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ABSTRACT OF THE THESIS 

Preferential induction of  

NK cell mediated Antibody Dependent Cellular Cytotoxicity (ADCC)  

against differentiated oral and pancreatic tumors expressing MICA/B 

by 

Tahmineh Safaie 

Master of Science in Oral Biology 

University of California, Los Angeles, 2018 

Professor Anahid Jewett, Chair 

 

Natural Killer cells (NK) cells are known to limit growth and expansion of cancer stem cells by 

direct cytotoxicity, providing key cytokines such as IFN-γ and TNF-α, which drive differentiation 

of stem-like/poorly differentiated cancer stem cells and through antibody-dependent cell 

cytotoxicity (ADCC). One of the important surface antigens on transformed cells is Major 

Histocompatibility Complex class I chain-related protein A and B (MICA/MICB). Induction of 

NK cell-mediated cytotoxicity resistance and differentiation in the stem cells correlate with the 

increased expression of CD54, B7H1, and MHCI, and MICA/MICB and antibodies specific to 

MICA/MICB increased NK cell-mediated ADCC against differentiated oral and pancreatic 

tumors, while the stem-like/poorly differentiated cancer stem cells were not targeted. This 

antibody also increased IFN-γ secretion by NK cells when cultured with differentiated oral 

tumors expressing MICA/MICB.  This study also showed that Expanded NK cells target both 
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undifferentiated and differentiated tumor cells while primary NK cells preferentially target 

undifferentiated/Stem-like population. In addition, it showed that the combination of IL-2 and 

antiCD16 treatment induces split anergy in primary NK cells but not in super-charged NK cells 

and Expanded NK cells were found to mediate lower levels of ADCC than primary NK cells.  

Knowing the key role of IFN-γ production in differentiation of oral and pancreatic cancer cells, 

then aimed to determine strategies to increase NK cell-mediated production of IFN-γ and we 

showed that AJ2 probiotic bacteria and fucoidan extracted from Mekabu could individually 

increase NK cells’ IFN-γ secretion ability. The combination of AJ2 probiotic bacteria and 

fucoidan extracted from Mekabu resulted in synergic secretion of IFN-γ by NK cells. In 

conclusion, differentiated and stem-like/ poorly differentiated oral and pancreatic tumors have 

different expression level of MICA/MICB and can be targeted differentially through ADCC. 

Primary and Expanded NK cells have very different characteristics and biological functions and 

all the diverse functions of different subsets of NK cells should be considered in NK cell- 

immunotherapeutic approaches.  
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Introduction 

Natural Killer cells 

Natural killer (NK) cells are a subset of lymphocytes with lytic ability, which are known to 

function within the interface of innate and adaptive immunity. They constitute 10% of peripheral 

blood mononuclear cells in human blood and are identified by their lack of surface expression of 

CD3 and positive expressions of CD16 and CD56.  NK cells mediate both direct and antibody-

dependent cellular cytotoxicity (ADCC) against tumor cells and virally infected cells. They can 

recognize these cells without prior sensitization [1]. NK cells mediate direct cytotoxicity by 

releasing pre-formed granules known as perforin and granzyme B, which can induce necrosis 

and apoptosis. When NK cells recognize their target cells and form the lytic immunological 

synapse, the secretory lysosome polarizes towards the synapse and move into close proximity 

with the plasma membrane [2]. Perforin, a membrane-disrupting protein, facilitates delivery of 

the Granzyme, a serine protease, which cleaves a variety of targets, such as caspases, resulting in 

cell death [3,4]. NK cells can also mediate cytotoxicity via death receptors on the target cells 

through surface expression of their ligands such as Fas Ligand, Trail, and TNF-alpha. Fas 

(CD95/APO-1/TNFRSF6), a cell surface protein that belongs to the tumor necrosis factor 

receptor family, can mediate apoptosis when bound to its natural ligand, CD95L 

(CD178/TNFSF6) or stimulated with agonistic antibodies [5]. NK cells can mediate antibody 

dependent cellular cytotoxicity (ADCC) against tumors and regulate the function of other cells 

through the secretion of cytokines and chemokines [6]. 
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Two major subsets of NK cells have been identified, one with the surface expression of 

CD16+++CD56+, which is the predominant subset in the circulating blood with high cytotoxicity, 

whereas the other is CD16−CD56+++ subset residing in the mucosa known as the regulatory 

subset.  

Our laboratory has established four different stages of NK cell maturation. Stage one NK cells 

are CD16+++, CD56+, CD69-, and CD107a- found to select and kill cancer stem-like 

cells/undifferentiated tumors. Upon IL-2 activation and CD16 receptor triggering, NK cells  

express CD16+/−CD56++CD69+CD107a+ and increase secretion of IFN-γ and TNF-α while 

exhibiting decreased cytotoxicity. This is the second stage and NK cells in this stage are known 

as split-anergized NK cells.  Without further activation NK cells move towards stage three where 

they become non-functional and lose their cytotoxicity and cytokine secretion ability. Finally, 

NK cells may undergo apoptosis giving rise to stage 4 [7] (Fig.1).  

  

https://www.sciencedirect.com/topics/immunology-and-microbiology/tumor-necrosis-factor-alpha
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Figure.1 Maturational stages of NK cells.  
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Antibody-dependent cell-cytotoxicity 

Antibody-dependent cellular-cytotoxicity (ADCC), is a mechanism by which immune cells 

bearing the Fc receptor can kill cells coated with the antibody, upon binding of the Fc receptor to 

the Fc portion of the antibody. NK cells are one the subset of immune cells that can mediate 

ADCC through the FcγRIIIA receptor also known as CD16 [6]. The mechanism by which NK 

cells mediate ADCC is not fully understood. When the effector cell recognizes the target by 

cross-linking of the Fc receptor and the antibody coating the target cell, the immunoreceptor 

tyrosine-based activation motifs (ITAMs) gets phosphorylated in the effector cells and leads to 

the triggering of main downstream signaling pathways in the effector cell to kill the target cell 

[8].  One of the mechanisms by which NK cells mediate ADCC can be through perforin-

granzyme mediated cytotoxicity. [8,9,10]. The role of the FAS ligand in ADCC is unknown but 

it has been shown that cross-linking of the CD16 receptor on NK cells can upregulate FAS 

ligand on them which may be indicative of an important role of Fas/Fas-L in ADCC [11]. 

AJ2 probiotic Bacteria 

AJ2 is a combination of eight strains of gram positive probiotic bacteria with the ability to induce 

synergistic production of IFN-γ when added to IL-2-treated or IL-2 + anti-CD16 monoclonal 

antibody-treated NK cells (anti-CD16mAb). The combination of strains was used to provide 

bacterial diversity in addition to synergistic induction of a balanced pro and anti-inflammatory 

cytokine and growth factor release in NK cells. Moreover, the quantity of each bacteria within 

the combination of strains was adjusted to yield a closer ratio of IFN-γ to IL-10 to that obtained 

when NK cells are activated with IL-2 + anti-CD16mAb in the absence of bacteria. The rationale 

behind such selection was to obtain a ratio similar to that obtained with NK cells activated with 
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IL-2 + anti-CD16mAb in the absence of bacteria since such treatment provided significant 

differentiation of the cells [12, 13].  

Fucoidan 

Fucoidan is a sulfated polysaccharide found on different species of brown algae and brown 

seaweed such as mozuku, mekabu, limu moui, bladderwrack, and hijiki.  Based on the source of 

extraction, fucoidans may have different chemical compositions. For example, beside the 

polysaccharide and the sulfate, they might also contain other monosaccharides (e.g. mannose, 

galactose, glucose, xylose, etc.), uronic acids, acetyl groups, and proteins. For the past decade, 

fucoidans isolated from different species have been studied due to their varied biological 

activities, including antitumor and immunomodulatory, and properties [14].  

Undaria pinnatifida, also known as mekabu seaweed is another source of fucoidans composed of 

fucose, galactose, and sulfate. Studies showed that fucoidan can modulate different immune cells 

such as neutrophils, dendritic cells, and macrophages.  It has also been shown that injection of 

fucoidans inhibited the growth of leukemia in mice through enhancement of NK cells IFN-γ 

secretion ability [15-17]. 

Split Anergy  

Our laboratory coined the term ‘split anergy’ to explain the relationship of reduced NK cell 

cytotoxicity in the presence of augmented secretion of IFN- γ [13]. Split-anergized NK cells 

promote differentiation of target cells via secreted and membrane-bound factors, increases tumor 

cell resistance to NK cell-mediated cytotoxicity, as well as inhibits inflammation due to the 

reduction of cytokine and chemokine production after tumor differentiation [18-23].  

