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Abstract: Inhibition of the major human drug-metabolizing cytochrome P450 3A4 (CYP3A4) by
pharmaceuticals and other xenobiotics could lead to toxicity, drug–drug interactions and other
adverse effects, as well as pharmacoenhancement. Despite serious clinical implications, the structural
basis and attributes required for the potent inhibition of CYP3A4 remain to be established. We
utilized a rational inhibitor design to investigate the structure–activity relationships in the analogues
of ritonavir, the most potent CYP3A4 inhibitor in clinical use. This study elucidated the optimal
length of the head-group spacer using eleven (series V) analogues with the R1/R2 side-groups as
phenyls or R1–phenyl/R2–indole/naphthalene in various stereo configurations. Spectral, functional
and structural characterization of the inhibitory complexes showed that a one-atom head-group
linker elongation, from pyridyl–ethyl to pyridyl–propyl, was beneficial and markedly improved Ks,
IC50 and thermostability of CYP3A4. In contrast, a two-atom linker extension led to a multi-fold
decrease in the binding and inhibitory strength, possibly due to spatial and/or conformational
constraints. The lead compound, 3h, was among the best inhibitors designed so far and overall, the
strongest binder (Ks and IC50 of 0.007 and 0.090 µM, respectively). 3h was the fourth structurally
simpler inhibitor superior to ritonavir, which further demonstrates the power of our approach.

Keywords: CYP3A4; ligand binding; inhibitor design; crystal structure; structure–activity relations;
surface mutation

1. Introduction

Cytochrome P450 (CYP) enzymes are monooxygenases that mediate xenobiotic metabolism
and the synthesis of steroids, vitamins and fatty acids [1,2]. In humans, CYP3A4 is the
major liver and intestinal P450 isoform with a large and malleable active site which can
accommodate chemically diverse compounds. As a result, CYP3A4 clears the majority of
administered drugs along with other foreign compounds, such as environmental pollu-
tants, insecticides and pesticides [3–5]. Drugs may serve not only as substrates but also
as inducers and inhibitors of CYP3A4 [6]. The inhibition of CYP3A4 is usually undesired,
because it could lead to drug toxicity, drug–drug interactions and other serious adverse
effects. However, when carefully controlled, CYP3A4 inhibition can improve therapeutic
efficacy of drugs by slowing down their conversion to more water-soluble, readily excreted
metabolites. This beneficial pharmacoenhancing (boosting) effect is currently used for
the treatment of HIV infection, where potent CYP3A4 inhibitors, ritonavir (Figure 1A)
and its derivative cobicistat, are co-administered with anti-HIV drugs that otherwise are
quickly metabolized by CYP3A4 [7,8]. The discovery and utilization of ritonavir as a
pharmacoenhancer for HIV-protease inhibitors was a paradigm shift in the treatment of
HIV and helped transform the deadly infection into a chronic and manageable disease [9].
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Figure 1. Chemical structures of ritonavir (A), a highly potent CYP3A4 inhibitor in clinical use, and 
the best two rationally designed inhibitors from series IV [10] (B,C). The R1 and R2 side-groups are 
indicated. If the central hydroxyl group of ritonavir is removed, the phenyl side-groups would be 
in R/R configuration. 

Other areas that could benefit from in-depth inhibitory studies on CYP3A4 are the 
treatment of chronic hepatitis C virus (HCV) infection and the development of 
CYP3A4-specific index inhibitors. HCV infection is a worldwide health issue with no ef-
fective or well tolerated treatments available to date. Through CYP3A4 inhibition, ri-
tonavir is able to diminish the hepatic metabolism of co-administered anti-HCV drugs, 
enhance response rates, alleviate a pill burden, and provide an additional barrier to the 
development of resistance-associated variants [11]. The antifungal agent ketoconazole, 
on the other hand, was widely used as an index inhibitor of CYP3A enzymes in in vivo 
and in vitro drug–drug interaction studies but, due to high hepatotoxicity, its usage is 
now limited [12], with ritonavir recommended as the best replacement [13]. 

However, two major issues associated with ritonavir are off-target activities and 
poor physicochemical properties [14]. Even though cobicistat has higher solubility, better 
tolerability and fewer side effects [8,15], it inhibits CYP3A4 2-fold weaker and has similar 
reactivity toward other drug-metabolizing CYPs [16]. Thus, the inhibitory studies on 
CYP3A4 could help develop safer and more potent pharmacoenhancers and index in-
hibitors for in vivo and in vitro studies. Importantly, both ritonavir and cobicistat are 
chemically complex molecules that were not developed based on the 3D structure of 
CYP3A4. Moreover, ritonavir was originally designed as an HIV protease inhibitor, 
whose ability to potently inhibit CYP3A4 was purely coincidental [7]. Therefore, we un-
dertook a series of studies to investigate what structural determinants are needed for 
potent inhibition and whether the inhibitory potency of ritonavir, the most potent 
CYP3A4 inhibitor in clinical use, could be further improved via rational structure-based 
inhibitor design. Detailed investigations on the structure–activity relationship (SAR) of 
ritonavir analogues and their interaction with CYP3A4 are also important from the basic 
science perspective, as they could clarify the inhibitory/ligand binding mechanism and 
provide deeper insight into the plasticity and adaptability of CYP3A4. 

Our earlier studies on the analogues of desoxyritonavir (provided by Gilead Sci-
ences) demonstrated that the association of ritonavir-like molecules is driven by heme 
coordination [17], identified pyridine as the strongest heme-ligating group [18] and laid 
the groundwork for the development of a pharmacophore model for a potent CYP3A4 
inhibitor [19]. In the following studies [10,20–22], we utilized a build-from-scratch ap-
proach to evaluate the importance of other pharmacophoric determinants, such as the 

Figure 1. Chemical structures of ritonavir (A), a highly potent CYP3A4 inhibitor in clinical use, and
the best two rationally designed inhibitors from series IV [10] (B,C). The R1 and R2 side-groups are
indicated. If the central hydroxyl group of ritonavir is removed, the phenyl side-groups would be in
R/R configuration.

Other areas that could benefit from in-depth inhibitory studies on CYP3A4 are the
treatment of chronic hepatitis C virus (HCV) infection and the development of CYP3A4-
specific index inhibitors. HCV infection is a worldwide health issue with no effective or
well tolerated treatments available to date. Through CYP3A4 inhibition, ritonavir is able to
diminish the hepatic metabolism of co-administered anti-HCV drugs, enhance response
rates, alleviate a pill burden, and provide an additional barrier to the development of
resistance-associated variants [11]. The antifungal agent ketoconazole, on the other hand,
was widely used as an index inhibitor of CYP3A enzymes in in vivo and in vitro drug–
drug interaction studies but, due to high hepatotoxicity, its usage is now limited [12], with
ritonavir recommended as the best replacement [13].

However, two major issues associated with ritonavir are off-target activities and
poor physicochemical properties [14]. Even though cobicistat has higher solubility, better
tolerability and fewer side effects [8,15], it inhibits CYP3A4 2-fold weaker and has sim-
ilar reactivity toward other drug-metabolizing CYPs [16]. Thus, the inhibitory studies
on CYP3A4 could help develop safer and more potent pharmacoenhancers and index
inhibitors for in vivo and in vitro studies. Importantly, both ritonavir and cobicistat are
chemically complex molecules that were not developed based on the 3D structure of
CYP3A4. Moreover, ritonavir was originally designed as an HIV protease inhibitor, whose
ability to potently inhibit CYP3A4 was purely coincidental [7]. Therefore, we undertook a
series of studies to investigate what structural determinants are needed for potent inhibi-
tion and whether the inhibitory potency of ritonavir, the most potent CYP3A4 inhibitor
in clinical use, could be further improved via rational structure-based inhibitor design.
Detailed investigations on the structure–activity relationship (SAR) of ritonavir analogues
and their interaction with CYP3A4 are also important from the basic science perspective,
as they could clarify the inhibitory/ligand binding mechanism and provide deeper insight
into the plasticity and adaptability of CYP3A4.

Our earlier studies on the analogues of desoxyritonavir (provided by Gilead Sci-
ences) demonstrated that the association of ritonavir-like molecules is driven by heme
coordination [17], identified pyridine as the strongest heme-ligating group [18] and laid
the groundwork for the development of a pharmacophore model for a potent CYP3A4
inhibitor [19]. In the following studies [10,20–22], we utilized a build-from-scratch ap-
proach to evaluate the importance of other pharmacophoric determinants, such as the
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backbone length/composition and the size/hydrophobicity of the R1 and R2 side-groups,
represented by phenyls in ritonavir (Figure 1A). We found that the binding affinity and
inhibitory potency of ritonavir analogues depend on the distance between the functional
groups, H-bonding to the active site S119, and the side-group hydrophobicity and stere-
ochemistry. One particular observation was that a one-carbon linker extension, from
pyridyl–methyl to pyridyl–ethyl, and/or phenyl>indole>naphthalene substitution in R2
largely improve the binding affinity and IC50 [10,22]. The most potent inhibitors designed
so far, 5b and 7d (series IV) [10], are shown in Figure 1B,C.

