those estimated using 

GLM fits.

7 Discussion

Numerous approaches have been proposed for estimating causal parameters in a longitudinal 

treatment setting, several of which have the attractive theoretical properties of double 

robustness and semi-parametric efficiency. However, there are few published direct 

comparisons of the relative performance of the multiple DR estimators and in particular, the 

various DR estimators based on the DRICE representation of the EIF. In this article, we 

presented and analyzed seven specific estimators, including 5 double robust estimators, in a 

longitudinal treatment setting using both simulated and real world data. We evaluated 

performance under model mis-specifications and steadily increasing levels of positivity 

violations for our simulated data. For the applied setting, we considered both a parametric 

and data-adaptive approach when estimating the treatment and censoring mechanism and the 

series of iterated outcome regressions. Simulation results showed decreasing estimator 
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performance with model mis-specifications or increasing positivity violations. IPW was the 

most severely affected estimator. Weighted DR estimators performed better than covariate-

based DR estimators. Pooling observations tended to result in lower MSE, as well as 

reduced bias when at least one of the two nuisance parameters was estimated consistently. 

As stated in Section 4.7, this is likely due to the larger sample size available for estimating 

the nuisance parameters.

In the applied setting, similar estimates were observed across estimators when using GLM 

fits of the two nuisance parameters. The use of Super Learner to estimate g0 and Q0 resulted 

estimates similar to the GLM approach, though with more variability between estimators 

and slightly wider confidence intervals. As seen in the simulations, integrating the inverse 

probability estimates as observational weights in the two DR substitution based estimators 

appeared to result in improved performance.

The estimators we evaluated can be grouped into two classes: estimating equation-based 

estimators (IPW, AIPW) and substitution-based estimators (ICE, DRICE, TMLE). In 

contrast to substitution-based estimators, estimating equation-based estimators do not always 

obey the constraints of the parameter space. Consequently, the use of these methods can, as 

seen here, lead to estimates and confidence intervals that are outside of the [0,1] range for 

our parameter. In our simulations, we saw that up to 2% of the estimates from AIPW 

estimator were outside that range. Substitution estimators are defined as mappings applied to 

probability distributions and consequently will never result in values beyond the bounds of 

the parameter space.

There is also a debate regarding whether DR estimators really have an advantage, as in 

practice, both the outcome and treatment models are most likely mis-specified. Our 

simulations here and those from Kang and Schafer [18] in the point treatment setting show 

that when both are wrongly specified, the ICE approach can outperform the DR estimators 

in terms of MSE. However, in using machine-learning approaches to estimate both nuisance 

parameters, we largely side step this concern and gain several important advantages. By 

using machine learning approaches, which respect that our true statistical model is semi-

parametric, we can support consistency of our nuisance parameters estimators, providing a 

basis for accurate inference as well as estimator efficiency. This further translates into finite 

sample gains in both bias and variance. Furthermore, in settings such as randomized 

controlled trials where g0 is known, the DR estimators are guaranteed to be consistent and 

their use will only improve efficiency.

Our intention in comparing the various estimators was to provide a sense of the performance 

of these estimators in practice. Given its efficiency, ability to respect the parameter space, 

and observed performance, we recommend the pooled and weighted TMLE approach as the 

preferred estimator. This approach is essentially an identical estimator to the weighted 

DRICE estimator using parametric models for the iterated outcome regressions; however, it 

straightforwardly incorporates more flexible machine learning approaches to nuisance 

parameter estimation.
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We end by stating that the approaches presented here can easily be generalized to a number 

of various other estimation problems. An example includes the estimation of causal effects 

of dynamic treatment regimes, where treatment decisions are functions of the time-

dependent covariate process. Extensions involving marginal structural models may also be 

applied in summarizing the treatment effect over multiple time points, levels of treatments, 

or treatment effects that are also functions of baseline covariates [8, 58].

Acknowledgments

Funding

This work was supported by Doris Duke Clinical Scientist Development Award (NIH-NIAID U01AI069911), The 
National Institute of Allergy and Infectious Diseases of the National Institutes of Health (U01AI069911), The 
President’s Emergency Plan for AIDS Relief (PEPFAR) (AID-623-A-12-0001), NIH (R01AI074345).

Appendix

A: Notation list

Variable Description

Observed data

L1(t) covariates at time t

Y(t) outcome at time t

L(t) = (L1(t),Y(t)) non-intervention nodes at time t

A1(t) treatment at time t

A2(t) indicator of right-censoring by time t

A(t) = (A1(t),A2(t)) intervention nodes at time t

A(k) = (A(0), … , A(k)) history of intervention nodes t = 0, …, k

L(k) = (L(0), … , L(k)) history of non-intervention nodes t = 0, …,k

A(k) = A(k + 1), …, A(K + 1) future of intervention nodes t = k + 1, …, K + 1

L(k) = L(k + 1), …, L(K + 1) future of non-intervention nodes t = k + 1, …, K + 1

