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ARTICLE

Genome-wide association studies of metabolites
in Finnish men identify disease-relevant loci
Xianyong Yin 1, Lap Sum Chan 1, Debraj Bose 1, Anne U. Jackson 1, Peter VandeHaar 1,

Adam E. Locke 2, Christian Fuchsberger1,3, Heather M. Stringham 1, Ryan Welch 1, Ketian Yu 1,

Lilian Fernandes Silva 4, Susan K. Service5, Daiwei Zhang 1,6, Emily C. Hector 7, Erica Young 2,8,

Liron Ganel 2, Indraniel Das2, Haley Abel9, Michael R. Erdos 10, Lori L. Bonnycastle10, Johanna Kuusisto4,11,

Nathan O. Stitziel 2,8,12, Ira M. Hall 13, Gregory R. Wagner14, FinnGen*, Jian Kang1, Jean Morrison 1,

Charles F. Burant15, Francis S. Collins10, Samuli Ripatti 16,17,18, Aarno Palotie 16,17,19, Nelson B. Freimer 5,

Karen L. Mohlke 20, Laura J. Scott 1, Xiaoquan Wen 1, Eric B. Fauman 21,22✉, Markku Laakso 4,22✉ &

Michael Boehnke 1,22✉

Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly

heritable plasma metabolites identified in metabolomic screens. The Finnish population

provides an ideal opportunity for such explorations, given the multiple bottlenecks and

expansions that have shaped its history, and the enrichment for many otherwise rare alleles

that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136

men from the late-settlement region of Finland. We identify 303 novel association signals,

more than one third at variants rare or enriched in Finns. Many of these signals identify genes

not previously implicated in metabolite genome-wide association studies and suggest

mechanisms for diseases and disease-related traits.
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The Finns are a geographically and linguistically isolated
population who have experienced multiple population
bottlenecks and expansions. This population history has

resulted in large allele-frequency differences between Finns and
non-Finnish Europeans (NFE), which are most pronounced in
northern and eastern Finland, regions first settled in the
15th–16th centuries (“late settlement Finland”)1. In a previous
study of 64 cardiometabolic traits in ~ 20,000 individuals from
these regions, we took advantage of the enrichment of otherwise
rare alleles to identify 26 novel trait-associated rare deleterious
alleles, 19 of which were > 20-fold more frequent in late settle-
ment Finns than in NFE2. These results suggested this allele-
frequency enrichment could be leveraged to identify novel rare-
variant associations for additional quantitative traits. Here, we do
so, reporting genome-wide association study (GWAS) results for
1391 plasma metabolites (Metabolon platform) in 6136 partici-
pants in METSIM, a study of middle-aged and older men
recruited from a single site in late-settlement northeast Finland3,
who were part of our previous study2.

Metabolites are small molecules that play a pivotal role in
cellular and physiological processes and their observed levels in
biofluids can reflect those processes4. Most metabolomics studies
are performed in blood (plasma or serum) which reflects the
aggregate production and consumption of metabolites by tissues4.
Abnormal metabolite levels are commonly associated with
human diseases and disease-related traits, making them useful
aids to understand disease mechanisms and to identify bio-
markers for disease diagnosis, prognosis, and treatment
monitoring4. Many metabolites are highly heritable, and previous
metabolite GWAS have identified common variants;5–15 the
impact of rare variants on metabolites is less well studied16,17.

We identify 2030 independent association signals (metabolite-
index variant pairs) for 803 metabolites and demonstrate 946
genetic colocalizations of 248 metabolites with 105 diseases and
disease-related traits. Many of these associations identify genes
not previously implicated in metabolite GWAS and suggest
mechanisms for these diseases and traits. Of the 2030 association
signals, 303 are novel; of these 303 signals, 111 are at 70 variants
rare or > 10-fold more frequent (“enriched”) in Finns compared
to NFE, 78 are for 44 metabolites identified since 2015 on the
Metabolon platform, and 17 are at variants on the X chromo-
some, which has often been ignored in previous metabolite
GWAS. This study highlights the advantages of the Finnish
population for rare-variant genetic association studies and the
utility of integrating metabolite and disease genetic associations in
disentangling disease mechanisms.

Results
Study design. We assayed 1544 plasma metabolites using the
Metabolon DiscoveryHD4 mass spectrometry platform (Supple-
mentary Table 1 and Supplementary Data 1) in 6136 randomly-
selected METSIM participants who were non-diabetic at baseline
and passed quality control (QC) (Supplementary Table 2; Fig. 1).
1391 metabolites were successfully quantified in ≥500 of these
6136 participants. We created a METSIM imputation reference
panel of > 26M genetic variants by integrating genome and exome
sequence and array genotypes in 2922 METSIM participants
(“Methods”; Supplementary Table 3). We used this reference
panel to impute genotypes in all METSIM participants. To dis-
cover genetic mechanisms for plasma metabolite levels, we per-
formed GWAS and statistical fine-mapping analysis and
nominated putative causal genes for metabolites. We integrated
metabolomics with FinnGen disease GWAS to understand dis-
ease mechanisms through genetic colocalization and Mendelian
randomization analysis (Fig. 1).

GWAS on 1391 metabolites. We carried out GWAS across > 16M
variants with imputation r2 ≥ 0.3 and minor allele count (MAC)≥5 in
the 6136 METSIM participants for the 1391 (correlated) metabolites
(“Methods”; Supplementary Table 4; Fig. 1). Single-variant associa-
tion tests identified 305,555 associations at 109,368 variants for 803
metabolites at P < 7.2 × 10−11= 5.0 × 10−8/692 (Bonferroni correc-
tion for 692 principal components that together explained 95%15 of
phenotypic variance for the 1391 correlated metabolites; “Methods”).
The GWAS p-values for each metabolite were well calibrated
(genomic control inflation factor median= 1.00, range= 0.92–1.07;
Supplementary Fig. 1). We built a multi-phenotype GWAS browser
(“PheWeb”) (https://pheweb.org/metsim-metab/) to visualize and
make publicly available our results for all 1391 GWAS (Fig. 2;
see “Discussion”).

Since body mass index (BMI) influences levels of many
metabolites18, we repeated all 1391 GWAS with BMI as an
additional covariate. Results with and without BMI adjustment
were generally very similar, with Pearson correlation coefficient
r= 0.999 for effect size estimates and −log10p-values for variant-
metabolite pairs with P < 7.2 × 10−11 in either of the two analyses
(Supplementary Fig. 2). Supplementary Data 2 lists the 83
associations with substantially different effect sizes (ratio ≥ 1.20)
with and without BMI adjustment. In what follows, we present
results for analyses without BMI adjustment.

Detecting independent association signals. To identify (nearly)
independent association signals, we carried out chromosome-
wide stepwise conditional analysis for each chromosome-
metabolite pair with ≥1 association at P < 5.0 × 10−8. Condi-
tional analysis identified 2030 association signals at 1143 index
variants for 803 metabolites at P < 7.2 × 10−11 (Table 1; Supple-
mentary Data 3; Supplementary Figs. 3–4). The 1143 index var-
iants were of high imputation quality (r2 median= 0.99,
range= 0.63–1.00). 311 (27.2%) of the 1143 index variants were
associated (P < 7.2 × 10−11) with ≥2 metabolites, suggesting
widespread pleiotropy (Supplementary Fig. 5). Among the 1143
index variants, 121 (for 125 metabolites) are rare in METSIM and
99 (for 148 metabolites) have minor allele frequency (MAF) > 10-
fold greater in METSIM than in NFE (gnomAD v3.1); 58 of these
variants are both rare and enriched in Finns (Fig. 3a; Supple-
mentary Data 3).

Index variants explained from 0.7% to 62.0% (median=
1.4%; Supplementary Fig. 6) of the phenotypic variance of the
corresponding metabolite; 99 index variants explained ≥10% of
the variance (Supplementary Data 4), including three missense
variants with > 10-fold greater frequency in METSIM than in
NFE. For example, the putatively-deleteriousAFMID missense
variant p.Ala41Pro (rs77585764; MAF= 5.4% in METSIM
vs. 0.38% in NFE) explained 15.5% of the variance in
N-formylanthranilic acid. AFMID encodes arylformamidase,
an enzyme that catalyzes N-formylanthranilate to produce
anthranilate and formate19.