The current study was set to test if further pyridyl–linker extension would be beneficial or
not. For this purpose, we synthesized eleven (series V) compounds with the pyridyl–propyl or
pyridyl–methoxyethyl (butyl-like) spacer, R1–phenyl, and R2–phenyl/indole/naphthalene in
various stereo configurations (Figure 2). It was found that one- but not two-atom linker
extension leads to tighter binding and more potent inhibition of CYP3A4. Crystal structures
of the inhibitory complexes showed that the elongated compounds adopt a more relaxed
conformation, which enables stronger N-pyridine ligation to the heme. There was also a
downside effect—an increase in ligand mobility in the active site. A comparative analysis
of series IV and V analogues suggests that further improvement in the inhibitory power
could be achieved by balancing the flexibility/adjustability and rigidity of the scaffold.
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Figure 2. Chemical structures of series V analogues.

2. Results
2.1. Rationale for Series V Analogues

While working on series III inhibitors [22], we found that a one-atom elongation of the
spacer between the heme-ligating pyridine and the R1 side-group, from five- to six-atom
separation, improves the binding affinity and inhibitory potency for CYP3A4. Studies on
series IV analogues [10], in turn, showed that the size/hydrophobicity of R2 is another
factor critical for the binding and inhibitory strength, which could be modulated via R1/R2
stereochemistry. To further investigate the SAR of ritonavir-like inhibitors, we designed
eleven (series V) analogues to test whether the further extension of the pyridyl-linker by
one or two atoms would be beneficial or not. The first subseries, 3a–d and 8, had a pyridyl–
propyl linker and R1/R2–phenyls in different stereo configuration (Figure 2). Compound 8
(rac, S) was included to test the effect of a longer R1/R2 spacer (five vs. four atoms for other
analogues). Compound 6 (R, S) also contains R1/R2–phenyls and an extended pyridyl–
methoxyethyl (butyl-like) linker. The second pyridyl–propyl subseries was designed to
assess the impact of a bulkier R2, represented by indole in 3e (R, S) and naphthalene in
3f–i in various stereo configurations. Compounds 6 and 3e were synthesized in the R/S
configuration because it is more preferable for the binding to CYP3A4 [10]. As previously,
spectral titrations, inhibitory and temperature denaturation assays, kinetic measurements,
and co-crystallization of analogues with CYP3A4 were conducted for SAR evaluation.
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2.2. The 3a–d Analogues
2.2.1. Spectral and Biochemical Properties of 3a–d

Compared to the pyridyl–ethyl containing 4e–h (series III analogues) [22], there was
a marked improvement in the binding and inhibitory properties of 3a–d. Except for 3b
(R, S), all compounds induced a larger red shift in the Soret band (type II spectral change;
Figure 3A–D), with λmax for the ferric and ferrous CYP3A4 at 422 and 444 nm, respectively,
vs. 421 and 443 nm for 4e–h. Two other spectral parameters reflecting the strength of
N-pyridine ligation, A417/422nm (ratio between the absorbance maxima in the absolute
ligand-free/bound spectra) and ∆Amax (peak/trough amplitude in the difference spectra;
left insets in Figure 3A–D), were the highest observed to date (Table 1). Spectral dissociation
constants (Ks, measure of the binding affinity) were derived from titration plots (right
insets in Figure 3A–D). Compared to 4e–h, the binding affinity of 3a–d was 2-to-3-fold
higher: Ks of 0.013–0.029 µM vs. 0.040–0.055 µM, respectively. The IC50 values for the
7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) debenzylase activity of CYP3A4 correlated
with Ks and decreased by 1.5-to-5-fold upon linker extension (Table 1). The lowest IC50 was
derived for 3a (0.16 µM). Another notable improvement was in thermostability of ligand-bound
CYP3A4, whose melting temperature (Tm) increased by 5.3–8.1 ◦C upon 3a–d ligation. Again,
the highest ∆Tm was observed for the CYP3A4–3a complex. For comparison, ∆Tm for 4e–h did
not exceed 4.7 ◦C [22]. The ligand binding rate (kfast in Table 1) was not affected by linker
modification and remained within the 9.5–12.5 s−1 range.

Table 1. Properties of series V inhibitors.

Compound λmax (nm) A421/417
a ∆Amax

b Ks
c IC50

d IC50/Ks ∆Tm
e kfast

f kET g

Ferric/ferrous µM µM ◦C s−1 s−1

Pyridyl-propyl linker

4-atom R1(phenyl)-R2(phenyl) spacer

3a (R, S) 422/444 1.13 122% 0.015 ± 0.003 0.16 ± 0.02 10.7 8.1 12.5 (36%) 0.011 (98%)

3b (S, R) 421/443 1.08 111% 0.029 ± 0.004 0.30 ± 0.02 10.3 5.3 9.5 (35%) 0.014 (87%)

3c (S, S) 422/444 1.09 111% 0.026 ± 0.002 0.31 ± 0.04 11.9 5.8 9.5 (33%) 0.012 (77%)

0.012 (77%) 422/444 1.10 114% 0.013 ± 0.005 0.21 ± 0.02 20.0 5.6 12.0 (38%) 0.013 (95%)

5-atom R1(phenyl)-R2(phenyl) spacer

8 (rac, S) 422/444 1.10 114% 0.028 ± 0.004 0.33 ± 0.03 7.5 5.0 16.2 (30%) 0.018 (58%)

Pyridyl-mehtoxyethyl (butyl-like) linker

4-atom R1(phenyl)-R2(phenyl) spacer

6 (R, S) 422/443 1.07 113% 0.213 ± 0.009 0.73 ± 0.06 3.4 3.0 9.5 (29%) 0.017 (65%)

Pyridyl-propyl linker

4-atom R1(phenyl)-R2(indol) spacer

3e (R, S) 422/444 1.11 125% 0.019 ± 0.002 0.15 ± 0.03 7.9 7.8 20.1 (24%) 0.020 (85%)

Pyridyl-propyl linker

4-atom R1(phenyl)-R2(naphthalene) spacer

3f (R, S) 422/444 1.12 125% 0.015 ± 0.001 0.16 ± 0.03 10.7 7.9 19.3 (28%) 0.011 (94%)

3g (S, R) 422/444 1.09 111% 0.024 ± 0.006 0.30 ± 0.06 12.5 4.9 10.8 (32%) 0.011 (75%)

3h (S, S) 422/444 1.09 112% 0.007 ± 0.001 0.09 ± 0.01 12.9 5.9 16.1 (24%) 0.017 (72%)

3i (R, R) 422/444 1.10 114% 0.018 ± 0.003 0.15 ± 0.02 8.3 5.5 12.3 (24%) 0.021 (97%)
a The ratio between the absorbance maxima of ferric ligand-bound and ligand-free CYP3A4. b Maximal absorbance change (difference
between the peak and trough in the difference spectrum) relative to that induced by ritonavir. c Spectral dissociation constant for the
CYP3A4–inhibitor complex determined from quadratic fits to titration plots (right insets in Figures 3, 5 and 6). d Inhibitory potency
measured for the 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) debenzylase activity in a soluble reconstituted system with cytochrome
P450 reductase. e Ligand-dependent change in the melting temperature of CYP3A4. f Rate constant for the fast phase of the ligand binding
reaction. Values in the brackets are the percentage of the fast phase. g Rate constant for reduction of inhibitor-bound CYP3A4 with sodium
dithionite. Values in the brackets are a portion of the protein reduced.
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its CO-adduct are in green and blue, respectively. Left insets are difference spectra recorded during 
equilibrium titrations; right insets are titration plots with quadratic fittings. The derived spectral 
dissociation constants (Ks) are given in Table 1. (F–J) The binding modes of 3a–d and 8 observed in 
the crystal structures. Carbon, oxygen, nitrogen and sulphur atoms are depicted in beige, red, blue 
and yellow, respectively. The R/S conformer of 8 (rac, S) was selectively co-crystallized with 
CYP3A4. The adjacent I-helix and F304 in the inhibitory complexes and water-bound CYP3A4 
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3σ level and shown as green mesh. Tail-groups of 3b and 8 that could not be traced in the electron 
density maps are shown as thin lines. 

Figure 3. Spectral properties and the binding modes of 3a–d and 8. (A–E) Spectral changes induced in cytochrome P450
(CYP) by 3a–d and 8. Absorbance spectra of ferric ligand-free and inhibitor-bound CYP3A4 are in black and red, respectively.
Spectra of ferrous ligand-bound CYP3A4 and its CO-adduct are in green and blue, respectively. Left insets are difference
spectra recorded during equilibrium titrations; right insets are titration plots with quadratic fittings. The derived spectral
dissociation constants (Ks) are given in Table 1. (F–J) The binding modes of 3a–d and 8 observed in the crystal structures.
Carbon, oxygen, nitrogen and sulphur atoms are depicted in beige, red, blue and yellow, respectively. The R/S conformer
of 8 (rac, S) was selectively co-crystallized with CYP3A4. The adjacent I-helix and F304 in the inhibitory complexes and
water-bound CYP3A4 (5VCC structure) are depicted in gray and black, respectively. Polder omit maps are contoured at 3σ
level and shown as green mesh. Tail-groups of 3b and 8 that could not be traced in the electron density maps are shown as
thin lines.