Cancer stem cells 
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Cancer stem cells (CSCs) are the progenies which can create various population of differentiated 

cells that define the tumor mass.  CSCs are like normal stem cells has self-renewal capacity and 

also can be differentiated but in a dysregulated manner [24]. Bonnet et al. were the first to isolate 

CSCs from acute myeloid leukemia samples [25]. The CSCs from solid tumors were first 

isolated and identified in breast cancer by Al-Hajj et al. They isolated a subpopulation of CD44 

cells within the breast cancer tissues having the high tumorigenic capacity [26]. The existence of 

CSCs is also described in other solid tumors including prostate, melanoma, lung, colon, brain, 

liver, gastric and pancreatic cancer. [27-33].  

Different models have been proposed to explain how CSCs play the role in tumor initiation and 

heterogenicity, including the CSC or hierarchical model (Fig.2 A) and the stochastic or evolution 

model (Fig.2 B). Fig.2 C shows a model we proposed.  There is a good correlation between our 

model of tumor development from CSCs and those of the hierarchical and stochastic model 

proposed previously [34, 35].  In the hierarchical model, CSCs can self-renew and are responsible 

for the generation of progenies which may or may not have the ability to give rise to tumors [36-

38]. In agreement, the well-differentiated tumors in our model have limited capability to proliferate 

or establish themselves in vivo, potentially resembling the progenies within the hierarchical model 

that lack the ability to establish tumors [39,1, 2]. On the other hand, undifferentiated tumors and 

potentially moderately differentiated tumors in our model and those of the hierarchical model will 

be able to establish tumors [2]. There is also a good co-relation with the stochastic model since 

removal of NK supernatants from the well-differentiated tumors and their in vitro culture for over 

two weeks gradually resulted in the loss of MHC class I and reversion of these tumors to 

undifferentiated tumors which were capable of establishing tumors in vivo [13,40] (Fig. 1). It is of 

note that when NK-differentiated tumors were implanted in NSG mice no or very slight growth 
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were seen within the time frames that we studied, which is in contrast to what was observed in 

vitro [2]. Whether immune cells other than NK and T cells or non-immune cells in NSG mice are 

responsible for exerting continuous pressure on well-differentiated tumors to retain them at the 

quiescent stage, or we did not allow enough time for the tumors to grow and be detected in NSG 

mice will require future studies [2, 41, 42]. Moreover, suppression of NK function in patients, in 

addition to progressive mutations or knock-down of cellular genes in tumors is likely responsible 

for the decrease in MHC class I and de-differentiation of tumor cells which could potentially be 

responsible for the reversion of tumors to their less differentiated or CSC stage as seen in the 

stochastic model [43]. Thus, pressures exerted from the micro-environment, notably through the 

NK cells and other immune effectors may be able to retain the tumor cells at the less proliferative-

quiescent stage, whereas, once those pressures are removed the tumors have the chance to revert 

to their undifferentiated/CSC stage and gain the ability to invade and metastasize.   
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Fig.2 Different models explaining how CSCs contribute to tumor formation   
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Osteoclasts  

Osteoclasts are the large bone cells responsible for bone homeostasis and resorption [44]. 

Osteoclasts matures via RANKL stimulation and the process is regulated by ICAM-1. 

Proinflammatory signals can induce expression of ICAM-1 and RANKL on osteoclasts. These 

signals are mediated by subsets of immune cells. It has been shown that osteoclasts express 

multiple ligands for both activating and inhibitory NK cell receptors [45].  

MICA/MICB  

Major Histocompatibility Complex Class I–Related Chains A and B (MICA/MICB) are proteins 

known to be induced upon stress, damage, viral infection or transformation of cells which act as 

a ‘kill me' signal through the cytotoxic lymphocytes.  In contrast to classical MHC class-I 

molecules, these proteins are not involved in antigen presenting but they are known to be ligands 

for natural killer group 2D (NKG2D) receptors, a type of receptor on cytotoxic cells. 

Engagement of NKG2D receptors trigger natural killer (NK) cell-mediated cytotoxicity and 

provide a costimulatory signal for CD8 T cells and γδ T cells [47]. MICA/B were not thought to 

be constitutively expressed by healthy normal cells but recently studies have shown that this 

protein is also expressed on the surface of healthy cells found in the breast, colon, liver, 

pancreas, stomach, bronchus, bladder and ureter, as well as on smooth muscle cells and/or 

myofibroblasts within the stomach, small intestine, colon, bladder, cervix, fallopian tube, 

prostate and ureter [48]. The differential expression of MICA/MICB, based on the differentiation 

status of the tumor cells, has not be studied. In this study, we will evaluate the expression of 

MICA/MICB on undifferentiated/stem-like and differentiated oral and pancreatic tumors. 

Current state of the art in NK cells immunotherapy 
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NK cells have very diverse biological functions including significant roles in defense against 

tumor cells. Based on knowledge of NK cell function and evidence that they become 

nonfunctional in cancer patients, several approaches have been proposed for the use of NK cells 

in immunotherapy:  

1) Cytokines 

Many cytokines such as IL-2, IL-21, IL-12, IL-15, and IFN- γ have been known to activate and 

boost NK cells function [49]. Cytokines can be used to boost NK cells for immunotherapeutic 

means, both in vitro and in vivo. Cytokine administration for cancer treatments has been 

implemented clinically but has never been considered as a success due to severe side-effects and 

cytotoxicity [50].  

2) Antibodies 

Antibodies can be applied to NK cell immunotherapy based on different approaches. NK cells 

can target tumor cells coated with IgG antibodies through the ADCC. There are several 

monoclonal antibody treatments available specific to different tumor antigens such as the use of 

anti-CD20 for the treatment of B cell lymphoma or anti-Her2 for the treatment of Her2-

overexpressing invasive breast cancer [7]. Antibodies can be also being used to block NK cells’ 

checkpoint inhibitors. Studies have shown that NK cells express checkpoint molecules such as 

PD-1, CTLA-4, TIM-3 and TIGIT [51]. The role of these checkpoint inhibitor drugs in NK cells 

have not been well studied.  

3) Adoptive transfer of NK cells 

Transferring functionally competent NK cells as an immunotherapy approach has been 

established for many years. NK cells can be harvested from different sources, and their 
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functional competencies may vary depending on the strategies used to separate, activate or 

expand them.   

Sources of natural killer cells for adoptive transfer: 

a) NK cells isolated from Peripheral Blood Mononuclear Cells (PBMCs) 

NK cells can be isolated from autologous and allogeneic PBMCs. The strategies to expand and 

activate NK cells from PBMCs are different. Investigators have tried to Expand NK cells directly 

from PBMCs without isolating the NK cells population, or by depleting CD3+ cells, or selecting 

CD16+, or CD16+ and CD56+ cells. Different cells have been used as feeder cells to improve 

NK cells expansion. Irradiated K562 and OK432 are two of the most popular feeder cells for NK 

expansions. Different Cytokines and other activators also have been applied to expand NK cells 

in vitro. IL-2, IL-21, IL-15 and IL-18 are some of the cytokines used for this means [52-54]. Our 

laboratory has a novel strategy to expand NK cells up to 21,000- to 132,000-fold in 20 days. In 

this technique NK cells are treated with IL-2 and CD16 antibody and probiotic bacteria and 

Osteoclasts are used as feeder cells. The Expanded NK cells, called “Super Charged NK cell” 

have high cytotoxicity and IFN- γ secretion [43].  

