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log(MPl/m3/2)

Oscar Loaiza-Brito∗, Johannes Martin∗, Hans Peter Nilles∗ and Michael Ratz∗

∗Physikalisches Institut, Universität Bonn
Nussallee 12, D-53115 Bonn, Germany

Abstract. Flux compactifications of string theory seem to require the presence of a fine-tuned constant in the superpotential.
We discuss a scheme where this constant is replaced by a dynamical quantity which we argue to be a ‘continuous Chern–
Simons term’. In such a scheme, the gaugino condensate generates the hierarchically small scale of supersymmetry breakdown
rather than adjusting its size to a constant. A crucial ingredient is the appearance of the hierarchically small quantity
exp(−〈X〉) which corresponds to the scale of gaugino condensation. Under rather general circumstances, this leads to a
scenario of moduli stabilization, which is endowed with a hierarchy between the mass of the lightest modulus, the gravitino
mass and the scale of the soft terms, mmodulus ∼ 〈X〉m3/2 ∼ 〈X〉2 msoft. The ‘little hierarchy’ 〈X〉 is given by the logarithm

of the ratio of the Planck scale and the gravitino mass, 〈X〉 ∼ log(MPl/m3/2) ∼ 4π2. This exhibits a new mediation
scheme of supersymmetry breakdown, called mirage mediation. We highlight the special properties of the scheme, and their
consequences for phenomenology and cosmology.

Keywords: moduli stabilization; supersymmetry breaking
PACS: 11.25.-w,11.25.Mj,11.25.Yb

INTRODUCTION

Superstring theories are the most attractive candidates for
a unified description of all observed phenomena. They
provide all structures necessary to accommodate the mat-
ter content of the standard model as well as all known
interactions. However, a commonly accepted stringy ex-
tension of the standard model has not yet emerged. Apart
from the obvious problem to obtain the correct spectrum
there are further, more fundamental questions, which
have to be answered if one wants to relate superstring
theory to observation. These questions include:

(i) Why is the scale of weak interactions so much lower
than the scale of gravity?

(ii) Why do we observe four space-time dimensions?
(iii) Why do we live in de Sitter (or Minkowski) space?

The first question concerns the appearance of the weak
scale mweak while string and Planck scale, MSt and MPl,
are of similar size, and mweak � MPl. To address the sec-
ond question, one usually confines oneself to the problem
of finding a self-consistent compactification from ten to
four dimensions. This includes, in particular, the stabi-
lization of the moduli, which parametrize the size and
shape of the internal space. The last question is highly
non-trivial since string compactifications admit anti-de
Sitter (adS) minima, i.e. vacua with negative vacuum en-
ergy. It is challenging to understand in such a framework
why the vacuum chosen by nature has positive (or zero)
energy.

These questions are not unrelated. In four dimen-
sions, hierarchically small scales can be obtained by
dimensional transmutation. The conventional approach
to address the hierarchy problem consists in generating
a hierarchically small scale of supersymmetry (SUSY)
breakdown by a non-perturbative effect, such as a gaug-
ino condensate [1]. This leads to the appearance of the
scale M���SUSY ∼ MSt exp(−X) with X being a moderately
large field-dependent quantity. Once SUSY is broken, the
moduli get a non-trivial potential, which might result in
their stabilization. However, it is rather difficult to obtain
consistent scenarios where a stabilization of all moduli
occurs at realistic values. Furthermore, in this picture,
one would encounter a situation where the mass of (most
of) the moduli is of the order of the weak scale. It is,
however, known that such moduli masses lead to severe
problems for cosmology.

More recently, the picture has changed due to signifi-
cant progress in understanding the role of fluxes for mod-
uli stabilization [2]. The main new feature is that some of
the moduli can be fixed at realistic values while attaining
masses of the order MSt.