2.2.2. Crystallization of 3a–d-Bound CYP3A4

All compounds willingly co-crystallized with CYP3A4 in the I222 crystal form, which
has one molecule per asymmetric unit. Ligand fitting for 3b and 3c was relatively straight-
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forward. The 3a and 3d binding modes, however, could not be accurately determined
due to partially discontinuous electron density, likely the result of thermal disorder. The
wild-type (WT) CYP3A4–3a complex was re-crystallized in the C2 space group, where one
of the two molecules in the asymmetric unit (molecule A) was well defined. In the C2
crystal lattice, the F–F’ fragment mediates intermolecular contacts and undergoes positional
and conformational rearrangement (Figure S1A–C). Nonetheless, these changes had no
significant effect on the ligand conformation (Figure S2). With 3d, neither WT nor the
previously used K282A/K285A mutant [20] produced crystals in space groups other than
I222. Therefore, we replaced with alanine two other high-entropy surface residues, K421
and K424 [20], located in the loop region on the distal face of CYP3A4. The K421A/K424A
mutant was well expressed, could bind 3d equally tight (Ks of 0.019 vs. 0.013 µM for WT;
Figure S3), and produced the desired C2 crystals. Importantly, K421 and K424 do not form
specific interactions with residues of the same or nearby molecules, and their substitution
with alanine does not alter the 400–430 fragment conformation (Figure S1D).

2.2.3. Compounds 3a–d Binding Modes

Structures of CYP3A4 bound to 3a–d were solved to 2.55–2.8 Å resolution (Table S1). In
these and other structures reported here, ligands were fit into polder omit maps, the validity
of which was verified (Table S3) [23]. Only the well defined molecules A of 3a- and 3d-bound
complexes were used for structural comparison, summarized in Table 2. Ligand positioning
and orientation relative to the central I-helix, as well as polder omit maps, are shown in
Figure 3F–I. Compounds 3a, 3c and 3d bind in a traditional orientation, with the R1–phenyl
embedded into a hydrophobic pocket above the I-helix (P1 site) and R2–phenyl near the
heme-ligating pyridine (P2 site). In contrast, 3d ligates to CYP3A4 in a reverse orientation,
with R1 and R2 at the P2 and P1 sites, respectively (Figure 3G), just like its methyl- and
ethyl-linker counterparts [22]. The S/R conformation is less favourable for the binding
to CYP3A4, as 3d forms the longest Fe–N bond and the weakest H-bond with the active
site S119, a prerequisite for potent inhibition [21]. This translates to the lowest binding
affinity, inhibitory potency, and stabilizing effect of 3d (Table 1). Even so, superposition
of 3a–d shows that, regardless of the side-group stereochemistry, phenyls at the P2 site
virtually coincide (Figure 4A). Being equally close to the heme and pyridine (~3.8–4.2
Å), the side-groups are optimally poised for hydrophobic and aromatic interactions. The
nearby R105 side chain (displayed in Figure 3F–J) further stabilizes the inhibitory complexes
by promoting π–cation interactions with the aromatic R2. Comparison of the subseries
lead compound, 3a, with the shorter 4f stereoisomer [22], demonstrates how a one-atom
linker extension alters the ligand binding mode (Figure 4B). The longer pyridine–R1 spacer
allows 3a to adopt a more relaxed conformation, with a larger tilt toward the heme. This
strengthens the Fe–N bond (2.1 vs. 2.3 Å in 4f) and increases the overlap with the heme
macrocycle. Additional stabilization is provided by the Boc-group, mediating multiple van
der Waals interactions but disordered in 4f.
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has a less favourable reverse side-group orientation, with R2–phenyl above the I-helix (P1 site) and
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Table 2. Structural features of CYP3A4–inhibitor complexes.

Compound Fe–N Bond Pyridine
ring I-helix H-Bond Pyridine–R2 Ring F304–R1 Ring Boc-Group

Distance (Å) Angle (◦) a Rotation
(◦) b Shift (Å) c with S119

(Å) d Angle and Overlap Angle and Overlap Contacts

3a (R, S) mol A 2.11 3 30 2.04–2.18 2.82 42◦ full 50◦ partial 108, 211, 213

3b (S, R) 2.20 15 17 1.09–1.76 3.25 46◦ half e 65◦ partial e disordered

3c (S, S) 2.18 7 12 1.23–1.76 3.08 35◦ partial 36◦ half 105, 106, 108, 374

3d (R, R) mol A 2.18 0 37 2.11–2.18 2.48 5◦ full 50◦ half 57, 108, 211, 213, 482

8 (R, S) 2.11 3 32 1.77–1.97 3.15 f 25◦ half 20◦ full disordered

3e (R, S) mol A 2.08 2 37 0.81–1.34 2.30 33◦ full 50◦ half 108, 211, 213

3f (R, S) mol A 2.07 0 33 1.90–2.11 2.41 45◦ half 40◦ half 105–108

3g (S, R) 2.23 6 10 0.47–0.42 - 30◦ half 85◦ none disordered

3h (S, S) mol A 2.07 3 35 1.98–2.21 2.35 45◦ full 40◦ half 105–108

3i (R, R) mol A 2.09 4 30 1.96–2.14 2.30 20◦ full 30◦ half 105–108, 374

a Deviation from perpendicularity. b Angle between the planes passing through the pyridine ring and the NB–ND heme atoms. c Distance
between the Cα-atoms of F304 and A305 in the inhibitor- and water-bound CYP3A4 (5VCC structure). d Hydrogen bond length between
the inhibitor’s carbonyl oxygen and S119 hydroxyl group. e In 3b, the R1 and R2 side groups are in reverse orientation and placed near the
heme-ligating pyridine and F304, respectively. f H-bonding via the amide nitrogen atom.

2.3. R1/R2 Spacer Extension Has No Beneficial Effect

Compound 8 (rac, S) resembles 3a–d but has a one-atom longer R1–R2 spacer. Spectral,
biochemical and kinetic properties of 8 are mostly similar (Table 1). The only distinction
was a slightly lower ∆Tm (5.0 ◦C) and incomplete heme reduction in the inhibitory complex:
~60% vs. ≥80% for 3a–d (compare green spectra in Figure 3A–E). In the crystal structure, 8
ligates to the heme in a traditional orientation (Figure 3J). Importantly, the stereochemistry
of racemic R1–phenyl was not specified during the first refining cycle but it was assigned
as R by the structure refinement program. The R/S configuration was later confirmed
to provide a better fit. That the five-atom R1–R2 spacer is less optimal for the binding to
CYP3A4 is evident from the inability of 8 to strongly H-bond with S119 (Table 2). Moreover,
the latter interaction involves the amide nitrogen rather than carbonyl oxygen, recruited in
other analogues. Thus, the R1/R2 spacer extension has no beneficial effect.

2.4. Two-Atom Pyridyl-Linker Elongation Is Detrimental for the Binding to CYP3A4
2.4.1. Synthetic Approaches for Linker Elongation

To further investigate the correlation between length/flexibility and binding affin-
ity/inhibitory potency, a butyl-like linker was evaluated. For preliminary examination, a
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methoxyethyl linkage within the starting material was chosen as a bioisostere. Attempts
to synthesize a starting material with either pyridine-3-methanol and 2-(Boc-amino)ethyl
bromide [24] or 3-picolyl chloride [25] and Boc-ethanolamine, under various conditions,
were either unsuccessful or produced product in very low yield. Moreover, the 3-picolyl
chloride starting material was recovered from the synthesis, suggesting either low reac-
tivity of chloride in this substitution, or diminished activity due to the insolubility of
the hydrochloride salt starting material. Because ether formation with the Boc-protected
amino starting material was problematic, bromoacetonitrile was utilized instead. The
nitrile product 4 (Scheme 2 in Materials and Methods section) was formed in more suitable
yield. Several reduction methods were then attempted to reduce the nitrile to the amine.
Reduction using LiAlH4 under various conditions [26] was unsuccessful, as was electron
transfer reduction via samarium (II) iodide [27]. H2/Raney Nickel with NH4OH [28]
over-reduced the product to piperidine and attempts to control reduction by shortening
the reaction time [29] were ineffective. Transition metal borides formed in situ were then
employed. Zirconium boride, formed in situ from ZrCl4 and NaBH4 has been previously
shown to reduce nitriles to amines [30], but was unsuccessful. However, nickel boride
(formed in situ from NiCl2 and NaBH4) with Boc-anhydride as a trapping agent [31],
formed the Boc-protected amino product 5. Although catalytic quantities of nickel chloride
have been shown to reduce nitriles to amines [32], the reaction was more successful with
stoichiometric amounts of nickel chloride hexahydrate and nitrile [31,33]. Overreduction
to the piperidine product did occur, however, it was successfully separated by column
chromatography. Deprotection of Boc with trifluoroacetic acid resulted in free amine, which
was then coupled with 2a to form the final methox–ethyl, butyl-like product, 6.