Autologous NK cells as a source of therapy has not been very effective. We showed that NK 

cells from cancer patients are less functional both in terms of cytotoxicity and of IFN- γ secretion 

in vitro [43]. In an in vivo study adoptive transfer of autologous natural killer cells leads to high 

levels of circulating natural killer cells but does not mediate tumor regression [55]. In another 

study autologous NK cells have also demonstrated a limited effect on tumor suppression in 

malignant glioma [56].  Allogenic NK cells can be a better resource for NK cell therapy since 

NK cells from healthy donors have better functionality than NK cells in cancer patient [43], 
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besides the KIR receptor from the donor mismatch the MHC class I of the recipient letting NK 

cells to skip some of the inhibitory processes [57].  

b) Stem cell- derived NK cells 

Due to the pluripotency of stem cells, using them as a precursor of NK cells has become one of 

the interesting sources of NK cells. Generation of NK cells from ESCs and iPSCs generally 

requires two steps. First, CD34+ hematopoietic precursors must be generated. The CD34+ cells 

are then sorted and differentiated into NK cells with cytokines and feeder cells (usually murine 

stromal cells).  When NK cells were generated from hESCs, they were mostly CD56+CD45+ 

NK cells, which also expressed inhibitory and activating receptors typically found on adult NK 

cells. These NK cells were also able to mediate cytotoxicity against of leukemic cells, K562 

(erythroleukemia), and several solid tumors, including breast cancer (MCF7), testicular 

embryonal carcinoma (NTERA2), prostate cancer (PC3), and glioma (U87) cell lines [58]. A 

studied showed that when  efficacy of Induced pluripotent stem (IPS) cell-derived natural killer 

cells with NK cells isolated from peripheral blood that had been activated and expanded in long-

term culture, and overnight activated Peripheral blood isolated NK cells, were compared,  NK 

cells derived from IPS mediate anti-ovarian cancer killing in NSG mouse at least as well as NK 

cells isolated from blood [59]. The Kaufman research group established a feeder-free, sorting-

free approach to generate NK cells from human ESCs. These authors used a spin-embryoid body 

(EB) system with BMP4 and VEGF to derive hematopoietic progenitors. After 11 days of 

culture, the spin-EBs were transferred to the NK cell culture containing the cytokines IL-3, IL-

15, IL-7, SCF and Flt3L for 28 days. This feeder-free system can generate NK cells that have no 

difference from those derived from the murine embryonic liver cell line EL08-1D2 as feeder cell. 
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Meanwhile, this group established a clinical-scale derivation of NK cells from ESCs and iPSCs 

without cell sorting and in the absence of feeder cells [60]. 

c) NK cells isolated from Umbilical Cord blood.  

Umbilical cord blood (UCB), has become a known source for NK cells. The NK cells from UCB 

and peripheral blood (PB) have some differences. UCB NK cells express similar levels of CD56, 

NKp46, NK30 and NKG2D as PB NK cells but lower levels of CD16 CD2, CD11a, CD18, 

CD62L), KIRs, DNAM-1, NKG2C, IL-2R, and CD57 and CD8 [61]. UCB has a higher 

percentage of NK cells but these cells have lower cytotoxicity in comparison to NK cells from 

PB which could be due to lower levels of Granzyme B and perforin in CB NK cells.  Studies 

have shown that with proper signaling NK cells from UCB can be expanded to create many cells 

with proper function [62-64].  

d)    Genetically modified NK cells 

The genetic modification can be used to promote the efficacy of NK cells by different means. 

NK cells can be genetically modified to secrete cytokines in favor of their survival and 

activation. Engineering Chimeric antigen receptor (CAR) NK cells has currently become the 

topic of interest. Currently, several tumor antigen-binding domains have been designed as CAR 

extracellular domains and tested [65-67]. One of the problems associated with genetic 

modification of NK cells is that these cells are very hard to virally infect and approaches to 

improve their transfection rate should be introduced.  

Although various approaches are being used to use NK cells for cancer therapy, the long-term 

efficacy of these protocols is not very promising. NK cells have diverse biological functions and 

to benefit patients the ideal NK cells therapy should focus on boosting all functions of NK cells.   
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Purpose of the study 

Although both direct cytotoxicity and ADCC functions of NK cells have been shown to be 

crucial for the elimination of tumor cells, it is still unknown whether the same or different 

subsets of NK cells are able to mediate direct cytotoxicity vs. ADCC. In addition, even though 

previous reports have shown the increase of MICA/MICB on tumor cells, they did not establish 

whether expression was limited to undifferentiated or differentiated tumors.  In this report we 

demonstrate that differentiated tumors express MICA/MICB and that primary NK cells are 

capable of mediating ADCC against differentiated tumors expressing MICA/MICB, whereas   

super-charged NK cells, even though they express very high levels of direct cytotoxicity, do not 

mediate appreciable ADCC. In addition, since IFN-γ secretion by the NK cells is crucial for the 

differentiation of tumors and increased expression of MICA/MICB and increased NK cell- 

mediated ADCC, we aimed at finding strategies to increase IFN-γ secretion by the NK cells. 

Collectively, the results establish primary NK cells as mediators of ADCC against MICA/MICB 

expressing differentiated tumors whereas super-charged NK cells as major effectors in mediating 

direct cytotoxicity against undifferentiated and differentiated tumors. 
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Thesis Out line 

Specific aim 1: To determine whether NK cells mediate ADCC differentially against well-

differentiated and undifferentiated/ stem-like oral and pancreatic tumors. 

• Sub-aim 1: Study the differentiation stages of oral and pancreatic tumors based on their 

surface antigens and their susceptibility to NK cells  

• Sub-aim 2: To determine whether well-differentiated and undifferentiated/ stem-like oral 

and pancreatic tumors express distinct levels of MICA/MICB 

• Sub-aim 3: To study the role of NK cells in mediating ADCC differentially against well-

differentiated and undifferentiated/ stem-like oral and pancreatic tumors using antibodies 

specific to MICA/MICB 

• Sub-aim 4: To study whether NK cell mediated ADCC through MICA/MICB is 

responsible for the increased secretion of IFN-γ against well-differentiated and 

undifferentiated/ stem-like oral tumors 

Specific aim 2: To delineate the underlying differences between the functions of primary and 

Expanded NK cells in direct cytotoxicity and ADCC.  

• Sub-aim 1: To study the primary and Expanded NK cell mediated direct cytotoxicity in 

undifferentiated and well-differentiated tumor cells 

• Sub-aim 2: To study whether spilt anergy occurs in both the primary vs Expanded NK 

cells 

• Sub-aim 3: Study whether there are differences in NK cell mediated ADCC between 

primary and Expanded NK cells  
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Specific aim 3: We have established that NK cell-mediated IFN-γ production is the key in 

differentiation of oral and pancreatic cancer cells, therefore we aim at determining 

strategies to increase NK cell mediated production of IFN-γ 

• Sub-aim 1: Study each of the effect of sAJ2 probiotic bacteria and Mekabue extracted 

fucoidan on NK cell function.  

• Sub-aim 2:  Study the synergistic effect of AJ2 and Mekabue on IFN-γ secretion by NK 

cells   
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Methods and Materials  

Cell Lines, Reagents, and Antibodies 

RPMI 1640 supplemented with 10% fetal bovine serum (FBS) (Gemini Bio-Products, CA, USA) 

was used for the cultures of human NK cells and monocytes. OSCCs and stem-like OSCSCs 

were isolated from oral cancer patient tongue tumors at UCLA, and cultured in RPMI 1640 

supplemented with 10% FBS (Gemini Bio-Products, CA, USA), 1.4% antibiotic antimycotic, 1% 

sodium pyruvate, 1.4% non-essential amino acids, 1% L-glutamine, 0.2% gentamicin (Gemini 

Bio-Products, CA, USA), and 0.15% sodium bicarbonate (Fisher Scientific, PA, USA). Mia-

Paca-2 (MP2) was cultured in DMEM with 10% FBS and 1% penicillin and streptomycin 

(Gemini Bio-Products, CA, USA). Recombinant IL-2 was obtained from NIH-BRB. 

Recombinant TNF-α and IFN-γ were obtained from BioLegend (San Diego, CA, USA). Anti-

MHC class-I was prepared in our laboratory and the 1:100 dilution was found to be the optimal 

concentration to use. PE conjugated anti-CD54, anti-CD44, anti-B7H1, and anti-MICA/MICB 

antibodies were obtained from BioLegend (San Diego, CA, USA). Antibody against 

MICA/MICB was a generous gift from Dr. Jennifer Wu from Feinberg School of Medicine.  The 

human NK and monocyte purification kits were obtained from Stem Cell Technologies 

(Vancouver, BC, Canada).  

Purification of NK cells and T cells from human peripheral blood 

Written informed consents, approved by UCLA Institutional Review Board (IRB), were obtained 

from healthy blood donors, and all procedures were approved by the UCLA-IRB. Peripheral 

blood was separated using Ficoll-Hypaque centrifugation, after which the white, cloudy layer, 
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containing peripheral blood mononuclear cells (PBMC), was harvested, washed and resuspended 

in RPMI 1640 (Invitrogen by Life Technologies, CA) supplemented with 10% FBS and plated 

on plastic tissue culture dishes. After 1-2 hours of incubation, non-adherent, human peripheral 

blood lymphocytes (PBL) were collected. NK cells were negatively selected and isolated from 

PBLs using the EasySep® Human NK cell enrichment kit and T cells isolation kit, respectively 

purchased from Stem Cell Technologies (Vancouver, BC, Canada). Isolated NK cells were 

stained with anti-CD16 and anti-CD3 antibody, respectively, to measure the cell purity using 

flow cytometric analysis. Purified NK cells were cultured in RPMI Medium 1640 supplemented 

with 10% FBS (Gemini Bio-Products, CA), 1% antibiotic/antimycotic, 1% sodium pyruvate, and 

1% MEM non-essential amino acids (Invitrogen, Life Technologies, CA).  