Fine mapping. To fine map the causal variants for the 2030
association signals, we created 2Mb regions centered on each
index variant and merged overlapping regions associated with the
same metabolite, resulting in 1501 regions. We used Bayesian
fine-mapping20 with a uniform prior to calculate the variant
posterior inclusion probability (VPIP) that each variant is causal
and the signal posterior inclusion probability (SPIP), the sum of
the VPIPs for the variants in a region (“Methods”). This method
can identify multiple independent signals in a region. In the 1501
regions, we identified 2435 signals with SPIP ≥ 0.95, 1952 of
which are among the 2030 association signals identified in con-
ditional analysis. For these 1952 signals, we built 95% credible
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sets21 of potential causal variants, the minimal subset of variants
with summed VPIP ≥ 0.95 (Fig. 4a; Supplementary Data 5). These
credible sets included 1–544 variants (median= 6); notably, 334
credible sets included only one variant (168 distinct variants).

In each of the 1952 credible sets, we identified the variant with
the largest VPIP. This list comprised 1119 distinct variants, 100
with MAF > 10-fold greater in METSIM than in NFE. VPIPs for
these 100 variants were greater than those for the remaining 1019
(VPIP mean= 0.73 vs. 0.47; t-test P= 1.7 × 10−21; Fig. 4b).
Among the 1119 variants, 150 were shared between two signals
and 146 by ≥ 3 (up to 39).

Of the 1119 variants, 263 had VPIP ≥ 0.8 in 547 credible sets.
Among these 263 variants, 46 are rare in METSIM and 47 have
MAF > 10-fold greater in METSIM than in NFE; 28 of these
variants are both rare and enriched in Finns (Supplementary
Data 5). The 263 variants include 11 protein-truncating (PTV)
and 69 missense variants across 66 genes, and 183 other (mostly
non-coding) variants (Supplementary Data 5). Given their likely
impact on gene function, we focused on the 80= 11+ 69 PTV

and missense variants, which suggested causal roles for the
corresponding 66 genes. These 80 variants had VPIP ≥ 0.8 in
credible sets for 208 signals with 173 metabolites. Among the 80
variants, 26 (5 PTV and 21 missense) are rare and 30 (6 PTV and
24 missense) have MAF > 10-fold greater in METSIM than in
NFE; 16 of these variants are both rare and enriched in Finns.

Identifying novel association signals at rare and Finnish enri-
ched variants. To determine which of the 2030 association
signals are distinct from previous metabolite GWAS findings,
we repeated metabolite association analysis conditioning on all
variants that were (a) ≤ 1 Mb of the index variant and (b)
previously reported as associated with any metabolite in a
curated list of 381 publications (“Methods”; Supplementary
Data 6). 303 association signals at 229 index variants remained
significant for 201 metabolites (Pcondition < 7.2 × 10−11; Fig. 3b;
Supplementary Data 3). The 303 novel signals included 64
signals (for 58 metabolites) at 51 rare variants and 79 signals

Fig. 1 Flow chart of the METSIM metabolomics study. MAC: minor allele count; SPIP and VPIP: signal and variant posterior inclusion probability in DAP-g
Bayesian fine mapping; RCP: regional colocalization posterior probability in FastENLOC; PTV: protein-truncating variant; VMA: vanillylmandelate.
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(for 71 metabolites) at 47 variants > 10-fold more frequent in
METSIM than in NFE (Table 2); 33 of these signals are at
variants both rare and enriched in Finns (Supplementary
Data 3). In addition, 17 signals for 16 metabolites are on the X
chromosome, and 78 signals are for 44 metabolites identified
since 2015 on the Metabolon DiscoveryHD4 platform.

Multiple novel associations arose at the same index variants.
For example, we identified novel association signals with 19
metabolites at the putatively-deleteriousSLC23A3 missense
variant p.Asn336Lys (rs192756070; Supplementary Fig. 7).
p.Asn336Lys has 107-fold greater frequency in METSIM than
in NFE (MAF= 2.3% vs. 0.022%) and is likely the causal variant
for most or all 19 metabolite associations (VPIP median= 0.98,
range= 0.57–1.00). SLC23A3 encodes an SLC23 ascorbic acid
transporter without demonstrated nucleobase transport22. These
novel associations suggest a wide range of transport functions
for SLC23A3.

Among the novel association signals at index variants enriched
in Finns, we identified an association with 3-amino-2-piperidone
at the putatively-deleteriousOAT missense variant p.Leu402Pro
(rs121965043, β= 1.91, P= 3.7 × 10−35). p.Leu402Pro has 100-
fold greater frequency in METSIM than in NFE (MAF= 0.35% vs.
0.0031%) and is the likely causal variant for this association
(VPIP= 0.997). OAT encodes the key mitochondrial enzyme
ornithine aminotransferase which converts arginine and ornithine
into glutamate and gamma aminobutyric acid23. OAT has not
previously been implicated in metabolite GWAS, but inactivation
of OAT is responsible for the Finnish heritage disease gyrate
atrophy characterized by hyperornithinemia24. Previous studies
have found increased 3-amino-2-piperidone levels in the urine of
individuals with gyrate atrophy25.

Among the novel association signals on the X chromosome,
we identified an association for tiglylcarnitine at the putatively-
deleteriousHSD17B10 missense variant p.Ala95Thr (rs201378370,

Fig. 2 Our METSIM Metabolomics PheWeb facilitates the characterization of genetic associations and gene activities. a Manhattan plot for
N-acetylkynurenine highlights the roles of the associated genes (https://pheweb.org/metsim-metab/pheno/C100006378). Chemical structure for
N-acetylkynurenine (in bold face) and activities for the associated genes are added manually on top of the Manhattan plot. b Stacked PheWeb plots show
significant associations between rs6705977 (NAT8, https://pheweb.org/metsim-metab/variant/2:73622043-C-G) and fifteen N-acetylated molecules, and
the more restricted set of associations between rs948445 (ACY3, https://pheweb.org/metsim-metab/variant/11:67647021-C-T) and four N-acetylated
aromatic amino acids. LI: lipid; XE: xenobiotics; AA: amino acid; CA: carbohydrate; NU: nucleotide; PE: peptide; CV: cofactor and vitamin; EN: energy; PC:
partially characterized; UN: unnamed.
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β= 0.94, P= 5.2 × 10−122). p.Ala95Thr has 76-fold greater fre-
quency in METSIM than in NFE (MAF= 2.6% vs. 0.034%) and is
the likely causal variant for this association (VPIP= 0.997).
HSD17B10 encodes 17-β-hydroxysteroid dehydrogenase X, a
mitochondrial enzyme which catalyzes oxidation of neuroactive
steroids and degradation of isoleucine26. Mutations in HSD17B10
that abolish enzyme activity lead to HSD10 deficiency, an infantile
neurodegenerative disorder in which tiglylcarnitine level is elevated27.
In contrast, HSD17B10 is overexpressed in brains of individuals with
Alzheimer’s disease28, in which tiglylcarnitine level is decreased29.

A previous study reported an association between the GNPTAB
intronic variant rs7964859 and aspartate15. We identified an
independent aspartate association signal with the GNPTAB frame-
shift variant p.Cys528ValfsTer19 (rs1209353188) (LD r2= 0.01;
β= 0.91, Pcondition= 5.2 × 10−15 conditioning on rs7964859).
p.Cys528ValfsTer19 is rare in METSIM (MAF= 0.58%), absent
in gnomAD NFE, and is the likely causal variant for the METSIM
aspartate association (VPIP= 0.996). GNPTAB encodes the alpha-
and beta-subunits of N-acetylglucosamine-1-phosphotransferase
which catalyzes the N-linked glycosylation of asparagine residues
with mannose-6-phosphate30.