Some important aspects of the ‘flux compactifica-
tion’ scheme are nicely illustrated by the toy example
of KKLT [3] in type IIB string theory. Here, in a first
step the complex structure moduli (Za) and the dilaton
(S) get stabilized by fluxes. This results in the appearance
of a (fine-tuned) constant in the superpotential which, at
this stage, breaks SUSY with the scale of SUSY break-
ing being set by the size of the constant. In the second
step, a gaugino condensate is included, which adjusts its
size to this constant, thereby fixing the Kähler modu-
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lus (T ) and restoring SUSY. At this stage, the vacuum
energy is negative. This has to be rectified in the third
step where an (ad-hoc) ‘uplifting’ is introduced, which
renders the vacuum energy positive, and then (again)
breaks SUSY. Clearly, in the context of flux compacti-
fications one usually loses the explanation of the hierar-
chy mweak ∼ msoft � MPl. This hierarchy is now related
to the appearance of a small (quantized) constant in the
superpotential, which requires a severe fine-tuning.

In Sec. 2, we propose a modification of the ‘flux com-
pactification’ scheme where the positive features of the
latter are retained while (some of) the problematic as-
pects are avoided. The main novelty is that the constant in
the superpotential gets replaced by a dynamical quantity.
This means that after the first step of moduli stabiliza-
tion SUSY is unbroken and the superpotential vanishes,
leading to zero vacuum energy at this stage. As a conse-
quence, the non-perturbative effect (gaugino condensate)
sets the scale of SUSY breaking rather than adjusting to
a constant. We argue that the above-mentioned dynami-
cal quantity should be given by the continuous, i.e. non-
quantized, part of the Chern–Simons term appearing in
dimensional reduction from ten to four dimensions.

In Sec. 3, we discuss the phenomenological con-
sequences of the appearance of the small quantity
exp(−X), which leads under rather general circum-
stances to the ‘little mass hierarchy’

mmoduli ∼ 〈X〉m3/2 ∼ 〈X〉2 msoft , (1)

where 〈X〉 ∼ log(MPl/m3/2) ∼ 4π2. As we shall see, this
results in a scheme with distinct properties. These prop-
erties solve (or, at least, help to solve) several problems
of supersymmetric extensions of the standard model.

AVOIDING QUANTIZED CONSTANTS

The scenario of hidden sector gaugino condensation
yields a very plausible explanation of the hierarchy
mweak � MPl. Here, strong dynamics leads to the non-
trivial expectation value of the gaugino bilinear [1],
〈λλ 〉 = Λ3, where Λ is of the order of the renormaliza-
tion group (RG) invariant scale,

Λ ∼ µ exp{−1/[b0 g2(µ)]} � MPl . (2)

b0 is the coefficient of the β -function. This strong
dynamics triggers a breakdown of SUSY that is
parametrized by the gravitino mass

m3/2 ∼ Λ3

M2
Pl

and M���SUSY �
√

m3/2MPl . (3)

Notice that SUSY breakdown requires non-trivial gauge-
kinetic function [4],

Fi = exp(−K)DiW + fi 〈λλ 〉+ . . . . (4)

In other words, the gauge coupling has to be field-
dependent, g−2 = f . It is further possible to include the
gaugino condensate in the superpotential [5],

W = Wperturbative +C exp(−a f ) . (5)

Early attempts to incorporate gaugino condensation in
(heterotic) string theory [6, 5] revealed the importance
of a background flux of the field strength H of the 2-
index antisymmetric tensor field B to avoid a run-away
behavior of the dilaton field. This is obvious from the
‘perfect square’ structure of supergravity [7],

SSUGRA ⊃ (
H −α ′ 〈λλ 〉)2

(6)

Here, H is the 3-form field strength of the two-index
antisymmetric tensor field B that appears in the 10d
supergravity multiplet. It is important to note that the
naive field strength Hnaive = dB has to be amended by
Chern–Simons terms [7, 8],

H = dB− 1√
2

(
ω(YM) −ω(L)

)
, (7)

where the Yang–Mills Chern–Simons term is given by

ω(YM)
MNP = Tr

(
A[M FNP] −

2
3

A[M AN AP]

)
, (8)

and an analogous expression exists for the Lorentz
Chern–Simons term.