Expansion of NK cells 

 Human purified and hu-BLT enriched NK cells were activated with rh-IL-2 (1000 U/ml) and 

anti-CD16mAb (3ug/ml) for 18-20 hours before they were co-cultured with feeder cells and 

sAJ2. The culture media was refreshed with rh-IL-2 every three days [43].  

NK cell supernatants used for stem cell differentiation  

As described above, human NK cells were purified from PBMCs of healthy donors. NK cells 

were treated with a combination of anti-CD16mAb (3 μg/mL) and IL-2 (1,000 U/mL) for 18 

hours before supernatants were removed and used for differentiation experiments. The amounts 

of IFN-γ produced by activated NK cells were assessed with IFN-γ ELISA (BioLegend, CA, 

USA). OSCSCs were differentiated with a gradual daily addition of increasing amounts of NK 

cell supernatants. On average, to induce differentiation, a total of 3,500 pg. of IFN-γ containing 

supernatants were added for 5 days to induce differentiation and resistance of OSCSCs to NK 
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cell-mediated cytotoxicity and a total of 7000 pg. of IFN-γ containing supernatants were added 

for 7 days to induce differentiation and resistance of MP2 to NK cell-mediated cytotoxicity.  

Afterwards, target cells were washed with PBS, detached and used for experiments. 

Treating NK cell with Mekabu 

The fucoidan extracted from the Mekabu seaweed was purchased from NatureMedic. 12.5 g of 

the Mekabu extracted fucoidan (Mekabu) was solubilized in 1 mL of PBS1 and then added to 

cultures.  

Sonicating AJ2 

AJ2 was weighed and resuspended in RPMI Medium 1640 containing 10% FBS at a 

concentration of 10 mg/mL. The bacteria were thoroughly vortexed, then sonicated on ice for 15 

seconds, at 6 to 8 amplitudes. Sonicated samples were then incubated for 30 seconds on ice. 

After every five pulses, a sample was taken to observe under the microscope until at least 80 

percent of cell walls were lysed. It was determined that approximated 20 rounds of 

sonication/incubation on ice, were conducted to achieve complete sonication. Finally, the 

sonicated samples (sAJ2) were aliquoted and stored in a -80 degrees Celsius freezer. 

Generation of osteoclasts  

Osteoclasts were generated from PBMC-purified monocytes and cultured in alpha-MEM 

medium, containing M-CSF (25 ng/mL) and RANK Ligand (RANKL) (25 ng/mL), for 21 days.  

Medium was refreshed every 3 days with fresh alpha-MEM, containing M-CSF (25 ng/mL) and 

RANKL (25 ng/mL).  
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ADCC induction 

The target cells (5105) were labeled with 50 μCi 51Cr (Perkin Elmer, Santa Clara, CA) and 

chromated for 1 hour. Following incubation, target cells were washed once to remove excess 

unbound 51Cr. Cells were resuspended in 1106/mL and the treated with the anti-MICA/MICB 

antibody or Cetaximab (3 μg/mL) and incubated for 30 minutes. Following incubation, target 

cells were washed again to remove excess unbound antibody and 51Cr. Labeled target cells were 

cultured with effector cells and the cytotoxicity against target cells were assessed using 51Cr 

release cytotoxicity assay.  

51Cr release cytotoxicity assay  

51 Cr was purchased from Perkin Elmer (Santa Clara, CA). Standard 51Cr release cytotoxicity 

assays were used to determine NK cell cytotoxic function in the experimental cultures. The 

effector cells (1105 cells/well) were aliquoted into 96-well round-bottom micro-well plates 

(Fisher Scientific, Pittsburgh, PA) and titrated at 4 to 8 serial dilutions. Target cells (5105) were 

labeled with 50μCi 51Cr (Perkin Elmer, Santa Clara, CA) and chromated for 1 hour. Following 

incubation, target cells were washed twice to remove excess unbound 51Cr. 51Cr-labeled target 

cells were aliquoted into the 96-well round bottom microwell plates containing effector cells at a 

concentration of 1104 cells/well at a top effector: target (E: T) ratio of 5:1. Plates were 

centrifuged and incubated for a period of 4 hours. After a 4-hour incubation period, the 

supernatants were harvested from each sample and counted for released radioactivity using the 

gamma counter. Total (containing 51Cr labeled target cells) and spontaneous (supernatants of 

target cells alone) release values were measured and used to calculate the percentage specific 

cytotoxicity. The percentage specific cytotoxicity was calculated using the following formula: 
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Lu30/106 is calculated by using the inverse of the number of effector cells needed to lyse 30% of 

target cells 100.  

 

Enzyme-Linked Immunosorbent Assays (ELISAs)  

ELISA kit for IFN-γ was purchased from BioLegend (San Diego, CA). ELISA was performed to 

detect the level of IFN-γ produced from cell cultures. The assay was conducted as described in 

the manufacturer’s protocol. Briefly, 96-well EIA/RIA plates were coated with diluted capture 

antibody corresponding to target cytokine and incubated overnight at 4°C. After 16-18 hours of 

incubation, the plates were washed 4 times with wash 18 buffer (0.05% Tween in 1PBS) and 

blocked with assay diluent (1%BSA in 1PBS). The plates were incubated for 1 hour at room 

temperature, on a plate shaker at 200 rpm; plates were washed 4 times following incubation. 

Then, 100 L of standards and samples collected from each culture were added to the wells and 

incubated for 2 hours at room temperature, on the plate shaker at 200 rpm. After incubation, 

plates were washed 4 times, loaded with detection antibody, and incubated for 1 hour at room 

temperature, on the plate shaker at 200 rpm. After 1 hour of incubation, the plates were washed 4 

times; wells were loaded with Avidin-HRP solution and incubated for 30 minutes at room 

temperature, on the plate shaker at 200 rpm. After washing the plates 5 times with wash buffer; 

100uL of TMB substrate solution was added to the wells and plates were incubated in the dark 

until they developed a desired blue color (or up to 30 minutes). Then, 100 L of stop solution 

% Cytotoxicity =  
Experimental cpm - spontaneous cpm 
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(2N H2SO4) was added per well to stop the reaction. Finally, plates were read in a microplate 

reader, at 450 nm to obtain absorbance values (BioLegend, ELISA manual).  

 

Surface staining  

1105 cells from each condition were stained in 100 L of cold 1% BSA-PBS with predetermined 

optimal concentration of PE conjugated antibodies, as detailed in the experiments, and incubated 

at 4°C for 30 minutes. Then, cells were washed and resuspended in 1% BSA-PBS. The Epics C 

(Coulter) flow cytometer was used for cellular surface analysis. 

Statistical Analysis 

An unpaired or paired two-tailed Student’s t-test were performed to compare different groups 

depending on the experimental design. The p-values were expressed within the figures as 

follows: ***p-value < 0.001, **p-value: 0.001–0.01, *p-value: 0.01–0.05. The GraphPad Prism 

software was used to analyze the data.  
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Chapter 1: To determine whether NK cells mediate ADCC differentially against well-

differentiated and undifferentiated/ stem like oral and pancreatic tumors. 

 

Results 

NK cells mediate higher cytotoxicity against undifferentiated/stem-like oral and pancreatic 

tumor cells in comparison to their differentiated compartments.  

OSCSCs and MP2 displayed higher expression of CD44, and lower expression of MHC-I, MICA 

and CD54, while the reverse profile was seen in their differentiated counterparts. To differentiate 

the OSCSCs, and MP2s, the tumor cells were treated with supernatants from split-anergized NK 

cells as described in the methods and material section. Treatment of OSCSCs and MP2s with 

split-anergized NK cells’ supernatant decreased the CD44 surface expression and increased the 

MHC-I, MICA and CD54 surface expression. (Fig1. A, B) 

As shown previously NK cells mediated much higher cytotoxicity against oral squamous 

carcinoma stem-like cells (OSCSCs), and undifferentiated/stem-like pancreatic tumor cells 

(MP2), when compared to the differentiated oral squamous carcinoma cells (OSCCs) and 

pancreatic tumor cells (PL12). (Fig 1.C, D). The treatment of OSCSCs with split-anergized NK 

cell supernatants significantly decreased their sensitivity to IL-2-treated NK cell-mediated lysis. 
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Figure.1  

 

 

  

Figure 1. Differentiation stage of oral tumor cells correlates with sensitivity to NK 

cell-mediated lysis. The OSCSCs and MP2 were differentiated as explained in methods 

and material. The surface expression of CD44, MHC-I, and MICA on OSCSCs, OSCCs 

and split-anergized NK cell supernatant-differentiated OSCSCs tumor cells (A), and 

MP2, PL12, and differentiated MP2(B) was assessed using flow cytometric analysis 

after staining with respective PE-conjugated antibodies. Isotype control antibodies were 

used as controls. NK-cell mediated cytotoxicity was determined using a standard 4-hour 
51Cr release assay against OSCCs, differentiated OSCCS and OSCSCs (c), and MP2, 

differentiated MP2, and PL12 (D) tumor cells. Purified NK cells (1106 cells/ml) were 

treated with IL-2 (1000 U/ml) for 18 hours before they were added to 51Cr labeled tumor 

cells at various effector to target ratios.  