Nominating putative causal genes. To nominate putative causal
genes for metabolite association signals, we applied two approa-
ches. First, we nominated 66 putative causal genes for the 208
association signals for which fine-mapping analysis identified
PTV or missense variants at VPIP ≥ 0.8 (see “Fine mapping”).
Second, we implemented a knowledge-based approach to inte-
grate biological information about the metabolite and the 20
protein-coding genes nearest the corresponding index variant for
the 1666 of the 2030 association signals with named metabolites
(“Methods”). The knowledge-based approach nominated
215 single genes for 1033 association signals with 480 metabolites
(Supplementary Fig. 8) and 19 sets of 2–7 genes with similar
biochemical activity (62 additional genes) for 324 association
signals with 208 metabolites (Supplementary Data 3 and 7).

We compared gene nominations for the 138 metabolite
association signals for which both approaches nominated causal
genes. Compared to the fine-mapping analysis, the knowledge-
based approach nominated the same gene for 119 signals, multiple
paralogs including the same gene for 18, and a different gene for 1,
for an overall consistency > 99% (Supplementary Data 8).

The 277= 215+ 62 genes identified by the knowledge-based
approach and the 66 identified by fine mapping together

comprised 290 genes. 204 (70%) of the 290 genes are the closest
genes to the index variants, including 188 (68%) of the 277 genes
identified by the knowledge-based approach. 58 of the 290 genes
have not previously been implicated in metabolite GWAS
(Fig. 3c). Of the 58 novel genes, 51 were identified by the
knowledge-based approach (Supplementary Data 7), 21 by fine-
mapping analysis (Supplementary Data 5), and 14 by both. Of the
58 novel genes, 40 represent novel loci and 18 are within loci in
which metabolite associations have previously been identified but
the genes we nominated have not previously been implicated.

Novel genes nominated based on association signals with amino
acid levels provide insight into how the encoded enzymes or
transporters contribute to modifications of amino acid derivatives. As
a first example, we identified a novel association at the HDAC6
missense variant p.Arg832His (rs61735967) with N6-acetyllysine
(MAF= 2.9%, β= 0.71, P= 3.6 × 10−80) and suggested p.Arg832His
is the likely causal variant (VPIP= 0.998). Both the fine-mapping
and knowledge-based approaches nominated HDAC6 as the putative
causal gene. HDAC6 encodes a lysine deacetylase that removes the
acetyl group from acetyllysine in histones. Increased HDAC6
expression has been found in brains of individuals with Alzheimer’s
disease31. Elevated levels of N6-acetyllysine were recently found in an
Alzheimer’s disease mouse model32.

As a second example, we identified a novel association between
the QPCT intronic variant rs77684493 and pyroglutamylglutamine
(MAF= 6.2%, β=−0.55, P= 9.0 × 10−31). rs77684493 is in near-
perfect LD (r2= 0.996) with the putatively-deleteriousQPCT
missense variant p.Arg54Trp (rs2255991), which was also asso-
ciated with pyroglutamylglutamine (β=−0.54, P= 1.6 × 10−30)
and has > 7-fold greater frequency in METSIM than in NFE
(MAF= 6.3% vs. 0.89%). Our knowledge-based approach nomi-
nated QPCT as the putative causal gene for this association. QPCT
encodes the enzyme glutaminyl-peptide cyclotransferase, which
performs cyclization of the N-terminal glutamine residues and
results in the pyroglutamine residue33. QPCT has been implicated
in a schizophrenia GWAS34 and suggested as a druggable target for
Huntington’s disease35.

GWAS of metabolites recently identified on the Metabolon
platform helped nominate novel putative causal genes with high
biochemical relevance in known metabolite-associated regions.
For example, a previous study in a Japanese sample identified
associations for blood creatinine and uracil levels at the LRIG1
missense variant p.Thr792Met (rs202007714)36, which is mono-
morphic in METSIM and gnomAD Finns. We identified an
association at the nearby (13 kb) SLC25A26 missense variant
p.Thr208Met (rs13874) with 2,3-dihydroxy-5-methylthio-4-pen-
tenoate (DMTPA) (MAF= 48.3%, β= 0.17, P= 2.3 × 10−21). We
suggest SLC25A26 as the causal gene for the DMTPA association.
DMTPA, an S-adenosylmethionine, was recently identified on the
Metabolon DiscoveryHD4 platform. SLC25A26 is the only
known mitochondrial S-adenosylmethionine transporter.

Seven of the 58 novel genes were identified only by fine mapping.
Among them, we identified a novel association for glycocholenate
sulfate at the rare ADCK5 missense variant p.Ala508Thr
(rs552968665; β= 1.31, P= 3.6 × 10−12), which is > 79-fold more
frequent in METSIM than in NFE (MAF= 0.25% vs. 0.0031%).
Fine-mapping analysis suggested p.Ala508Thr is the likely causal
variant (VPIP= 0.89), implicating a causal role for ADCK5. ADCK5
encodes the aarF domain containing kinase 5. These results suggest
ADCK5 plays a role in human bile acid metabolism.

Colocalization of metabolites with human diseases. Integrating
metabolite and disease genetic associations can improve fine-
mapping resolution37 and clarify the potentially causal variants
and disease genes. We performed Bayesian colocalization

Table 1 Summary of the 2030 genetic association signals by
metabolite biochemical class.

Biochemical class
and abbreviation

Total
metabolites

Significant
metabolites

Total
signals

Novel
signals

Lipid (LI) 548 357 903 74
Amino acid (AA) 215 154 441 73
Xenobiotics (XE) 163 52 91 16
Nucleotide (NU) 42 26 65 29
Peptide (PE) 42 18 28 7
Cofactors and
vitamins (CV)

38 25 69 27

Carbohydrate (CA) 25 20 38 7
Energy (EN) 10 4 11 3
Partially
characterized (PC)

16 8 20 1

Unnamed (UN) 292 139 364 66
Total 1,391 803 2,030 303

Significant metabolites: number of metabolites with at least one association signal at
P < 7.2 × 10−11.
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Fig. 3 Characterization of the 2030 significant metabolite genetic association signals. Comparison of MAFs for the 1143 index variants between
METSIM and non-Finnish Europeans in gnomAD v3.1; index variants are colored a purple if MAF>10-fold greater in METSIM than in non-Finnish
Europeans; or b blue if they represent novel association signals. The dashed line is of slope one through the origin. c Overlaid Manhattan plots of the 1391
metabolite GWAS. The red dashed line depicts genome-wide significance threshold P= 7.2 × 10−11. The associations at 40 novel putative causal genes
within novel regions (blue) and 18 novel putative causal genes within previously reported regions (maize) are highlighted. The seven novel putative causal
genes implicated only by fine-mapping analysis are starred. HADHA/B represents the HADHA and HADHB genes and ARSD/L the ARSD and ARSL genes.

Fig. 4 The 1952 of the 2030 metabolite genetic association signals identified in stepwise conditional tests with SPIP≥ 0.95 in DAP-g Bayesian fine
mapping. a Numbers of variants in the 95% credible sets and distribution of variant posterior inclusion probabilities (VPIPs) for the most likely causal
variants within the 95% credible sets. b Density plot of largest VPIPs highlights the variants with > 10-fold greater frequency in METSIM than non-Finnish
Europeans (gnomAD v3.1; blue) have larger VPIPs than all other variants (maize).
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analysis37,38 based on the probabilistic fine-mapping results of
METSIM metabolites and of 980 disease and disease-related
dichotomous traits (henceforth, disease traits) in 176,899 Finns in
FinnGen release 4 (“Methods”; Supplementary Data 9). We cal-
culated the regional colocalization probability (RCP) of a putative
causal variant shared between a METSIM metabolite and
a FinnGen disease trait (“Methods”). We identified 946 coloca-
lizations involving 248 metabolites and 105 interrelated disease
traits (RCP ≥ 0.5; Supplementary Data 10).