The ‘perfect square structure’ (6) leads to the possi-
bility that the flux H stabilizes the gaugino condensate
(or vice versa) [6, 5]. However, generically not all mod-
uli are stabilized. Moreover, the gaugino condensate can
no longer account for the hierarchy, since it balances the
value of the quantized H [9]. If one were to set H = 0,
the latter problem would not arise. However, in such a
scenario a non-trivial value of the gaugino condensate
would now lead to a vacuum energy of order Λ6/M2

Pl,
which is inconsistent with observation. One would there-
fore need a small, non-quantized piece of H to conspire
with the gaugino condensate such that the vacuum en-
ergy (almost) vanishes.

Our statements rely on the non-quantized nature of the
Chern–Simons terms. The quantization of H was shown
in [9] for the case H = dB and did not take into account
the appearance of the Chern–Simons terms. 1 If dB = 0 to
leading order, it was argued in [11] that the cancellation
should take place between the gaugino condensate and

1 When compactifying on a compact space K with πi(K) = n there
are fractional contributions to H, δH = 1/n [9]. It has been argued
that this might be used stabilize the dilaton [10]. However, we find it
difficult to imagine that 1/n could explain the hierarchy between string
and weak scale.
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the Chern–Simons terms, which avoid the quantization
constraint.

Let us spell out these arguments in more detail. We
are interested in the AmAnAp part of the Chern–Simons
term (8) where m, n, p are indices w.r.t. the internal
dimensions. As is well known, those internal components
of the gauge fields can come in two different types:

(i) On the one hand, the ‘discrete Wilson lines’ [12]
correspond to quantized background values of Aa

nta
(ta denotes the generator) with support on non-
contractible loops in the internal space. They take
values in the adjoint representation so that switch-
ing them on does not reduce the rank of the gauge
group. To understand the quantization of the ‘dis-
crete Wilson lines’ Aa

nta, observe that an adjoint
expectation value does not break the U(1) gener-
ated by ta. Consequently, the expectation values of
‘discrete Wilson lines’ are quantized to ensure that
the zero-modes living on the above-mentioned non-
contractible loops are single-valued.

(ii) ‘Continuous Wilson lines’ [13], on the other hand,
transform in the coset of the gauge group (which
is present before they are switched on). A generic
expectation value of a ‘continuous Wilson line’
does reduce the rank. Since the U(1) generated
by ta is (generically) broken, there is no quantiza-
tion constraint for ‘continuous Wilson lines’. Let
us finally mention that in orbifold compactifications
[14, 15] ‘continuous Wilson lines’ emerge from the
untwisted sector, and can be interpreted as ‘matter
fields’ in the massless spectrum [16].

It is now clear that the trilinear term of three continu-
ous Wilson lines can attain arbitrary values, and does in
particular not suffer from quantization. It is precisely this
term, which can adjust to a gaugino condensate, thus can-
celling the corresponding potential energy. In the follow-
ing, we will refer to such terms as ‘continuous Chern–
Simons terms’. We observe thatω(YM) and 〈λλ 〉 are both
‘α ′ corrections’, thus suggesting their alignment without
involving the quantized flux.

Further support for the cancellation between the gaug-
ino condensate and the continuous Chern–Simons term
is provided within the framework of heterotic M-theory
of Hor̆ava and Witten [17, 18]. In M-theory, gravity lives
in the 11d bulk whereas the gauge fields reside on the
two 10d boundaries. In the 11d bulk supergravity mul-
tiplet we find a 3-index tensor field CMNP with the four
index field strength G = dC + Chern–Simons terms. Di-
mensionally reducing to 10 dimensions one finds that
BMN descends form CMN,11 with the corresponding re-
lation between H and G. It is now clear that the Chern–