2.4.2. Properties of 6

Similar to other analogues, compound 6 (R, S) acted as a type II heme ligand and
induced a red shift in the Soret band (Figure 5). Nonetheless, 6 was the weakest binder
and the least potent inhibitor in the entire series, with Ks and IC50 increased by multi-fold
(Table 1). The fact that 6 ligates weakly to CYP3A4 is also evident from the lowest ∆Tm
(<3 ◦C). Moreover, we could not co-crystallize CYP3A4 with 6 because it dissociated during
crystallization. The inability of 6 to strongly ligate to the heme could be due to spatial
limitations in the active site and/or conformational constraints imposed by the lengthy
linker. Therefore, we did not pursue any further modification of the pyridine-R1 spacer
and instead focused on a more detailed investigation of the pyridyl–propyl scaffold by
replacing R2–phenyl with the larger and more hydrophobic indole and naphthalene.
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Figure 5. Spectral changes in CYP3A4 induced by compound 6 binding. Absorbance spectra of
ferric ligand-free and inhibitor-bound CYP3A4 are in black and red, respectively. Spectra of ferrous
ligand-bound CYP3A4 and its CO-adduct are in green and blue, respectively. Left inset shows
difference in the spectra recorded during equilibrium titrations; right inset is a titration plot with
quadratic fitting. The derived Ks value is given in Table 1. It was not possible to determine the
inhibitory complex structure because 6 dissociated from CYP3A4 during crystallization.
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2.5. The 3e–i Subseries
2.5.1. Spectral and Biochemical Properties of 3e–i

Absolute and difference absorbance spectra and titration plots for the 3e–i subseries
are shown in Figure 6A–E. Compound 3e (R, S) was the only R2-indole containing analogue
investigated and, along with 3f (R, S) and 3i (R, R), was among the strongest binders and
inhibitors of CYP3A4: Ks and IC50 of 0.0015–0.019 µM and 0.15–0.016 µM, respectively.
However, none of these compounds were superior to the R2–phenyl containing 3a (Table 1).
The comparison between 3e and 3f with the shorter pyridyl-ethyl counterparts (7b and 7d
from series IV [10], respectively) showed that significant improvement in Ks was achieved
only for 3e (4-fold decrease), while the IC50 value and both parameters for 3f were either
higher or unchanged. As expected, the S/R conformer, 3g, was the weakest inhibitor in the
subseries and similar to 3b (Table 1). 3h (S, S), in turn, was the series V lead compound: KS
and IC50 of 0.007 and 0.090 µM, respectively. This is a 3-fold improvement relative to the
R1/R2–phenyl containing stereoisomer 3c. Thus, the impact of the phenyl-to-naphthalene
replacement in R2 depends on the side-group stereochemistry and is more pronounced
when configuration is S/S.

2.5.2. The 3e–i Binding Modes

All compounds could be co-crystallized with WT CYP3A4 either in I222, C2 or I2
space groups (Table S2). Similar to C2, the I2 space group has two molecules in the
asymmetric unit, where only molecule A is well defined. Compound 3i was poorly seen
in the I222 structure and did not form C2 crystals with WT CYP3A4. Therefore, like 3d,
this analogue was co-crystallized with the K421A/K424A mutant. The ligand binding
modes and structural features are compared in Figure 6F–J and Table 2. One distinction
of this subseries is that all stereoisomers, including 3g, ligate to the heme in a traditional
orientation, with R1–phenyl in the P1 pocket and R2-indole/naphthalene at P2 site. Still,
even in this orientation, 3g has the longest Fe–N bond, cannot H-bond to S119, and has
no R1/F304 overlap. This is in contrast to four other compounds, which strongly ligate to
the heme, form strong H-bonds with S119, and maximize the R1/F304 and R2/pyridine
overlap (Table 2).

Superposition of 3e, 3f, 3h and 3i shows similar backbone curvatures, coinciding
with R1–phenyls, and the R2-groups equally distant from the heme but not the pyridine
moiety (Figure 7A). In 3e, the R2-indole is oriented vertically rather than horizontally, as
naphthalene rings do, possibly due to its more hydrophilic nature. Since 3f and 3h bind
in a similar manner, it was not possible to deduce based on structural and experimental
data why the latter analogue inhibits CYP3A4 twice as stronger. Comparison of 3f with the
shorter and isosteric 7d (Figure 7B) also could not explain the 2-fold difference in IC50, as
the inhibitors’ head-, side- and tail-groups were positioned similarly. On the other hand,
5b (S, S), selectively chosen by CYP3A4 from racemic mixture [10], and the isosteric and
equally potent 3h have notably distinct conformations (Figure 7C): the 5b R1 inserts deeper
in the P1 pocket, R2 orients vertically to the heme, and the end-moiety points away rather
than toward the substrate channel. Since it became challenging to rank the high affinity
analogues based on traditional approaches, we introduced an additional assay for inhibitor
characterization.



Int. J. Mol. Sci. 2021, 22, 852 10 of 22Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. Spectral properties and binding orientations of 3e–i. (A–E) Spectral changes induced in CYP3A4 by 3e–i. Ab-
sorbance spectra of ferric ligand-free and inhibitor-bound CYP3A4 are in black and red, respectively. Spectra of ferrous 
ligand-bound CYP3A4 and its CO-adduct are in green and blue, respectively. Left insets are the difference spectra rec-
orded during equilibrium titrations; right insets are titration plots with quadratic fittings. The derived Ks values are listed 
in Table 1. (F–J) The binding modes of 3e–i observed in the crystal structures. Carbon, oxygen, nitrogen and sulphur 
atoms are shown in beige, red, blue and yellow, respectively. The adjacent I-helix and F304 in the inhibitory complexes 
and water-bound CYP3A4 (5VCC structure) are depicted in gray and black, respectively. Polder omit maps contoured at 
3σ level are shown as green mesh. The disordered tail of 3g is shown as thin lines. 

Figure 6. Spectral properties and binding orientations of 3e–i. (A–E) Spectral changes induced in CYP3A4 by 3e–i.
Absorbance spectra of ferric ligand-free and inhibitor-bound CYP3A4 are in black and red, respectively. Spectra of ferrous
ligand-bound CYP3A4 and its CO-adduct are in green and blue, respectively. Left insets are the difference spectra recorded
during equilibrium titrations; right insets are titration plots with quadratic fittings. The derived Ks values are listed in
Table 1. (F–J) The binding modes of 3e–i observed in the crystal structures. Carbon, oxygen, nitrogen and sulphur atoms
are shown in beige, red, blue and yellow, respectively. The adjacent I-helix and F304 in the inhibitory complexes and
water-bound CYP3A4 (5VCC structure) are depicted in gray and black, respectively. Polder omit maps contoured at 3σ
level are shown as green mesh. The disordered tail of 3g is shown as thin lines.
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binds in a traditional orientation. However, 3f forms the longest Fe–N bond and cannot establish 

Figure 7. (A) Structural overlay of the 3e–i-bound complexes. Unlike 3b (S, R) (Figure 4A), 3f (S, R)
binds in a traditional orientation. However, 3f forms the longest Fe–N bond and cannot establish an
H-bond with the active site S119 (Table 2), meaning that the R/S configuration is still less favourable.
(B) Superposition of isosteric 7d (series IV analogue [10]) and 3f shows a small impact of one-atom
linker elongation on the ligand binding mode. (C) Comparison of the best series IV and V inhibitors,
5b [10] and 3h. The pyridyl–ethyl containing 5b has a five- rather than four-atom R1–R2 spacer
(Figure 1B) and adopts a distinct conformation in the active site: R1–phenyl protrudes deeper into
the P1 pocket, R2-naphthalene is perpendicular rather than parallel to the heme, and the terminal
Boc-group points away rather than toward the substrate channel.

2.6. H2O2 Heme Accessibility Assessment

Ritonavir-like molecules inhibit CYP3A4 not only via heme ligation and decrease in
the heme redox potential [34] but also by blocking the active site and preventing substrates
from accessing the catalytic centre. We usually evaluate the heme accessibility by measuring
the rate and percentage of anaerobic heme reduction by sodium dithionite, an artificial
electron donor (kET in Table 1). However, kET has a narrow spread, and the portion of heme
reduced does not correlate with IC50 (Table 1). Therefore, we utilized another method,
heme bleaching with hydrogen peroxide, to probe the accessibility of the cofactor. H2O2 is
a small oxidizing agent that easily penetrates the protein interior and destroys the heme
without altering the P450 structure [35]. Kinetic plots for series V inhibitors are shown in
Figure 8A. Due to the complex, multiphasic nature of heme decay kinetics, it was more
convenient to compare the percentage of heme destroyed at the end of the reaction. In
general, the strongest binders/inhibitors (3h, 3f, 3a and 3e) preserved most of the heme
(>80%), whereas the weaker ligands (3g, 3b, 3c and 6) had a smaller protecting effect
(4–16% higher heme loss). To further test the applicability of the assay, we measured H2O2-
dependent heme destruction in CYP3A4 bound to ritonavir and series IV analogues 5b and
7d (Figure 1). As seen from Figure 8B, only the R2–naphthalene containing 7d protected the
heme as well as the best series V inhibitors. Interestingly, the fraction of heme destroyed
seemed to better correlate with the Ks/IC50 pair than the individual parameters. Either
way, the heme depletion assay was informative and suggests that, along with the strong
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heme-ligating moiety, the R2-mediated interactions at the P2 site could control/minimize
heme accessibility.
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of series V inhibitors on the heme accessibility to H2O2. Overall, the inhibitor binding significantly Figure 8. H2O2-dependent heme depletion in ligand-free and inhibitor-bound CYP3A4. (A) Effect

of series V inhibitors on the heme accessibility to H2O2. Overall, the inhibitor binding significantly
protected the cofactor, and the amount of heme destroyed correlated with the Ks/IC50 values. (B)
A comparative assay for CYP3A4 bound to ritonavir and the best series IV inhibitors, 5b and 7d.
The heme accessibility was the lowest in CYP3A4 ligated to the high affinity/potency inhibitors, 3h
and 7d.