Integrating metabolite associations substantially increased the fine-
mapping confidence of FinnGen disease trait association signals
(SPIP median= 0.91 vs. 0.73; paired t-test P= 2.5 × 10−70) and the
probability assigned to the most likely disease variant (maximum
VPIP median= 0.54 vs. 0.11; paired t-testP= 9.1 × 10−128; Supple-
mentary Fig. 9). For example, the putatively-deleteriousSERPINA1
missense variant p.Glu366Lys (rs28929474) was associated with
N-acetylglucosaminylasparagine level in METSIM (MAF= 2.3%,
β= 0.56, P= 4.9 × 10−16) and risk of cholestasis of pregnancy

Table 2 Top metabolite genetic association signals at 47 novel variants with MAF>10-fold greater in METSIM than in gnomAD
v3.1 non-Finnish Europeans.

Biochemical name rsID MAF(%) MAFNFE(%) RMAF β P Gene

X – 17676 rs200711248 0.321 0.009 34.5 1.18 5.40E−11 –
Uracil rs1254152519 0.613 0.002 395.2 1.33 5.39E−28 DPYD
palmitoyl dihydrosphingomyelin
(d18:0/16:0)

rs752521494 0.190 0.000 ∞ 1.91 2.53E−14 DEGS1

X – 12127 rs189344406 0.302 0.006 48.7 −1.75 3.27E−14 –
Campesterol rs1247627279 0.362 0.003 116.8 1.11 5.26E−11 ABCG5|ABCG8
Xanthurenate rs199546957 0.151 0.000 ∞ 2.07 4.96E−18 KYNU
hydantoin-5-propionate rs144419430 0.928 0.015 59.9 −0.76 2.16E−13 Unknown
Glycerate rs192756070 2.917 0.022 134.5 −1.07 8.04E−85 SLC23A3
X – 15666 rs140758280 4.073 0.376 10.8 −0.42 1.40E−19 –
X – 24475 rs202158371 0.814 0.012 65.6 −0.91 9.61E−17 –
methyl glucopyranoside (alpha + beta) rs186284085 1.370 0.008 176.7 0.69 9.41E−20 GBA3
X – 12844 rs200280202 1.436 0.034 42.1 −0.83 5.21E−26 –
N-acetylglucosaminylasparagine rs561604250 0.668 0.008 86.3 0.97 1.16E−14 AGA
X – 24544 rs141884785 1.320 0.073 18.1 0.76 1.74E−22 –
Choline rs200164783 2.634 0.136 19.3 0.70 2.32E−33 Unknown
Serine rs1297328831 0.162 0.002 104.6 −1.64 6.82E−13 Unknown
N-acetylhistidine rs146438324 0.946 0.057 16.5 1.51 1.71E−61 NAT16
Sulfate rs138989506 1.910 0.029 64.9 −1.41 1.55E−99 SLC13A1
X – 26054 rs976212663 0.231 0.019 12.4 −2.08 3.52E−15 –
3-(3-amino-3-carboxypropyl)uridine rs149926554 2.898 0.175 16.6 0.43 7.97E−14 Unknown
5-oxoproline rs782359519 0.854 0.019 45.8 0.92 1.43E−24 OPLAH
alpha-ketoglutarate rs191616586 3.113 0.195 15.9 −0.45 7.65E−17 Unknown
5-oxoproline rs558946866 0.442 0.034 13.0 0.99 4.54E−15 OPLAH
3beta-hydroxy-5-cholestenoate rs552968665 0.245 0.003 79.1 1.55 8.62E−16 Unknown
3-amino-2-piperidone rs121965043 0.346 0.003 111.7 1.91 3.73E−35 OAT
Deoxycarnitine rs1268699195 0.577 0.002 372.3 0.90 1.25E−12 Unknown
beta-citrylglutamate rs182295429 4.615 0.064 72.6 0.52 3.73E−28 NAALAD2
Betaine rs1358634021 0.093 0.005 20.0 2.43 1.56E−16 SLC6A12
Aspartate rs1209353188 0.578 0.000 ∞ 0.91 9.92E−14 GNPTAB
Succinylcarnitine (C4-DC) rs200127857 0.342 0.005 73.6 2.20 2.37E−45 LACTB
Succinylcarnitine (C4-DC) rs200480788 0.104 0.005 22.4 2.40 3.96E−19 LACTB
5-hydroxylysine rs201135688 4.513 0.447 10.1 0.39 6.83E−22 HYKK
X – 17676 rs185603444 1.983 0.184 10.8 −0.60 5.56E−16 –
Orotidine rs201899452 0.143 0.002 92.3 −1.80 2.41E−13 NT5C
N-formylanthranilic acid rs77585764 5.407 0.378 14.3 1.24 9.55E−218 AFMID
Sphingomyelin (d18:1/18:1, d18:2/18:0) rs527480139 0.330 0.000 ∞ −1.41 2.51E−19 CERS4
Glycosyl-N-stearoyl-sphingosine (d18:1/
18:0)

rs1013893365 2.956 0.046 64.2 1.25 2.17E−106 CERS1

X – 11315 rs201742362 1.134 0.033 34.9 1.43 1.62E−61 –
2-O-methylascorbic acid rs6267 5.778 0.142 40.6 −0.82 9.49E−108 COMT
2-O-methylascorbic acid rs199637204 0.098 0.005 21.1 −1.87 1.49E−12 COMT
Gamma-tocopherol/beta-tocopherol rs182488695 1.548 0.008 199.9 0.89 7.37E−33 SEC14L2
N6-succinyladenosine rs8192461 1.175 0.073 16.1 1.12 9.38E−27 ADSL
N6-succinyladenosine rs773404017 0.414 0.006 66.8 2.55 2.30E−44 ADSL
5-methyluridine (ribothymidine) rs548223694 0.448 0.039 11.6 1.36 9.47E−27 TYMP
5-methyluridine (ribothymidine) rs756647111 0.119 0.000 ∞ 2.04 2.35E−14 TYMP
2’-deoxyuridine rs556167510 0.601 0.042 14.4 1.07 2.45E−14 TYMP
Tiglylcarnitine (C5:1-DC) rs201378370 2.584 0.034 76.7 0.94 5.21E−122 HSD17B10

Biochemical name: biochemical name of the metabolite. rsID: dbSNP variant ID. MAF, MAFNFE, and RMAF: minor allele frequency in METSIM, in gnomAD v3.1 non-Finnish Europeans, and their ratio.
When the index variant is monomorphic in gnomAD v3.1 non-Finnish Europeans (n= 34,029), the ratio is labeled as infinite, ∞. β: effect size estimate from the metabolite-specific stepwise conditional
association test. P: p-value of metabolite-specific stepwise conditional association test. Gene: the putative causal gene(s) nominated in the knowledge-based approach. Gene symbols are italic. For
unnamed metabolites, the putative causal gene results are represented by "–". If no putative causal gene is nominated, it is labeled as “unknown”. If multiple putative causal genes are nominated, they are
separated by a vertical bar.
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in FinnGen (odds ratio (OR)= 6.23, P= 8.1 × 10−17). Our fine-
mapping analysis suggested a causal role of SERPINA1 p.Glu366Lys
for N-acetylglucosaminylasparagine (VPIP= 0.81). We detected
colocalization in this region between signals for
N-acetylglucosaminylasparagine and cholestasis of pregnancy
(RCP= 0.99). Colocalizing these association signals increased the
SPIP for cholestasis of pregnancy from 0.69 to 0.99, and the VPIP of
SERPINA1 p.Glu366Lys from 0.37 to 0.80. SERPINA1 encodes a
serine protease inhibitor produced mainly in the liver. SERPINA1
mutations have been associated with familial intrahepatic
cholestasis39, and SERPINA1 p.Glu366Lys with liver diseases40 and
circulating liver enzymes41. We may have missed colocalizations
where the true causal variants were discarded in METSIM or
FinnGen; in such cases, we may have detected colocalizations at
other, likely more common, variants.