Simons terms are located on the boundaries,

G = dC +α ′∑
i
δ (x11 − xi

11)
(
ω(YM)

i − 1
2
ω(L)

i

)
(9)

with dG = TrF2
1 + TrF2

2 − TrR2 where F1 and F2 rep-
resent the field strengths of the two E8 factors. It has
further been shown in Ref. [19] that the perfect square
structure between the flux G and the gaugino condensate
generalizes to this case. Since the gauginos are also fields
confined to the boundaries, we consider this as a further
argument for a cancellation between the gaugino con-
densate and the Chern–Simons terms [20, 21], while the
quantized bulk contribution dC should not contribute to
this cancellation, thus avoiding any known quantization
constraint. We sketch this local cancellation in Fig. 1.

gMN

CMNP

x11

E8

AM

E
′

8

A
′

M

FIGURE 1. M-theory set-up. C lives in the bulk whereas
both the gaugino condensate and the (continuous) Chern–
Simons terms live on the branes.

Let us now summarize the outcome of the discussion
so far. We have argued that the appearance of quantized
constants in the superpotential should be avoided in order
to explain the hierarchy between the Planck and the weak
scale by a natural mechanism such as gaugino condensa-
tion. We have also discussed that the field strength H and
an expectation value of the gaugino bilinear combine into
a perfect square (6), and that H contains both quantized
and continuous parts. This leads to the possibility that the
continuous Chern–Simons term cancels the contribution
of the gaugino condensate to the vacuum energy.

We have now provided all the ingredients of a modifi-
cation of the ‘flux compactification’ scheme, which can
be outlined as follows: In a first step, before the inclusion
of gaugino condensate and continuous Chern–Simons
terms, the moduli are fixed by quantized 3-form fluxes
without breaking SUSY—i.e., DiW = 0 for all fields and
W = 0 in the vacuum. The inclusion of the gaugino con-
densate, in the second step, leads to SUSY breakdown.
As a consequence, M���SUSY is now explained by dimen-
sional transmutation (cf. Eq. (3)). At this stage, the vac-
uum energy is of order M2

���SUSY, i.e. unacceptably large.
This vacuum energy can be compensated for by the con-
tinuous Chern–Simons term. A more detailed discussion
and examples will be presented elsewhere [22].
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MIRAGE MEDIATION

Let us now investigate the phenomenological proper-
ties of the scheme where all but one modulus are fixed
by fluxes and the last one gets stabilized through non-
perturbative effects such as a gaugino condensate.

General structure of the scheme

The stabilization of the last modulus is described by
the following model-independent structure of the (effec-
tive) superpotential:

W = A+C exp(−X) . (10)

Here, A and X represent vacuum expectation values of
field-dependent quantities, and C ∼ M3

Pl. The value of
A has to be small compared to the string/Planck scale,
which can be achieved either through a natural mecha-
nism, or through an explicit fine-tuning. The gravitino
mass m3/2 will appear as

W � m3/2

MPl
×M3

Pl , (11)

where the Planck scale is assumed to be of order of the
string scale. The Kähler potential is (up to a constant)

K = −n log
(
X +X

)
+ . . . (12)

where the omission denotes the Kähler potential for mat-
ter fields, and n is an order one constant. The scalar po-
tential is given by

V = eK
[
Kαβ̄ (DαW )(Dβ̄W )−3|W |2

]
, (13)

with the Kähler derivative DαW = ∂αW + KαW , and
where we set MPl = 1. The minimum occurs for DXW ∼
0, i.e. by Eq. (11) for

X ∼ log(MPl/m3/2) ∼ 4π2 , (14)

where we indicate the approximate numerical value of
the logarithm of the hierarchy between m3/2 and MPl.