O = (L(0), A(0), …, L(K), A(K), L(K + 1)) observed data structure

Pa(L(k)) = L(k − 1), A(k − 1) parents of non-intervention nodes L(k)

Pa(A(k)) ⊆ L(k), A(k − 1) parents of intervention nodes A(k)

Counterfactuals

𝒜t set of interventions of interest to set A(t) for t = (0, …,t)

a(t) ∈ 𝒜t specific static intervention to set A(t)

La(t) Counterfactual L(t) under intervention a(t − 1)

Ya(t) counterfactual Y(t) under intervention a(t − 1)

Distributions

P0 distribution of O

Pa
0 distribution of counterfactual non-intervention nodes 

La(K + 1)
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Variable Description

q0, L(t) distribution of L(t) | Pa(L(t))

q0 ≡ ∏t = 0
K + 1q0, L(t)(L(t) |Pa(L(t)) non-intervention factor of the likelihood

g0, A(k) distribution of A(k) | Pa(A(k))

g0 ≡ ∏t = 0
K g0, A(t)(A(t) |Pa(A(t)) non-intervention factor of the likelihood

Models

ℳF Structural Causal Model: set of possible distributions for 
(O,U) (where U is unmeasured exogenous variables)

ℳ statistical model for P0 defines statistical assumptions: 
P0 ∈ ℳ

𝒢 statistical model for g0 defines statistical assumptions: 
g0 ∈ 𝒢

𝒬 statistical model for q0 defines statistical assumptions: 
q0 ∈ 𝒬

Target Parameters

𝔼[Ya(t∗)] casual target parameter, equal to the counterfactual mean 
outcome at some time t*

Ψ :ℳ ℝ statistical target parameter mapping

Ψ (P0) = ψ0 statistical target parameter value

Efficient influence function

D*(P)(O) = D∗(q, g)(O) efficient influence curve of Ψ at P

Nuisance parameters

g0, t
a ≡ P0(A(t) = a(t) |L(t), A(t − 1) = a(t − 1)) time t-specific component of g0 evaluated at a(t)

g0, 0:k
a ≡ ∏t = 0

k g0, k
a cumulative probability of treatment up to time k

Q0, L(K + 2)
a ≡ Y(K + 1) alternative notation for final outcome

Q0, L(t)
a iterated conditional outcome regression for time t i.e.

𝔼0[Q0, L(t + 1)
a |L(t − 1), A(t − 1) = a(t − 1)]

Q0
a ≡ Q0, L(t)

a , t = 1, … , K + 1 set of iterated outcome regression, Ψ (P0) = Ψ (Q0
a)

Least favorable submodels

QL(t)
a (ϵt):ϵt submodel through QL(t)

a
 at parameter value ϵt = 0

used to update initial estimate of Q0, L(t)
a

 in TMLE

Loss functions

ℒ
t, QL(t + 1)

a (QL(t)
a ) loss function for QL(t)

a

relies on estimator of previous QL(t + 1)
a

used to fit ε of least-favorable submodel QL(t)
a (ϵt)
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Variable Description

Estimators

gn, 0:k
a

estimator of g0, 0:k
a

Qn, L(t)
a

initial (non-targeted) estimator of Q0, L(t)
a

Qn, L(t)
a

targeted estimator of Q0, L(t)
a

 in the DRICE estimator

Qn, L(t)
a, g

targeted estimator of Q0, L(t)
a

 used in TMLE

ψn
ICE iterated conditional expectation estimate of ψ0

ψn
HT inverse probability weighted estimate of ψ0

ψn
AIPW augmented inverse probability weighted estimate of ψ0

ψn
DRICE double robust iterated conditional expectation estimate of 

ψ0

ψn
TMLE targeted minimum loss based estimate of ψ0

B: Simulation results
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Figure 1. 

Marginal densities of g
0, 0: t∗ − 1
a = 0  for each time point t*. The densities become more 

concentrated close to 0 as t increases.
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Figure 2. 
Simulated mean squared error of each estimator under correct† and mis-specification of g0 

and Q0. ICE, weighted DRICE, and weighted TMLE have among the lowest mean squared 

error.
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Figure 3. 

Marginal densities of g
n, 0: t∗ − 1
a  for each time point t* taken over the 15,225 subjects using 

GLMs in applied example, where a1 = 0.
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Figure 4. 
Applied example GLM estimates and 95% confidence intervals for estimating 

ψa = 0(t∗) = 𝔼[Ya = 0(t∗)]: t∗ = 1, 2, … , 7.
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Figure 5. 

Marginal densities of g
n, 0: t∗ − 1
a  for each time point t∗ taken over the 15,225 subjects using 

Super Learner from applied example, where a1 = 0.
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Figure 6. 
Applied example Super Learner estimates and 95% confidence intervals for estimating 

ψa = 0(t∗) = 𝔼[Ya = 0(t∗)]: t∗ = 1, 2, … , 7.n . b. DRICE estimators were not used in this setting.
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