Campesterol and gallstones: potential causal link. Gallstones
affect 10–20% of adults worldwide42. Aberrant cholesterol
homeostasis, particularly the physical–chemical imbalance of
cholesterol solubility in bile, induces gallstones43. Blood cam-
pesterol levels have been associated with gallstones44, but it is
uncertain whether the relationship is causal. We identified asso-
ciations at the ABCG8 intronic variant rs6544713 with lower

campesterol level in METSIM (MAF= 20.1%, β=−0.33,
P= 2.7 × 10−37) and higher gallstone risk in FinnGen (OR=
1.32, P= 8.0 × 10−65). In 4689 METSIM participants with
observed campesterol levels, 199 with gallstones, plasma cam-
pesterol level was inversely associated with gallstone risk
(β=−0.52, P= 3.7 × 10−5).

Colocalization analysis suggested campesterol and gallstones
share the same causal variant in this region (RCP= 0.65; Fig. 5a)
and nominated rs6544713 (SCP= 0.45) as the most likely causal
variant. rs6544713 resides in active regulatory units in intestinal
tissue45 and its campesterol-decreasing allele is associated
with higher ABCG8 expression in colon tissue46 (β= 0.37,
P= 7.2 × 10−16), but not in the liver46. ABCG8 and its nearby
paralog ABCG5 have previously been suggested as candidate
genes for gallstones47. Mutations in ABCG5 and ABCG8 cause
sitosterolemia, characterized by elevated campesterol48.

Mendelian randomization analysis using 15 independent
variants for campesterol suggested a causal effect of lower plasma
campesterol level on higher gallstone risk (“Methods”; β=−0.70,
P= 7.2 × 10−8; Fig. 5b, c). ABCG5 and ABCG8 together encode a
heterodimeric ATP-binding cassette transporter that facilitates
secretion of cholesterol and non-cholesterol sterols in the
intestine and bile. High plasma campesterol levels might compete
with cholesterol for ABCG5/ABCG8 transporters during biliary

Fig. 5 Colocalization and causal relationship between campesterol and gallstones. a Stacked regional association plots for campesterol and gallstones
(cholelithiasis, K11_CHOLELITH in FinnGen release 4) in the ABCG5/ABCG8 region. The index variants identified in stepwise conditional analysis
(campesterol) and approximate conditional analysis (gallstones) are labeled and variants colored by their linkage disequilibrium (LD) to the index variant
with which they are in strongest LD in METSIM. The campesterol signal (index variant rs6544713) is colocalized with the gallstone signal (rs4299376,
pairwise LD r2= 0.993, RCP= 0.65) shown in the gray box. In contrast, no colocalization was detected between the signals indexed by rs4614977 and
rs11887534. No coding variants within 1 Mb have LD r2 > 0.2 with rs6544713 in METSIM. b Comparison of effect sizes for the 15 instrumental variables
genome-wide without significant heterogeneity (P > 0.05) used in Mendelian randomization analysis between campesterol and gallstones. rs6544713 is in
blue. The slope of the blue dashed line depicts the estimated causal effect size of campesterol on gallstones. The Egger regression intercept is deemed not
significant (P= 0.15). c Negative relationship between instrumental variable and risk of gallstones. OR: odds ratio.
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cholesterol secretion, resulting in decreased biliary cholesterol
levels and reduced risk of gallstones49,50 (Supplementary Fig. 10).

DBH influence on vanillylmandelate and hypertension: distinct
pathways. Stepwise conditional analysis identified the putatively-
deleteriousDBH missense variant p.Arg79Trp (rs77273740) as
associated with lower vanillylmandelate (β=−0.38, P= 1.8 ×
10−15); p.Arg79Trp is > 10-fold more frequent in METSIM than in
NFE (MAF= 4.5% vs. 0.39%). Both fine-mapping and the
knowledge-based approach suggested a causal role for DBH. The
knowledge-based approach suggested DBH could exhibit an effect
on vanillylmandelate in two ways (Supplementary Fig. 10): by
converting dopamine to norepinephrine, a vanillylmandelate
precursor51, or by transforming homovanillate acid to vanillyl-
mandelate through hydroxylation52.

In FinnGen, the DBH p.Arg79Trp vanillylmandelate-decreasing
allele was significantly associated with lower hypertension risk
(OR= 0.84, P= 5.2 × 10−13), consistent with previous associa-
tions with systolic and diastolic blood pressures53,54. No other
variants were associated with FinnGen hypertension or METSIM
vanillylmandelate in this region (P > 10−6; Supplementary Fig. 11).
In 5173 METSIM participants with observed vanillylmandelate
levels, 1073 with hypertension, plasma vanillylmandelate level was
weakly but significantly associated with hypertension (β= 0.52,
R2= 0.01, P= 3.2 × 10−9). Controlling for hypertension status
gave nearly identical genetic association between DBH p.Arg79Trp
and vanillylmandelate (β=−0.38, P= 1.6 × 10−15).

Colocalization analysis suggested that hypertension colocalized
with vanillylmandelate (RCP= 0.996). Using Mendelian randomi-
zation, we did not find significant evidence of causal effects of
vanilymandelate on hypertension (P= 0.15; 10 independent
variants; Supplementary Fig. 11) or of hypertension on vanillyl-
mandelate (P= 0.17; 157 independent variants), suggesting this
signal conferred effects on hypertension risk and vanillylmandelate
through different pathways, consistent with the two possible DBH
effects identified by our knowledge-based approach (Supplementary
Fig. 10). The analysis from vanillylmandelate to hypertension could
only make use of ten instruments and so may be underpowered.

Discussion
We performed GWAS of 1391 plasma metabolites in 6136 men
from the late-settlement region of Finland. We sought to identify
putative causal variants and genes for the resulting genetic
associations, and interrogated disease molecular mechanisms by
integrating metabolite and disease genetic associations. We
identified 2030 association signals for 803 metabolites, including
157 signals for 125 metabolites at 121 rare variants. We identified
303 association signals for 201 metabolites as novel, including
64 signals for 58 metabolites at 51 rare variants.

Over half of these 303 novel association signals stem from the
population history of Finland, the analysis of previously-
unstudied metabolites, or the analysis of the X chromosome.
The Finnish population history of alternating founding events
and population expansions has resulted in a set of genetic variants
rare elsewhere but more common in Finns, providing increased
statistical power for genetic discovery for these variants2, as
exemplified by the Finnish heritage diseases55. 79 of the 303 novel
association signals we identified are at 47 variants with MAF >
10-fold greater in METSIM than in NFE, with 37 novel signals at
14 variants with MAF > 100-fold greater. These include the novel
association of 3-amino-2-piperidone with the rare OAT missense
variant p.Leu402Pro; mutations in OAT cause the Finnish heri-
tage disease gyrate atrophy (see “Results”).

Metabolon continues to expand the set of metabolites identi-
fied on their platform. 78 of the 303 novel association signals

were for 44 metabolites identified after 2015 on the Metabolon
DiscoveryHD4 platform, and so studied only in the most
recent Metabolon-based metabolomics GWAS13. For example,
we identified a novel association at SLC23A3 missense variant
p.Asn336Lys for 2-O-methylascorbic acid, identified on the
Metabolon platform in 2019.

Our study is one of the first Metabolon metabolomics GWAS
to analyze the X chromosome, where 17 of the 303 novel asso-
ciation signals arose. For example, we identified a novel asso-
ciation for tiglylcarnitine at the HSD17B10 missense variant
p.Ala95Thr. HSD17B10 mutations cause a rare inborn error of
metabolism characterized by cognitive impairment and variable
neurological abnormalities.

Biochemical analysis existed for decades prior to the advent of
GWAS. Experiments linking a gene to a metabolite often already
existed in the published literature. We identified 277 putative
causal genes through existing links in the literature between tested
metabolites and biochemical activities of genes near our asso-
ciation signals. Our results suggested most of these putative causal
genes acted on the associated metabolites or closely-related
metabolites. These putative causal genes characterized the genetic
regulatory mechanisms for plasma metabolite levels. The asso-
ciations of multiple metabolites with the same gene help improve
the understanding of the gene function. For example, we nomi-
nated SLC23A3 as a causal gene for 19 metabolites of various
biochemical classes, suggesting a wide range of transport func-
tions in addition to its known role as an ascorbic acid transporter.