To arrive at zero vacuum energy, we have to arrange
a cancellation between the terms in the brackets of (13)
which are, when multiplied by eK , both of the order of
the square of the gravitino mass. We therefore have

V ′′|X=〈X〉 ∼ m2
3/2 , (15)

where the prime indicates the derivative w.r.t. ReX , and
〈X〉 denotes the position of the minimum. To evaluate the
physical mass, one has to make sure that the kinetic term

of the fluctuations δX around the minimum is canonical,

K = −n log
(〈X〉+ 〈X〉)− n

〈X〉+ 〈X〉
(
δX +δX

)
+

n(〈X〉+ 〈X〉)2

(
δX δX

)
+ . . . . (16)

This amounts to a rescaling δX → δXcan = δX ×
(
√

n/Re〈X〉). In particular, one finds for the physical
mass of the modulus (taking 〈X〉 to be real and positive)

mX ∼ m3/2 ×〈X〉 . (17)

This enhancement of moduli masses is known to be a
rather generic feature of the non-perturbative moduli sta-
bilization mechanisms [23, 24]. We have sharpened the
statement, and in particular shown that this enhancement
occurs when (i) the Kähler potential for X is logarithmic,
and (ii) the dependence of the superpotential contains the
exponential term such that exp(−〈X〉) ∼ Λ3 (with Λ as
in Eqs. (2) and (3)). Using (14) we can recast (17) as

mX ∼ m3/2 × log(MPl/m3/2) ∼ m3/2 ×4π2 . (18)

An example

Let us now discuss specifically the outcome in the
simple model of KKLT [3] with matter fields on D7-
branes as analyzed in [25, 26]. We concentrate on the
case with the dilaton S, a Kähler modulus T and complex
structure moduli Zα . Matter superfields are denoted by
Q7. We assume to be in a region of large S and T . Let us
start with the D7-system [27, 28, 29, 30, 31, 32, 33, 34,
35]. The Kähler potential is assumed to be

K = − log(S+S−|Q7|2)−3log(T +T )
+ K̃(Zα ,Zα) , (19)

where Q7 denote matter multiplets on the D7 branes. The
gauge kinetic function is

f7 = T (20)

for gauge bosons on the D7 branes. The inclusion of
fluxes leads to a superpotential for the moduli S and
Zα [3]. As a consequence, one can eliminate (‘integrate
out’) these fields [25, 36, 37]. This leads to an effective
superpotential which is given by

W = W (S,Zα)+C exp(−aT )+W (Q7) , (21)

where C ∼ M3
Pl and a are constants. The term

Cexp(−aT ) represents gaugino condensation on the
D7-branes. When analyzing the potential, we look for
minima where the Q7 scalars (and therefore W (Q7) as
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well) do not receive non-trivial vacuum expectation val-
ues. Extremizing the scalar potential w.r.t. T leads to an
anti-de Sitter vacuum with energy ∼ |W (S,Zα)/MPl|2.
To render this vacuum realistic, one introduces an (ad
hoc) uplifting, which may be parametrized as

Vlift =
D(

T +T
)nT

. (22)

By tuning D it is possible to obtain local de Sitter vacua
with energy consistent with observation. The relevant
scales appearing in such a vacuum have been calculated
in [26], and they are given by:

MSt ∼ 5×1017 GeV ,

1/R ∼ 1017 GeV ,

mZ,S ∼ 1

M2
St R

3
∼ 1016 GeV ,

ΛGC = MSt e
−〈aT 〉/3 ∼ 1013 GeV ,

MD3 ∼ eAmin MSt ∼ 1011 GeV ,

mT ∼ 〈aT 〉m3/2 ∼ 106 GeV ,

m3/2 ∼ 1

M2
St R

3

(
G(0,3)

G(2,1)

)
∼ 104 GeV ,

msoft ∼ mweak ∼ m3/2

〈aT 〉 ∼ 102 GeV , (23)

where ΛGC is the dynamical scale of D7 gaugino con-
densation, MD3 is the red-shifted cutoff scale on D3,

e−〈aT 〉 ∼ m3/2/MSt and eAmin ∼
√

m3/2/MSt. G(0,3) and

G(2,1) denote the (0,3) and (2,1) components of the flux
G. As is obvious from the above expressions, the SUSY
breaking component G(0,3) is substantially suppressed
against G(2,1), which preserves SUSY. In this case we
have X = aT and it will have a vacuum expectation value
of order 〈X〉 ∼ log(MPl/m3/2) ∼ 4π2 as we have dis-
cussed earlier.