  

*** 

*** 

**** 
**** 
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Differentiated pancreatic and oral tumors expressed higher level of MICA/MICB in 

comparison to their differentiated compartments.  

OSCSCs and MP2 displayed lower expression of MICA/MICB, while the reverse profile was 

seen in their differentiated counterparts, OSCCs and PL12. Treatment of OSCSCs and MP2 with 

split-anergized NK cell supernatant increased the MICA/MICB surface expression, showing that 

well-differentiated tumors express higher levels of MICA/MICB in comparison to 

undifferentiated/stem-like oral and pancreatic tumors (Fig. 2).  

 

Figure. 2 

  

Fig 2. Differentiated oral and pancreatic tumor cells expressed higher 

MICA/MICB surface expression in comparison to their undifferentiated 

compartments. The OSCSCs and MP2 were differentiated as explained in methods 

and material. The surface expression of MICA/MICB on OSCCS, OCSCSs, and 

split-anergized NK cell supernatant-differentiated MP2, PL12 and split-anergized 

NK cell supernatant-differentiated OSCSCs (top) PL12, MP2 and NK cell 

supernatant-differentiated MP2 (bottom) was assessed using flow cytometric 

analysis after staining with respective PE-conjugated antibodies. Isotype control 

antibodies were used as controls. 
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Antibodies specific to MICA/MICB increased NK cell-mediated ADCC against OSCC, while 

OSCSCs were not targeted 

To study the antibody dependent mediated cytotoxicity (ADCC) in NK cells against 

differentiated tumor cells expressing high level of MICA/MICB and their undifferentiated 

Counterparts expressing low levels of MICA/MICB, NK cells were purified from healthy 

donors. NK cells were treated with IL-2, the combination of IL-2 and anti-CD16mAb, or were 

left untreated. Their cytotoxicity against the OSCSCs and OSCCs, untreated or treated with the 

antibody against MICA/MICB, was determined using the 51Cr release assay. Untreated and IL-2 

treated NK cells mediated higher cytotoxicity against anti-MICA/B treated OSCCS in 

comparison to untreated OSCCs (Fig.3 A). The fold increase in cytotoxicity against 

antiMICA/MICB treated OSCCs was significantly higher in untreated (mean=6.9 fold increase) 

and IL-2 treated NK (mean=3.1 fold increase) than untreated OSCCs (Fig.3 C, D), while the 

differences in cytotoxicity of untreated and IL-2 treated NK cells against untreated and anti-

MICA/B treated OSCSCS were not significantly different (Fig.3 B, C, D). NK cells treated with 

combination of IL-2 and anti-CD16mAb did not mediate significant levels of ADCC against 

OSCSCs and OSCCs. (Fig.3 A, B, C, D).  
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Figure.3 Antibodies specific to MICA/MICB increased NK cell-mediated 

ADCC against OSCCs, while OSCSCs cells were not targeted significantly 

through ADCC.  Freshly purified NK cells from healthy donors were left untreated, 

treated with IL-2 (1,000 U/mL) or combination of IL-2 and anti-CD16 mAb (3 μg/ml), 

for 18 hours. OSCCS, and OSCSCs were labeled with 51Cr, and then left untreated or 

treated with anti-MICA/MICB antibody (5 μg/ml) for 30 minutes. The unbounded 

antibodies were washed and the cytotoxicity against the OSCCs (A) and OSCSCs (B) 

untreated or treated with the antibody against MICA/MICB was determined using the 

standard 4-hour 51Cr release assay (Fig A & B are Representative of one study). The 

ADCC induced fold increase in cytotoxicity of untreated (C), IL-2 treated (D) and the 

IL-2 + anti-CD16 mAb (E) treated NK cells were measured.  

C D E 

Figure.3 
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 Antibodies specific to MICA/MICB increased NK cell-mediated ADCC against PL12, while 

MP2 cells were not targeted.  

 To further confirm that the same observation can be seen in pancreatic tumors, the same 

experiment was conducted with MP2 and PL12. The cytotoxicity against anti-MICA/MICB treated 

PL12 was 55-fold higher in untreated and 4.3-fold higher in IL-2 treated NK than untreated PL12. 

(Fig.4 C, D) while the differences in cytotoxicity against untreated and anti-MICA/B treated MP2 

were not significant.  
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Figure.4 

C D E 

Figure.4 Antibodies specific to MICA/MICB increased NK cell-mediated ADCC 

against PL12, while MP2 cells were not targeted. Freshly purified NK cells from 

healthy donors were left untreated, treated with IL-2 (1000 U/mL) or combination of IL-2 

and anti-CD16 mAb (3 μg/mL), for 18 hours. PL12, and MP2 were labeled with 51Cr, and 

then left untreated or treated with anti-MICA/MICB antibody (5 μg/ml) for 30 minutes. 

The unbounded antibodies were washed and the cytotoxicity against the PL12 (A) and 

MP2 (B) untreated or treated with the antibody against MICA/MICB was determined 

using the standard 4-hours 51Cr release assay. The ADCC induced fold increase in 

cytotoxicity for untreated (C), IL-2 treated (D), and the IL-2 +anti-CD16 mAb treated (E) 

NK cells were measured.  
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Differentiation of OSCSCs with split-anergized NK cells supernatant results in their 

susceptibility to NK cell- mediated ADCC through anti-MICA/MICB antibody.  

We previously showed that treatment of OSCSCs and MP2 with split-anergized NK cells’ 

supernatant increases the surface expression of differentiation markers including MICA/MICB. 

To determine if differentiating oral and pancreatic tumors with spit-anergized NK cell 

supernatant make them susceptible to NK cell mediated ADCC, OSCSCs and MP2 were 

differentiated as described in Methods and Material and the cytotoxicity of untreated and IL-2 

treated NK cells agains untreated and MICA/MICB treated undifferentiated, split-anergized NK 

cells supernatant-differentiated, and undifferentiated/stem-like oral and pancreatic tumors were 

measured. As we have shown before, the untreated and IL-2 treated NK cells mediated ADCC 

against OSCCSs and PL12 (Fig.5 A, D). The undifferentiated OSCSCs and PL12 were highly 

susceptible to IL-2 treated NK cell-mediated cytotoxicity, while the cytotoxicity against their 

supernatant-differentiated counterparts showed a 4-fold decrease in OSCSCs and a 67-fold 

decrease in MP2. IL-2 treated NK cells showed higher level of cytotoxicity against anti-

MICA/MICB treated differentiated OSCSCs and MP2 in comparison to untreated tumors, while 

the ADCC-mediated lysis did not happen against MP2 or OSCSCs (Fig.4 B, C, E, F), showing 

that differentiation of OSCSCs and MP2 with split-anergized NK cell supernatant make them 

susceptible to NK cell mediated ADCC through anti-MICA/MICB antibody. 
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Figure.5 

OSCSCS Diff-OSCCS OSCC

S 

MP2 Diff-MP2 PL12 

Figure.5 Differentiation of OSCSCs with split-anergized NK cells supernatants 

results in their susceptibility to NK cell- mediated ADCC through anti 

MICA/MICB antibody. OSCSCs and MP2 tumor cells were differentiated as described 

in methods and material section. Freshly purified NK cells from healthy donors were left 

untreated or treated with IL-2(1,000 U/ml) for 18 hours. OSCCS, differentiated OSCSCs, 

and OSCSCs, were labeled with 51Cr, and then left untreated or treated with 

antiMICA/MICB antibody (5 μg / ml) for 30 minutes. The unbounded antibodies were 

washed and the cytotoxicity of untreated NK cells and/or IL-2 treated against untreated or 

antiMICA/MICB treated the OSCCs (A), differentiated OSCSCs (B), OSCSCs (C), 

PL12(D), differentiated MP2 (E), and MP2 (F) were determined using the standard 4-

hours 51Chromium release assay.  