Integrating metabolite and disease genetic associations helps
disentangle disease biology. We identified 946 metabolite-disease
trait pairs likely sharing the same causal variants, which helped
pinpoint the likely causal variants and disease genes (Supple-
mentary Data 10). For example, colocalization analysis of acet-
ylglucosaminylasparagine and cholestasis suggested a shared
causal role of SERPINA1 p.Glu366Lys. Mendelian randomization
analysis suggested for the first time a protective effect of high
plasma campesterol on gallstones. Plasma campesterol is com-
monly used as a biomarker for gallstones56 and campesterol
is used as a supplement to reduce low-density lipoprotein
cholesterol57. Our finding provides supporting evidence for these
applications of campesterol in the treatment of gallstones.

Data sharing increases the impact of genetic studies. To sup-
port data exploration of our metabolite GWAS results58, we have
constructed a METSIM metabolite PheWeb site59 (Fig. 2). This
site supports querying, visualizing, and downloading our MET-
SIM Metabolon metabolite genetic association results, including
Manhattan and quantile-quantile plots, and summary statistics
for all 1391 metabolites. In addition, we provide direct links to the
Human Metabolome Database (HMDB)60, which presents the
metabolites’ biochemical characteristics and enables interpreta-
tion of metabolite genetic association results.

In summary, we performed parallel GWAS for 1391 plasma
metabolites in 6136 adult Finnish males from the METSIM study,
colocalized metabolite and disease genetic associations, and made
these GWAS results available using PheWeb. Our findings reveal
genetic determinants for a wide range of plasma metabolites and
demonstrate the utility of metabolite genetic associations for the
investigation of disease biology.

Methods
metabolic syndrome in men (METSIM) study. METSIM is a study of 10,197
Finnish men from Kuopio in the late-settlement region of northeast Finland
designed to investigate factors associated with type 2 diabetes and cardiovascular
diseases3 (Supplementary Table 2). Participants were aged 45–74 (median= 58)
years during baseline visits from 2005 to 2010. Participants provided demographic,
diet, exercise, disease, and medication history information, and underwent
laboratory measurements, including oral glucose tolerance test, after ≥10-hour
overnight fast. Morbidity, mortality, and drug treatment information was
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periodically updated for participants who consented to use of their hospital
admission, drug reimbursement, and prescription records in Finnish national
registries. Due to funding constraints, we randomly selected 6490 of the 8777
METSIM participants who at baseline were neither diagnosed with diabetes nor
taking diabetes medications that might broadly impact metabolomics levels for the
Metabolon metabolomics assay. After exclusion of participants who subsequently
developed diabetes (n= 264), lacked array genotypes (n= 65) or body mass index
(BMI) measurement (n= 1), had sex mismatch (n= 3), and/or were non-Finnish
(n= 21), our analysis set comprised 6136 participants (Supplementary Table 2;
Fig. 1). This study was approved by the Ethics Committee at the University of
Eastern Finland and the Institutional Review Board at the University of Michigan.
All participants provided written informed consent.

Metabolomics profiling and data processing. Non-targeted metabolomics pro-
filing was performed at Metabolon, Inc. (Durham, North Carolina, USA)61 on
EDTA-plasma samples obtained after ≥10-h overnight fast during METSIM
baseline visits. Briefly, methanol extraction of biochemicals followed by a non-
targeted relative quantitative liquid chromatography–tandem mass spectrometry
(LC-MS/MS) Metabolon DiscoveryHD4 platform was applied to assay named
(n= 1240) and unnamed (n= 304) metabolites (Supplementary Table 1 and
Supplementary Data 1). Samples were randomized across batches. Batches con-
tained ~144 METSIM samples and 20 well-characterized human-EDTA plasma
samples for quality control (QC). All 6490 samples were processed together for
peak quantification and data scaling. We quantified raw mass spectrometry peaks
for each metabolite using the area under the curve. We evaluated overall process
variability by the median relative standard deviation for endogenous metabolites
present in all 20 technical replicates in each batch. We adjusted for variation caused
by day-to-day instrument tuning differences and columns used for biochemical
extraction by scaling the raw peak quantification to the median for each metabolite
by Metabolon batch.

Array genotyping and exome sequencing. All METSIM participants were array
genotyped on the Human OmniExpress-12v1_C BeadChip (OmniExpress) and
Infinium HumanExome-12 v1.0 BeadChip (exome array) platforms62. We exclu-
ded individuals for sex or relationship mismatch, apparent sample duplication, or
ancestry outliers based on genetic principal component analysis (PCA). We
removed variants with genotype call rate < 95% (OmniExpress) or < 98% (exome
array), or Hardy-Weinberg equilibrium (HWE) P < 10−6 (either array)62.

We captured exomes for all METSIM participants by SeqCap EZ HGSC
VCRome kit (Roche) and sequenced them by HiSeq2000 (Illumina) (average depth
45×)2. For exome sequences, we excluded samples with estimated
contamination > 3% or sample swaps compared to the array genotype data62 and
required single-nucleotide variant (SNV) array genotype concordance > 90% if
array data were available. We filtered variants with genotype call rate < 98%, HWE
P < 10−6, or overall low allele balance (alternate allele count/sum of total allele
count < 30%)2. The resulting array-genotype dataset consisted of n= 10,066
METSIM participants with 679,866 SNVs. The exome-sequence dataset consisted
of n= 9957 participants with 583,947 SNVs and 40,270 small insertions/deletions
(indels).

Genome sequencing. We whole genome sequenced METSIM participants in two
waves. In wave 1, we genome sequenced 3074 METSIM participants (average depth
23x)63. Genomic DNA was fragmented on a Covaris LE220 instrument and size-
selected to ensure an average insert size of 350–375 base pairs (bp). Libraries were
constructed with the Illumina TruSeq or KAPA Hyper PCR-free library prep kit.
qPCR was used to determine concentration of each library. Libraries were subse-
quently pooled and sequenced with 2 × 150 bp paired-end reads using HiSeq X
(Illumina). We filtered read alignments with mismatch rate ≥5%, inter-chromosomal
rate ≥5%, discordance rate of paired reads ≥5%, or haploid coverage < 19.5x. We
generated QC statistics in Picard v2.4.1 (http://broadinstitute.github.io/picard/),
Samtools v1.3.1 (https://github.com/samtools/)64, and VerifyBamID v1.1.3 (https://
github.com/Griffan/VerifyBamID)65. We called SNVs and small indels and per-
formed base quality score recalibration in GATK v3.5 (https://gatk.broadinstitute.org/
). We excluded variants with missingness > 2%, HWE P < 10−6 in unrelated indivi-
duals, or allele imbalance < 30%. The resulting genome sequence consisted of
n= 3074 participants genotyped for 23,849,428 SNVs and 2,914,167 indels. We used
wave 1 as part of our imputation reference panel (see “METSIM integrative panel and
genotype imputation”).

In wave 2, we sequenced 2875 additional METSIM participants using the same
methods used for wave 1. We generated a combined wave 1+ 2 call set of n= 5949
using the same methods, resulting in calls for 55,648,111 SNVs and 12,850,837
indels. Wave 2 data became available only after the main analysis for this paper was
complete; we used wave 1+ 2 combined data to determine linkage disequilibrium
(LD) proxies for previously-identified metabolite associated variants that were
missing in wave 1 but present in wave 1+ 2 combined data (see “Identification of
novel associations”).