����SUSY mediation

SUSY is broken by the uplifting (cf. Eq. (22)). To
describe the SUSY breakdown in the usual language, one
attributes the associated F-term expectation value to the
so-called chiral compensator field C̃ [26]. To see what
this means, recall the usual supergravity relation (in the
absence of D-term expectation values)

m2
3/2 ∼ ∑

i

F2
i

M2
P

, (24)

where the sum extends over the F-term expectation val-
ues of all chiral fields. Here, the dominant F-term is the

one of the chiral compensator which is adjusted such
that (24) holds. On the other hand, the F-term of the T -
modulus is suppressed (cf. Eq. (23)).

Let us now explain how the suppressed FT term
emerges. Before uplifting, FT vanishes, and T is stabi-
lized with a mass ∼ 〈aT 〉m3/2 where m3/2 = eK/2|W | is
the (adS) gravitino mass. Uplifting does (practically) not
change m3/2 but depends on T (cf. Eq. (22)). As a con-
sequence T is slightly moved against its original mini-
mum after uplifting. The shift in T is easily calculated in
terms of the canonically normalized fluctuations around
the minimum (cf. Eq. (16))

d

dδXcan
m2

T |δXcan|2 != − d

dδXcan
Vlift ∼ m2

3/2 M2
Pl ,

where we used in the last relation that Vlift is tuned such
as to cancel the negative energy of the adS minimum,
VadS = −3|W |2eK = −3m2

3/2M2
Pl. This leads to δXcan ∼

MPl/〈X〉2 so that in the shifted de Sitter minimum

F2
T ∼

m2
3/2M2

Pl

〈X〉2 . (25)

This implies that soft terms induced by FT are suppressed
against m3/2 by a factor ∼ 〈X〉. In particular, it is the
same factor 〈X〉, which both enhances the modulus mass
and suppresses the modulus F-term.

Hence, the ‘gravity mediated’ (or ‘modulus medi-
ated’) soft terms, being controlled by FT /T , are sup-
pressed against the gravitino mass, with the suppression
factor (FT /T )/m3/2 ∼ FT /FC̃ ∼ 1/〈X〉. This suppression
is comparable to a loop-factor, and therefore anomaly
mediation [38, 39] becomes competitive. As a conse-
quence, the soft mass terms receive comparable contri-
butions both from the F-term of the T -modulus (‘grav-
ity mediation’) and from the super-conformal anomaly
(‘anomaly mediation’). In general, one might hence ex-
pect that such a mix is a generic property of ‘sequestered’
models where the communication of SUSY breakdown
can be more suppressed than by the Planck scale. We will
call this scheme ‘mirage mediation’ in the following.

Let us emphasize the two features of mirage mediation
that are most important for cosmology and phenomenol-
ogy:

• The mass of T is governed by SUSY breakdown.
Yet this mass is enhanced with respect to the
value of the gravitino mass (cf. Eq. (17)), mT =
〈X〉m3/2 ∼ 4π2m3/2, and thus becomes quite heavy.

• The soft mass terms of the matter fields are sup-
pressed with that same factor msoft ∼ m3/2/〈X〉 ∼
m3/2/4π2. If we thus assume that the soft terms are
in the region of the weak scale, m3/2 will be in the
multi TeV region and thus heavy as well.

202



The general mass pattern of the scheme is thus deter-
mined by this little hierarchy 〈X〉 = log(MPl/m3/2) ∼
4π2 with

mT ∼ 〈X〉m3/2 ∼ 〈X〉2 msoft . (26)

Phenomenological aspects

The above-mentioned mix of gravity and anomaly me-
diation, i.e. the ‘mirage mediation’ scheme allows, at
least in substantial regions of the parameter space, to
retain the attractive features of these mediation mech-
anisms while discarding the problematic aspects. The
most important issues are the following:

• Anomaly mediation has the notorious problem of
negative mass squares for some matter fields, in par-
ticular for the sleptons. In mirage mediation, the
‘gravity mediated’ contribution can render the slep-
ton mass squares positive thus leading to a consis-
tent framework.