3. Discussion

This work was a continuation of our efforts to identify structural attributes required
for potent inhibition of human drug-metabolizing CYP3A4, the major and most clinically
relevant P450 isoform. This knowledge is needed for a better understanding of the CYP3A4
inhibitory/ligand binding mechanism and building a pharmacophore model for a potent
CYP3A4 inhibitor. The identification of an ensemble of electronic and steric features
leading to potent CYP3A4 inhibition could help develop safer drugs and more effective
pharmacoenhancers. Ritonavir, originally designed as an anti-HIV drug [36], remains the
most potent CYP3A4 inhibitor in clinical use [37] and serves as a ‘gold standard’ in our
studies. Based on the SAR analysis of the closest analogues of ritonavir, we constructed
the first structure-based pharmacophore model for a potent CYP3A4-specific inhibitor [19]
and tested some of the determinants, including the backbone length/composition, R1 and
R2 substituents, and pyridine–R1 and R1–R2 spacers [10,20–22]. This study builds on our
prior work and was performed to elucidate the optimal length of the pyridine–R1 linker.

The linker extension from pyridyl–ethyl to pyridyl–propyl (six- to seven-atom pyridine–
R1 separation) was found to be more optimal for the R1/R2–phenyl containing compounds,
3a–d, as it increased both the binding and inhibitory strength by several-fold (Table 1).
For the R1–phenyl/R2-indole/naphthalene analogues, 3e–i, the impact was not uniform
and depended on the side-group stereochemistry. In accordance with the previous find-
ings [10,22], we confirmed that the S/R configuration was the least favourable, because it
forces analogues to bind in reverse or sub-optimal orientations. In contrast, regardless of
the scaffold, R/S was the most preferable conformation and, once again, was selected by
CYP3A4 during co-crystallization with 8 (rac, S). The series V front-runner, however, was
3h (S, S). This analogue has outstandingly low Ks (0.007 µM) and inhibits CYP3A4 nearly
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as potently as the prior lead compounds (IC50 of 0.090 µM vs. 0.055–0.070 µM for 5b and
7d) and 1.5-fold stronger than ritonavir (Ks and IC50 of 0.019 and 0.130 µM, respectively).

The currently prevalent notion is that ritonavir acts as a mechanism-based inhibitor by
producing reactive metabolite(s) inactivating CYP3A4 via covalent attachment [38–42]. In
our experimental system, we could not detect time-dependent CYP3A4 inactivation upon
preincubation with NADPH and, instead, observed a slight decrease in IC50 for ritonavir,
likely due to its partial metabolism [22]. Whether the membrane bilayer, cytochrome b5
and/or other microsomal proteins are needed to mediate the reactive species production
remains to be established. However, this and our prior studies demonstrate that the key
factors contributing to the inhibition of CYP3A4 are the tight heme binding and blockage
of the active site.

One problem with series V compounds was that, aside from the best and the worst
inhibitors, the ranking was difficult due to low spread in IC50 (Table 1). By definition,
IC50 is the half inhibitory concentration, which under our experimental conditions (0.1
µM CYP3A4; 1:1 enzyme–inhibitor complex) is limited to 0.05 µM. This explains the IC50
clustering and predicts a similar scenario for the next generation of optimized compounds.
Contrarily, Ks does not depend on protein concentration and, as demonstrated for 3h,
its significant improvement can still be achieved. The newly introduced assay, H2O2-
dependent heme bleaching, helped to better evaluate the heme accessibility in the inhibitor-
bound CYP3A4 and demonstrated that, compared to the best series IV and V analogues,
the protective effect of ritonavir was considerably lower. This further underlines the
importance of strong heme ligation and the fuller occupancy of the P2 site.

Another challenge was to accurately define the ligand binding modes. Despite the fact
that most of the new compounds were the tight binders that willingly co-crystallized with
CYP3A4, it was difficult to determine their binding orientation in traditional I222 crystals,
containing one loosely packed CYP3A4 molecule in the unit cell. This and the higher
motional freedom of elongated compounds led to thermal disorder and discontinuous
electron density maps. To overcome this problem, we recrystallized some but not all
inhibitory complexes in the more densely packed C2 and I2 space groups. As expected,
changes in crystal packing triggered the restructuring of surface loops, including the F–F’
fragment (Figure S1A–C), which nonetheless only minimally distorted the ligand binding
modes (Figure S2). Two compounds, 3d and 3i, failed to co-crystallize with WT and
the previously obtained K282A/K285A CYP3A4 [20] in the desired crystal forms. This
prompted us to clone another surface mutant, K421A/K424A, which had similar spectral
and ligand binding properties (Figure S3), easily formed C2 crystals, and maintained the
same structural fold (Figure S1D). Thus, along with WT and K282A/K285A CYP3A4, this
variant can be used in crystallization trials to increase chances for success.

Determination of all but 6-bound structures of CYP3A4 was important because it
enabled a structural comparison within/between subseries and with the pyridyl–ethyl
counterparts (Figures 4B and 7B,C). Comparative analysis suggests that the positive impact
of one-atom linker extension on Ks and IC50 could be due to the higher flexibility and
adjustability of the elongated analogues, leading to stronger heme ligation and a more
relaxed fit. This, in turn, strengthens the protein–ligand interactions mediated by the
side-groups, as manifested by a large increase in thermostability of CYP3A4 (∆Tm in
Table 1). There was also a downside effect, an increase in ligand mobility and thermal
motion (evident from the elevated B-factors; Tables S1 and S2), which could lower the
inhibitory potency to some extent. This possibility explains why most series V analogues
are inferior to the shorter 5b and 7d. Thus, a balance needs to be found between the
flexibility/adjustability and rigidity of the scaffold. One way to achieve this would be
through modification of the end-moiety, currently presented by a simple amino-protecting
Boc-group. Due to a spacious active site and the adjacent substrate access channel (Figure 9),
the addition/optimization of the end-moiety might not only improve the inhibitory potency
of the analogues, but also address the solubility and cross-reactivity issues associated with
ritonavir.
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Since the end-moiety has yet to be evaluated and optimized, it would be premature to
draw any final conclusions on the rational inhibitor design. However, this study completes
the investigation of the most important part of the ritonavir-like scaffold—the heme-
ligating, side-group containing inhibitor core. A build-from-scratch approach utilized for
inhibitor design, with systematic changing/testing of every pharmacophoric determinant,
and the availability of structural information on the inhibitory complexes were critical for
deciphering the relative importance of the structural elements of ritonavir. SAR analyses
of the rationally designed analogues not only confirmed the early observations [19], but
also led to new discoveries and conclusions. In particular, all investigated compounds
were found to cause the I-helix distortion, with the largest shift (>2.0 Å) observed in
CYP3A4 complexed with strong binders/inhibitors, including ritonavir (Figure 9). Such
high plasticity of the I-helix enables the R1–phenyl to insert deeper into P1 pocket, with
no apparent penalty for the conformational constraint. However, a 2-fold drop in IC50
observed upon the R1–phenyl-to-naphthalene substitution [10] suggests that the pocket
has limited capacity to expand and can optimally accommodate groups no larger than
phenyl. Importantly, hydrophobic and aromatic interactions established at the P1 site
have a higher impact on Ks than IC50. This was further demonstrated with the series
V analogues, whose backbone elongation facilitated the insertion of R1 (compare the R1
insertion angle in Figure 9).

In contrast, the R2-mediated interactions at the P2 site largely affect the inhibitory
potency, with naphthalene being the most optimal substituent. Notably, none of the
designed analogues, including 3h and 7d, displace the I369-A370-M371 fragment as much
as ritonavir: the A370 Cα atom shifts by 0.5, 0.9 and 1.8 Å, respectively (Figure 9). Thus,
the R2-A370 clash is unfavourable and tends to be avoided or minimized. The active site
expansion also proceeds through displacement of the F–F’ connecting loop, part of which
(residues 210–214) is invisible in most of the CYP3A4 structures and does not seem to
contribute much to the binding energy. Nonetheless, L210, L211 and F213 could establish
hydrophobic interactions with the R1–phenyl and Boc-group (Figure S2B,D), which will be
taken into consideration during optimization of the end-moiety.

In addition to the ability to strongly ligate to the heme via the N-pyridine heteroatom,
all potent inhibitors establish an H-bond with the active site S119. The H-bonding propen-
sity is diminished or completely lost in the S/R stereoisomers which, overall, have the
lowest inhibitory potential. Stereochemistry becomes even more important when the
side-groups are substituted with bulky indole and naphthalene, whose ability to ad-
just/rearrange in the active site is likely to be limited. This, in turn, could explain why
the backbone flexibility and proper spacing between the functional groups are important
and greatly improve the binding and inhibitory strength. Considering recent findings
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on P450 aromatase inhibitors [43], it is plausible to suggest that strong heme ligation,
favourable stereochemistry (when applicable), H-bonding to the active site residue(s), and
the deformation of the active site (induced fit) might be common features leading to the
potent inhibition of CYP enzymes.