** 

** 
** 

* 

* 
* 

***

* 



31 
 

Antibodies specific to MICA/MICB increased IFN- 𝜸 secretion by NK cells when cultured with 

differentiated Oral tumors expressing MICA/MICB  

To determine whether anti-MICA/MICB antibodies can increase the secretion of IFN-γ, NK cells were 

cultured with untreated or antiMICA/MCB treated OSCCs and OSCSCs. Untreated NK cells did not 

induce IFN-𝛾 secretion with or without being co-cultured with tumor cells. As we have shown previously, 

a combination of IL-2 and anti-CD16 mAb induced the highest levels of IFN-γ secretion by NK cells. 

When IL-2 treated NK cells were co-cultured with OSCCs and OSCSCs, they secreted higher levels of 

IFN-γ in comparison to the control groups (NK cells alone with no tumor), and OSCSCs caused more 

secretion of IFN-γ than OSCCs. When IL-2 treated NK cells were cultured with anti-MICA/MICB treated 

OSCCs they secreted more IFN-𝛾 than NK cells cultured with untreated OSCCs. Secreted levels of IFN-γ 

in NK cells co-cultured with untreated OSCSCs and anti-MICA/MICB treated OSCCs were not 

significantly different.  The same trend was observed in three different separate experiments (Fig.8 A- C). 

The amount of IFN-γ secreted by NK cells treated with the combination of IL-2 and anti-CD16mAb, was 

not significantly different in untreated and anti-MICA/MICB antibody treated OSCCs and OSCSCS.  
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  Figure.6 

Fig.6 Antibodies specific to MICA/MICB increased IFN-  secretion by NK cells 

when cultured with differentiated Oral tumors expressing MICA/MICB. OSCCs 

and OSCSCs were cultured in absence or presence of anti-MICA/MICB Ab (5 μg/mL) 

overnight. The unbounded antibodies were washed. Freshly purified NK cells from 

healthy donors were left untreated, treated with IL-2 (1,000 U/mL) or combination of IL-2 

and anti-CD16 mAb (3 μg/mL), for 18 hours and they were co-cultured with OSCCs (A), 

and OSCSCs (B). After 24 hours the supernatant was collected from the cultures and IFN-

g was measured with ELISA. Figure A and B are representative of one experiment. Figure 

C shows the IFN-g level of IL-2 treated NK co-cultured with untreated or anti-

MICA/MICB antibody treated OSCCs and OSCSCs in three different experiments.  

** 

** 

*

* 

*

* 

** 

*** 

** 
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Chapter.2: Primary NK cells and Supercharged NK cells function differently in mediating 

cytotoxicity 

Results  

 

Expanded NK cells target both undifferentiated and differentiated tumor cells while primary 

NK cells preferentially target undifferentiated/Stem-like population.  

Our laboratory has developed a novel strategy to expand NK cells called” Super Charged” NK 

cell, having both high cytotoxicity and cytokine secretion abilities. When comparing the function 

and surface expression of primary and supercharged NK cells, they show different characteristics 

(43). We showed that supercharged NK cells have high cytotoxicity against undifferentiated 

tumor cells, but their function against differentiated tumors was not studied. To compare the 

cytotoxicity of primary NK and Expanded NK against differentiated and undifferentiated tumor 

cells, NK cells were Expanded for 15 days and their cytotoxicity against OSCCs, OSCSCs, PL12 

and MP2 were measured. Undifferentiated tumor cells were more susceptible to primary NK cell 

-mediated lysis, but alternatively with the differentiated counterparts, Expanded NK cells from 

the same donor were able to significantly target both differentiated and undifferentiated tumor 

cells. The cytotoxicity of Expanded NK cells was 3 to 15-fold higher against OSCCs and 4.7-

fold higher against PL12 in comparison to primary NK cells.  
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Fig.7 Expanded NK cells target both undifferentiated and differentiated 

tumor cells while primary NK cells preferentially target undifferentiated/ 

stem-like population. NK cells were purified from healthy donors’ blood and 

expanded as described in methods and material section. After day 15 of expansion, 

primary NK cells were purified from the same donor (1×106cells/mL) and treated 

with IL-2 (1,000 U/mL) and expanded NK cells reactivated with IL-2 (1,000 U/mL) 

for 18 hours. OSCCSs and OSCSCs were labeled with 51Cr, and the cytotoxicity of 

primary and expanded NK cells against OSCCs (left) and OSCSCs (right) were 

determined in three different experiments, using the standard 4-hours 51Cr release 

assay (A). PL12 and MP2 were labeled with 51Cr, the cytotoxicity of primary NK 

cells, and cytotoxicity of expanded NK against MP2and PL12 was determined (Fig 

B).  

Figure. 7 
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Experiment.3 

Experiment.2 Experiment. 
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Combination of IL-2 and anti-CD16 treatment induces split anergy in primary NK cells but not in 

super-charged NK cells 

Our laboratory has defined a stage of NK cells maturation called “split anergy,” that indicates 

reduced NK cell cytotoxicity in the presence of significant secretion of cytokines. We previously 

showed that treatment of NK cells with IL-2 and anti-CD16 mAb can induce split anergy in 

primary NK cells. To determine whether a combination of IL-2 and anti-CD16 mAb treatment 

will decrease the cytotoxicity in Expanded NK, freshly purified NK cells from healthy donors 

were Expanded. After being in culture for 15 days, NK cells were purified from the same donors 

and primary and Expanded NK cells were treated with IL-2 and the combination of IL-2 and 

anti-CD16 mAb for 18 hours. Then their cytotoxicity against OSCSCs was measured using a 

standard 4-hour 51Cr release assay. As we have shown previously, the cytotoxicity of IL-2 and 

anti-CD16 treated primary NK cells against OSCSCs decreased 2.4 to 4.9-fold while the 

cytotoxicity of IL-2 and anti-CD16 treated Expanded NK cells was almost the same as IL-2 

treated Expanded NK (Fig.8).  
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B A C 

Figure.8 Combination of IL-2 and antiCD16 treatment induces split anergy in primary NK 

cells but not in super-charged NK cells. NK cells were purified from healthy donors’ blood and 

expanded as explained in methods and material section. After day 15 of expansion primary NK 

cells were purified from the same donor (1×106cells/mL) and they were treated with IL-2 

(1,000 U/mL), or the combination of IL-2 (1,000 U/mL) and anti-CD16mAb (3 μg/ml) for 

18 hours. Expanded NK cells (1×106cells/mL) were reactivated with IL-2 (1,000 U/mL), and the 

combination of IL-2 (1,000 U/mL) and anti-CD16 mAb (3 μg/ml) for 18 hours. OSCSCs were 

labeled with 51Cr and the cytotoxicity of IL-2- treated and combination of IL-2 and anti-

CD16mAb of primary (A) and expanded NK cells (B) against the OSCSCs was determined using 

the standard 4-hours Chromium-51 release assay. Figure A and B is representative of one separate 

experiment. The fold decrease in cytotoxicity caused as the result of anti-CD16 mAb treatment 

was calculated (C). 

Figure. 8 
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Primary NK cells mediate Higher levels of ADCC than expanded NK cells  

Previously, we have shown that CD16 gets down-modulated on Expanded NK cells [43]. To 

study the ability of Expanded NK cells in mediating ADCC, the cytotoxicity of primary NK cells 

and Expanded NK cells on day 15, from the same donor, were measured against untreated, anti-

MICA/MICB antibody, and Cetaximab treated OSCCs. While untreated and IL-2 treated primary 

NK cells mediated higher level of cytotoxicity against anti-MICA/MICB and Cetaximab treated 

OSCCs than untreated tumors, Expanded NK cells and IL-2-reactivated NK Expanded NK cells 

did not mediate ADCC against anti-MICA/MICB or Cetaximab treated OSCCs. (Fig. 9 A, B, D 

and E). When the experiment was repeated with PL12 tumor cells, the same results were 

observed (Fig.9 D). Both primary and Expanded NK cells treated with the combination of IL-2 

and anti-CD16 mAb were not able to mediate ADCC against anti-MICA/MICB antibody treated 

OSCCs and PL12 (Fig.9 C, F).  
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D 

Figure.9 

C B A 
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Figure. 9 Primary NK cells mediate higher level of ADCC than expanded NK cells. NK cells 

were purified from healthy donors’ blood and expanded as explained in methods and material section. 