• We have a partial solution of the flavour problem.
First of all, anomaly mediation is flavour-blind and
thus does not cause the usual flavour problems. If,
in addition, all the fields live on the D7 branes we
have a common scalar mass from the modulus me-
diation. This additional feature is not a result of the
scheme itself, but a consequence of the assumption
concerning the origin of matter fields. Nevertheless,
it is worthwhile to stress that in mirage mediation
the flavour problem get ameliorated, and that the
scheme is flexible enough to allow for the imple-
mentation of a mechanism that solves the flavour
problem.

• There is also a partial solution to the SUSY CP-
problem coming from the special property of the
superpotential [40]. That is, the phases of the A-
terms and gaugino masses are aligned. However,
the extreme smallness of the various electric dipole
moments might require further alignment of phases
(see, e.g., [41]).

• The scheme leads to a distinct pattern for the spec-
trum of the low-energy effective theory. For exam-
ple, it has been observed that the spectrum exhibits a
mirage unification scale [42, 43]—i.e., the gaugino
and scalar masses meet at an intermediate scale (an
energy scale well below the GUT scale). However,
this mirage unification scale does not correspond to
a physical scale. It has also been argued that the
partial cancellation of the RG evolution of the soft
masses may ameliorate the SUSY fine-tuning prob-
lem [44, 45].

• In contrast to most of the other schemes of SUSY
breakdown, in mirage mediation the lightest super-
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FIGURE 2. Mirage unification for m3/2 = 40TeV, M0 :=
FT /T = m3/2/(4π)2 and α := m3/2/[M0 × log(MPl/m3/2)] =
1. The red (solid)/green (dashed)/blue (dash-dotted) curve
shows the evolution of the gluino/W ino/Bino mass.

partner (LSP) is dominated by the Higgsino com-
ponent in large regions of the parameter space [43,
41, 44].

Cosmological aspects

(Locally) supersymmetric theories are often in conflict
with cosmology because they predict long-lived particles
whose decays spoil the successful predictions from nu-
cleosynthesis. The most prominent examples for these
long-lived particles are the gravitino and the moduli. In
the mirage mediation scheme, the latter are so heavy that
they decay early enough not to affect nucleosynthesis.
This means that the mirage mediation scheme does not
suffer from the traditional gravitino and moduli prob-
lems.

Let us mention that there are further challenges for
moduli cosmology, which persist even if moduli are
rather heavy. These remaining problems include: mod-
uli may not find the minimum of their effective potential
at all; some of them might run to the phenomenologically
unacceptable run-away minimum [46] due to a large ini-
tial velocity [47] or get destabilized by thermal effects
[48, 49]. Nevertheless, there exist a few promising pro-
posals to solve at least some of these problems (see, e.g.,
[50, 51, 52, 53]), but these solutions may require some
further ingredients.

SUMMARY

We presented a scheme that combines the advantages of
the new ‘flux compactification’ scenarios with the tra-
ditional lore of moduli stabilization. Different from the
usual models of ‘flux compactification’, a crucial feature
of this scenario is that the gaugino condensate does not
adjust its size to a quantized constant. Rather it sets the
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scale of SUSY breakdown, and thus yields the expla-
nation of the observed hierarchy mweak � MPl without
the need of fine-tuning. We argued that the ‘continuous
Chern–Simons term’, which is comprised of ‘continuous
Wilson lines’, should adjust its size such as to cancel the
vacuum energy. In particular, in this scheme there is no
need for the (ad hoc) uplifting procedure.

We further discussed the consequences of the scheme
for phenomenology and cosmology. Most importantly,
there is the little hierarchy between moduli, gravitino and
soft masses, mmodulus ∼ 〈X〉m3/2 ∼ 〈X〉2msoft with 〈X〉 ∼
log(MPl/m3/2) ∼ 4π2. The pattern of supersymmetry
breakdown combines the features of gravity/moduli and
anomaly mediation. As we have discussed, this leads to
an attractive scenario where several problems of super-
symmetric extensions of the standard model are amelio-
rated or even solved.
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