In conclusion, the spectral, functional and structural characterization of eleven series V
analogues showed that six- and seven-atom separation between the pyridine and R1 is most
optimal, as further linker extension lowers the binding and inhibitory strength by several-
fold, likely due to spatial limitations in the active site and/or conformational constraints.
Compared to the shorter series IV analogues, an increase in the R2 size/hydrophobicity
has a less pronounced impact, partly due to the higher flexibility/mobility of the elongated
compounds. Even so, the new lead compound, 3h, was among the best CYP3A4 inhibitors
designed to date with the highest binding affinity ever detected. Moreover, 3h and other
lead compounds most effectively prevented the H2O2-induced degradation of the heme,
confirming once again that strong heme ligation and the blockage of the active site are
critical for potent inhibition. Finally, the SAR analysis of series IV and V analogues
suggests that further improvement in the inhibitory power could be achieved by balancing
the flexibility/adjustability and rigidity of the scaffold.

4. Materials and Methods

Chemistry General Methods—All reactions were performed with commercially avail-
able reagents (Aldrich, Thermo-Fisher, Alfa Aesar, Acros, Oakwood, Millipore) without
further purification. Anhydrous solvents were acquired through a solvent purification sys-
tem (Inert PureSolv and JC Meyer systems) or purified according to standard procedures.
1H NMR spectra were recorded on Bruker DRX 400 MHz, Bruker DRX 500 MHz, or Bruker
Avance 600 MHz spectrometer and processed using TopSpin 3.5 software. Low and high
resolution mass spectrometry (LRMS and HRMS) data were obtained via ESI LC-TOF on
a Waters (Micromass) LCT Premier spectrometer (Waters), with PEG as the calibrant for
HRMS. Optical rotation was recorded on a Rudolph Autopol III Automatic Polarimeter at
room temperature in methanol. Thin layer chromatography (TLC) was performed using
EMD Millipore silica gel 60 F254 aluminium plates. Separation by column chromatography
was conducted using Fisher silica gel 60 (230–400 mesh). All investigated compounds were
>95% pure as determined by NMR. High resolution mass spectrometry data and NMR
spectra are included in the Supplementary Material.

Synthesis of Analogues—Compounds 1a–e were prepared as described previously [10,
22], with either boc-protection and the tosylation of commercially available amino alcohol
or amino acid reduction and protection. Sequentially, the Ar groups are: 1a phenyl (S),
1b phenyl (R), 1c indole (S), 1d naphthyl (S), and 1e naphthyl (R). Compounds 2a–i were
also prepared as described previously [10,22], with either D or L-α-thio-phenylalanine [44].
Synthesis of other analogues is outlined in Schemes 1–3.
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General Procedure for the Synthesis of Compounds 3a–i— Steps for the synthesis of
compounds 3a-i are outlined in Scheme 1. Crude 2a (0.34 g, 0.82 mmol) was dissolved in
dimethylformamide (DMF) (3 mL). To this solution, 3-(3-pyridyl)propylamine (0.17 g, 1.23 mmol,
1.5 eq) in 3 mL DMF was added, followed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDAC) (0.24 g, 1.23 mmol, 1.5 eq), hydroxybenzotriazole (HOBt) (0.19 g, 1.23 mmol, 1.5
eq) and N,N-diisopropylethylamine (DIPEA) (0.32 g, 2.46 mmol, 3 eq). The reaction was
stirred at room temperature overnight. Upon completion, the solvent was evaporated and
the reaction mixture was diluted with ethyl acetate. The organic layer was then washed
with saturated NaHCO3, water, and brine. The combined organic layers were dried over
MgSO4 and concentrated in vacuo to give the crude product, which was purified via
column chromatography (95:5 EtOAc:MeOH). The pure product 3a was obtained as a clear
yellow oil (0.07 g, 16%). TLC: EtOAc/MeOH 90:10 (Rf. 0.57). 1H NMR (400 MHz, CDCl3)
δ 8.43 (d, J = 4.8 Hz, 1H), 8.37 (s, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.36–7.11 (m, 11H), 6.52 (t,
J = 6.0 Hz, 1H (NH)), 4.63 (d, J = 8.3 Hz, 1H), 3.96 (m, 1H), 3.25 (quint, J = 6.7 Hz, 2H), 2.90
(m, 2H), 2.79 (d, J = 6.9 Hz, 2H), 2.68 (dd, J = 5.2, 13.6 Hz, 1H), 2.58 (dd, J = 6.1, 13.5 Hz,
1H), 2.48 (t, J = 7.9 Hz, 2H), 1.69 (quint, J = 7.3 Hz, 2H), 1.40 (s, 9H). HRMS m/z calculated
for C31H39N3O3SNa [M + Na]+: 556.2610. Found: 556.2606. The pure product 3b was
obtained as a yellow gum (0.015 g, 15%). TLC: EtOAc/MeOH 90:10 (Rf. 0.57). 1H NMR
(400 MHz, CDCl3) δ 8.45 (d, J = 4.9 Hz, 1H), 8.39 (s, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.31–7.16
(m, 9H), 7.13 (d, J = 6.8 Hz, 2H), 6.45 (t, J = 7.0 Hz, 1H (NH)), 4.57 (bs, 1H), 3.96 (m, 1H),
3.26 (quint, J = 7.0 Hz, 2H), 3.18 (m, 1H), 2.96 (dd, J = 7.0, 13.4 Hz, 1H), 2.79 (d, J = 7.0 Hz,
2H), 2.67 (dd, J = 5.7 13.5 Hz, 1H), 2.58 (dd, J = 6.0, 13.4 Hz, 1H), 2.49 (t, J = 7.7 Hz, 2H),
1.70 (quint, J = 7.4 Hz, 2H), 1.41 (s, 9H). HRMS m/z calculated for C31H39N3O3SNa [M
+ Na]+: 556.2610. Found: 556.2587. The pure product 3c was obtained as a yellow gum
(0.018 g, 18%). TLC: EtOAc/MeOH 90:10 (Rf. 0.57). 1H NMR (400 MHz, CDCl3) δ 8.44 (d,
J = 4.8 Hz, 1H), 8.39 (s, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.32–7.17 (m, 9H), 7.08 (d, J = 6.7 Hz,
2H), 6.90 (bs, 1H (NH)), 4.64 (d, J = 6.9 Hz, 1H), 3.85 (q, J = 6.7 Hz, 1H), 3.54 (m, 1H), 3.30
(dd, J = 7.4, 13.7 Hz, 2H), 3.19 (quint, J = 6.7 Hz, 1H), 2.91 (m, 2H), 2.68 (m, 2H), 2.50 (m,
2H), 1.73 (quint, J = 7.5 Hz, 2H), 1.37 (s, 9H). HRMS m/z calculated for C31H39N3O3SNa
[M + Na]+: 556.2610. Found: 556.2585. The pure product 3d was obtained as a yellow
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gum (0.027 g, 21%). TLC: EtOAc/MeOH 90:10 (Rf. 0.57). 1H NMR (400 MHz, CDCl3) δ
1H NMR (400 MHz, CDCl3) δ 8.44 (d, J = 4.8 Hz, 1H), 8.37 (s, 1H), 7.45 (d, J = 7.8 Hz, 1H),
7.31–7.17 (m, 9H), 7.08 (d, J = 6.8 Hz, 2H), 6.89 (bs, 1H (NH)), 4.64 (d, J = 7.8 Hz, 1H), 3.85
(q, J = 7.0 Hz, 1H), 3.54 (m, 1H), 3.30 (dd, J = 7.3, 13.7 Hz, 2H), 3.19 (quint, J = 6.7 Hz, 1H),
2.91 (m, 2H), 2.69 (m, 2H), 2.49 (m, 2H), 1.73 (quint, J = 7.4 Hz, 2H), 1.39 (s, 9H). HRMS
m/z calculated for C31H39N3O3SNa [M + Na]+: 556.2610. Found: 556.2598. Compound 3e
was obtained as a white fluffy solid (0.022 g, 13%). TLC: EtOAc/MeOH 90:10 (Rf. 0.49). 1H
NMR (400 MHz, CDCl3) δ 8.44 (d, J = 4.8 Hz, 1H), 8.33 (s, 1H). In addition, 8.30 (s, 1H), 7.61
(d, J = 7.6 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.38–7.13 (m, 7H), 7.10 (t, J = 6.9 Hz, 1H), 6.98 (s,
1H), 6.33 (t, J = 5.2 Hz, 1H (NH)), 4.69 (d, J = 7.7 Hz, 1H), 4.09 (q, J = 6.6 Hz, 1H), 3.25 (dd,
J = 7.4, 13.7 Hz, 1H), 3.12 (quint, J = 6.8 Hz, 1H), 2.97 (m, 4H), 2.71 (dd, J = 5.5, 13.9 Hz, 1H),
2.59 (dd, J = 6.2, 13.4 Hz, 1H), 2.40 (t, J = 7.7 Hz, 2H), 1.56 (quint, J = 7.4 Hz, 2H), 1.43 (s, 9H).
HRMS m/z calculated for C33H41N4O3S [M + H]+: 573.2899. Found: 573.2900. The pure
product 3f was obtained as an off white fluffy solid (0.031 g, 20%). TLC: EtOAc/MeOH
90:10 (Rf. 0.51). 1H NMR (400 MHz, CDCl3) δ 8.43 (d, J = 4.7 Hz, 1H), 8.13 (d, J = 8.4 Hz,
1H), 7.82 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.47 (t, J = 8.0 Hz,
1H), 7.36 (m, 3H), 7.31–7.16 (m, 7H), 6.34 (t, J = 5.3 Hz, 1H (NH)), 4.73 (d, J = 7.9 Hz, 1H),
4.16 (q, J = 6.3 Hz, 1H), 3.25 (m, 4H), 2.96 (dd, J = 6.8, 13.7 Hz, 2H), 2.68 (t, J = 4.6 Hz,
2H), 2.36 (t, J = 7.8 Hz, 2H), 1.53 (t, J = 7.4 Hz, 2H), 1.39 (s, 9H). HRMS m/z calculated for
C35H42N3O3S [M + H]+: 584.2947. Found: 584.2921. The pure product 3g was obtained
as a yellow solid (0.024 g, 16%). TLC: EtOAc/MeOH 90:10 (Rf. 0.5). 1H NMR (400 MHz,
CDCl3) δ 8.44 (d, J = 4.7 Hz, 1H), 8.13 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.72 (d,
J = 8.0 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.36 (m, 3H), 7.31–7.16 (m,
7H), 6.32 (t, J = 6.8 Hz, 1H (NH)), 4.72 (d, J = 8.0 Hz, 1H), 4.16 (q, J = 6.5 Hz, 1H), 3.25 (m,
4H), 2.96 (dd, J = 6.8, 13.7 Hz, 2H), 2.68 (t, J = 4.8 Hz, 2H), 2.36 (t, J = 6.8 Hz, 2H), 1.54 (t,
J = 6.7 Hz, 2H), 1.39 (s, 9H). HRMS m/z calculated for C35H42N3O3S [M + H]+: 584.2947.
Found: 584.2930. The pure product 3h was obtained as an off white fluffy solid (0.089
g, 26%). TLC: EtOAc/MeOH 90:10 (Rf. 0.51 (Avg)). 1H NMR (400 MHz, CDCl3) δ 8.43
(d, J = 4.8 Hz, 1H), 8.35 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.77 (d,
J = 8.2 Hz, 1H), 7.53 (quint, J = 7.6 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.29–7.16 (m, 7H), 6.81 (t,
J = 5.3 Hz, 1H (NH)), 4.77 (d, J = 7.1 Hz, 1H), 4.08 (q, J = 6.4 Hz, 1H), 3.53 (m, 1H), 3.30 (m,
2H), 3.11 (m, 2H), 2.93 (dd, J = 6.0, 13.6 Hz, 1H), 2.79 (m, 1H), 2.54 (dd, J = 6.6, 13.9 Hz, 1H),
2.43 (sext, J = 6.3 Hz, 2H), 1.67 (oct, J = 7.4 Hz, 2H), 1.34 (s, 9H). HRMS m/z calculated for
C35H42N3O3S [M + H]+: 584.2947. Found: 584.2928. The pure product 3i was obtained as a
white fluffy solid (0.07 g, 26%). TLC: EtOAc/MeOH 90:10 (Rf. 0.49). 1H NMR (400 MHz,
CDCl3) δ 8.43 (d, J = 4.7 Hz, 1H), 8.35 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 8.2,
16.5 Hz, 1H), 7.75 (dd, J = 8.0, 19.1 Hz, 1H), 7.53 (m, J = 7.7 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H),
7.30–7.15 (m, 7H), 6.82 (bs, 1H (NH)), 4.77 (d, J = 8.0 Hz, 1H), 4.08 (sext, J = 6.7 Hz, 1H),
3.53 (m, 1H), 3.31 (dd, J = 8.5, 13.5 Hz, 2H), 3.13 (dd, J = 8.0, 14.8 Hz, 2H), 2.93 (dd, J = 6.2,
13.5 Hz, 1H), 2.79 (m, 1H), 2.54 (dd, J = 6.9, 14.3 Hz, 1H), 2.43 (sext, J = 5.9 Hz, 2H), 1.67
(sext, J = 7.6 Hz, 2H), 1.34 (s, 9H). HRMS m/z calculated for C35H41N3O3SNa [M + Na]+:
606.2766. Found: 606.2797.