After day 15 of expansion primary NK cells were purified from the same donor (1×106 cells/mL) and 

they left untreated, treated with IL-2 (1,000 U/mL), and the combination of IL-2 (1,000 U/mL) and anti-

CD16mAb (3 μg/mL) for 18 hours. Expanded NK cells (1×106 cells/mL) left untreated or reactivated 

with IL-2 (1,000 U/mL), and the combination of IL-2 (1,000 U/mL) and anti-CD16mAb (3 μg/mL) for 

18 hours. OSCCS were labeled with Cr51, and then left untreated or treated with anti-MICA/MICB 

antibody, or Cetaximab (5 μg/mL) for 30 minutes. The unbounded antibodies were washed and the 

cytotoxicity of Untreated (A). IL-2- treated (B), and combination of IL-2 and anti-CD16mAb (C) of 

primary and expanded NK cells against the OSCCs untreated or treated with the antibody against 

MICA/MICB antibody or Cetuximab was determined using the standard 4-hours Chromium-51 release 

assay. (Fig. A-C are reprehensive of one study). Figure D Shows the percentage of cytotoxicity for the 

same experiment.  ADCC induced fold increase in IL-2 treated primary and expanded NK cells were 

calculated, (E)Cytotoxicity of untreated, IL-2- treated (1,000 U/mL) primary NK, and day15 IL-2- 

reactivated expanded NK (1,000 U/ml) form the same donor against the PL12 untreated or treated with 

the antibody against MICA/B (5 μg/mL) was determined using the standard 4-hours Chromium-51 

release assay. (E)  

E 

F 
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Chapter.3: We have established that NK cell-mediated IFN-γ production is the key in 

differentiation of oral and pancreatic cancer cells, therefore we aim at determining 

strategies to increase NK cell mediated production of IFN-γ. 

 

Results 

Treatment of NK cells with each AJ2 probiotic bacteria and Mekabue extracted fucoidan 

Extract increased NK cells IFN- secretion ability but does not elevate NK cell mediated 

cytotoxicity.  

Previously we have established that IFN-γ secreted by NK cells have a significant role in 

differentiation of tumor cells. To look for the strategy to increase NK cell-mediated production 

of IFN-γ, the effect of fucoidan and AJ2 probiotic bacteria on function of NK cells was studied. 

To study the effect of fucoidan on NK cells function, purified NK cells from healthy donors were 

treated over 24 hours with IL2 and different concentrations of D-fucoidan extracted from 

Undaria pinnatifida known as Mekabu. Treatment of NK cells with Mekabu for 24 hours 

significantly increased their ability to secrete IFN-γ but decreased their cytotoxicity, pushing the 

NK cells to a stage known as split-anergy (Fig.10 A, B). 

To study the effect of AJ2 probiotic bacteria on the function of NK cells, purified NK cells were 

treated with IL-2 for 18 hours and they were treated with the sAJ2 probiotic bacteria for 24 

hours. Activated NK cells with sAJ2 induced higher level of IFN-γ, while their ability to 

mediated cytotoxicity did not change. (Fig.10 C, D).  
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A B 

C D 

Figure 10. Mekabue extracted Fucoidan at a specific concentration induced split-

anergy in NK cells, and A2 probiotic bacteria increased IFN-γ secretion in NK while 

their ability to mediate cytotoxicity remains unchanged.  Mekabue were solubilized in PBS 

(12.5 mg/ml), Purified NK cells (1x106 cells/ml) were treated with IL-2 (1000 U/ml) for 18 hours 

and the NK cells were cultured in absence or presence of Mekabue in 1:1000, and 1: 100,000 

titrations. The supernatant was harvested from the culture after 24 hours and the IFN-γ was 

measured by ELISA (Fig.2 A). Cells were resuspended in fresh media (1x106 cells/ml). NK cells 

were then used as effector cells against 51Cr labeled OSCSCs. NK cell mediated cytotoxicity was 

determined using a standard 4-hour 51Cr release assay and the lytic units determined as described 

in methods and materials (Fig.2 B). 

Figure. 10 
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AJ2 probiotic bacteria and Mekabu can synergistically induce IFN- secretion in IL-2- treated 

NK cells.  

To study the synergistic effect of AJ2 and Mekabu on IFN-γ induction by NK cells, purified NK 

cells from healthy donors were treated with IL-2 for 18 hours and then they were left untreated, 

treated with AJ2, Mekabu, or both. The cultures’ supernatants were collected after 24 hours and 

IFN-γ levels were measured. NK cells treated with AJ2 or Mekabu induced significantly higher 

levels of IFN-𝛾 in comparison to the control group (Fig.11 A, B). The treatment combination of 

AJ2 and Mekabu significantly induced higher secretion of IFN-γ compared to the control and the 

NK cells treated with only AJ2 or Mekabu groups. (Fig.11 A, B).  

  



43 
 

 

  

Figure.3 AJ2 probiotic bacteria and Mekabue can synergistically induce IFN- γ 

secretion in IL2- treated NK cells.  Purified NK cells (1x106 cells/ml) were treated with 

IL-2 (1000 U/ml) for 18 hours and the NK cells were cultured in absence or presence of 

Mekabue in 1:1000,000 titration, sAJ2 at 1:0.5 ratio (NK: sAJ2), or combination of sAJ2 and 

Mekabue. After 24 hours the supernatant was collected and IFN- γ was measured by ELISA. 

Fig.3 A is reprehensive of one experiment), Fig.3 Shows the scatter plot for three 

experiments.    

Figure.11 
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Discussion  

We have previously shown that NK cells target poorly differentiated cells or stem cells with 

lower expression of key differentiation antigens [68-70]. In our studies, we characterized the link 

between the stage of maturation and differentiation of tumors and their sensitivity to NK cell-

mediated lysis. In this regard, we have shown that stem-like/poorly differentiated oral and 

pancreatic tumor cells were significantly more susceptible to NK cell-mediated cytotoxicity, 

whereas, their differentiated counterparts were significantly more resistant (Fig.1). 

Furthermore, we demonstrated that differentiated oral, pancreatic tumor cells, and cancer stem 

cells/poorly differentiated tumor cells differentiated in vitro with supernatants from split-

anergized NK cells became resistant to NK cell-mediated cytotoxicity. Unlike the CSCs/poorly 

differentiated tumor cells, both patient-derived differentiated tumor cells and split-anergized NK 

supernatant-differentiated tumor cells exhibited upregulated CD54, B7H1, and MHC class I 

surface expression and demonstrated decreased CD44 expression (Fig.1) 

When it comes to NK cells’ immunity, MICA/MICB antigens play an important role since it is a 

well-known ligand for NKG2D and it gets expressed upon stress, damage, viral infection or 

transformation of cells which act as a ‘kill me' signal through the cytotoxic lymphocytes. We 

showed that MICA/MICB does not get upregulated on all tumor cells but is correlated with the 

differentiation stages of the cells. We showed that differentiated oral, pancreatic tumor cells, and 

cancer stem cells/poorly differentiated tumor cells differentiated in vitro with supernatants from 

split-anergized NK cells express a higher level of MICA/MICB in comparison to their stem-

like/undifferentiated counterparts (Fig.2). We previously showed that primary NK cells 

preferentially target stem-like/undifferentiated cells [1, 68].  This finding does not correlate with 

the fact that well-differentiated cells express a higher level of MICA/MICB which is a ligand for 
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an activator receptor on NK cells. This fact can explain the unknown roles of MICA/MICB 

ligands and its receptors.  Since there was a difference in the pattern of MICA/MICB expression 

in stem-like/undifferentiated and well-differentiated oral and pancreatic tumor, we then studied 

whether NK cells mediate ADCC differentially against these tumors based on the antibody 

specific to MICA/MICB. We showed that antibodies specific to MICA/MICB increased NK cell-

mediated ADCC against well-differentiated and cancer stem cells/poorly differentiated tumor 

cells differentiated in vitro with supernatants from split-anergized NK cells. Alternatively, stem-

like/undifferentiated tumor cells were not targeted by untreated and IL-2 treated primary NK 

cells through ADCC which correlated with the expression level of MICA/MICB. When NK cells 

were treated with anti-CD16 mAb, NK cells were not able to mediate ADCC since the CD16 

receptor was masked by the antibody (Fig.3-5). Furthermore, we showed that antibody specific 

to MICA/MICB increased IFN-γ secretion by NK cells when cultured with differentiated oral 

tumors expressing MICA/MICB, but not stem-like/undifferentiated oral tumor cells. The effect 

of ADCC on IFN-γ secretion by NK cells has not yet been well studied. A study showed that 

when NK cells were cultured with target cells and the antibody specific to the antigen they 

present, cytokines such as TNFα, IL-6, IFN-γ, or chemokines such as IL-8 and MCP-1 were 

found to be significantly enhanced [71].  