METSIM integrative panel and genotype imputation. Using the 3074 METSIM
participants with wave 1 genome sequence data, we generated an integrated list of

genetic variant sites by merging site lists from the genome and exome sequence data,
and the OmniExpress and exome array data. Of the 3074 participants, 3055 had
OmniExpress and exome array data, and 3037 had exome sequence data. We cal-
culated genotype likelihoods for each individual at each site as the product of
genotype likelihoods assuming independent data across platforms66. For OmniEx-
press and exome array genotypes, we converted genotype calls to genotype like-
lihoods assuming a genotype error rate of 10−6. We then phased genotypes using
integrated genotype likelihoods in Beagle v4.1 (https://faculty.washington.edu/
browning/beagle/b4_1.html) with 50,000 markers per chunk and 3000 overlapping
genetic markers between consecutive chunks67. We subsequently excluded 1 indi-
vidual who self-identified as non-Finnish, 2 individuals identified as population
outliers in genetic PCA, and 149 close relatives (estimated kinship ≥ 0.125 in KING
v2.2.1 (https://www.kingrelatedness.com)68). The resulting integrative panel com-
prised 2922 individuals genotyped for 23,294,337 SNVs and 2,851,848 indels
(Supplementary Table 3). 2670 (91.4%) of the 2922 individuals had Metabolon
metabolomics data.

We imputed genotypes for the 6490 study participants on the framework of
their OmniExpress genotypes using the METSIM integrative panel with Minimac
v469. We excluded imputed variants with imputation r2 < 0.3, leaving 19,182,997
SNVs and 2,404,717 indels for downstream analysis (Supplementary Table 4).

Variant functional annotation. We annotated all variants using the Ensembl
Variant Effect Predictor (VEP, https://useast.ensembl.org/info/docs/tools/vep/
index.html) version 9970. We used the “-pick_order” option to annotate each
variant using a single transcript, with transcripts prioritized in the following order:
transcript support level (i.e., well-supported and poorly-supported transcript
models based on the type and quality of the alignments used to annotate the
transcript), transcript biotype (protein coding preferred), APPRIS isoform anno-
tation (i.e. annotation based on a range of computational methods to identify the
most functionally important transcripts from cross-species conservation), deleter-
iousness of annotation as estimated by Ensembl, transcript CCDS status (i.e.,
amount and type of evidence that supports the existence of a variant), canonical
status of transcript (https://m.ensembl.org/Help/Glossary), and transcript length71.
We used the dbNSFP (version 4.0)72 plugin to generate additional predictions of
variant deleteriousness from five in silico algorithms: Polyphen2 HDIV73, Poly-
phen2 HVAR73, SIFT4G74, MutationTaster75, and the Likelihood Ratio Test
(LRT)76.

Trait transformation. For each metabolite, we inverse normalized the Metabolon-
reported metabolite level, regressed on covariates (age at sampling, Metabolon
batch, and lipid-lowering medication use status for lipid traits only), and inverse
normalized the residuals. In the single-variant association analyses with BMI
adjustment, we also included BMI among the covariates.

Single-variant association analysis. To account for sample relatedness and
potential population stratification among the 6136 participants in our analysis set,
we carried out single-variant association tests using a linear mixed model in
EPACTS (v3.2.6) (https://github.com/statgen/EPACTS) on the normalized residual
metabolite values. We limited analysis to the 1391 metabolites successfully mea-
sured on ≥ 500 METSIM participants and to the genetic variants with minor allele
count (MAC) ≥ 5; we did not impute missing metabolite data. This resulted
in 10,914,098 to 16,172,108 variants (median= 16,042,879) tested across the 1391
metabolites, since the number of variants with MAC ≥ 5 varied with the set of
individuals successfully measured for each metabolite.

To choose a study-wise significance threshold for the 1391 parallel metabolite
GWAS, we carried out PCA across the metabolites to determine the number of
principal components required to explain metabolite variation. To account for
missing data (Supplementary Fig. 12), we first imputed missing metabolite values
using the K-nearest neighbors approach77 with K= 5. PCA of the imputed data
showed that 692 principal components explained 95% of phenotypic variation for
the 1391 metabolites. We therefore used a study-wise significance threshold of
P < 5.0 × 10−8/692= 7.2 × 10−11 for our single-variant analyses. A metabolite
quantified in n= 500 participants provided > 80% power at P < 7.2 × 10−11 to
detect variants that explained phenotypic variance ≥ 11% and had MAC ≥ 5.

PheWeb browser. We built a PheWeb browser59 of the 1391 metabolite GWAS to
support interactive visualization, exploration, and download of these results. This
PheWeb (https://pheweb.org/metsim-metab) includes Manhattan and quantile-
quantile plots, summary statistics, and links to biochemical characteristics and
functions in the Human Metabolome Database (HMDB)60 for all 1391 metabolites.

Stepwise conditional analysis. We carried out stepwise conditional analysis in
EPACTS (v3.2.6) (https://github.com/statgen/EPACTS) to identify near-
independent association signals. For each metabolite-chromosome pair with at
least one single-trait genome-wide significant association (P < 5.0 × 10−8), we first
conditioned on the most significant associated variant and continued conditioning
on the most significant remaining variant until no variant attained P < 5.0 × 10−8.
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Fine mapping and credible sets. For each of the 2030 nearly-independent asso-
ciation signals, we built genomic regions of 1Mb on either side of the index variant,
less near chromosome ends. We merged overlapping regions for the same metabolite,
resulting in 1501 genomic regions of 1.2 to 3.1Mb. To identify potential causal
variants within each region, we performed fine-mapping analysis using the Deter-
ministic Approximation of Posteriors (DAP-g) method20 (https://github.com/xqwen/
dap), assigning equal priors to all candidate variants. DAP-g uses individual-level
metabolite, genotype, and covariate data to produce fine-mapping results. Since DAP-
g does not allow for related participants, we corrected for relatedness approximately
by including the first ten genetic principal components as covariates; repeating the
DAP-g analysis with 0, 20, or 100 principal components yielded similar results.

DAP-g allows for multiple independent association signals within each region.
For each identified signal, DAP-g computes (1) a signal posterior inclusion
probability (SPIP) that there is at least one causal variant in the signal; and (2) a
posterior inclusion probability for each variant (VPIP) that the variant is causal for
the signal. For each of the 1952 signals identified in stepwise conditional tests that
had SPIP ≥ 0.95 in DAP-g, we constructed a 95% credible set of potential causal
variants by ranking the variants in descending VPIP and including variants until
their summed VPIP was ≥ 0.95.

Identification of novel associations. To assess which of our metabolite associa-
tions were novel, we compiled a list of 381 published metabolite GWAS papers
(Supplementary Data 6): 354 from the NHGRI-EBI GWAS catalog78 (https://
www.ebi.ac.uk/gwas/; release date December 1, 2020); and 27 others from the list
curated by Kastenmüller et al.11 (accessed April 1, 2021). From these papers, we
identified 8502 variants with metabolite associations at P < 5.0 × 10−8 or at the
significance threshold used in the paper, whichever was more stringent (Supple-
mentary Data 6). Among these 8502 published variants, 7807 were present in the
METSIM imputed genotype data. For 194 of the published variants not present in
the METSIM imputed genotype data, we identified proxies (LD r2 ≥ 0.8 and ≤
500 kb) using the wave 1+ 2 genome sequence dataset of 5949 METSIM parti-
cipants. The 7807 variants present in the METSIM imputed genotype data and the
194 LD proxies for missing variants together comprised 8000 unique variants. To
avoid problems with multicollinearity, we pruned these 8000 variants at METSIM
LD r2 > 0.99 and ≤ 1Mb, yielding 6501 LD-pruned variants. Then, for each of the
2030 association signals, we repeated the conditional association analysis including
the subset of these LD-pruned variants within ≤ 1Mb of the corresponding index
variant as covariates. We considered as novel signals those index variants with
conditional P < 7.2 × 10−11 and location > 500 kb from any of the
8502− 7807− 194= 501 published variants, which were neither present nor with
proxies in the METSIM imputed genotype data. Among the 501 variants, 380 were
monomorphic in gnomAD v3.1 Finns (n= 5316).