Synthesis of Compound 4—Pyridine-3-methanol (2.0 g, 18.3 mmol) was dissolved
in anhydrous DMF (30 mL) and the solution was cooled to 0 ◦C on an ice bath. Sodium
hydride (0.88g, 36.6 mmol, 2 eq) was added slowly over 10 min. Once H2 formation
subsided, the solution was warmed to 60 ◦C and stirred for 45 min. The solution was
then cooled to 0 ◦C on an ice bath and bromoacetonitrile (2.74 g, 22.8 mmol, 1.25 eq) was
added dropwise. The reaction was allowed to slowly come to room temperature overnight.
Upon completion, the solvent was evaporated, and the reaction mixture was diluted with
ethyl acetate. The organic layer was then washed with saturated NaHCO3, water, and
brine. The combined organic layers were dried over MgSO4, filtered through a silica plug,
and concentrated in vacuo to give the crude product, which was purified via column
chromatography (100% EtOAc). The pure product 4 was obtained as a brown oil (0.65g,
24%). LRMS m/z calculated for C8H8N2ONa [M + Na]+: 171.0. Found: 171.0
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Synthesis of Compound 5—Compound 4 (0.5 g, 3.4 mmol) was dissolved in methanol
(20 mL) and the solution was cooled to 0 ◦C on an ice bath. Nickel chloride hexahydrate
(0.89 g, 3.7 mmol, 1.1 eq,) and Di-tert-butyl dicarbonate (1.5 g, 6.8 mmol, 2 eq) were then
added to the solution, followed by slow addition of sodium borohydride (1.3 g, 34 mmol,
10 eq) over 10 min. Once H2 formation subsided, the solution was removed from the ice
bath and allowed to stir at room temperature overnight. Upon completion, the solvent was
evaporated, and the reaction mixture was diluted with ethyl acetate. The organic layer
was then washed with saturated NaHCO3 and filtered through celite. The organic layers
were dried over MgSO4 and concentrated in vacuo to give the crude product, which was
purified via column chromatography (100% EtOAc). The pure product 5 was obtained
as a brown oil (0.1 g, 12%). LRMS m/z calculated for C13H20N2O3Na [M + Na]+: 275.1.
Found: 275.1.

Synthesis of Compound 6—First, compound 5 (0.1 g, 0.40 mmol) was added to
dichloromethane (DCM) (3 mL). Trifluoroacetic acid (1.5 mL) was added dropwise and the
reaction was allowed to stir at room temperature for 2 h. Upon completion, the solvent
was evaporated, and the reaction mixture was neutralized with NaHCO3. The pH was
then adjusted to 14 with NaOH, and the solution was extracted with DCM. The combined
organic layers were concentrated in vacuo to give the free amine product (2-(pyridine-
3-ylmethoxy)ethan-1-amine) as a light-yellow oil (0.06g, 98%). HRMS m/z calculated
for C8H13N2O [M + H]+: 153.1028. Found: 153.1043. Then, crude 2a (0.15 g, 0.36 mmol)
was dissolved in DMF (3 mL). To this solution, EDAC (0.1 g, 0.54 mmol, 1.5 eq) and
HOBt (0.083 g, 0.54 mmol, 1.5 eq) were added, followed by the addition of 2-(pyridine-3-
ylmethoxy)ethan-1-amine (0.06 g, 0.39 mmol, 1.1 eq) in DMF (2 mL) and DIPEA (0.14 g,
1.1 mmol, 3 eq). The reaction was stirred at room temperature overnight. Upon completion,
the solvent was evaporated, and the reaction mixture was diluted with ethyl acetate. The
organic layer was then washed with saturated NaHCO3, water, and brine. The combined
organic layers were dried over MgSO4 and concentrated in vacuo to give the crude product,
which was purified via column chromatography (100% EtOAc). The pure product 6 was
obtained as a light orange oil (0.013 g, 6.5%). TLC: EtOAc/MeOH 90:10 (Rf. 0.54). 1H
NMR (400 MHz, CDCl3) δ 8.54 (m, 2H), 7.64 (d, J = 6.2 Hz, 1H), 7.34–7.07 (m, 11H), 6.75
(m, 1H (NH)), 4.43 (s, 1H), 3.64 (m, 2H), 3.47 (m, 2H), 3.36 (s, 1H), 3.25 (dd, J = 6.9, 13.4 Hz,
1H), 2.95 (m, 2H), 2.73 (m, 2H), 2.65 (d, J = 6.8, 1H), 2.54 (dd, J = 6.5, 13.9 Hz, 1H), 2.35
(dd, J = 4.5, 19.4 Hz, 1H), 1.41 (s, 9H). HRMS m/z calculated for C31H40N3O4S [M + H]+:
550.2739. Found: 550.2738.

Compound 7 was prepared as described previously [21], with n-phenylcysteine and
Boc-protected, tosylated L-phenylalanine (Boc–L–Phe–OTs).