Next, we delineated the underlying differences between the functions of primary and Expanded 

NK cells in direct cytotoxicity and ADCC. We have established a novel strategy to expand NK 

cells by IL-2, antiCD16 mAb, and sAJ2 probiotic bacteria activation and Osteoclasts as feeder 

cells. This strategy leads to NK cells called “Super Charged “NK cell, having high cytotoxicity 

and high levels of IFN-γ secretion [43]. When we compared the cytotoxicity of NK cells against 

stem-like/undifferentiated oral and pancreatic tumors with their well-differentiated counterparts 
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we showed that Expanded NK cells target both undifferentiated and differentiated tumor cells 

while primary NK cells preferentially target undifferentiated/stem-like populations. The 

cytotoxicity of Expanded NK cells was 3 to 15-fold higher against OSCCs and 4.7-fold higher 

against PL12 in comparison to primary NK cells (Fig.7). This shows the extend well-

differentiated tumor cells can become sensitive to Expanded NK cell-mediated cytotoxicity can 

be different based on the biology of these cells and maybe their resistance to primary NK cells 

mediated cytotoxicity. In the study done by Lee et al, they evaluated the antitumor cytotoxicity 

of NK cells expanded by anti-CD16 and autologous irradiated PBMCs, against an MHC class I-

negative cell line (K562) and MHC class I-positive cell line (MCF-7, and SW480). They saw 

that MCF-7 and SW480 cells, which both expressed MHC-I and MICA, were sensitive to NK 

cell-mediated lysis of Expanded NK cells. They did not measure the cytotoxicity of primary NK 

cells against these cell lines to compare with Expanded NK cells, but MHC-I negative cells were 

moderately sensitive to NK cell-mediated lysis in comparison to K562 cells which were highly 

sensitive to NK cells [72]. The mechanism by which Expanded NK cells can target cells 

expressing MHC-I is unknown. Expanded NK cells express a higher level of NKG2D than 

primary NK cells. We showed that MICA/MICB, one of the NKG2D ligands, expresses highly 

on well-differentiated cells which also express a high level of MHC-I. Therefore, it could be 

possible that since Expanded NK cells express a higher level of NKG2D, the NKG2D- 

MICA/MICB mediated lysis became the dominant mechanism of cytotoxicity in Expanded NK 

cells, leading to the targeting of both undifferentiated and differentiated tumor cells.  

One of the novel findings of our laboratory is defining the stage of maturation in NK cells called 

split anergy which can be initiated by targeting different receptors on NK cells including the 

CD16 receptor. We showed that when NK cells were treated with the combination of IL-2 and 
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antiCD16 mAb, their cytotoxicity decrease but their ability to secrete IFN- γ significantly 

increase in comparison to IL-2 treated NK cells [13].  Furthermore, we investigated that whether 

spilt anergy occurs in both the primary and Expanded NK cells. The results showed that treating 

Expanded NK cells with the combination of IL-2 and antiCD16 did not result in a decrease in 

their cytotoxicity (Fig. 8). One of the receptors that get downmodulated on the surface of 

Expanded NK cells is CD16 and this could explain why antiCD16 treatment in Expanded NK 

cells cannot push them towards the split anergy stage. Since the level of CD16 is different on 

primary and Expanded NK cells, next we compare the ADCC in primary and Expanded NK 

cells. When the level of ADCC was measured in untreated and IL-2 treated NK cells against 

well-differentiated Oral tumors treated with antiMICA/MICB antibody and also Cetaximab 

(antibody against EGFR receptor), despite primary NK cells, Expanded NK cells were not able 

to mediate ADCC and even some levels of inhibition was seen in antibody treated tumor cells in 

comparison to the untreated cells (Fig.9). The reason why Expanded NK cells mediate lower 

level of ADCC could be due to the downmodulation of CD16 receptor on their surface. Although 

Expanded NK cells express some levels of CD16, but it could be assumed that a distinct level of 

CD16 is required for NK cells to be able to mediate ADCC s it is known that during HIV-1 

infection, NK cells are known to express low levels of CD16 and exhibit reduced ADC [73].  

In our previous finding, we showed that induction of split anergy in NK cell effector function is 

thought to ultimately aid in driving differentiation of healthy, as well as transformed stem-like 

cells [68, 69]. Differentiation of tumor cells is one of the important role of NK cells since the 

differentiated tumor micro environment become less invasive and more susceptible to 

chemotherapeutics.  Our group has previously shown that cytokines that are secreted by NK 

cells, primarily IFN-γ and TNF-α, are responsible for the differentiation of cancer stem cells 
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(CSCs) and result in the increase in differentiation antigens such as MHC class I, CD54, B7H1, 

and MICA and decrease in CD44 [13]. This study also demonstrates that exposing oral and 

pancreatic cancer stem cells to IFN-γ secreted by NK cells activated with IL-2 and CD16 

triggered, resulted in upregulation of differentiation the same differentiation markers a 

respectively the differentiated tumor cells, lose their cytotoxicity against NK cells (Fig. 1). This 

study and our previous extensive work on AJ2 probiotic bacteria illustrate the profound 

capability probiotic bacteria has on NK cells to induce a significant increase in cytokine 

secretion, known as split anergy. AJ2 is a combination of 8 strains of probiotic bacteria for their 

ability to induce significant secretion of IFN-γ when added to IL-2 or IL-2+anti-CD16mAb 

treated NK cells [11]. The ratio of bacteria added to create sAJ2 was adjusted to yield a ratio of 

IFN-γ to IL-10 for when cells are activated with IL-2 or IL-2+anti-CD16mAb without bacteria. 

This ratio was established to obtain a similar ratio when NK cells are activated with IL-2+anti-

CD16mAb without bacteria since this NK treatment provided increased differentiation of stem 

cells. IL-10, an anti-inflammatory cytokine, was taken into consideration to balance the 

significant amount of IFN-γ secreted by cells during the process of differentiation. This 

combination of bacterial strains was selected due to its optimal induction of pro- and anti-

inflammatory cytokine and growth factors by the NK cells.   

 Fucoidan is a sulfated polysaccharide, can be extracted from different species of brown algae 

and brown seaweed. This compound has been known to have immunomodulatory effects on 

immune cells.  Although studies have shown that Fucoidan can decrease tumor size, have 

antitumor activities, and lead to higher survival in tumor-induced mouse [15-17], the exact role 

of Fucoidan on NK cells function has not been well studied.  In this study, we showed that 

Mekabu extracted Fucoidan increased NK cells IFN- γ secretion ability but decreased NK cell-
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mediated cytotoxicity which is a profile of split anergized NK cells. Seeking strategies to push 

NK cells to secrete the highest level of IFN-γ, we looked at synergistic effect of Mekabu and AJ2 

probiotic bacteria on NK cell-mediated IFN-γ  secretion and we showed that NK cells treated 

with AJ2 or Mekabu induce significantly higher level of IFN- γ in comparison to untreated, 

sAJ2, or Mekabu treated IL-2 treated NK cells (Fig.11). NK cells express different families of 

Toll-like receptors (TLRs) [74]. The gram-positive bacteria in the probiotic bacteria can trigger 

NK cells TLRs via their cell wall components. A study showed that cytokine induction by both 

B. breve and the lactobacilli is strongly dependent on TLR9 since blocking of TLR9 resulted in 

decreased production of IL-10 and IFN-γ in PBMCs [75] Fucoidan from seaweeds is 

independent ligands for TLR-2 and TLR-4. The reason that NK cells produce a higher level of 

IFN-γ in presence of both AJ2 probiotic bacteria and Mekabu could be since these compound 

target different family of TLRs on NK cells.  

Conclusion 

In conclusion, differentiation stage of pancreatic cancer cells correlated directly with the 

resistance to NK cell-mediated cytotoxicity and expression of key surface antigens. 

Differentiation by NK cells is very important for the effective targeting of cancer stem cells/ 

undifferentiated tumor cells. As IFN-γ plays a critical rule in differentiation, looking for 

treatment strategies to push NK cells to produce higher levels of IFN-γ is a critical step in 

eliminating tumors. Combination of probiotic AJ2 bacteria with fucoidan extracted from Mekabu 

seaweed can cause higher secretion of IFN-γ by NK cells.  

Oral and pancreatic tumor cells have specific pattern of MICA/MICB antigen expression as 

differentiated tumor cells express higher levels of MICA/MICB than stem-like/ undifferentiated 

tumor cells. Since well differentiated cells express higher levels of MICA/MICB NK cells 
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mediate higher levels of ADCC through antibody specific to MICA/MICB against these cells 

than their undifferentiated compartments. Furthermore, Primary and Expanded NK cells have 

very different characteristic and biological functions and all diverse functions of different subsets 

NK cells should be considered in NK cell- immunotherapeutic approaches. 
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