Knowledge-based approach to gene nomination. To nominate putative causal
genes for the 1666 of 2030 signals associated with named metabolites, we employed a
two-stage knowledge-based approach15. In stage 1, for each variant, we identified the
20 closest protein-coding genes using the minimum distance from the index variant
to the refSeq genes’ transcription start or end sites. We employed an algorithm to look
for lexical overlaps between the associated metabolite and each of the 20 genes.
Specifically, we searched automatically for matching strings using customized scripts
between: (1) the HMDB60 metabolite name and synonyms and Entrez gene names;79

(2) the metabolite and Entrez gene names listed in HMDB as interacting with the
metabolite; (3) the metabolite name and Uniprot protein names75 and their syno-
nyms; (4) the metabolite and its parent classes as defined in HMDB and the Uniprot
protein names and their synonyms; (5) the metabolite name and rare disease names
linked to each gene in OMIM (Online Mendelian Inheritance in Man, https://
omim.org/, accessed January 1, 2021) after removing the non-specific substrings uria,
emia, deficiency, disease, transient, neonatal, hyper, hypo, defect, syndrome, familial,
autosomal, dominant, recessive, benign, infantile, hereditary, congenital, early-onset,
idiopathic; (6) the metabolite and its parent classes and Gene Ontology (GO) bio-
logical process names80 associated with each gene after removing the non-specific
substrings metabolic process, metabolism, catabolic process, response to, positive
regulation of, negative regulation of, regulation of (we only considered gene sets
of < 500 genes); and (7) Kyoto Encyclopedia of Genes and Genomes (KEGG)81 maps
(https://www.kegg.jp/) containing the metabolite (as defined in HMDB) and KEGG
maps containing each gene (as defined in KEGG) omitting the large “metabolic
process map”. For each of these pairs of terms, we calculated a Pair Distance score
ranging from 0 to 1 using the Ruby gem “fuzzy_match” (https://github.com/
seamusabshere/fuzzy_match), and considered a score > 0.5 as a match.

In stage 2, we manually reviewed the evidence collected at stage 1. We selected
the biologically most plausible causal gene if we identified experimental evidence
linking the gene to the metabolite. >1 putative causal genes could be nominated
if > 1 gene was suggested in stage 1 and/or 2; this happened most often when a
locus contains multiple paralogs with similar biochemical activity. If no clear
experimental evidence existed for any of the 20 genes, no causal gene was selected.

Colocalization of FinnGen disease traits and METSIM metabolites. To identify
shared causal variants between METSIM metabolites and FinnGen disease traits,
we carried out Bayesian pairwise colocalization analysis using fastENLOC37,38

(https://github.com/xqwen/fastenloc). We downloaded FinnGen release 4 (https://
www.finngen.fi/en/access_results) FINEMAP82-based fine-mapping results for 980
disease traits with at least one association at P < 5.0 × 10−8. fastENLOC used these
FinnGen fine-mapping results and our DAP-g-based fine-mapping results for
METSIM metabolites to carry out colocalization analysis assuming a single causal
variant. For each FinnGen disease trait, we estimated its degree of enrichment for
genome-wide associations in metabolite GWAS using TORUS83 (https://
github.com/xqwen/torus) and used this enrichment estimate as the prior for
Bayesian analysis in fastENLOC. fastENLOC computes two probabilities. The
regional colocalization posterior probability (RCP) is the probability of the same
causal variant within a region for both the metabolite and the FinnGen disease
trait. The variant colocalization posterior probability (SCP) is the probability a
specific variant is causal for both traits. We limited colocalization analysis to the
1952 metabolite stepwise association signals with SPIP ≥ 0.95 for 792 metabolites
and present colocalizations for metabolite-FinnGen disease trait pairs with
RCP ≥ 0.5 (Supplementary Data 10).

Associations of campesterol with gallstones and vanillylmandelate with
hypertension in METSIM. Among the 4698 METSIM participants with measured
plasma campesterol level at baseline, we identified 199 with gallstones in METSIM
(December 2020). To test for association between plasma campesterol level and
presence of gallstones, we used logistic regression with covariates baseline study
age, Metabolon batch, and lipid medication use. Among the 5173 METSIM par-
ticipants with measured plasma vanillylmandelate level at baseline, we identified
1073 individuals with hypertension, and used logistic regression with covariates
baseline study age, Metabolon batch, and hypertension medication use to test for
association between plasma vanillylmandelate level and hypertension status.

Causal effects between metabolites and FinnGen disease traits. To infer the
potential causal effects of plasma campesterol on FinnGen gallstones (phenocode:
K11_CHOLELITH) and plasma vanillylmandelate on hypertension (phenocode:
I9_HYPTENS), we applied four two-sample Mendelian randomization methods:
inverse variance weighted84, weighted median85, MR-PRESSO86, and MR-Egger87.
These methods make different assumptions and use different strategies to account
for horizontal pleiotropy, which can result in false positive inference of causality.
For each metabolite, we identified nearly-independent genetic instrumental vari-
ables (LD r2 < 0.1, distance ≥ 500 kb) with unconditional single-variant association
P < 10−6. We also ran Mendelian randomization analyses to infer the causal effect
of FinnGen gallstones (phenocode: K11_CHOLELITH) on campesterol and
FinnGen hypertension (phenocode: I9_HYPTENS) on vanillylmandelate in a
similar way. We considered findings significant if they had the same effect direction
and P < 0.05 for all four Mendelian randomization methods. We present MR-
PRESSO effect estimate and p-values in the main text.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
NHGRI-EBI GWAS catalog: https://www.ebi.ac.uk/gwas/. Human Metabolic
Individuality: http://www.metabolomix.com/list-of-all-published-gwas-with-
metabolomics/. OMIM: https://omim.org/. KEGG: https://www.kegg.jp/. HMDB: https://
hmdb.ca. GTEx portal: https://gtexportal.org/home/. NCBI refSeq Gene: https://
www.ncbi.nlm.nih.gov/refseq/rsg/. Entrez Gene: https://www.ncbi.nlm.nih.gov/gene.
UniProt: https://www.uniprot.org. Gene Ontology: http://geneontology.org. dbNSFP:
https://sites.google.com/site/jpopgen/dbNSFP. FinnGen genome-wide summary statistics
and Bayesian statistical fine-mapping results are available at https://r4.finngen.fi. Full
summary statistics from the genome-wide association studies of the 1391 plasma
metabolites are available at https://pheweb.org/metsim-metab/. METSIM individual-level
data are not publicly available due to privacy restrictions on personal data. The METSIM
exome sequencing and genotyping array data will be accessible through dbGaP (https://
www.ncbi.nlm.nih.gov/gap/) with accession numbers phs000752 and phs000919,
respectively. The METSIM WGS dataset used in this manuscript (n= 5949) is a subset of
the full METSIM WGS data, which will be deposited into dbGaP upon completion,
expected in early 2022. The METSIM metabolomics dataset (n= 6490) is a subset of the
full METSIM metabolomics data which will be deposited into dbGaP upon completion,
expected in March-May 2022. As part of data deposit in dbGAP, we will include ID lists
corresponding to the individuals included in this paper. Until these data are available
from dbGaP, we will provide access to the data for this paper under a Data Use
Agreement to researchers who submit a short description of the proposed biomedical
research project to Dr. Michael Boehnke (boehnke@umich.edu). Source data are
provided with this paper.

Code availability
Picard v2.4.1 is available at http://broadinstitute.github.io/picard/. Samtools v1.3 is
available at https://github.com/samtools/. GATK v3.5 is available at https://
gatk.broadinstitute.org/. VerifyBamID v1.13 is available at https://github.com/Griffan/
VerifyBamID. KING v2.21 is available at https://www.kingrelatedness.com. Beagle v4.1 is
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available at https://faculty.washington.edu/browning/beagle/b4_1.html. Minimac4 is
available at https://github.com/statgen/Minimac4. EPACTS v3.2.6 is available at https://
github.com/statgen/EPACTS. Variant Effector Predictor is available at https://
useast.ensembl.org/info/docs/tools/vep/index.html. DAP-g is available at https://
github.com/xqwen/dap. TORUS is available at https://github.com/xqwen/torus.
fastENLOC is available at https://github.com/xqwen/fastenloc. FuzzyMatch is available at
https://github.com/seamusabshere/fuzzy_match. Each use of software tools has been
clearly identified in the Methods section. Integrative analysis code and scripts are
available upon request from the first author.
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