Synthesis of Compound 8—Crude 7 (0.34 g, 0.8 mmol) was dissolved in DMF (9 mL).
To this solution, EDAC (0.23 g, 1.2 mmol, 1.5 eq) and HOBt (0.18 g, 1.2 mmol, 1.5 eq) were
added, followed by the addition of 3-(3-pyridyl)propylamine (0.16 g, 1.2 mmol, 1.5 eq) and
DIPEA (0.31 g, 2.4 mmol, 3 eq). The reaction was stirred at room temperature overnight.
Upon completion, the solvent was evaporated, and the reaction mixture was diluted with
ethyl acetate. The organic layer was then washed with saturated NaHCO3, water, and brine.
The combined organic layers were dried over MgSO4 and concentrated in vacuo to give the
crude product, which was purified via column chromatography (95:5 EtOAc:MeOH). The
pure product 8 was acquired as a light-yellow gum (0.032 g, 23%). TLC: EtOAc/MeOH
90:10 (Rf. 0.55). 1H NMR (400 MHz, CDCl3) δ 8.43 (d, J = 4.7 Hz, 1H), 8.36 (s, 1H), 7.41 (m,
2H), 7.30–7.12 (m, 6H), 7.00 (t, J = 6.1 Hz, 1H), 6.85 (dt, J = 3.4, 11.0 Hz, 1H), 6.67 (t, J = 8.5 Hz,
2H), 4.70 (t, J = 10.6 Hz, 1H), 4.61 (bs, 1H (NH)), 4.00 (bs, 1H), 3.86 (bd, J = 28.8 Hz, 1H
(NH)), 3.30 (m, 2H), 3.15 (m, 1H), 3.00 (m, 1H), 2.85 (m, 2H), 2.64 (m, 2H), 2.56 (t, J = 7.7 Hz,
2H), 1.87 (bs, 1H (NH)), 1.78 (m, 2H), 1.42 (d, J = 3.0 Hz, 9H). HRMS m/z calculated for
C31H40N4O3SNa [M + Na]+: 571.2719. Found: 571.2698.

Protein Expression and Purification—Codon-optimized full-length and ∆3–22 human
CYP3A4 were produced as reported previously [45] and used for assays and crystallization,
respectively. The K421A and K424A mutations were introduced to the ∆3–22 CYP3A4
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expression plasmid using a QuikChange mutagenesis kit (Stratagene) and confirmed by
sequencing. The mutant was expressed and purified similar to the wild-ype (WT) protein.

Spectral Binding Titrations—Equilibrium ligand binding to CYP3A4 was monitored
in a Cary 300 spectrophotometer at ambient temperature in 0.1 M phosphate buffer, pH 7.4,
supplemented with 20% glycerol and 1 mM dithiothreitol. Inhibitors were dissolved in
dimethyl sulfoxide (DMSO) and added to a 2 µM protein solution in small aliquots, with
the final solvent concentration < 2%. Spectral dissociation constants (Ks) were determined
from quadratic fits to titration plots.

Thermal Denaturation—Thermal denaturation curves were recorded in 0.1 M phos-
phate buffer, pH 7.4, in a Cary 300 spectrophotometer. Protein (1 µM) was mixed with a
ligand (20 µM) and incubated for 15 min at 23 ◦C. Melting curves were recorded at 260 nm
using a 0.2 ◦C measurement step, 0.9 ◦C/min ramp rate, and a 50–75 ◦C temperature range.
A denaturation midpoint (melting temperature; Tm) was determined from non-linear
fittings to the melting curve as described earlier [22].

Inhibitory Potency Assays—Inhibitory potency for the 7-benzyloxy-4-(trifluoromethyl)
coumarin (BFC) O-debenzylation activity of CYP3A4 was evaluated fluorometrically in
a soluble reconstituted system. The full-length CYP3A4 and rat cytochrome P450 reduc-
tase (40 and 60 µM, respectively) were preincubated at room temperature for 1 h before
20-fold dilution with the reaction buffer consisting of 0.1 M potassium phosphate, pH
7.4, catalase and superoxide dismutase (2 units/mL each), and 0.0025% CHAPS (3-[(3-
cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate). Prior to measurements, 85 µL
of the reaction buffer was mixed with 10 µL of the NADPH-regenerating system (10 mM
glucose, 0.2 mM NADP+, and 2 units/mL glucose-6-phosphate dehydrogenase), 5 µL of
the protein mixture (0.1 µM final CYP3A4 concentration), and 2 µL of the inhibitor solution
or DMSO. The mixture was incubated for 2 min, after which 20 µL BFC and 70 µL NADPH
(final concentration) were added to initiate the reaction. Accumulation of the fluorescent
product, 7-hydroxy-4-(trifluoromethyl)coumarin, was monitored for 2 min at room temper-
ature in a Hitachi F400 fluorimeter (λex = 404 nm; λem = 500 nm). Within this time interval,
fluorescence changes were linear. The average of three measurements was used to calculate
the remaining activity, with the DMSO-containing sample used as a control (100% activity).
The IC50 values were derived from the (% activity) vs. (inhibitor concentration) plots as
described previously [22]. Our prior work showed that preincubation of ritonavir or the
analogues with NADPH in a lipid-free reconstituted system leads to a small increase rather
than decrease in IC50, likely to due to partial metabolism [22]. Therefore, in this study,
inhibitory assays with NADPH preincubation were not conducted.

Kinetics of Ligand Binding and Heme Reduction—Kinetics of ligand binding to
CYP3A4 and its reduction with sodium dithionite were measured at 426 and 443 nm, re-
spectively, in a SX.18MV stopped flow apparatus (Applied Photophysics, UK), as described
earlier [22].

H2O2-Dependent Heme Depletion Assay—Heme bleaching in ligand-free and inhibitor-
bound CYP3A4 (1.6 µM) was monitored at ambient temperature in 0.1 M phosphate buffer,
pH 7.4. After 10 min preincubation of CYP3A4 with 16 µM inhibitors, 10 mM H2O2 (final
concentration) was added, and heme decay was monitored at 420 nm for 120 min. The
percentage of heme destroyed at the end of the reaction was calculated relative to that in
the ligand-free CYP3A4 (100% decay).

Crystallization of the Inhibitory Complexes—Compounds 3a–d, 8, and 3e–h were
co-crystallized with WT∆3-22 CYP3A4, and 3d and 3i with the K421A/K424A mutant.
Crystals of 3b-, 3c-, 3f-, 3g- and 8-bound complexes were grown using a microbatch method
under paraffin oil. Other compounds were co-crystallized with CYP3A4 using a sitting
drop vapor diffusion method. Prior to crystallization setup, CYP3A4 (60–70 mg/mL in
20–100 mM phosphate, pH 7.4) was incubated with a 2-fold ligand excess and centrifuged
to remove the precipitate. The supernatant (0.4–0.6 µL) was mixed with 0.4–0.6 µL of
crystallization solution containing: 8%–10% polyethylene glycol (PEG) 3350 and 70–80 mM
sodium malonate, pH 7.0, for 3a, 3g and 8; 10%–12% PEG 3350 and 60–100 mM succinate,
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pH 7.0, for 3b and 3f; 10% PEG 3350 and 80 mM taximate, pH 6.0 (Hampton Research)
for 3c; 6% PEG 3350 and 50 mM sodium malonate, pH 7.0, for 3e; or 6%–8% PEG 4000, 50
mM HEPES, pH 8.0, and 0.1–0.2 M lithium sulfate for 3d, 3h and 3i. Crystals were grown
at room temperature for 2–3 days and cryoprotected with Paratone-N before freezing in
liquid nitrogen.

Determination of the X-Ray Structures—X-ray diffraction data were collected at the
Stanford Synchrotron Radiation Lightsource beamlines 9–2 and 12–2, and the Advanced
Light Source beamlines 5.0.2 and 8.2.2. Crystal structures were solved by molecular
replacement with PHASER [46]. In addition, 5VCC was used as a search model for the 3b-,
3c-, 3f-, 3g- and 8-bound complexes, crystallized in the I222 space group. For the 3a-, 3d-,
3h- and 3i-bound CYP3A4, crystallized in the C2 and I2 space groups, the search model
was the CYP3A4-3e dimer, whose structure was determined first using 6UNJ for molecular
replacement. Ligands were built with eLBOW [47] and manually fit into the density with
COOT [48]. The initial models were rebuilt and refined with COOT and PHENIX [47].
For racemic 8, the R1 side-group configuration was automatically assigned to R during
the first refinement cycle. The following refinement was conducted with all stereoisomer
combinations to confirm that the assigned chirality was most optimal. Polder omit electron
density maps and local correlation coefficients (Table S3) were calculated with PHENIX.
Data collection and refinement statistics are summarized in Tables S1 and S2. The atomic
coordinates and structure factors for the 3a-, 3b-, 3c-, 3d-, 8-, 3e-, 3f-, 3g-, 3h-, and 3i-bound
CYP3A4 were deposited in the Protein Data Bank with the ID codes 7KVH, 7KVI, 7KVJ,
7KVK, 7KVM, 7KVN, 7KVO, 7KVP, 7KVQ and 7KVS, respectively.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/1422
-0067/22/2/852/s1 and include figures showing reorganization of the F–F’ fragment in C2 crystals
induced by different packing with a view at the distal face of WT and K421A/K424A CYP3A4, a
comparison of the 3a and 3h binding modes in I222 and C2 crystals, absolute spectra of ferric and
ferrous ligand-free and 3d-, 3i- and ritonavir-bound CYP3A4 K421A/K2424A with the respective
titrations plots, X-ray data collection and refinement statistics, correlations coefficients for polder
omit maps, 1H NMR spectra, and high-resolution mass spectrometry data.
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Abbreviations

CYP3A4 Cytochrome P450 3A4
BFC 7-benzyloxy-4-(trifluoromethyl)coumarin
SAR Structure–activity relationship
WT Wild type
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